|
1 | 1 | import DisjointSet from '../../../data-structures/disjoint-set/DisjointSet';
|
2 | 2 |
|
3 | 3 | /**
|
4 |
| - * Detect cycle in undirected graph using disjoint sets. |
5 |
| - * |
| 4 | + * Detect and return the actual cycle path in an undirected graph using disjoint sets. |
6 | 5 | * @param {Graph} graph
|
| 6 | + * @returns {Array|null} - Returns an array of vertex keys forming the cycle, or null if no cycle found. |
7 | 7 | */
|
8 | 8 | export default function detectUndirectedCycleUsingDisjointSet(graph) {
|
9 |
| - // Create initial singleton disjoint sets for each graph vertex. |
10 |
| - /** @param {GraphVertex} graphVertex */ |
11 | 9 | const keyExtractor = (graphVertex) => graphVertex.getKey();
|
12 | 10 | const disjointSet = new DisjointSet(keyExtractor);
|
13 |
| - graph.getAllVertices().forEach((graphVertex) => disjointSet.makeSet(graphVertex)); |
14 |
| - |
15 |
| - // Go trough all graph edges one by one and check if edge vertices are from the |
16 |
| - // different sets. In this case joint those sets together. Do this until you find |
17 |
| - // an edge where to edge vertices are already in one set. This means that current |
18 |
| - // edge will create a cycle. |
19 |
| - let cycleFound = false; |
20 |
| - /** @param {GraphEdge} graphEdge */ |
21 |
| - graph.getAllEdges().forEach((graphEdge) => { |
22 |
| - if (disjointSet.inSameSet(graphEdge.startVertex, graphEdge.endVertex)) { |
23 |
| - // Cycle found. |
24 |
| - cycleFound = true; |
25 |
| - } else { |
26 |
| - disjointSet.union(graphEdge.startVertex, graphEdge.endVertex); |
27 |
| - } |
| 11 | + const parentMap = new Map(); |
| 12 | + |
| 13 | + graph.getAllVertices().forEach((vertex) => { |
| 14 | + disjointSet.makeSet(vertex); |
| 15 | + parentMap.set(vertex.getKey(), null); // Initialize with no parent |
28 | 16 | });
|
29 | 17 |
|
30 |
| - return cycleFound; |
| 18 | + for (const edge of graph.getAllEdges()) { |
| 19 | + const startKey = edge.startVertex.getKey(); |
| 20 | + const endKey = edge.endVertex.getKey(); |
| 21 | + |
| 22 | + if (disjointSet.inSameSet(edge.startVertex, edge.endVertex)) { |
| 23 | + // Cycle detected: reconstruct cycle path |
| 24 | + return constructCyclePath(startKey, endKey, parentMap); |
| 25 | + } |
| 26 | + |
| 27 | + // Save parent info (arbitrarily choosing one as child) |
| 28 | + parentMap.set(endKey, startKey); |
| 29 | + disjointSet.union(edge.startVertex, edge.endVertex); |
| 30 | + } |
| 31 | + |
| 32 | + return null; |
| 33 | +} |
| 34 | + |
| 35 | +/** |
| 36 | + * Construct an ordered cycle path using parent map. |
| 37 | + * @param {string} startKey |
| 38 | + * @param {string} endKey |
| 39 | + * @param {Map} parentMap |
| 40 | + * @returns {string[]} Ordered array of vertex keys forming a cycle |
| 41 | + */ |
| 42 | +function constructCyclePath(startKey, endKey, parentMap) { |
| 43 | + const pathToRoot = (key) => { |
| 44 | + const path = []; |
| 45 | + while (key !== null) { |
| 46 | + path.push(key); |
| 47 | + key = parentMap.get(key); |
| 48 | + } |
| 49 | + return path; |
| 50 | + }; |
| 51 | + |
| 52 | + const pathStart = pathToRoot(startKey); |
| 53 | + const pathEnd = pathToRoot(endKey); |
| 54 | + |
| 55 | + // Find the last common ancestor |
| 56 | + const setStart = new Set(pathStart); |
| 57 | + const commonAncestor = pathEnd.find((key) => setStart.has(key)); |
| 58 | + |
| 59 | + // Slice paths up to the common ancestor |
| 60 | + const cycleStart = pathStart.slice(0, pathStart.indexOf(commonAncestor) + 1); |
| 61 | + const cycleEnd = pathEnd.slice(0, pathEnd.indexOf(commonAncestor)).reverse(); |
| 62 | + |
| 63 | + return [...cycleStart, ...cycleEnd, commonAncestor]; |
31 | 64 | }
|
0 commit comments