|
8 | 8 | import paddle as pd |
9 | 9 | from tensorlayerx.nn import Module |
10 | 10 | import tensorlayerx as tlx |
11 | | -from tensorlayerx.dataflow import Dataset, Dataloader |
| 11 | +from tensorlayerx.dataflow import Dataset, DataLoader |
12 | 12 | from tensorlayerx.nn import (Conv2d, Dense, Flatten, MaxPool2d, BatchNorm2d) |
13 | 13 | from tensorlayerx.vision.transforms import ( |
14 | 14 | Compose, Resize, RandomFlipHorizontal, RandomContrast, RandomBrightness, StandardizePerImage, RandomCrop |
@@ -108,11 +108,8 @@ def __len__(self): |
108 | 108 | train_dataset = make_dataset(data=X_train, label=y_train, transforms=train_transforms) |
109 | 109 | test_dataset = make_dataset(data=X_test, label=y_test, transforms=test_transforms) |
110 | 110 |
|
111 | | -train_dataset = tlx.dataflow.FromGenerator(train_dataset, output_types=(tlx.float32, tlx.int64)) |
112 | | -test_dataset = tlx.dataflow.FromGenerator(test_dataset, output_types=(tlx.float32, tlx.int64)) |
113 | | - |
114 | | -train_dataset = Dataloader(train_dataset, batch_size=batch_size, shuffle=True, shuffle_buffer_size=128) |
115 | | -test_dataset = Dataloader(test_dataset, batch_size=batch_size) |
| 111 | +train_dataset = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) |
| 112 | +test_dataset = DataLoader(test_dataset, batch_size=batch_size) |
116 | 113 |
|
117 | 114 | for epoch in range(n_epoch): |
118 | 115 | train_loss, train_acc, n_iter = 0, 0, 0 |
|
0 commit comments