|
| 1 | +# Basic Evaluation Guide |
| 2 | + |
| 3 | +This guide covers the fundamental evaluation capabilities of vLLM Judge, progressing from simple to advanced usage. |
| 4 | + |
| 5 | +## Understanding the Universal Interface |
| 6 | + |
| 7 | +vLLM Judge uses a single `evaluate()` method that adapts to your needs: |
| 8 | + |
| 9 | +```python |
| 10 | +result = await judge.evaluate( |
| 11 | + response="...", # What to evaluate |
| 12 | + criteria="...", # What to evaluate for |
| 13 | + # Optional parameters to control evaluation |
| 14 | +) |
| 15 | +``` |
| 16 | + |
| 17 | +The method automatically determines the evaluation type based on what you provide. |
| 18 | + |
| 19 | +## Level 1: Simple Criteria-Based Evaluation |
| 20 | + |
| 21 | +The simplest form - just provide text and criteria: |
| 22 | + |
| 23 | +```python |
| 24 | +# Basic evaluation |
| 25 | +result = await judge.evaluate( |
| 26 | + response="The Earth is the third planet from the Sun.", |
| 27 | + criteria="scientific accuracy" |
| 28 | +) |
| 29 | + |
| 30 | +# Multiple criteria |
| 31 | +result = await judge.evaluate( |
| 32 | + response="Dear customer, thank you for your feedback...", |
| 33 | + criteria="professionalism, empathy, and clarity" |
| 34 | +) |
| 35 | +``` |
| 36 | + |
| 37 | +**What happens behind the scenes:** |
| 38 | +- Judge creates a prompt asking to evaluate the response based on your criteria |
| 39 | +- The LLM provides a score (typically 1-10) and reasoning |
| 40 | +- You get a structured result with `decision`, `reasoning`, and `score` |
| 41 | + |
| 42 | +## Level 2: Adding Structure with Scales and Rubrics |
| 43 | + |
| 44 | +### Numeric Scales |
| 45 | + |
| 46 | +Control the scoring range: |
| 47 | + |
| 48 | +```python |
| 49 | +# 5-point scale |
| 50 | +result = await judge.evaluate( |
| 51 | + response="The product works as advertised.", |
| 52 | + criteria="review helpfulness", |
| 53 | + scale=(1, 5) |
| 54 | +) |
| 55 | + |
| 56 | +# 100-point scale for fine-grained scoring |
| 57 | +result = await judge.evaluate( |
| 58 | + response=essay_text, |
| 59 | + criteria="writing quality", |
| 60 | + scale=(0, 100) |
| 61 | +) |
| 62 | +``` |
| 63 | + |
| 64 | +### String Rubrics |
| 65 | + |
| 66 | +Provide evaluation guidance as text: |
| 67 | + |
| 68 | +```python |
| 69 | +result = await judge.evaluate( |
| 70 | + response="I hate this product!", |
| 71 | + criteria="sentiment analysis", |
| 72 | + rubric="Classify as 'positive', 'neutral', or 'negative' based on emotional tone" |
| 73 | +) |
| 74 | +# Result: decision="negative", score=None |
| 75 | +``` |
| 76 | + |
| 77 | +### Detailed Rubrics |
| 78 | + |
| 79 | +Define specific score meanings: |
| 80 | + |
| 81 | +```python |
| 82 | +result = await judge.evaluate( |
| 83 | + response=code_snippet, |
| 84 | + criteria="code quality", |
| 85 | + scale=(1, 10), |
| 86 | + rubric={ |
| 87 | + 10: "Production-ready, follows all best practices", |
| 88 | + 8: "High quality with minor improvements possible", |
| 89 | + 6: "Functional but needs refactoring", |
| 90 | + 4: "Works but has significant issues", |
| 91 | + 2: "Barely functional with major problems", |
| 92 | + 1: "Broken or completely incorrect" |
| 93 | + } |
| 94 | +) |
| 95 | +``` |
| 96 | + |
| 97 | +## Level 3: Comparison Evaluations |
| 98 | + |
| 99 | +Compare two responses by providing a dictionary: |
| 100 | + |
| 101 | +```python |
| 102 | +# Compare two responses |
| 103 | +result = await judge.evaluate( |
| 104 | + response={ |
| 105 | + "a": "Python is great for beginners due to its simple syntax.", |
| 106 | + "b": "Python's intuitive syntax makes it ideal for newcomers." |
| 107 | + }, |
| 108 | + criteria="clarity and informativeness" |
| 109 | +) |
| 110 | +# Result: decision="response_a" or "response_b" |
| 111 | + |
| 112 | +# With additional context |
| 113 | +result = await judge.evaluate( |
