|
| 1 | +from functools import partial |
| 2 | +import jax |
| 3 | + |
| 4 | +jax.config.update("jax_enable_x64", True) # double precision |
| 5 | +from diffrax import diffeqsolve, Euler, ODETerm, SaveAt, Tsit5 |
| 6 | +from jax import Array, vmap |
| 7 | +from jax import numpy as jnp |
| 8 | +import matplotlib.pyplot as plt |
| 9 | +import numpy as onp |
| 10 | +from pathlib import Path |
| 11 | +from typing import Callable, Dict |
| 12 | + |
| 13 | +import jsrm |
| 14 | +from jsrm import ode_factory |
| 15 | +from jsrm.systems import pneumatic_planar_pcs |
| 16 | + |
| 17 | +num_segments = 1 |
| 18 | + |
| 19 | +# filepath to symbolic expressions |
| 20 | +sym_exp_filepath = ( |
| 21 | + Path(jsrm.__file__).parent |
| 22 | + / "symbolic_expressions" |
| 23 | + / f"planar_pcs_ns-{num_segments}.dill" |
| 24 | +) |
| 25 | + |
| 26 | +# set parameters |
| 27 | +rho = 1070 * jnp.ones((num_segments,)) # Volumetric density of Dragon Skin 20 [kg/m^3] |
| 28 | +params = { |
| 29 | + "th0": jnp.array(0.0), # initial orientation angle [rad] |
| 30 | + "l": 1e-1 * jnp.ones((num_segments,)), |
| 31 | + "r": 2e-2 * jnp.ones((num_segments,)), |
| 32 | + "rho": rho, |
| 33 | + "g": jnp.array([0.0, 9.81]), |
| 34 | + "E": 2e3 * jnp.ones((num_segments,)), # Elastic modulus [Pa] |
| 35 | + "G": 1e3 * jnp.ones((num_segments,)), # Shear modulus [Pa] |
| 36 | + "r_cham_in": 5e-3 * jnp.ones((num_segments,)), |
| 37 | + "r_cham_out": 2e-2 - 2e-3 * jnp.ones((num_segments,)), |
| 38 | + "varphi_cham": jnp.pi/2 * jnp.ones((num_segments,)), |
| 39 | +} |
| 40 | +params["D"] = 5e-4 * jnp.diag( |
| 41 | + (jnp.repeat( |
| 42 | + jnp.array([[1e0, 1e3, 1e3]]), num_segments, axis=0 |
| 43 | + ) * params["l"][:, None]).flatten() |
| 44 | +) |
| 45 | + |
| 46 | +# activate all strains (i.e. bending, shear, and axial) |
| 47 | +# strain_selector = jnp.ones((3 * num_segments,), dtype=bool) |
| 48 | +strain_selector = jnp.array([True, False, True])[None, :].repeat(num_segments, axis=0).flatten() |
| 49 | + |
| 50 | +B_xi, forward_kinematics_fn, dynamical_matrices_fn, auxiliary_fns = ( |
| 51 | + pneumatic_planar_pcs.factory(num_segments, sym_exp_filepath, strain_selector) |
| 52 | +) |
| 53 | +# jit the functions |
| 54 | +dynamical_matrices_fn = jax.jit(dynamical_matrices_fn) |
| 55 | +actuation_mapping_fn = partial( |
| 56 | + auxiliary_fns["actuation_mapping_fn"], |
| 57 | + forward_kinematics_fn, |
| 58 | + auxiliary_fns["jacobian_fn"], |
| 59 | +) |
| 60 | + |
| 61 | +def sweep_local_tip_force_to_bending_torque_mapping(): |
| 62 | + def compute_bending_torque(q: Array) -> Array: |
| 63 | + # backbone coordinate of the end-effector |
| 64 | + s_ee = jnp.sum(params["l"]) |
| 65 | + # compute the pose of the end-effector |
| 66 | + chi_ee = forward_kinematics_fn(params, q, s_ee) |
| 67 | + # orientation of the end-effector |
| 68 | + th_ee = chi_ee[2] |
| 69 | + # compute the jacobian of the end-effector |
| 70 | + J_ee = auxiliary_fns["jacobian_fn"](params, q, s_ee) |
| 71 | + # local tip force |
| 72 | + f_ee_local = jnp.array([0.0, 1.0]) |
| 73 | + # tip force in inertial frame |
