1- import asyncio
21import logging
32import os
43from concurrent .futures import ThreadPoolExecutor
@@ -90,11 +89,12 @@ async def get_dataframe_with_batch_size(
9089 start_row = max (0 , available_rows - batch_size )
9190 n_rows = min (batch_size , available_rows )
9291
93- input_data , output_data , metadata = await model_data .data (start_row = start_row , n_rows = n_rows )
92+ input_data , output_data , metadata = await model_data .data (
93+ start_row = start_row , n_rows = n_rows
94+ )
9495
9596 input_names , output_names , metadata_names = await model_data .column_names ()
9697
97-
9898 # Combine the data into a single dataframe
9999 df_data = {}
100100
@@ -121,7 +121,9 @@ async def get_dataframe_with_batch_size(
121121 f"Error creating dataframe for model={ model_id } : { str (e )} "
122122 )
123123
124- async def get_organic_dataframe (self , model_id : str , batch_size : int ) -> pd .DataFrame :
124+ async def get_organic_dataframe (
125+ self , model_id : str , batch_size : int
126+ ) -> pd .DataFrame :
125127 """
126128 Get a dataframe with only organic data (not synthetic).
127129
@@ -208,7 +210,9 @@ async def has_metadata(self, model_id: str) -> bool:
208210 try :
209211 return await self .get_metadata (model_id ) is not None
210212 except Exception as e :
211- logger .error (f"Error checking if metadata exists for model={ model_id } : { str (e )} " )
213+ logger .error (
214+ f"Error checking if metadata exists for model={ model_id } : { str (e )} "
215+ )
212216 return False
213217
214218 # DATAFRAME QUERIES
0 commit comments