From 12635175c708210df192a60049e8bfe5901911bb Mon Sep 17 00:00:00 2001 From: Prasanna Kolar Date: Tue, 16 Jun 2020 19:49:31 -0500 Subject: [PATCH 1/6] Add files via upload --- CarND-Traffic-Sign-Classifier-resubmit.ipynb | 2648 ++++++++++++++++++ 1 file changed, 2648 insertions(+) create mode 100644 CarND-Traffic-Sign-Classifier-resubmit.ipynb diff --git a/CarND-Traffic-Sign-Classifier-resubmit.ipynb b/CarND-Traffic-Sign-Classifier-resubmit.ipynb new file mode 100644 index 0000000000..d988cd953d --- /dev/null +++ b/CarND-Traffic-Sign-Classifier-resubmit.ipynb @@ -0,0 +1,2648 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Self-Driving Car Engineer Nanodegree\n", + "\n", + "## Deep Learning\n", + "\n", + "## Project: Build a Traffic Sign Recognition Classifier\n", + "\n", + "In this notebook, a template is provided for you to implement your functionality in stages, which is required to successfully complete this project. If additional code is required that cannot be included in the notebook, be sure that the Python code is successfully imported and included in your submission if necessary. \n", + "\n", + "> **Note**: Once you have completed all of the code implementations, you need to finalize your work by exporting the iPython Notebook as an HTML document. Before exporting the notebook to html, all of the code cells need to have been run so that reviewers can see the final implementation and output. You can then export the notebook by using the menu above and navigating to \\n\",\n", + " \"**File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission. \n", + "\n", + "In addition to implementing code, there is a writeup to complete. The writeup should be completed in a separate file, which can be either a markdown file or a pdf document. There is a [write up template](https://github.com/udacity/CarND-Traffic-Sign-Classifier-Project/blob/master/writeup_template.md) that can be used to guide the writing process. Completing the code template and writeup template will cover all of the [rubric points](https://review.udacity.com/#!/rubrics/481/view) for this project.\n", + "\n", + "The [rubric](https://review.udacity.com/#!/rubrics/481/view) contains \"Stand Out Suggestions\" for enhancing the project beyond the minimum requirements. The stand out suggestions are optional. If you decide to pursue the \"stand out suggestions\", you can include the code in this Ipython notebook and also discuss the results in the writeup file.\n", + "\n", + "\n", + ">**Note:** Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 0: Load The Data" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Images : (34799, 32, 32, 3)\n" + ] + } + ], + "source": [ + "# Load pickled data\n", + "import pickle\n", + "\n", + "# TODO: Fill this in based on where you saved the training and testing data\n", + "# Below are the details of the training, validation and test data\n", + "# main_folder is used to reduce typing time!\n", + "\n", + "training_file = \"./traffic-signs-data/train.p\"\n", + "validation_file= \"./traffic-signs-data/valid.p\"\n", + "testing_file = \"./traffic-signs-data/test.p\"\n", + "\n", + "with open(training_file, mode='rb') as f:\n", + " train = pickle.load(f)\n", + "with open(validation_file, mode='rb') as f:\n", + " valid = pickle.load(f)\n", + "with open(testing_file, mode='rb') as f:\n", + " test = pickle.load(f)\n", + " \n", + "X_train, y_train = train['features'], train['labels']\n", + "X_test, y_test = test['features'], test['labels']\n", + "X_valid, y_valid = valid['features'], valid['labels']\n", + "print('Images : ', X_train.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## Step 1: Dataset Summary & Exploration\n", + "\n", + "The pickled data is a dictionary with 4 key/value pairs:\n", + "\n", + "- `'features'` is a 4D array containing raw pixel data of the traffic sign images, (num examples, width, height, channels).\n", + "- `'labels'` is a 1D array containing the label/class id of the traffic sign. The file `signnames.csv` contains id -> name mappings for each id.\n", + "- `'sizes'` is a list containing tuples, (width, height) representing the original width and height the image.\n", + "- `'coords'` is a list containing tuples, (x1, y1, x2, y2) representing coordinates of a bounding box around the sign in the image. **THESE COORDINATES ASSUME THE ORIGINAL IMAGE. THE PICKLED DATA CONTAINS RESIZED VERSIONS (32 by 32) OF THESE IMAGES**\n", + "\n", + "Complete the basic data summary below. Use python, numpy and/or pandas methods to calculate the data summary rather than hard coding the results. For example, the [pandas shape method](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.shape.html) might be useful for calculating some of the summary results. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Provide a Basic Summary of the Data Set Using Python, Numpy and/or Pandas" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training shape = (32, 32, 3)\n", + "Number of training examples = 34799\n", + "Number of validation examples = 4410\n", + "Number of testing examples = 12630\n", + "Image data shape = (32, 32, 3)\n", + "Number of classes = 43\n" + ] + } + ], + "source": [ + "### Replace each question mark with the appropriate value. \n", + "### Use python, pandas or numpy methods rather than hard coding the results\n", + "import numpy as np\n", + "import cv2\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# TODO: Number of training examples\n", + "n_train = len(X_train)\n", + "\n", + "# TODO: Number of validation examples\n", + "n_validation = len(X_valid)\n", + "\n", + "# TODO: Number of testing examples.\n", + "n_test = len(X_test)\n", + "\n", + "# TODO: What's the shape of an traffic sign image?\n", + "image_shape = X_train.shape[1:4]\n", + "print(\"Training shape =\", image_shape)\n", + "\n", + "# TODO: How many unique classes/labels there are in the dataset.\n", + "#n_classes = np.unique(y_train)[-1] + 1 # different way of getting the # classes\n", + "n_classes = len(np.unique(y_train))\n", + "\n", + "print(\"Number of training examples =\", n_train)\n", + "print(\"Number of validation examples =\", n_validation)\n", + "print(\"Number of testing examples =\", n_test)\n", + "print(\"Image data shape =\", image_shape)\n", + "print(\"Number of classes =\", n_classes)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAADWCAYAAACgy3GYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvVnMJWd+3ve8VXX273z713s3u5vNbTjDITUjjUdLLEOSHVmLFcgwHMPOTYwEMhIggJPAuQiQOEFg5MbIRQIhUII4NmzDdhzEie1IgWZkyaORZuNwyCE53Hpfvn05+6ktF03F+vp5KnOa1HQfup8fwAv+u+qtt9616pzv/zuhLEsYY4wxxhhjjJkfosddAWOMMcYYY4wxx/GLmjHGGGOMMcbMGX5RM8YYY4wxxpg5wy9qxhhjjDHGGDNn+EXNGGOMMcYYY+YMv6gZY4wxxhhjzJzhFzVjjDHGGGOMmTP8ovYJJISwGkL430MIgxDC9RDCX3jcdTJPJiGEvxNCuBtCOAohvBNC+Mt/6N/aIYT/IYSwE0I4DCH89uOsq3ny+D7j88+FEN4KIfRCCG+GEH7pcdbVPNmEEF4IIXzpw7XyvRDCv/W462TMHyaE8EwIYRxC+DuPuy5PEsE/eP3JI4Tw93D/JfvfBfAygH8K4EfLsvzuY62YeeIIIbwI4L2yLCchhOcB/BaAnyvL8psfLuYJgP8QwB6Al8uy/Objq6150qganwDuAbgK4M8A+L8B/GkA/xDAxbIstx5Tdc0TSgghAfAmgF8F8N8B+OMA/k8Ar5Rl+c7jrJsxf0AI4TcAtABcL8vyLz7u+jwp+Bu1TxghhA6AXwbwn5dl2S/L8l8C+CcA/tLjrZl5EinL8rtlWU7+4H8//O/pEMJzAH4RwL9XluV2WZa5X9LMo6ZqfAI4B+CgLMt/Xt7nnwIYfPhvxjxqngdwBsDf/HCt/BKAr8D7upkTQgh/HsABgN983HV50vCL2iePZwHkD3zK9hqAFx9TfcwTzod/3jgE8DaAuwD+GYAvALgO4L/88E8fXw8h/PLjrKd5MqkYn98A8FYI4RdDCPGHf/Y4AfCdx1hV8+QSKmKfftQVMeZBQgiLAP46gL/6uOvyJOIXtU8eCwAOH4gdAug+hroYg7Is/wruj7+fAPCPcf+B9xzuP2Qc4v4nxf8BgL8VQnjhcdXTPJmo8VmWZQ7gfwXwd3F/vP5dAP9+WZaDx1ZR8yTzNoAtAP9JCKEWQviTuP/nj+3HWy1jAAD/FYD/qSzLm4+7Ik8iflH75NEHsPhAbBFA7zHUxRgAwId/rvMvcf8F7VcAjACkAP7rsiynZVn+CwBfBvAnH2M1zRPKg+MzhPDTAP5bAD8JoI77D8W/FkJ4+fHV0jyplGWZAvgl/Kv8yb8K4B8AuPU462XMh2viTwP4m4+7Lk8qyeOugHlo3gGQhBCeKcvy3Q9jnwVgkYiZBxLcz/P5J4+7IsYI/mB81gH8dlmW3/gw/vUQwu/j/gPJtx9X5cyTS1mW38H9DwwAACGE3wXwtx5fjYwBcP/DrIsAboQQgPt/1RWHED5VluUPPcZ6PTH4G7VPGB/+ac4/BvDXQwidEMKP4b657G8/3pqZJ40QwokQwp8PISx8mOfzpwD82wC+BOC3AdwA8J+FEJIPx+lPAvj1x1dj8yTxfcbn1wH8xB98gxZCeAX3/zTSOWrmsRBCeCmE0PzwZ03+YwCnAfwvj7laxvyPuP/h1ssf/veruG8a/1OPs1JPEv5G7ZPJXwHwP+P+37TvAvgVq/nNY6DE/T9z/FXc/9DnOoD/qCzL/wMAQgh/BsCvAfhrH/7bv1OW5duPqa7myeP7jc//AsA/CiGcBLAN4L8py/I3HlNdjflLAP4ygBqA3wHwM3/IWGrMY6EsyyGA4R/8fwihD2BcluX246vVk4V/R80YY4wxxhhj5gz/6aMxxhhjjDHGzBl+UTPGGGOMMcaYOcMvasYYY4wxxhgzZ/hFzRhjjDHGGGPmDL+oGWOMMcYYY8yc8Uj1/F/8sedIMRllDTru3HpHnv/5jUWKPVNfp9j+e7cottA4kGUu/okfodjTf/pXKFZfeZZigyiWZb6xu0Wxb3z1yxS7sM91+tmf+kVZ5mtFQbHf/p1/RrE/1mlT7Kd+TP/cRXL6DMXGIaNYFniYdKf63m//7tcp9vV/yD/x1rj3HsW211qyzNe7SxS7dziiWH+0Q7GQa4NsMzle5p1rd+mY8v6POz5Yoiyv3qxTbKHJYzsO3I9ZyTEAKFGjWKPBZTZr3D9FxdRefuppip04e4FikfgMJx1ymwNAOupRbOf2dYr19nle9I70vIwTvvekxvP/5FkewzujPVnm2lm+9xfOnKPY9s23KHbrzlVZ5uoK16nfY6P27g7f5+4etxsA9EQ7/43/9G9QLI94vqSlHp8Q8UiMu0KsMyW0GTjE4nM+MRbjOtezzGWRQM7rj6qTmppx0GtSJOasuiMlQA6R/ixTXV/VcyraOJPrChBEPevJbFt0UegGjcS1oohjQbRIqKhnFB1f65Yu8pp09sx5il1Y5XUcAEYHvG7f29+lWHOJz09z3T77O32K7e1uUmw85GsfHvI6BQBPv/gTFFtZ43Xq1//er1Hsa9/Qv0qyfbBPseFoSLE043G0sPKULPOLv/RnKfb553mN74ixGWV6DmUT3t9CnlKsbPE4Wjt1Qpa5ur5BsVPrK3ydKa+ne9vcbgCwO5xS7Kd+4mUus2JsKyKxBihbuhao67Xz49jWH6bucqGSVNVHrJ0/AFO8Wvv0gqzPV3UqVB+pa1eux/JCosyHaA9xrcGg/307yd+oGWOMMcYYY8yc4Rc1Y4wxxhhjjJkz/KJmjDHGGGOMMXPGI81R67b4cidj/vvlczX9/nhC5GQkOeej1JYOKRatNGWZFz77KYo1VpcpNhJpRNOKfJBRn/NR8pxzoE4/u0axpVMLssxPRasUq3+R/xb91lucX/PlN3V+zSsNbs+1E/w34on4u9oi1jkRl36I/x68JRrvO3//v6dYtMd1B4CXV16h2J2zL1Hsyze+S7Gsz3+zDgChOP537yofLRM5J3Gsp4xI+0Ba8rXLmHMApiL/AABqNT42rolcgYj/Rjobc/4AAOQDzn+IUu7LpMH3mVfk66i/5o7rnLcCkUNUlYOTi8+Qmk2eA0t1Hq9HPZ2/cOkM52mcvcx5a+OU14/VnNsNAE5v8PVvXr1NMZUrVIn4k/eTZ3itGI64jQZDzucAgEKsVSHh8/OCc8SmqZ5DKoWgVufx2Wjw2juuqKeaX5nI68xVXmdVrsGsba/y8yryR1VORRy4QWLVmUHPIzVGkso5dxyVj3H/WhxKRBurtUbl5gBA/ECO2sWnL9MxZ0U+Wqhoy+Ya77frnPqF/T2e1wcDHq8AcLh/RLHhET8rjFMeh+NIPysc5tyYtZTX2XzCZeYVOYRqzKrhqnIIY7GXAEAs+m06HlOsyLlOZa77vCnWilLMS1XP0ZSvDQCbO/codufuTYrFYn+r1cQAAVBPxPOTaNCHSCdTywKCmMNBzP+qua7XGpEn+jHznx7i5I9xrqYql02tx7Pe5cOUKdf9h8qvm21u/iDa7kH8jZoxxhhjjDHGzBl+UTPGGGOMMcaYOcMvasYYY4wxxhgzZ/hFzRhjjDHGGGPmjEcqEzmxzj8a/anuJYr9xEUWfADAqRb/uOxX/h/+ccm+SE18WYg3AGDt4k9TrBfzdXLxC62h0M23mPCPTl8+w9KCFZFErWQTALAkflzyqWUhV3mGhQn5hOUIAIDxgEL1Edc9EwmxxVTLKvYO+YdGV9Y5wXdNCFt2dnSiZ+0O/zj2pZc44fv6FS7zgzf5B00BIOTdY/8fJZx8HqskYlkakKac1C4cHYhiPq4qvTWKhcRFCDnSjEtQP5AKAMMh91tRCIlBzFKIKbQAIogfRG82uc9rNf4h+/YyXwcADno8jlSdekcs+QiFEJkAKDNOar95432K7fe4PS8+92OyzHzIgoOy5B9ZVznMlXnNIn7lOf4B4WFfSDamWq6Qizk8FDKBIyGb6YkYAEwnYoCrRPGS2z0ELRjoNHkOo8ZiilHKPwo+GfOYAYC85DZRef+q7nFFgn6sZAKizET+kLQsUv4Qdax+yFWUWan5kRcT64qoe9UaXz5woxc2uM96fe6fnSPdP6tqH0vEfYsfPoaQ3wDAdMBz8PY2/5B1XOd1qr7A+z8ALC3yscWQf0R7OuZ6KnEPADSEfCfKWN4zUj+Grpc5xEJ8NBpx29eE4KSeaJFKUud7qokft292eI2v60capOr5Q8iyIjEWELTgCJHeo+j0hxJvzLZ4V7jlKiowU0iuKZXbhpKRfCzBiGZWScdD/RC05OOdL9vz4/pFZrxOFR/1Uv5GzRhjjDHGGGPmDL+oGWOMMcYYY8yc4Rc1Y4wxxhhjjJkz/KJmjDHGGGOMMXOGX9SMMcYYY4wxZs54pNbHhaXTFNs4d4WPO62tj6//9qsUyw/ZfHbyyhmKtRfYhggAxYiNVe0Oa4pawhg3Hmlz2fkJ27LOLaxT7HTChqP4zl1ZZlTysWeEVvDUmA2PYcp2JQAor7Kxbvz29yiWjtjgNewdyDKHB2xPvHOPzYvl0S7FOsIeCACTvdtcp6t8nR957ocptnz2rCxzb3BcmbV3l82SQsJWae3JlXFJ2BhLYWMMtZossxQ+oUzo2cZjtnxNJ9qKlQ6438Ypl1lLuZ6FsAQCQJKwfqwuxnZD3aawZQJAIkxhI2H1yzKea+1lNo8BwKi3R7GDLS7z3ja3pzIkAsDogO1yE2G8y0Vfqv69H2dOXVilWDrhI5MK9VghbLI9YW3cO+S6HwmzJgD0B7z+jYQhMhX91qgw1jXrXYrF9XMUK0e8dmW5Nr7lqbAXinYKoj8iYVm9H1fnM8raWOUJU9FS2IbVAKmSu4UZP4vNMr5OPtVrSITjc3bc4z2nfyj2xpjtjgCQCPNiJPqsEXj+jvf0fvn+975LsbtHPD7aS/yssFxqY25DGCZ37vE+Nh3wddYX9b13W2xZzifcHpMp16m1IgypAOrjHsXSPu+tpdh3Gi29diZNrn9NnL8ojJmNCpNkLO49CCty1uc1diD2PACIIBYWaaJVh1VMopmNhh/PsCjPntHaeh9Rz49pgtSGRxWa/ToqruqpFY2ySLl2z6zMrOx3faXZ+LjGy+P4GzVjjDHGGGOMmTP8omaMMcYYY4wxc4Zf1IwxxhhjjDFmzvCLmjHGGGOMMcbMGY9UJjIdcVLozZvfoNhKyscBwM6db1JsoWRRRS1wgvCt6yzJAIAFkTe8n3EycCmSm/ORTrYuh5zomg85+X1zxMdNRII+AGQTTrIth3xsccAJ16Ei8Ra5KLPkd/dCCCwKleQO6BxKUWYA1ylq6vaMhayiGHEicykSuy+vnpJlRg/ILtTd5LkYHBWJ5koukIt2U7mo9VqFAEIILMop93lacGwaaUlHmHK7H+2z7CEvWKIQQYsVpkJqMRKx+iKLIopcWyWynOfLQIgqamIMd2KdvJ6XPL6CyPEvG1zmjfffkGUGITNhjQowFnKWVI0vALmaQy0hfGmI/lBjDkAccXy5y8n8nSXuo+FQj6V+n8ddv8djaTzkeRk39L0f9Pj64xH3Z5xwx9WlrQaYFDPKBMT4LoP+LLMUMhIlHwoioV0dd79Msc6K44IoIKqop0qyL5RgQMSiWD8ePHhoXOO+iBMhv1DjFUC9xnUfTnleHR6yCGnrzh1Z5uaWEGUJuVMxvU6xdEuPzd/54G0+dk+ILq6+y9cZa6HXdCz6QozDdo3namus69kTzy/Z6hKfv8GSHmjnGtpNFpd0Oywe6Yn5vz/Rz3ODjNukKHg/6ATeB1dPaJFKu0KG8iBylZTiH83MGqhK+YUKCkHRQ9RpVsLD2IhmvP5DaVTkM6JYo2WddH2kNGXG/phdzaKvE4n1uKrZPqpuxt+oGWOMMcYYY8yc4Rc1Y4wxxhhjjJkz/KJmjDHGGGOMMXOGX9SMMcYYY4wxZs54pDKRVs4ygI2EE2ent1kwAgDN/AOKlWmPYjs3OPn05uaRLHM6/OcUK0SSfyhETJYIqVxIVKKo/NF5XWquksWDED5EQtyhc7gRt0SiuRgR04T1CFmslAlAHnEBIRZJ/oETnlsruqKHU277or7IRbY44bp/xLIZAIiz48nVqUg0j8S96PR+LR6RSfsx36OUjgDI0xHF0pxjocGyhe7SeVlmLeKk8sNDrvudHU7czyr8MemUZRNFymOrlqxQLE4qCq1zsngsxkynxWMrEu0BAGnBx/ZSTmjPShYRDA/vyTLzKSe/t5ocGwmhz3Sq5Tl5odpEzH81PoVsBgAghA2IuN9rdS5zUYgMAGBxSSTul6sUKrJ1ivULHscAkG/yuOlfYxnB0grXM6lYkyDEOJkQFARhcYkjLbspM27PPOe2L0uWYogl+v6x4h9KJQ4Rx8VRxSIvkvSDWG+UoERdG+D1asC3iExdV1pygEhIk3a3WRJy9fo1ir17jWMAcDTg54IkFbKYCT8XDPauyjK37vIaEA+FeEwIhtTzAwB01LxWe71ourRCILN3ne8zbvNcbZzmPWK0syXLzI64P8eneU1L2lzRRlLxmJlzO8ViyKUR1z3NtUwkT/91++7ho+onHg4lQwO0PEMRxPl6xFeJNn4A9ynWoD+CQkXsB99H/7qNamOMMcYYY4z5xOMXNWOMMcYYY4yZM/yiZowxxhhjjDFzhl/UjDHGGGOMMWbOeKQykWzCyfPthJO1B7d1Mm9acuJuKmQk41wkYFck/DVrfP5Si2UEtRonqtfqOtG8JuQZiahnIhLAqxK4RyW/U0/B11FeijG0YKBXskghZt8DpkJaMCqFSABAHnHblSLJPxeppjsFSykAYFBw/ftHnMh8dPsuX3vSl2UuNI4nI5eZSH1NVKL37D85L/PHhSgiyvXnJaHB/buwyB3UXDlBsf1RS5a5NxTzZZ/lGZOxkKMUup55wTevvAFKWBAnOuW4Xudr1Ws83+Imj7cWtExke++QYreuv02xdMryiiqRSqvG7ZynnCQ/HLI8Q0tDIMdSPhFSCjHZ+6IvASARMpEQK/GPWPvaC7LMSKyJan7ENe7jtljPAODiKW7P2oTnf6fO154sbcgyJ6tc//4Rrwv7+3ydItfrXNzkMqcTbnu1HmcVafZ1cU+NBsdk4r6QGQFAKSaiSuYvSyVDqiizPD5ux2Me20eHLOlodfSadLjNx9764E2KXb/+FsV29jZlmYnYS8rtXYoN7/L5+aEWaiDl+VqKyVqI/smDftQqhRAkiDJjMWaiinFUTsS6MuX1YzLifts53JNljjZ5vhy+8CmKnXvhWYo1V/T6UY/4eW6UcizqdCmWVzwrbN/kZ4CPq3pQ/aELnU288f9TAJcoDqsSfKixqNYK5Q2JK5471bViIUQrxUJXVonxxINRxfI1O1XPZQ/wMD1UYT0Rh/3R9/uD+Bs1Y4wxxhhjjJkz/KJmjDHGGGOMMXOGX9SMMcYYY4wxZs7wi5oxxhhjjDHGzBl+UTPGGGOMMcaYOeORWh/v9dk8tHnIJrZEGM4AoPvc8xS7fcjmwinYlJUV+lYXhHXyQNi3koQNfKHCIdNK2Jy23mUj2UaLjWILLTbqAEAj4frnE75+vsdmq76wJgLAdsZtvx/YXHb3iNv44ICtiwAQCzOgkFsiE6aclrAHAsCiaGch0UQm7HA10W8A0Fg43sd1YbArpPFIf7ahDGnK6lcI41Gjpq1Y3cUzFGuvXaTYdo/LvL3FfQYAQ6FXWhSW08tn2S456Osy94WBcyAMadOM27NiqmM0FeYzYaYajtkSNhbnAkCrxpYzIWhEnvGa0Gprw+vT505SbPf2DsUOhAFLmWABIAgjYiGsbUXG916rMm2N+PxcnB/VuY8iYYIEgCDqr9dEce+RnpfdGh979gSvk7WYY0WFiXbaY0Pcbtzj4ya8Hg7Het/oLCxTrJ5x3VNhIE0LPehrsbBjCvNrOuV1LhPzDQBCTbSzMKxlqbAkpmxpBoBadLyPB/tsThyLiVXsH8jy7u3doNj12+9RbGufbYxlqveh4s49rtO1mxSLRjwHqtRwocZjodbhdXLxBK/bjVPaSNro8NqfiPmSDXjtnexpO+XRNpsPp302a6YTvvfJ5m1Z5lQ8A6RD8exWZ7Nn/VNLsszlFZ5Dqyx4RJHx2Ny5dV2WeaRkkGIffxj3njInKtGfPq7C0CgrIAyNYjAqezIAROJ7F1WnSDzCRFXWRHGtmrA+ZiU3fFTxrBQpE6U4Tj1TlRWmU/Wspu7ooayPPwAezhD5r/A3asYYY4wxxhgzZ/hFzRhjjDHGGGPmDL+oGWOMMcYYY8yc4Rc1Y4wxxhhjjJkzHqlMZJxw8uitPssvOhXvj9tjjt8TCb5R4MTG4VAnRh+IJOymkG/EBZcZlyIRGcDGMicOJ9kpiqW7XKduoy/LLEU+fywSE2tTTpJP6lpasLzAicyDkUjm3+CE6U5TD53tbU5GTgvu4wwieb0iw7cWCxlBneUObdFIWaGTN4cPJM+XJY8DlfeZ5TppPxeJr0Fk7baSNsVOrp+TZXY3LlDs2j632627LMnIxP0AQHuJ+/ylF56j2I89c4liR0fcjwDwnTffptg7NzmZ/1Dk/U+FfOY+ImFZ3NJgyME01dKT5QUWKyx2L1MsZCxHOLHO/QYAn75yhWKv7fIcvhf4PksxrgEAQjgTiTToMuKx0Ojoeo4Oea0aDcRaM+U1KWrpsZSwNwCI1Hzjviwnuswo4ntPSq7TdCLaLtLSk4lY+sdTIQ+CEJSEiuT1hPuz3uC5tbzAIoVmRxkPgGLKfVTmQpYzZlFHgJazxJEYD2LOlWJ/Gw31XtRdON5Op06t0TFrQkIwGGiZyGjEfZGLtmiKvXqypYUa4+vXKBaEUAdiXmKJ92oAOPPZFyh28rmXKLZxgdeUqFXxqCWGcRBSrVLsO0rmAQC7Nz6g2MH19ym29+5bFBtssUwMANIR993wKq/7d2s8B+WSAACfeZZCi2s8X5ZWeKFZX9Fylgvd0yI6q8BBr8ezCiD0YVVliiOF0EPJQGI1ZgFEIq5lIhwrKp4XopjHbSaEZJEwxlUJW+qizFjcu3rUyiue5zIhGSlUv0vDSIXwRcSkMEZKYDQVrq/vi79RM8YYY4wxxpg5wy9qxhhjjDHGGDNn+EXNGGOMMcYYY+YMv6gZY4wxxhhjzJzxSGUiZYeTta/2OEm1nurE6NG1u1xmwgnC7YZ4/9T522g0uE41Id84Uecyz64syjJXlzkhNhuw4CD0OGG6NjiSZWZCHFAGkRBfct2LgU6IXwh8/XMlt2dzle99tM5iGAB4XYgc7h5wNn9asABjCGGbALArLCMhFYn3IplW5GUDAHrjyQPHiWRWcV5VMmsZc7vXE55eayfOU2zp9NOyzLs7fI93NznBPy1YGLDQVaYH4LMXOdn6j32GxSHPPMux8QGPawAQTho02nzvb723Q7FdMQcAYKqSm8XYVqKKNNWdvn8kRBVRl2IXT/OacOkEy2sAYHVBzAOVnCxioSLJXQxFxGJ8aX8ErwkAEGp8/khIk6YDnv9JR0gYADQ73EdiSUKR8Q1Nj/jaABDVuO92tlhM0xuKfs+5LwFAOVN6Pb7OJOX1I6tIC0+HvH61xJhfF/vL5TN6f1NCoqM+yx3SjO+90dDzPYr4+komUhPjo9/Xe9HJjeMih9/71u/QMeOM+1cl3QPAtM/7w2J9lWJbh2/ydW7ckWViyPtlkfDgbKyzOOTZH/8FWeT5Vz5FsagjRCixGEeVQgo+VokVQsnXSZpanrOxwG23eo4FJ0vrPF9ufuNbsszevT2KpRMWl/Wvcx/dE/MCAJrLPOZaC5/lA5d5vjT0rePUMrenkmyUSs40q3MEWhYxu5JCx4MoVUk64gojRRB7ZiSEZnEkxmyp+6guxlg64T07EWKsXIipACAS4g8ly4pmFFMBQKlMdGI9Vf1ehRwj4jglGKkaTPLYGfA3asYYY4wxxhgzZ/hFzRhjjDHGGGPmDL+oGWOMMcYYY8yc4Rc1Y4wxxhhjjJkzHqlM5Lkf5mTc136Hk/SjiU4Qnkw2KRZPhARiyrF2Tb+T1mqcdLwiEqvPrbAxYV1ZFAAMhSBlPGSRwnKXk3lX1jcoBgBr565QrLX4lDiSk8cP9rWkY/POuxQr9r5HsaODG3xym/sCAC4un6BYkrxIsZsDPn8yuirLHE45cT+pcYJxKqQFmfaoIC+O93uaC3lFEIKQpk7aby1yfHmJZTMnTrA4ZGtfJ57e3BKyhyknApc1nsYbJ8/IMj//Ge6Lpy+yEGMSsxQmXtQZ3CfPneXrxDwOh4PXKDYYsiAIADIhdsjLWZPCKwQQopn3epzwvL7G0pSRELYAwHvXuf6HR9x2skqVeebiHzKxfom86nKoxR+hFDKUOt/TeMprRa/H8w8AmkIS0Ip5HuRHbPOY9PSaNNhnQcGOOH93yO3RF0nuAJCmPG4LcD0LIWLJKwQYRc77xiDnfpvs3qLYcsprJABsPMtz5tQZdeyKiFUlqX/0LX5pVa91D/L+1ZsUUyn/PbFXA8BSi+fbzs1djr3L+1BxqMdmEPKdjthDn/nxn6PYuVeek2WWzdnaUskelCwBAJSbqswrNi0qVPd51BBzfZXH0cmX/w2KJWIvAYDr33iVYgc3WPIzPmLpSP/We7LM3eu8Ry1s8F7SXDhHsefPsBQLAE6t8p4bhFCjfBhziOqjGaUUlQoZ0XeJqKcIVYoq1LFJwvMgRPzsVGtoEVOtLkQuLSVC4eenbKKFUemE98ciF2u3mAaxEMPch+OyTkK4okRyQIUTTB7IoSrhS/Ew4+4P4W/UjDHGGGOMMWbO8IuaMcYYY4wxxswZflEzxhhjjDHGmDnDL2rGGGOMMcYYM2f4Rc0YY4wxxhhj5oxHan0sl4XhsctGrnKqq5UP2Jiy0mVTVhkJE2TOdjcASITt78IKG5KWF9iQ1u+zmQoAlHft7LMvUezE+Wcptv6UMjkCndMXOdhap1BRsrmsPmRDGQDU7z3D17lzmWJ3rn2XYrfe5xh1qNjOAAAgAElEQVQAtDM2tJ3tsompV2PL0G6mbGZArWTzECJxTwn3e5xr+054QLeVZVxeCKwdakTCqAVAibqabbYpTlOuz+1NPY6GE54HRckWp7jGff7089pc1l3jMfPmB2ymW7ogxlaujYLjgbA7pWxxWutyPRuxtiANhKJR9cfDOJRK8bnURPTH9W1eK4qO7vewzca7dMrtFIQFalZzGADkwqY4HBxRbNDXfVSKOjVybo9OyWNuMtA2xYM9XjsHwvqmtpmJriYmwj7WWeJ1odXisXQ4Vq5B4N4h92dvyGMpEjY0XSJQpHz+ZMrtURP99vb1LVlmP+F18twlXkNaHbWmVZkCVXzW8/W+8eCxzQ7XcX+bbahxU7dmPmab49YHb1BsuMs25VxpEwHUV89T7NIXfoZiZ156nk9uzP75daHsbqpKFVM9KGutsA2rAqIKs5zS1RWizELYNlef/bwsMh/zHMoHbG6d3t2n2HibjdcAcHCDx8jqFS7zSneNYt0OzxUAyMRGPKtpryz1HFKnq/VcESoshUHMQRkT104qbJ+1Gj9LJ3XxzC2eF2JhOgf0+A6B18my5AW9FvF1ACnTRj7hY4uMy1S2XQCIRDyI/lSGRyHrBQCUqj9Ue8ysh/zo+Bs1Y4wxxhhjjJkz/KJmjDHGGGOMMXOGX9SMMcYYY4wxZs7wi5oxxhhjjDHGzBmPVCZS2xPJow1OEJ62OSkbAE62T1JsucmJjeMJCy3yic7uOyFEFyvdUxQbHXI9i5wTXwHgqRc/RbErP/TzFFs6/QLF2qsV0oI6J1tOIn7PPio52TFt6qTOTp3FJe1FTjA+s36BYisNTvAFgO+9/nsUGx2xeOTsBktLMNEilcMjHjeTKSfkN1sLFMsmOkE4RA8MfZEQGovZMZ7oPi9Eu18Wspdhn5NeMz3cZT6qSmYVDhUc7SqpA/Bbu3coNhVJuz+6wf3bHG/LMt/8+tsUa9WEYGAyotgI+uYLkcgbKZmI6DeVBFxVZl7wHOr3ucyDI53EvNHkMYcGJ3WHMY+bUFSIbkRsOOXzJyW351iqjIBYyW7EmhiPWBzSL3QfpaL+zSZPmqaYBzsDXeb+iOvUzDh2osbr/lpX9AWAUeA2GZUDiuVj7uOoQicSi/keiVgmZBe7I70mja8LWUbM4/PCBd6z2p2qrVyMJrHg5EMxvqZCEgSg3T6+R+1ubdIx04TnwNlFFsUAQO/NDyg2uM3rVC6EOGWF3Gn9ed5bT7/I8q7Q5v4towqFjJATCG+Z1rpUuSekLEKdrtYuXWRR8D/kSqwgLh6LPRQAli+ynGrvJvd7f4/n1XSiZUTT7XsUy44O+cCC5+UUemzuHfEcUqh9owopkFBl6rNlNBJGDSWHicUAi8SacP9gXhOnQqYWiT1CyUAAIMu5ns06j5EoiOeaTPd7IdbzAkJQIm6zSmimnC2RCEZiPY4q5lE5Y7+rnq8aXg8x7I7hb9SMMcYYY4wxZs7wi5oxxhhjjDHGzBl+UTPGGGOMMcaYOcMvasYYY4wxxhgzZzxSmUj5/lWKna5xMnB/oS3Pb4gk2RY4ibGRcAKkyEcFAKwvdfj6/SOK5UcsKLl8SQgxAGyc50TmvZSTtW9ce4Nixft8HQA4t8xyhu4Jlm+8KZJpf/Mrvy7LPLi1S7G1jBP/f/z8WYo9dfq0LvOIxSN33/4mxRpCzrLSXpVl7o85A7M34HZqdLkvIRJXASCdHE+oT0QCeSl+sn5Skcy6vM79025zfW5d36fYYKCnYTHj9CwyHtzvv3NNHpuK+rcXWU7wmSHPtTUxVwFgsM1Jw1+78Q7FJkLMMMj0PZaxSqzmz5UaIim7rEjrnmQioV7JSApuo/4RrwkAcPEst11/X8t7+EI6HEQS9HQirh94TWkJOQIAREImEI+nfGDBsclIHAdgmnKZSxHPg0jIVQ56OtF865AlAV2Rwr2wxG3UbumxtNLlRPVUmBgOcl5T0qnupEisF7Hot0JsPJOC6wMAaY8lHzducJ1aLW7P0zU95pKYy8zG3MbpkPsjS/W9Tx/Yc/Ocr3HyHO8Zq6Xu8/2dHa7PEY9tJVuoL2/IMjeusDikuaCeC0RbCAEDAECsH6UQJBVC3hXV9NgMEY+FWIgZej3eq+/0tNhqKKQ48gFIrH2thl7jV5srFGuf472+eZXFMMVUrx/jQxaCHW3folg6YsHIdMRzAACKAe+vShxS5XaRiHGn2k4dFkLF+qGkYGL9CGKTiMSYAYAg9kclcimFx6lIKzQZMY/lOOX+jMT4ysXzEwAUYu0thbAqFluZEnzcL1S0kzhWCka0/qdCVKaOmzX40fE3asYYY4wxxhgzZ/hFzRhjjDHGGGPmDL+oGWOMMcYYY8yc4Rc1Y4wxxhhjjJkzHqlM5ObNO6IGnLxail9YB4BRycmBu2NOtl6LOTlwRSRVA8BKg8scHXJyc9xgwUl84nlZ5t3GOYq99t6rFLv31msUK0c9Webliywoee6ln6bYB1vXKTa99/uyzBef/izFmsOLFLt3+zbFTqxzcjEANNdYJpA0+Nhsn5N+F07o4dhucMJ3baNFsUYiklQjnWSfPZBo2qwJ4YBIUE1F4jwAtMQ4Vsnn0xGfH0pdR5WOKvOaRZ0OdjkBG9AJslHC0pPplMtM2npeRgnPjXHOie7i1oGKxOjV0yy1OXeKBTarEd/P1p1rssztPRbY7A9ZHJKXnMU8EscBwDTjpPYi0ff0ICqxGQAQhPRESAtKcBt3u3pejgc8h0ZTLnOQcvL5aFIlE+H6N7vcdiHled3vVZTZ43vvC7HMToP7fb2pE7iXxLiNu7x+ZBNOiN/LdT0jkX8ey+7kumelHh8leA3ZPxhQbHOb+21pWcsVugvcJpmQcuUR91HS0vXMHxDOXLn0NB3T6vC9HF57X5a3t8l7VjHh8apEAp21U7LM9smTFJv0WMhzeI/3+jLX5rFCXF9pCMo6t1tnifdFAGgscnyYc5/funmNYtsVspdOq0uxRAzOROxvwz39/NFY4nuqL/B16l3eC4ZHfD8AgBHHx3v3KLa9s02x85e1zKyb8zgOYg5qwUiFUEOJIR7KRiJOF2u8un4UxNpV03M9bvDa24q57nnB1xmI/R4A8lQ8r4jHlelYPC/EvMYCQF08Ko0nPO6UUCyIvRkASiFJC+J9IUgZiZ5H8vlLHaieyWSJH33Y+Bs1Y4wxxhhjjJkz/KJmjDHGGGOMMXOGX9SMMcYYY4wxZs7wi5oxxhhjjDHGzBl+UTPGGGOMMcaYOeORWh93+2yrSiK2OzXq2mpzJOw7Rca2mZaw4D1/Wtuh1hpsl7uXs50yWVvg2Hm2XQHAzaUzFLu1vUux80/9EMXOtNhWBQCDGtvc7h2xYSnbZJPSpzf4HgHgmWe5/vXpixS7ussmpjywtREAOsLW1+le4AOHbPpqRDw+AOD0GrdJWlzkOmVsrMuF2Q4Asvi42atUnh6h6IkrLJLNJo+PsRAFjsXYLKCNSyEIg54yjymTY9DeIXV+lnJFU2H/ixJdZlLnegrhEoJwpNUrzIeLLR7bZ8QcfvESj43Du3pZe/O171Hs6l22Te2yTBGZlv8hK4S1NhJaK9WXpbbLSTNnwfavox6fv9BkgycA7O9yf+5u8Y0OhmzGm1a4qurdNYpNUq7npM/1HPR1gyY5t9NYrPGbPZ7XjabeN1YaPB6WahzrLfKYGwkzHgBMe9x2UcljuVDjW5rHgFLZ6cT5fbGPjkbasLa8zOtSc4HbuGjx3ExibVjD8Hjbddvc7lnK42g4YMMiAPT7vGflwphbCjNlfYnvDwAQeLwf3uQ9p14/QbHmBo9rAAhi/RPyPgz2+d57dzZ1maLPD474+eNwh/u8ubAkyyyF4XWS8Ro/nvJx799kwyIANFZ57b24yv1RNnl/DFXjSCyqaZ9txcMjnmtxzHMVADa3r3FQGh6ZSiOfmK/qeUHtrRVTHdoXygfHEbddogzTAOKaOFbYPqdTXo/joJ9BVKMkCV8nFSbZpKGflWp1brvRVNgpxbUjrdbVba8e6cR6qgycAOS4qbI5zs5HK8HfqBljjDHGGGPMnOEXNWOMMcYYY4yZM/yiZowxxhhjjDFzhl/UjDHGGGOMMWbOeKQykSBy5/OIkxhHpRZAhIjfK+tC7tBJONF0obWhyyy6FCtFUnhTJC2vnhaSDABFhxNvO5/lBOVTXU4G7t/T7843vvQGxfbuvUexEB1Q7MxlnSwZdbidWl2WgYxiTkTeGnHCMwAsn/0CxTorlyk23mRByTDjugNAdOYZPnaL+2Ow8w7FJuM9WWYcjksPMpHkmQuRQKksGQCUc0BJENDgROBiVCH+kFFxbCkS7ytTo3l8pSlPzKlI7g1VIpUOX7/T4UT1Vs7nL7Z0onmr5H7LhICmqLNE4dOvPCvLXGnyclf79gcUe/cmyw22BxU2EZFErXpOJjFHuo9UbvPKhSsUWxyxtCjPtFCju8Hr3zRn8UhjzPNynHNfAkBvIMQ0YiyHKc+DKGfpCABkoj3VejwR/XHQYDEMAHRFv3daPA+XGlyn2qKWdAxFpnqntUixnrj3XSHPAIA8V9IDtR8IeY9ooyoisY+qWCWd423Xn7I8Y6HNc12JDQCgyNTay8dlSkrR0ON9dMjrx94bX6fYcMhjuFfhFsgyXieDEGLEE26PckFLfi5+7o9T7PY272NvfJtj9w70vEzFvlMIiRVKjo1j/Ui4cuVlijU+x2vSqujjypElNs1IGCTaCbfd5Eg/I96+d7vqap9IlCQjEoIRAIgCzzn1HBCJDSaqEJrVGrz+JdKPJPoyqhKayTChpmHFljm7TGS2S/8RoO/9o8pI/I2aMcYYY4wxxswZflEzxhhjjDHGmDnDL2rGGGOMMcYYM2f4Rc0YY4wxxhhj5oxHKhOpBU7WzkXCYVpUJDaKWEvcQbvJ75+Nur7VIOQQsUiozRO+elmRLHlhQYhHEk7mf2t7l2Jf/9avyzJPl5yg/Bd+/mco9p27nPx5bUcn2I5EMu9ylxNS8yYnr+6Ph7LMuhBbJE1uj3rCyfw9KWYA3tp8n2LvvnqDYktDrlNc8avzDybkluJX6BVFxdjMJpzYXVdja8rJ51HFNMxFnVTSrKy56IcPS6BIIZLP0wnH8qDFCucvsign7nL/Li6epdj6Ggt1ACBKuP4NMdm7yzxe222dbP3cp5+n2KTke9o+fItiu0MtpQki5TnIMaJ6qWLMqcTsmNsztLk94kKPpeUG93tnkWVI2Zj7I8smssx0ym2fCZnJ1qaQiZTCLIWKpHCxTqlE8V5P1/NOwpKR0xt8nZWGGF+lbs+xmAutBW6PppDy9EZaJjIRU7YouJ7DIcudJhPdnh+PqvF5vE61lafokHqT18OmkLoAQDSjXUCth0XFOjc84Pl6cPcmxQZ3DymWZbo+uVg7c/FRdy3wOKxtsKQLAIoxt9NkyqKMqZCWlIXu86jOa0UiRCxiSUA30fe+1OTx3kh4vKtHorJiX1fjKxLGuXF/i2Lvf5flagBwuC+eS2YcX1VPANVirlmoEEYpuZSIlaJWVWM+Ft+7hMD9rgRFoeL5pyEkQ7GoUxAdX5ZawFUKYYy+vnjWqainaqdZv4ea9dnv/nVkATOf/1HxN2rGGGOMMcYYM2f4Rc0YY4wxxhhj5gy/qBljjDHGGGPMnOEXNWOMMcYYY4yZMx6pTCQXyadZzonRKqEcAGoqcVd4A+JEJDvWtWAgFz+zrpKGgxAu1ESCLwCEQiR791hGsn/tGp87eFuWeeGZMxRrnWtTbNTjNh5wLu7980dc/xOrfFwScxtNplqqkeQiQTjl68QiSXVBJEEDQL7PMpTlRp9iWY9j40wP8eIBmUEu6q0+xyiFPAIA+mMhCBDjtZ5wfSpznWf1T6gE7ook5kiEC5GUnqY8husNFkUAwHPPXaHY8+I+o6RLsf5Yz6E04zplIml3nArpiZC4AECZ8RpwNOTr9KcsA1DSIwCIhKwmyrlMVaOyquNFUjkgksIjFdOfvSmXUr3Bkp8y4/WjqJABqPbMRkK4IGQk125XrJ1KpCJuSY3jPNN9dHjEc7OZ8LhZWl+kWLel16R6g++9s8gVzXhJQhzptVOJraJSrEEiGb8U0hEAUMuVztvnA8sKiUxUPy6WyIVRIzS5LesN3q8AoC4GpxKMJKLi5VjXEXGHz186R7GV5BTFWh1epwAg6vD6F9p8bNlnSViWsiAEAJaWuJ3OLl6m2KTk63yqvizLXL90iWKNJte9mXLb3f3g92WZacT13BBymPGU9408r1g/xMRW++vNa+9RbGtvR5ZZTFkmokUTckWWZeplekbBSIVnohTzGkL8oeRlWa7XzqjgZ0wl6UhT3p/iSK9zkRSUcCyKxbpf6LlZyGctRgmjyqqxJMVrSnDyEFKvyvj3P+7j6GcU/kbNGGOMMcYYY+YMv6gZY4wxxhhjzJzhFzVjjDHGGGOMmTP8omaMMcYYY4wxc4Zf1IwxxhhjjDFmznik1sf6AlufyhFbeqIKs14EYcsSoSLwbQ1ybV3qRsJkJ15f8+GYYqMK81DW2aDY5u49ig237lJsIZyWZTYWP0OxXliiWLHI145ba7LMO9e4TovpTYoNjthhU0TrsszRNpt+itENitUS1qEttLUVrHXIbV9O2ZBUq7PpSxufgOyBTpZmO6WWE5ZQAMiEwSpPuI71BbYrhYEwRgJAJuxuyickLYf6vlV75DlPorEwQyU1bX1cavA9bd5m1ejXXn2dYlc32ZAGAIMpX7/W5v596fMvUaxb4zkAALdff5diX/3WmxS7ddDja3daFAOAOGYD12gk+lPaph6GH8BnamLYhBpbH4XQCwBQirVXGRpXVoVFN+L+BQAIe2Ek7JbRQ3i18in30Vis59OM+zjp6jUpEoa2uhgiNZbgIYor7HIiHIn5WlPWtar2UJY0YTBGwW1UpNxGABA9uL9OeW/tNM9TbNzUlsKFBZ7XsdA5hzE35mif5yoArNTYaNq5+ALHFlhzfPLyRVlmvcNjIRLNO7z1PsVuif0fAMKJExRbKfg6l0qu5+rJC7LM5bUVDopJXAjjdn2xyigo7n2T7+m6MKyWFZa/UlgjS7G/9sR6PBZ7IwBEocIC+uB1Hsr+NxtBzMEq+3IuzK3KapwEMVcrbONFzmu3us2p6I9mS5tO6002SZZi4Y9iYQCuqqcwWao1PhFNl1UYiLX5moOFMsd+zL35Yc6uGg/fD3+jZowxxhhjjDFzhl/UjDHGGGOMMWbO8IuaMcYYY4wxxswZflEzxhhjjDHGmDnjkcpEEiEDyHNOOIzyikRzkbU3EomR+1NOVtwa66TjdspJjEoYkQ84Ybq3eUuWOW5zYuabN/codu3dd/jSIpkeAG6vcmL3wZjFH1GN675+8pIs860dTvx9/e3fo1jniPvj0tmnZJlhT8hEhre5ni0us7F0VpaZ73DScxFYQrNQ536v1XTy6SA93p8qIVQls1algk4PDih2tLtNsZUVFl30Bjrp9uCIa5UJcUghPm8JQd+3SmYtRZnZVFgQKsbmzt4RxX7zt75JsTfeZnHI7lDfe+jwWvH0lYsUW66dodh33uB5AQDf+ibLRG5sH1IsE8vPyQ4LUwBgOmQh0HDI7aGoSkJWCc+zl1Bl/lAXUmNEGUJ0kUEICkKTY/UWX7ze0nKn0UCZnFhiE0qxbldUNIk5Ib4Wi8T7wLFCXQZAXQwH1cTCzYJahZBISbQi8GCsJ3xcrMwuAIqJWDuHvBcWE95f8qp+L47/wzjlOTwRsoc8aDFLssCSkaLOjyb5iPeWfoXQa3y4T7GFs6co1l7hWCHkJgCgNBVRzH2RnOM16cxploYAWt4TSn5+WFgSQp1EDC4AIVJmBTFmxPzd2HhWlhkJ6du9N1gONerzvK7yP0RNFr6EJk+sSMyXpKYfXaMZJ2YIH03q8P+dLwpVRVaJKiKxP0fCxFSKfstTLUzJJtwmQQjAEiH/CrGe7LmofyRutNbg60Ri3QWAVEhGEmXlmfJ9BiE+Ayq2N9EfShpXVsgL9bOSOlJJZCqEUR9x2PkbNWOMMcYYY4yZM/yiZowxxhhjjDFzhl/UjDHGGGOMMWbO8IuaMcYYY4wxxswZj1QmcnjESYRpv0+xbqOiWpESKXDsQMhE7vU4uRgATixzwuNyd4lioyNOpt25+V1Z5kHBMoF33+Mk28N7LDJYauns9Xff/wbFTk1ZUHLlM89TrHbmc7LMO0sswAiL3Haf7XCy94WlRVnma6/+BsWiCV9nYY2Tq8PSZVlmd5HbpN3k9lyKROJ9S38WEerH+/hrd7f4GCHZiKsUEBknvh7u3KHYqafWKNZpa1HFaMT3k6UqifkhpBIy8ZWTaacieTytSGLe2uJxePMOi0N64n7SXNezEXGifBx4rn7366/xtTe1TOTmLs/L4ZjH+2KLr3N6iZOlAWC4yWWmQuwQIiEDqMiyF8tcBer8is/ehCClFBIIgOUTwrFxH7VMi8vHXZYznLvEaywA7H+Px01RtrhMcHuGsmKux6KiMfdnHnG/CycGAKAuppxqJuGaQCPWa3xPSCAmBY+lWKxpcU1XdDjkdXIoBByTIc/3WlvLP2rZ8To1Wyy/KKd83YEQlgBAtMBrYrLAfR71WH6V9jdlmb27vAYsXWBZVSz220JNFuiZpcZHJuZ6LGIAUIq1OxOinCiIWIUEoRAWhUjMF7V+JIXe3yabNyi2//73KDYeiWe8ivG+sHaagy0ec7nY1/NYSyXWTnGZWhwiREgVpodCCD1kKwnTRJUXKhN7hBpfidoMxJoAANmU274u9tG2kIlUWi7EDQQRU3KmqmcldU/TkdhHJ+J5o6I9gxhjhRQsiTlTtd/OKKFRMrZqWc2sorDj+Bs1Y4wxxhhjjJkz/KJmjDHGGGOMMXOGX9SMMcYYY4wxZs7wi5oxxhhjjDHGzBmPVCYSxC+NNxL96+W6gNlkIqOMk0/3BipxHjjosczkxIlTFMtEpvieSLAFgFbC1/+FF36YYpPPvkyxxhIn3gNAu7tAsc4iJ3Evr57k+iysyDJfusLd38o4ATPb3KbY9776+7LMvdvXKLYg5DC1thAENDgGAKeXuf6F6KN62qPYyVUtgbjy1Max/3/191gMo3JR1S/bA0AZ+ODDI5ZsrGWcUL+6rvunP2QBziRn2UMukllVDNB5s0Hc01Qk8qapTmKepHx+NuU5UOYi2boik3dyxMnFb36HxSGxSPTORQwAJrmof4OTkE+e5XnVSbQI4fYei3LKwJ9/1cVtJhUJxzLduC8Sq9ti7VT3CACij4KIjQcsbCgLvXaqMb83ZinFqYsvUqwt5jQAdFd53PR2xT2p2yz1XqL2iKMByy6yu3yfg6E2qay3Ob6Y8FhKFjhxP5aVB8rAbb+0wWvi+cssd1pb02tnOeH+aLb42KVlLjPqamFUyI/30Ykx99lo9zrHMm5zAGid3qDY0jnexyb7vCZMBnpe7rzDoov2iXMUO9Hg/SFa0p9fK3FIXOO9LUR8fjbm5wwAGA15/RhNucxGnfus0dQSqro4tibGZk3sEdNNlvkAwM1vvUqxvZu3KJaL9SeIZxcAaG2scrDJxzYW+bgzTz8jy3zpU5+mWFmxH/CBOiwFEjOeXlYUWgghyDRTx4pnJyVHAoBcyLpG/EyEnPeSqKbXTiXpiNT4Fs/chXiWBIBiynM2EzEosU2FaSsTzzCZGIuZeAaptIloY4yokhKMzDjmZsTfqBljjDHGGGPMnOEXNWOMMcYYY4yZM/yiZowxxhhjjDFzhl/UjDHGGGOMMWbO8IuaMcYYY4wxxswZj9T6GHeFQSZtU6xWskEGAKJYWIpSPlaZhya5ttrsCSlOb4nNLs1lNg8N9tnSBQDlnXsU22i/TrHzz32GYsmKMCEBWFhcp1ijxcaqWuAujQbaPDQdHVLsYPc2xd59/fcodvPtb+h6go1CHWGi3BEGsOjoHVnmSlOY19bZSDY9YtPOSltbNJeT4+1UzmgNKivNUPwPqTDg7d5lG9rZ89pMef40G7CK22yC7I+EdUjajYCyEJ/NCGtRKkxuKHj+AkA95rkVCfMhIExIFeZDZcUqRSwXp+cVFqdEDKOLp3j9Odvmfju4/a4sMx2xhbMmxmupFKIVY0nFh8JOG2XCOCcsXQBQi9kQF9W4nqEu5kuhzYdJk6/VbfGYVda0haYe82fXlii2lfE62z9kQ2MuzGMAEEpup6kwXua5WAOqTKcN7veDWIz5Nq+HY2FnA4CFRT7/3Dk2kK6v85iti74AgCLhdk4avJckiXgUqOt+f9AsmkTCHtrndSqL9ONGc/0CxVafeoFivTts0U0nvNcCQL6/SbHbr36NYlGN22f92adkmbUO2xQL8fyhTH/TkbZTHu3wPY0nPLb7ibA+trVNcXFljWMt3i/TPs+r7be+Isu8+xZbkYfCuFmIenbX2dAMAPVlHsfxMtfzzFNXKPbDn/8RWeYzp/lZQ3v+ZjcQV+35M1F1rrhUIS6Uin1cWQYBIMR8bFHw+lOI8YWpXj8g9nFlNFTPTyoGAKU0E/M9BbGe5uIZAABSsXaryxflbM8/QLWxcxY+zpBR+Bs1Y4wxxhhjjJkz/KJmjDHGGGOMMXOGX9SMMcYYY4wxZs7wi5oxxhhjjDHGzBmPVCZy8gs/SrG7336bYrXRrjy/BCevthc4oTYRSctxphMbxyWLEA5zThRfPMNJqt1lTsoGgNGNqxTbucqx6d42xdoLN3SZy+e4TkuceBuJZN7xUCdLTvoHFDs84Ov39m5SrBVYbgAAy5cuUSxeO8/npyxsCDWR5Arg2eYZijUvcnt87atfolg63JFl3r15PAldyStylY0a6c82QsFJ5ZFo9sE+y1o2lWgCwJnzL1LsqXMbFLtxm++xP9TprEq+ASEYmYjzj/Z0wvFoIBKOwfKKApIPWrEAABJOSURBVCyQKSqybnViNx8cRNslDT3eT5xcodjJhJOty80PKNbfvSXLrMc8RuoJt5MYHiiCXpN0cvOM6clS4gIgEfGI65mI8V2VVJ00eZ1lFYhOxl/s6LGUrPD6FQuhx22xRvf6WtJRiETzID6jVKKd0UT3kZJI9MD1HAvBUWNJ3/vGOotcTq1xe3QafH5Vt8cNIQRRsYfhQRGTGEf9seifoV7nFhd5Xp69/DTFRjd5Dx33hA0MwOiARVnT2+9T7NpXuB+z6edlmRtXuE7NrhB6COlZqSQGAJIa928ziPUDYszo5kSY8D8Md1hitfv2tyl2+9ssDgOA8cER10msU42T/EzUeUrLWRpneA+/+MoXKPa5T3+aYs+e4X0QAPrimUqJKuSKVm0KE4fOth4raUlVnVStCvEMMq2QEak9UwxFbdmoEGqoQaaelaKHMK6oS6mxlIkiM7GWA/pZrSxVvwtpiSxR13PWfq/mo53vb9SMMcYYY4wxZs7wi5oxxhhjjDHGzBl+UTPGGGOMMcaYOcMvasYYY4wxxhgzZzxSmcgv/9m/SLH/besfUezo6lfk+YuL/F7ZaHLyajHl47Khll8MCk563h6znOHpZU5offELPyfLvPF1lhEc3eF72t19l2Jbd74ny0wiLrNeZxGKTICsMDYkMSeFNtt83MlVlpZ0z70kyzz1uR/nYIdFLMp1UU90Wmer1qXYrRurFCvi1ym2d/iOLHN377g0JcRCrCAaM1Rk7ecqSVQluOYsUTncv6PLzLlOp85fodiF89w+d+/xdQAgFQ0/nnJy8tH2PsW+/C9elWWWOUt+NvsshpmoYVjq5OAAIYAIXECrzW309FkerwDQiXiu72+yKKd/xOKQ4UivHxsrayLGie5bQm7Q61fZAHjctbssmkCbhS2VVCaLHycW86Ay2/pjXLojHAwA0Mn4+lnB8oss5oUq7OgxP+pxv5c5z+MgJA5xxXwPwhQ0LVhMk4Hn1uoyr10AsLHOjbLQ4jVeCgJ+EMzqQRB760DJJyoGUtLkcbx05gTFji6xlGKnXyETmfL6kw94fGR3eA+++Vu89gFA/8Z7FOteuEix9slTFCtjPY6yjMdHISQIWcb3UwghFwCMrvGzws7rr1FsvMWCkXxcsSaJQdfY4D5avsj7U3NDS9eefYHlLBef/hRfWshqvvWV35Vlvvc+C2OkTORhnA4zHyzG98PMVXGZUuyDuTJTAVDfu5Ri8Y1EpSocaYjEOheUXEWcK2Vs0EKOQtynkokUVfYxKQn5GFIufFxxyMeVjhzH36gZY4wxxhhjzJzhFzVjjDHGGGOMmTP8omaMMcYYY4wxc4Zf1IwxxhhjjDFmznikMpHhB5xg3A2XKLZ4WifzdhZZ8jGccBLiMOMk27TUCZhZycmzWyJBube1SbHLP1mRFP7zpyk26F2k2O71Nyl2UyT9AsBwj2UE2UgkxIv7rLU5mR4AEuEn6K5x4v5FkSC8/ukvyjIb5/jYKOEkefUD8yrxFQCuXud7//qbnAh9VLBEYj9nkQkAFDieAB/H23RMpEQCFVm3KnFVeTIS4WrIspEs82j/GsWm0z2KnXn6eY6dY6EFAGR9rlSvxzKQ/RG3+dvvDGSZec5zaCpuPojVpl7R5+0Gj8PFBS7gzCkeW/VsS5a5eY3FAfu9A4pNUpZCJElLllmW3KHDIa8/UjZTZYUolH2jybEZBSGfKJZZnnFCCDXa6zzXV1e0XOHOTZ4z/UMe81GuEtJ1UnirzuOzDLz2Lm3wHnHuMgtoAGChzWtLXfliHipHfsakdpX3n+nxVT5Qp90D3pfHI17TkuaSLK8mFsVUCMH2JryPTVrCfgUAQnRRFrwuhBGPg/SA9wIA2PwOj6PNd1j+1Tp9jmMnuD4AEHeEFEcJfYT0bHKk63l49RrFyl1e5yIhkcoTvb+1N3jMrlx8lmK1Nb73ZF2PdzR4fA12+J4CPzaiN9XPNK0Vsd8LKYSUrlVMFSXP0AdLG4iknHFeqvWnwr+FXF1eCtH4uKii0Eg9p4k6FUIcomIAUIi2U80pz36IPgqz9lEFsu3l4jtrrHo/+X74GzVjjDHGGGOMmTP8omaMMcYYY4wxc4Zf1IwxxhhjjDFmzvCLmjHGGGOMMcbMGX5RM8YYY4wxxpg545FaH5996izF3hJ2pmyiDY3D4VcoNp7co1i9yda26YjNdACQToWdpWDLWH7Axrvh3fdkmauvfJ5jMdsQT15kO+T5T78sy0xHfE/9u1z3q2+w2a7Xf0uWefkzfP2zl9cptrDGx9WW2dYJAGXCFitlylFiq6xCiJMFVp91FrjMn/83/wTFvvXmp2WZ337n/zr2/zWwvUuZC/NCVzJOeMw0m1zvCMK0Fekyp1Pu83GPzWUfvDel2PLpp2WZ3VqXYqfPrVBsMeMOEtUBAGSpMHCJdirEcpO09BK0WOPz86EwNG6/T7Hbm1dlmWnGhrdmk/tteZHnQENYKO+fz/Fmi3WqTWEQzXK9zsWx+PxsU5gsN4RFT8yr+6j1T92T6o9HaJcU1Yy5i9AVsVZLmDEBdJtsXty8xQa/3i6bTkPForTY5YZeXeXrrJzk+VZr6s9HI9EdYcRjJBuzUTFUrJ15KtawMU/kep37Pa0Y80ntuGl1f4+1fP0pV6jT0ubUacrtoZaUnUPun2u3tPkwXlim2MIpHjTJ0S6ffCg0gwCCMA3mPT42b7K1Omvqey+Eqi+IAR8J62M01OtHIuylacmxosH709KFC7LMpaf4+aV9kg2Pa+fOUCw09KIUT7mPDu7yOredsYU7bug5FCu18Ec07c0v+n6UjTFXxksRK6oshUp4Ka2PypBYpbyczfr4UFZjVebHOPf+9We//A8af6NmjDHGGGOMMXOGX9SMMcYYY4wxZs7wi5oxxhhjjDHGzBl+UTPGGGOMMcaYOeORykQ6S2sUe+YzQ4p9921OxgeA3XuckNt5ILEZAOoxJ96mOYsEAKAWcQJ6p86xrhA+jHa+K8tcSlmaArA0pd7muq+JGABM+hwbils6bHNy87Bk4QoAdM5dptjKpaf4wDoLQhB0cnSY9d1f5G9y2vuHxDxGXnye++jpE9zGy2c4uRkAJmvHxRTf/o2/zcfkbDaQogcAKpymLPkIIuu/WddJ+/U6J3tPM04gH6Usutm9/rosc5jwtfabYg4t8lxtL7FkAwDiGvdcIQZn75AlCONSz8vtgUjIT1mCUBNWmkSIXQBg9SSPhaUlvvdmk8dWVDGs84zXmkwJKERI9W9V/N5dnsONlNuosajnZU0k38c1TuZPJ3x+Ueis6maL274QEolCSHmqE7W5nipRvSh4btUrpAXNBs+Zdp3H3TThRTZJdMevr4v5scDXH/RZgNHf0VaepMb9XhPttNAW47ti8ZyM+B8C+DpFwfeZJHp8Pph7f+vadTpmLPoxjLgtACCIm6wJ0Y5K+e8dsBQGAO5t7VDs7Bnel88I6VJzlc8FgMk+y4yyoejLiPeNdsX6kaRCANHndXIy5Wv3ejz/AYBnBrB4ju99+QSLQzYu6f2y1uW1v3uay1xY4meFrhAuAcDw4A7F9oQwJkvE89gKC84AoNtRz0+zyit0J6ljg7RsCHFHhRCjyl9Bxz2MCEUWOtv5VUdFYuNTlynFGl99ZdEmKiTarqo9Zm1PdaEqZ8msba+vXdHvM5XI+Bs1Y4wxxhhjjJkz/KJmjDHGGGOMMXOGX9SMMcYYY4wxZs7wi5oxxhhjjDHGzBmPVCZyNOFfne+23qLY55/RCa2L8U9T7LXX/wHFFhJOFM/GOoG7XuNEVZScCLgr5AbXbn5Vlhnf5ITWsPQLFNs/4OZPEk4aBoBmkxOUJwkntO8LN0Oq5AYAMiFiKesbfL5Iso0q3vFVOr9MqxTByQGLGQAgGbBI4cQ6J6+2F1iEcKG1JMv8cz/7xWP//2t/jcdHXOOk/TjWU2Y64RTuLOc61hqcoB8m3Lf3ryUSXyNu4QUhz8hzlVIOhILvc9rndi8KrnurrUUVoxHLXkbbm1ynESfJRxWZvLEac6I9SmFRKAKLCADg4KhHsZ6SAQSRGC3a435cXEusH3JelLqemRAp3N0S4pAht9HCqpYRtZe477orfOyoz3057XG/AUAsygwlj8VM9ZGQMwFAvcUygnTMi1ok+kiaNwA0Eo63hXhkXONYva7FNMsbXa5TxMcWGdeznmnpSVwXYpyI6560eA0phXAFAGpivYpqHFPLWtLS9/7g2t0f8XhNWjw2lHAA0JKgUPKaFIQ4qEpKM+7zXL928wbFDpZWKHZiQ+8ZKxeepdiimOs1IYxqiL0EAMJUzC0lPhNrWntFy53aYl5fevYSxc5deIViF05xewDA0eE2xe4NlPCF+721qMtsCMdIEGv8UDwWpBX721HK65dCiyoegpltIBXHibh2UihpSeXFZquTPLOqnhxSe3alG2q2IvVxqo0++i0CeMjmnJmPLnGZFX+jZowxxhhjjDFzhl/UjDHGGGOMMWbO8IuaMcYYY4wxxswZflEzxhhjjDHGmDnjkcpE3rz+OsXWppz0+8IG/+I9AFw4/zTFbh9+nWLb71zlk3XePoqI/yHNOXu1J5IDdzOdINx7k5OWbx98iWKjASfeRrXbssyNC6co1qg/R7GBELbkEy0DyESbZGJI7I6EyKTHcgMACEc7FDs44DqNhZyhXYrsYgCXVhf52DUWzkS1DsVWRbI3AKwUxxPyE5Go3mxy0n6WafFHlgoBhUoozTlWVCSe5kpUEQnJhhBvJDX9GYxKai/GPN7zKSf4LzZZ9AAArYSvNSk4IX464PuMKpagDEKQIsbMYDjgWO9QllmUvNaU4vpFyX0sctwBaMFJsyES6hMeX0Wq52WeifVH+AXG4PlSCrEMACBhaVK7K44NfO0yExcHUIzEuGuIRPOY+z0I4QIAqOqnEyHkEOKNWMkmAMQNvvfOwjLFBj0xPmM9j6IWCxuEiwRLQvyxtKjXEDTEtdS+pW6zInedrw5AyFU+DnnM60K3w+27tKhlRA2xzk6PjihWa/A4iCrWOfUZ9HTM8+1IiG6yUpeZRywZGTfFsWLtCxNep+5fjMdCKmJDMQfzphChAfjsCz9MsS/+0s9S7HNPXaZY78b3ZJlf/uq7FOvnvHautrkvW4t63wgt3tdzIeAq+9xvkwq5U602m8RBSSkqvFZ/xFqI6otp6ZqQnlRUSJ0vhRzSEKLHfBDxKrHWJwHVHlX9/nCKlB8s/kbNGGOMMcYYY+YMv6gZY4wxxhhjzJzhFzVjjDHGGGOMmTP8omaMMcYYY4wxc4Zf1IwxxhhjjDFmznik1set771KsebiBh94UlcrFca8V17+PMW+0b9JsXf33pJldrMpxeocwl7BxqfDeE2WuVRyvN1kC9bN6x9QrDf5lixzN+Myy5INkaO9A4ot1NnkBgCFCO9sc+zOmNVj+1tscgSAveuvcXB4h0ItYR66dOV5WWb9LNsti5KNUUF87lAhMwKi4+YiZUnMczYfZqk2AYXAKrZcaDUnEy6zqOnxXpbCriQuH0SwVmgDXr2jzJo84Mucy2y1VmSZXWFjS8Vlxm1uY2UeBYCiZP1fmrINbZxy3eMKU5+S3RU5n5/LOul+j5RFCjyx6qKPC6nvA8pCWCfb3PadpZMcW2YbIQB0hHEvEebEdlecvKH7XQjzpKUw0TLXmWmv6HuaGWGSrC3zPdWHbKzrD7Str9/n2AqLeTUt3e+Sj9l2j4KFNd7bVk9doNjZdT2O2nUeNEfbHNs6w88K3TXeBwAgHvK8XGhxY55c4319mklXJiZTnteTEe+34xFbZ4cV4yidCOu0WhQjXhO6q3ocLa1y2y+K2Dhlk+Srb4v9G8DegPet1XXu947YC1a7en8LBVuaB0dDiiUJt0eWVZgHxX6g1m65mlfoFB+n+09ZCiu1j7OXKorU7SkNkT8AD6a0MYrjQrWi8Y8cea0Z277SzPkR6+9v1IwxxhhjjDFmzvCLmjHGGGOMMcbMGX5RM8YYY4wxxpg5wy9qxhhjjDHGGDNnBJmsaIwxxhhjjDHmseFv1Iz5f9uvYwEAAACAQf7W09hRFgEAwIyoAQAAzIgaAADAjKgBAADMiBoAAMCMqAEAAMyIGgAAwIyoAQAAzIgaAADAjKgBAADMiBoAAMCMqAEAAMyIGgAAwIyoAQAAzIgaAADAjKgBAADMiBoAAMCMqAEAAMyIGgAAwIyoAQAAzIgaAADAjKgBAADMiBoAAMBMjDJBRj2FVxQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "### Data exploration visualization goes here.\n", + "### Feel free to use as many code cells as needed.\n", + "import random\n", + "# Visualizations will be shown in the notebook.\n", + "%matplotlib inline\n", + "\n", + "# show image of 10 random data points\n", + "fig, axs = plt.subplots(1,5, figsize=(15, 6))\n", + "fig.subplots_adjust(hspace = .2, wspace=.001)\n", + "axs = axs.ravel()\n", + "for i in range(5):\n", + " index = random.randint(0, len(X_train))\n", + " image = X_train[index]\n", + " axs[i].axis('off')\n", + " axs[i].imshow(image)\n", + " axs[i].set_title(y_train[index])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Include an exploratory visualization of the dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "shape in/out: (32, 32, 3) (32, 32, 1, 3)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAADSCAYAAABJqrmlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAHHlJREFUeJzt3W+sJNl51/HfqZQrTdO+vh4uo2FYTzb2stl1LBOBwLyBBAkFUEgAEQUSlEBIJGJk3hCRN0AwUQyJAAHWOpg/wg6QPzJKJGKTIIISY0JILGSiZbOY1WQ1Hk/Gk8n4ut1ut9vtSh1edBMN8/x698zeO12zZ78fydL6TN+u6rpdz3Pr9nN/lXLOAgAA9WnG3gEAAPBg0OQBAKgUTR4AgErR5AEAqBRNHgCAStHkAQCoFE3+IZJSendK6W+d92Nf5HkeTSnllFJ71ucCgBeTUnpvSul7D7Stv5hS+rlDbOthRWF/iOScv+NBPBYA7pVSuibp23PO/3nsfdknpfRBSf825/wvx96Xlyuu5B8SKaUvGnsfAECS+M1ePWjyD1hK6cmU0gdTSvOU0i+nlL5ut/7elNI/TSn9ZErps5L+8L2/xkopfVdK6RMppZsppW/f/Vr9sbu+/nt3//1VKaUbKaXvTCnd3n3Nt971PF+TUvqfKaVFSunjKaW3H/YoAHiYpJT+jaQrkt6fUlruak1OKX1bSum6pJ/ZPe7fpZRupZQ+nVL6UErpy+96jvemlN6VUvoPKaXPpJR+MaX0ht2/pZTSP9rVo0+nlJ5OKb3J7MdrU0ofSCn9ekrpU7v/fmT3b++Q9AclPbXbx6d260+klH46pXSaUvo/KaVvuOv5fltK6Sd2te7Dkt7w4I7iywNN/gFKKb1K0vsl/SdJFyX9VUk/lFL6st1DvknSOyS9WtLP3fO1f0zSX5P0RyQ9JukrX2RzlyS9RtLvlPRtkt6VUnrt7t8+K+lbJB1L+hpJb00p/akzvTgAL1s552+WdF3S1+acZ5Let/unr5T0pKQ/uvv/PyXpd2lbvz4i6YfueapvlPR3JL1W0lVt65kkfbWkPyTpcW3rzp+V9EmzK42k90j6Em1/6PicpKd2+/g3JP1XSW/LOc9yzm9LKf1WST8t6Yd3+/SNkn7grh8+3iVpLel3SPpLu/+9otHkH6w/IGkm6ftyzpuc889I+oC2b0xJ+vc55/+Wcx5yzut7vvYbJL0n5/zLOeeVtifSC/mCpO/JOX8h5/yTkpaSvkyScs4fzDn/r912npb0I3rxHxoAvPK8Pef82Zzz5yQp5/yvcs6fyTl/XtLbJf3ulNJr7nr8j+ecP5xz7rX9AeArdutf0Pbi5QlJKef8v3POn7h3YznnT+acfyznvMo5f0bbHxJeqDb9CUnXcs7vyTn3OeePSPoxSV+/+8jzz0j67t1reEbSD57hWFSBJv9gXZb08ZzzcNfax7S92pakj7/Y1971/1/osZL0yd2J9v+stP0BQymlt6SUfnb3K7FPS/oOSSclLwDAK8pv1pmU0hellL4vpfQrKaWFpGu7f7q7dty6679/s+bsLmie0vbK+tdSSv88pXR078ZSStOU0j9LKX1st40PSTp+gRmlL5H0lt3Hn/OU0lzSn9f2N5m/Xdth8rtr5ceKX3mlaPIP1k1Jr0sp3X2cr0j61d1/v9AtAD8h6ZG7/v/rzrAfPyzpJyS9Luf8GknvlpTO8HwAXv5c/bl77Zsk/UltPzJ8jaRHd+tFtSPn/M6c8++V9OXa/tr+r5uHfae2v3F8S875SNtf8d+9jXv38eOS/kvO+fiu/81yzm+V9OuSev3/tfJKyb7WjCb/YP2itp+Hf1dK6VUppa+S9LWSfrTga98n6Vt3g3tTSd99hv14taTTnPM6pfT7tT15Abyy/Zqk17/Av79a0ue1/Sx9Kunvlj5xSun37X6D+Cpta+Ba0m/s2cbnJM1TShck/e0X2ccPSHo8pfTNu5r6qt22nsw5/4akH5f09t1vCN4o6S+U7nOtaPIPUM55I+nrJP1xSXck/YCkb8k5f7Tga39K0jsl/ay2Ay3/ffdPn38Ju/JXJH1PSukz2v6w8L4XeTyA+v09SX9z9yvvrzf//q+1/XX3r0p6VtIv3MdzH0n6F5I+tXuOT0r6B+Zx/1jSb9G2Pv6CpP94z7//E20/b/9USumdu8/tv1rSn9P2N6W3JH2/pC/ePf5t2n5kcEvSe7Ud6ntFSzm/0G+M8bBIKT0p6RlJX3zPZ+8AAFhcyT/EUkp/OqXU7f4U7vslvZ8GDwAoRZN/uP1lbYdJfkXbz7PeOu7uAABeTvh1PQAAleJKHgCAStHkAQCo1EHvNPSGNzwZPhvoWrMLwxCW5n1c6y740LbJ8YWwdun14d4IevPjXxHWTo5DKJMePZqFtf7OM2Ht1q24NvS3wpoktUNcn3WPhrV591hYW88uhbWTo8txI5vTuD+LuN0bz8b9lqSff/ojcdtN/LmwX6/iFw+TuKR4HNV28fkm07A2u/xIWJOkN73+8bA2be5NCJZmzSas/cO//w4CgVDsS7801q+mie/fpo21qnVrnTkfJC27WINOHntzWHvzE78nrF2+cBzWrpi1YfV8WDtdXA1rfRtrjSRNJ/F8bIZ5fNzmTli7/ksfDmtPP/dLYe32wtSGIdb2tdmGJK1WcX0YYm0ZJrGPTE8uhrXW1KXji/Fxjz8aowc6mRopqVnHY/bup9xfGkY556L6xZU8AACVoskDAFApmjwAAJU66Gfyrfn8fdPHz0obs1ut4ucz7WZpt9PPF2Ht5jPxsd065spceSJ+dt/2cX+unMTPyC608fOZxZ2ft/u46eP+nCp+/jWZxc/dpkfxZ7NJH1/zsLoR1p796AfD2nPP+c+0pPj5V7+O21mb47hZx9fXTuJxbNr42X3bxs8quzZ+HiZJTWPeK+Z91u95rwDl4ufq/RDf+625dtqYCKt+iLMjktSZr58//2xYu+au0R6L9Ut9fNzlC/G+LccX42fTfb8ne2tl6mkfZ4CeffpDYe3558w8gPnIehFbgyZmhmc29bMNg5lJWq3i93A2iTMLbWfqjTncjZtRMvNjbeuvpzdr8yLPGVfyAABUiiYPAEClaPIAAFSKJg8AQKUOOni3MsMaZm7BDjN07nFumkVSa8J02iFu++pzMexlbgZp9ETc+HpwoRNx8O64jQN6knS6iIMdLnjCzKWpMQMujQmEcCE316/GYbzFKg6zSFI/mLeHGSoZNm540rw+xRczncbgj7Yzw3R7fhy1gy9xF+W+rcD9MW8iE7LU9/G933VxiLWbmDeqpNY8Z2MGa29di/VruYkTbKsrcRhv3cdadWJCvxpTNyWpW8dQrWsffTqsXb16Pay5gbqlObTtNJ7bzRCPQzP4oJlJF+vaZhk3PvQxkMble7mQtY0pNq7+qDGFXH7w+LxxJQ8AQKVo8gAAVIomDwBApWjyAABU6rCJd2YgbrAxQi89WUoqT5caK1lKuo90qZGSpaTydKmxkqWk8nSpQyRLoW6TiUndbOIJtVzE87iZxPNmcuTLb7+KQ22bTRwO22zie//WVfM+d3NpzRvNds3dO4/8UNuzH/0fYe3G82bIrjfDbyaRsjHDto05jy/OTGrqbX9ur8xAcC+zto71y02ET2axfpkQRLm26lI4JamZmuc8Z1zJAwBQKZo8AACVoskDAFApmjwAAJU66ODd1AxZuZEJNxxRmiwlladLjZUsJZWnS42VLLXdn7J0qbGSpaTydKlDJEuhbjMzJNUM8dxpp/FNeWcRkyaXJgFSkhpzG+qZvX2yGfBr4zl7/VockluYc/GNjzwR1k4HM5Qm6fp1NxwYX89q4wbY4vMtFrF+deacnVyI34Nhzz7KDDK7cjG4gWez1ptBR/u1brjPly9NJyTeAQCAl4gmDwBApWjyAABUiiYPAEClaPIAAFTqoNP16uIkYduYCEDF6dLS+EipPEJyrPjI7bbLIiTHio+UyiMkx4uPlEojJA8RH4m6uUno5SLWi968WSddPB/Wyxi1LUmtiZN2la5x0/lm2rtR3Mc7N66FtavzuI/H3Z4Trz0KS4OZhm/M+dk08XWfXIh/hbQyf6Fz41Z8LZM992ofTL9p3NS8e4lm0aSya/CLcbt7CtjesnaOuJIHAKBSNHkAACpFkwcAoFI0eQAAKnXQwbvBDNl1XRyS69zgVGF8pFQeITlWfKRUHiE5VnykdB8RkqPFR0qlEZKHiI9E3dbLWC/6Pp53bpB1ata6Pe/pjT0n4uMaM7QqU+faJg75Hh1dDmuzSXzcahnrnCR1Zjh2bV9PPBnni7h2PHs87uMsDug1jTm5TRS5JHXmGnZmpqPvmNfY2OG5+Hx+7s48zu6h1LQPfvSOK3kAACpFkwcAoFI0eQAAKkWTBwCgUgcdvGtMAtFkEu8JPzF7VZosJZWnS42VLCXdR7rUSMlSUnm61GjJUnse7NKlDpEshbrNV3Foy6UrugBJ9/4181mS/OBeYwtTrF9tdxLWTi4+FtYm01hXbs/j+b5UfJwkzTambjexjmw2cVhxuYqvb2nSQlszWNjN4mueHZkJY0kzM9Q9aeLg8Xzph6PvNZha5b4vrs71e66n2z1po+eJK3kAACpFkwcAoFI0eQAAKkWTBwCgUodNvBtMgpHiIMVZkqWk8nSpsZKlpPJ0qbGSpaTydKmxkqW262XpUodIlkLdNqY4DPY6yd3+2NULP/A6DPH8brtYB9ou1pDZURysdQPPd05jcuXS1NjuJA7ySdLlYzPgN4nn2PPPPxPWzJ2ptVrH1+yq0mZujo1JJJWkN12Kx2JqBgHb7lrczhB3sjHfF1eYXEKq5IcDB3PMzxtX8gAAVIomDwBApWjyAABUiiYPAEClDpt418dhrPk8jle4dKjSZKl9X+/SpcZKlpLK06XGSpaSytOlxkqWksrTpQ6RLIXK2Vtlx6G2rovnzcSsbfy8q+breH63s3iOnRxfKdr2zTvxvJuv4jYuXI7Pd2HP4N1Fcxvqk1k8PpPm0bg/1+6Eteu3Y/0yM3ZqB3MrcJNmKkk3b8diN5vE49Mdx7rbrOPjbB5qH7fdu8HxqXs+aWEzVs8XlQ8AgErR5AEAqBRNHgCAStHkAQCo1EEH7zZrM6Rg48lcillZspRUni41VrKUVJ4uNVaylFSeLjVWspRUni51iGQp1K1p4xBsN4nvtenUDQnH97mZ2ZIkDTLbMQO8rRmyOz11A7huENlswwzQ7hvKnUzi+toUnNks1s6LF+L+3DT77ZqDu410u+dadW5uob0wPeh4Emvs1NxdXDIDdebY9uv4fMtT/80+Mu+V80blAwCgUjR5AAAqRZMHAKBSNHkAACp10ME7d4vUxqRIubXSZCmpPF1qrGQpqTxdaqxkKak8XWqsZKnt/pSlSx0iWQp1aydxWG1t5kE7U1U7c9vmvfXLnHdumHhh6tfcDNb2pswPZqBuvjDnUuvPGzcwNu3icz5//WZY25iauHSDtW4A2zxs322o7TVsb475JNbYfjCDwzLDk4W3QO/8JJ+OjrjVLAAAeIlo8gAAVIomDwBApWjyAABU6qCDd4PbnLuN6xmSpaTydKmxkqWk8nSpsZKlpPJ0qbGSpaTydKlDJEuhbtNZHNA6nd+ID1yYYeJpPG/MHLIkqTMDfk0ba9DKTP252yy7zbjbca/Wi7C22ZPUdukk1pvODJzdvBOHf1crk7pphg3dBGPnEjJ7f27b21AP8Tj2pg+44W31cbC6VXxcY3paZwa6Jant/GD2eeJKHgCAStHkAQCoFE0eAIBK0eQBAKgUTR4AgEodeOTYTdKbaXYTiVoaHymVR0iOFR8plUdIjhUfKd1PhOQ48ZFSeYTkIeIjUTsTyz2YOrCKE+mnpoAN7hyR1B3F82RiamK/NNP1dmTfTICbv5zpTfb3YB4nSe0Qz6fWPXSIz9mbIrIxtXN6FKfeH3F//bSMsdqSdGse/1pgaerIZmP+GsL1i9Y8zkz2D64emr+OkKS1OT7njcoHAEClaPIAAFSKJg8AQKVo8gAAVOqgg3currZp45DJdGZiZAvjI6XyCMmx4iO3z1kWITlWfKRUHiE5VnykVB4heYj4SNRtMb8V1gZTWNxgmVxEtDmPJak3lWTjtuO+tnAw1u6hGSJs9nSIwQzeqYlfPzuK5+egOCg3M3VgMOfslUcuhrVu7WvDcD0O9Q6ncR8HV6tcwzAD3e5Iblxk8L7o8D394TxxJQ8AQKVo8gAAVIomDwBApWjyAABU6qCDd82eZLXopSdLSeXpUmMlS0nl6VJjJUtJ5elSYyVLSeXpUodIlkLdNqv4Pvfie9INmO6rh5uNGbwz9c8lVbphPjcI5mrNntEwu2rnyMxrvPLoI3F/TILodBpr8dIc75kZqm7NALUkPdpcDmuNboe1W3NTi80xc/XU1eLSIUlJWpljcd64kgcAoFI0eQAAKkWTBwCgUjR5AAAqddjBO3MrVZlBiEUMPLuPZCmpNF1qrGQpqTxdaqxkKak8XWqsZCmpPF3qEMlSqJx5r/pbsZpaY4bkmj1xcus+DoJNzLa7Jt5SuTe1wdZJN/TnHrZ38M4MF5pBXQ2n8TnNUG5vh6Xja3FHzNx5e+/X971J8XQV3hZ4tyFT80tvxy1pOonfw/PGlTwAAJWiyQMAUCmaPAAAlaLJAwBQqYMO3g1moGRQHIQon5HyP6OUpkuNlSy1XXfMQMpIyVJSebrUWMlSUvmg5CGSpVA3V0PawsGrtRks84PIUt/E9+p6GYdbL5hbKst8bW+qTXH+455i7AaHN+ahN2/GW2Cv53EgeG5ui23mdHVxFof7+kU8NpJ07drNuD9mqntqanlrEjJd6qqr726m0X2tJD1y6cSunyeu5AEAqBRNHgCAStHkAQCoFE0eAIBKHXTwbr2OAxetvd1i6QDbnjSmwnSp0ZKlpOJ0qbGSpaTydKmxkqWk8nSpQyRLoW6uhtj6NcTHubmr1txSWZI25jbUKzMwdtzFRMqJeZ+vBnMu2iFhN0S47yapcX21MgN1p3FtdRoHfVfmmMm8lueuxoHextz+WpJOF+Y1mrq96WPtlBnU7bq4P4OrkubYNntvdf3gWzBX8gAAVIomDwBApWjyAABUiiYPAEClDjp45zfmEoNeerKUVJ4u9VAlS0n2BY2VLCWVp0uNlSwlladLHSJZCnUzb19bq4pvQ71vqM2tb+Kw2nIZz7uui+ds25oEULOTLn3SDpZtnzWsuKFeV4tLwyc3ZqDumqk/7d7hQPON6ONzbvpYqxoz8Nyb72E7McfBHNv10neC+fzB3wKbK3kAACpFkwcAoFI0eQAAKkWTBwCgUocdvDOTKzbv7AzJUlJ5utRYyVLS/aRLjZMsJZWnS42WLCXdR7rUQd/qqJAbTHMDuO696mravslhN+DXNvG86zc3zHNeittuY/2amXq6NufsvrGwpRnqPZrGAb/N2j2nGWpzqZtlYaga7M2lpWYwCaumNrg+MAyxBrnvYdOaNFQztNd1Znhb0tpNUZ8zruQBAKgUTR4AgErR5AEAqBRNHgCAStHkAQCo1EFHjv0kvYkKPFN8pFQcITlSfOR2f0ojJMeJj5TuJ0JynPhIqTxC8hDxkaibewcNbirccPVrHxfh3br4b/PXPDLnmHs+tdOw1HWxfq3dNiQt7sSauF7Eaf/N2vxVgI2tduLjzB9JqRlinZKk1qw3m7i23rjJfnO8zTYas0PuHWHK8/ax7q8uzhlX8gAAVIomDwBApWjyAABUiiYPAEClDjt451IhzUDKWeIjt89ZFiE5VnykVB4hOVp85J4dchGSY8VHSuURkoeIj0TdfDS2Hccza+6970+8pjEDvG7izG46DpYNvYl5buI50s5OwtrR1J9380WMqDazapq6El14Kk66WGvW6zthbbWOw9KStDHDv24a2c4Su0FfNyRuo9pNLd7TB/YkG58rruQBAKgUTR4AgErR5AEAqBRNHgCASh32Jttm+KB08K40WWrfczpjJUtJ5elSYyVLSeXpUmMlS0nl6VKHSJZC3QaXXumW3CTXfSTeDeZJXbLjxA19rd2QnYsQjc+3Wsb608kn3g3mXG5NTTu5EJNBBzMkvFnHetEv4pDdenk7fu2e6TXbM8yw40Zxv1tXL1y6ndl2Y6pS76YSVTyDeCZcyQMAUCmaPAAAlaLJAwBQKZo8AACVOug0UmOHFMzjzpQsJZWmS42VLCWVp0uNlSwlladLjZUsJZWnSx0iWQp1a2y1csNY8T3ZmfdvY25Nvd1O2cm82biBYHOSuW2blzJs4nm8mMcBY8nv43od65cdZG7jdpo21tNVF+tp25oTebXvntpxH11K6sSkadrUzcE8n0tSNa+523M5fYirbK7kAQCoFE0eAIBK0eQBAKgUTR4AgEoddPBuaiPUTAKRTSoyS3aSyz+nM1aylFSeLjVWspRUni41VrKUVJ4uxdwdzqo153dvbhlth0Td0p5hUjsIZvfHDCiv4mDs2gwEb/pYa1ygn7u9riS1k7hHk0k8vweT4tmbdE53LAbz+rouHpupGYiTJBew6QawJxNzO113bE2dcz3E1qSlvx1uexLr9nnjSh4AgErR5AEAqBRNHgCAStHkAQCo1EEH747MYMbKDEf0Z0iWksrTpcZKlpLK06XGSpaS7iddapxkqe2Wy9Kl+GkWZ2XrgBnydIN37vbX3Z7i0JuhuG4aB7Sm3YW4Zp7zzuJWWBvsbbbNmkkFlaTOnMsTMxS3WrjbUJtBQLONjanvbvjNfl8k9W7Q1wwtu9RMV3d7s+2pSw50dxw3vW+7oQdfmah9AABUiiYPAEClaPIAAFSKJg8AQKUOOnjnRg96MxDn0s2Kk6Wk4nSpsZKlpPJ0qbGSpaTydKmxkqWk8nSpQyRLoW4uYbPrpmHNDgSbt+/G3I5ZkjamCg2T+ASXzP2le5Ny6Qb8/I27Xayo38ejqRn6M+f38YX4uMWtm2FtZeqpOw5tG493t+c+rhtzLPrS12gK9GB60NrVWJOGutgzHHhpz63IzxNX8gAAVIomDwBApWjyAABUiiYPAEClDjp4tzYDdWszmHaWZCmpPF1qrGQpqTxdaqxkKak8XWqsZCnpPtKlDpAshbq5wTQ3dOrSNe+Huzu1S3ZcrWNCphsObEy9cImdjdnGvtt5u0G5+TLWoPbilbDWzWKN7UxtWNl0zbJaI0nT1vQW14Pc8Jx5vsYMFm7WZsh3cxwft2fwbmmO2Xmj8gEAUCmaPAAAlaLJAwBQKZo8AACVoskDAFCpw07Xm7XBzHufKT5y+6SBi5AcKz5yu14WrzhWfKRUHiE5VnykVB4heYj4SNTNTs27+4nvq0ul2zFrLqJ65abhzXvf/QWTiw7vTKz2vgK2MFPhzTSeY6fLO3E7ZpL+5u1Yq/om1jmbsrvneLv+4Cbxe1ODWvNXTcNg/tLJPM79dVC/Z7re/UXCeeNKHgCAStHkAQCoFE0eAIBK0eQBAKjU+PeTH+LglJv1qCk+UiqPkBwvPnL76LAdM7gyVnykVB4heYj4SNTt2vXnx96Fl51rY+/AQ+LGh8fbNlfyAABUiiYPAEClaPIAAFSKJg8AQKUOOnjX2HsYx11o3H3iK0qWksrTpcZKlpLK06XGSpbaPmdZutQhkqUA4GHDlTwAAJWiyQMAUCmaPAAAlaLJAwBQqZRzHnsfAADAA8CVPAAAlaLJAwBQKZo8AACVoskDAFApmjwAAJWiyQMAUCmaPAAAlaLJAwBQKZo8AACVoskDAFApmjwAAJWiyQMAUCmaPAAAlaLJAwBQKZo8AACVoskDAFApmjwAAJWiyQMAUCmaPAAAlaLJAwBQKZo8AACVoskDAFApmjwAAJX6v4aYFxNm4w44AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "def random_translate(img):\n", + " rows,cols,_ = img.shape\n", + " \n", + " # x and y directional translation\n", + " px = 2\n", + " dx,dy = np.random.randint(-px,px,2)\n", + " M = np.float32([[1,0,dx],[0,1,dy]])\n", + " dst = cv2.warpAffine(img,M,(cols,rows))\n", + " dst = dst[:,:,np.newaxis]\n", + " return dst\n", + "\n", + "X_train_normalized = (X_train - 128)/128\n", + "\n", + "test_img = X_train_normalized[1000]\n", + "test_dst = random_translate(test_img)\n", + "fig, axs = plt.subplots(1,2, figsize=(10, 3))\n", + "\n", + "axs[0].axis('off')\n", + "axs[0].imshow(test_img.squeeze(), cmap='gray')\n", + "axs[0].set_title('original')\n", + "\n", + "axs[1].axis('off')\n", + "axs[1].imshow(test_dst.squeeze(), cmap='gray')\n", + "axs[1].set_title('translated')\n", + "\n", + "print('shape in/out:', test_img.shape, test_dst.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Visualize the German Traffic Signs Dataset using the pickled file(s). This is open ended, suggestions include: plotting traffic sign images, plotting the count of each sign, etc. \n", + "\n", + "The [Matplotlib](http://matplotlib.org/) [examples](http://matplotlib.org/examples/index.html) and [gallery](http://matplotlib.org/gallery.html) pages are a great resource for doing visualizations in Python.\n", + "\n", + "**NOTE:** It's recommended you start with something simple first. If you wish to do more, come back to it after you've completed the rest of the sections. It can be interesting to look at the distribution of classes in the training, validation and test set. Is the distribution the same? Are there more examples of some classes than others?" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "shape in/out: (32, 32, 3) (32, 32, 3)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAADSCAYAAABJqrmlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJztnX+MJGl93p9vVXVNT2/v3LK3LMtyt5zhxK8QZKEAVmQHnFgJkbETJwiDcQDHiQ0JkSKIIHKCDQ5ItqNEAWEHHDuHE4yxYzsJIOcHUgzYIcbBjkPggs/r03I/9vb2ZmdnZ3t6eqqr680f3SvNzfPUXc/t3ey68nykk26/U/W+b71V9X67up5+vpFSgjHGGGO6R3ajB2CMMcaYpwYneWOMMaajOMkbY4wxHcVJ3hhjjOkoTvLGGGNMR3GSN8YYYzqKk/xNRER8JCLe82Rv+zjt3BERKSKK623LGPPEiIhzEfEdB9j+2yLiD5fc9lUR8cATH93NTUS8NyI+vvj/MxExioj8Bo/pLRHx2zdyDNfwwn4TkVJ661OxrTGmW6SUfgvA85+MtiLiYwAeSCn94yejvRtJSuk+AMPrbSciPgfg4ymln7vuQd1g/CR/k3CjP3kaY/5k4G/dzEFwkn+KiYgXRsTnImIzIr4WEd+9iH8sIv5lRPxGRGwD+PZF7P179n1XRDwUEecj4m8tvla/c8/+71/8/6si4oGIeGdEXFzs8wN72vnOiPhfEbEVEfdHxHsPdxaMMUvwsoi4OyIuR8RdEdEHHnV/vzsiLgC4a/9X8BHx0sU9fjUi/l1E/PLetWSxDa0PEfFDAN4I4F2Lr7k/vYifi4h/EBFfiYgri/b6e9p6TUT8wWJd+2JEvGTP394dEQ8uxvKHEfEXFvGXR8SXF+vQwxHxz9UkRMTTIuIzEfHIYi4+ExG37fn7N0XE5xftfxbAiT1/e9Trx/2vQfZ9td+PiI9HxKXFcfzPiHhGRHwAwLcB+PBiTj682P4FEfHZiNhYHNfr9rR7a0R8anFsvwvguUue86ccJ/mnkIjoAfg0gP8K4CSAvwfgFyPi2tds3wfgAwCOAvjtffu+GsA7AHwHgDsBvPJxujsF4BYAzwLwgwB+OiKetvjbNoA3ATgG4DsBvC0i/up1HZwx5snmjQD+EuYJ4nkA9n59fgrAcQDPBvBDe3eKiBLAvwfwscU2vwTge/a1LdeHlNLPAvhFAD+VUhqmlL5rzz6vA/BqAN8E4CUA3rLo76UA/jWAHwZwK4CPAvhURKws1ra3A3hZSuno4njOLdr7IIAPppTWFsf4Ky3zkAG4a3GsZwDsAPjwnr9/AsDvYZ7c/wmAN7e083i8GfM5uX1xHG8FsJNS+kcAfgvA2xdz8vaIOALgs4u+TwJ4A4CfiYg/tWjrpwFMADwTwN9c/HdT4CT/1PItmL8f+omUUpVS+m8APoP5BQIA/zGl9N9TSk1KabJv39cBuCul9LWU0hjA+x6nrymAH08pTVNKvwFghMU7u5TS51JK/2fRz1cwXwQe70ODMeZw+XBK6f6U0gbmH/7fsOdvDYAfSyntppR29u33LZjrqz60uP9/HcDv7tumdX14DD6UUjq/GM+nAXzzIv63AXw0pfSllNIspfQLAHYX45gBWAHwoojopZTOpZT+eM8Y7oyIEymlUUrpd1SnKaVLKaVfSymNU0pXF3PxSmAurAPwMgDvWczFFxZjeyJMMU/udy6O4/dSSlst274GwLmU0l0ppTql9PsAfg3Aa2P+qvWvA/jRlNJ2SumrAH7hCY7pScdJ/qnlNID7U0rNntg3MP80DQD3P96+e/79WNsCwKWUUr3n32MsBCgR8YqI+M3F119XMP/EekI1Yoy5Yey9x7+B+RpwjUfEg8A1TgN4MD262tj+9aJ1fXgMLrRs/2wA71x8xb0ZEZuYPw2fTimdBfD3AbwXwMWI+GREXDuOH8T8G4qvL74af43qNCIGEfHRiPhGRGwB+AKAY4tkehrA5ZTS9p5dvvE4x9HGvwXwXwB8MuavRH9q8e2r4tkAXrHvmN+I+TckT8f8Q9b+83dT4CT/1HIewO0RsXeezwB4cPH/j1UC8CEAt+359+3XMY5PAPgUgNtTSrcA+AiAuI72jDFPPnvv8TOYrx/XeLy14lkRsfeePsh6cdBSpPcD+EBK6die/wYppV8CgJTSJ1JK34p5YkwAfnIR/6OU0hsw/7r7JwH86uJr8P28E/NvGV6x+Gr/zy3igfmxPm3ffmceY6zbAAZ7/n3q2v8svtV4X0rpRQD+LOZP62+69mdxzJ/fd8zDlNLbADwCoAafv5sCJ/mnli9hfpG9KyJ6EfEqAN8F4JNL7PsrAH4g5sK9AYAfvY5xHAWwkVKaRMTLMdcCGGNuLv5uRNwWEccB/AiAX15yv/+B+dfkb4+IIiL+CoCXH6DfhwE85wDb/ysAb118QxgRcSTm4t6jEfH8iPjzEbGC+TvqncXYEBHfHxFPX3yzubloaybaP7rYb3MxFz927Q8ppW8A+DKA90VEGRHfivma2sYfAHj9Yv39MwBee+0PEfHtEfGnF98QbGH+9f218eyfk88AeF5E/I1FW72IeFlEvDClNAPw6wDeu/gW4kV44jqBJx0n+aeQlFIF4LsB/GUA6wB+BsCbUkpfX2Lf/wTgQwB+E8BZzG9kYP7u66D8HQA/HhFXMf+w0CZ4McbcOD6BuUj33sV/73/szecs1pm/hvnX4ZsAvh/zpLTsWvHzmL9D34yI/7BEf1/G/L38hwFcxnx9esvizysAfgLz9e4C5k/tP7L426sBfC0iRpiL8F7f8griXwBYXbTxOwD+876/fx+AVwDYwPwDwL95jOG+B3OR32XMdU2f2PO3UwB+FfME/38BfB7Axxd/+yDm79svR8SHFtqAvwjg9Zh/w3IB828jVhbbvx3z1xkXMBdA3vUYYzpU4tGvcczNSkS8EMBXAazse7dmjDGPIiK+BOAjKaWbJtkcBhHxHAB/BKBITm4A/CR/UxMR37P4SuppmH9q/LQTvDFmPxHxyog4tfi6/s2Y/+Rt/xPw/w+8GHMVvBP8Aif5m5sfxlzU8ceYvyt6240djjHmJuX5AP43gCuYC9dem1J66MYO6XCJiHcA+FkA//BGj+Vmwl/XG2OMMR3FT/LGGGNMR3GSN8YYYzrKoVYzeu5zX0jvBspCDKFpKLRZc6w8rk3b+seOU+zUc15MsZc875spduLYGsXuWGNjqHr9qxS7cIFjTX2BYgBQNBwflndQbLO8k2KT4SmKnVg7TTFUGzyeLe73gbt53ADwxa/8Pved8efCejLmnZs+h5TBVlFye/0BxYanb6MYALz4Oc+j2CDjX+UMs4pi/+yffsCGQGZpvvd730jrV5GL56SGX4GORaw4og3negP2h1l7Ol//t59iv5Wjg1WKnVhdodjs6oMUu3KFS86n5oocYybi/YLX43HxDIpNV26h2HD1GHdSb1MoTbjfyw/yuAHg7ANsOjcNvuVnU14bkNj4LoHXNGRcPHTW4zVN5SQAeNZJXsvLmPL+wXrrd7/rHUutX36SN8YYYzqKk7wxxhjTUZzkjTHGmI5yqO/kC/H+var5fUgmhlWA33MU1Uj2U29ytcDzX+Vtywm/5zjzAn53X9Q8njMnXkKx48VJim2tf1GOsap5PBvg9zP94UspNljjz2b9mo+5GfO7qru//jmK3XPPuhzjvDT1o6kn3M9EzGM14eMr+jyPWcHvuYqC31WWBb+nB4AsE9eKuM7qlmvFmGXJxfv3esbW6yGendSaltXadXY2Zk3J5oO8bTHlvqtn8rv7bMbvu289ytsdyY9SbHL1rBxj3fB4tsHv2nsrz6ZYucqvknvN/uq5QBKaovMPsSP4hYfb7m3WNsymPLfTKeu96ikfX97j9+9R8nnNc7Gm5Zy/AODRtcsW+wvd02z2xD3Q/CRvjDHGdBQneWOMMaajOMkbY4wxHcVJ3hhjjOkohyq8G49ZICE0BshEsFTbVVqMUAgznaLhvs/ew2Yvm41o8wXc+aRhMcuZ4yy8O1awQA8ANrZYSFYXLLwTujRkNQtSsorFc8rk5r6zLMbbGmtRSN2Iy0OYEjWVEk+K4xNmEoMBmw8VQsxStHwcVdeKGCLUaTXmIOzushhLrV8RbKRSCNuSEKI9AMhFPZEscd8XH2azl3ESF/8zufNp4vvz1iN8Lw6y2+UYRzu8ZjQ5C+8yngpEwyY3WX2VYpfOs2HPpYcvU2xS6TQ2a1gop4zWUs2LQyaE3jPwwayssPlQJgSaWYttTabMeUQ5maQvlaXwk7wxxhjTUZzkjTHGmI7iJG+MMcZ0FCd5Y4wxpqMcruOdED006nNGJhyIhHKqaPmMovR4dcNOR6XYf/Peuyl2TvVzJzvjoebtTh/nSlEAcOwkV2yqhQAEQqxYCuHd3V/5AsXuvedeim2IgnFboggTAPRFhbjhgN3oGuFMNR7zORz2WaxYlMLJbkkxJgDUQmVXCJVeNWk5SGOWRAniUiMUVTlv1wjlVAatxlLC0ZhyZbJC7D9+5DzF1lU/J0VVR3Esx47cKsc4EJU5G7G+Y5fX3UII7x68/x6KPXLhEYpti9t4p0VU2xMV4voli3+TqHZXVXwO+z0lshOiZSnG1Od6JqoTZkKlN53a8c4YY4wx+3CSN8YYYzqKk7wxxhjTUZzkjTHGmI5yqMK7gRBZKTlUraIZx+palx8tSy6RWvaFQEu0mYmSrRfOsTPeqGIF2/gMi/EmNbvgAcAJIVzJhCtfOblAsXNf/wrFzp69j2JKUDcS+o1ioD/rZQ3PRdbwcfdLFp9UI+68qTcpNhFCwP4xPn+VUiNBi5SQsbhGlbQ15iCUQoiq5FCNigbHmpl2mswLLpFa9FiglYs2Y8YlW6+sszPerijxXd36LIpNZ+yCBwBHV/l+isQ3czG9QrH1h9h18+LFSxTbES5vu+J+z0otaovEor9IfNw9VZpalM9OohzuVKyxPSFOVgI7QBrwATk764WILYuf5I0xxpiO4iRvjDHGdBQneWOMMaajOMkbY4wxHcVJ3hhjjOkoh6quh7AULDJROxysMi8yVm6OtrTVX9ZndWN/TSgox6xcrypWgFcVSyAvnBWySqEUR/YiOcZ6zAryU2vcwN1f/zLFHrhXKOlroXAXqtFM1GrPWoq1nxzyttVFPu6xqCevfiFRT9j+VhXk7g/Z/hZaXA91CRfquAeiTWMOQsEK5zz4+hVVzJEF3w+7O/qiznq8Tvb63E9TsXK9nvEaUosC5VcuirVT/dQpWlThwjv8llVu4MGHzlHs8iNKSc/37CzjvkPUas9zra5fW+Ft66s87krYiatfSDRTzksQdrW9FfGrLz2NUFdLLo4xlP33kvhJ3hhjjOkoTvLGGGNMR3GSN8YYYzqKk7wxxhjTUQ5VeNcIkV1ZskiuVMKphj+PFAMtXFnfYtvEEYTVac1CiqGyOBQik6xgy9f7zrFIbktYuQLAi257AcU2Gham3XefEgfysYwrJWDjfre2WLRXtli+9o+zWK0RY4QUrjCN2E7tWwuho9wXgFILKavbQd+2tub6SEJkV4h7Jxd1zLPEAq18Rauxru7wPTaBsDptdinWF0LWRtwQkbPl66X1cxTbEUI+ADh9/JkUGyWuy75xSYgDaz6WaqYEbNzvjpibotGWr70jLFZrRC17zMR6I9pLYjvM2Hu3EULHRu0LQBkjz5LIkz3b2hpjjDFmH07yxhhjTEdxkjfGGGM6ipO8McYY01EOVXiXCce7fp/FEX0xqtEWC9jqFhu0fslirMmIhSbFkvWhMyHaU4KxDDzG9QfOyTGe3eQxHivF8RRcz7kRYp9MnMos42M+cZzr249F7XcAeOACH09f1GpvxHnNlKBOnS4RVDWWG1l4WW+cieui1TDPmCUJ4XjX6/Eaogwkd3dYwDZrsUHrFSzmmu5OKZYLIbMowY4Qoj0lGAtwH1cvr8sxXtzh+3s1F8eTr1IoqXrp4nkzgsdz9MhRiu3uqqMGNq7wnPcy7rsR5zVruM1anS5RJz6J7VJqWYHExiFWq1bDvCXwk7wxxhjTUZzkjTHGmI7iJG+MMcZ0FCd5Y4wxpqMcruNdw0KwDCxcmYzYia6u+fNIW4nUgYiXQgimSgzWQoOWCRcpCDFekXH52LW103KMwz5vOx6xi14pyq5OpPsbizU2tzh2bPg8HuOQzwsAZJkQi9RijOKz4lDU3V0Xx5dJ4Zxw7WrV3YltxXZZYemduT5Sw0KwEEtovcv3U9Owo1uW6RKpKyJeiP1r5dQmloYIde2rsrlsMbe6qks0r/TYTrOa7FCsyFlYPRWiPyUtG084Nlg5xWNc4fMCACFK1WImxgie2xXhpDnd5X1DCue4PSXGA4BGOCGqTeWxLImf5I0xxpiO4iRvjDHGdBQneWOMMaajOMkbY4wxHeVwHe9qFmNtbiqRCgtFClECtkV3J/cX+iwp3Muk5Z1wtSpPUOzEyTsp1h+wYx0AXNxkN7kReNthJRwBMxaFVBWLFUdjPr6RqBxZSGEhUA75uIdrLLgZinLB/YxL2m6OdNnd/ajSmPK8QLvo1eKza9F2sRizJNHwfTces+grCRe0LOfys7nW3aER7mhCn4VMNJCk5R2vnXnB9+zRtWdQrBBulgBwdcwLyQTsbteveQ3phRA8z7hs7u4uH98ub9YqYCxW+LhXVllcuCIcRHtxiWLjXV12dz9JlJoNbcqnDPPQiPVLXD5L45XPGGOM6ShO8sYYY0xHcZI3xhhjOoqTvDHGGNNRDlV4V01YZCfLjwohmBIjtA2/EEKKQojVGmEPVZTs8FSU7E43XOOSraqU7vrGhhzjSDj4lSdYzHf6mBD49XnS7r33qxSrhHvfeMLHrP3ugGpTzE/FsRef4rkYCCFgUZ7jPoSYKVO2XS2Wd7UYD8CiokbMtzEHoZ6yyE4JpxDC3U64oAFaTZVnLA6DEKslobLLhMNcXhyh2Moqi3xDlIAdbW/LMU5mwpXvKN93xwZcGnbY43v5kYsPUkwZe1ZT3leEAADbwlkvqzl22y08xqLmVTHPuexuLdaqUGVlWyzvZmI8AJ//NHvi65dXPmOMMaajOMkbY4wxHcVJ3hhjjOkoTvLGGGNMRzlU4Z0qkZplPAQVK4WorSzZTQkA+iJeCXXZ5oRFX8WQxSMnjp1Zqu/z6+zotjkW6jcAx09zm8eF8O7kcRYCnhjy/PSzO3g851goct9FFsQJfR0AoGhEGc0RT+T5i+wENezz/JTHWOyTTdQ5FAMSQpj5eERZ4gG3uaXaNOYATEVpV1WGOoIFdUXBojbl4gkAPRGvRTXV8S5f03mf18nh4Nal+t68yvfxWApbgSPHuM0jQxawrR1hIeCwz3PWC7ay21y/SrGNLd5urOxMAWRJCLh3eSI3r/IavSLmJx+wo19M1TkUYrqZLofbTPh4ZiW3uSMLaC+Hn+SNMcaYjuIkb4wxxnQUJ3ljjDGmozjJG2OMMR3lUIV3jepOlXEtWKxR9lkQNxi0ON4Jdzul22og+hGlYQshstvYUKVdVYlb7gMASlGeVZV87QuRykRY2Q2H7Mp38jiP57wYt7YdBDIh9ijE58LNEY9nS7gbHuuzsHAgK1kKMZ2YWwCoJ9zmaIP7Xmu5VoxZliSu/UaUcS1ysab1lHC4RTAm3O2UbiuB+8mFQDkXIrLtbb5Hdit2ZUuhxc1Fwa5suXD66/U4NhUC7P4Ku/KtHeHxbG6LWrMtbpjaZZBjygV0J+cJH/R4zV5hPSUAHmMj5hYAZlMWK+5uc9/Rcq0sg5/kjTHGmI7iJG+MMcZ0FCd5Y4wxpqM4yRtjjDEdxUneGGOM6SiHLDlWSnqhZheWqBMhoBTuf/N4xhsrG9q+sG1Vtei3hP3tplBk1mI6G6GYB4DNLaEgL7hNpQofCKXlvfedp1glLHVHSonaMka1qRayiv1rocrts0Vv3Yi68xC/jmipB58VHC+FZH9tzZ9nzfUirE4ztjrNe2xrOxXi6kKXk0cRvHGR88a9nlDXZyz33pnyujIWRdhn4j5OLWvDeEcoyMW6u7oi7s+cY49ssCV4LWx7d1Vd9mhZv8SmavdGHHc2E8mlx7+UmjU8D7mw0J41SukPZDnH85LP4eqq3n8ZvPIZY4wxHcVJ3hhjjOkoTvLGGGNMR3GSN8YYYzrKoQrvlF1tVrAYazAUNrKbD3CDW3r42YA/uwgnRZR9NR7ueyxUf7X4fKQqLzctlovjyRbFKmHHeuoE29WWQmx2fp1rx4/HPKKJEBu2KRjLhgVwWS1qXYtDrBuex1rYCPeFIBI1i3AKIdoEgEzYIpdDYRlc8rEYcxByYVcbOQvvyhVhIzu+zA3u6GcsZWEqStmjEMK7yLnvSqj+GmHvqlaqtvWrmu5QrBZ2rGtH2a5W6O6weZVrx1cV9z1VteNbFIxF4vUvZrytEujNEm83E2tQT1gGoxlTKFfrLoBQtsh9YRlciBr1S+IneWOMMaajOMkbY4wxHcVJ3hhjjOkoTvLGGGNMRzlU4V3W4p7EsGAia4TD3FgUiQewIYRyjXBgK9dY9NcXbnv1SAjvlJJPCDNUTXYAqCsee6PqtwuhSSEVMtxeLUQzlTjlgzVd8/62gXAjHLGo5MImiwhHwqGuqrjvTDkRCjGLEvwB2q0KQjw5EfNjzEEIUS9dw/ddJBZOzSpRJB7AthLKNSwEK/os+uv1+D7Z3eX2ZkrJB+4jQ0sddFHgPolt8yQc3VSTidubCXu6WoyxFGs2ABxfYefLTLiXXhmziHBXrLszsaZlQmSp8ly0uPIlVfM+4zanjb5WlsFP8sYYY0xHcZI3xhhjOoqTvDHGGNNRnOSNMcaYjnK4wjtRShW4SJEtNjxDI4RuSli22JoihXCJq4XAr1L9iB6Uy5v6zNQ6QiEkFHoLNMrhKeN9h2ssPmnAIrmhELo1LW5wZ247SbFyIva/j8vFNhs8xka54CkBoyhZ2TaTlbgGxuLkZK3XijHLEbm6htipbYdvOyQhdGtU3VNoAW6Wc/lRtV09EwI/1YfsWq1f+r5Rx6MeGZNav4JHtLLKi18SJaf7wt2uybUb3PGnCeHwVPRzicvFXtnmvpNywWu4754oFYwWAWMtroFKnJzQJ2wp/CRvjDHGdBQneWOMMaajOMkbY4wxHcVJ3hhjjOkohyq8a2rl8sYCh+U1UvoziipfqlyIqkoI74QgDmJfJeRTIrA24YqOCnGg2lAc35k7buPxCHenwYBd/kZjdqwDgKEo2VuI8rx3ZKcplglB5YVNcf7FnClBpXT5w/JCybGYC2MOQpIub0JguqRGKlNuZ9DlS5XbnhLZ1UncKGLfLBPtiX2Vi908ruA2Z2pDcXy3ipLa9ZTntix5/dmt2LEOAPqlOG5RnvdE8JoY4DXxyo44/0I4p5z6pMsflhdKVmIulsVP8sYYY0xHcZI3xhhjOoqTvDHGGNNRnOSNMcaYjnKowrvJhK2gCll+dlkBm/6MUos2M2EnNxFCwL4QcpUZlyysheucdOBrK68rDaOU8I5jfVECFs0GtydKI9ayDK8WdaiLoxSHI90