Skip to content

Commit f865e4a

Browse files
committed
fixup: use copatterns
1 parent 73279ca commit f865e4a

File tree

1 file changed

+19
-24
lines changed

1 file changed

+19
-24
lines changed

src/Cat/Diagram/Monad.lagda.md

Lines changed: 19 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -206,20 +206,19 @@ Defining the identity and composition maps is mostly an exercise in
206206
categorical yoga:
207207

208208
```agda
209-
Eilenberg-Moore .id {o , x} = record
210-
{ morphism = C.id
211-
; commutes = C.id C.∘ ν x ≡⟨ C.id-comm-sym ⟩
212-
ν x C.∘ C.id ≡⟨ ap (C._∘_ _) (sym M-id) ⟩
213-
ν x C.∘ M₁ C.id ∎
214-
}
215-
216-
Eilenberg-Moore ._∘_ {_ , x} {_ , y} {_ , z} F G = record
217-
{ morphism = morphism F C.∘ morphism G
218-
; commutes = (morphism F C.∘ morphism G) C.∘ ν x ≡⟨ C.extendr (commutes G) ⟩
219-
(morphism F C.∘ ν y) C.∘ M₁ (morphism G) ≡⟨ ap₂ C._∘_ (commutes F) refl ⟩
220-
(ν z C.∘ M₁ (morphism F)) C.∘ M₁ (morphism G) ≡⟨ C.pullr (sym (M-∘ _ _)) ⟩
221-
ν z C.∘ M₁ (morphism F C.∘ morphism G) ∎
222-
}
209+
Eilenberg-Moore .id {o , x} .morphism = C.id
210+
Eilenberg-Moore .id {o , x} .commutes =
211+
C.id C.∘ ν x ≡⟨ C.id-comm-sym ⟩
212+
ν x C.∘ C.id ≡⟨ ap (C._∘_ _) (sym M-id) ⟩
213+
ν x C.∘ M₁ C.id ∎
214+
215+
Eilenberg-Moore ._∘_ {_ , x} {_ , y} {_ , z} F G .morphism =
216+
morphism F C.∘ morphism G
217+
Eilenberg-Moore ._∘_ {_ , x} {_ , y} {_ , z} F G .commutes =
218+
(morphism F C.∘ morphism G) C.∘ ν x ≡⟨ C.extendr (commutes G) ⟩
219+
(morphism F C.∘ ν y) C.∘ M₁ (morphism G) ≡⟨ ap₂ C._∘_ (commutes F) refl ⟩
220+
(ν z C.∘ M₁ (morphism F)) C.∘ M₁ (morphism G) ≡⟨ C.pullr (sym (M-∘ _ _)) ⟩
221+
ν z C.∘ M₁ (morphism F C.∘ morphism G) ∎
223222
```
224223

225224
<details>
@@ -278,12 +277,10 @@ become those of the $M$-action.
278277

279278
```agda
280279
Free : Functor C Eilenberg-Moore
281-
Free .F₀ A = M₀ A ,
282-
record
283-
{ ν = mult.η A
284-
; ν-mult = mult-assoc
285-
; ν-unit = right-ident
286-
}
280+
Free .F₀ A .fst = M₀ A
281+
Free .F₀ A .snd .ν = mult .η A
282+
Free .F₀ A .snd .ν-mult = mult-assoc
283+
Free .F₀ A .snd .ν-unit = right-ident
287284
```
288285

289286
The construction of free $M$-algebras is furthermore functorial on the
@@ -305,10 +302,8 @@ algebraic action:
305302
~~~
306303

307304
```agda
308-
Free .F₁ f = record
309-
{ morphism = M₁ f
310-
; commutes = sym (mult.is-natural _ _ _)
311-
}
305+
Free .F₁ f .morphism = M₁ f
306+
Free .F₁ f .commutes = sym $ mult.is-natural _ _ _
312307
Free .F-id = Algebra-hom-path M-id
313308
Free .F-∘ f g = Algebra-hom-path (M-∘ f g)
314309
```

0 commit comments

Comments
 (0)