Skip to content

possible bugs in multiple linear regressions #44

@Saarialho

Description

@Saarialho

The problem

I am having trouble with grouped multivariate regressions.
I believe the last error is in pattern matching with grepl (when xvar names have yvar in them)

Reproducible example

library(dplyr)
library(purrr)

mtcars %>% 
  arrow::to_duckdb() %>% 
  group_by(am) %>% 
  modeldb::linear_regression_db(mpg, auto_count = TRUE)
#> # A tibble: 2 × 11
#>      am `(Intercept)`    cyl    disp      hp   drat     wt   qsec    vs  gear
#>   <dbl>         <dbl>  <dbl>   <dbl>   <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl>
#> 1     0          8.64 -0.534 -0.0203  0.0622  0.592   1.95 -0.884 0.739  8.65
#> 2     1       -138.   -1.28   0.180  -0.160  -4.95  -10.5   8.09  0.943 12.3 
#> # ℹ 1 more variable: carb <dbl>

mtcars %>% 
  group_by(am) %>% 
  dplyr::reframe(
    reg = list(lm(mpg ~ ., data = dplyr::pick(dplyr::everything()))),
  ) %>% 
  .$reg %>% 
  map(coefficients) %>% 
  bind_rows()
#> # A tibble: 2 × 10
#>   `(Intercept)`    cyl    disp      hp   drat     wt   qsec    vs  gear  carb
#>           <dbl>  <dbl>   <dbl>   <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>
#> 1          8.64 -0.534 -0.0203  0.0622  0.592   1.95 -0.884 0.739  8.65 -4.81
#> 2       -138.   -1.28   0.180  -0.160  -4.95  -10.5   8.09  0.943 12.3   4.69

mtcars %>% 
  group_by(cyl) %>% 
  modeldb::linear_regression_db(mpg, auto_count = TRUE)
#> Error in `map()`:
#> ℹ In index: 2.
#> Caused by error in `solve.default()`:
#> ! system is computationally singular: reciprocal condition number = 9.04685e-21
#> Backtrace:
#>      ▆
#>   1. ├─mtcars %>% group_by(cyl) %>% ...
#>   2. ├─modeldb::linear_regression_db(., mpg, auto_count = TRUE)
#>   3. │ └─modeldb:::mlr(...)
#>   4. │   └─purrr::map(seq_len(vars_count + 1), ~as.numeric(solve(xm[[.x]], ym[[.x]])))
#>   5. │     └─purrr:::map_("list", .x, .f, ..., .progress = .progress)
#>   6. │       ├─purrr:::with_indexed_errors(...)
#>   7. │       │ └─base::withCallingHandlers(...)
#>   8. │       ├─purrr:::call_with_cleanup(...)
#>   9. │       └─modeldb (local) .f(.x[[i]], ...)
#>  10. │         ├─base::solve(xm[[.x]], ym[[.x]])
#>  11. │         └─base::solve.default(xm[[.x]], ym[[.x]])
#>  12. └─base::.handleSimpleError(...)
#>  13.   └─purrr (local) h(simpleError(msg, call))
#>  14.     └─cli::cli_abort(...)
#>  15.       └─rlang::abort(...)

mtcars %>% 
  group_by(cyl) %>% 
  dplyr::reframe(
    reg = list(lm(mpg ~ ., data = dplyr::pick(dplyr::everything()))),
  ) %>% 
  .$reg %>% 
  map(coefficients) %>% 
  bind_rows()
#> # A tibble: 3 × 10
#>   `(Intercept)`    disp      hp  drat     wt   qsec    vs    am  gear  carb
#>           <dbl>   <dbl>   <dbl> <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1         60.9  -0.345  -0.0332 -4.19  4.48  -0.106 -3.64 -6.33  4.07  3.22
#> 2         32.8   0.0746 -0.0425  1.52  5.12  -2.33  -1.75 NA    NA    NA   
#> 3          6.25 -0.0234  0.152  -5.74 -0.726  1.36  NA     4.87 NA    -4.77

mtcars %>% 
  arrow::to_duckdb() %>% 
  dbplyr::window_order(mpg) %>% 
  mutate(lag_mpg = lag(mpg)) %>% 
  filter(!is.na(lag_mpg)) %>% 
  group_by(am) %>% 
  modeldb::linear_regression_db(mpg, auto_count = TRUE)
#> Warning in matrix(as.numeric(.x), nrow = matrix_size): data length [81] is not
#> a sub-multiple or multiple of the number of rows [10]
#> Warning in matrix(as.numeric(.x), nrow = matrix_size): data length [81] is not
#> a sub-multiple or multiple of the number of rows [10]
#> Error in `map()`:
#> ℹ In index: 1.
#> Caused by error in `solve.default()`:
#> ! 'a' (10 x 9) must be square
#> Backtrace:
#>      ▆
#>   1. ├─... %>% ...
#>   2. ├─modeldb::linear_regression_db(., mpg, auto_count = TRUE)
#>   3. │ └─modeldb:::mlr(...)
#>   4. │   └─purrr::map(seq_len(vars_count + 1), ~as.numeric(solve(xm[[.x]], ym[[.x]])))
#>   5. │     └─purrr:::map_("list", .x, .f, ..., .progress = .progress)
#>   6. │       ├─purrr:::with_indexed_errors(...)
#>   7. │       │ └─base::withCallingHandlers(...)
#>   8. │       ├─purrr:::call_with_cleanup(...)
#>   9. │       └─modeldb (local) .f(.x[[i]], ...)
#>  10. │         ├─base::solve(xm[[.x]], ym[[.x]])
#>  11. │         └─base::solve.default(xm[[.x]], ym[[.x]])
#>  12. └─base::.handleSimpleError(...)
#>  13.   └─purrr (local) h(simpleError(msg, call))
#>  14.     └─cli::cli_abort(...)
#>  15.       └─rlang::abort(...)

mtcars %>% 
  mutate(lag_mpg = lag(mpg)) %>% 
  filter(!is.na(lag_mpg)) %>% 
  arrange(mpg) %>% 
  group_by(am) %>% 
  dplyr::reframe(
    reg = list(lm(mpg ~ ., data = dplyr::pick(dplyr::everything()))),
  ) %>% 
  .$reg %>% 
  map(coefficients) %>% 
  bind_rows()
#> # A tibble: 2 × 11
#>   `(Intercept)`    cyl    disp      hp   drat     wt   qsec     vs  gear  carb
#>           <dbl>  <dbl>   <dbl>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl>
#> 1          7.83 -0.533 -0.0209  0.0644  0.509   2.15 -0.932  0.739  8.98 -4.93
#> 2       -178.   -4.36   0.328  -0.226  -5.72  -18.9  11.2   -0.715 15.0   7.49
#> # ℹ 1 more variable: lag_mpg <dbl>

Created on 2025-01-05 with reprex v2.0.2

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions