@@ -33,17 +33,17 @@ def __init__(self):
3333 b_init2 = tlx .nn .initializers .constant (value = 0.1 )
3434
3535 self .conv1 = Conv2d (64 , (5 , 5 ), (1 , 1 ), padding = 'SAME' , W_init = W_init , b_init = None , name = 'conv1' , in_channels = 3 )
36- self .bn = BatchNorm2d (num_features = 64 , act = tlx .ReLU )
36+ self .bn = BatchNorm2d (num_features = 64 , act = tlx .nn . ReLU )
3737 self .maxpool1 = MaxPool2d ((3 , 3 ), (2 , 2 ), padding = 'SAME' , name = 'pool1' )
3838
3939 self .conv2 = Conv2d (
40- 64 , (5 , 5 ), (1 , 1 ), padding = 'SAME' , act = tlx .ReLU , W_init = W_init , b_init = None , name = 'conv2' , in_channels = 64
40+ 64 , (5 , 5 ), (1 , 1 ), padding = 'SAME' , act = tlx .nn . ReLU , W_init = W_init , b_init = None , name = 'conv2' , in_channels = 64
4141 )
4242 self .maxpool2 = MaxPool2d ((3 , 3 ), (2 , 2 ), padding = 'SAME' , name = 'pool2' )
4343
4444 self .flatten = Flatten (name = 'flatten' )
45- self .linear1 = Linear (384 , act = tlx .ReLU , W_init = W_init2 , b_init = b_init2 , name = 'linear1relu' , in_features = 2304 )
46- self .linear2 = Linear (192 , act = tlx .ReLU , W_init = W_init2 , b_init = b_init2 , name = 'linear2relu' , in_features = 384 )
45+ self .linear1 = Linear (384 , act = tlx .nn . ReLU , W_init = W_init2 , b_init = b_init2 , name = 'linear1relu' , in_features = 2304 )
46+ self .linear2 = Linear (192 , act = tlx .nn . ReLU , W_init = W_init2 , b_init = b_init2 , name = 'linear2relu' , in_features = 384 )
4747 self .linear3 = Linear (10 , act = None , W_init = W_init2 , name = 'output' , in_features = 192 )
4848
4949 def forward (self , x ):
@@ -179,17 +179,17 @@ def forward(self, data, label):
179179# b_init2 = tlx.nn.initializers.constant(value=0.1)
180180#
181181# self.conv1 = Conv2d(64, (5, 5), (1, 1), padding='SAME', W_init=W_init, b_init=None, name='conv1', in_channels=3)
182- # self.bn = BatchNorm2d(num_features=64, act=tlx.ReLU)
182+ # self.bn = BatchNorm2d(num_features=64, act=tlx.nn. ReLU)
183183# self.maxpool1 = MaxPool2d((3, 3), (2, 2), padding='SAME', name='pool1')
184184#
185185# self.conv2 = Conv2d(
186- # 64, (5, 5), (1, 1), padding='SAME', act=tlx.ReLU, W_init=W_init, b_init=None, name='conv2', in_channels=64
186+ # 64, (5, 5), (1, 1), padding='SAME', act=tlx.nn. ReLU, W_init=W_init, b_init=None, name='conv2', in_channels=64
187187# )
188188# self.maxpool2 = MaxPool2d((3, 3), (2, 2), padding='SAME', name='pool2')
189189#
190190# self.flatten = Flatten(name='flatten')
191- # self.linear1 = Linear(384, act=tlx.ReLU, W_init=W_init2, b_init=b_init2, name='linear1relu', in_channels=2304)
192- # self.linear2 = Linear(192, act=tlx.ReLU, W_init=W_init2, b_init=b_init2, name='linear2relu', in_channels=384)
191+ # self.linear1 = Linear(384, act=tlx.nn. ReLU, W_init=W_init2, b_init=b_init2, name='linear1relu', in_channels=2304)
192+ # self.linear2 = Linear(192, act=tlx.nn. ReLU, W_init=W_init2, b_init=b_init2, name='linear2relu', in_channels=384)
193193# self.linear3 = Linear(10, act=None, W_init=W_init2, name='output', in_channels=192)
194194#
195195# def forward(self, x):
@@ -364,18 +364,18 @@ def forward(self, data, label):
364364# def __init__(self):
365365# super(CNN, self).__init__()
366366# self.conv1 = Conv2d(
367- # 64, (5, 5), (2, 2), b_init=None, name='conv1', in_channels=3, act=tlx.ReLU, data_format='channels_first'
367+ # 64, (5, 5), (2, 2), b_init=None, name='conv1', in_channels=3, act=tlx.nn. ReLU, data_format='channels_first'
368368# )
369- # self.bn = BatchNorm2d(num_features=64, act=tlx.ReLU, data_format='channels_first')
369+ # self.bn = BatchNorm2d(num_features=64, act=tlx.nn. ReLU, data_format='channels_first')
370370# self.maxpool1 = MaxPool2d((3, 3), (2, 2), name='pool1', data_format='channels_first')
371371# self.conv2 = Conv2d(
372- # 128, (5, 5), (2, 2), act=tlx.ReLU, b_init=None, name='conv2', in_channels=64, data_format='channels_first'
372+ # 128, (5, 5), (2, 2), act=tlx.nn. ReLU, b_init=None, name='conv2', in_channels=64, data_format='channels_first'
373373# )
374374# self.maxpool2 = MaxPool2d((3, 3), (2, 2), name='pool2', data_format='channels_first')
375375#
376376# self.flatten = Flatten(name='flatten')
377- # self.linear1 = Linear(120, act=tlx.ReLU, name='linear1relu', in_channels=512)
378- # self.linear2 = Linear(84, act=tlx.ReLU, name='linear2relu', in_channels=120)
377+ # self.linear1 = Linear(120, act=tlx.nn. ReLU, name='linear1relu', in_channels=512)
378+ # self.linear2 = Linear(84, act=tlx.nn. ReLU, name='linear2relu', in_channels=120)
379379# self.linear3 = Linear(10, act=None, name='output', in_channels=84)
380380#
381381# def forward(self, x):
@@ -509,18 +509,18 @@ def forward(self, data, label):
509509# b_init2 = tlx.nn.initializers.constant(value=0.1)
510510#
511511# self.conv1 = Conv2d(64, (5, 5), (1, 1), padding='SAME', W_init=W_init, b_init=None, name='conv1', in_channels=3)
512- # self.bn1 = BatchNorm2d(num_features=64, act=tlx.ReLU)
512+ # self.bn1 = BatchNorm2d(num_features=64, act=tlx.nn. ReLU)
513513# self.maxpool1 = MaxPool2d((3, 3), (2, 2), padding='SAME', name='pool1')
514514#
515515# self.conv2 = Conv2d(
516516# 64, (5, 5), (1, 1), padding='SAME', W_init=W_init, b_init=None, name='conv2', in_channels=64
517517# )
518- # self.bn2 = BatchNorm2d(num_features=64, act=tlx.ReLU)
518+ # self.bn2 = BatchNorm2d(num_features=64, act=tlx.nn. ReLU)
519519# self.maxpool2 = MaxPool2d((3, 3), (2, 2), padding='SAME', name='pool2')
520520#
521521# self.flatten = Flatten(name='flatten')
522- # self.linear1 = Linear(384, act=tlx.ReLU, W_init=W_init2, b_init=b_init2, name='linear1relu', in_channels=2304)
523- # self.linear2 = Linear(192, act=tlx.ReLU, W_init=W_init2, b_init=b_init2, name='linear2relu', in_channels=384)
522+ # self.linear1 = Linear(384, act=tlx.nn. ReLU, W_init=W_init2, b_init=b_init2, name='linear1relu', in_channels=2304)
523+ # self.linear2 = Linear(192, act=tlx.nn. ReLU, W_init=W_init2, b_init=b_init2, name='linear2relu', in_channels=384)
524524# self.linear3 = Linear(10, act=None, W_init=W_init2, name='output', in_channels=192)
525525#
526526# def forward(self, x):
0 commit comments