Skip to content

Commit 74169ce

Browse files
authored
Adapt to new InducingPoints.jl API (#114)
* Adapt to new InducingPoints.jl API * Update Project.toml * Fix tests potentially
1 parent bfb9002 commit 74169ce

File tree

4 files changed

+4
-4
lines changed

4 files changed

+4
-4
lines changed

Project.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
name = "AugmentedGaussianProcesses"
22
uuid = "38eea1fd-7d7d-5162-9d08-f89d0f2e271e"
33
authors = ["Theo Galy-Fajou <[email protected]>"]
4-
version = "0.11.3"
4+
version = "0.11.4"
55

66
[deps]
77
AbstractMCMC = "80f14c24-f653-4e6a-9b94-39d6b0f70001"

src/ComplementaryDistributions/generalizedinversegaussian.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ struct GeneralizedInverseGaussian{T<:Real} <: Distributions.ContinuousUnivariate
55
b::T
66
p::T
77
function GeneralizedInverseGaussian{T}(a::T, b::T, p::T) where {T}
8-
Distributions.@check_args(GeneralizedInverseGaussian, a > zero(a) && b > zero(b))
8+
a > zero(a) && b > zero(b) || throw(ArgumentError("a : $a and b : $b have to be positive"))
99
return new{T}(a, b, p)
1010
end
1111
end

src/training/onlinetraining.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -187,7 +187,7 @@ function init_online_model(m::OnlineSVGP{T}, x) where {T<:Real}
187187
end
188188

189189
function init_online_gp!(gp::OnlineVarLatent{T}, x, jitt::T=T(jitt)) where {T}
190-
Z = InducingPoints.initZ(gp.Zalg, x; kernel=kernel(gp))
190+
Z = InducingPoints.inducingpoints(gp.Zalg, x; kernel=kernel(gp))
191191
k = length(Z)
192192
post = OnlineVarPosterior{T}(k)
193193
prior = GPPrior(kernel(gp), pr_mean(gp))

test/likelihood/gaussian.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@
2727
@test AGP.getf(model) isa AGP.LatentGP
2828
@test AGP.n_latent(model) == 1
2929
L = AGP.objective(model, X, y)
30-
@test_nowarn train!(model, 10)
30+
train!(model, 10)
3131
@test L < AGP.objective(model, X, y)
3232
@test testconv(model, "Regression", X, f, y)
3333
@test all(proba_y(model, X)[2] .> 0)

0 commit comments

Comments
 (0)