Skip to content

Commit 8afd96b

Browse files
committed
Update README.md for YY.MM branch (#8002)
1 parent 205f13c commit 8afd96b

File tree

1 file changed

+2
-229
lines changed

1 file changed

+2
-229
lines changed

README.md

Lines changed: 2 additions & 229 deletions
Original file line numberDiff line numberDiff line change
@@ -28,232 +28,5 @@
2828

2929
# Triton Inference Server
3030

31-
[![License](https://img.shields.io/badge/License-BSD3-lightgrey.svg)](https://opensource.org/licenses/BSD-3-Clause)
32-
33-
Triton Inference Server is an open source inference serving software that
34-
streamlines AI inferencing. Triton enables teams to deploy any AI model from
35-
multiple deep learning and machine learning frameworks, including TensorRT,
36-
TensorFlow, PyTorch, ONNX, OpenVINO, Python, RAPIDS FIL, and more. Triton
37-
Inference Server supports inference across cloud, data center, edge and embedded
38-
devices on NVIDIA GPUs, x86 and ARM CPU, or AWS Inferentia. Triton Inference
39-
Server delivers optimized performance for many query types, including real time,
40-
batched, ensembles and audio/video streaming. Triton inference Server is part of
41-
[NVIDIA AI Enterprise](https://www.nvidia.com/en-us/data-center/products/ai-enterprise/),
42-
a software platform that accelerates the data science pipeline and streamlines
43-
the development and deployment of production AI.
44-
45-
Major features include:
46-
47-
- [Supports multiple deep learning
48-
frameworks](https://github.com/triton-inference-server/backend#where-can-i-find-all-the-backends-that-are-available-for-triton)
49-
- [Supports multiple machine learning
50-
frameworks](https://github.com/triton-inference-server/fil_backend)
51-
- [Concurrent model
52-
execution](docs/user_guide/architecture.md#concurrent-model-execution)
53-
- [Dynamic batching](docs/user_guide/model_configuration.md#dynamic-batcher)
54-
- [Sequence batching](docs/user_guide/model_configuration.md#sequence-batcher) and
55-
[implicit state management](docs/user_guide/architecture.md#implicit-state-management)
56-
for stateful models
57-
- Provides [Backend API](https://github.com/triton-inference-server/backend) that
58-
allows adding custom backends and pre/post processing operations
59-
- Supports writing custom backends in python, a.k.a.
60-
[Python-based backends.](https://github.com/triton-inference-server/backend/blob/r25.01/docs/python_based_backends.md#python-based-backends)
61-
- Model pipelines using
62-
[Ensembling](docs/user_guide/architecture.md#ensemble-models) or [Business
63-
Logic Scripting
64-
(BLS)](https://github.com/triton-inference-server/python_backend#business-logic-scripting)
65-
- [HTTP/REST and GRPC inference
66-
protocols](docs/customization_guide/inference_protocols.md) based on the community
67-
developed [KServe
68-
protocol](https://github.com/kserve/kserve/tree/master/docs/predict-api/v2)
69-
- A [C API](docs/customization_guide/inference_protocols.md#in-process-triton-server-api) and
70-
[Java API](docs/customization_guide/inference_protocols.md#java-bindings-for-in-process-triton-server-api)
71-
allow Triton to link directly into your application for edge and other in-process use cases
72-
- [Metrics](docs/user_guide/metrics.md) indicating GPU utilization, server
73-
throughput, server latency, and more
74-
75-
**New to Triton Inference Server?** Make use of
76-
[these tutorials](https://github.com/triton-inference-server/tutorials)
77-
to begin your Triton journey!
78-
79-
Join the [Triton and TensorRT community](https://www.nvidia.com/en-us/deep-learning-ai/triton-tensorrt-newsletter/) and
80-
stay current on the latest product updates, bug fixes, content, best practices,
81-
and more. Need enterprise support? NVIDIA global support is available for Triton
82-
Inference Server with the
83-
[NVIDIA AI Enterprise software suite](https://www.nvidia.com/en-us/data-center/products/ai-enterprise/).
84-
85-
## Serve a Model in 3 Easy Steps
86-
87-
```bash
88-
# Step 1: Create the example model repository
89-
git clone -b r25.01 https://github.com/triton-inference-server/server.git
90-
cd server/docs/examples
91-
./fetch_models.sh
92-
93-
# Step 2: Launch triton from the NGC Triton container
94-
docker run --gpus=1 --rm --net=host -v ${PWD}/model_repository:/models nvcr.io/nvidia/tritonserver:25.01-py3 tritonserver --model-repository=/models
95-
96-
# Step 3: Sending an Inference Request
97-
# In a separate console, launch the image_client example from the NGC Triton SDK container
98-
docker run -it --rm --net=host nvcr.io/nvidia/tritonserver:25.01-py3-sdk
99-
/workspace/install/bin/image_client -m densenet_onnx -c 3 -s INCEPTION /workspace/images/mug.jpg
100-
101-
# Inference should return the following
102-
Image '/workspace/images/mug.jpg':
103-
15.346230 (504) = COFFEE MUG
104-
13.224326 (968) = CUP
105-