| 74 | + f_ee = jnp.array([[jnp.cos(th_ee), -jnp.sin(th_ee)], [jnp.sin(th_ee), jnp.cos(th_ee)]]) @ f_ee_local |
| 75 | + # compute the generalized torque |
| 76 | + tau_be = J_ee[:2, 0].T @ f_ee |
| 77 | + return tau_be |
| 78 | + |
| 79 | + kappa_be_pts = jnp.arange(-2*jnp.pi, 2*jnp.pi, 0.01) |
| 80 | + sigma_ax_pts = jnp.zeros_like(kappa_be_pts) |
| 81 | + q_pts = jnp.stack([kappa_be_pts, sigma_ax_pts], axis=-1) |
| 82 | + |
| 83 | + tau_be_pts = vmap(compute_bending_torque)(q_pts) |
| 84 | + |
| 85 | + # plot the mapping on the bending strain |
| 86 | + fig, ax = plt.subplots(num="planar_pcs_local_tip_force_to_bending_torque_mapping") |
| 87 | + plt.title(r"Mapping from $f_\mathrm{ee}$ to $\tau_\mathrm{be}$") |
| 88 | + ax.plot(kappa_be_pts, tau_be_pts, linewidth=2.5) |
| 89 | + ax.set_xlabel(r"$\kappa_\mathrm{be}$ [rad/m]") |
| 90 | + ax.set_ylabel(r"$\tau_\mathrm{be}$ [N m]") |
| 91 | + plt.grid(True) |
| 92 | + plt.tight_layout() |
| 93 | + plt.show() |
| 94 | + |
| 95 | + |
| 96 | +def sweep_actuation_mapping(): |
| 97 | + # evaluate the actuation matrix for a straight backbone |
| 98 | + q = jnp.zeros((2 * num_segments,)) |
| 99 | + A = actuation_mapping_fn(params, B_xi, q) |
| 100 | + print("Evaluating actuation matrix for straight backbone: A =\n", A) |
| 101 | + |
| 102 | + kappa_be_pts = jnp.linspace(-3*jnp.pi, 3*jnp.pi, 500) |
| 103 | + sigma_ax_pts = jnp.zeros_like(kappa_be_pts) |
| 104 | + q_pts = jnp.stack([kappa_be_pts, sigma_ax_pts], axis=-1) |
| 105 | + A_pts = vmap(actuation_mapping_fn, in_axes=(None, None, 0))(params, B_xi, q_pts) |
| 106 | + # mark the points that are not controllable as the u1 and u2 terms share the same sign |
| 107 | + non_controllable_selector = A_pts[..., 0, 0] * A_pts[..., 0, 1] >= 0.0 |
| 108 | + non_controllable_indices = jnp.where(non_controllable_selector)[0] |
| 109 | + non_controllable_boundary_indices = jnp.where(non_controllable_selector[:-1] != non_controllable_selector[1:])[0] |
| 110 | + # plot the mapping on the bending strain for various bending strains |
| 111 | + fig, ax = plt.subplots(num="pneumatic_planar_pcs_actuation_mapping_bending_torque_vs_bending_strain") |
| 112 | + plt.title(r"Actuation mapping from $u$ to $\tau_\mathrm{be}$") |
| 113 | + # # shade the region where the actuation mapping is negative as we are not able to bend the robot further |
| 114 | + # ax.axhspan(A_pts[:, 0, 0:2].min(), 0.0, facecolor='red', alpha=0.2) |
| 115 | + for idx in non_controllable_indices: |
| 116 | + ax.axvspan(kappa_be_pts[idx], kappa_be_pts[idx+1], facecolor='red', alpha=0.2) |
| 117 | + ax.plot(kappa_be_pts, A_pts[:, 0, 0], linewidth=2, label=r"$\frac{\partial \tau_\mathrm{be}}{\partial u_1}$") |
| 118 | + ax.plot(kappa_be_pts, A_pts[:, 0, 1], linewidth=2, label=r"$\frac{\partial \tau_\mathrm{ax}}{\partial u_2}$") |
| 119 | + ax.set_xlabel(r"$\kappa_\mathrm{be}$ [rad/m]") |
| 120 | + ax.set_ylabel(r"$\frac{\partial \tau_\mathrm{be}}{\partial u_1}$") |
| 121 | + plt.legend() |
| 122 | + plt.grid(True) |
| 123 | + plt.tight_layout() |
| 124 | + plt.show() |
| 125 | + |
| 126 | + # create grid for bending and axial strains |
| 127 | + kappa_be_grid, sigma_ax_grid = jnp.meshgrid( |
