|
| 1 | +#!/usr/bin/env python3 |
| 2 | +import numpy as np |
| 3 | +import sys |
| 4 | +import argparse |
| 5 | +from typing import List, Tuple |
| 6 | +import tritonclient.http as httpclient |
| 7 | +from tritonclient.utils import InferenceServerException |
| 8 | + |
| 9 | + |
| 10 | +class SimpleTokenizer: |
| 11 | + """ |
| 12 | + A simple character-level tokenizer for demo purposes. |
| 13 | + """ |
| 14 | + |
| 15 | + def __init__(self, vocab_size=10000): |
| 16 | + self.vocab_size = vocab_size |
| 17 | + self.pad_token_id = 0 |
| 18 | + self.unk_token_id = 1 |
| 19 | + |
| 20 | + def encode(self, text: str, max_length: int = 128) -> Tuple[List[int], List[int]]: |
| 21 | + """ |
| 22 | + Encode text to token IDs and create attention mask. |
| 23 | + |
| 24 | + Args: |
| 25 | + text: Input text string |
| 26 | + max_length: Maximum sequence length |
| 27 | + |
| 28 | + Returns: |
| 29 | + Tuple of (input_ids, attention_mask) |
| 30 | + """ |
| 31 | + # Simple character-level encoding that maps each character to an ID based on its ASCII value |
| 32 | + input_ids = [min(ord(c), self.vocab_size - 1) for c in text.lower()] |
| 33 | + |
| 34 | + # Truncate if too long |
| 35 | + if len(input_ids) > max_length: |
| 36 | + input_ids = input_ids[:max_length] |
| 37 | + |
| 38 | + # Create attention mask (1 for real tokens, 0 for padding) |
| 39 | + attention_mask = [1] * len(input_ids) |
| 40 | + |
| 41 | + # Pad to max_length |
| 42 | + padding_length = max_length - len(input_ids) |
| 43 | + input_ids.extend([self.pad_token_id] * padding_length) |
| 44 | + attention_mask.extend([0] * padding_length) |
| 45 | + |
| 46 | + return input_ids, attention_mask |
| 47 | + |
| 48 | + |
| 49 | +class SentimentClient: |
| 50 | + """ |
| 51 | + Client for the Transformer Sentiment Classifier on Triton Inference Server. |
| 52 | + """ |
| 53 | + |
| 54 | + def __init__(self, url: str = "localhost:8000", model_name: str = "transformer"): |
| 55 | + """ |
| 56 | + Initialize the client. |
| 57 | + |
| 58 | + Args: |
| 59 | + url: Triton server URL (e.g., "localhost:8000") |
| 60 | + model_name: Name of the model |
| 61 | + """ |
| 62 | + self.url = url |
| 63 | + self.model_name = model_name |
| 64 | + self.client = httpclient.InferenceServerClient(url=url, verbose=False) |
| 65 | + self.tokenizer = SimpleTokenizer() |
| 66 | + self.max_seq_length = 128 |
| 67 | + self.class_names = ["Negative", "Neutral", "Positive"] |
| 68 | + |
| 69 | + def check_server_ready(self) -> bool: |
| 70 | + """Check if the Triton server is ready.""" |
| 71 | + try: |
| 72 | + if self.client.is_server_ready(): |
| 73 | + print(f"Server at {self.url} is ready") |
| 74 | + return True |
| 75 | + else: |
| 76 | + print(f"Server at {self.url} is not ready") |
| 77 | + return False |
| 78 | + except InferenceServerException as e: |
| 79 | + print(f"Failed to connect to server at {self.url}") |
| 80 | + print(f" Error: {e}") |
| 81 | + return False |
| 82 | + |
| 83 | + def check_model_ready(self) -> bool: |
| 84 | + """Check if the model is ready.""" |
| 85 | + try: |
| 86 | + if self.client.is_model_ready(self.model_name): |
| 87 | + print(f"Model '{self.model_name}' is ready") |
| 88 | + return True |
| 89 | + else: |
| 90 | + print(f"Model '{self.model_name}' is not ready") |
| 91 | + return False |
| 92 | + except InferenceServerException as e: |
| 93 | + print(f"Failed to check model status") |
| 94 | + print(f" Error: {e}") |
| 95 | + return False |
| 96 | + |
| 97 | + def predict(self, text: str) -> Tuple[np.ndarray, int, str]: |
| 98 | + """ |
| 99 | + Run inference on a single text input. |
| 100 | + |
| 101 | + Args: |
| 102 | + text: Input text string |
| 103 | + |
| 104 | + Returns: |
