|
| 1 | +// RUN: triton-opt %s -split-input-file -allow-unregistered-dialect -test-tritonamdgpu-fold-true-cmpi -canonicalize | FileCheck %s |
| 2 | + |
| 3 | +module attributes {"ttg.num-warps" = 4 : i32} { |
| 4 | + tt.func @cmpsle(%arg0: !tt.ptr<f32>) -> i1 { |
| 5 | + %c0 = arith.constant 0 : i32 |
| 6 | + %c1024_i32 = arith.constant 1024 : i32 |
| 7 | + %cmpsle = arith.cmpi sle, %c0, %c1024_i32 : i32 |
| 8 | + tt.return %cmpsle: i1 |
| 9 | + } |
| 10 | +} |
| 11 | + |
| 12 | +// CHECK-LABEL: tt.func @cmpsle( |
| 13 | +// CHECK-SAME: %[[VAL_0:.*]]: !tt.ptr<f32>) -> i1 { |
| 14 | +// CHECK: %[[VAL_1:.*]] = arith.constant true |
| 15 | +// CHECK: tt.return %[[VAL_1]] : i1 |
| 16 | +// CHECK: } |
| 17 | + |
| 18 | +// ----- |
| 19 | + |
| 20 | +module attributes {"ttg.num-warps" = 4 : i32} { |
| 21 | + tt.func @assumepid(%arg0: !tt.ptr<f32>) -> tensor<1024xf32> { |
| 22 | + %c0 = arith.constant 0 : i32 |
| 23 | + %c1024_i32 = arith.constant 1024 : i32 |
| 24 | + %pid = tt.get_program_id x : i32 |
| 25 | + %cmpsle = arith.cmpi sle, %pid, %c1024_i32 : i32 |
| 26 | + llvm.intr.assume %cmpsle : i1 |
| 27 | + %cmpsge = arith.cmpi sge, %pid, %c0 : i32 |
| 28 | + llvm.intr.assume %cmpsge : i1 |
| 29 | + %1 = arith.muli %pid, %c1024_i32 : i32 |
| 30 | + %2 = tt.addptr %arg0, %1 : !tt.ptr<f32>, i32 |
| 31 | + %3 = tt.splat %2 : !tt.ptr<f32> -> tensor<1024x!tt.ptr<f32>> |
| 32 | + %4 = tt.load %3 : tensor<1024x!tt.ptr<f32>> |
| 33 | + tt.return %4 : tensor<1024xf32> |
| 34 | + } |
| 35 | +} |
| 36 | + |
| 37 | +// CHECK-LABEL: tt.func @assumepid( |
| 38 | +// CHECK-SAME: %[[VAL_0:.*]]: !tt.ptr<f32>) -> tensor<1024xf32> { |
| 39 | +// CHECK: %[[VAL_1:.*]] = arith.constant true |
| 40 | +// CHECK: %[[VAL_2:.*]] = arith.constant 1024 : i32 |
| 41 | +// CHECK: %[[VAL_3:.*]] = tt.get_program_id x : i32 |
| 42 | +// CHECK: llvm.intr.assume %[[VAL_1]] : i1 |
| 43 | +// CHECK: llvm.intr.assume %[[VAL_1]] : i1 |
| 44 | +// CHECK: %[[VAL_4:.*]] = arith.muli %[[VAL_3]], %[[VAL_2]] : i32 |
| 45 | +// CHECK: %[[VAL_5:.*]] = tt.addptr %[[VAL_0]], %[[VAL_4]] : !tt.ptr<f32>, i32 |
| 46 | +// CHECK: %[[VAL_6:.*]] = tt.splat %[[VAL_5]] : !tt.ptr<f32> -> tensor<1024x!tt.ptr<f32>> |
| 47 | +// CHECK: %[[VAL_7:.*]] = tt.load %[[VAL_6]] : tensor<1024x!tt.ptr<f32>> |
| 48 | +// CHECK: tt.return %[[VAL_7]] : tensor<1024xf32> |
| 49 | +// CHECK: } |
| 50 | + |
| 51 | +// ----- |
| 52 | + |
| 53 | +#blocked = #ttg.blocked<{sizePerThread = [1, 4], threadsPerWarp = [1, 32], warpsPerCTA = [4, 1], order = [1, 0]}> |
