@@ -2,6 +2,8 @@ mutable struct MaxnetBinaryClassifier <: MMI.Probabilistic
22 features:: Union{String, Vector{<:AbstractFeatureClass}}
33 regularization_multiplier:: Float64
44 regularization_function
5+ addsamplestobackground:: Bool
6+ n_knots:: Integer
57 weight_factor:: Float64
68 link:: GLM.Link
79 clamp:: Bool
1113function MaxnetBinaryClassifier (;
1214 features= " " ,
1315 regularization_multiplier = 1.0 , regularization_function = default_regularization,
14- weight_factor = 100. ,
16+ addsamplestobackground = true , n_knots = 50 , weight_factor = 100. ,
1517 link = CloglogLink (), clamp = false ,
1618 kw...
1719)
1820
1921 MaxnetBinaryClassifier (
2022 features, regularization_multiplier, regularization_function,
21- weight_factor, link, clamp, kw
23+ addsamplestobackground, n_knots, weight_factor, link, clamp, kw
2224 )
2325end
2426
2931
3032 Use `MaxnetBinaryClassifier()` to create an instance with default parameters, or use keyword arguments to specify parameters.
3133
32- All keywords are passed to `maxnet` when calling `fit!` on a machine of this model type .
33- See the documentation of [`maxnet`](@ref) for the parameters and their defaults.
34+ The keywords `link`, and `clamp` are passed to [`Maxnet.predict`](@ref), while all other keywords are passed to [`maxnet`](@ref) .
35+ See the documentation of these functions for the meaning of these parameters and their defaults.
3436
3537 # Example
3638 ```jldoctest
0 commit comments