| 105 | + Tuple of (probabilities, predicted_class, class_name) |
| 106 | + """ |
| 107 | + # Tokenize input |
| 108 | + input_ids, attention_mask = self.tokenizer.encode(text, self.max_seq_length) |
| 109 | + |
| 110 | + # Convert to numpy arrays with batch dimension |
| 111 | + input_ids_np = np.array([input_ids], dtype=np.int64) |
| 112 | + attention_mask_np = np.array([attention_mask], dtype=np.int64) |
| 113 | + |
| 114 | + # Create input objects |
| 115 | + inputs = [ |
| 116 | + httpclient.InferInput("INPUT_IDS", input_ids_np.shape, "INT64"), |
| 117 | + httpclient.InferInput("ATTENTION_MASK", attention_mask_np.shape, "INT64") |
| 118 | + ] |
| 119 | + |
| 120 | + # Set data |
| 121 | + inputs[0].set_data_from_numpy(input_ids_np) |
| 122 | + inputs[1].set_data_from_numpy(attention_mask_np) |
| 123 | + |
| 124 | + # Create output object |
| 125 | + outputs = [httpclient.InferRequestedOutput("OUTPUT")] |
| 126 | + |
| 127 | + # Send inference request |
| 128 | + try: |
| 129 | + response = self.client.infer( |
| 130 | + model_name=self.model_name, |
| 131 | + inputs=inputs, |
| 132 | + outputs=outputs |
| 133 | + ) |
| 134 | + |
| 135 | + # Get output |
| 136 | + output = response.as_numpy("OUTPUT")[0] # Remove batch dimension |
| 137 | + predicted_class = int(np.argmax(output)) |
| 138 | + class_name = self.class_names[predicted_class] |
| 139 | + |
| 140 | + return output, predicted_class, class_name |
| 141 | + |
| 142 | + except InferenceServerException as e: |
| 143 | + print(f"Inference failed: {e}") |
| 144 | + raise |
| 145 | + |
| 146 | + def predict_batch(self, texts: List[str]) -> List[Tuple[np.ndarray, int, str]]: |
| 147 | + """ |
| 148 | + Run inference on a batch of text inputs. |
| 149 | + |
| 150 | + Args: |
| 151 | + texts: List of input text strings |
| 152 | + |
| 153 | + Returns: |
| 154 | + List of tuples (probabilities, predicted_class, class_name) for each input |
| 155 | + """ |
| 156 | + # Tokenize all inputs |
| 157 | + input_ids_batch = [] |
| 158 | + attention_mask_batch = [] |
| 159 | + |
| 160 | + for text in texts: |
| 161 | + input_ids, attention_mask = self.tokenizer.encode(text, self.max_seq_length) |
| 162 | + input_ids_batch.append(input_ids) |
| 163 | + attention_mask_batch.append(attention_mask) |
| 164 | + |
| 165 | + # Convert to numpy arrays |
| 166 | + input_ids_np = np.array(input_ids_batch, dtype=np.int64) |
| 167 | + attention_mask_np = np.array(attention_mask_batch, dtype=np.int64) |
| 168 | + |
| 169 | + # Create input objects |
| 170 | + inputs = [ |
| 171 | + httpclient.InferInput("INPUT_IDS", input_ids_np.shape, "INT64"), |
| 172 | + httpclient.InferInput("ATTENTION_MASK", attention_mask_np.shape, "INT64") |
| 173 | + ] |
| 174 | + |
| 175 | + # Set data |
| 176 | + inputs[0].set_data_from_numpy(input_ids_np) |
| 177 | + inputs[1].set_data_from_numpy(attention_mask_np) |
| 178 | + |
| 179 | + # Create output object |
| 180 | + outputs = [httpclient.InferRequestedOutput("OUTPUT")] |
| 181 | + |
| 182 | + # Send inference request |
| 183 | + try: |
| 184 | + response = self.client.infer( |
| 185 | + model_name=self.model_name, |
| 186 | + inputs=inputs, |
| 187 | + outputs=outputs |
| 188 | + ) |
| 189 | + |
| 190 | + # Get outputs |
| 191 | + outputs_np = response.as_numpy("OUTPUT") |
| 192 | + |
| 193 | + results = [] |
| 194 | + for output in outputs_np: |
| 195 | + predicted_class = int(np.argmax(output)) |
| 196 | + class_name = self.class_names[predicted_class] |
| 197 | + results.append((output, predicted_class, class_name)) |
| 198 | + |
| 199 | + return results |
| 200 | + |
| 201 | + except InferenceServerException as e: |
| 202 | + print(f"Batch inference failed: {e}") |
| 203 | + raise |
| 204 | + |
0 commit comments