Iaxa6ZUoSJ5WFas70PGqRJm876PM5NOYgTKfimpblZ1llleSapq/pmShLGsJFbTrj+6l3hGVbRQi3POEq2QiVXNNWXlcIyUII7xpRarZXcolcpG1ubybaE2V4pfse9IpRiMPZEa51ypE01KItlYVqzvQ8atND3rbs8TlcFj/JG2OMMR3FSd4YY4zpKE7yxhhjTEdxkjfGGGM6yqEK73RnoqyicphTZRBbXNAmQlymytzWGQtpJiMum3p8OOROxL61OBaW9j0GyjFPCEAqcdznz69z35ssdNwcC4cuNoECAJwcssCv3uL5OXfuPI9H1AseCJfAouEZysQxtzkHKl2j2v+2Uyfk/sYsi34iYuWUcpMLcJlSZU4HANMp/yFEOVUliptOuGzqESU6rZTTmnBv00PUCBVZk5QrH++6eZlL9k7HvMaOxbhTSxY7Ko672eH5ubTOa9VlUS94JRfnNbELXogT27R5BAo9niqLffyWo3L/ZfCTvDHGGNNRnOSNMcaYjuIkb4wxxnQUJ3ljjDGmoxyu8E4Ir6TfmXCnk854TYuUTxirFaK8YVWx6GssBGPHypMU6wtRx7gRjlgt6kDldqVEdqpw6ngsBHUbHBtvcLnEsZqzFje4e85yudhsxP1sbAmhiXAErGp25YMoAVuWQjDTdqmK+c2EmO+QL3XTQXIhvJJ+Z8KxLhMxqBgAYcCGPGPh3qxm0VclXEUHBQtoe8JBrUrKxbOt1KyYC6kk5FhVsfhtvM3rQLXNJWR3E88DGu0G9/DDLOaLXe57tCNc9EKUwJ6xKx9ECdiiEA6Dbc/TQqyoxHzX8zzuJ3ljjDGmozjJG2OMMR3FSd4YY4zpKE7yxhhjTEdxkjfGGGM6yqFKjrWSXlidKqtSsZ0sRT7fmvtWynUVq1iRPhqxbWtZsmK1KNgfNmsZZKMsbOXp4JiqCa+sfIVwXVIJxTwAnBMWtoX8BYA4xprbrGr+5ULWiPMqzl/R15dqLeZ3MmJ1/eZm68VizFJoJT2rzIWrraw7L0uRz1vlvoU9LFSsFor03csUy3Ou6a5+1ZS12LHOVO15Yd2r1uKZqAk/VTG11MixsGIeANZ3hGX2kr8AQMNt1jNe0yKJ81pzLO8N5Bgb8euF6S6r68fjJ75++UneGGOM6ShO8sYYY0xHcZI3xhhjOoqTvDHGGNNRDld4J7QDSlCnRGmqfnub1akSkKjOlcCvyFhcUVcPiPZOcb8F298OlR0vgImwfVXSipGoCb82YIFfNVHtCVFbLdQsbR/1lB5F2OxmDY9R1YlXNsJNwxa2UgBUaOvdWgj3ynJIsUll4Z25PtSyJK1uVV314PsmSaGaXhOV/akS+OXB6+SsZuGdOpjIWUy8ogqeA5iGqOsuttsVNeFXSyEmnnJ7jRAgNsrzVw9RDiiB94/EY8yFwLgWNsIpsYVt9Pi8Rq6td2cND77IVyg2bVdpPi5+kjfGGGM6ipO8McYY01Gc5I0xxpiO4iRvjDHGdJTDLbKVJMbpAAAJA0lEQVQtBCXLCu8aJRhr7Wa5zy6FclYTarNM1ImHcG9T7aHQTkdlyeK5iehna53d9iZbLARUdaRrIR7R8jM9t4W4OrJGueBxLKs4NqmU6E/MtxhLpgYDPXJh/odaiTGNOQhC6aZqxyt3uqRUey0oFz1FrtZToTYLUSceQiybKwVbzusUABTifpyKfnau8jo53WEhYD0Vwmo1j3I0em5VGsiScsFjd7uY8XbTmRL9CZGdGEu05CQ1cmH+h5m4zpbFT/LGGGNMR3GSN8YYYzqKk7wxxhjTUZzkjTHGmI5yqGqkTIhPlhVZVdKxrE3MopzVlOhPlIZVAi/ZNQvLmpr7RcbuawBQDE9QbG3Arm6bWxvcpBjPQJ3JJbU+/VIL7yaTdYqNJ1yKtxJlZVWdW1mlVpWQVeWHlT0htANfI8WccndjliYTZUGVHioyFmOp0qxtMjKAndUa4YymnCEjFwOS1z6LzdKM+8WM3dcAIFs5SrHVkl3dxjvbvK847BVl/rekyVsvF4I4ANMpr9G7Uy7F2yhhtahzq8z2INztVFlh5YwIaAe+RuwvDA+Xxk/yxhhjTEdxkjfGGGM6ipO8McYY01Gc5I0xxpiOcqjCu4G0UOPPGZVyt1NlT6WSS7epaESjdc2xvhB9NRMlslMWS1rxNR6x2KOEEKsJl7hCuOWdOM5lIhtRfraasBil3mKBHQBMRhd5/2XdCIXQsQKPu1BOdOI6qVuUc5kQ3tVizq27M9dLqURtQiRVK4WWWr+Eo9u8zWXXLyEEFAK/niqHOxUiO+W016L4qnZ57IUSwc6E2LpgsdrwyKoYI+87m/K6OxNrGgBMhUh4psoAizEi8VzMRLrM1LkS14nqFwBCXBiNUCZeh+7OT/LGGGNMV3GSN8YYYzqKk7wxxhjTUZzkjTHGmI5yqMK7tT4Lr8ZCs1XLzx5KjKWFd6UQymWFcLeTh89CiKpSpWZF36rflo9RTcUucVubXJZRjXEyYWc8WSK34D6ygkUq41KICAEUhRCkjMVciDE2ItYveNzKtStrRHstwjt13KXSP8q9jVme1R5fl0J/hljyamsT3hVCKBfK3U72wxKtWq1VSmym+m2peptqXgd2ZrzeqDFOp+yMlysRYcZ9RM5OfU0uRIQAslzI1XZVzmAhYBLj7uU8buVuGEm0J9wS5z1zvBBzvlzxYY3XPmOMMaajOMkbY4wxHcVJ3hhjjOkoTvLGGGNMRzlU4R1L34BaCOKUu1mdCee3lvKj6qNLJraVQjDRnHJlq8bspjQRpWYrIVABAGGsh0I4vRV9MW4hYFTlEuuJEt4J9z7lOgegLHl+BkIUJ0z5ZGnffp/bg5pbIRRS7oRAi+PdiM9NcYIdAY05CKoaapELkWgSpWKFi1nW9oylhFdCFNfLhBBMNJcHj7wOLrk6bXjcsxZxs9LtZTn3k/eEgE0IGFPifmZi7cwy4d4nxG8AUAihXBKlYdVanITjXa/H7Sl3wnrGgsrU4lkXotTsbMLnJj/KjoDL4id5Y4wxpqM4yRtjjDEdxUneGGOM6ShO8sYYY0xHOVTh3UQI6iZCXCEd5kT50DbhXSZs5koRq0Xf5YAFWoPyOMdEe+tbFyjWtHyOKkS8yFhQVwpxYF8I4sZb7GSXVUIIKMZStYhrlABOnZtalZAV5XAbIZJTjn7KoWvQ5hwo4oUQJi5bftiYNqaiXOh0JoSfymFOCO9yIaYDgBA2c4WIqVLbeckCrbI4wjEhYBvtXKFYavFay8X9lAmBXyHEgb2CY9UOO9lFzUJA3gqoW5wDpYBbnC/lzpkJQWUSIjnl6KfcOduWn6Qq1QphYqv14BJ45TPGGGM6ipO8McYY01Gc5I0xxpiO4iRvjDHGdBQneWOMMaajHK66XsQaofdWqtGyHFCsrZ68ckCtJkLFr5SRfd751EAowCdijEJCqc1YW2xahTXt2kAo+4U97LHjvN3WhfMUGws7XjUPAFAUPOelKNZeibmolzw+5SnZCAvjibDoBYBswlfVlvgFwKlsKPc3ZllU1fIkfjGSkvglkPjlzKxFFa4cUOupuseUZSzvfEvJqvdmyn3nSsGvR4ik/iLGvbrCa2cp7GEHR/gXADtXNilWVWz5Omv9BQDPeRK/aJiIuUCu1i/pf8ubBW83narfBQDZdIViO+IXALeEsARfEj/JG2OMMR3FSd4YY4zpKE7yxhhjTEdxkjfGGGM6yo2vJ9+wcEqJPVTN8kzUoj8IwikXheh9PGEBiBIHZsJuFsriEkAm+lFtKqHc5ogtbIuTZyhWDtmitxRCofFY17xXZ0zZ1Q4KIWpUFsaqvr3oNRPCwmrC8wAARXWMtxXCu5GYM2MOglosK1E7XlUOVzXLI7u+5Vc45SIXvVdTvu+Ssl4VdrOycDyAEOtXEkLC3V1e38cTFqFla7dSrFhhi95c9LurksO8Be6n4NhKLkSNysJYiOdCyDEzISycTZXsHKhrISiveR4nYh6XxU/yxhhjTEdxkjfGGGM6ipO8McYY01Gc5I0xxpiOcqjCu0yI0FQ98UzViRchJVQ70HhErBbisLESyQlx10TUp1c1jQGgFAIQpTjcEoKxbMDubRujde5DiOzOX2QXvDrTbkrKoA5izpXzoBLo1UJ9VBTcd9NwrC+2m7cpxiPOjRIrGnMQYqbqibObXKg68SKknPEONB4RmwlxWKVEcsJVbapqrQsBGgAUmXDRE8ejBGMhBMrbk6vchxj35tZl7lfUrAfkUgWIMTYNn1cl0GtmPBdZLkR2Dcd6LWOcifzQiDVt/MR1d36SN8YYY7qKk7wxxhjTUZzkjTHGmI7iJG+MMcZ0lEgtwgpjjDHG/MnGT/LGGGNMR3GSN8YYYzqKk7wxxhjTUZzkjTHGmI7iJG+MMcZ0FCd5Y4wxpqM4yRtjjDEdxUneGGOM6ShO8sYYY0xHcZI3xhhjOoqTvDHGGNNRnOSNMcaYjuIkb4wxxnQUJ3ljjDGmozjJG2OMMR3FSd4YY4zpKE7yxhhjTEdxkjfGGGM6ipO8McYY01Gc5I0xxpiO4iRvjDHGdBQneWOMMaajOMkbY4wxHeX/ASYrtMrMNRINAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "def random_brightness(img):\n", + " shifted = img + 1.0 # shift to (0,2) range\n", + " img_max_value = max(shifted.flatten())\n", + " max_coef = 2.0/img_max_value\n", + " min_coef = max_coef - 0.1\n", + " coef = np.random.uniform(min_coef, max_coef)\n", + " dst = shifted * coef - 1.0\n", + " return dst\n", + "\n", + "test_dst = random_brightness(test_img)\n", + "fig, axs = plt.subplots(1,2, figsize=(10, 3))\n", + "\n", + "axs[0].axis('off')\n", + "axs[0].imshow(test_img.squeeze(), cmap='gray')\n", + "axs[0].set_title('original')\n", + "\n", + "axs[1].axis('off')\n", + "axs[1].imshow(test_dst.squeeze(), cmap='gray')\n", + "axs[1].set_title('brightness adjusted')\n", + "\n", + "print('shape in/out:', test_img.shape, test_dst.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "shape in/out: (32, 32, 3) (32, 32, 1, 3)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAADSCAYAAABJqrmlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3W2MZNl9FvDnnHvrdnVNTW/PbHuYGe9OFu/itS3LipDy8sEo4UUKJEqADyAlQkGBSCQIJMRLIkVJcBJHcoQSCaRAPoBAYEwUxAcIOCKRiImIASUGxdiLvcyOZ2fXs63ZmZ6e6urqW7fuvYcP3YjJPs/drZnZaa/PPj/Jkn18675V1TlVXc/8/yGlBDMzM8tP/FqfgJmZmT0eXuTNzMwy5UXezMwsU17kzczMMuVF3szMLFNe5M3MzDLlRf4dJITwSyGEn3i7t32L/TwTQkghhPJR92Vmto4QwsdCCJ887ce+G3lifwdJKf3Q49jWzMzenfxN/h0ihFB8rc/BzMzy4kX+MQshfDCE8JkQwn4I4YshhO85Gf9nIYR/FEL4dAjhEMAfPRn7+H2P/ZEQwmshhJshhB88+bP6c/c9/uMn//3bQwivhhD+Vgjh1sljfuC+/XxXCOF/hhBmIYRXQggfO927YGZf70IIPxpC+GoI4SCE8OUQwh8PIRQhhB8LIbx0Mv65EMLTJ9v//ZP5ZnYy/kfeZN/fGkL47Mk8+XshhG+/7//7gyGE/3yy/98AsPP4rzYfXuQfoxDCCMCvAvh1ABcA/HUA/zKE8PzJJt8H4GcBnAXwX97w2D8J4G8C+BMAngPwbW9xuIsAngDwXgB/GcAvhhDOnfx/hwC+H8A2gO8C8MMhhD/zSBdnZu8aJ3PWXwPwTSmlswC+A8B1HM9R3wvgOwFsAfhLABYnD/sdAN8I4DyATwH41yGEsdj3ewH8BwAfP9n2bwP4NyGE95xs8ikAn8Px4v4zAP7i23+F+fIi/3h9K4ApgE+klJqU0n8C8O9x/KYAgH+bUvrtlFKfUqrf8Ng/D+CfppS+mFJaAPiptzjWCsBPp5RWKaVPA5gDeB4AUkqfSSn9r5PjfB7Av8Jbf2gwM/t/OgAbAD4UQhillK6nlF4C8IMAfjyl9OV07PdSSncAIKX0yZTSnZRSm1L6+ZPHPy/2/RcAfDql9OmTOeo3APwugO8MIVwB8E0AfiKltEwp/RaOvzjZmrzIP16XAbySUurvG3sZx9+2AeCVt3rsff/7zbYFgDsppfa+/73A8QcMhBC+JYTwmyGE10MI9wD8EPwnLzNbU0rpKoC/AeBjAG6FEH45hHAZwNMAXlKPOfn58H+HEO6FEPZx/JdGNe98A4A/d/Kn+v2TbT8K4BKO58G7KaXD+7Z/+W27sHcBL/KP100AT4cQ7r/PVwB89eS/v1kLwNcAPHXf/376Ec7jUwD+HYCnU0pPAPglAOER9mdm7zIppU+llD6K40U5Afg5HH/5ePaN2578/v6jOP6L5LmU0jaAe9DzzisA/kVKafu+/5xJKX0Cx/PguRDCmfu2v/K2XljmvMg/Xv8dx7+H/0gIYXQSJvluAL+8xmN/BcAPnAT3JgB+8hHO4yyAvZRSHUL4ZhxnAczM1hJCeD6E8MdCCBsAagBHOP4T/j8G8DMhhD8Ujn0khPAkjuecFsDrAMoQwk/i+Dd75ZMAvjuE8B0nQb7xSZj4qZTSyzj+0/1PhRCqEMJHcTyH2pq8yD9GKaUGwPcA+FMAbgP4hwC+P6X0pTUe+2sA/gGA3wRwFcB/Pfm/lg9xKn8VwE+HEA5w/GHhVx5iH2b27rUB4BM4nsd2cRwk/jEAv4Dj+eTXAcwA/BMAmwD+I4BfA/Aijv+8XmPgJ8eU0isA/vTJ/l4/2e7v4P+vT98H4FsA7AH4uwD++dt9cTkLKb3ZX4ztnSKE8EEAXwCw8Ybf3s3MzCR/k38HCyH82ZM/UZ3D8e9fv+oF3szM1uVF/p3tr+D4z1cv4fj3rx/+2p6OmZl9PfGf683MzDLlb/JmZmaZ8iJvZmaWqVNtNfvssx+k3waqUpxC39PQfstj1XldtG28fZ7GLr7vwzT2kfd/I43tbPM/5Xxma0pj7e0v0NjuLo/17a48x7Ln8Wn1DI3tV8/RWD29SGM7W5f5IM0en8+Mj/vqC3zeAPDZz/8PPnbkz4VtvaAx9FSiGj34PqKseH/jCY1NLz9FYwDw4fe9n8Ym8Y0VgoFpbGjs5//ez7ogkK3t2Wefp/kriil0mXis3OT3TdjQP5XG0Vka27nE1WCffo7ntCuXn+Gxc+dobFp2NHa4/xUam9/7nDzHtnuNxlLk89k4+800Vp7le7HZHvD+Drmw3bX/899o7OqLX6UxALhzj5+HebOisaPlPRpb1vwvlRM2aKwYP8Fjk20aq554D40BwM6lSzT2vvfy2KTgOe0Xf+7H15q//E3ezMwsU17kzczMMuVF3szMLFOn+pt8KX5/b1r+rVT9zlWCf7stm7k8Trs/o7GbX+Btq5rrylz5AP+uVLZ8Pld2PkJj58sLNDa7/Vl5jk3L57MH/q19PP3DNDbZ4s9m45avuV+8SmMvfOkzNPbii7flOR63dv792pqPU4v72NR8feWY72Ms+bf7suTf7quSf6cHgBjFa0W8ztqB14rZurqOf8/tA78XR+KrU2z5N/ACnDMCgLI/orG9167R2EJkl5Ydj3X9N9DYJZE92t5+L42FEc/PADA74rmuL/m35FLkDmJ7l8dWnB/afenLNPbVa1wZ9+49fY7Lhq+xF6XE0koM9iIvEXkNSmJeKsZnaKws9ffpQgwH8ZoSkbS1+Zu8mZlZprzIm5mZZcqLvJmZWaa8yJuZmWXqVIN3iwWHn0RtFUQxWKntGt2QrRSBlLLnY199kYu97Ktkxgf44HXPBQ+unOcwynbJAT0A2JtxYKMtOXgncmmILYdUYsPhOVXk5sZVDuPNFhwoAYC2Fy8PkQDpGxWeFNcHvpjJhMMxZSXCdAMfR9VrRYVU1NNq9iCSCGOFQgTdVKPIxK/TxFk8AECfOOAX0iGN1bf4vbwbChqrxHmn9gofd5sLuzwxeVae49aEQ3adeOPFJZ/3qOPg3Ve+/Ds0dv3qVRp7fZ9DibMlXzMAIIl7MRITas/zXy/WlhRGNLZRcUi4GPH+YtR1a1TIrhPhyWLg8evwN3kzM7NMeZE3MzPLlBd5MzOzTHmRNzMzy9TpVrwTgbhefc6IvF0rklPlwGcUlcdre+7iU4nH7197gcauq+OIDlBoebvL5zngAgDbF7iDXtuKExdhxUoE7174/G/R2LUXuUrWnmgYN9MFozAWHeKmEw6a9KLb3WLBz+F0zGHFshKV7NYMYwJAK8I+qrpUUw9cpNmaRgV3IeuhAlo81vX82DKKrowAipIDY4UI+BUdzw31nes0dqPnjmpHNQfY6ktcGe8P7PB7FgDOjnluCN0+n+PR6zR2+2WuZHftJe6Ad+eA5+zZikOEfalDaQX4uguRdlSh7pUYa8V97FoOFqYVL6vFpgj8AWhFyK7t+Xqqkl8/6/I3eTMzs0x5kTczM8uUF3kzM7NMeZE3MzPL1KkG7yYiZKXiUK0ajTzWtrr9aFVxi9RqLAJaYp9RtGzdvc6V8eYNJ9gWVziMV7dcBQ8AdrY4dBNFVb6q3qWx61/6PI1dvXqDxlSgbi6yfeVEf9aLPd+L2PN1jysO4TRzPnjfcjCnFkHA8TY/f81Ar0U5HDnkolramj0IFRJN4BdwETmgtaw58BXKTXmc0ZjHY+CAVy9CX+2Cz+dIzFX1EU8EfSOC0elpeY6rKd+Lacnzxa2Xv0hjr33lOo3dOeT7U4sKc33BobShanJnN3heK2t+bg5rrjCYRNC7FVUHUd/jY4xEZbyeK3seH0eduwpePvz3cX+TNzMzy5QXeTMzs0x5kTczM8uUF3kzM7NMeZE3MzPL1Kmm61FxwrmMonc4OGVeRk6Izme6SXgcc3J9vMXHaRecXG8aToA3InW6e1VE10VSHPFD8hzbBSfIL27xDl740u/S2KvXRJK+FQn3kq85il7tcaBZ+4Upb9vc4uteiH7y6l9ItDWXv4UoVzueilKaOlwP9RIu1XVPdHlOs3WNRO/wshBJaHBiuhS94w8bnucAYC6S7yFwideyF6lwUba1Fcn+2fJlGmtWovxtcyDPcfkk/6uhzf4Ojb16g3vez2d8PosVp/VjxSVslzX3okfP2wFANeVSsCNR8/xIlJZNvbiPSSThxT3Dip+XbqUnMHUcgMeS6Du/Ln+TNzMzy5QXeTMzs0x5kTczM8uUF3kzM7NMnWrwrhchu0qEWSoVnOpFicKJDjPcnomwB0Sp05aDL1Nx7FaENaIo4XjjOofkZqKUKwB86KkP0Nhez8G0GzdUOJCvZdGoABsfdzbj0F41UPJ1fJ7Dar04R7SiRKbYXy+2U49tVXlN9VgAqjCyKnU7GbusrT2ajQ0uN7shepmvag7JxYLDWLFTSV1gueDHB5H5CqLEaxAlUYPIpfUdz1+zO+K9tNLvu/4Oz2tnIveoX9Q8LzV4gsa6wOddFnzsjTGf42qpiqMDiwVPBBst37NOrEupEEtjy9fSidBeFBNQ3+lwYN+J4J0ITyLx/VmXv8mbmZllyou8mZlZprzIm5mZZcqLvJmZWaZONXgXRcW78ZgrHY3FWc1nHPRoB8qgjSsOYtRzUTGq5CpxKmYSRWhPBcYi+Bxvv3pdnuPVfT7H7UpcT8l9iHsRlIviqYyRr3nnPFeqWoje7wDw6i5fz1j0au/F8xpVoE49XSqkIrbr1eDAxlG8LgYL5pmtqVTZp068zlsOWamKZRvcdhwAEEWYS+W2UschsiSq7anvciGISpE9z4dBBNUAoBZzxkpUb4sbO7ydqByXRE/4uuH5q6ou0VgZ9PzVJ75pqxFXwcMm3+9Rz092c6RCvqpannqy5CnKuS6p+zO0gzX4m7yZmVmmvMibmZllyou8mZlZprzIm5mZZep0K971ohIUOOxRz7kSXSuqDQ21SJ2I8UoEwRpZbY33F0U7VIgwXhm5fezW1mV5jtMxb7uYcxWqSrRdrWX1N05w7M94bHv6fj7HKT8vABCjSIW04hzFZ8Wp6Lt7W1xflME53t9w7k5sK7aLpaN39miW9T0a61tuNZrEa1JVpyuGvmIFfq0GEcaToa+kjs1z7EZ1jsaq6Xt4bJODvwAgioBi2XKScFxy2c2UuPpf3/HEe7Tk8FtVctXBIqh2rUBRigDkmLctRrzPM5Ere3bdbRprar4WVWFwMPkrxrueXyu9Knm4Jn+TNzMzy5QXeTMzs0x5kTczM8uUF3kzM7NMnW7Fu5bDWPv7HPpS1c1K0QJ2IHcnHy+yMDK4F2XJOw6ulBVXctq58ByNjSc6uHJrn6vJzcHbThtRETBySKVpOKw4X/D1zUV3y1IGC4Fqytc93eIgzVS0Cx5Hbmm7P9dtd9+oF1Xw5PMCXUWvFZ9dy6EXi9maDg85eKcyVkXBAbRRFC1gh8JUUVSOE9uWoiobIofIyopbu47PcOXL0SaHfJc604aZqPSHzbM0dGbCY2dLfuzdu9xSuxcBtNnh+pXfQsXv+dGE15FzY66Cd+Ysb7eqD2ls3oiktmoVK4KTx+N8Pa0Y6x9hqfbMZ2Zmlikv8mZmZpnyIm9mZpYpL/JmZmaZOtXgXVNzyE62HxVBsF5+HtGnX4pWrKUIq/U9B0DKisMnZcXV6aZbHFxRrXRv73HlJACYiwp+1Q6H+S5vi4DfmG/atWtfoDGVCVnUfM263h3Q7Iv7I0pdffgi34uJCAKW1XU+Rs8nGcXzMlTyrlWlt8BBwF7cb7MHsVqJN1QhWjyL6nZJzFUj0eoaAFJS1Tm5sl4Q1d82xuK9OHmSz3HEgd7DJR93LsYAIIpKeGd3+DgXn+D59DyfNkaRQ22FyNjdnXGo7WggHCg61coW4SU4eFeJ+xPGItRYH/AxVMVCNacBSC1XzOtqsVatRLvzNXnmMzMzy5QXeTMzs0x5kTczM8uUF3kzM7NMnWrwTrVIjVEEV8RYJUJtVaWDK2MxrkIY+yLgUE45tLWzfWWtY9+8zRXd9hcirAPg/GXe53kRvLtwnoMrO1O+P+P4DJ/PdW6NeOMWB+JEvg4AUPZ8nHbON/LmLS6jNx3z/am2OawTa/UcihNqdTywVW2JJ7zPmdqn2QPoA38nKqKobifmqo0N8X4YiYp1AETXVdQiYNqN+Diqal1V8fvuSATqDg443NeKNrUAcH7KVfTOn+XqdtvbZ2hsusHBxKcuXaSxcc/3dlXfpbGlaPcKAFG1oV5xmu/ggB+vWtLGUgT0pnzNIYnqhuB7CwCp4bmzXXAIsRH5vnX5m7yZmVmmvMibmZllyou8mZlZprzIm5mZZepUg3eyXZ5q41pytaFqzIG4iWgbCOjqdiq31UMcR7SGLUXIbm9PtXZVLW75GABQifasquXreMxjtShlN51yVb4L5/l8borz1mUHgQjR8ld8Ltyf8/nMRHXD7TEHCyeykJMI04l7CwBtzfuc7/GxtwZeK2brSpFfrFGE3+KIK6ONxqrinQ6Dho6DaVHMk2HEobY44nDYcsXvndkhv2eXoiqkCpsd4+vpe1F6LvKx6xVv14NDdtUG38dQcrtfBN1+NohGwBF8b1fi/twTFerGI34OzozFepHU+XCYDgDaJd/HbsXzV7PQ4cJ1+Ju8mZlZprzIm5mZZcqLvJmZWaa8yJuZmWXKi7yZmVmmTjlyrJL0Ip0oSqLWIlxdDZx9JRKdqgztWJRtVb3oZ6L87b7oy96qxKlIzAPA/kwkyEXaVqXCJxXv89qNmzTWiJK6c9WXfeAc1aa6rbt4fCvKYY655Gbbi77zEP86YqAffCx5vBKR/a0tf561R1OWXMJ0JOaqpud0dQlOlI9E33FA96NXpXKTSPa3PT92KUriHrV8jp14H3f6DY97opx0X/I1bokS05MNPs7N3Vs0Vh9yKdiDlo/RiXLDAIDI9wLiuUHix6eO591UcNo/BTHng0vVxqSb3ieR4o8ll8VVc9q6PPOZmZllyou8mZlZprzIm5mZZcqLvJmZWaZONXinytXGksNYk6koI7v/Ku9wpk8/Tvizi2hlj2qszoePvRCpv1Z8PlJFKvuB4MqintFYI8qxXtzhcrWVCJvdvM294xcLPqNahA2HEoxVzwG42Ioe8+IS257vYyvKCI9FIBLtPg2VIrQJ6HKf1VSUDK5Ek26zBxAKDt5tbHI51tnBLo2lQw58BVGyGgBCIwJjom99UfFYK0JkTcfHbkV5VxUNS50up3p0xA3OU+T5Zinmr/GIz/H2Pr/n56Jcdr0S90aU8gWASgQbCzFZdWJsJXrCd4nDb33gsaLgx6LlMB4AFGJei4UIqE90efR1+Ju8mZlZprzIm5mZZcqLvJmZWaa8yJuZmWXqVIN3caCyGhNVgERloHYhmsQD2BNBuV5UYKu2OPQ3FhWs2rkI3qkknwpRiJ7sANA2fO696t/e8z0r1S573l8rQn+NeMonWzrU8dREVCOcc4Bkd59DhHNRoa5p+NhRVSIsxXYi8AcAvfqcKsKTtbg/Zg9GVUvjeSCIuaoTVTPnSz03pJ6DW8WYw2WbKuClAsFiruo7cWxRvS0MVGprGzEnjvjxhQgCFurQie9PL8Y6cY6jTR28e1IEcKcdX8+BqD56dyEqAornpREVBqOYv4pCz18h8D7VnJYKDlmuy9/kzczMMuVF3szMLFNe5M3MzDLlRd7MzCxTpxu8E61UAW4xOOPiR+hFeEQFy062ppFSVIlrRcCvUccRR1BV3tRnpsEzlC0G1Xbic5ioLDXd4rCZank4FUG3fqAa3JWnLtBYVYvH3xBtJ/dE2EdVwVMBRtEqeOhONuI1sBBPThx8rZit63UaOeDMKboVv5+CeP11Sb8mVUgriNDfSgX8RN26VhynE4ExBB7rk9gOQEoihChbU683f52Ziup9Pbea3RT3JlX6Pl54DwfynhShuLu3uapff+uQxg5qvubUicqBvQorDoQsxXOj5rQjveCsxd/kzczMMuVF3szMLFNe5M3MzDLlRd7MzCxTpxq861tV5U1UOlo7Y6A/o6j2paraXtOI4J0Is0A8VgX5VGBCVbE7HldEOFBtKK7vyjNP8fmIKluTCVf5my9EegjAVLTsLUV73mfiZRqLIlC5uy+ef3HPVKBSVvnD+kHJhbgXZg+iW3F71XXnqiBau1alrmKmWpWqCnUrUb0NBY9FURgvFnw+rQjT9arK34Ck2teqh4v56/LTl2hsp+bgXbXBVeyaFW8HAGfHorqnCO6VJbfDVXP+7i2eJw8aPrZ6roZCljGIQKV4Xtv1nwY+xsM/1MzMzN7JvMibmZllyou8mZlZprzIm5mZZepUg3d1zRXYStl+dt0Am/6M0op9RlFOrhZBwLEIclVxLI6xZgW+ofa6alMZvOOxsWgBi36P9yfavbayDa+KqukXRyUuR1YjbDnoFlUkTiYL1T3T91EHn3jbyZifQ7MH0Yv2qkm8kdVYEK/JTgTVjnfASblVx1XZRg2/x0ZjTmiVUYTsRFXJfs0qeIAO2QXRVrYT89fGJofn0G/SUCEemzoxD6i2uQBUI96RergKF6qqdSKUrVrxBvHQJO4NAKAUVQbV5YSH/z7ub/JmZmaZ8iJvZmaWKS/yZmZmmfIib2ZmlqlTDd7pg4m2oKrCnGrjOlBtqhbhMtXmto0cXKnn3Db1/FQERcRjW3EtHO17E6pingh7iPwPbt68zcfe56Dj/kK0gOUCVACAC1MO+LUzvj/Xr9/k8xH9gieiSmDZ8x2K4pqHKgeqXKN6/FMXd+Tjzdal2oJGEWoLIvKlOrOuVrqMWSsqnnUFB+9Sze+djYofOyn4DZ6CalMrKrUNhANVBT91kb24Z60Iod25w9Xkju5xu9fDI76+lUq6ASgvPUljVcHns/c6z1W7d+7Q2Lzh+12IYxcdV8FTAT0ASAXfM5V1LAablr81f5M3MzPLlBd5MzOzTHmRNzMzy5QXeTMzs0ydbvBOBK9kvTNRnU5WxusHonyisFpZ8raNCFIsRGBsu7pAY2NRQW3RiypvA+nAXgYJVeU5HlssRKBuj8cWexxmWah7NlAN7sWr3C42zvk4ezMRGBQVAZuWq/JBtICtKj6ffuilKu5vFGG+U36pW4ZUyC6KPq6Fqk4mwmYrVb0N0L1hxdywOuJgWlvxa38i3k/VSFQAVdXbBlqcJhGyS+IcU+KxesnneHePr2Wxd4/HOH+IbqRb9u4GDgnPxXwxEwG/gyMVrOb9pZ7nw15Uy+ujTjf3xXpV9KJYW9blb/JmZmaZ8iJvZmaWKS/yZmZmmfIib2Zmlikv8mZmZpk61cixTtKLUqeqVKnYTrYiP96aj62S62qs4UT6fM5lW6uKS76WJSco48BJ9qqErXw6eEz1hFelfEVwXWpEYh4ArosStqX8FwDiGlveZ9Pyv1yIomd0K56/cqxfqq24v/Wc07v7+w9fFtIM0HNQoRL3Il3f96q7+UA/eUUkttNKvMeO+D02CnzsEDZorCz4fFYDvdpVmV61ZUq8z6bmazkS5bYXqoSt6HnfrkTkHsDuktP5I1EyuG/58SuRZu97ka7vDmgsJL7fUTWyB1CJ+9OJOW119EAF0n//sR/6kWZmZvaO5kXezMwsU17kzczMMuVF3szMLFOnG7wTyQwVZlGhNNW/fajUqSqLqw6uAn5l5DBL27wq9neRj1ty+dupKscLoBZlX1VwZS56wm9NOODX1Gp/ItTWiuDc0Ec9cUK9KLMbRWlH1SdelRHuey65qZ6/WOrSu60I7lXVlMbqxsE7e1SqXK1IoEURklO7E4G4oX0G8WYswHNiEqWjm6XYX3GOxsowobGNgblhJfrEh56PszziUFu/5NBfs+R7pjLLXSt61gcVBgaWK952JcrsxsT3MajS2O0RD7Wid7wINRaFvpEpckneToQLAV26dx3+Jm9mZpYpL/JmZmaZ8iJvZmaWKS/yZmZmmTrdJtsihLZu8K5XgbHBw6z32aVUldVEwEX28hXV29T+UHKYBQCqisNztTjO7DZX26tnHARsahEYFNXpdPxM39tSvDqiqPpUirHY8FjdqNCfuN/iXKI6GegzF8X/0KowptkDCIEDUf26fdVF9E71pwd0lbhCHDsE8d5JHA5LKxUY5NBfKXKARdCBr5FILfeJQ3YHexwEDC1XiWtqDrp1av5SQceBWU3d3Rg4KBcTz52FmNPals+xXYl+8IUI3g18nw6FqGgqnv8+PPz85W/yZmZmmfIib2Zmlikv8mZmZpnyIm9mZpapU00jRRGoWzdk1ciKZUNVzFRlNRX6E61hVcBLHpqDGb0IZiBy9TUAKKc7NLY14apu+zMOroisGibqmVyzyNu40sG7ur5NY4uaW/E2oq2s6nMru9SqFrKq/bAqTwhdga+XYU75cLO1RRF+SyqMJ15rSVSIGwq8DkTGeES1uVW19XpRlW11l7fr+D0bB4LDpagq2YsqnkcHr/NhalGBTxx7FLgKXlmoAKO+j0GEELv2kMaSGmt4TkuyYicfN5bi+RsIg0dRCa8Tz2H7IG2J33iMh36kmZmZvaN5kTczM8uUF3kzM7NMeZE3MzPL1KkG7yayhBp/zmhUdTvV9lQmufQ+lV7stBX9DcequpOo0CSPq1JyABZzDppUonVkL6rElaJa3s75LXGO/NimFpWcZhywA4B6fosfv241QhF0bMDnXapKdOJ10g4k56IIL7Xinjt3Z49KVZ1T7ZxVq1AdvNOvyqS+e4mKZwmqVa2ojKcq8IngMEQ1uCRCewAQRDtdkWNGK1rIVoGvb2tTXIuYi/uOq+qFnoNzAFA3HC5cqflPBaZFJbuu40BcJy46RHEtQ2uSyNOpMHH3CF/H/U3ezMwsU17kzczMMuVF3szMLFNe5M3MzDJ1qsG7rTGHFBYis9XKzx4qjKWDd5UIysVSVLeTl89hj6ZRrWbFsdVxBz5G9aKi0myf29eqc6xrrownW+SWfIxYcvBkUYngCYCyFMGghbgX4hx7MTYu+byjCN7FXuxvIHi38/akAAAF50lEQVSnrrtS+Uf5aLP1lSIw1nRiHlCtQjt+nYaBVrNyXIT+oNqu9hx0U2XZkjgfiMpxCWJ/ANojMWeIynF9K1rxdjwXb22eo7EgAnGrmo+xWnAVTgA4qrlaaLfkKnitCNSlToQnxZwWRCveoNrCitcOAHQikJlEC2EE1WJ3PZ77zMzMMuVF3szMLFNe5M3MzDLlRd7MzCxTpxq8EwWR0IpAnKpu1opQyFD7UfXRJYptZRBM7E5VZWtE2KMWQZGmVUE1WcwJpaj0Vo7FeYsAY9/zcdpaBe9E9T5VdQ5AVfH9mYhQnCjKJ1v7jse8P6h7K0KNqjohMFDxbs7PTbnDFQHNHkQpKpm1KlAnQlJJVaIbaj9a8nGKyAEv1fo2qDCeeO+kxIG6XoXABgKvbSfarrYc6i0KNVeJeTeJ60t8jFCI4NxIz7FFyfeibFTVQtaJ57oIfC2FWL9CEBXvRBVEQFdCLMRzE4equ67B3+TNzMwy5UXezMwsU17kzczMMuVF3szMLFOnGryrRYijFsE0WWFOtA8dCt5FEWipxFgrjl1NOKA1qc7zmNjf7dkujalWlABQivFStC2sRDhwLAJxixmHXmIjgoDiXJqBUIcKwKnnplUtZEU7XNVCUVX0a8VxJ0OVA8V4KYKJ67YfNhsSRaAqQLQ+FRXLilIF7waOU/C2ZcHHLgsOq41EQC+IKnjL+oDG6pbbyna64B1Uj1QVTByNeGxjg9+fnZiLVXU6iHs7NMcGEepVVTx7EVYMifdZFGp/qton61RlxOGtaSSJuXxdnvnMzMwy5UXezMwsU17kzczMMuVF3szMLFNe5M3MzDJ1uul6MdaLvHcv0t5VNaGxoX7yKrDY1CLFLz7j9GN+8MWJSIDX4hxFglsXhRwo0ypK025NRLJflIfdPs/bzXZv0thClONV9wEAypLveSWatTfiXrRrXp+q79uLEsa1KNELALHmV9VM/AuAi3EqH2+2rmbFr6vVSqTrRVXTQswNQ/3kS5FcT2Ku60S6frxxhsY2xf4K8V5cibEkUuYAEFX6XKTZN0c8V22Kfx3Ui/uYRL3spUipD/3roLbn1Hwr/rmAKjGuym2rW9EnUYJb/JMftaYBQBDzZA9Rmnj08Eu1v8mbmZllyou8mZlZprzIm5mZZcqLvJmZWaa+9v3ke9GXWGynepZH0cv3QYhKuSjF0Rf1Po2pIEUUgRKIEq0AEFXgQuxTBeX251zCtrxwhcaqKZforURp2cVC92NWz5gqVzspRahRlTBW/e3FUaMIFjY13wcAKJtt3lYE7+binpk9CBUSTiJ4VcZN8VjRY172fgdakQTrxLZRTGBTEfobif72rRgbiXDgwCnKPuhR3IvJBi8xGyWf5LmtJ2hsscfHXR7eo7FV0gFGxA0aGo14267n0N9Khd9En/dezHNJlKXtB0KWS1G6t1hyeeFDEfpcl7/Jm5mZZcqLvJmZWaa8yJuZmWXKi7yZmVmmTjV4F0UITfUTj6pPvKo2NFTxbt3zEWOtCIctVEhOhLtq0RO5FcEMAKhEH2KVOJyJwFiccPW2vfltPoYI2d28xVXw2igCg9AF6iDuuao8qAJ6KlBUlqL6Vc9jY7Hd8T7F+YjnRoUVzR6IeEOod/dK9GCP6v3+AFRsS2Ts0LUcZK7FWaqZM5RcQW+ooXxQgbPEAbbDQ+5bvz8/pLFyh+eLaswBxrLjUFo64jEA6FRoUFSyG23weauQ3arl7ToRiIsFPzNhIBzYLPlejMQ+VZh4Xf4mb2Zmlikv8mZmZpnyIm9mZpYpL/JmZmaZCkNVl8zMzOzrm7/Jm5mZZcqLvJmZWaa8yJuZmWXKi7yZmVmmvMibmZllyou8mZlZprzIm5mZZcqLvJmZWaa8yJuZmWXKi7yZmVmmvMibmZllyou8mZlZprzIm5mZZcqLvJmZWaa8yJuZmWXKi7yZmVmmvMibmZllyou8mZlZprzIm5mZZcqLvJmZWaa8yJuZmWXKi7yZmVmmvMibmZll6v8C4Drvklv9ajgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "def random_scaling(img): \n", + " rows,cols,_ = img.shape\n", + " # transform limits\n", + " px = np.random.randint(-2,2)\n", + " # ending locations\n", + " pts1 = np.float32([[px,px],[rows-px,px],[px,cols-px],[rows-px,cols-px]])\n", + " # starting locations (4 corners)\n", + " pts2 = np.float32([[0,0],[rows,0],[0,cols],[rows,cols]])\n", + " M = cv2.getPerspectiveTransform(pts1,pts2)\n", + " dst = cv2.warpPerspective(img,M,(rows,cols))\n", + " dst = dst[:,:,np.newaxis]\n", + " return dst\n", + "\n", + "test_dst = random_scaling(test_img)\n", + "fig, axs = plt.subplots(1,2, figsize=(10, 3))\n", + "\n", + "axs[0].axis('off')\n", + "axs[0].imshow(test_img.squeeze(), cmap='gray')\n", + "axs[0].set_title('original')\n", + "\n", + "axs[1].axis('off')\n", + "axs[1].imshow(test_dst.squeeze(), cmap='gray')\n", + "axs[1].set_title('scaled')\n", + "\n", + "print('shape in/out:', test_img.shape, test_dst.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "shape in/out: (32, 32, 3) (32, 32, 1, 3)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAADSCAYAAABJqrmlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3X+MJOl9FvDnraquqenpmZ2dm1vvrder4+6wz9EpsUDhh5BlRyAlEBEgf4QfgoBFJAgSKCJSIv4gBCuWglBAIEEigRQkkgC2kRKMEpE/wIdJwo84hsM5WZe9vb3d9Xq9Ozc329PTU1NdVS9/dDta7/P0Xe8tO3f33vORTrp9t7qqurr7fbu3n/5+Q4wRZmZmlp7s7T4BMzMzezS8yJuZmSXKi7yZmVmivMibmZklyou8mZlZorzIm5mZJcqL/DtICOFnQgh/9//3tm+ynydDCDGEUDzsvszMTlMI4eMhhBtv93m8k3lifweJMf71R7GtmZm9N/mT/DtECCF/u8/BzOxR8r8Ynj4v8o9YCOHDIYTPhxAOQgi/HUL4nsX4vwoh/HQI4ZdDCEcAvmMx9hP33PZHQghfCyHcDCH8wOKf1Z+55/Y/sfj/j4cQboQQfjiEcHtxm0/cs5/vDiF8KYQwDiFcDyH8+OleBTN7twkhfCKE8Ll7/nw5hPDpe/58PYTwkRDCP1n8/ziE8MUQwkfv2ebHQwifDSH8XAhhDOCv3DP270IIhyGE3wohfNs9t7kQQvj3IYQ7IYRXQgh/656/W1/Mfa+HEF4E8O2P/kq8u3mRf4RCCAMAnwPwqwDOAfibAH4+hPChxSZ/AcCnAGwC+G/33fa7APxtAH8MwDMAPvYmhzsP4AyA9wP4qwD+WQjh7OLvjgB8P4BtAN8N4AdDCH/6oe6cmaXueQAfDSFkIYQnAAwA/BEACCE8BWAE4AUA/wvARwDsAPgFAJ8JIVT37OdPAfgs5vPPz98z9pl7bvOLIYRBCCHDfM78P5jPZX8UwA+FEL5zcbu/B+DpxX/fCeAvP4L7nRQv8o/WH8L8hfCTMcYmxvifAfxHAH9+8fe/FGP8tRhjH2Os77vt9wH42Rjjb8cYpwD+/pscawbgkzHGWYzxlwFMAHwIAGKMn48x/t/FcV4A8G/w5m8azOw9LMZ4BcAh5gv4xwD8JwBfDSE8u/jzFxZzys/FGF+LMbYxxp8CsIbF3LPwGzHGX1xse7wY+2KM8bMxxhmAfwSgwny+/HYAj8cYP7mYM68A+BcA/tzidt8H4FMxxv0Y43UA//SRXoQE+PuRR+sCgOsxxv6esVcxf4cKANff5La/ec+f32hbAHgtxtje8+cp5m8wEEL4gwB+EsBzAErMX4SfedOzN7P3uucBfBzzf018HsAB5gv8H178GSGEHwbwA5jPWRHAFoDde/ah5q7fHYsx9ouE/DdufyGEcHDPtjmALyz+/8J9+3v1Ld6v9wx/kn+0bgL4wOKfoL7hEoCvLv7/jVoAfg3AxXv+/IGHOI9fAPAfAHwgxngGwM8ACA+xPzN7b/jGIv/Rxf8/j/ki/zEAzy++f/9RzD9hn40xbgO4i2+eX9Q897vz2WJ+vIj5fHkdwCsxxu17/tuMMf6JxeZfwzfPhZce/i6mzYv8o/U/MP8+/EcW3zd9HMCfBPBvV7jtpwF8YhHcGwL4sYc4j00A+zHGOoTwBzDPApiZvZnnAXwHgPUY4w3MP1F/F4DHAHwJ87mlBXAHQBFC+DHMP8m/md8fQvjeRdr+hwCcAPjvAP4ngHEI4UcXIbs8hPBcCOEbAbtPA/g7IYSzIYSLmOec7A14kX+EYowNgO8B8McB7AH45wC+P8b4lRVu+yuYf9/0XwBcBvAbi786eQun8jcAfDKEcIj5m4VPv8n2ZmaIMb6Eeb7nC4s/jwFcAfBrMcYO8+/pfwXAS5j/03mNN/9qEQB+CcCfBfA6gL8E4HsXeaIO8w9CHwHwCubz5r/EPFQMzLNJry7+7lcB/OuHv5dpCzG+0b8Y2ztFCOHDAL4MYO2+797NzN41Fj/hfSbG+Bff7nN5L/An+XewEMKfCSGUi5/C/QMAn/MCb2Zmq/Ii/8721zD/rutlAB2AH3x7T8fMzN5N/M/1ZmZmifIneTMzs0R5kTczM0vUqVa8e/rpD9N3A2UhTqHvaeig5bFyZ5fGAKDa3qGx8089R2Pf+sGP0NjuNv/E88mtEY21e1+msVu3eKxvb8lzLHoeH5VP0thB+QyN1aPzNLa7dYEP0uzz+Yz5uDde5PMGgF9/4bf42Bm/L2zrKd+4r3gIfB1RlLy/akhjowsXaQwAnnvqgzQ2zO6vEAyMsobGfuoffsoFgWxlzzz9LM1fAdw8so48p5Uj3i6s6aff2ohfy099kPuwXHqan/u/5+w5GtutOKt797WrNDa9+0Ua6zrdqj3PP8yDG99GQ2G0RmOj0NFYc3iNxm6+wvPSK79zk8au3bkrz/G4O6ax2QmP9R2fYyg2eazi+Svb3Kaxxy9y3bKnn3hCnqOaq372p/8xjR1PxzQWY1xp/vIneTMzs0R5kTczM0uUF3kzM7NEnep38oX4/r1p+bvSTJxWAf7utmgm8jjtAX9/cfPLvG1Z83dVl57l7+6Lls/n0u630thOwd+Hjfd+XZ5j0/L57IO/a69Gv4/Ghlv83qxq+T73U/4+7cWvfJ7GXnppT57jvNXzN2trPk4trmNT8/0rKr6OWcHf3RcFf/dVFvw9PQBkmXiuiOdZu+S5YraqthNzVeDvc0vx0Slr+DWSR84ZAUDoX6Oxl1/63zQ26fm77ewZfu53O5wz2t55im874O+Hx0f8+gSANufcwPrwDI3lGed1sprv3+TmFRq7/gpX/769z9cs9npu6Bu+P7MTfhzajh+wXDyGg5zXoFzMX3k2oLGQcSZj/hf8tXq1vk5j6jv5VfmTvJmZWaK8yJuZmSXKi7yZmVmivMibmZkl6lSDd9Mph59EbRVkYnDVMAsAFKKYTtHzsS+/xMVeDnqxz2f54HXPRRAu7XDwbrvggB4A7I85LNIWHLwTuQ5kLRe5yRoOz6kiN9cucxhvPOVACQC0vXh6iKJEfaPCk+L+ge/McMihoKIUYbolb0fVc0WcItTDavYgYs99PmIuXg+RA3FB1C3pZrpvSOy5YEvEbRr7+pUXaWxTFJeK3dM89thjNHZmg7cbVTzPAUDbiyB0d0Jj2QmH7G7f4PN+9fLv0Nid145obHLCc0gAB90AYCDCbo0KK0beLst5/irWeCzP+XHVU5WuW9P2PL5Wbcht3yp/kjczM0uUF3kzM7NEeZE3MzNLlBd5MzOzRJ1uxTsRiOvV+4yMt2tFcqpY8h5F5fHanqsfleL2ByLMclUd5xmujIeWt7uwc0me4/Y57qDXtuLERVixFMG7F1/4rzR25SWuIrUvGsaNOTcHAKhEiGc05Gp0veh2N53yY6hCPEUpqlWtGMYEgFak7AqR0mvqJXfSbEVlztXtOvBrthdd1lrR6Www4E5nACCKOKLAjMbCIYfxvvryl2hMVRVtT34vjb3/fWdpbLTOYWIAyCLPS0HMA4e3XqWxl1/mSna39jigdyhesjORX1sLOsBYicpzbcEhu/6YH68y59uqOUgUrEMf+XxaPsR8n0GEzNd0lcG3yp/kzczMEuVF3szMLFFe5M3MzBLlRd7MzCxRpxq8G4qQlYpDtWo0E+GRVrcYLEtukVpWIqAl9pmJlq23rnJlvEnDCbbpJQ7j1a0OruxucYAtE1X5yvoWjV39ygs0dvnyNRpTgbqJyPYVQ/1eL+v5WmQ93++q5IBeM+GD9+0BjdUiCFht8+PXqDJ20NXtkHFwRbW0NXsQKiSaB65OlwUO+dYi3BVKXdlsbcjTcmxfF2OHNHa0z1Xipg2H9rpjfuF04Paz57c5jAcAmyW/cPdvv0xjt65wJbtbezzPHYmqc7PA55hXojVrxpX2ACAc83iR8e2DCGW3DV/v9phvm68/TmMzMSl1cUkdPDEvbZ7haoQPw5/kzczMEuVF3szMLFFe5M3MzBLlRd7MzCxRXuTNzMwSdarpepScJCxEDccCnL4sMk5zTsa6SXhWcXK92uLjtFNOrjcNJ8CbhtOSty6L6LpIiiP7FnmO7ZQT5Oe3eAcvfuU3aezGFZGkb0XCveD7nIle7dmSZu3nRrxtc5vv91T0k1e/kGhrLnsJUSqyGoke1jpcD/UULtT9Huq+2GarKkQavsj5uZaL3uF5x6VOj2r+9QoATERZ09Dx62kg+ta3Hc+J3clNGruuSsaC0+jt+3RZ7sfXea66fuUyje3d4fl00q7TWByIRHrDvx7IRR3Z7S0uGQwAJ1NOyB+2/EuDNop15IQfm1DwceKMk/B9r8rs8q8HAKAYcPncnceekNu+Vf4kb2Zmligv8mZmZonyIm9mZpYoL/JmZmaJOtXgXS9CdmXJIblSBad6fj9SDHUaa298g8YmEKVOWw74jcSxW9GgPis4mHHtKofkxqKUKwB8y8VnaWy/52DatWsqHMj3ZdqoABsfdzzm0F65pORrtcNhtV6cI1rRU1vsrxfbqdu2IugobwtAFUZWpW6Hlcva2sMpSw6MVQOeL2YnXCY1z1UJbS5BCwAnh6pULoe5ggjMxo4DXqHj8znc5z7vdVQ96/lcAOAg55De3TFve9JyWPFEzOXVOr9o2yMO3nUzFWrjxwUAglreRK/3KIKSnZhvwkyE9hoOP3ZiuygLuANd5MD0mcdc1tbMzMxW4EXezMwsUV7kzczMEuVF3szMLFGnGrzLRMW7quIezZU4q8mYA2ztkjJoVckhh3rC4ZOi4NCDindlIrSnAmMZ+Bz3blyV53j5gM9xuxT3p9iioV4E5TLxUGYZ3+fdHe5vPxW93wHgxi2+P5Xo1d6LxzVTgTr1cInBXmzXq8ElG2fiebG0YJ7ZirKMQ1axE73axSQSgwib8fQzP44KsvYiHCZDaHycoCrw8RC6Y54HDu68Js+xCXyOeXmGxtrA85IKDHYiHHhm8zyNnYhz3DvQ/eTLgkN/KLlSX97yPmeqal3Lj7+alrqOt0OnZ6AgZqb1DZGYfgj+JG9mZpYoL/JmZmaJ8iJvZmaWKC/yZmZmiTrdinc9hysycPqknnAlurbl9yPLWqQOxXgpwiyNrLbG+8tEO1SIMF6RcfvYra0L8hxHFW87nXAVvVK0Xa1l9TcOcByMeWx79EE+xxE/LgCQZSIs0opzFO8VR6Lv7p64f5kMzvH+lufuxLZiu6xw9M4ezoloDXvS82sxiqdalnMlunzJR6yBCMW1olVtq8JcohVrlnFFuGHFVdXWNh+nsUIEbQFgUvNEWeYcdOtUCFZU1psecVhtVF3kY4hQdZHr13aMXFFQz1VcWe/48C6NBTEJiUKE6MRj1Yl5CtBz1ea2CAw+BH+SNzMzS5QXeTMzs0R5kTczM0uUF3kzM7NEnW7Fu5bDWAcHHPpS1c0K0QJ2Se5O3l7lHlRwL5Ml7zgcWJS7NLZ77hkaq4ZcsQ4Abh9wNbkJeNtRIyoCZhw+aRoOK06mfP8m/BCgkMFCoBzx/R5tcTWmkWgXXGXc0vZgotvu3q8XVfDk4wJdRa8V712LZU8WsxXVUw7e9aqaXD6gsUHg4J0O9AIhE+E5cDCtyPg4QYTsBmsc8h2eeT8fY8Bzzd1jXU1umot5QI2JwOvx9HUaOznhazEVXW4zUTmw3NDL2MYW35+RuI9r4TqNqbmqBwfq+hk/LmquUsFJQM9VZ89w5cCH4ZnPzMwsUV7kzczMEuVF3szMLFFe5M3MzBJ1qsG7puaQnWw/KgIpvXw/ok+/EK1YCxFW60W1qqLkCnNFycGV0Ra3bFWtdPf29+U5TkQFv3KXw3wXtkXAr+KLduXKl2msEdX7pjXfZ13vDmgOxPVpeOy583wthiIIWJRX+Rg9n2QmHpdlJe9acT4AB4B6cb3NHsRMVZrMRKBO9XEVLVdVq2sAiFG0mp1xAC4vROB1/X00Ntzg+asLfOzxhCvE1ZHDfQBQneV58txZrqL3+JCvz9dv8ozTzbgK3lhUwTsW08DdsWjtCmBfhOI+dI6vRTXiNHK5xsHh447nqtDzeUO0mp01YjsAMXJ1uyhS4hsP0X7WM5+ZmVmivMibmZklyou8mZlZorzIm5mZJepUg3eqRWqW8SmosVKE2spSB1cqMd6IdNmBaJdYjDjgsLt9aaVj39zjKkkHU5F+A7Bzgfe5I4J353Y44LI74utTZU/y+Vzdo7FrtzkQJ/J1AICi5+O0E76QN29zcGVU8fUpt7miX1arx1CVjNLxwFa1JR6KUJHap9kD6FR1O1F1rhjwXLW2Luavgf6MJfJdOD7h4FYsubpdNeRg2aDgcNfkkMvJHU75GKOds/IcVVW2nR1+fZ8d8fUZDT5AYxu4RWPXWm73+poIDqt5CgBaMfd+fY/v91YlHsOtTRpbO1aPl2g13HFIsj3iUOP8HPl5cSSKDG6IdWlV/iRvZmaWKC/yZmZmifIib2Zmligv8mZmZok61eBdrw6n2rgW3A6wrDh4MBwuqXgnqtup3FYPcRzRGrYQIbv9fdXaVbW45WMAQCnas6qWr1XFY7UoZTcaceDm3A6fz01x3rrsIJBBtPwV7wsPJnw+Y1HdcLviYOGQcycARJhOXFsAaGve52Sfj7215LlitrJsjYcGHH4LBW+XizlkUOpKbaETrWZzfqEEeWwOkU1EAG1yzIGxLvI5BnGfASDIds683azj45RrHAR87CwH/O68zoHeTAQQQ9RzQxH5HA+nfD7HYj7dEJVPNwaiBXYQrdJrDmDPjnl+BoDjA25Bm1dcJXA45Gu2Kn+SNzMzS5QXeTMzs0R5kTczM0uUF3kzM7NEeZE3MzNL1ClHjlWSXqTZRUnUWgQoyyVnX2a8sSpDW4lyiKoX/ViUvz0Q5RVbcTl7kZgHgIOxSJAXvE+VCh+WvM8r127SWKNStaov+5JzVJvqtu7i9q0oV1txYrXtRd95iF9HLOkHnxU8XorI/taW38/aw8kyTjgXJf96pss4MV13nAofgLcDdD/6suSUexzwWC1+KTNt+DiN6FneBR6bTLkMLADgLifAN0TveGzwOX7tNS63Pb3L88BYJPP7wNcmijFAz1VR/KAhRp5j44DXJWR8LULkx7VrebsYl5TVDvzYlCWPjVzW1szMzO7nRd7MzCxRXuTNzMwS5UXezMwsUacavFPlarOCw1jDkSgje3CDdzjWp58N+b2LaGWPslLnw8eeitRfK94fqWhFr5NqmNZjGmtEOdbzu1wOsRRhs5t7IswiSjjWqvfykgRj2XMALmtFj3lxF9uer2MryghXIhCJlstCFiK0CQCZKItcipBKUYom3WYPQJWWLQYieBf5tX18zP3EM1F2FQDyToxn/LrLRQnbWc8htKbnIJecq0R52JNGB++6u5xg29rkMrsbFQfvXj/ka3Hntddp7FgEBnsxPxcqTQcgdBwElGHiyNexjXzbgTg2+kNxXH78QhChRACDdb5ma+t8vzc3HbwzMzOz+3iRNzMzS5QXeTMzs0R5kTczM0vUqQbvsiWV1RjHQrJeVJibiibxAPZFUK4XFdjKLQ79VaLaXjsRwTuV5BPhMNWTHQDaRvQhVv3bRWWqQu2y5/21ImXSiId8uKV73l8cimqEE+7xfOuAg0YTUaGuafjYmapEKBpTq8AfAPTqfaoIyNTi+pg9iBA44NX3JzQWRRW0XvQsP5otCYyBQ1qZqHi3LirjRRG86zo+jtpOFLxD3+nA6uyE55Y447FczFWySlzH17ERwcRcBNXOLum1vt7wccZi/po0KqjNj0ErKo3mBZ93pqrqLfk8HQY8V3UZn/eGK96ZmZnZ/bzIm5mZJcqLvJmZWaK8yJuZmSXqdIN3opUqcJtGxlzwDL0Iuqlg2WJrGilElbhWBPwadRxxBFXlTb1nWnqGIkgoilqhF8E7ZHzb0RYHOHpwyGQkgm79kmpwly6eo7GyFre/xm0i+33RJlJVwVMBRtEqeNmVbMRzYCoenGzpc8VsVfw8P6l5LIrXdlTht7is1awa5efvrBcBNlH9TcX7ehG8U+Gwfkk1uUy0SO06dX94rFoX4V+R/c3XxDmu8f52H+NKhACwk/FO927zNYv7XNWviXxsNecPRPgxF62GuyXzTyOG61bcx3Pn5e1X4U/yZmZmifIib2Zmligv8mZmZonyIm9mZpaoUw3e9a2q8sahr9UzUvo9impfqqrtNY0I3onQDMRtVZBPhcBUFbv5uCLCgWpDcf8uPXmRz6fmazsccpW/yZQr1gHASLTsLUR73iezCzSWiUDlrQPx+ItrpgKVssofVg9KTsW1MHsQ7YwDWlHE2lSeLkAEtHI9/RYiedd3Ing34xAZBnw+KsgXchEOE61m+yXhQHV/RLYQnTj42d2zNFbK7By3gFUxwK2KtwOAzQFf3yLn+S+K2fiOmKtmnahkGMQ1E3NVox4rACficT0Wabzhkqp+q/AneTMzs0R5kTczM0uUF3kzM7NEeZE3MzNL1KkG7+qaK7AVsv3sqgE2/R6lFfvMRDm5WgQBKxHkKjNOhbSi6pyswLesva7aVAbveKwSLWDR7/P+RLvXVrbhVVE1/eQQ3RZ1NcKWg26ZisTJZKG6Zvo66pAmbzusdFUss1W1ol1sFjiABhHGUtXtuqWhNg6rdSL0lZ1wm9O1Ae9zkInqbSowJo677HUng3eqrWzGIeFhxW1TczE39KpdtZhXSlF1DgDWBqKCn2glvr7GM91AVK1T87vKaauHtVMXB/qa9eLaDjfcatbMzMzu40XezMwsUV7kzczMEuVF3szMLFGnGrzTBxNtQVWFOdUGcUkVtFqEy1Sb2zbjEEc94daROyMRehC3bcV94WjfG1DBDpHsUO0Jb97c42MfcNDxYCoCLpxFAQCcG3HArx3z9bl69Safj+gXPBRVAouer1Am7vOyyoEq16huf/H8rry92apkB1jRcjULvGWQrVn1cWrVlrYQwbuaK/BVFW83LDh02gcxH4qKdxAhsPkJ8f3pxXmLrqmY1nzs8f4hjdXHvJ26Nk88pkNpG6Jd7OQuz1+vH/KxWzEv5VEEL9U1izwpLWsrjJ7HN0RI+Ozmmr79CvxJ3szMLFFe5M3MzBLlRd7MzCxRXuTNzMwSdbrBOxG8kvXORHU6WRmvXxLlE1WIioK3bRoOV0xFYGy7PEdjlQhHTHsRzFiSDuxlkFBVnuOx6VQE6vZ5bLrPLWSn6potqQb30mVuF5tN+Dj7YxEYFBUBm5ar8kG0gC1F38l+2VNVXN9MhGZO+aluCcpFZbUY+HWci/aqmYjtBXFbAOhEYKyHqMB2zCGypuTX5+Y6tykV3apRNxxqW1KoTb7uVFU+1Q63FvPu/h7PVUdHPDc06tqKoBsA9AO+/cE+X7MDMad1kbcreq4wqNrUtoEvbux1yjL0fH021tdp7OxZbvG9Kn+SNzMzS5QXeTMzs0R5kTczM0uUF3kzM7NEeZE3MzNL1KlGjnWSXpQ6VaVKxXayFfl8az62Sq6rsYZTnpMJl20tSy75WhScqsyWnGSvStjKh4PHVE94VcpXBNelRqRLAeCqKGFbyF8AiPvY8j6bln+5kPXicRWPX1Hpp2orrm894fTuwcHSJ4vZSqLoHZ+LXu1qTJWHjb0uGRtVKVmRzo6Rn+fNMf+CpckHfDaBf8FS5Py6m8lSt/oce1G6tZvx7U9qvi9HU5HCF+VvW1Ee+PaMy9ICwET9IuGEE/JNy8eO4H327RGNdYHnpUwsYLNOzZtA3/AkPRO/PhgOH5O3X4U/yZuZmSXKi7yZmVmivMibmZklyou8mZlZok43eCcyHCpQp0Jpqn/7slKnqiyuOrgK+BUZB8ba5obY33k+bsHlb0eqHC+AWpR9VRGXiegJvzXkgF8jQiqqdG7bigDIsrd64oR6UWY36/kcVZ94VUa47zkApB6/TPTEBoBWBPfKkvtL142Dd/ZwVEvwqErQRlHCNIjnnwhtAUCQZVrF/CX2GXoOtzacNUPIH6exQeDytzHTfdBnKmTXiFLWImTXiUDwbCb2p7LS4P0di+MCQBPFXBU5ZIcoytWK4HDb8vzVZSrAyM+JbknIciaCidMjPp9yTc9/q/AneTMzs0R5kTczM0uUF3kzM7NEeZE3MzNL1Ok22RYhtFWDd70KjC09zGrvXQpVWU0EXDLRJx6iepvaHwrdB7gUDZ1rcZzxHlfbq8ccBGxqERQR1el0/Exf20I8O7JeVcHjsazhsVoFZDJxvcW5ZOpkoM9cFP9Dq8KYZg9C9H8Porpdr6rEqTCeqmwHIBP7VAG/ICq65SJEhpart4XIVfAG4iWSZ7wdAKjRvuE56O6dPRqLkSvHqb7znbhmqqpeEFXw5uM8O4TI55h1op98y9exE+cYVCBYBCr7kMtzjOJKdpHXhmqdK6yuyp/kzczMEuVF3szMLFFe5M3MzBLlRd7MzCxRp5pGykSgbtWQVSMrli2rYqYqq6nQn2gNqwJe8tAcLOtFRSRkXH0NAIrRLo1tDTnEcTDm1pEiq4aheiRXLPJWlTp4V9ccmpnW3Iq3EdWhVJ9b2aVWtZBV7YdVeULoCny9DHPKm5utLIjQVybaz0YR0FMtkZcFXtULN4oqeLIypDgfWWJOVMZT2+WDTXmGhWi13cVjGjt8/RafY8YBtlxUpwuZCiuKNSTontqx4/NR83bWcRCwF2UCVSA8y0XoTz4n5Cmi6fn2jVgVh5sO3pmZmdl9vMibmZklyou8mZlZorzIm5mZJepUg3dDWUKN32c0qrqdansqk1x6n0ovdqoCMpUIffW1CtmJ46qUHIDphMMiJURYTVSJK0S1vN0dDmb0ov1sU3PwpB1zwA4A6sltvv2q1QhF0LEBn3ehKtGJ50m7JDmXifBSK665c3f2sCo5r3CiSnQPhSyCJ6vgQbelBVdM68WYaoebqyBfy2Ez1c479qI1K4Cg5rVctZXl7dYqPu/hOu+ub3l/UVQF7UX1UQA4akTb3UaE8Wa8z24m7osIaoeM74uqgqgfU6ATj00nnlPDoQ5wr8Kf5M3MzBLlRd6IvTGPAAAGdElEQVTMzCxRXuTNzMwS5UXezMwsUacavNuqOLgwFZmtVr73UGEsHbwrRVAuK0R1O3n3OQjRNKrVrDi2Ou6St1GqLeP4gIMi6hzrmivjyRa5hWirWHDwblqKECGAohBhkamqLiVaK4qxSrRllFW7erG/JcE7db9LlX+UtzZb3UbJbUFlW2OZslNVGHXwLhfziAx4qcpqKhgrg3d87JDznBahz7E95jkj5nd5w8jnnQduv31muEFj/QnPX80xt82d1lwVFADaKZ9PK+63mlr6yHNQFC1ko3hcelV0cEnIshXXtxWP13DE12dVnvvMzMwS5UXezMwsUV7kzczMEuVF3szMLFGnGrzj6BvQikCcqm7WZqLy25L2o+qtSya2lUEwsTtVla2ZcsvVWrSabVrdBlF1nixEpbeiEuctAoy9qATV1ip4JwJAquocgLLk6zMUoThRlE+29q0q3h/UtRWhRhUeApZUvJvwY1PsvvVWjWaArnjXiapzrahu1gYRvFKV0aArpuUDfp0MMg4Cqj0GNZ+KAFoXubpd7PTrrhVzXcx5vikGYq7q+DWbQ7TxzbgqXyz4uNlAh9oK0QZ21vJYEI9hLq5tnqvwNt9WZhWXhCwLsXEhHsSNDVe8MzMzs/t4kTczM0uUF3kzM7NEeZE3MzNL1KkG72oRAKlFME1WmBOtDZcF7zIRkCnFWCuOXQ45oDUsd3hM7G9vfIvG+iXvowoxXohWhqUIB1YiEDcdcyW7rBFBQHEuzZLKgSoApx6bVrWQFe1wexGSUxX9WnHc4bLKgWK8EMHEVdsPmy2jKtl1oryZqmQXAge+iiXPyUwE74qcx7LAtx8MeG4oA4fIZoGra05OeA7pVPU+QFbwK0QFvlIEBotChBVnIsjXnNCYqianwrsAMCjW+PbisWk73mkQ1e0GA76OvYg6qmDhsrbCUdzv/oTb4W5tOnhnZmZm9/Eib2Zmligv8mZmZonyIm9mZpYoL/JmZmaJOt10vRjrRd67F2nvsuQexMv6yasKqE0tUvziPU5f8Y3PD0UCvBbnKNKyS7KpukyrKE27NRTJflEednuHtxvfukljU1GOV10HACgKvualaNbeiGuheiKr+6fq+/aihHEtSvQCQFbzs2osfgFwPnvr6VQzADiJnJDvxHO6U2VbRcnqXpRyBYBMJLZVedkGXIY2r/h5Pqz4F0NtzwnuesZlZJf9OiiImHsRODW/LtL+a6KUeT/jJL2aY2uRjp91S3q1i3H1y50uiF8HiV9uRfHrIIi+8704bsj0Yx3FLymC+EXCxqYqy633eT9/kjczM0uUF3kzM7NEeZE3MzNLlBd5MzOzRL39/eR7UdZPbKd6lmciwPEgRKVcFOLo05pLQKpwYCbKzUIEPQAgE8dR+1RBuYMJl58szl2isXLEYY1ShEemU93zXj1iqlztsBChRlXCWPW3F0fNRLCwqfk6AEDRbPO2Ing3EdfM7EGoiqoxiuCwKAWryjerUrfzffJYJ/qgq3DrQJRPzXIxpm6bc3CuW5LtiuL2QfSjXxMBtjURQjwj+qWPRc/7o+NDGmuXLGPFgIPDXcfrzWzG96VVZWjFxVCPdS/K+57UHHQEgOMTDhwei+DeufNP8I35Ukj+JG9mZpYoL/JmZmaJ8iJvZmaWKC/yZmZmiTrV4F0mQmgqkJKpPvFiSAXVHuh8xFgrwmFTFZIT4a5a9KdvRQANAEoRPlGJw7EIjGVDDqnsT/b4GCJkd/M2V8FrMxEYhC5QB3HNVeVBFdBrRXW7ouBj9z2PVWK7+T7F+YjHRoUVzR5Ec8QV4bKBmEVE8EoF2ILoB7/k5no7sc8o5qDjmp/7quc5cp6T4rLgsKjUpubjoyMOzE5ElcrBznkeG3JwLu9EhUFRGQ8AQuD+74M1HosDDgw24vrUDYfnMvEYqsflpNYpufLkLB/nhK9PMRBVAuUemT/Jm5mZJcqLvJmZWaK8yJuZmSXKi7yZmVmiQlTllczMzOxdz5/kzczMEuVF3szMLFFe5M3MzBLlRd7MzCxRXuTNzMwS5UXezMwsUV7kzczMEuVF3szMLFFe5M3MzBLlRd7MzCxRXuTNzMwS5UXezMwsUV7kzczMEuVF3szMLFFe5M3MzBLlRd7MzCxRXuTNzMwS5UXezMwsUV7kzczMEuVF3szMLFFe5M3MzBLlRd7MzCxRXuTNzMwS9f8AKFP10we6SIUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "def random_warp(img):\n", + " \n", + " rows,cols,_ = img.shape\n", + "\n", + " # random scaling coefficients\n", + " rndx = np.random.rand(3) - 0.5\n", + " rndx *= cols * 0.06 # this coefficient determines the degree of warping\n", + " rndy = np.random.rand(3) - 0.5\n", + " rndy *= rows * 0.06\n", + "\n", + " # 3 starting points for transform, 1/4 way from edges\n", + " x1 = cols/4\n", + " x2 = 3*cols/4\n", + " y1 = rows/4\n", + " y2 = 3*rows/4\n", + "\n", + " pts1 = np.float32([[y1,x1],\n", + " [y2,x1],\n", + " [y1,x2]])\n", + " pts2 = np.float32([[y1+rndy[0],x1+rndx[0]],\n", + " [y2+rndy[1],x1+rndx[1]],\n", + " [y1+rndy[2],x2+rndx[2]]])\n", + "\n", + " M = cv2.getAffineTransform(pts1,pts2)\n", + "\n", + " dst = cv2.warpAffine(img,M,(cols,rows))\n", + " \n", + " dst = dst[:,:,np.newaxis]\n", + " \n", + " return dst\n", + "\n", + "test_dst = random_warp(test_img)\n", + "\n", + "fig, axs = plt.subplots(1,2, figsize=(10, 3))\n", + "\n", + "axs[0].axis('off')\n", + "axs[0].imshow(test_img.squeeze(), cmap='gray')\n", + "axs[0].set_title('original')\n", + "\n", + "axs[1].axis('off')\n", + "axs[1].imshow(test_dst.squeeze(), cmap='gray')\n", + "axs[1].set_title('warped')\n", + "\n", + "print('shape in/out:', test_img.shape, test_dst.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X, y shapes: (34799, 32, 32, 3) (34799,)\n", + "0 : \n", + "1 : \n", + "2 : \n", + "3 : \n", + "4 : \n", + "5 : \n", + "6 : \n", + "7 : \n", + "8 : \n", + "9 : \n", + "10 : \n", + "11 : \n", + "12 : \n", + "13 : \n", + "14 : \n", + "15 : \n", + "16 : \n", + "17 : \n", + "18 : \n", + "19 : \n", + "20 : \n", + "21 : \n", + "22 : \n", + "23 : \n", + "24 : \n", + "25 : \n", + "26 : \n", + "27 : \n", + "28 : \n", + "29 : \n", + "30 : \n", + "31 : \n", + "32 : \n", + "33 : \n", + "34 : \n", + "35 : \n", + "36 : \n", + "37 : \n", + "38 : \n", + "39 : \n", + "40 : \n", + "41 : \n", + "42 : \n", + "X, y shapes: (34799, 32, 32, 3) (34799,)\n" + ] + } + ], + "source": [ + "X_train_normalized = (X_train - 128)/128\n", + "print('X, y shapes:', X_train_normalized.shape, y_train.shape)\n", + "\n", + "input_indices = []\n", + "output_indices = []\n", + "\n", + "for class_n in range(n_classes):\n", + " print(class_n, ': ', end='')\n", + " class_indices = np.where(y_train == class_n)\n", + " n_samples = len(class_indices[0])\n", + " if n_samples < 50:\n", + " for i in range(50 - n_samples):\n", + " input_indices.append(class_indices[0][i%n_samples])\n", + " output_indices.append(X_train_normalized.shape[0])\n", + " new_img = X_train_normalized[class_indices[0][i % n_samples]]\n", + " new_img = random_translate(random_scaling(random_warp(random_brightness(new_img))))\n", + " X_train_normalized = np.concatenate((X_train_normalized, [new_img]), axis=0)\n", + " y_train = np.concatenate((y_train, [class_n]), axis=0)\n", + " #if i % 50 == 0:\n", + " # print('|', end='')\n", + " #elif i % 10 == 0:\n", + " # print('-',end='')\n", + " print('')\n", + " \n", + "print('X, y shapes:', X_train_normalized.shape, y_train.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n" + ] + }, + { + "ename": "ValueError", + "evalue": "low >= high", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mpicks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mrnd_index\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlow\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mhigh\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mchoices\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0mpicks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mchoices\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrnd_index\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfigsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m15\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m6\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32mmtrand.pyx\u001b[0m in \u001b[0;36mmtrand.RandomState.randint (numpy/random/mtrand/mtrand.c:16117)\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: low >= high" + ] + } + ], + "source": [ + "choices = list(range(len(input_indices)))\n", + "print(len(input_indices))\n", + "picks = []\n", + "for i in range(5):\n", + " rnd_index = np.random.randint(low=0,high=len(choices))\n", + " picks.append(choices.pop(rnd_index))\n", + "fig, axs = plt.subplots(2,5, figsize=(15, 6))\n", + "fig.subplots_adjust(hspace = .2, wspace=.001)\n", + "axs = axs.ravel()\n", + "for i in range(5):\n", + " image = X_train_normalized[input_indices[picks[i]]].squeeze()\n", + " axs[i].axis('off')\n", + " axs[i].imshow(image, cmap = 'gray')\n", + " axs[i].set_title(y_train[input_indices[picks[i]]])\n", + "for i in range(5):\n", + " image = X_train_normalized[output_indices[picks[i]]].squeeze()\n", + " axs[i+5].axis('off')\n", + " axs[i+5].imshow(image, cmap = 'gray')\n", + " axs[i+5].set_title(y_train[output_indices[picks[i]]])" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAE4pJREFUeJzt3X+MZWd93/H3p8uPpKXIdjy2Nvuja9CCsFGywGhjiSZyQ4rXhrImqltbKWypq4XIroxE1a5pJVMiV24bIEJNXS3xyrZEbZwY8Ao2JRuX1ImEwWNw/ION67Vx8LCr3YkN2JUrR+t8+8c9w15278zcnTs7d3ae90u6mnO+9znnPnNmdz7zPOfce1JVSJLa9LfG3QFJ0vgYApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSGvWrcHVjIueeeW5s2bRp3NyTpjPHQQw/9VVVNDNN2xYfApk2bmJqaGnc3JOmMkeQvh23rdJAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlq2IIhkGRDkq8nOZDk8STXd/VzkuxP8mT39eyuniSfTXIwySNJ3t63rx1d+yeT7Dh935YkaRjDjASOAR+rqrcAFwPXJrkQ2AXcV1Wbgfu6dYDLgM3dYydwC/RCA7gR+CVgK3DjbHBIksZjwRCoqsNV9e1u+UXgALAO2A7c3jW7HbiiW94O3FE9DwBnJVkLXArsr6rnq+qHwH5g25J+N5KkU3JK7xhOsgl4G/BN4PyqOgy9oEhyXtdsHfBs32bTXW2u+oqzaddXB9afufk9y9wTSTq9hj4xnOR1wD3AR6vqhfmaDqjVPPVBr7UzyVSSqZmZmWG7KEk6RUOFQJJX0wuAz1fVF7vykW6ah+7r0a4+DWzo23w9cGie+kmqandVTVbV5MTEUJ+BJElahAWng5IEuBU4UFWf7ntqL7ADuLn7em9f/bokd9E7Cfzjbrroa8B/7DsZ/G7ghqX5Nk6dUz6SNNw5gXcCHwAeTfJwV/s4vV/+dye5Bvg+cGX33D7gcuAg8BLwIYCqej7JbwEPdu0+WVXPL8l3IUlalAVDoKr+jMHz+QDvGtC+gGvn2NceYM+pdFCSdPr4jmFJapghIEkNMwQkqWEr/vaSOnN4xZV05nEkIEkNMwQkqWFOB+mUOOUjrS6OBCSpYYaAJDXM6SBJ6tPalKcjAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhnl1UKNauwJC0mCOBCSpYQuGQJI9SY4meayv9oUkD3ePZ2ZvO5lkU5L/1/fcf+/b5h1JHk1yMMlnu3sXS5LGaJjpoNuA/wrcMVuoqn86u5zkU8CP+9o/VVVbBuznFmAn8AC9+xBvA/7w1Lu8cjnFIulMs+BIoKruBwbeEL77a/6fAHfOt48ka4HXV9U3unsQ3wFccerdlSQtpVHPCfwycKSqnuyrXZDkO0n+d5Jf7mrrgOm+NtNdTZI0RqNeHXQ1Pz0KOAxsrKrnkrwD+HKSi4BB8/81106T7KQ3dcTGjRtH7KIkaS6LHgkkeRXw68AXZmtV9XJVPdctPwQ8BbyJ3l/+6/s2Xw8cmmvfVbW7qiaranJiYmKxXZQkLWCU6aBfA/6iqn4yzZNkIsmabvkNwGbg6ao6DLyY5OLuPMIHgXtHeG1J0hIY5hLRO4FvAG9OMp3kmu6pqzj5hPCvAI8k+XPgD4CPVNXsSeXfBH4POEhvhLCqrgySpDPRgucEqurqOer/fEDtHuCeOdpPAW89xf5Jkk4j3zEsSQ0zBCSpYYaAJDXMEJCkhhkCktQw7yewTPxwOUkrkSMBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYcPcXnJPkqNJHuurfSLJD5I83D0u73vuhiQHkzyR5NK++raudjDJrqX/ViRJp2qYkcBtwLYB9c9U1ZbusQ8gyYX07j18UbfNf0uyprv5/O8ClwEXAld3bSVJYzTMPYbvT7JpyP1tB+6qqpeB7yU5CGztnjtYVU8DJLmra/vdU+6xJGnJjHJO4Lokj3TTRWd3tXXAs31tprvaXPWBkuxMMpVkamZmZoQuSpLms9gQuAV4I7AFOAx8qqtnQNuapz5QVe2uqsmqmpyYmFhkFyVJC1nUTWWq6sjscpLPAV/pVqeBDX1N1wOHuuW56pKkMVnUSCDJ2r7V9wOzVw7tBa5K8tokFwCbgW8BDwKbk1yQ5DX0Th7vXXy3JUlLYcGRQJI7gUuAc5NMAzcClyTZQm9K5xngwwBV9XiSu+md8D0GXFtVr3T7uQ74GrAG2FNVjy/5dyNJOiXDXB109YDyrfO0vwm4aUB9H7DvlHonSTqtfMewJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYt6lNEJS2fTbu+elLtmZvfM4aeaDVyJCBJDTMEJKlhTgetYk4jSFqIIwFJapghIEkNG+bOYnuA9wJHq+qtXe2/AP8I+GvgKeBDVfWjJJuAA8AT3eYPVNVHum3eAdwG/Cy9m8tcX1Vz3mxexzmtI+l0GWYkcBuw7YTafuCtVfULwP8Bbuh77qmq2tI9PtJXvwXYSe++w5sH7FOStMwWDIGquh94/oTaH1XVsW71AWD9fPvobkz/+qr6RvfX/x3AFYvrsiRpqSzF1UH/AvhC3/oFSb4DvAD8+6r6U2AdMN3XZrqrnXEGTc3A+KZnnCqSNIqRQiDJvwOOAZ/vSoeBjVX1XHcO4MtJLgIyYPM5zwck2Ulv6oiNGzeO0kVJ0jwWfXVQkh30Thj/xuwJ3qp6uaqe65YfonfS+E30/vLvnzJaDxyaa99VtbuqJqtqcmJiYrFdlCQtYFEhkGQb8G+B91XVS331iSRruuU30DsB/HRVHQZeTHJxkgAfBO4dufeSpJEMc4noncAlwLlJpoEb6V0N9Fpgf+93+k8uBf0V4JNJjgGvAB+pqtmTyr/J8UtE/7B7SJLGaMEQqKqrB5RvnaPtPcA9czw3Bbz1lHonSTqtfMewJDXMEJCkhhkCktQwP0paJ1lpb4iTdPo4EpCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIb5jmGtWt56c/XzZzw6RwKS1DBDQJIaZghIUsOGCoEke5IcTfJYX+2cJPuTPNl9PburJ8lnkxxM8kiSt/dts6Nr/2R3o3pJ0hgNOxK4Ddh2Qm0XcF9VbQbu69YBLqN3g/nNwE7gFuiFBr37E/8SsBW4cTY4JEnjMVQIVNX9wPMnlLcDt3fLtwNX9NXvqJ4HgLOSrAUuBfZX1fNV9UNgPycHiyRpGY1yTuD8qjoM0H09r6uvA57tazfd1eaqS5LG5HScGM6AWs1TP3kHyc4kU0mmZmZmlrRzkqTjRnmz2JEka6vqcDfdc7SrTwMb+tqtBw519UtOqP/JoB1X1W5gN8Dk5OTAoJDANwtJoxplJLAXmL3CZwdwb1/9g91VQhcDP+6mi74GvDvJ2d0J4Xd3NUnSmAw1EkhyJ72/4s9NMk3vKp+bgbuTXAN8H7iya74PuBw4CLwEfAigqp5P8lvAg127T1bViSebJUnLaKgQqKqr53jqXQPaFnDtHPvZA+wZuneSpNPKdwxLUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwxYdAknenOThvscLST6a5BNJftBXv7xvmxuSHEzyRJJLl+ZbkCQt1lC3lxykqp4AtgAkWQP8APgSvXsKf6aqfru/fZILgauAi4CfB/44yZuq6pXF9kGSNJqlmg56F/BUVf3lPG22A3dV1ctV9T16N6LfukSvL0lahKUKgauAO/vWr0vySJI9Sc7uauuAZ/vaTHc1SdKYjBwCSV4DvA/4/a50C/BGelNFh4FPzTYdsHnNsc+dSaaSTM3MzIzaRUnSHJZiJHAZ8O2qOgJQVUeq6pWq+hvgcxyf8pkGNvRttx44NGiHVbW7qiaranJiYmIJuihJGmQpQuBq+qaCkqzte+79wGPd8l7gqiSvTXIBsBn41hK8viRpkRZ9dRBAkr8N/EPgw33l/5xkC72pnmdmn6uqx5PcDXwXOAZc65VBkjReI4VAVb0E/NwJtQ/M0/4m4KZRXlOStHR8x7AkNWykkYA0rE27vjqw/szN71nmnuh08Wd8ZnIkIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYbxaTNFa+yWy8HAlIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMq4M0dl4dsniDjp3HTadi5JFAkmeSPJrk4SRTXe2cJPuTPNl9PburJ8lnkxxM8kiSt4/6+pKkxVuq6aB/UFVbqmqyW98F3FdVm4H7unWAy+jdYH4zsBO4ZYleX5K0CKfrnMB24PZu+Xbgir76HdXzAHBWkrWnqQ+SpAUsRQgU8EdJHkqys6udX1WHAbqv53X1dcCzfdtOd7WfkmRnkqkkUzMzM0vQRUnSIEtxYvidVXUoyXnA/iR/MU/bDKjVSYWq3cBugMnJyZOelyQtjZFDoKoOdV+PJvkSsBU4kmRtVR3upnuOds2ngQ19m68HDo3aB0mnxiuyNGuk6aAkfyfJ351dBt4NPAbsBXZ0zXYA