|
| 1 | +// Converts firmware files from BIN to UF2 format before flashing. |
| 2 | +// |
| 3 | +// For more information about the UF2 firmware file format, please see: |
| 4 | +// https://github.com/Microsoft/uf2 |
| 5 | +// |
| 6 | +// |
| 7 | +package main |
| 8 | + |
| 9 | +import ( |
| 10 | + "bytes" |
| 11 | + "encoding/binary" |
| 12 | + "io/ioutil" |
| 13 | +) |
| 14 | + |
| 15 | +// ConvertELFFileToUF2File converts an ELF file to a UF2 file. |
| 16 | +func ConvertELFFileToUF2File(infile, outfile string) error { |
| 17 | + // Read the .text segment. |
| 18 | + _, data, err := ExtractTextSegment(infile) |
| 19 | + if err != nil { |
| 20 | + return err |
| 21 | + } |
| 22 | + |
| 23 | + output, _ := ConvertBinToUF2(data) |
| 24 | + return ioutil.WriteFile(outfile, output, 0644) |
| 25 | +} |
| 26 | + |
| 27 | +// ConvertBinToUF2 converts the binary bytes in input to UF2 formatted data. |
| 28 | +func ConvertBinToUF2(input []byte) ([]byte, int) { |
| 29 | + blocks := split(input, 256) |
| 30 | + output := make([]byte, 0) |
| 31 | + |
| 32 | + bl := NewUF2Block() |
| 33 | + bl.SetNumBlocks(len(blocks)) |
| 34 | + |
| 35 | + for i := 0; i < len(blocks); i++ { |
| 36 | + bl.SetBlockNo(i) |
| 37 | + bl.SetData(blocks[i]) |
| 38 | + |
| 39 | + output = append(output, bl.Bytes()...) |
| 40 | + bl.IncrementAddress(bl.payloadSize) |
| 41 | + } |
| 42 | + |
| 43 | + return output, len(blocks) |
| 44 | +} |
| 45 | + |
| 46 | +const ( |
| 47 | + uf2MagicStart0 = 0x0A324655 // "UF2\n" |
| 48 | + uf2MagicStart1 = 0x9E5D5157 // Randomly selected |
| 49 | + uf2MagicEnd = 0x0AB16F30 // Ditto |
| 50 | + uf2StartAddress = 0x2000 |
| 51 | +) |
| 52 | + |
| 53 | +// UF2Block is the structure used for each UF2 code block sent to device. |
| 54 | +type UF2Block struct { |
| 55 | + magicStart0 uint32 |
| 56 | + magicStart1 uint32 |
| 57 | + flags uint32 |
| 58 | + targetAddr uint32 |
| 59 | + payloadSize uint32 |
| 60 | + blockNo uint32 |
| 61 | + numBlocks uint32 |
| 62 | + familyID uint32 |
| 63 | + data []uint8 |
| 64 | + magicEnd uint32 |
| 65 | +} |
| 66 | + |
| 67 | +// NewUF2Block returns a new UF2Block struct that has been correctly populated |
| 68 | +func NewUF2Block() *UF2Block { |
| 69 | + return &UF2Block{magicStart0: uf2MagicStart0, |
| 70 | + magicStart1: uf2MagicStart1, |
| 71 | + magicEnd: uf2MagicEnd, |
| 72 | + targetAddr: uf2StartAddress, |
| 73 | + flags: 0x0, |
| 74 | + familyID: 0x0, |
| 75 | + payloadSize: 256, |
| 76 | + data: make([]byte, 476), |
| 77 | + } |
| 78 | +} |
| 79 | + |
| 80 | +// Bytes converts the UF2Block to a slice of bytes that can be written to file. |
| 81 | +func (b *UF2Block) Bytes() []byte { |
| 82 | + buf := bytes.NewBuffer(make([]byte, 0, 512)) |
| 83 | + binary.Write(buf, binary.LittleEndian, b.magicStart0) |
| 84 | + binary.Write(buf, binary.LittleEndian, b.magicStart1) |
| 85 | + binary.Write(buf, binary.LittleEndian, b.flags) |
| 86 | + binary.Write(buf, binary.LittleEndian, b.targetAddr) |
| 87 | + binary.Write(buf, binary.LittleEndian, b.payloadSize) |
| 88 | + binary.Write(buf, binary.LittleEndian, b.blockNo) |
| 89 | + binary.Write(buf, binary.LittleEndian, b.numBlocks) |
| 90 | + binary.Write(buf, binary.LittleEndian, b.familyID) |
| 91 | + binary.Write(buf, binary.LittleEndian, b.data) |
| 92 | + binary.Write(buf, binary.LittleEndian, b.magicEnd) |
| 93 | + |
| 94 | + return buf.Bytes() |
| 95 | +} |
| 96 | + |
| 97 | +// IncrementAddress moves the target address pointer forward by count bytes. |
| 98 | +func (b *UF2Block) IncrementAddress(count uint32) { |
| 99 | + b.targetAddr += b.payloadSize |
| 100 | +} |
| 101 | + |
| 102 | +// SetData sets the data to be used for the current block. |
| 103 | +func (b *UF2Block) SetData(d []byte) { |
| 104 | + b.data = make([]byte, 476) |
| 105 | + copy(b.data[:], d) |
| 106 | +} |
| 107 | + |
| 108 | +// SetBlockNo sets the current block number to be used. |
| 109 | +func (b *UF2Block) SetBlockNo(bn int) { |
| 110 | + b.blockNo = uint32(bn) |
| 111 | +} |
| 112 | + |
| 113 | +// SetNumBlocks sets the total number of blocks for this UF2 file. |
| 114 | +func (b *UF2Block) SetNumBlocks(total int) { |
| 115 | + b.numBlocks = uint32(total) |
| 116 | +} |
| 117 | + |
| 118 | +// split splits a slice of bytes into a slice of byte slices of a specific size limit. |
| 119 | +func split(input []byte, limit int) [][]byte { |
| 120 | + var block []byte |
| 121 | + output := make([][]byte, 0, len(input)/limit+1) |
| 122 | + for len(input) >= limit { |
| 123 | + block, input = input[:limit], input[limit:] |
| 124 | + output = append(output, block) |
| 125 | + } |
| 126 | + if len(input) > 0 { |
| 127 | + output = append(output, input[:len(input)]) |
| 128 | + } |
| 129 | + return output |
| 130 | +} |
0 commit comments