10.422965 (505) = COFFEEPOT
106-
```
107-
Please read the [QuickStart](docs/getting_started/quickstart.md) guide for additional information
108-
regarding this example. The quickstart guide also contains an example of how to launch Triton on [CPU-only systems](docs/getting_started/quickstart.md#run-on-cpu-only-system). New to Triton and wondering where to get started? Watch the [Getting Started video](https://youtu.be/NQDtfSi5QF4).
109-
110-
## Examples and Tutorials
111-
112-
Check out [NVIDIA LaunchPad](https://www.nvidia.com/en-us/data-center/products/ai-enterprise-suite/trial/)
113-
for free access to a set of hands-on labs with Triton Inference Server hosted on
114-
NVIDIA infrastructure.
115-
116-
Specific end-to-end examples for popular models, such as ResNet, BERT, and DLRM
117-
are located in the
118-
[NVIDIA Deep Learning Examples](https://github.com/NVIDIA/DeepLearningExamples)
119-
page on GitHub. The
120-
[NVIDIA Developer Zone](https://developer.nvidia.com/nvidia-triton-inference-server)
121-
contains additional documentation, presentations, and examples.
122-
123-
## Documentation
124-
125-
### Build and Deploy
126-
127-
The recommended way to build and use Triton Inference Server is with Docker
128-
images.
129-
130-
- [Install Triton Inference Server with Docker containers](docs/customization_guide/build.md#building-with-docker) (*Recommended*)
131-
- [Install Triton Inference Server without Docker containers](docs/customization_guide/build.md#building-without-docker)
132-
- [Build a custom Triton Inference Server Docker container](docs/customization_guide/compose.md)
133-
- [Build Triton Inference Server from source](docs/customization_guide/build.md#building-on-unsupported-platforms)
134-
- [Build Triton Inference Server for Windows 10](docs/customization_guide/build.md#building-for-windows-10)
135-
- Examples for deploying Triton Inference Server with Kubernetes and Helm on [GCP](deploy/gcp/README.md),
136-
[AWS](deploy/aws/README.md), and [NVIDIA FleetCommand](deploy/fleetcommand/README.md)
137-
- [Secure Deployment Considerations](docs/customization_guide/deploy.md)
138-
139-
### Using Triton
140-
141-
#### Preparing Models for Triton Inference Server
142-
143-
The first step in using Triton to serve your models is to place one or
144-
more models into a [model repository](docs/user_guide/model_repository.md). Depending on
145-
the type of the model and on what Triton capabilities you want to enable for
146-
the model, you may need to create a [model
147-
configuration](docs/user_guide/model_configuration.md) for the model.
148-
149-
- [Add custom operations to Triton if needed by your model](docs/user_guide/custom_operations.md)
150-
- Enable model pipelining with [Model Ensemble](docs/user_guide/architecture.md#ensemble-models)
151-
and [Business Logic Scripting (BLS)](https://github.com/triton-inference-server/python_backend#business-logic-scripting)
152-
- Optimize your models setting [scheduling and batching](docs/user_guide/architecture.md#models-and-schedulers)
153-
parameters and [model instances](docs/user_guide/model_configuration.md#instance-groups).
154-
- Use the [Model Analyzer tool](https://github.com/triton-inference-server/model_analyzer)
155-
to help optimize your model configuration with profiling
156-
- Learn how to [explicitly manage what models are available by loading and
157-
unloading models](docs/user_guide/model_management.md)
158-
159-
#### Configure and Use Triton Inference Server
160-
161-
- Read the [Quick Start Guide](docs/getting_started/quickstart.md) to run Triton Inference
162-
Server on both GPU and CPU
163-
- Triton supports multiple execution engines, called
164-
[backends](https://github.com/triton-inference-server/backend#where-can-i-find-all-the-backends-that-are-available-for-triton), including
165-
[TensorRT](https://github.com/triton-inference-server/tensorrt_backend),
166-
[TensorFlow](https://github.com/triton-inference-server/tensorflow_backend),
167-
[PyTorch](https://github.com/triton-inference-server/pytorch_backend),
168-
[ONNX](https://github.com/triton-inference-server/onnxruntime_backend),
169-
[OpenVINO](https://github.com/triton-inference-server/openvino_backend),
170-
[Python](https://github.com/triton-inference-server/python_backend), and more
171-
- Not all the above backends are supported on every platform supported by Triton.
172-
Look at the
173-
[Backend-Platform Support Matrix](https://github.com/triton-inference-server/backend/blob/r25.01/docs/backend_platform_support_matrix.md)
174-
to learn which backends are supported on your target platform.
175-
- Learn how to [optimize performance](docs/user_guide/optimization.md) using the
176-
[Performance Analyzer](https://github.com/triton-inference-server/perf_analyzer/blob/r25.01/README.md)
177-
and
178-
