|
10 | 10 | import tensorflow as tf |
11 | 11 | from tensorlayerx.nn.layers.utils import (get_variable_with_initializer, random_normal) |
12 | 12 |
|
13 | | -__all__ = ['Module', 'Sequential', 'ModuleList', 'ModuleDict', 'Parameter', 'ParameterList', 'ParameterDict', 'ParameterTuple'] |
| 13 | +__all__ = ['Module', 'Sequential', 'ModuleList', 'ModuleDict', 'Parameter', 'ParameterList', 'ParameterDict'] |
14 | 14 |
|
15 | 15 | _global_layer_name_dict = {} |
16 | 16 | _global_layer_node = [] |
@@ -1287,34 +1287,6 @@ def update(self, parameters): |
1287 | 1287 | def __call__(self, input): |
1288 | 1288 | raise RuntimeError('ParameterDict should not be called.') |
1289 | 1289 |
|
1290 | | - |
1291 | | -class ParameterTuple(tuple): |
1292 | | - """ |
1293 | | - ParameterTuple for storing tuple of parameters. |
1294 | | - """ |
1295 | | - def __new__(cls, iterable): |
1296 | | - data = tuple(iterable) |
1297 | | - ids = set() |
1298 | | - orders = {} |
1299 | | - for x in data: |
1300 | | - if not isinstance(x, tf.Variable): |
1301 | | - raise TypeError(f"ParameterTuple input should be `Parameter` collection." |
1302 | | - f"But got a {type(iterable)}, {iterable}") |
1303 | | - if id(x) not in ids: |
1304 | | - ids.add(id(x)) |
1305 | | - if x.name not in orders.keys(): |
1306 | | - orders[x.name] = [0, x] |
1307 | | - else: |
1308 | | - if isinstance(orders[x.name], list): |
1309 | | - name = x.name |
1310 | | - orders[name][1].name = name + "_" + str(0) |
1311 | | - x.name = x.name + "_" + str(1) |
1312 | | - orders[name] = 1 |
1313 | | - else: |
1314 | | - orders[x.name] += 1 |
1315 | | - x.name = x.name + "_" + str(orders[x.name]) |
1316 | | - return tuple.__new__(ParameterTuple, tuple(data)) |
1317 | | - |
1318 | 1290 | def _valid_index(layer_num, index): |
1319 | 1291 | if not isinstance(index, int): |
1320 | 1292 | raise TypeError("Index {} is not int type") |
|
0 commit comments