| 128 | + jnp.linspace(-jnp.pi, jnp.pi, 20), |
| 129 | + jnp.linspace(-0.2, 0.2, 20), |
| 130 | + ) |
| 131 | + q_pts = jnp.stack([kappa_be_grid.flatten(), sigma_ax_grid.flatten()], axis=-1) |
| 132 | + |
| 133 | + # evaluate the actuation mapping on the grid |
| 134 | + A_pts = vmap(actuation_mapping_fn, in_axes=(None, None, 0))(params, B_xi, q_pts) |
| 135 | + # reshape A_pts to match the grid shape |
| 136 | + A_grid = A_pts.reshape(kappa_be_grid.shape[:2] + A_pts.shape[-2:]) |
| 137 | + |
| 138 | + # plot the mapping on the bending strain |
| 139 | + fig, ax = plt.subplots(num="pneumatic_planar_pcs_actuation_mapping_bending_torque_vs_axial_vs_bending_strain") |
| 140 | + plt.title(r"Actuation mapping from $u_1$ to $\tau_\mathrm{be}$") |
| 141 | + # contourf plot |
| 142 | + c = ax.contourf(kappa_be_grid, sigma_ax_grid, A_grid[..., 0, 0], levels=100) |
| 143 | + fig.colorbar(c, ax=ax, label=r"$\frac{\partial \tau_\mathrm{be}}{\partial u_1}$") |
| 144 | + # contour plot |
| 145 | + ax.contour(kappa_be_grid, sigma_ax_grid, A_grid[..., 0, 0], levels=20, colors="k", linewidths=0.5) |
| 146 | + ax.set_xlabel(r"$\kappa_\mathrm{be}$ [rad/m]") |
| 147 | + ax.set_ylabel(r"$\sigma_\mathrm{ax}$ [-]") |
| 148 | + plt.tight_layout() |
| 149 | + plt.show() |
| 150 | + |
| 151 | + # plot the mapping on the axial strain |
| 152 | + fig, ax = plt.subplots(num="pneumatic_planar_pcs_actuation_mapping_axial_torque_vs_axial_vs_bending_strain") |
| 153 | + plt.title(r"Actuation mapping from $u_1$ to $\tau_\mathrm{ax}$") |
| 154 | + # contourf plot |
| 155 | + c = ax.contourf(kappa_be_grid, sigma_ax_grid, A_grid[..., 1, 0], levels=100) |
| 156 | + fig.colorbar(c, ax=ax, label=r"$\frac{\partial \tau_\mathrm{ax}}{\partial u_1}$") |
| 157 | + # contour plot |
| 158 | + ax.contour(kappa_be_grid, sigma_ax_grid, A_grid[..., 1, 0], levels=20, colors="k", linewidths=0.5) |
| 159 | + ax.set_xlabel(r"$\kappa_\mathrm{be}$ [rad/m]") |
| 160 | + ax.set_ylabel(r"$\sigma_\mathrm{ax}$ [-]") |
| 161 | + plt.tight_layout() |
| 162 | + plt.show() |
| 163 | + |
| 164 | + |
| 165 | +def simulate_robot(): |
| 166 | + # define initial configuration |
| 167 | + q0 = jnp.repeat(jnp.array([-5.0 * jnp.pi, -0.2])[None, :], num_segments, axis=0).flatten() |
| 168 | + # number of generalized coordinates |
| 169 | + n_q = q0.shape[0] |
| 170 | + |
| 171 | + # set simulation parameters |
| 172 | + dt = 1e-3 # time step |
| 173 | + sim_dt = 5e-5 # simulation time step |
| 174 | + ts = jnp.arange(0.0, 7.0, dt) # time steps |
| 175 | + |
| 176 | + x0 = jnp.concatenate([q0, jnp.zeros_like(q0)]) # initial condition |
| 177 | + u = jnp.array([1.2e3, 0e0]) # control inputs (pressures in the right and left chambers) |
| 178 | + |
| 179 | + ode_fn = ode_factory(dynamical_matrices_fn, params, u) |
| 180 | + term = ODETerm(ode_fn) |
| 181 | + |
| 182 | + sol = diffeqsolve( |
| 183 | + term, |
| 184 | + solver=Tsit5(), |
| 185 | + t0=ts[0], |
| 186 | + t1=ts[-1], |
| 187 | + dt0=sim_dt, |
| 188 | + y0=x0, |
| 189 | + max_steps=None, |
| 190 | + saveat=SaveAt(ts=ts), |
| 191 | + ) |
| 192 | + |
| 193 | + print("sol.ys =\n", sol.ys) |