| 54 | +#blocked1 = #ttg.blocked<{sizePerThread = [1, 4], threadsPerWarp = [4, 8], warpsPerCTA = [4, 1], order = [1, 0]}> |
| 55 | +#mma = #ttg.nvidia_mma<{versionMajor = 2, versionMinor = 0, warpsPerCTA = [4, 1], instrShape = []}> |
| 56 | +#shared = #ttg.swizzled_shared<{vec = 8, perPhase = 2, maxPhase = 4, order = [1, 0]}> |
| 57 | +#shared1 = #ttg.swizzled_shared<{vec = 8, perPhase = 1, maxPhase = 8, order = [1, 0]}> |
| 58 | +#smem = #ttg.shared_memory |
| 59 | +module attributes {"ttg.num-ctas" = 1 : i32, "ttg.num-warps" = 4 : i32} { |
| 60 | + tt.func @assume_matmul(%arg0: index, %arg1: index, %arg2: index, %arg3: !tt.ptr<f16>, %arg4: !tt.ptr<f16>) -> tensor<128x128xf32, #mma> { |
| 61 | + %c-1 = arith.constant -1 : index |
| 62 | + %c1 = arith.constant 1 : index |
| 63 | + %c0 = arith.constant 0 : index |
| 64 | + %c1_i32 = arith.constant 1 : i32 |
| 65 | + %c0_i32 = arith.constant 0 : i32 |
| 66 | + %true = arith.constant true |
| 67 | + %cst = arith.constant dense<4.000000e+00> : tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #mma, kWidth = 2}>> |
| 68 | + %cst_0 = arith.constant dense<4> : tensor<32x128xi32, #blocked> |
| 69 | + %cst_1 = arith.constant dense<4> : tensor<128x32xi32, #blocked1> |
| 70 | + %cst_2 = arith.constant dense<0.000000e+00> : tensor<128x128xf32, #mma> |
| 71 | + %cst_3 = arith.constant dense<0.000000e+00> : tensor<32x128xf16, #blocked> |
| 72 | + %0 = tt.splat %arg3 : !tt.ptr<f16> -> tensor<128x32x!tt.ptr<f16>, #blocked1> |
| 73 | + %1 = tt.make_range {end = 32 : i32, start = 0 : i32} : tensor<32xi32, #ttg.slice<{dim = 0, parent = #blocked1}>> |
| 74 | + %2 = tt.expand_dims %1 {axis = 0 : i32} : tensor<32xi32, #ttg.slice<{dim = 0, parent = #blocked1}>> -> tensor<1x32xi32, #blocked1> |
| 75 | + %3 = tt.broadcast %2 : tensor<1x32xi32, #blocked1> -> tensor<128x32xi32, #blocked1> |
| 76 | + %4 = tt.addptr %0, %3 : tensor<128x32x!tt.ptr<f16>, #blocked1>, tensor<128x32xi32, #blocked1> |
| 77 | + %5 = tt.splat %arg4 : !tt.ptr<f16> -> tensor<32x128x!tt.ptr<f16>, #blocked> |
| 78 | + %6 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #ttg.slice<{dim = 0, parent = #blocked}>> |
| 79 | + %7 = tt.expand_dims %6 {axis = 0 : i32} : tensor<128xi32, #ttg.slice<{dim = 0, parent = #blocked}>> -> tensor<1x128xi32, #blocked> |
| 80 | + %8 = tt.broadcast %7 : tensor<1x128xi32, #blocked> -> tensor<32x128xi32, #blocked> |
| 81 | + %9 = tt.addptr %5, %8 : tensor<32x128x!tt.ptr<f16>, #blocked>, tensor<32x128xi32, #blocked> |
| 82 | + %10 = ttg.local_alloc : () -> !ttg.memdesc<1x128x32xf16, #shared, #smem, mutable> |
