@@ -206,20 +206,19 @@ Defining the identity and composition maps is mostly an exercise in
206206categorical yoga:
207207
208208``` agda
209- Eilenberg-Moore .id {o , x} = record
210- { morphism = C.id
211- ; commutes = C.id C.∘ ν x ≡⟨ C.id-comm-sym ⟩
212- ν x C.∘ C.id ≡⟨ ap (C._∘_ _) (sym M-id) ⟩
213- ν x C.∘ M₁ C.id ∎
214- }
215-
216- Eilenberg-Moore ._∘_ {_ , x} {_ , y} {_ , z} F G = record
217- { morphism = morphism F C.∘ morphism G
218- ; commutes = (morphism F C.∘ morphism G) C.∘ ν x ≡⟨ C.extendr (commutes G) ⟩
219- (morphism F C.∘ ν y) C.∘ M₁ (morphism G) ≡⟨ ap₂ C._∘_ (commutes F) refl ⟩
220- (ν z C.∘ M₁ (morphism F)) C.∘ M₁ (morphism G) ≡⟨ C.pullr (sym (M-∘ _ _)) ⟩
221- ν z C.∘ M₁ (morphism F C.∘ morphism G) ∎
222- }
209+ Eilenberg-Moore .id {o , x} .morphism = C.id
210+ Eilenberg-Moore .id {o , x} .commutes =
211+ C.id C.∘ ν x ≡⟨ C.id-comm-sym ⟩
212+ ν x C.∘ C.id ≡⟨ ap (C._∘_ _) (sym M-id) ⟩
213+ ν x C.∘ M₁ C.id ∎
214+
215+ Eilenberg-Moore ._∘_ {_ , x} {_ , y} {_ , z} F G .morphism =
216+ morphism F C.∘ morphism G
217+ Eilenberg-Moore ._∘_ {_ , x} {_ , y} {_ , z} F G .commutes =
218+ (morphism F C.∘ morphism G) C.∘ ν x ≡⟨ C.extendr (commutes G) ⟩
219+ (morphism F C.∘ ν y) C.∘ M₁ (morphism G) ≡⟨ ap₂ C._∘_ (commutes F) refl ⟩
220+ (ν z C.∘ M₁ (morphism F)) C.∘ M₁ (morphism G) ≡⟨ C.pullr (sym (M-∘ _ _)) ⟩
221+ ν z C.∘ M₁ (morphism F C.∘ morphism G) ∎
223222```
224223
225224<details >
@@ -278,12 +277,10 @@ become those of the $M$-action.
278277
279278``` agda
280279 Free : Functor C Eilenberg-Moore
281- Free .F₀ A = M₀ A ,
282- record
283- { ν = mult.η A
284- ; ν-mult = mult-assoc
285- ; ν-unit = right-ident
286- }
280+ Free .F₀ A .fst = M₀ A
281+ Free .F₀ A .snd .ν = mult .η A
282+ Free .F₀ A .snd .ν-mult = mult-assoc
283+ Free .F₀ A .snd .ν-unit = right-ident
287284```
288285
289286The construction of free $M$-algebras is furthermore functorial on the
@@ -305,10 +302,8 @@ algebraic action:
305302~~~
306303
307304``` agda
308- Free .F₁ f = record
309- { morphism = M₁ f
310- ; commutes = sym (mult.is-natural _ _ _)
311- }
305+ Free .F₁ f .morphism = M₁ f
306+ Free .F₁ f .commutes = sym $ mult.is-natural _ _ _
312307 Free .F-id = Algebra-hom-path M-id
313308 Free .F-∘ f g = Algebra-hom-path (M-∘ f g)
314309```
0 commit comments