Skip to content

Commit 5f9eb68

Browse files
authored
Update addition set coercion theorems with explicit typecasting
1 parent b14fdf2 commit 5f9eb68

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

analysis/Analysis/Section_3_1.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -859,21 +859,21 @@ theorem SetTheory.Set.coe_singleton (x: Object) : (({x}:Set) : _root_.Set Object
859859

860860
/-- Compatibility of union -/
861861
theorem SetTheory.Set.coe_union (X Y: Set) :
862-
(X ∪ Y : _root_.Set Object) = (X : _root_.Set Object) ∪ (Y : _root_.Set Object) := by sorry
862+
((X ∪ Y:Set) : _root_.Set Object) = (X : _root_.Set Object) ∪ (Y : _root_.Set Object) := by sorry
863863

864864
/-- Compatibility of pair -/
865-
theorem SetTheory.Set.coe_pair (x y: Object) : ({x, y} : _root_.Set Object) = {x, y} := by sorry
865+
theorem SetTheory.Set.coe_pair (x y: Object) : (({x, y}:Set) : _root_.Set Object) = {x, y} := by sorry
866866

867867
/-- Compatibility of subtype -/
868868
theorem SetTheory.Set.coe_subtype (X: Set) : (X : _root_.Set Object) = X.toSubtype := by sorry
869869

870870
/-- Compatibility of intersection -/
871871
theorem SetTheory.Set.coe_intersection (X Y: Set) :
872-
(X ∩ Y : _root_.Set Object) = (X : _root_.Set Object) ∩ (Y : _root_.Set Object) := by sorry
872+
((X ∩ Y:Set) : _root_.Set Object) = (X : _root_.Set Object) ∩ (Y : _root_.Set Object) := by sorry
873873

874874
/-- Compatibility of set difference-/
875875
theorem SetTheory.Set.coe_diff (X Y: Set) :
876-
(X \ Y : _root_.Set Object) = (X : _root_.Set Object) \ (Y : _root_.Set Object) := by sorry
876+
((X \ Y:Set) : _root_.Set Object) = (X : _root_.Set Object) \ (Y : _root_.Set Object) := by sorry
877877

878878
/-- Compatibility of disjointness -/
879879
theorem SetTheory.Set.coe_Disjoint (X Y: Set) :

0 commit comments

Comments
 (0)