| 83 | + %11 = ttg.local_alloc : () -> !ttg.memdesc<1x32x128xf16, #shared1, #smem, mutable> |
| 84 | + %12 = arith.cmpi slt, %arg0, %arg1 : index |
| 85 | + %13 = tt.splat %12 : i1 -> tensor<128x32xi1, #blocked1> |
| 86 | + %14 = tt.load %4, %13 {OpIdx = #amdgpu.OpIdx<0>} : tensor<128x32x!tt.ptr<f16>, #blocked1> |
| 87 | + %15 = tt.splat %12 : i1 -> tensor<32x128xi1, #blocked> |
| 88 | + %16 = tt.load %9, %15, %cst_3 : tensor<32x128x!tt.ptr<f16>, #blocked> |
| 89 | + %17 = ttg.memdesc_subview %10[%c0_i32, %c0_i32, %c0_i32] : !ttg.memdesc<1x128x32xf16, #shared, #smem, mutable> -> !ttg.memdesc<128x32xf16, #shared, #smem, mutable> |
| 90 | + ttg.local_store %14, %17 {OpIdx = #amdgpu.OpIdx<0>} : tensor<128x32xf16, #blocked1> -> !ttg.memdesc<128x32xf16, #shared, #smem, mutable> |
| 91 | + %18 = ttg.memdesc_subview %11[%c0_i32, %c0_i32, %c0_i32] : !ttg.memdesc<1x32x128xf16, #shared1, #smem, mutable> -> !ttg.memdesc<32x128xf16, #shared1, #smem, mutable> |
| 92 | + ttg.local_store %16, %18 : tensor<32x128xf16, #blocked> -> !ttg.memdesc<32x128xf16, #shared1, #smem, mutable> |
| 93 | + %19 = arith.subi %arg1, %arg2 : index |
| 94 | + %20:6 = scf.for %arg5 = %arg0 to %19 step %arg2 iter_args(%arg6 = %4, %arg7 = %9, %arg8 = %cst_2, %arg9 = %c0_i32, %arg10 = %17, %arg11 = %18) -> (tensor<128x32x!tt.ptr<f16>, #blocked1>, tensor<32x128x!tt.ptr<f16>, #blocked>, tensor<128x128xf32, #mma>, i32, !ttg.memdesc<128x32xf16, #shared, #smem, mutable>, !ttg.memdesc<32x128xf16, #shared1, #smem, mutable>) { |
| 95 | + %33 = tt.addptr %arg6, %cst_1 : tensor<128x32x!tt.ptr<f16>, #blocked1>, tensor<128x32xi32, #blocked1> |
| 96 | + %34 = tt.addptr %arg7, %cst_0 : tensor<32x128x!tt.ptr<f16>, #blocked>, tensor<32x128xi32, #blocked> |
| 97 | + llvm.intr.assume %true : i1 |
| 98 | + %35 = tt.load %33 {OpIdx = #amdgpu.OpIdx<0>} : tensor<128x32x!tt.ptr<f16>, #blocked1> |
| 99 | + %36 = ttg.local_load %arg10 : !ttg.memdesc<128x32xf16, #shared, #smem, mutable> -> tensor<128x32xf16, #ttg.dot_op<{opIdx = 0, parent = #mma, kWidth = 2}>> |
| 100 | + %37 = tt.load %34 : tensor<32x128x!tt.ptr<f16>, #blocked> |
| 101 | + %38 = ttg.local_load %arg11 : !ttg.memdesc<32x128xf16, #shared1, #smem, mutable> -> tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #mma, kWidth = 2}>> |
| 102 | + %39 = arith.mulf %38, %cst : tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #mma, kWidth = 2}>> |
| 103 | + %40 = tt.dot %36, %39, %arg8 : tensor<128x32xf16, #ttg.dot_op<{opIdx = 0, parent = #mma, kWidth = 2}>> * tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #mma, kWidth = 2}>> -> tensor<128x128xf32, #mma> |
