Skip to content

Commit 553e9a5

Browse files
authored
Update README and versions for 1.39.0 / 24.04 (#858)
1 parent c464187 commit 553e9a5

File tree

11 files changed

+17
-113
lines changed

11 files changed

+17
-113
lines changed

Dockerfile

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -12,11 +12,11 @@
1212
# See the License for the specific language governing permissions and
1313
# limitations under the License.
1414

15-
ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.03-py3
16-
ARG TRITONSDK_BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.03-py3-sdk
15+
ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.04-py3
16+
ARG TRITONSDK_BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.04-py3-sdk
1717

18-
ARG MODEL_ANALYZER_VERSION=1.39.0dev
19-
ARG MODEL_ANALYZER_CONTAINER_VERSION=24.04dev
18+
ARG MODEL_ANALYZER_VERSION=1.39.0
19+
ARG MODEL_ANALYZER_CONTAINER_VERSION=24.04
2020
FROM ${TRITONSDK_BASE_IMAGE} as sdk
2121

2222
FROM $BASE_IMAGE

README.md

Lines changed: 0 additions & 96 deletions
Original file line numberDiff line numberDiff line change
@@ -25,99 +25,3 @@ limitations under the License.
2525
> You are currently on the `main` branch which tracks under-development progress towards the next release. <br>
2626
> The latest release of the Triton Model Analyzer is 1.38.0 and is available on branch
2727
> [r24.03](https://github.com/triton-inference-server/model_analyzer/tree/r24.03).
28-
29-
Triton Model Analyzer is a CLI tool which can help you find a more optimal configuration, on a given piece of hardware, for single, multiple, ensemble, or BLS models running on a [Triton Inference Server](https://github.com/triton-inference-server/server/). Model Analyzer will also generate reports to help you better understand the trade-offs of the different configurations along with their compute and memory requirements.
30-
<br><br>
31-
32-
# Features
33-
34-
### Search Modes
35-
36-
- [Quick Search](docs/config_search.md#quick-search-mode) will **sparsely** search the [Max Batch Size](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#maximum-batch-size),
37-
[Dynamic Batching](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#dynamic-batcher), and
38-
[Instance Group](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#instance-groups) spaces by utilizing a heuristic hill-climbing algorithm to help you quickly find a more optimal configuration
39-
40-
- [Automatic Brute Search](docs/config_search.md#automatic-brute-search) will **exhaustively** search the
41-
[Max Batch Size](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#maximum-batch-size),
42-
[Dynamic Batching](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#dynamic-batcher), and
43-
[Instance Group](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#instance-groups)
44-
parameters of your model configuration
45-
46-
- [Manual Brute Search](docs/config_search.md#manual-brute-search) allows you to create manual sweeps for every parameter that can be specified in the model configuration
47-
48-
### Model Types
49-
50-
- [Ensemble Model Search](docs/config_search.md#ensemble-model-search): Model Analyzer can help you find the optimal
51-
settings when profiling an ensemble model, utilizing the [Quick Search](docs/config_search.md#quick-search-mode) algorithm
52-
53-
- [BLS Model Search](docs/config_search.md#bls-model-search): Model Analyzer can help you find the optimal
54-
settings when profiling a BLS model, utilizing the [Quick Search](docs/config_search.md#quick-search-mode) algorithm
55-
56-
- [Multi-Model Search](docs/config_search.md#multi-model-search-mode): Model Analyzer can help you
57-
find the optimal settings when profiling multiple concurrent models, utilizing the [Quick Search](docs/config_search.md#quick-search-mode) algorithm
58-
59-
- [LLM Search](docs/config_search.md#llm-search-mode): Model Analyzer can help you
60-
find the optimal settings when profiling large language models, utilizing the [Quick Search](docs/config_search.md#quick-search-mode) algorithm
61-
62-
### Other Features
63-
64-
- [Detailed and summary reports](docs/report.md): Model Analyzer is able to generate
65-
summarized and detailed reports that can help you better understand the trade-offs
66-
between different model configurations that can be used for your model.
67-
68-
- [QoS Constraints](docs/config.md#constraint): Constraints can help you
69-
filter out the Model Analyzer results based on your QoS requirements. For
70-
example, you can specify a latency budget to filter out model configurations
71-
that do not satisfy the specified latency threshold.
72-
<br><br>
73-
74-
# Examples and Tutorials
75-
76-
### **Single Model**
77-
78-
See the [Single Model Quick Start](docs/quick_start.md) for a guide on how to use Model Analyzer to profile, analyze and report on a simple PyTorch model.
79-
80-
### **Multi Model**
81-
82-
See the [Multi-model Quick Start](docs/mm_quick_start.md) for a guide on how to use Model Analyzer to profile, analyze and report on two models running concurrently on the same GPU.
83-
84-
### **Ensemble Model**
85-
86-
See the [Ensemble Model Quick Start](docs/ensemble_quick_start.md) for a guide on how to use Model Analyzer to profile, analyze and report on a simple Ensemble model.
87-
88-
### **BLS Model**
89-
90-
See the [BLS Model Quick Start](docs/bls_quick_start.md) for a guide on how to use Model Analyzer to profile, analyze and report on a simple BLS model.
91-
<br><br>
92-
93-
# Documentation
94-
95-
- [Installation](docs/install.md)
96-
- [Model Analyzer CLI](docs/cli.md)
97-
- [Launch Modes](docs/launch_modes.md)
98-
- [Configuring Model Analyzer](docs/config.md)
99-
- [Model Analyzer Metrics](docs/metrics.md)
100-
- [Model Config Search](docs/config_search.md)
101-
- [Checkpointing](docs/checkpoints.md)
102-
- [Model Analyzer Reports](docs/report.md)
103-
- [Deployment with Kubernetes](docs/kubernetes_deploy.md)
104-
<br><br>
105-
106-
# Reporting problems, asking questions
107-
108-
We appreciate any feedback, questions or bug reporting regarding this
109-
project. When help with code is needed, follow the process outlined in
110-
the Stack Overflow (https://stackoverflow.com/help/mcve)
111-
document. Ensure posted examples are:
112-
113-
- minimal – use as little code as possible that still produces the
114-
same problem
115-
116-
- complete – provide all parts needed to reproduce the problem. Check
117-
if you can strip external dependency and still show the problem. The
118-
less time we spend on reproducing problems the more time we have to
119-
fix it
120-
121-
- verifiable – test the code you're about to provide to make sure it
122-
reproduces the problem. Remove all other problems that are not
123-
related to your request/question.

