-This study explores the tradeoff between the amount of saved fuzzing time and number of missed bugs when stopping campaigns based on the saturation of covered, potentially vulnerable functions rather than triggered crashes or regular function coverage. In a large-scale empirical evaluation of 30 open-source C programs with a total of 240 security bugs and 1,280 fuzzing campaigns, we first show that binary classification models trained on software with known vulnerabilities (CVEs), using lightweight ML features derived from findings of static application security testing tools and proven software metrics, can reliably predict (potentially) vulnerable functions. Second, we show that our proposed stopping criterion terminates 24-hour fuzzing campaigns 6-12 hours earlier than the saturation of crashes and regular function coverage while missing (on average) fewer than 0.5 out of 12.5 contained bugs.
0 commit comments