@@ -34,7 +34,7 @@ def get_clusters_by_elbow(X, list_clusters=None, **kwargs):
3434 list_clusters = DEFAULT_LIST_CLUSTERS
3535 wcss = []
3636 for n_c in list_clusters :
37- kmeans = KMeans (n_clusters = n_c )
37+ kmeans = KMeans (n_clusters = n_c , n_init = "auto" )
3838 kmeans .fit (X = X )
3939 wcss .append (kmeans .inertia_ )
4040 x1 , y1 = 2 , wcss [0 ]
@@ -158,7 +158,7 @@ def get_clusters_by_silhouette_score(X, list_clusters=None, **kwargs):
158158 sil_max = 0
159159 sil_max_clusters = 2
160160 for n_clusters in list_clusters :
161- model = KMeans (n_clusters = n_clusters )
161+ model = KMeans (n_clusters = n_clusters , n_init = "auto" )
162162 labels = model .fit_predict (X )
163163 sil_score = metrics .silhouette_score (X , labels )
164164 if sil_score > sil_max :
@@ -176,7 +176,7 @@ def get_clusters_by_davies_bouldin(X, list_clusters=None, **kwargs):
176176 list_clusters = DEFAULT_LIST_CLUSTERS
177177 list_dbs = []
178178 for n_clusters in list_clusters :
179- model = KMeans (n_clusters = n_clusters )
179+ model = KMeans (n_clusters = n_clusters , n_init = "auto" )
180180 labels = model .fit_predict (X )
181181 db_score = metrics .davies_bouldin_score (X , labels )
182182 list_dbs .append (db_score )
@@ -192,7 +192,7 @@ def get_clusters_by_calinski_harabasz(X, list_clusters=None, **kwargs):
192192 list_clusters = DEFAULT_LIST_CLUSTERS
193193 list_chs = []
194194 for n_clusters in list_clusters :
195- model = KMeans (n_clusters = n_clusters )
195+ model = KMeans (n_clusters = n_clusters , n_init = "auto" )
196196 labels = model .fit_predict (X )
197197 ch_score = metrics .calinski_harabasz_score (X , labels )
198198 list_chs .append (ch_score )
0 commit comments