@@ -631,6 +631,41 @@ The following examples use consistent data sets throughout. For regression, we u
631631 ```
632632
633633 </details >
634+
635+ <details id =" linear-reg-brulee " >
636+
637+ <summary >With the `"brulee"` engine</summary >
638+
639+ <h3 >Regression Example (`brulee`)</h3 >
640+
641+ ``` {r echo=FALSE}
642+ knitr::spin_child("template-reg-chicago.R")
643+ ```
644+
645+ We can define the model with specific parameters:
646+
647+ ``` {r}
648+ linreg_reg_spec <-
649+ linear_reg() %>%
650+ set_engine("brulee")
651+ linreg_reg_spec
652+ ```
653+
654+ Now we create the model fit object:
655+
656+ ``` {r}
657+ set.seed(1)
658+ linreg_reg_fit <- linreg_reg_spec %>% fit(ridership ~ ., data = Chicago_train)
659+ linreg_reg_fit
660+ ```
661+
662+ The holdout data can be predicted:
663+
664+ ``` {r}
665+ predict(linreg_reg_fit, Chicago_test)
666+ ```
667+
668+ </details >
634669
635670## ` logistic_reg() ` models
636671
@@ -828,6 +863,45 @@ The following examples use consistent data sets throughout. For regression, we u
828863
829864 </details >
830865
866+
867+ <details id =" logistic-reg-brulee " >
868+
869+ <summary >With the `"brulee"` engine</summary >
870+
871+ <h3 >Classification Example (`brulee`)</h3 >
872+
873+ ``` {r echo=FALSE}
874+ knitr::spin_child("template-cls-two-class.R")
875+ ```
876+
877+ We can define the model with specific parameters:
878+
879+ ``` {r}
880+ logreg_cls_spec <-
881+ logistic_reg() %>%
882+ set_engine("brulee")
883+ logreg_cls_spec
884+ ```
885+
886+ Now we create the model fit object:
887+
888+ ``` {r}
889+ set.seed(1)
890+ logreg_cls_fit <- logreg_cls_spec %>% fit(Class ~ ., data = data_train)
891+ logreg_cls_fit
892+ ```
893+
894+ The holdout data can be predicted for both hard class predictions and probabilities. We'll bind these together into one tibble:
895+
896+ ``` {r}
897+ bind_cols(
898+ predict(logreg_cls_fit, data_test),
899+ predict(logreg_cls_fit, data_test, type = "prob")
900+ )
901+ ```
902+
903+ </details >
904+
831905## ` mars() ` models
832906
833907 <details id =" mars-earth " >
@@ -1047,6 +1121,149 @@ The following examples use consistent data sets throughout. For regression, we u
10471121
10481122 </details >
10491123
1124+
1125+ <details id =" mlp-brulee " >
1126+
1127+ <summary >With the `"brulee"` engine</summary >
1128+
1129+ <h3 >Regression Example (`brulee`)</h3 >
1130+
1131+ ``` {r echo=FALSE}
1132+ knitr::spin_child("template-reg-chicago.R")
1133+ ```
1134+
1135+ We can define the model with specific parameters:
1136+
1137+ ``` {r}
1138+ mlp_reg_spec <-
1139+ mlp(penalty = 0, epochs = 100) %>%
1140+ # This model can be used for classification or regression, so set mode
1141+ set_mode("regression") %>%
1142+ set_engine("brulee")
1143+ mlp_reg_spec
1144+ ```
1145+
1146+ Now we create the model fit object:
1147+
1148+ ``` {r}
1149+ set.seed(1)
1150+ mlp_reg_fit <- mlp_reg_spec %>% fit(ridership ~ ., data = Chicago_train)
1151+ mlp_reg_fit
1152+ ```
1153+
1154+ The holdout data can be predicted:
1155+
1156+ ``` {r}
1157+ predict(mlp_reg_fit, Chicago_test)
1158+ ```
1159+
1160+ <h3 >Classification Example (`brulee`)</h3 >
1161+
1162+ ``` {r echo=FALSE}
1163+ knitr::spin_child("template-cls-two-class.R")
1164+ ```
1165+
1166+ We can define the model with specific parameters:
1167+
1168+ ``` {r}
1169+ mlp_cls_spec <-
1170+ mlp(penalty = 0, epochs = 100) %>%
1171+ # This model can be used for classification or regression, so set mode
1172+ set_mode("classification") %>%
1173+ set_engine("brulee")
1174+ mlp_cls_spec
1175+ ```
1176+
1177+ Now we create the model fit object:
1178+
1179+ ``` {r}
1180+ set.seed(1)
