@@ -24,7 +24,7 @@ timeline
2424
2525### A: General Data Science
2626
27- #### Introduction to Data Science and Machine Learning
27+ #### 1. Introduction to Data Science and Machine Learning
2828
2929??? note "Content description"
3030
@@ -51,7 +51,29 @@ timeline
5151 - Kaggle Learn courses on data science and machine learning fundamentals
5252
5353
54- #### Python for Data Science
54+ #### 2. Python for Data Science
55+ ??? note "Content description"
56+
57+ **Learning Objective**: Develop proficiency in using Python for data manipulation, analysis, and visualization.
58+
59+ **Related Skills**:
60+ - Mastering Python syntax and data structures
61+ - Utilizing NumPy for efficient numerical operations
62+ - Applying Pandas for data ingestion, cleaning, and transformation
63+
64+ **Subtopics**:
65+ 1. Python programming basics (variables, data types, control structures, functions)
66+ 2. NumPy arrays and universal functions
67+ 3. Pandas DataFrames and Series for data manipulation
68+ 4. Data visualization with Matplotlib and Seaborn
69+ 5. Integrating Python with data science libraries (scikit-learn, TensorFlow, PyTorch)
70+
71+ **References and Resources**:
72+ - "Python for Data Analysis" by Wes McKinney
73+ - "Python Data Science Handbook" by Jake VanderPlas
74+ - Datacamp's Python for Data Science Track
75+
76+
5577
5678#### Ethical Considerations in Data Science
5779
0 commit comments