|
| 1 | +using Trixi |
| 2 | + |
| 3 | +############################################################################### |
| 4 | +# semidiscretization of the compressible ideal GLM-MHD equations |
| 5 | +gamma = 5 / 3 |
| 6 | +equations = IdealGlmMhdEquations2D(gamma) |
| 7 | + |
| 8 | +""" |
| 9 | + initial_condition_orszag_tang(x, t, equations::IdealGlmMhdEquations2D) |
| 10 | +
|
| 11 | +The classical Orszag-Tang vortex test case. Here, the setup is taken from |
| 12 | +- Dominik Derigs, Gregor J. Gassner, Stefanie Walch & Andrew R. Winters (2018) |
| 13 | + Entropy Stable Finite Volume Approximations for Ideal Magnetohydrodynamics |
| 14 | + [doi: 10.1365/s13291-018-0178-9](https://doi.org/10.1365/s13291-018-0178-9) |
| 15 | +""" |
| 16 | +function initial_condition_orszag_tang(x, t, equations::IdealGlmMhdEquations2D) |
| 17 | + # setup taken from Derigs et al. DMV article (2018) |
| 18 | + # domain must be [0, 1] x [0, 1], γ = 5/3 |
| 19 | + rho = 1 |
| 20 | + v1 = -sinpi(2 * x[2]) |
| 21 | + v2 = sinpi(2 * x[1]) |
| 22 | + v3 = 0 |
| 23 | + p = 1 / equations.gamma |
| 24 | + B1 = -sinpi(2 * x[2]) / equations.gamma |
| 25 | + B2 = sinpi(4 * x[1]) / equations.gamma |
| 26 | + B3 = 0 |
| 27 | + psi = 0 |
| 28 | + return prim2cons(SVector(rho, v1, v2, v3, p, B1, B2, B3, psi), equations) |
| 29 | +end |
| 30 | +initial_condition = initial_condition_orszag_tang |
| 31 | + |
| 32 | +surface_flux = (flux_lax_friedrichs, flux_nonconservative_powell_local_symmetric) |
| 33 | +volume_flux = (flux_central, flux_nonconservative_powell_local_symmetric) |
| 34 | + |
| 35 | +polydeg = 3 |
| 36 | +basis = LobattoLegendreBasis(polydeg) |
| 37 | + |
| 38 | +limiter_idp = SubcellLimiterIDP(equations, basis; |
| 39 | + positivity_variables_cons = ["rho"], |
| 40 | + positivity_variables_nonlinear = [pressure], |
| 41 | + positivity_correction_factor = 0.9, |
| 42 | + max_iterations_newton = 20) |
| 43 | +volume_integral = VolumeIntegralSubcellLimiting(limiter_idp; |
| 44 | + volume_flux_dg = volume_flux, |
| 45 | + volume_flux_fv = surface_flux) |
| 46 | +solver = DGSEM(basis, surface_flux, volume_integral) |
| 47 | + |
| 48 | +# Get the curved quad mesh from a mapping function |
| 49 | +# Mapping as described in https://arxiv.org/abs/2012.12040 |
| 50 | +function mapping(xi, eta) |
| 51 | + y = 0.5 + 0.5 * eta + 1.0 / 15.0 * (cos(1.5 * pi * xi) * cos(0.5 * pi * eta)) |
| 52 | + |
| 53 | + x = 0.5 + 0.5 * xi + 1.0 / 15.0 * (cos(0.5 * pi * xi) * cos(2 * pi * y)) |
| 54 | + |
| 55 | + return SVector(x, y) |
| 56 | +end |
| 57 | + |
| 58 | +cells_per_dimension = (32, 32) |
| 59 | + |
| 60 | +mesh = StructuredMesh(cells_per_dimension, mapping, periodicity = true) |
| 61 | + |
| 62 | +semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver) |
| 63 | + |
| 64 | +############################################################################### |
| 65 | +# ODE solvers, callbacks etc. |
| 66 | + |
| 67 | +tspan = (0.0, 0.5) |
| 68 | +ode = semidiscretize(semi, tspan) |
| 69 | + |
| 70 | +summary_callback = SummaryCallback() |
| 71 | + |
| 72 | +analysis_interval = 100 |
| 73 | +analysis_callback = AnalysisCallback(semi, interval = analysis_interval) |
| 74 | + |
| 75 | +alive_callback = AliveCallback(analysis_interval = analysis_interval) |
| 76 | + |
| 77 | +save_solution = SaveSolutionCallback(interval = 100, |
| 78 | + save_initial_solution = true, |
| 79 | + save_final_solution = true, |
| 80 | + solution_variables = cons2prim, |
| 81 | + extra_node_variables = (:limiting_coefficient,)) |
| 82 | + |
| 83 | +cfl = 0.4 |
| 84 | +stepsize_callback = StepsizeCallback(cfl = cfl) |
| 85 | + |
| 86 | +glm_speed_callback = GlmSpeedCallback(glm_scale = 0.5, cfl = cfl) |
| 87 | + |
| 88 | +callbacks = CallbackSet(summary_callback, |
| 89 | + analysis_callback, |
| 90 | + alive_callback, |
| 91 | + save_solution, |
| 92 | + stepsize_callback, |
| 93 | + glm_speed_callback) |
| 94 | + |
| 95 | +############################################################################### |
| 96 | +# run the simulation |
| 97 | + |
| 98 | +stage_callbacks = (SubcellLimiterIDPCorrection(), BoundsCheckCallback()) |
| 99 | + |
| 100 | +sol = Trixi.solve(ode, Trixi.SimpleSSPRK33(stage_callbacks = stage_callbacks); |
| 101 | + dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback |
| 102 | + ode_default_options()..., callback = callbacks); |
0 commit comments