1181+ mlp_cls_fit <- mlp_cls_spec %>% fit(Class ~ ., data = data_train)
1182+ mlp_cls_fit
1183+ ```
1184+
1185+ The holdout data can be predicted for both hard class predictions and probabilities. We'll bind these together into one tibble:
1186+
1187+ ``` {r}
1188+ bind_cols(
1189+ predict(mlp_cls_fit, data_test),
1190+ predict(mlp_cls_fit, data_test, type = "prob")
1191+ )
1192+ ```
1193+
1194+ </details >
1195+
1196+ <details id =" mlp-brulee_two_layer_two_layer " >
1197+
1198+ <summary >With the `"brulee_two_layer"` engine</summary >
1199+
1200+ <h3 >Regression Example (`brulee_two_layer`)</h3 >
1201+
1202+ ``` {r echo=FALSE}
1203+ knitr::spin_child("template-reg-chicago.R")
1204+ ```
1205+
1206+ We can define the model with specific parameters:
1207+
1208+ ``` {r}
1209+ mlp_reg_spec <-
1210+ mlp(penalty = 0, epochs = 10) %>%
1211+ # This model can be used for classification or regression, so set mode
1212+ set_mode("regression") %>%
1213+ set_engine("brulee_two_layer", hidden_units_2 = 2)
1214+ mlp_reg_spec
1215+ ```
1216+
1217+ Now we create the model fit object:
1218+
1219+ ``` {r}
1220+ set.seed(13)
1221+ mlp_reg_fit <- mlp_reg_spec %>% fit(ridership ~ ., data = Chicago_train)
1222+ mlp_reg_fit
1223+ ```
1224+
1225+ The holdout data can be predicted:
1226+
1227+ ``` {r}
1228+ predict(mlp_reg_fit, Chicago_test)
1229+ ```
1230+
1231+ <h3 >Classification Example (`brulee_two_layer`)</h3 >
1232+
1233+ ``` {r echo=FALSE}
1234+ knitr::spin_child("template-cls-two-class.R")
1235+ ```
1236+
1237+ We can define the model with specific parameters:
1238+
1239+ ``` {r}
1240+ mlp_cls_spec <-
1241+ mlp(penalty = 0, epochs = 10) %>%
1242+ # This model can be used for classification or regression, so set mode
1243+ set_mode("classification") %>%
1244+ set_engine("brulee_two_layer", hidden_units_2 = 2)
1245+ mlp_cls_spec
1246+ ```
1247+
1248+ Now we create the model fit object:
1249+
1250+ ``` {r}
1251+ set.seed(12)
1252+ mlp_cls_fit <- mlp_cls_spec %>% fit(Class ~ ., data = data_train)
1253+ mlp_cls_fit
1254+ ```
1255+
1256+ The holdout data can be predicted for both hard class predictions and probabilities. We'll bind these together into one tibble:
1257+
1258+ ``` {r}
1259+ bind_cols(
1260+ predict(mlp_cls_fit, data_test),
1261+ predict(mlp_cls_fit, data_test, type = "prob")
1262+ )
1263+ ```
1264+
1265+ </details >
1266+
10501267
10511268## ` multinom_reg() ` models
10521269
@@ -1167,6 +1384,45 @@ The following examples use consistent data sets throughout. For regression, we u
11671384 </details >
11681385
11691386
1387+ <details id =" multinom-reg-brulee " >
1388+
1389+ <summary >With the `"brulee"` engine</summary >
1390+
1391+ <h3 >Classification Example (`brulee`)</h3 >
1392+
1393+ ``` {r echo=FALSE}
1394+ knitr::spin_child("template-cls-multi-class.R")
1395+ ```
1396+
1397+ We can define the model with specific parameters:
1398+
1399+ ``` {r}
1400+ mr_cls_spec <-
1401+ multinom_reg(penalty = 0.1) %>%
1402+ set_engine("brulee")
1403+ mr_cls_spec
1404+ ```
1405+
1406+ Now we create the model fit object:
1407+
1408+ ``` {r}
1409+ set.seed(1)
1410+ mr_cls_fit <- mr_cls_spec %>% fit(island ~ ., data = penguins_train)
1411+ mr_cls_fit
1412+ ```
1413+
1414+ The holdout data can be predicted for both hard class predictions and probabilities. We'll bind these together into one tibble:
1415+
1416+ ``` {r}
1417+ bind_cols(
1418+ predict(mr_cls_fit, penguins_test),
1419+ predict(mr_cls_fit, penguins_test, type = "prob")
1420+ )
1421+ ```
1422+
1423+ </details >
1424+
1425+
11701426## ` nearest_neighbor() ` models
11711427
11721428 <details id =" nearest-neighbor-kknn " >
0 commit comments