Skip to content

Commit 112fc9f

Browse files
Merge pull request #96 from tsingcbx99/master
Fix Typo
2 parents fb9db9a + 29f7fee commit 112fc9f

File tree

5 files changed

+23
-18
lines changed

5 files changed

+23
-18
lines changed

README.md

Lines changed: 10 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -36,10 +36,9 @@ The currently supported algorithms include:
3636
- [Regressive Domain Adaptation for Unsupervised Keypoint Detection (RegDA, CVPR 2021)](http://ise.thss.tsinghua.edu.cn/~mlong/doc/regressive-domain-adaptation-cvpr21.pdf)
3737

3838
##### [Domain Adaptation for Person Re-identification](/examples/domain_adaptation/re_identification/)
39-
- [Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net},
40-
booktitle (IBN-Net, 2018 ECCV)](https://openaccess.thecvf.com/content_ECCV_2018/papers/Xingang_Pan_Two_at_Once_ECCV_2018_paper.pdf)
41-
- [Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification (MMT, 2020 ICLR)](https://arxiv.org/abs/2001.01526)
42-
- [Similarity Preserving Generative Adversarial Network (SPGAN)](https://arxiv.org/pdf/1811.10551.pdf)
39+
- [Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net (IBN-Net, ECCV 2018)](https://openaccess.thecvf.com/content_ECCV_2018/papers/Xingang_Pan_Two_at_Once_ECCV_2018_paper.pdf)
40+
- [Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification (MMT, ICLR 2020)](https://arxiv.org/abs/2001.01526)
41+
- [Similarity Preserving Generative Adversarial Network (SPGAN, CVPR 2018)](https://arxiv.org/pdf/1811.10551.pdf)
4342

4443
##### [Task Adaptation for Image Classification](/examples/task_adaptation/image_classification/)
4544
- [Explicit inductive bias for transfer learning with convolutional networks
@@ -52,19 +51,17 @@ The currently supported algorithms include:
5251
- [Bi-tuning of Pre-trained Representations (Bi-Tuning)](https://arxiv.org/abs/2011.06182?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+arxiv%2FQSXk+%28ExcitingAds%21+cs+updates+on+arXiv.org%29)
5352

5453
##### [Domain Generalization for Classification](/examples/domain_generalization/image_classification/)
55-
- [Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net},
56-
booktitle (IBN-Net, 2018 ECCV)](https://openaccess.thecvf.com/content_ECCV_2018/papers/Xingang_Pan_Two_at_Once_ECCV_2018_paper.pdf)
57-
- [Domain Generalization with MixStyle (MixStyle, 2021 ICLR)](https://arxiv.org/abs/2104.02008)
58-
- [Learning to Generalize: Meta-Learning for Domain Generalization (MLDG, 2018 AAAI)](https://arxiv.org/pdf/1710.03463.pdf)
54+
- [Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net (IBN-Net, ECCV 2018)](https://openaccess.thecvf.com/content_ECCV_2018/papers/Xingang_Pan_Two_at_Once_ECCV_2018_paper.pdf)
55+
- [Domain Generalization with MixStyle (MixStyle, ICLR 2021)](https://arxiv.org/abs/2104.02008)
56+
- [Learning to Generalize: Meta-Learning for Domain Generalization (MLDG, AAAI 2018)](https://arxiv.org/pdf/1710.03463.pdf)
5957
- [Invariant Risk Minimization (IRM)](https://arxiv.org/abs/1907.02893)
60-
- [Out-of-Distribution Generalization via Risk Extrapolation (REx) (VREx, ICML 2021)](https://arxiv.org/abs/2003.00688)
58+
- [Out-of-Distribution Generalization via Risk Extrapolation (VREx, ICML 2021)](https://arxiv.org/abs/2003.00688)
6159
- [Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization(GroupDRO)](https://arxiv.org/abs/1911.08731)
62-
- [Deep CORAL: Correlation Alignment for Deep Domain Adaptation (Deep Coral, 2016 ECCV)](https://arxiv.org/abs/1607.01719)
60+
- [Deep CORAL: Correlation Alignment for Deep Domain Adaptation (Deep Coral, ECCV 2016)](https://arxiv.org/abs/1607.01719)
6361

6462
##### [Domain Generalization for Person Re-identification](/examples/domain_generalization/re_identification/)
65-
- [Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net},
66-
booktitle (IBN-Net, 2018 ECCV)](https://openaccess.thecvf.com/content_ECCV_2018/papers/Xingang_Pan_Two_at_Once_ECCV_2018_paper.pdf)
67-
- [Domain Generalization with MixStyle (MixStyle, 2021 ICLR)](https://arxiv.org/abs/2104.02008)
63+
- [Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net (IBN-Net, ECCV 2018)](https://openaccess.thecvf.com/content_ECCV_2018/papers/Xingang_Pan_Two_at_Once_ECCV_2018_paper.pdf)
64+
- [Domain Generalization with MixStyle (MixStyle, ICLR 2021)](https://arxiv.org/abs/2104.02008)
6865

6966
We are planning to add
7067
- DA for Object Detection

dalib/adaptation/adda.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,8 @@ class DomainAdversarialLoss(nn.Module):
1414
<https://arxiv.org/pdf/1702.05464.pdf>`_.
1515
Similar to the original `GAN <https://arxiv.org/pdf/1406.2661.pdf>`_ paper, ADDA argues that replacing
1616
:math:`\text{log}(1-p)` with :math:`-\text{log}(p)` in the adversarial loss provides better gradient qualities. Detailed
17-
optimization process can be found at `examples/domain_adaptation/image_classification/adda.py`.
17+
optimization process can be found `here
18+
<https://github.com/thuml/Transfer-Learning-Library/blob/master/examples/domain_adaptation/image_classification/adda.py>`_.
1819
1920
Inputs:
2021
- domain_pred (tensor): predictions of domain discriminator

docs/dalib/adaptation/domain_adversarial.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -34,8 +34,8 @@ ADDA: Adversarial Discriminative Domain Adaptation
3434
.. autoclass:: dalib.adaptation.adda.DomainAdversarialLoss
3535

3636
.. note::
37-
ADDAgrl is also implemented and benchmarked. You can find code at
38-
`examples/domain_adaptation/image_classification/addagrl.py`.
37+
ADDAgrl is also implemented and benchmarked. You can find code
38+
`here <https://github.com/thuml/Transfer-Learning-Library/blob/master/examples/domain_adaptation/image_classification/addagrl.py>`_.
3939

4040

4141
.. _BSP:

examples/domain_adaptation/re_identification/README.md

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -60,6 +60,13 @@ If you use these methods in your research, please consider citing.
6060
year = {2018}
6161
}
6262
63+
@inproceedings{SPGAN,
64+
title={Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification},
65+
author={Deng, Weijian and Zheng, Liang and Ye, Qixiang and Kang, Guoliang and Yang, Yi and Jiao, Jianbin},
66+
booktitle={CVPR},
67+
year={2018}
68+
}
69+
6370
@inproceedings{
6471
MMT,
6572
title={Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification},

examples/domain_generalization/image_classification/README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -72,8 +72,8 @@ If you use these methods in your research, please consider citing.
7272
@inproceedings{MLDG,
7373
title={Learning to Generalize: Meta-Learning for Domain Generalization},
7474
author={Li, Da and Yang, Yongxin and Song, Yi-Zhe and Hospedales, Timothy},
75-
booktitle={AAAI Conference on Artificial Intelligence},
76-
year={2018}
75+
booktitle={AAAI},
76+
year={2018}
7777
}
7878
7979
@misc{IRM,

0 commit comments

Comments
 (0)