@@ -303,22 +303,21 @@ def num_flat_features(self, x):
303303# The values passed to the transform are the means (first tuple) and the
304304# standard deviations (second tuple) of the rgb values of the images in
305305# the dataset. You can calculate these values yourself by running these
306- # few lines of code:
307- # ```
308- # from torch.utils.data import ConcatDataset
309- # transform = transforms.Compose([transforms.ToTensor()])
310- # trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
306+ # few lines of code::
307+ #
308+ # from torch.utils.data import ConcatDataset
309+ # transform = transforms.Compose([transforms.ToTensor()])
310+ # trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
311311# download=True, transform=transform)
312312#
313- # # stack all train images together into a tensor of shape
314- # # (50000, 3, 32, 32)
315- # x = torch.stack([sample[0] for sample in ConcatDataset([trainset])])
313+ # # stack all train images together into a tensor of shape
314+ # # (50000, 3, 32, 32)
315+ # x = torch.stack([sample[0] for sample in ConcatDataset([trainset])])
316316#
317- # #get the mean of each channel
318- # mean = torch.mean(x, dim=(0,2,3)) #tensor([0.4914, 0.4822, 0.4465])
319- # std = torch.std(x, dim=(0,2,3)) #tensor([0.2470, 0.2435, 0.2616])
320- #
321- # ```
317+ # # get the mean of each channel
318+ # mean = torch.mean(x, dim=(0,2,3)) # tensor([0.4914, 0.4822, 0.4465])
319+ # std = torch.std(x, dim=(0,2,3)) # tensor([0.2470, 0.2435, 0.2616])
320+ #
322321#
323322# There are many more transforms available, including cropping, centering,
324323# rotation, and reflection.
0 commit comments