|
| 1 | +import streamlit as st |
| 2 | +from uxsim import * |
| 3 | +import matplotlib.pyplot as plt |
| 4 | + |
| 5 | +st.set_page_config(page_title="Coordinated Signal Control", layout="wide") |
| 6 | +st.title("Coordinated Signal Control") |
| 7 | +st.write( |
| 8 | +""" |
| 9 | +This is an interactive simulation that shows how traffic conditions change depending on signal control parameters. |
| 10 | +Traffic demand flows from one end of a single road to the other. |
| 11 | +There is no entry or exit along the way. |
| 12 | +The traffic flow simulator [UXsim](https://github.com/toruseo/UXsim) is used. |
| 13 | +""") |
| 14 | + |
| 15 | +# Simulation model (accepts parameters) |
| 16 | +class UXsim_model: |
| 17 | + def __init__(self, demand_flow=0.3, green_split=0.5, offset1=0, offset2=0, offset3=0): |
| 18 | + self.demand_flow = demand_flow |
| 19 | + self.green_split = green_split |
| 20 | + self.offsets = [0, offset1, offset2, offset3, 0] |
| 21 | + self.n_nodes = 5 |
| 22 | + self.cycle = 120 |
| 23 | + self.W = None |
| 24 | + |
| 25 | + def create_world(self): |
| 26 | + self.W = World( |
| 27 | + name="signal_series", |
| 28 | + deltan=5, |
| 29 | + tmax=1500, |
| 30 | + print_mode=0, save_mode=0, show_mode=1, |
| 31 | + random_seed=0 |
| 32 | + ) |
| 33 | + |
| 34 | + # Create nodes |
| 35 | + for i in range(self.n_nodes): |
| 36 | + if i != 0 and i != self.n_nodes - 1: |
| 37 | + if i == 2: |
| 38 | + signal = [self.cycle * self.green_split, self.cycle * (1 - self.green_split)] |
| 39 | + else: |
| 40 | + signal = [self.cycle * 0.5, self.cycle * 0.5] |
| 41 | + else: |
| 42 | + signal = [0] |
| 43 | + self.W.addNode(f"node{i}", 0, i, signal=signal, signal_offset=self.cycle-self.offsets[i]) |
| 44 | + |
| 45 | + # Create links |
| 46 | + for i in range(self.n_nodes - 1): |
| 47 | + j = i + 1 |
| 48 | + self.W.addLink(f"link{i}-{j}", f"node{i}", f"node{j}", length=300, free_flow_speed=10, signal_group=0) |
| 49 | + self.W.addLink(f"link{j}-{i}", f"node{j}", f"node{i}", length=300, free_flow_speed=10, signal_group=0) |
| 50 | + |
| 51 | + # Add demand |
| 52 | + self.W.adddemand(orig="node0", dest=f"node{self.n_nodes - 1}", t_start=0, t_end=1000, flow=self.demand_flow, attribute="group1") |
| 53 | + |
| 54 | + def show_network(self): |
| 55 | + """Display network diagram""" |
| 56 | + if self.W is None: |
| 57 | + self.create_world() |
| 58 | + self.W.show_network(show_id=0, figsize=(3,3), network_font_size=6) |
| 59 | + return plt.gcf() |
| 60 | + |
| 61 | + def run_simulation(self): |
| 62 | + """Run simulation""" |
| 63 | + if self.W is None: |
| 64 | + self.create_world() |
| 65 | + self.W.exec_simulation() |
| 66 | + |
| 67 | + def get_stats(self): |
| 68 | + """Get statistics""" |
| 69 | + if len(self.W.VEHICLES) > 0: |
| 70 | + avg_travel_time = self.W.analyzer.total_travel_time / len(self.W.VEHICLES)/self.W.DELTAN |
| 71 | + else: |
| 72 | + avg_travel_time = 0 |
| 73 | + |
| 74 | + return { |
| 75 | + 'total_travel_time': self.W.analyzer.total_travel_time, |
| 76 | + 'avg_travel_time': avg_travel_time |
| 77 | + } |
| 78 | + |
| 79 | + def show_time_space_diagram(self): |
| 80 | + """Display time-space trajectory diagram""" |
| 81 | + self.W.analyzer.time_space_diagram_traj_links([f"link{i}-{i + 1}" for i in range(self.n_nodes - 1)]) |
| 82 | + return plt.gcf() |
| 83 | + |
| 84 | +# Initial simulation for display (default parameters) |
| 85 | +initial_sim = UXsim_model() |
| 86 | + |
| 87 | +# Road network structure |
| 88 | +st.subheader("Road Network Structure") |
| 89 | +fig1 = initial_sim.show_network() |
| 90 | +st.pyplot(fig1, use_container_width=False) |
| 91 | + |
| 92 | +# Sliders |
| 93 | +st.subheader("Scenario Parameter Settings") |
| 94 | +demand_flow = st.slider("Traffic Demand", min_value=0.0, max_value=1.0, value=0.3, step=0.05) |
| 95 | +green_split = st.slider("Green Time Ratio at Signal 2", min_value=0.0, max_value=1.0, value=0.5, step=0.05) |
| 96 | +o3 = st.slider("Offset at Signal 3", min_value=0, max_value=120, value=0, step=5) |
| 97 | +o2 = st.slider("Offset at Signal 2", min_value=0, max_value=120, value=0, step=5) |
| 98 | +o1 = st.slider("Offset at Signal 1", min_value=0, max_value=120, value=0, step=5) |
| 99 | + |
| 100 | +# Run simulation with parameters |
| 101 | +sim = UXsim_model(demand_flow, green_split, o1, o2, o3) |
| 102 | +sim.run_simulation() |
| 103 | + |
| 104 | +# Show statistics |
| 105 | +st.subheader("Statistics") |
| 106 | +stats = sim.get_stats() |
| 107 | +st.write("Total Travel Time:", f"{stats['total_travel_time']/60:.1f}", "vehicle-minutes") |
| 108 | +st.write("Average Travel Time:", f"{stats['avg_travel_time']:.1f}", "seconds") |
| 109 | + |
| 110 | +# Time-space diagram |
| 111 | +st.subheader("Time-Space Trajectory Diagram") |
| 112 | +fig2 = sim.show_time_space_diagram() |
| 113 | +st.pyplot(fig2) |
0 commit comments