| 194 | + # the evolution of the generalized coordinates |
| 195 | + q_ts = sol.ys[:, :n_q] |
| 196 | + # the evolution of the generalized velocities |
| 197 | + q_d_ts = sol.ys[:, n_q:] |
| 198 | + |
| 199 | + # evaluate the forward kinematics along the trajectory |
| 200 | + chi_ee_ts = vmap(forward_kinematics_fn, in_axes=(None, 0, None))( |
| 201 | + params, q_ts, jnp.array([jnp.sum(params["l"])]) |
| 202 | + ) |
| 203 | + # plot the configuration vs time |
| 204 | + plt.figure() |
| 205 | + for segment_idx in range(num_segments): |
| 206 | + plt.plot( |
| 207 | + ts, q_ts[:, 2 * segment_idx + 0], |
| 208 | + label=r"$\kappa_\mathrm{be," + str(segment_idx + 1) + "}$ [rad/m]" |
| 209 | + ) |
| 210 | + plt.plot( |
| 211 | + ts, q_ts[:, 2 * segment_idx + 1], |
| 212 | + label=r"$\sigma_\mathrm{ax," + str(segment_idx + 1) + "}$ [-]" |
| 213 | + ) |
| 214 | + plt.xlabel("Time [s]") |
| 215 | + plt.ylabel("Configuration") |
| 216 | + plt.legend() |
| 217 | + plt.grid(True) |
| 218 | + plt.tight_layout() |
| 219 | + plt.show() |
| 220 | + # plot end-effector position vs time |
| 221 | + plt.figure() |
| 222 | + plt.plot(ts, chi_ee_ts[:, 0], label="x") |
| 223 | + plt.plot(ts, chi_ee_ts[:, 1], label="y") |
| 224 | + plt.xlabel("Time [s]") |
| 225 | + plt.ylabel("End-effector Position [m]") |
| 226 | + plt.legend() |
| 227 | + plt.grid(True) |
| 228 | + plt.box(True) |
| 229 | + plt.tight_layout() |
| 230 | + plt.show() |
| 231 | + # plot the end-effector position in the x-y plane as a scatter plot with the time as the color |
| 232 | + plt.figure() |
| 233 | + plt.scatter(chi_ee_ts[:, 0], chi_ee_ts[:, 1], c=ts, cmap="viridis") |
| 234 | + plt.axis("equal") |
| 235 | + plt.grid(True) |
| 236 | + plt.xlabel("End-effector x [m]") |
| 237 | + plt.ylabel("End-effector y [m]") |
| 238 | + plt.colorbar(label="Time [s]") |
| 239 | + plt.tight_layout() |
| 240 | + plt.show() |
| 241 | + # plt.figure() |
| 242 | + # plt.plot(chi_ee_ts[:, 0], chi_ee_ts[:, 1]) |
| 243 | + # plt.axis("equal") |
| 244 | + # plt.grid(True) |
| 245 | + # plt.xlabel("End-effector x [m]") |
| 246 | + # plt.ylabel("End-effector y [m]") |
| 247 | + # plt.tight_layout() |
| 248 | + # plt.show() |
| 249 | + |
| 250 | + # plot the energy along the trajectory |
| 251 | + kinetic_energy_fn_vmapped = vmap( |
| 252 | + partial(auxiliary_fns["kinetic_energy_fn"], params) |
| 253 | + ) |
| 254 | + potential_energy_fn_vmapped = vmap( |
| 255 | + partial(auxiliary_fns["potential_energy_fn"], params) |
| 256 | + ) |
| 257 | + U_ts = potential_energy_fn_vmapped(q_ts) |
| 258 | + T_ts = kinetic_energy_fn_vmapped(q_ts, q_d_ts) |
| 259 | + plt.figure() |
| 260 | + plt.plot(ts, U_ts, label="Potential energy") |
| 261 | + plt.plot(ts, T_ts, label="Kinetic energy") |
| 262 | + plt.xlabel("Time [s]") |
| 263 | + plt.ylabel("Energy [J]") |
| 264 | + plt.legend() |
| 265 | + plt.grid(True) |
| 266 | + plt.box(True) |
| 267 | + plt.tight_layout() |
| 268 | + plt.show() |
| 269 | + |
| 270 | +if __name__ == "__main__": |
| 271 | + sweep_local_tip_force_to_bending_torque_mapping() |
| 272 | + sweep_actuation_mapping() |
| 273 | + simulate_robot() |
0 commit comments