11<!--
22```agda
3+ open import Cat.Displayed.Cartesian.Joint
34open import Cat.Functor.Equivalence.Path
45open import Cat.Instances.Shape.Terminal
6+ open import Cat.Diagram.Product.Indexed
57open import Cat.Displayed.Bifibration
68open import Cat.Displayed.Cocartesian
79open import Cat.Displayed.Cartesian
@@ -10,6 +12,9 @@ open import Cat.Displayed.Fibre
1012open import Cat.Displayed.Total
1113open import Cat.Displayed.Base
1214open import Cat.Prelude
15+
16+ import Cat.Displayed.Morphism
17+ import Cat.Reasoning
1318```
1419-->
1520
@@ -21,13 +26,19 @@ module Cat.Displayed.Instances.Trivial
2126
2227<!--
2328```agda
24- open Precategory 𝒞
29+ open Cat.Reasoning 𝒞
2530open Functor
2631open Total-hom
32+
33+ private variable
34+ a b : Ob
35+ f g : Hom a b
36+
37+ private module ⊤Cat = Cat.Reasoning ⊤Cat
2738```
2839-->
2940
30- # The trivial bifibration
41+ # The trivial bifibration {defines="trivial-bifibration"}
3142
3243Any category $\ca{C}$ can be regarded as being displayed over the
3344[[ terminal category]] $\top$.
@@ -44,6 +55,30 @@ Trivial .Displayed.idl' = idl
4455Trivial .Displayed.assoc' = assoc
4556```
4657
58+ <!--
59+ ```agda
60+ module Trivial where
61+ open Cat.Displayed.Morphism Trivial public
62+
63+
64+ trivial-invertible→invertible
65+ : ∀ {tt-inv : ⊤Cat.is-invertible tt}
66+ → Trivial.is-invertible[ tt-inv ] f
67+ → is-invertible f
68+ trivial-invertible→invertible f-inv =
69+ make-invertible f.inv' f.invl' f.invr'
70+ where module f = Trivial.is-invertible[_] f-inv
71+
72+ invertible→trivial-invertible
73+ : ∀ {tt-inv : ⊤Cat.is-invertible tt}
74+ → is-invertible f
75+ → Trivial.is-invertible[ tt-inv ] f
76+ invertible→trivial-invertible {tt-inv = tt-inv} f-inv =
77+ Trivial.make-invertible[ tt-inv ] f.inv f.invl f.invr
78+ where module f = is-invertible f-inv
79+ ```
80+ -->
81+
4782All morphisms in the trivial [[ displayed category]] are vertical over
4883the same object, so producing cartesian lifts is extremely easy: just
4984use the identity morphism!
@@ -76,6 +111,90 @@ Trivial-bifibration .is-bifibration.fibration = Trivial-fibration
76111Trivial-bifibration .is-bifibration.opfibration = Trivial-opfibration
77112```
78113
114+ The joint cartesian morphisms in the trivial displayed category
115+ are precisely the projections out of [[ indexed products]] .
116+
117+ ``` agda
118+ trivial-joint-cartesian→product
119+ : ∀ {κ} {Ix : Type κ}
120+ → {∏xᵢ : Ob} {xᵢ : Ix → Ob} {π : (i : Ix) → Hom ∏xᵢ (xᵢ i)}
121+ → is-jointly-cartesian Trivial (λ _ → tt) π
122+ → is-indexed-product 𝒞 xᵢ π
123+
124+ product→trivial-joint-cartesian
125+ : ∀ {κ} {Ix : Type κ}
126+ → {∏xᵢ : Ob} {xᵢ : Ix → Ob} {π : (i : Ix) → Hom ∏xᵢ (xᵢ i)}
127+ → is-indexed-product 𝒞 xᵢ π
128+ → is-jointly-cartesian Trivial (λ _ → tt) π
129+ ```
130+
131+ <details >
132+ <summary >The proofs are basically just shuffling data around,
133+ so we will not describe the details.
134+ </summary >
135+
136+ ``` agda
137+ trivial-joint-cartesian→product {xᵢ = xᵢ} {π = π} π-cart =
138+ π-product
139+ where
140+ module π = is-jointly-cartesian π-cart
141+ open is-indexed-product
142+
143+ π-product : is-indexed-product 𝒞 xᵢ π
144+ π-product .tuple fᵢ = π.universal tt fᵢ
145+ π-product .commute = π.commutes tt _ _
146+ π-product .unique fᵢ p = π.unique _ p
147+
148+ product→trivial-joint-cartesian {xᵢ = xᵢ} {π = π} π-product =
149+ π-cart
150+ where
151+ module π = is-indexed-product π-product
152+ open is-jointly-cartesian
153+
154+ π-cart : is-jointly-cartesian Trivial (λ _ → tt) π
155+ π-cart .universal tt fᵢ = π.tuple fᵢ
156+ π-cart .commutes tt fᵢ ix = π.commute
157+ π-cart .unique other p = π.unique _ p
158+ ```
159+ </details >
160+
161+ In contrast, the cartesian morphisms in the trivial displayed category
162+ are the invertible morphisms.
163+
164+ ``` agda
165+ invertible→trivial-cartesian
166+ : ∀ {a b} {f : Hom a b}
167+ → is-invertible f
168+ → is-cartesian Trivial tt f
169+
170+ trivial-cartesian→invertible
171+ : ∀ {a b} {f : Hom a b}
172+ → is-cartesian Trivial tt f
173+ → is-invertible f
174+ ```
175+
176+ The forward direction is easy: every invertible morphism is cartesian,
177+ and the invertible morphisms in the trivial displayed category on $\cC$ are
178+ the invertible maps in $\cC$.
179+
180+ ``` agda
181+ invertible→trivial-cartesian f-inv =
182+ invertible→cartesian Trivial
183+ (⊤Cat-is-pregroupoid tt)
184+ (invertible→trivial-invertible f-inv)
185+ ```
186+
187+ For the reverse direction, recall that all vertical cartesian morphisms
188+ are invertible. Every morphism in the trivial displayed category is vertical,
189+ so cartesianness implies invertibility.
190+
191+ ``` agda
192+ trivial-cartesian→invertible f-cart =
193+ trivial-invertible→invertible $
194+ vertical+cartesian→invertible Trivial f-cart
195+ ```
196+
197+
79198Furthermore, the [[ total category]] of the trivial bifibration is * isomorphic*
80199to the category we started with.
81200
0 commit comments