Skip to content

Commit 0986f46

Browse files
authored
Update branch post 24.12 (#956)
* Update README and versions for 1.47.0 / 24.12 (#951) * Update REAMDE.md and version (#953) * Update branch post 24.12
1 parent 92c8386 commit 0986f46

File tree

11 files changed

+19
-19
lines changed

11 files changed

+19
-19
lines changed

Dockerfile

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -12,11 +12,11 @@
1212
# See the License for the specific language governing permissions and
1313
# limitations under the License.
1414

15-
ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.11-py3
16-
ARG TRITONSDK_BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.11-py3-sdk
15+
ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.12-py3
16+
ARG TRITONSDK_BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.12-py3-sdk
1717

18-
ARG MODEL_ANALYZER_VERSION=1.47.0dev
19-
ARG MODEL_ANALYZER_CONTAINER_VERSION=24.12dev
18+
ARG MODEL_ANALYZER_VERSION=1.48.0dev
19+
ARG MODEL_ANALYZER_CONTAINER_VERSION=25.01dev
2020
FROM ${TRITONSDK_BASE_IMAGE} as sdk
2121

2222
FROM $BASE_IMAGE

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -23,8 +23,8 @@ limitations under the License.
2323
> ##### LATEST RELEASE
2424
>
2525
> You are currently on the `main` branch which tracks under-development progress towards the next release. <br>
26-
> The latest release of the Triton Model Analyzer is 1.46.0 and is available on branch
27-
> [r24.11](https://github.com/triton-inference-server/model_analyzer/tree/r24.11).
26+
> The latest release of the Triton Model Analyzer is 1.47.0 and is available on branch
27+
> [r24.12](https://github.com/triton-inference-server/model_analyzer/tree/r24.12).
2828
2929
Triton Model Analyzer is a CLI tool which can help you find a more optimal configuration, on a given piece of hardware, for single, multiple, ensemble, or BLS models running on a [Triton Inference Server](https://github.com/triton-inference-server/server/). Model Analyzer will also generate reports to help you better understand the trade-offs of the different configurations along with their compute and memory requirements.
3030
<br><br>

VERSION

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
1.47.0dev
1+
1.48.0dev

docs/bls_quick_start.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ git pull origin main
4949
**1. Pull the SDK container:**
5050

5151
```
52-
docker pull nvcr.io/nvidia/tritonserver:24.11-py3-sdk
52+
docker pull nvcr.io/nvidia/tritonserver:24.12-py3-sdk
5353
```
5454

5555
**2. Run the SDK container**
@@ -59,7 +59,7 @@ docker run -it --gpus 1 \
5959
--shm-size 2G \
6060
-v /var/run/docker.sock:/var/run/docker.sock \
6161
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
62-
--net=host nvcr.io/nvidia/tritonserver:24.11-py3-sdk
62+
--net=host nvcr.io/nvidia/tritonserver:24.12-py3-sdk
6363
```
6464

6565
**Important:** The example above uses a single GPU. If you are running on multiple GPUs, you may need to increase the shared memory size accordingly<br><br>

docs/config.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -153,7 +153,7 @@ cpu_only_composing_models: <comma-delimited-string-list>
153153
[ reload_model_disable: <bool> | default: false]
154154
155155
# Triton Docker image tag used when launching using Docker mode
156-
[ triton_docker_image: <string> | default: nvcr.io/nvidia/tritonserver:24.11-py3 ]
156+
[ triton_docker_image: <string> | default: nvcr.io/nvidia/tritonserver:24.12-py3 ]
157157
158158
# Triton Server HTTP endpoint url used by Model Analyzer client"
159159
[ triton_http_endpoint: <string> | default: localhost:8000 ]

docs/ensemble_quick_start.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@ mkdir examples/quick-start/ensemble_add_sub/1
5555
**1. Pull the SDK container:**
5656

5757
```
58-
docker pull nvcr.io/nvidia/tritonserver:24.11-py3-sdk
58+
docker pull nvcr.io/nvidia/tritonserver:24.12-py3-sdk
5959
```
6060

6161
**2. Run the SDK container**
@@ -65,7 +65,7 @@ docker run -it --gpus 1 \
6565
--shm-size 1G \
6666
-v /var/run/docker.sock:/var/run/docker.sock \
6767
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
68-
--net=host nvcr.io/nvidia/tritonserver:24.11-py3-sdk
68+
--net=host nvcr.io/nvidia/tritonserver:24.12-py3-sdk
6969
```
7070

7171
**Important:** The example above uses a single GPU. If you are running on multiple GPUs, you may need to increase the shared memory size accordingly<br><br>

docs/kubernetes_deploy.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,7 @@ images:
7979
8080
triton:
8181
image: nvcr.io/nvidia/tritonserver
82-
tag: 24.11-py3
82+
tag: 24.12-py3
8383
```
8484

8585
The model analyzer executable uses the config file defined in `helm-chart/templates/config-map.yaml`. This config can be modified to supply arguments to model analyzer. Only the content under the `config.yaml` section of the file should be modified.

docs/mm_quick_start.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ git pull origin main
4949
**1. Pull the SDK container:**
5050

5151
```
52-
docker pull nvcr.io/nvidia/tritonserver:24.11-py3-sdk
52+
docker pull nvcr.io/nvidia/tritonserver:24.12-py3-sdk
5353
```
5454

5555
**2. Run the SDK container**
@@ -58,7 +58,7 @@ docker pull nvcr.io/nvidia/tritonserver:24.11-py3-sdk
5858
docker run -it --gpus all \
5959
-v /var/run/docker.sock:/var/run/docker.sock \
6060
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
61-
--net=host nvcr.io/nvidia/tritonserver:24.11-py3-sdk
61+
--net=host nvcr.io/nvidia/tritonserver:24.12-py3-sdk
6262
```
6363

6464
## `Step 3:` Profile both models concurrently

docs/quick_start.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ git pull origin main
4949
**1. Pull the SDK container:**
5050

5151
```
52-
docker pull nvcr.io/nvidia/tritonserver:24.11-py3-sdk
52+
docker pull nvcr.io/nvidia/tritonserver:24.12-py3-sdk
5353
```
5454

5555
**2. Run the SDK container**
@@ -58,7 +58,7 @@ docker pull nvcr.io/nvidia/tritonserver:24.11-py3-sdk
5858
docker run -it --gpus all \
5959
-v /var/run/docker.sock:/var/run/docker.sock \
6060
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
61-
--net=host nvcr.io/nvidia/tritonserver:24.11-py3-sdk
61+
--net=host nvcr.io/nvidia/tritonserver:24.12-py3-sdk
6262
```
6363

6464
## `Step 3:` Profile the `add_sub` model

helm-chart/values.yaml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -41,4 +41,4 @@ images:
4141

4242
triton:
4343
image: nvcr.io/nvidia/tritonserver
44-
tag: 24.11-py3
44+
tag: 24.12-py3

0 commit comments

Comments
 (0)