VERSION

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
1.39.0dev
1+
1.39.0

docs/bls_quick_start.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ git pull origin main
4949
**1. Pull the SDK container:**
5050

5151
```
52-
docker pull nvcr.io/nvidia/tritonserver:24.03-py3-sdk
52+
docker pull nvcr.io/nvidia/tritonserver:24.04-py3-sdk
5353
```
5454

5555
**2. Run the SDK container**
@@ -59,7 +59,7 @@ docker run -it --gpus 1 \
5959
--shm-size 2G \
6060
-v /var/run/docker.sock:/var/run/docker.sock \
6161
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
62-
--net=host nvcr.io/nvidia/tritonserver:24.03-py3-sdk
62+
--net=host nvcr.io/nvidia/tritonserver:24.04-py3-sdk
6363
```
6464

6565
**Important:** The example above uses a single GPU. If you are running on multiple GPUs, you may need to increase the shared memory size accordingly<br><br>

docs/config.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -153,7 +153,7 @@ cpu_only_composing_models: <comma-delimited-string-list>
153153
[ reload_model_disable: <bool> | default: false]
154154
155155
# Triton Docker image tag used when launching using Docker mode
156-
[ triton_docker_image: <string> | default: nvcr.io/nvidia/tritonserver:24.03-py3 ]
156+
[ triton_docker_image: <string> | default: nvcr.io/nvidia/tritonserver:24.04-py3 ]
157157
158158
# Triton Server HTTP endpoint url used by Model Analyzer client"
159159
[ triton_http_endpoint: <string> | default: localhost:8000 ]

docs/ensemble_quick_start.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@ mkdir examples/quick/ensemble_add_sub/1
5555
**1. Pull the SDK container:**
5656

5757
```
58-
docker pull nvcr.io/nvidia/tritonserver:24.03-py3-sdk
58+
docker pull nvcr.io/nvidia/tritonserver:24.04-py3-sdk
5959
```
6060

6161
**2. Run the SDK container**
@@ -65,7 +65,7 @@ docker run -it --gpus 1 \
6565
--shm-size 1G \
6666
-v /var/run/docker.sock:/var/run/docker.sock \
6767
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
68-
--net=host nvcr.io/nvidia/tritonserver:24.03-py3-sdk
68+
--net=host nvcr.io/nvidia/tritonserver:24.04-py3-sdk
6969
```
7070

7171
**Important:** The example above uses a single GPU. If you are running on multiple GPUs, you may need to increase the shared memory size accordingly<br><br>

docs/kubernetes_deploy.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,7 @@ images:
7979
8080
triton:
8181
image: nvcr.io/nvidia/tritonserver
82-
tag: 24.03-py3
82+
tag: 24.04-py3
8383
```
8484

8585
The model analyzer executable uses the config file defined in `helm-chart/templates/config-map.yaml`. This config can be modified to supply arguments to model analyzer. Only the content under the `config.yaml` section of the file should be modified.

docs/mm_quick_start.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ git pull origin main
4949
**1. Pull the SDK container:**
5050

5151
```
52-
docker pull nvcr.io/nvidia/tritonserver:24.03-py3-sdk
52+
docker pull nvcr.io/nvidia/tritonserver:24.04-py3-sdk
5353
```
5454

5555
**2. Run the SDK container**
@@ -58,7 +58,7 @@ docker pull nvcr.io/nvidia/tritonserver:24.03-py3-sdk
5858
docker run -it --gpus all \
5959
-v /var/run/docker.sock:/var/run/docker.sock \
6060
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
61-
--net=host nvcr.io/nvidia/tritonserver:24.03-py3-sdk
61+
--net=host nvcr.io/nvidia/tritonserver:24.04-py3-sdk
6262
```
6363

6464
## `Step 3:` Profile both models concurrently

docs/quick_start.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ git pull origin main
4949
**1. Pull the SDK container:**
5050

5151
```
52-
docker pull nvcr.io/nvidia/tritonserver:24.03-py3-sdk
52+
docker pull nvcr.io/nvidia/tritonserver:24.04-py3-sdk
5353
```
5454

5555
**2. Run the SDK container**
@@ -58,7 +58,7 @@ docker pull nvcr.io/nvidia/tritonserver:24.03-py3-sdk
5858
docker run -it --gpus all \
5959
-v /var/run/docker.sock:/var/run/docker.sock \
6060
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
61-
--net=host nvcr.io/nvidia/tritonserver:24.03-py3-sdk
61+
--net=host nvcr.io/nvidia/tritonserver:24.04-py3-sdk
6262
```
6363

6464
## `Step 3:` Profile the `add_sub` model

helm-chart/values.yaml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -41,4 +41,4 @@ images:
4141

4242
triton:
4343
image: nvcr.io/nvidia/tritonserver
44-
tag: 24.03-py3
44+
tag: 24.04-py3

0 commit comments

Comments
 (0)