| 104 | + %41 = arith.addi %arg9, %c1_i32 : i32 |
| 105 | + %42 = arith.cmpi slt, %41, %c1_i32 : i32 |
| 106 | + %43 = arith.select %42, %41, %c0_i32 : i32 |
| 107 | + %44 = ttg.memdesc_subview %10[%43, %c0_i32, %c0_i32] : !ttg.memdesc<1x128x32xf16, #shared, #smem, mutable> -> !ttg.memdesc<128x32xf16, #shared, #smem, mutable> |
| 108 | + ttg.local_store %35, %44 {OpIdx = #amdgpu.OpIdx<0>} : tensor<128x32xf16, #blocked1> -> !ttg.memdesc<128x32xf16, #shared, #smem, mutable> |
| 109 | + %45 = ttg.memdesc_subview %11[%43, %c0_i32, %c0_i32] : !ttg.memdesc<1x32x128xf16, #shared1, #smem, mutable> -> !ttg.memdesc<32x128xf16, #shared1, #smem, mutable> |
| 110 | + ttg.local_store %37, %45 : tensor<32x128xf16, #blocked> -> !ttg.memdesc<32x128xf16, #shared1, #smem, mutable> |
| 111 | + scf.yield %33, %34, %40, %43, %44, %45 : tensor<128x32x!tt.ptr<f16>, #blocked1>, tensor<32x128x!tt.ptr<f16>, #blocked>, tensor<128x128xf32, #mma>, i32, !ttg.memdesc<128x32xf16, #shared, #smem, mutable>, !ttg.memdesc<32x128xf16, #shared1, #smem, mutable> |
| 112 | + } |
| 113 | + %21 = arith.cmpi slt, %arg2, %c0 : index |
| 114 | + %22 = arith.select %21, %c1, %c-1 : index |
| 115 | + %23 = arith.subi %arg1, %arg0 : index |
| 116 | + %24 = arith.addi %23, %arg2 : index |
| 117 | + %25 = arith.addi %24, %22 : index |
| 118 | + %26 = arith.divsi %25, %arg2 : index |
| 119 | + %28 = ttg.local_load %20#4 : !ttg.memdesc<128x32xf16, #shared, #smem, mutable> -> tensor<128x32xf16, #ttg.dot_op<{opIdx = 0, parent = #mma, kWidth = 2}>> |
| 120 | + %29 = ttg.local_load %20#5 : !ttg.memdesc<32x128xf16, #shared1, #smem, mutable> -> tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #mma, kWidth = 2}>> |
| 121 | + %30 = arith.mulf %29, %cst : tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #mma, kWidth = 2}>> |
| 122 | + %27 = arith.cmpi sge, %26, %c1 : index |
| 123 | + llvm.intr.assume %27 : i1 |
| 124 | + %31 = scf.if %27 -> (tensor<128x128xf32, #mma>) { |
| 125 | + %33 = tt.dot %28, %30, %20#2 : tensor<128x32xf16, #ttg.dot_op<{opIdx = 0, parent = #mma, kWidth = 2}>> * tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #mma, kWidth = 2}>> -> tensor<128x128xf32, #mma> |
| 126 | + scf.yield %33 : tensor<128x128xf32, #mma> |
| 127 | + } else { |
| 128 | + scf.yield %20#2 : tensor<128x128xf32, #mma> |
| 129 | + } |
| 130 | + %32 = arith.select %27, %31, %20#2 : tensor<128x128xf32, #mma> |
| 131 | + ttg.local_dealloc %10 : !ttg.memdesc<1x128x32xf16, #shared, #smem, mutable> |
