17
17
# ' Tailors must be trained with [fit()][fit.tailor()] before being applied to
18
18
# ' new data with [predict()][predict.tailor()]. Tailors are tightly integrated
19
19
# ' with the [tidymodels](https://tidymodels.org) framework; for greatest ease
20
- # ' of use, situate tailors in model workflows with [ workflows::add_tailor()] .
20
+ # ' of use, situate tailors in model workflows with `? workflows::add_tailor()` .
21
21
# '
22
22
# ' @param type Character. The model sub-mode. Possible values are
23
23
# ' `"unknown"`, `"regression"`, `"binary"`, or `"multiclass"`. Only required
24
- # ' when used independently of [ workflows::add_tailor()] .
24
+ # ' when used independently of `? workflows::add_tailor()` .
25
25
# ' @param outcome <[`tidy-select`][dplyr::dplyr_tidy_select]> Only required
26
- # ' when used independently of [ workflows::add_tailor()] , and can also be passed
26
+ # ' when used independently of `? workflows::add_tailor()` , and can also be passed
27
27
# ' at `fit()` time instead. The column name of the outcome variable.
28
28
# ' @param estimate <[`tidy-select`][dplyr::dplyr_tidy_select]> Only required
29
- # ' when used independently of [ workflows::add_tailor()] , and can also be passed
29
+ # ' when used independently of `? workflows::add_tailor()` , and can also be passed
30
30
# ' at `fit()` time instead. The column name of the point estimate (e.g. predicted
31
31
# ' class), In tidymodels, this corresponds to column names `.pred`,
32
32
# ' `.pred_class`, or `.pred_time`.
33
33
# ' @param probabilities <[`tidy-select`][dplyr::dplyr_tidy_select]> Only required
34
- # ' when used independently of [ workflows::add_tailor()] for the `"binary"` or
34
+ # ' when used independently of `? workflows::add_tailor()` for the `"binary"` or
35
35
# ' `"multiclass"` types, and can also be passed at `fit()` time instead.
36
36
# ' The column names of class probability estimates. These should be given in
37
37
# ' the order of the factor levels of the `estimate`.
@@ -134,7 +134,7 @@ print.tailor <- function(x, ...) {
134
134
# ' added to a tailor, in the order in which they were applied.
135
135
# '
136
136
# ' Users do not need to interface with these methods directly when tailors
137
- # ' are situated inside model workflows with [ workflows::add_tailor()] .
137
+ # ' are situated inside model workflows with `? workflows::add_tailor()` .
138
138
# '
139
139
# ' @section Data Usage:
140
140
# '
@@ -143,7 +143,7 @@ print.tailor <- function(x, ...) {
143
143
# ' For others, as in [adjust_numeric_calibration()], adjustments actually
144
144
# ' learn from data; in that case, separate subsets of data ought to be used
145
145
# ' for training the tailor and evaluating its performance on predictions.
146
- # ' See the Data Usage section in [ workflows::add_tailor()] for more information
146
+ # ' See the Data Usage section in `? workflows::add_tailor()` for more information
147
147
# ' on how tidymodels makes that split; when situated in a model workflow,
148
148
# ' tailors will automatically be trained on the appropriate subset of data.
149
149
# '
0 commit comments