Skip to content

Commit 24fa142

Browse files
Update A1_Intro_to_DataScience_and_ML.md
1 parent c8f61a9 commit 24fa142

File tree

1 file changed

+15
-18
lines changed

1 file changed

+15
-18
lines changed

docs/mlpaths/A1_Intro_to_DataScience_and_ML.md

Lines changed: 15 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -181,9 +181,6 @@ This quiz helps you self-assess your understanding. Answers can be verified by r
181181
*(Answer: (1) :eyes:)*
182182
{ .annotate }
183183
1. Answer is: <b>b</b>
184-
{ .annotate }
185-
2. Answer is: <b>c</b>
186-
187184

188185
2. Consider the following Python code using Pandas:
189186
```python
@@ -198,17 +195,17 @@ This quiz helps you self-assess your understanding. Answers can be verified by r
198195
b) 0<br>
199196
c) Approximately 2.67<br>
200197
d) 6<br>
201-
*(Answer: (2) :eyes:)*
198+
*(Answer: (a) :eyes:)*
202199
{ .annotate }
203-
2. Answer is: <b>c</b>
200+
a. Answer is: <b>c</b>
204201

205202

206203
3. Which Python library is primarily used for creating statistical visualizations like heatmaps and pair plots with concise syntax?<br>
207204
a) NumPy<br>
208205
b) Seaborn<br>
209206
c) Pandas<br>
210207
d) Scikit-learn<br>
211-
*(Answer:(1) :eyes:)*
208+
*(Answer: (1) :eyes:)*
212209
{ .annotate }
213210
1. Answer is: <b>b</b>
214211

@@ -218,7 +215,7 @@ This quiz helps you self-assess your understanding. Answers can be verified by r
218215
b) It's the categorical label or class that the model aims to predict.<br>
219216
c) It's a numerical value the model tries to estimate.<br>
220217
d) It's a technique for reducing the number of features.<br>
221-
*(Answer:(1) :eyes:)*
218+
*(Answer: (1) :eyes:)*
222219
{ .annotate }
223220
1. Answer is: <b>b</b>
224221

@@ -227,34 +224,34 @@ This quiz helps you self-assess your understanding. Answers can be verified by r
227224
b) To separate features from the target variable within a single dataset.<br>
228225
c) To divide a dataset into one part for training the model and another, unseen part for evaluating its performance.<br>
229226
d) To visualize the distribution of data.<br>
230-
*(Answer:(2) :eyes:)*
227+
*(Answer: (a) :eyes:)*
231228
{ .annotate }
232-
2. Answer is: <b>c</b>
229+
a. Answer is: <b>c</b>
233230

234231
6. If you want to create a scatter plot in Python to visualize the relationship between 'Height' and 'Weight' columns in a Pandas DataFrame `df`, which line of code is most appropriate using Seaborn?<br>
235232
a) `sns.histplot(data=df, x='Height', y='Weight')`<br>
236233
b) `sns.boxplot(data=df, x='Height', y='Weight')`<br>
237234
c) `sns.scatterplot(data=df, x='Height', y='Weight')`<br>
238235
d) `df.plot(kind='scatter', x='Height', y='Weight')` (This is Pandas plotting, not Seaborn directly)<br>
239-
*(Answer:(2) :eyes:)*
236+
*(Answer: (a) :eyes:)*
240237
{ .annotate }
241-
2. Answer is: <b>c</b>
238+
a. Answer is: <b>c</b>
242239

243240
7. You have loaded a dataset into a Pandas DataFrame called `sales_df`. How would you display the first 10 rows of this DataFrame?<br>
244241
a) `sales_df.show(10)`<br>
245242
b) `sales_df.display_head(10)`<br>
246243
c) `sales_df.head(10)`<br>
247244
d) `sales_df.first(10)`<br>
248-
*(Answer:(2) :eyes:)*
245+
*(Answer: (a) :eyes:)*
249246
{ .annotate }
250-
2. Answer is: <b>c</b>
247+
a. Answer is: <b>c</b>
251248

252249
8. When you encounter a Python error message that you don't understand while working in a Jupyter Notebook, how can an LLM assist you most effectively?<br>
253250
a) By automatically fixing the code in your notebook.<br>
254251
b) By explaining what the error message typically means, suggesting possible causes, and providing examples of how to fix similar errors.<br>
255252
c) By providing a link to the full Python documentation without context.<br>
256253
d) By advising you to restart your computer.<br>
257-
*(Answer:(1) :eyes:)*
254+
*(Answer: (1) :eyes:)*
258255
{ .annotate }
259256
1. Answer is: <b>b</b>
260257

@@ -263,18 +260,18 @@ This quiz helps you self-assess your understanding. Answers can be verified by r
263260
b) The first five rows of the DataFrame.<br>
264261
c) A concise summary of the DataFrame, including data types of columns and non-null counts.<br>
265262
d) The correlation matrix of numerical columns.<br>
266-
*(Answer:(2) :eyes:)*
263+
*(Answer: (a) :eyes:)*
267264
{ .annotate }
268-
2. Answer is: <b>c</b>
265+
a. Answer is: <b>c</b>
269266

270267
10. Which of these tasks falls under the 'Data Cleaning/Preparation' stage of the data science workflow?<br>
271268
a) Defining business objectives.<br>
272269
b) Training a machine learning model.<br>
273270
c) Handling missing values and transforming variables.<br>
274271
d) Presenting results to stakeholders.<br>
275-
*(Answer:(2) :eyes:)*
272+
*(Answer: (a) :eyes:)*
276273
{ .annotate }
277-
2. Answer is: <b>c</b>
274+
a. Answer is: <b>c</b>
278275

279276
---
280277

0 commit comments

Comments
 (0)