| 132 | + ttg.local_dealloc %11 : !ttg.memdesc<1x32x128xf16, #shared1, #smem, mutable> |
| 133 | + tt.return %32 : tensor<128x128xf32, #mma> |
| 134 | + } |
| 135 | +} |
| 136 | + |
| 137 | +// CHECK: #[[$ATTR_2:.+]] = #ttg.nvidia_mma<{versionMajor = 2, versionMinor = 0, warpsPerCTA = [4, 1], instrShape = []}> |
| 138 | +// CHECK: #[[$ATTR_3:.+]] = #ttg.swizzled_shared<{vec = 8, perPhase = 2, maxPhase = 4, order = [1, 0]}> |
| 139 | +// CHECK: #[[$ATTR_4:.+]] = #ttg.swizzled_shared<{vec = 8, perPhase = 1, maxPhase = 8, order = [1, 0]}> |
| 140 | +// CHECK: #[[$ATTR_5:.+]] = #ttg.shared_memory |
| 141 | + |
| 142 | +// CHECK-LABEL: tt.func @assume_matmul( |
| 143 | +// CHECK: %[[VAL_7:.*]] = arith.constant true |
| 144 | +// CHECK: %[[VAL_8:.*]] = arith.constant dense<4.000000e+00> : tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #[[$ATTR_2]], kWidth = 2}>> |
| 145 | +// CHECK: %[[VAL_23:.*]] = ttg.local_alloc : () -> !ttg.memdesc<1x128x32xf16, #[[$ATTR_3]], #[[$ATTR_5]], mutable> |
| 146 | +// CHECK: %[[VAL_24:.*]] = ttg.local_alloc : () -> !ttg.memdesc<1x32x128xf16, #[[$ATTR_4]], #[[$ATTR_5]], mutable> |
| 147 | +// CHECK: %[[VAL_33:.*]]:6 = scf.for |
| 148 | +// CHECK: scf.yield |
| 149 | +// CHECK: } |
| 150 | +// CHECK-NEXT: %[[VAL_54:.*]] = ttg.local_load %[[VAL_55:.*]]#4 : !ttg.memdesc<128x32xf16, #[[$ATTR_3]], #[[$ATTR_5]], mutable> -> tensor<128x32xf16, #ttg.dot_op<{opIdx = 0, parent = #[[$ATTR_2]], kWidth = 2}>> |
| 151 | +// CHECK-NEXT: %[[VAL_56:.*]] = ttg.local_load %[[VAL_55]]#5 : !ttg.memdesc<32x128xf16, #[[$ATTR_4]], #[[$ATTR_5]], mutable> -> tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #[[$ATTR_2]], kWidth = 2}>> |
| 152 | +// CHECK-NEXT: %[[VAL_57:.*]] = arith.mulf %[[VAL_56]], %[[VAL_8]] : tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #[[$ATTR_2]], kWidth = 2}>> |
| 153 | +// CHECK-NEXT: llvm.intr.assume %[[VAL_7]] : i1 |
| 154 | +// CHECK-NEXT: %[[VAL_58:.*]] = tt.dot %[[VAL_54]], %[[VAL_57]], %[[VAL_55]]#2 : tensor<128x32xf16, #ttg.dot_op<{opIdx = 0, parent = #[[$ATTR_2]], kWidth = 2}>> * tensor<32x128xf16, #ttg.dot_op<{opIdx = 1, parent = #[[$ATTR_2]], kWidth = 2}>> -> tensor<128x128xf32, #[[$ATTR_2]]> |
| 155 | +// CHECK-NEXT: ttg.local_dealloc %[[VAL_23]] : !ttg.memdesc<1x128x32xf16, #[[$ATTR_3]], #[[$ATTR_5]], mutable> |
| 156 | +// CHECK-NEXT: ttg.local_dealloc %[[VAL_24]] : !ttg.memdesc<1x32x128xf16, #[[$ATTR_4]], #[[$ATTR_5]], mutable> |
| 157 | +// CHECK-NEXT: tt.return %[[VAL_58]] : tensor<128x128xf32, #[[$ATTR_2]]> |
| 158 | +// CHECK-NEXT: } |
0 commit comments