-
Notifications
You must be signed in to change notification settings - Fork 14
Description
2024-05-11 09:36:30 transreid INFO: Namespace(config_file='configs/msmt17/swin_small.yml', opts=['TEST.WEIGHT', './log/msmt17/swin_small/transformer_120.pth', 'TEST.RE_RANKING', 'True', 'MODEL.SEMANTIC_WEIGHT', '0.2'])
2024-05-11 09:36:30 transreid INFO: Loaded configuration file configs/msmt17/swin_small.yml
2024-05-11 09:36:30 transreid INFO:
MODEL:
PRETRAIN_HW_RATIO: 2
METRIC_LOSS_TYPE: 'triplet'
IF_LABELSMOOTH: 'off'
IF_WITH_CENTER: 'no'
NAME: 'transformer'
NO_MARGIN: True
DEVICE_ID: ('0')
TRANSFORMER_TYPE: 'swin_small_patch4_window7_224'
STRIDE_SIZE: [16, 16]
INPUT:
SIZE_TRAIN: [384, 128]
SIZE_TEST: [384, 128]
PROB: 0.5 # random horizontal flip
RE_PROB: 0.5 # random erasing
PADDING: 10
PIXEL_MEAN: [0.5, 0.5, 0.5]
PIXEL_STD: [0.5, 0.5, 0.5]
DATASETS:
NAMES: ('msmt17')
ROOT_DIR: ('/TransReID/data')
DATALOADER:
SAMPLER: 'softmax_triplet'
NUM_INSTANCE: 4
NUM_WORKERS: 8
SOLVER:
OPTIMIZER_NAME: 'SGD'
MAX_EPOCHS: 120
BASE_LR: 0.0008
WARMUP_EPOCHS: 20
IMS_PER_BATCH: 64
WARMUP_METHOD: 'cosine'
LARGE_FC_LR: False
CHECKPOINT_PERIOD: 120
LOG_PERIOD: 20
EVAL_PERIOD: 10
WEIGHT_DECAY: 1e-4
WEIGHT_DECAY_BIAS: 1e-4
BIAS_LR_FACTOR: 2
TEST:
EVAL: True
IMS_PER_BATCH: 256
RE_RANKING: False
WEIGHT: ''
NECK_FEAT: 'before'
FEAT_NORM: 'yes'
OUTPUT_DIR: './log/msmt17/swin_small'
2024-05-11 09:36:30 transreid INFO: Running with config:
DATALOADER:
NUM_INSTANCE: 4
NUM_WORKERS: 8
REMOVE_TAIL: 0
SAMPLER: softmax_triplet
DATASETS:
NAMES: msmt17
ROOT_DIR: /media/lab/Disk1/TransReID/data
ROOT_TRAIN_DIR: ../data
ROOT_VAL_DIR: ../data
INPUT:
PADDING: 10
PIXEL_MEAN: [0.5, 0.5, 0.5]
PIXEL_STD: [0.5, 0.5, 0.5]
PROB: 0.5
RE_PROB: 0.5
SIZE_TEST: [384, 128]
SIZE_TRAIN: [384, 128]
MODEL:
ATT_DROP_RATE: 0.0
COS_LAYER: False
DEVICE: cuda
DEVICE_ID: 0
DEVIDE_LENGTH: 4
DIST_TRAIN: False
DROPOUT_RATE: 0.0
DROP_OUT: 0.0
DROP_PATH: 0.1
FEAT_DIM: 512
GEM_POOLING: False
ID_LOSS_TYPE: softmax
ID_LOSS_WEIGHT: 1.0
IF_LABELSMOOTH: off
IF_WITH_CENTER: no
JPM: False
LAST_STRIDE: 1
METRIC_LOSS_TYPE: triplet
NAME: transformer
NECK: bnneck
NO_MARGIN: True
PRETRAIN_CHOICE: imagenet
PRETRAIN_HW_RATIO: 2
PRETRAIN_PATH:
REDUCE_FEAT_DIM: False
RE_ARRANGE: True
SEMANTIC_WEIGHT: 0.2
SHIFT_NUM: 5
SHUFFLE_GROUP: 2
SIE_CAMERA: False
SIE_COE: 3.0
SIE_VIEW: False
STEM_CONV: False
STRIDE_SIZE: [16, 16]
TRANSFORMER_TYPE: swin_small_patch4_window7_224
TRIPLET_LOSS_WEIGHT: 1.0
OUTPUT_DIR: ./log/msmt17/swin_small
SOLVER:
BASE_LR: 0.0008
BIAS_LR_FACTOR: 2
CENTER_LOSS_WEIGHT: 0.0005
CENTER_LR: 0.5
CHECKPOINT_PERIOD: 120
COSINE_MARGIN: 0.5
COSINE_SCALE: 30
EVAL_PERIOD: 10
GAMMA: 0.1
IMS_PER_BATCH: 64
LARGE_FC_LR: False
LOG_PERIOD: 20
MARGIN: 0.3
MAX_EPOCHS: 120
MOMENTUM: 0.9
OPTIMIZER_NAME: SGD
SEED: 1234
STEPS: (40, 70)
TRP_L2: False
WARMUP_EPOCHS: 20
WARMUP_FACTOR: 0.01
WARMUP_METHOD: cosine
WEIGHT_DECAY: 0.0001
WEIGHT_DECAY_BIAS: 0.0001
TEST:
DIST_MAT: dist_mat.npy
EVAL: True
FEAT_NORM: yes
IMS_PER_BATCH: 256
NECK_FEAT: before
RE_RANKING: True
WEIGHT: ./log/msmt17/swin_small/transformer_120.pth
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} cam_container
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} cam_container
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} cam_container
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} cam_container
=> MSMT17 loaded
2024-05-11 09:36:31 transreid.check INFO: Dataset statistics:
2024-05-11 09:36:31 transreid.check INFO: ----------------------------------------
2024-05-11 09:36:31 transreid.check INFO: subset | # ids | # images | # cameras
2024-05-11 09:36:31 transreid.check INFO: ----------------------------------------
2024-05-11 09:36:31 transreid.check INFO: train | 1041 | 32621 | 15
2024-05-11 09:36:31 transreid.check INFO: query | 3060 | 11659 | 15
2024-05-11 09:36:31 transreid.check INFO: gallery | 3060 | 82161 | 15
2024-05-11 09:36:31 transreid.check INFO: ----------------------------------------
using img_triplet sampler
using Transformer_type: swin_small_patch4_window7_224 as a backbone
/media/lab/Disk1/SOLIDER-REID/model/backbones/swin_transformer.py:1159: UserWarning: DeprecationWarning: pretrained is deprecated, please use "init_cfg" instead
warnings.warn('DeprecationWarning: pretrained is deprecated, '
===========building transformer===========
Loading pretrained model from ./log/msmt17/swin_small/transformer_120.pth
2024-05-11 09:36:37 transreid.test INFO: Enter inferencing
The test feature is normalized
=> Enter reranking
/media/lab/Disk1/SOLIDER-REID/utils/reranking.py:40: UserWarning: This overload of addmm_ is deprecated:
addmm_(Number beta, Number alpha, Tensor mat1, Tensor mat2)
Consider using one of the following signatures instead:
addmm_(Tensor mat1, Tensor mat2, *, Number beta, Number alpha) (Triggered internally at ../torch/csrc/utils/python_arg_parser.cpp:1630.)
distmat.addmm_(1, -2, feat, feat.t())
Killed
可能存在内存泄露导致内存溢出被Killed,实验环境为128G内存,请指教是哪里出问题了?感谢!