Skip to content

Commit eefd3a1

Browse files
committed
def: jointly cartesian families in the trivial disp cat are products
1 parent 5777528 commit eefd3a1

File tree

2 files changed

+126
-2
lines changed

2 files changed

+126
-2
lines changed

src/Cat/Displayed/Cartesian/Joint.lagda.md

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -186,10 +186,15 @@ by studying prototypical examples of jointly cartesian families:
186186

187187
- If we view the category of topological spaces as a [[displayed category]],
188188
then the jointly cartesian maps are precisely the initial topologies.
189+
189190
- Jointly cartesian maps in the [[subobject fibration]] of $\Sets$
190191
arise from pulling back a family of subsets $A_{i} \subset Y_{i}$ along
191192
maps $u_{i} : X \to Y_{i}$, and then taking their intersection.
192193

194+
- When $\cB$ is considered as a displayed category over the [[terminal category]],
195+
the jointly cartesian families are precisely the [[indexed products]].
196+
In contrast, the cartesian maps are the invertible maps.
197+
193198
## Relating cartesian maps and jointly cartesian families
194199

195200
Every [[cartesian map]] can be regarded as a jointly cartesian family

src/Cat/Displayed/Instances/Trivial.lagda.md

Lines changed: 121 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,9 @@
11
<!--
22
```agda
3+
open import Cat.Displayed.Cartesian.Joint
34
open import Cat.Functor.Equivalence.Path
45
open import Cat.Instances.Shape.Terminal
6+
open import Cat.Diagram.Product.Indexed
57
open import Cat.Displayed.Bifibration
68
open import Cat.Displayed.Cocartesian
79
open import Cat.Displayed.Cartesian
@@ -10,6 +12,9 @@ open import Cat.Displayed.Fibre
1012
open import Cat.Displayed.Total
1113
open import Cat.Displayed.Base
1214
open import Cat.Prelude
15+
16+
import Cat.Displayed.Morphism
17+
import Cat.Reasoning
1318
```
1419
-->
1520

@@ -21,13 +26,19 @@ module Cat.Displayed.Instances.Trivial
2126

2227
<!--
2328
```agda
24-
open Precategory 𝒞
29+
open Cat.Reasoning 𝒞
2530
open Functor
2631
open Total-hom
32+
33+
private variable
34+
a b : Ob
35+
f g : Hom a b
36+
37+
private module ⊤Cat = Cat.Reasoning ⊤Cat
2738
```
2839
-->
2940

30-
# The trivial bifibration
41+
# The trivial bifibration {defines="trivial-bifibration"}
3142

3243
Any category $\ca{C}$ can be regarded as being displayed over the
3344
[[terminal category]] $\top$.
@@ -44,6 +55,30 @@ Trivial .Displayed.idl' = idl
4455
Trivial .Displayed.assoc' = assoc
4556
```
4657

58+
<!--
59+
```agda
60+
module Trivial where
61+
open Cat.Displayed.Morphism Trivial public
62+
63+
64+
trivial-invertible→invertible
65+
: ∀ {tt-inv : ⊤Cat.is-invertible tt}
66+
→ Trivial.is-invertible[ tt-inv ] f
67+
→ is-invertible f
68+
trivial-invertible→invertible f-inv =
69+
make-invertible f.inv' f.invl' f.invr'
70+
where module f = Trivial.is-invertible[_] f-inv
71+
72+
invertible→trivial-invertible
73+
: ∀ {tt-inv : ⊤Cat.is-invertible tt}
74+
→ is-invertible f
75+
→ Trivial.is-invertible[ tt-inv ] f
76+
invertible→trivial-invertible {tt-inv = tt-inv} f-inv =
77+
Trivial.make-invertible[ tt-inv ] f.inv f.invl f.invr
78+
where module f = is-invertible f-inv
79+
```
80+
-->
81+
4782
All morphisms in the trivial [[displayed category]] are vertical over
4883
the same object, so producing cartesian lifts is extremely easy: just
4984
use the identity morphism!
@@ -76,6 +111,90 @@ Trivial-bifibration .is-bifibration.fibration = Trivial-fibration
76111
Trivial-bifibration .is-bifibration.opfibration = Trivial-opfibration
77112
```
78113

114+
The joint cartesian morphisms in the trivial displayed category
115+
are precisely the projections out of [[indexed products]].
116+
117+
```agda
118+
trivial-joint-cartesian→product
119+
: ∀ {κ} {Ix : Type κ}
120+
→ {∏xᵢ : Ob} {xᵢ : Ix → Ob} {π : (i : Ix) → Hom ∏xᵢ (xᵢ i)}
121+
→ is-jointly-cartesian Trivial (λ _ → tt) π
122+
→ is-indexed-product 𝒞 xᵢ π
123+
124+
product→trivial-joint-cartesian
125+
: ∀ {κ} {Ix : Type κ}
126+
→ {∏xᵢ : Ob} {xᵢ : Ix → Ob} {π : (i : Ix) → Hom ∏xᵢ (xᵢ i)}
127+
→ is-indexed-product 𝒞 xᵢ π
128+
→ is-jointly-cartesian Trivial (λ _ → tt) π
129+
```
130+
131+
<details>
132+
<summary>The proofs are basically just shuffling data around,
133+
so we will not describe the details.
134+
</summary>
135+
136+
```agda
137+
trivial-joint-cartesian→product {xᵢ = xᵢ} {π = π} π-cart =
138+
π-product
139+
where
140+
module π = is-jointly-cartesian π-cart
141+
open is-indexed-product
142+
143+
π-product : is-indexed-product 𝒞 xᵢ π
144+
π-product .tuple fᵢ = π.universal tt fᵢ
145+
π-product .commute = π.commutes tt _ _
146+
π-product .unique fᵢ p = π.unique _ p
147+
148+
product→trivial-joint-cartesian {xᵢ = xᵢ} {π = π} π-product =
149+
π-cart
150+
where
151+
module π = is-indexed-product π-product
152+
open is-jointly-cartesian
153+
154+
π-cart : is-jointly-cartesian Trivial (λ _ → tt) π
155+
π-cart .universal tt fᵢ = π.tuple fᵢ
156+
π-cart .commutes tt fᵢ ix = π.commute
157+
π-cart .unique other p = π.unique _ p
158+
```
159+
</details>
160+
161+
In contrast, the cartesian morphisms in the trivial displayed category
162+
are the invertible morphisms.
163+
164+
```agda
165+
invertible→trivial-cartesian
166+
: ∀ {a b} {f : Hom a b}
167+
→ is-invertible f
168+
→ is-cartesian Trivial tt f
169+
170+
trivial-cartesian→invertible
171+
: ∀ {a b} {f : Hom a b}
172+
→ is-cartesian Trivial tt f
173+
→ is-invertible f
174+
```
175+
176+
The forward direction is easy: every invertible morphism is cartesian,
177+
and the invertible morphisms in the trivial displayed category on $\cC$ are
178+
the invertible maps in $\cC$.
179+
180+
```agda
181+
invertible→trivial-cartesian f-inv =
182+
invertible→cartesian Trivial
183+
(⊤Cat-is-pregroupoid tt)
184+
(invertible→trivial-invertible f-inv)
185+
```
186+
187+
For the reverse direction, recall that all vertical cartesian morphisms
188+
are invertible. Every morphism in the trivial displayed category is vertical,
189+
so cartesianness implies invertibility.
190+
191+
```agda
192+
trivial-cartesian→invertible f-cart =
193+
trivial-invertible→invertible $
194+
vertical+cartesian→invertible Trivial f-cart
195+
```
196+
197+
79198
Furthermore, the [[total category]] of the trivial bifibration is *isomorphic*
80199
to the category we started with.
81200

0 commit comments

Comments
 (0)