[Model Analyzer](https://github.com/triton-inference-server/model_analyzer)
179-
- Learn how to [manage loading and unloading models](docs/user_guide/model_management.md) in
180-
Triton
181-
- Send requests directly to Triton with the [HTTP/REST JSON-based
182-
or gRPC protocols](docs/customization_guide/inference_protocols.md#httprest-and-grpc-protocols)
183-
184-
#### Client Support and Examples
185-
186-
A Triton *client* application sends inference and other requests to Triton. The
187-
[Python and C++ client libraries](https://github.com/triton-inference-server/client)
188-
provide APIs to simplify this communication.
189-
190-
- Review client examples for [C++](https://github.com/triton-inference-server/client/blob/r25.01/src/c%2B%2B/examples),
191-
[Python](https://github.com/triton-inference-server/client/blob/r25.01/src/python/examples),
192-
and [Java](https://github.com/triton-inference-server/client/blob/r25.01/src/java/src/main/java/triton/client/examples)
193-
- Configure [HTTP](https://github.com/triton-inference-server/client#http-options)
194-
and [gRPC](https://github.com/triton-inference-server/client#grpc-options)
195-
client options
196-
- Send input data (e.g. a jpeg image) directly to Triton in the [body of an HTTP
197-
request without any additional metadata](https://github.com/triton-inference-server/server/blob/r25.01/docs/protocol/extension_binary_data.md#raw-binary-request)
198-
199-
### Extend Triton
200-
201-
[Triton Inference Server's architecture](docs/user_guide/architecture.md) is specifically
202-
designed for modularity and flexibility
203-
204-
- [Customize Triton Inference Server container](docs/customization_guide/compose.md) for your use case
205-
- [Create custom backends](https://github.com/triton-inference-server/backend)
206-
in either [C/C++](https://github.com/triton-inference-server/backend/blob/r25.01/README.md#triton-backend-api)
207-
or [Python](https://github.com/triton-inference-server/python_backend)
208-
- Create [decoupled backends and models](docs/user_guide/decoupled_models.md) that can send
209-
multiple responses for a request or not send any responses for a request
210-
- Use a [Triton repository agent](docs/customization_guide/repository_agents.md) to add functionality
211-
that operates when a model is loaded and unloaded, such as authentication,
212-
decryption, or conversion
213-
- Deploy Triton on [Jetson and JetPack](docs/user_guide/jetson.md)
214-
- [Use Triton on AWS
215-
Inferentia](https://github.com/triton-inference-server/python_backend/tree/r25.01/inferentia)
216-
217-
### Additional Documentation
218-
219-
- [FAQ](docs/user_guide/faq.md)
220-
- [User Guide](docs/README.md#user-guide)
221-
- [Customization Guide](docs/README.md#customization-guide)
222-
- [Release Notes](https://docs.nvidia.com/deeplearning/triton-inference-server/release-notes/index.html)
223-
- [GPU, Driver, and CUDA Support
224-
Matrix](https://docs.nvidia.com/deeplearning/dgx/support-matrix/index.html)
225-
226-
## Contributing
227-
228-
Contributions to Triton Inference Server are more than welcome. To
229-
contribute please review the [contribution
230-
guidelines](CONTRIBUTING.md). If you have a backend, client,
231-
example or similar contribution that is not modifying the core of
232-
Triton, then you should file a PR in the [contrib
233-
repo](https://github.com/triton-inference-server/contrib).
234-
235-
## Reporting problems, asking questions
236-
237-
We appreciate any feedback, questions or bug reporting regarding this project.
238-
When posting [issues in GitHub](https://github.com/triton-inference-server/server/issues),
239-
follow the process outlined in the [Stack Overflow document](https://stackoverflow.com/help/mcve).
240-
Ensure posted examples are:
241-
- minimal – use as little code as possible that still produces the
242-
same problem
243-
- complete – provide all parts needed to reproduce the problem. Check
244-
if you can strip external dependencies and still show the problem. The
245-
less time we spend on reproducing problems the more time we have to
246-
fix it
247-
- verifiable – test the code you're about to provide to make sure it
248-
reproduces the problem. Remove all other problems that are not
249-
related to your request/question.
250-
251-
For issues, please use the provided bug report and feature request templates.
252-
253-
For questions, we recommend posting in our community
254-
[GitHub Discussions.](https://github.com/triton-inference-server/server/discussions)
255-
256-
## For more information
257-
258-
Please refer to the [NVIDIA Developer Triton page](https://developer.nvidia.com/nvidia-triton-inference-server)
259-
for more information.
31+
**NOTE: You are currently on the r25.02 branch which tracks stabilization
32+
towards the next release. This branch is not usable during stabilization.**

0 commit comments

Comments
 (0)