| 114 | + response={ |
| 115 | + "a": customer_response_1, |
| 116 | + "b": customer_response_2 |
| 117 | + }, |
| 118 | + criteria="helpfulness and professionalism", |
| 119 | + context="Customer asked about refund policy" |
| 120 | +) |
| 121 | +``` |
| 122 | + |
| 123 | +## Level 4: Adding Context and Examples |
| 124 | + |
| 125 | +### Providing Context |
| 126 | + |
| 127 | +Add context to improve evaluation accuracy: |
| 128 | + |
| 129 | +```python |
| 130 | +result = await judge.evaluate( |
| 131 | + response="Just use the default settings.", |
| 132 | + criteria="helpfulness", |
| 133 | + context="User asked how to configure advanced security settings" |
| 134 | +) |
| 135 | +# Low score due to dismissive response to specific question |
| 136 | +``` |
| 137 | + |
| 138 | +### Few-Shot Examples |
| 139 | + |
| 140 | +Guide the evaluation with examples: |
| 141 | + |
| 142 | +```python |
| 143 | +result = await judge.evaluate( |
| 144 | + response="Your code has a bug on line 5.", |
| 145 | + criteria="constructive feedback quality", |
| 146 | + scale=(1, 10), |
| 147 | + examples=[ |
| 148 | + { |
| 149 | + "response": "This doesn't work. Fix it.", |
| 150 | + "score": 2, |
| 151 | + "reasoning": "Too vague and dismissive" |
| 152 | + }, |
| 153 | + { |
| 154 | + "response": "Line 5 has a syntax error. Try adding a closing parenthesis.", |
| 155 | + "score": 8, |
| 156 | + "reasoning": "Specific, actionable, and helpful" |
| 157 | + } |
| 158 | + ] |
| 159 | +) |
| 160 | +``` |
| 161 | + |
| 162 | +## Level 5: Custom System Prompts |
| 163 | + |
| 164 | +Take full control of the evaluator's persona: |
| 165 | + |
| 166 | +```python |
| 167 | +# Expert evaluator |
| 168 | +result = await judge.evaluate( |
| 169 | + response=medical_advice, |
| 170 | + criteria="medical accuracy and safety", |
| 171 | + system_prompt="""You are a licensed medical professional reviewing |
| 172 | + health information for accuracy and potential harm. Be extremely |
| 173 | + cautious about unsafe advice.""" |
| 174 | +) |
| 175 | + |
| 176 | +# Specific domain expert |
| 177 | +result = await judge.evaluate( |
| 178 | + response=legal_document, |
| 179 | + criteria="legal compliance", |
| 180 | + system_prompt="""You are a corporate lawyer specializing in GDPR |
| 181 | + compliance. Evaluate for regulatory adherence.""" |
| 182 | +) |
| 183 | +``` |
| 184 | + |
| 185 | +## Understanding Output Types |
| 186 | + |
| 187 | +### Numeric Scores |
| 188 | + |
| 189 | +When you provide a scale, you get numeric scoring: |
| 190 | + |
| 191 | +```python |
| 192 | +result = await judge.evaluate( |
| 193 | + response="Great product!", |
| 194 | + criteria="review quality", |
| 195 | + scale=(1, 5) |
| 196 | +) |
| 197 | +# decision: 4 (numeric) |
| 198 | +# score: 4.0 |
| 199 | +# reasoning: "Brief but positive..." |
| 200 | +``` |
| 201 | + |
| 202 | +### Classifications |
| 203 | + |
| 204 | +Without a scale but with category rubric: |
| 205 | + |
| 206 | +```python |
| 207 | +result = await judge.evaluate( |
| 208 | + response="This might be considered offensive.", |
| 209 | + criteria="content moderation", |
| 210 | + rubric="Classify as 'safe', 'warning', or 'unsafe'" |
| 211 | +) |
| 212 | +# decision: "warning" (string) |
| 213 | +# score: None |
| 214 | +# reasoning: "Contains potentially sensitive content..." |
| 215 | +``` |
| 216 | + |
| 217 | +### Binary Decisions |
| 218 | + |
| 219 | +For yes/no evaluations: |
| 220 | + |
| 221 | +```python |
| 222 | +result = await judge.evaluate( |
| 223 | + response=user_message, |
| 224 | + criteria="spam detection", |
| 225 | + rubric="Determine if this is 'spam' or 'not spam'" |
| 226 | +) |
| 227 | +# decision: "not spam" |
| 228 | +# score: None |
| 229 | +``` |
| 230 | + |
| 231 | +### Mixed Evaluation |
| 232 | + |
| 233 | +You can request both classification and scoring: |
| 234 | + |
| 235 | +```python |
