Skip to content

Request for Complete Pretrained Model Weights #5

@DJ-Wu-Git

Description

@DJ-Wu-Git

During the implementation, I encountered an issue related to missing weights in the pretrained model. The error messages I received indicate unexpected and missing keys in the source state_dict. Specifically, the following keys are reported:

/home/cddjjc/anaconda3/envs/pedestron_v2/bin/python /home/cddjjc/Workspace/SOLIDER-PedestrianDetection/test_city_person.py configs/solider/cp/swin_base.py models_pretrained/solider_origin/swin_base/epoch_ 1 2 --out swin_base.json --show --mean_teacher 
loading annotations into memory...
Done (t=0.03s)
creating index...
index created!
No pre-trained weights for SwinBase, training start from scratch
unexpected key in source state_dict: backbone.norm0.weight, backbone.norm0.bias, head.mlp.0.weight, head.mlp.0.bias, head.mlp.2.weight, head.mlp.2.bias, head.mlp.4.weight, head.mlp.4.bias, head.last_layer.weight_g, head.last_layer.weight_v

missing keys in source state_dict: bbox_head.reg_convs.0.gn.bias, bbox_head.offset_scales.0.scale, bbox_head.cls_convs.0.conv.weight, neck.p3_l2.weight, bbox_head.reg_convs.0.conv.weight, bbox_head.cls_convs.0.gn.bias, bbox_head.csp_reg.weight, neck.p4_l2.weight, bbox_head.csp_cls.weight, neck.p5_l2.weight, bbox_head.cls_convs.0.gn.weight, bbox_head.offset_convs.0.conv.weight, bbox_head.csp_offset.bias, neck.p4.bias, bbox_head.csp_offset.weight, neck.p5.weight, bbox_head.reg_scales.0.scale, bbox_head.csp_cls.bias, neck.p4.weight, bbox_head.reg_convs.0.gn.weight, bbox_head.csp_reg.bias, bbox_head.offset_convs.0.gn.bias, neck.p3.weight, bbox_head.offset_convs.0.gn.weight, neck.p5.bias, neck.p3.bias

[                              ] 0/500, elapsed: 0s, ETA:Traceback (most recent call last):
  File "/home/cddjjc/Workspace/SOLIDER-PedestrianDetection/test_city_person.py", line 227, in <module>
    main()
  File "/home/cddjjc/Workspace/SOLIDER-PedestrianDetection/test_city_person.py", line 195, in main
    outputs = single_gpu_test(model, data_loader, args.show, args.save_img, args.save_img_dir)
  File "/home/cddjjc/Workspace/SOLIDER-PedestrianDetection/test_city_person.py", line 30, in single_gpu_test
    result = model(return_loss=False, rescale=not show, **data)
  File "/home/cddjjc/anaconda3/envs/pedestron_v2/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl
    return forward_call(*input, **kwargs)
  File "/home/cddjjc/anaconda3/envs/pedestron_v2/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py", line 169, in forward
    return self.module(*inputs[0], **kwargs[0])
  File "/home/cddjjc/anaconda3/envs/pedestron_v2/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl
    return forward_call(*input, **kwargs)
  File "/home/cddjjc/Workspace/SOLIDER-PedestrianDetection/mmdet/core/fp16/decorators.py", line 49, in new_func
    return old_func(*args, **kwargs)
  File "/home/cddjjc/Workspace/SOLIDER-PedestrianDetection/mmdet/models/detectors/base.py", line 88, in forward
    return self.forward_test(img, img_meta, **kwargs)
  File "/home/cddjjc/Workspace/SOLIDER-PedestrianDetection/mmdet/models/detectors/base.py", line 79, in forward_test
    return self.simple_test(imgs[0], img_metas[0], **kwargs)
  File "/home/cddjjc/Workspace/SOLIDER-PedestrianDetection/mmdet/models/detectors/csp.py", line 203, in simple_test
    x = self.extract_feat(img)
  File "/home/cddjjc/Workspace/SOLIDER-PedestrianDetection/mmdet/models/detectors/single_stage.py", line 42, in extract_feat
    x = self.neck(x)
  File "/home/cddjjc/anaconda3/envs/pedestron_v2/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl
    return forward_call(*input, **kwargs)
  File "/home/cddjjc/Workspace/SOLIDER-PedestrianDetection/mmdet/core/fp16/decorators.py", line 49, in new_func
    return old_func(*args, **kwargs)
  File "/home/cddjjc/Workspace/SOLIDER-PedestrianDetection/mmdet/models/necks/csp_neck.py", line 73, in forward
    p3 = self.p3(inputs[0])
  File "/home/cddjjc/anaconda3/envs/pedestron_v2/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl
    return forward_call(*input, **kwargs)
  File "/home/cddjjc/anaconda3/envs/pedestron_v2/lib/python3.7/site-packages/torch/nn/modules/conv.py", line 958, in forward
    output_padding, self.groups, self.dilation)
RuntimeError: Given transposed=1, weight of size [512, 256, 4, 4], expected input[1, 256, 128, 256] to have 512 channels, but got 256 channels instead

Process finished with exit code 1

If it's feasible for you, could you please share the missing pretrained model weights or guide me on where I might find them?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions