|
10 | 10 | names = [ |
11 | 11 | "Simple Example 2D", |
12 | 12 | "Box Not Multiple of Search Radius 2D", |
13 | | - "Simple Example 3D", |
| 13 | + "Simple Example 3D" |
14 | 14 | ] |
15 | 15 |
|
16 | 16 | coordinates = [ |
|
20 | 20 | -0.12 -0.05 -0.09 0.15 0.42], |
21 | 21 | [-0.08 0.0 0.18 0.1 -0.08 |
22 | 22 | -0.12 -0.05 -0.09 0.15 0.39 |
23 | | - 0.14 0.34 0.12 0.06 0.13], |
| 23 | + 0.14 0.34 0.12 0.06 0.13] |
24 | 24 | ] |
25 | 25 |
|
26 | 26 | periodic_boxes = [ |
27 | 27 | PeriodicBox(min_corner = [-0.1, -0.2], max_corner = [0.2, 0.4]), |
28 | 28 | # The `GridNeighborhoodSearch` is forced to round up the cell sizes in this test |
29 | 29 | # to avoid split cells. |
30 | 30 | PeriodicBox(min_corner = [-0.1, -0.2], max_corner = [0.205, 0.43]), |
31 | | - PeriodicBox(min_corner = [-0.1, -0.2, 0.05], max_corner = [0.2, 0.4, 0.35]), |
| 31 | + PeriodicBox(min_corner = [-0.1, -0.2, 0.05], max_corner = [0.2, 0.4, 0.35]) |
32 | 32 | ] |
33 | 33 |
|
34 | 34 | @testset verbose=true "$(names[i])" for i in eachindex(names) |
|
58 | 58 | search_radius, |
59 | 59 | backend = Vector{Vector{Int32}})), |
60 | 60 | PrecomputedNeighborhoodSearch{NDIMS}(; search_radius, n_points, |
61 | | - periodic_box = periodic_boxes[i]), |
| 61 | + periodic_box = periodic_boxes[i]) |
62 | 62 | ] |
63 | 63 |
|
64 | 64 | names = [ |
65 | 65 | "`TrivialNeighborhoodSearch`", |
66 | 66 | "`GridNeighborhoodSearch`", |
67 | 67 | "`GridNeighborhoodSearch` with `FullGridCellList` with `DynamicVectorOfVectors`", |
68 | 68 | "`GridNeighborhoodSearch` with `FullGridCellList` with `Vector{Vector}`", |
69 | | - "`PrecomputedNeighborhoodSearch`", |
| 69 | + "`PrecomputedNeighborhoodSearch`" |
70 | 70 | ] |
71 | 71 |
|
72 | 72 | # Also test copied templates |
|
80 | 80 | cell_list = FullGridCellList(min_corner = periodic_boxes[i].min_corner, |
81 | 81 | max_corner = periodic_boxes[i].max_corner, |
82 | 82 | backend = Vector{Vector{Int32}})), |
83 | | - PrecomputedNeighborhoodSearch{NDIMS}(periodic_box = periodic_boxes[i]), |
| 83 | + PrecomputedNeighborhoodSearch{NDIMS}(periodic_box = periodic_boxes[i]) |
84 | 84 | ] |
85 | 85 | copied_nhs = copy_neighborhood_search.(template_nhs, search_radius, n_points) |
86 | 86 | append!(neighborhood_searches, copied_nhs) |
|
119 | 119 | (10, 11), |
120 | 120 | (100, 90), |
121 | 121 | (9, 10, 7), |
122 | | - (39, 40, 41), |
| 122 | + (39, 40, 41) |
123 | 123 | ] |
124 | 124 |
|
125 | 125 | seeds = [1, 2] |
|
175 | 175 | max_corner, |
176 | 176 | search_radius, |
177 | 177 | backend = Vector{Vector{Int}})), |
178 | | - PrecomputedNeighborhoodSearch{NDIMS}(; search_radius, n_points), |
| 178 | + PrecomputedNeighborhoodSearch{NDIMS}(; search_radius, n_points) |
179 | 179 | ] |
180 | 180 |
|
181 | 181 | names = [ |
|
184 | 184 | "`GridNeighborhoodSearch` with `FullGridCellList` with `DynamicVectorOfVectors` and `ParallelUpdate`", |
185 | 185 | "`GridNeighborhoodSearch` with `FullGridCellList` with `DynamicVectorOfVectors` and `SemiParallelUpdate`", |
186 | 186 | "`GridNeighborhoodSearch` with `FullGridCellList` with `Vector{Vector}`", |
187 | | - "`PrecomputedNeighborhoodSearch`", |
| 187 | + "`PrecomputedNeighborhoodSearch`" |
188 | 188 | ] |
189 | 189 |
|
190 | 190 | # Also test copied templates |
|
199 | 199 | GridNeighborhoodSearch{NDIMS}(cell_list = FullGridCellList(; min_corner, |
200 | 200 | max_corner, |
201 | 201 | backend = Vector{Vector{Int32}})), |
202 | | - PrecomputedNeighborhoodSearch{NDIMS}(), |
| 202 | + PrecomputedNeighborhoodSearch{NDIMS}() |
203 | 203 | ] |
204 | 204 | copied_nhs = copy_neighborhood_search.(template_nhs, search_radius, n_points) |
205 | 205 | append!(neighborhood_searches, copied_nhs) |
|
0 commit comments