| 236 | +result = await judge.evaluate( |
| 237 | + response=essay, |
| 238 | + criteria="academic quality", |
| 239 | + rubric=""" |
| 240 | + Grade the essay: |
| 241 | + - 'A' (90-100): Exceptional work |
| 242 | + - 'B' (80-89): Good work |
| 243 | + - 'C' (70-79): Satisfactory |
| 244 | + - 'D' (60-69): Below average |
| 245 | + - 'F' (0-59): Failing |
| 246 | + |
| 247 | + Provide both letter grade and numeric score. |
| 248 | + """ |
| 249 | +) |
| 250 | +# decision: "B" |
| 251 | +# score: 85.0 |
| 252 | +# reasoning: "Well-structured argument with minor issues..." |
| 253 | +``` |
| 254 | + |
| 255 | +## Common Patterns |
| 256 | + |
| 257 | +### Quality Assurance |
| 258 | + |
| 259 | +```python |
| 260 | +async def qa_check(response: str, threshold: float = 7.0): |
| 261 | + """Check if response meets quality threshold.""" |
| 262 | + result = await judge.evaluate( |
| 263 | + response=response, |
| 264 | + criteria="helpfulness, accuracy, and professionalism", |
| 265 | + scale=(1, 10) |
| 266 | + ) |
| 267 | + |
| 268 | + passed = result.score >= threshold |
| 269 | + return { |
| 270 | + "passed": passed, |
| 271 | + "score": result.score, |
| 272 | + "feedback": result.reasoning, |
| 273 | + "improve": None if passed else "Consider improving: " + result.reasoning |
| 274 | + } |
| 275 | +``` |
| 276 | + |
| 277 | +### A/B Testing |
| 278 | + |
| 279 | +```python |
| 280 | +async def compare_models(prompt: str, response_a: str, response_b: str): |
| 281 | + """Compare two model responses.""" |
| 282 | + result = await judge.evaluate( |
| 283 | + response={"a": response_a, "b": response_b}, |
| 284 | + criteria="helpfulness, accuracy, and clarity", |
| 285 | + context=f"User prompt: {prompt}" |
| 286 | + ) |
| 287 | + |
| 288 | + return { |
| 289 | + "winner": result.decision, |
| 290 | + "reason": result.reasoning, |
| 291 | + "prompt": prompt |
| 292 | + } |
| 293 | +``` |
| 294 | + |
| 295 | +### Multi-Aspect Evaluation |
| 296 | + |
| 297 | +```python |
| 298 | +async def comprehensive_evaluation(content: str): |
| 299 | + """Evaluate content on multiple dimensions.""" |
| 300 | + aspects = { |
| 301 | + "accuracy": "factual correctness", |
| 302 | + "clarity": "ease of understanding", |
| 303 | + "completeness": "thoroughness of coverage", |
| 304 | + "engagement": "interesting and engaging presentation" |
| 305 | + } |
| 306 | + |
| 307 | + results = {} |
| 308 | + for aspect, criteria in aspects.items(): |
| 309 | + result = await judge.evaluate( |
| 310 | + response=content, |
| 311 | + criteria=criteria, |
| 312 | + scale=(1, 10) |
| 313 | + ) |
| 314 | + results[aspect] = { |
| 315 | + "score": result.score, |
| 316 | + "feedback": result.reasoning |
| 317 | + } |
| 318 | + |
| 319 | + # Calculate overall score |
| 320 | + avg_score = sum(r["score"] for r in results.values()) / len(results) |
| 321 | + results["overall"] = avg_score |
| 322 | + |
| 323 | + return results |
| 324 | +``` |
| 325 | + |
| 326 | +## 💡 Best Practices |
| 327 | + |
| 328 | +- Be specific with your criteria. |
| 329 | + |
| 330 | +- Rubric Design |
| 331 | + - Make score distinctions clear and meaningful |
| 332 | + - Avoid overlapping descriptions |
| 333 | + - Include specific indicators for each level |
| 334 | + |
| 335 | +- Add system prompt to control the persona. |
| 336 | + |
| 337 | +- Try to provide context when the evaluation depends on understanding the situation or question that prompted the response. |
| 338 | + |
| 339 | +## Next Steps |
| 340 | + |
| 341 | +- Learn about [Using Pre-built Metrics](metrics.md) for common evaluation tasks |
| 342 | + |
| 343 | +- Explore [Template Variables](templates.md) for dynamic evaluations |
| 344 | + |
| 345 | +<!-- - Understand [Batch Processing](batch.md) for high-volume evaluation |
| 346 | +
|
| 347 | +- Discover [Advanced Usage](advanced.md) patterns and techniques --> |
0 commit comments