93bLe4EPdlcJXQz8eHbaSJK0/EYdCZwPfCnJ7L7+R1X9zyQPAncnuQb4PnBl134fcDlwEHgJ+NCIry9JGsFIIVBVTwO/OKD+HPCuAfUCrh3lNaUzkdMvWqn82AhJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMO8nIGloXuq6+jgSkKSGGQKS1DCng1YAh9jz8xaKbfPnf3o5EpCkhhkCktQwp4OkJeK03sriNNJwHAlIUsMMAUlqmNNB0gmc1tFinKn/bhY9EkiyIcnXkxxI8niS67v6J5L8IMnD3ePyvm1uSHIwyRNJLl2Kb0CStHijjASOAR+rqm939xl+KMn+7rnPVNVv9zdOciFwFXAR8PPAHyd5U1W9MkIfJEkjWHQIdDeIP9wtv5jkALBunk22A3dV1cvA95IcBLYC31hsH6TldqYO+bU0VuPPf0lODCfZBLwN+GZXui7JI0n2JDm7q60Dnu3bbJr5Q0OSdJqNHAJJXgfcA3y0ql4AbgHeCGyhN1L41GzTAZvXHPvcmWQqydTMzMyoXZQkzWGkq4OSvJpeAHy+qr4IUFVH+p7/HPCVbnUa2NC3+Xrg0KD9VtVuYDfA5OTkwKCQVouVNsWw0vqj02uUq4MC3AocqKpP99XX9jV7P/BYt7wXuCrJa5NcAGwGvrXY15ckjW6UkcA7gQ8AjyZ5uKt9HLg6yRZ6Uz3PAB8GqKrHk9wNfJfelUXXemWQJI3XKFcH/RmD5/n3zbPNTcBNi31NScNbSZ+d0/oU03zf/7iPjR8bIUkNMwQkqWGr+rODVtJwWCvLuIfgGi9//sc5EpCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDVv2EEiyLckTSQ4m2bXcry9JOm5ZQyDJGuB3gcuAC+ndj/jC5eyDJOm45R4JbAUOVtXTVfXXwF3A9mXugySps9whsA54tm99uqtJksYgVbV8L5ZcCVxaVf+yW/8AsLWq/tUJ7XYCO7vVNwNPLOLlzgX+aoTutsBjtDCP0cI8RvMbx/H5e1U1MUzD5b7H8DSwoW99PXDoxEZVtRvYPcoLJZmqqslR9rHaeYwW5jFamMdofiv9+Cz3dNCDwOYkFyR5DXAVsHeZ+yBJ6izrSKCqjiW5DvgasAbYU1WPL2cfJEnHLfd0EFW1D9i3DC810nRSIzxGC/MYLcxjNL8VfXyW9cSwJGll8WMjJKlhqzIE/GiKkyXZk+Roksf6auck2Z/kye7r2ePs4zgl2ZDk60kOJHk8yfVd3WPUSfIzSb6V5M+7Y/QfuvoFSb7ZHaMvdBd9NCvJmiTfSfKVbn1FH59VFwJ+NMWcbgO2nVDbBdxXVZuB+7r1Vh0DPlZVbwEuBq7t/t14jI57GfjVqvpFYAuwLcnFwH8CPtMdox8C14yxjyvB9cCBvvUVfXxWXQjgR1MMVFX3A8+fUN4O3N4t3w5csaydWkGq6nBVfbtbfpHef+J1eIx+onr+b7f66u5RwK8Cf9DVmz5GSdYD7wF+r1sPK/z4rMYQ8KMphnd+VR2G3i9B4Lwx92dFSLIJeBvwTTxGP6Wb6ngYOArsB54CflRVx7omrf9/+x3g3wB/063/HCv8+KzGEMiAmpdAaShJXgfcA3y0ql4Yd39Wmqp6paq20Hu3/1bgLYOaLW+vVoYk7wWOVtVD/eUBTVfU8Vn29wksg6E+mkIAHEmytqoOJ1lL76+7ZiV5Nb0A+HxVfbEre4wGqKofJfkTeudPzkryqu6v3Zb/v70TeF+Sy4GfAV5Pb2Swoo/PahwJ+NEUw9sL7OiWdwD3jrEvY9XN3d4KHKiqT/c95THqJJlIcla3/LPAr9E7d/J14B93zZo9RlV1Q1Wtr6pN9H7v/K+q+g1W+PFZlW8W65L4dzj+0RQ3jblLY5fkTuASep9oeAS4EfgycDewEfg+cGVVnXjyuAlJ/j7wp8CjHJ/P/Ti98wIeIyDJL9A7sbmG3h+Qd1fVJ5O8gd4FGOcA3wH+WVW9PL6ejl+SS4B/XVXvXenHZ1WGgCRpOKtxOkiSNCRDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhv1/21HwQpuryn8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# histogram of label frequency\n", + "hist, bins = np.histogram(y_train, bins=n_classes)\n", + "width = 0.8 * (bins[1] - bins[0])\n", + "center = (bins[:-1] + bins[1:]) / 2\n", + "plt.bar(center, hist, align='center', width=width)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[180, 1980, 2010, 1260, 1770, 1650, 360, 1290, 1260, 1320, 1800, 1170, 1890, 1920, 690, 540, 360, 990, 1080, 180, 300, 270, 330, 450, 240, 1350, 540, 210, 480, 240, 390, 690, 210, 599, 360, 1080, 330, 180, 1860, 270, 300, 210, 210]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAEoRJREFUeJzt3X+sZOV93/H3pzi20iaRcblYm13oEmttFdx0Y18RKisRrVPzw0nAldyCKps4rtaOoLGlKC2klbAc0aI2jiurKdU6XgGqAyYhDit7U7JBaUgqE3OxCQYTygWvzfVu2WtIbEtUREu+/WPODZNl5u7snbkzc+/zfkmjmfk+58x55oD2c5/nnDMnVYUkqU1/a9YdkCTNjiEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJatirZt2BUznrrLNq9+7ds+6GJG0ZDz300LeqamGUZec+BHbv3s3S0tKsuyFJW0aSr4+6rNNBktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWGnDIEk5yT5gySPJ3ksyYe6+uuSHE7yZPd8ZldPkk8kWU7ySJK39H3WNd3yTya5ZvO+liRpFKOMBE4Av1BVfx+4CLg2yfnA9cB9VbUHuK97D3AZsKd77ANugV5oADcCPwpcCNy4FhySpNk4ZQhU1bGq+lL3+rvA48BO4Argtm6x24Aru9dXALdXzwPAa5PsAC4BDlfV81X158Bh4NKJfhtJ0mk5rSuGk+wGfgT4E+D1VXUMekGR5OxusZ3AM32rrXS1YfW5s/v6zw+sH7n5nVPuiSRtrpEPDCf5PuBu4MNV9Z31Fh1Qq3Xqg7a1L8lSkqXV1dVRuyhJOk0jhUCS76EXAJ+uqt/uys920zx0z8e7+gpwTt/qu4Cj69Rfoar2V9ViVS0uLIz0G0iSpA045XRQkgCfAh6vql/tazoIXAPc3D3f01e/Lsmd9A4Cf7ubLroX+A99B4PfAdwwma9x+pzykaTRjgm8DXgP8JUkD3e1X6L3j/9dSd4PfAN4d9d2CLgcWAZeAN4HUFXPJ/ll4MFuuY9W1fMT+RaSpA05ZQhU1R8zeD4f4O0Dli/g2iGfdQA4cDodlCRtHq8YlqSGGQKS1DBDQJIaNve3l9TW4RlX0tbjSECSGmYISFLDnA7SaXHKR9peHAlIUsMMAUlqmNNBktQZNt0J23fK05GAJDXMEJCkhhkCktQwQ0CSGmYISFLDPDuoUV70JQkcCUhS004ZAkkOJDme5NG+2meSPNw9jqzddjLJ7iT/r6/tv/et89YkX0mynOQT3b2LJUkzNMp00K3AfwVuXytU1b9Ye53kY8C3+5Z/qqr2DvicW4B9wAP07kN8KfC7p9/l+dXihSaStrZTjgSq6n5g4A3hu7/m/zlwx3qfkWQH8ANV9YXuHsS3A1eefnclSZM07jGBHwOeraon+2rnJflykj9M8mNdbSew0rfMSleTJM3QuGcHXc3fHAUcA86tqueSvBX4nSQXAIPm/2vYhybZR2/qiHPPPXfMLkqShtnwSCDJq4B/BnxmrVZVL1bVc93rh4CngDfS+8t/V9/qu4Cjwz67qvZX1WJVLS4sLGy0i5KkUxhnOugngD+rqr+e5kmykOSM7vUPAXuAp6vqGPDdJBd1xxHeC9wzxrYlSRMwyimidwBfAN6UZCXJ+7umq3jlAeEfBx5J8qfAbwEfrKq1g8o/B/w6sExvhLCtzgySpK3olMcEqurqIfWfGVC7G7h7yPJLwJtPs3+SpE3kFcOS1DBDQJIaZghIUsMMAUlqmCEgSQ3zfgJT4o/LSZpHjgQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSGjXJ7yQNJjid5tK/2kSTfTPJw97i8r+2GJMtJnkhySV/90q62nOT6yX8VSdLpGmUkcCtw6YD6x6tqb/c4BJDkfHr3Hr6gW+e/JTmju/n8rwGXAecDV3fLSpJmaJR7DN+fZPeIn3cFcGdVvQh8LckycGHXtlxVTwMkubNb9qun3WNJ0sSMc0zguiSPdNNFZ3a1ncAzfcusdLVh9YGS7EuylGRpdXV1jC5Kktaz0RC4BXgDsBc4Bnysq2fAsrVOfaCq2l9Vi1W1uLCwsMEuSpJOZUM3lamqZ9deJ/kk8Lnu7QpwTt+iu4Cj3ethdUnSjGxoJJBkR9/bdwFrZw4dBK5K8pok5wF7gC8CDwJ7kpyX5NX0Dh4f3Hi3JUmTcMqRQJI7gIuBs5KsADcCFyfZS29K5wjwAYCqeizJXfQO+J4Arq2ql7rPuQ64FzgDOFBVj03820iSTssoZwddPaD8qXWWvwm4aUD9EHDotHonSdpUXjEsSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWEb+hVRSdOx+/rPD207cvM7p9gTbVeOBCSpYYaAJDXM6aBtbNhUgtMIktY4EpCkhhkCktSwUe4sdgD4SeB4Vb25q/1n4KeAvwSeAt5XVX+RZDfwOPBEt/oDVfXBbp23ArcC30vv5jIfqqqhN5tXj2eHSNpMo4wEbgUuPal2GHhzVf0w8H+AG/ranqqqvd3jg331W4B99O47vGfAZ0qSpuyUIVBV9wPPn1T7vao60b19ANi13md0N6b/gar6QvfX/+3AlRvrsiRpUiZxdtDPAp/pe39eki8D3wH+fVX9EbATWOlbZqWrbTnzdsbNvPVH0tYyVggk+XfACeDTXekYcG5VPdcdA/idJBcAGbD60OMBSfbRmzri3HPPHaeLkqR1bPjsoCTX0Dtg/C/XDvBW1YtV9Vz3+iF6B43fSO8v//4po13A0WGfXVX7q2qxqhYXFhY22kVJ0ilsKASSXAr8W+Cnq+qFvvpCkjO61z9E7wDw01V1DPhukouSBHgvcM/YvZckjWWUU0TvAC4GzkqyAtxI72yg1wCHe/+m//WpoD8OfDTJCeAl4INVtXZQ+ed4+RTR3+0ekqQZOmUIVNXVA8qfGrLs3cDdQ9qWgDefVu8kSZvKK4YlqWGGgCQ1zBCQpIb5U9J6BS9Ak9rhSECSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhrmFcPaloZd9Qxe+bxdeGX7ZDgSkKSGGQKS1DBDQJIaNlIIJDmQ5HiSR/tqr0tyOMmT3fOZXT1JPpFkOckjSd7St8413fJPdjeqlyTN0KgjgVuBS0+qXQ/cV1V7gPu69wCX0bvB/B5gH3AL9EKD3v2JfxS4ELhxLTgkSbMxUghU1f3A8yeVrwBu617fBlzZV7+9eh4AXptkB3AJcLiqnq+qPwcO88pgkSRN0TjHBF5fVccAuuezu/pO4Jm+5Va62rC6JGlGNuPAcAbUap36Kz8g2ZdkKcnS6urqRDsnSXrZOBeLPZtkR1Ud66Z7jnf1FeCcvuV2AUe7+sUn1f/XoA+uqv3AfoDFxcWBQSGtd0GYpNGMMxI4CKyd4XMNcE9f/b3dWUIXAd/upovuBd6R5MzugPA7upokaUZGGgkkuYPeX/FnJVmhd5bPzcBdSd4PfAN4d7f4IeByYBl4AXgfQFU9n+SXgQe75T5aVScfbJYkTdFIIVBVVw9pevuAZQu4dsjnHAAOjNw7SdKm8ophSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJatiGQyDJm5I83Pf4TpIPJ/lIkm/21S/vW+eGJMtJnkhyyWS+giRpo0a6veQgVfUEsBcgyRnAN4HP0run8Mer6lf6l09yPnAVcAHwg8DvJ3ljVb200T5IksYzqemgtwNPVdXX11nmCuDOqnqxqr5G70b0F05o+5KkDZhUCFwF3NH3/rokjyQ5kOTMrrYTeKZvmZWuJkmakbFDIMmrgZ8GfrMr3QK8gd5U0THgY2uLDli9hnzmviRLSZZWV1fH7aIkaYhJjAQuA75UVc8CVNWzVfVSVf0V8ElenvJZAc7pW28XcHTQB1bV/qparKrFhYWFCXRRkjTIJELgavqmgpLs6Gt7F/Bo9/ogcFWS1yQ5D9gDfHEC25ckbdCGzw4CSPK3gX8KfKCv/J+S7KU31XNkra2qHktyF/BV4ARwrWcGSdJsjRUCVfUC8HdPqr1nneVvAm4aZ5uSpMnximFJathYIwFpVLuv//zQtiM3v3OKPdFmGfbf2P++882RgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlhXiwmaaa8yGy2HAlIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMs4M0c/7M9Ma43zQJY48EkhxJ8pUkDydZ6mqvS3I4yZPd85ldPUk+kWQ5ySNJ3jLu9iVJGzep6aB/XFV7q2qxe389cF9V7QHu694DXEbvBvN7gH3ALRPaviRpAzbrmMAVwG3d69uAK/vqt1fPA8Brk+zYpD5Ikk5hEiFQwO8leSjJvq72+qo6BtA9n93VdwLP9K270tX+hiT7kiwlWVpdXZ1AFyVJg0ziwPDbqupokrOBw0n+bJ1lM6BWryhU7Qf2AywuLr6iXZI0GWOHQFUd7Z6PJ/kscCHwbJIdVXWsm+453i2+ApzTt/ou4Oi4fZA0Os8qUr+xpoOS/J0k37/2GngH8ChwELimW+wa4J7u9UHgvd1ZQhcB316bNpIkTd+4I4HXA59NsvZZv1FV/zPJg8BdSd4PfAN4d7f8IeByYBl4AXjfmNuXJI1hrBCoqqeBfzig/hzw9gH1Aq4dZ5vSVuTPJWte+bMRktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWHeT0DSyDzVdftxJCBJDTMEJKlhTgfNgfV+0Kt17pu2Of20+RwJSFLDDAFJapjTQdKEOHUxP7xnwugcCUhSwwwBSWqY00HSSZzW0UZs1f9vNjwSSHJOkj9I8niSx5J8qKt/JMk3kzzcPS7vW+eGJMtJnkhyySS+gCRp48YZCZwAfqGqvtTdZ/ihJIe7to9X1a/0L5zkfOAq4ALgB4HfT/LGqnppjD5Iksaw4RDobhB/rHv93SSPAzvXWeUK4M6qehH4WpJl4ELgCxvtgzRtW3XIr/Ft1zOOJnJgOMlu4EeAP+lK1yV5JMmBJGd2tZ3AM32rrbB+aEiSNtnYIZDk+4C7gQ9X1XeAW4A3AHvpjRQ+trbogNVryGfuS7KUZGl1dXXcLkqShhjr7KAk30MvAD5dVb8NUFXP9rV/Evhc93YFOKdv9V3A0UGfW1X7gf0Ai4uLA4NC2i7mbYpp3vqjzTXO2UEBPgU8XlW/2lff0bfYu4BHu9cHgauSvCbJecAe4Isb3b4kaXzjjATeBrwH+EqSh7vaLwFXJ9lLb6rnCPABgKp6LMldwFfpnVl0rWcGSdJsjXN20B8zeJ7/0Drr3ATctNFtShrNvP0Ed+tTTOt9/1nvG382QpIaZghIUsO29W8HzXqYpfnl/xvtmrepsllzJCBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGjb1EEhyaZInkiwnuX7a25ckvWyqIZDkDODXgMuA8+ndj/j8afZBkvSyaY8ELgSWq+rpqvpL4E7giin3QZLUmXYI7ASe6Xu/0tUkSTOQqprexpJ3A5dU1b/q3r8HuLCq/vVJy+0D9nVv3wQ8MYHNnwV8awu0zVt/5qlt3vqzVdrmrT9bpW0e+zOqv1dVCyMtWVVTewD/CLi37/0NwA1T2vbSVmibt/7MU9u89WertM1bf7ZK2zz2ZzMe054OehDYk+S8JK8GrgIOTrkPkqTOq6a5sao6keQ64F7gDOBAVT02zT5Ikl421RAAqKpDwKFpbxfYv0XaZrHNrdI2i21uh7ZZbHM7tM1im6fqz8RN9cCwJGm++LMRktSyaR+JntaD3jGHLwOf695fBywDBZw95baz5qw/89TmvnG/uW+GfI/teHbQNH0IeLzv/f8GfgL4OvCBKbfNW3/mqQ3cN+63ybbB9tg30zHrv9g3aRSwC7gP+Cd0CdvX9gxw/xTbjgD/YI76M09t7hv3m/tm+PeYykhg6mcHTcl/Af4N8P0D2l4H/AzwV1NqA7hpjvozT23gvtlIG7jfhrXB9tg3U7PtpoOS/CRwvKoeGtL2EvCn02jrfC/wrXnozzy1ddw37jf3zaxNY7gxzQfwH+n9MN0R4P8CLwD/o6/tBPCNabR17X8BHJ2H/sxTm/vG/ea+Wfd7HGFK00Ez/0d7kwPhYobMtU27bd76M09t7hv3m/tmdscEtt100DBJfj7JCr2Dxo8AvzjNtiS/Pk/9mac29437zX0z2vfYDF4xLEkNa2YkIEl6JUNAkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSG/X8TUbgD4cGIngAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "### Data exploration visualization code goes here.\n", + "### Feel free to use as many code cells as needed.\n", + "import matplotlib.pyplot as plt\n", + "import random\n", + "# Visualizations will be shown in the notebook.\n", + "%matplotlib inline\n", + "\n", + "# Visualization\n", + "#training data \n", + "hist_train_y = []\n", + "hist_train_x = []\n", + "\n", + "train_y_list = y_train.tolist()\n", + "\n", + "for i in range(0, n_classes):\n", + " hist_train_x.append(i)\n", + " count = train_y_list.count(i)\n", + " hist_train_y.append(count)\n", + "b_width = 0.9\n", + "fig, ax = plt.subplots()\n", + "rects1 = ax.bar(hist_train_x, hist_train_y, b_width, label='Labels')\n", + "ax.set_xticks(hist_train_x)\n", + "ax.set_xticklabels(train_y_list)\n", + "\n", + "#plt.plot.bar(hist_train_x, hist_train_y, 'b-')\n", + "print (hist_train_y)" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEWCAYAAACe8xtsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJztnXmYHGW1/z8n+76RPSEkLAHClhBkD6tsQQQ0KPxE4HqvgIIXFRFQ2URUVGRRREWQ5SLKJqCENaQJIJCNACEkkJAQJhkySSYLkz0z5/fHW8XU9PRS1XtNn8/z9NPdtfXpmp761jnvOecVVcUwDMMwotCu3AYYhmEY8cPEwzAMw4iMiYdhGIYRGRMPwzAMIzImHoZhGEZkTDwMwzCMyJh4GFWFiLQXkQYRGVHIbQ2j2jDxMCoa7+LtP5pEZFPg/deiHk9VG1W1h6ouLeS2URGRn4nINhH51HssEJHbRGRwhGO8IiLn5WHDCBH5p4isEpF1IvKOiHy9FJ9txB8TD6Oi8S7ePVS1B7AUOCWw7IHk7UWkQ+mtzJkHVLUnsAPwZWBHYKaIDCrV5wMfAiM8G84F6kr02UbMMfEwYo13B/8PEXlQRD4FzhaRQ0TkdRFZKyK13h19R2/7DiKiIjLSe/9/3vqnPQ/gNREZFXVbb/1JIvK+dxf/OxF5NczduapuVdW5wBnAWuB73vF2EJHJIrJSRNaIyL9EZJi37kbgEOCPnhd2i7f89yJSIyLrRWSGiBya4aM/B/xVVTeq6nZVna2qzwa+z2GB8zhHRI7I9NlGdWHiYbQFTgf+BvQG/gFsBy4B+gOHAScCF2TY//8BVwH9cN7N9VG3FZGBwEPAZd7nLgYOjPIlVHU78CQwwVvUDrgT5xnsBGwDbvW2vRx4DbjQ88K+6+3zBrCvZ98jwMMi0jnNR74O3CEiXxWRHYMrvPdPAtd4x7oCeExEdsjw2UYVYeJhtAVeUdV/qWqTqm5S1Rmq+oZ3N/0h8GfgyAz7P6KqM1V1Gy6UMzaHbb8AzFHVJ7x1NwOrcvguy3EXa1R1par+0/tO64GfZ/keqOr9qlrvCdGvgF7Armk2/xJOBK4BPhKR2SIy3lt3DvCkqj7rnddngLdwQmwYJh5Gm+Dj4BsR2UNEnhKRT0RkPfBTnDeQjk8CrzcCPXLYdmjQDnUdR2tC2J7MMKAeQES6i8hfRGSp9z1eJPP3QER+KCLzRWQdsAbonm4fT2R+qKpjgEHAu8A/vdU7AWd5Iau1IrIWONj7noZh4mG0CZJbQ/8JmAvsqqq9gKsBKbINtcBw/42ICE4IQiMi7YFTgJe9RT8ERgEHet/jmKRdWnxvETka+D5u8L0P0BdoIMR3V9WVwE3AjiLSGyeEf1XVPoFHd1X9darPNqoPEw+jLdITWAdsEJE9yTzeUSj+DewvIqd4GV+XAAPC7CgiHUVkDPB3XMjKH4DuifNu1ojIDjgRDLIC2DnwviduvGcV0BG4Fud5pPvcX4nIXl49Sy/gW8B8VV0H3A+cLiLHeeu7iMjRIuJ7HsmfbVQZJh5GW+RSXNrppzgv5B/F/kBVXQF8FfgtsBrYBXgT2JJht695GWJrgCdwF+QDVNUPjf0WlwSwGvgP8HTS/rfQHFr6LTAZeAH4AFgCrMd5ROno4X3uOmARLiR1mvd9luASEa4CVuKSAy6l+ZqR/NlGlSE2GZRhFB4vBLUcmKSqL2fb3jDihnkehlEgROREEentpcZehQshTS+zWYZRFEw8DKNwHI6r2F6FS2k9TVUzha0MI7ZY2MowDMOIjHkehmEYRmTi1EQuEn369NFdd01XWFteNmzYQPfuaTMoy0al2gVmW66YbblRrbbNmjVrlaqGSjFHVdvkY/To0VqpTJ06tdwmpKRS7VI123LFbMuNarUNmKkhr7EWtjIMwzAiY+JhGIZhRMbEwzAMw4iMiYdhGIYRGRMPwzAMIzImHoZhGEZkTDwMwzCMyJh4GIZhGJEx8TAMwzAiY+JhGIZhRMbEwzAMw4iMiYdhGIYRGRMPwzAMIzImHoZhGEZkTDwMwzCMyBRNPERkRxGZKiLvici7InKJt7yfiDwvIh94z3295SIit4nIQhF5W0T2DxzrXG/7D0Tk3GLZbBiGYYSjmJ7HduBSVd0TOBi4SETGAFcAU1R1N2CK9x7gJGA373E+cAc4sQGuAQ4CDgSu8QWn0NTXw+23w/33F+PohmEYbYeiiYeq1qrqbO/1p8B7wDDgVOBeb7N7gdO816cC93kTWr0O9BGRIcAJwPOqWq+qa4DngRMLZWdjIzzzDHz1qzBkCFx8sXsYhmEY6RE382CRP0RkJDAN2BtYqqp9AuvWqGpfEfk38EtVfcVbPgW4HDgK6KKqP/OWXwVsUtXfpPic83FeCwMGDBj/0EMPpbVp2bKuPP30YJ57bhArV3ahV69tHHvsCrZsac/kyUOYPPllunZtLMj3T6ahoYEePXoU5dj5UKl2gdmWK2ZbblSrbUcfffQsVT0g1MZh56vN9QH0AGYBX/Ler01av8Z7fgo4PLB8CjAeuAz4SWD5VbhwWE5zmH/4oeoRR6iCart2qiedpPrww6qbN7v1993n1i1YEGrK35yo1PmRK9UuVbMtV8y23KhW26iUOcxFpCPwKPCAqj7mLV7hhaPwnuu85TXAjoHdhwPLMyzPiWefhWnT4OqrYelSmDwZJk2Czp3d+mHD3POyZbl+gmEYRtunmNlWAtwFvKeqvw2sehLwM6bOBZ4ILD/Hy7o6GFinqrXAs8DxItLXGyg/3luWEw0N7vkHP2gWiiAmHoZhGNnpUMRjHwZ8HXhHROZ4y34E/BJ4SET+G1gKnOGtmwxMBBYCG4H/AlDVehG5HpjhbfdTVa3P1agNG9xzt26p15t4GIZhZKdo4qFu4FvSrD42xfYKXJTmWHcDdxfCrg0boEsXaN8+9foePaBXLxMPwzCMTFRdhXlDA3TvnnmbYcNMPAzDMDJRdeKxYYPzLjJh4lE4/Dqab34TXn213NYYhlEoijnmUZFs2BDO85gypTT2tFUWLoS//hXuvbdZiLt0gcMOK69dhmEUhqr0PLKJx9ChUFvr7pqN8DQ0wD33wBFHwG67wS9/CfvtBw8/DCNGwJo15bbQMIxCYeKRgmHDnHCsXFkam9oCt90GgwfDf/0XfPIJ/OIXro7mqadcHc0OO8DateW20jCMQlF1YauGBudZZCKYrjt4cPFtagvcc4/zLu68Ew49FCQpz65vXxMPw2hLVKXnEWbAHGzQPAo1NS5cddhhrYUDoE8fC1sZRluiKsUjTNgKTDzCsnmzC/ENH55+mz59zPMwjNpa18Hb73QRZ0w8UjBokCsiNPEIx3Kv01gm8bCwlWHAK6/AQw/BO++U25L8MfFIQfv2bqzDxCMcNTXuOZvnsXEjbN1aGpsMoxLxPY5PPy2vHYWgqsRj61bYti37mAdYoWAUwohHX2/uR/M+jGrGFw8LW8UMvyliNs8DTDyi4ItHqi7FPn286b9s0NyoZszziClRxGPo0OZYvpGZmhro3Rt69ky/jS8e5nkY1YyJR0yJ6nmsXevi9NXAokVw6aX75XRxr6nJHLICC1sZBph4xJao4gHVE7qaPBlmz+7LzJnR9w0jHha2Mgwb84gt/h8s7IA5VI94zJvnnpcsib6veR6GEQ7zPEIgIneLSJ2IzA0s+4eIzPEeS/wZBkVkpIhsCqz7Y2Cf8SLyjogsFJHbvOltc6LYnsf27XDssa4RYNzIVTy2bXO9rMzzMIzstCXxKGZvq3uA3wP3+QtU9av+axG5CVgX2H6Rqo5NcZw7gPOB13FT1Z4IPJ2LQcUWj8WL4cUXYdYs16YjWw+tSiJX8aitBdXs4tGlC3TqZJ6HUd1Y2CoEqjoNSDnXuOc9fAV4MNMxRGQI0EtVX/Omqb0POC1Xm6KIR8+e7hFFPBYscM/r1sGFF7qLahxYuRJWrXKvo4pHmBoPcP2urMrcqHbM88ifCcAKVf0gsGyUiLwJrAd+oqovA8OAmsA2Nd6ylIjI+TgvhQEDBpBIJFqsf/PNocBo5sx5laVLt2U1sm/fzzFnzkYSiXdDfamnntoR2IWvfe0jHnhgJ66+eh7HHlvXaruGhoZWtpWTOXN6A+Po128zCxYIicRrofedOnUAsBe1tTNIJDZk3LZTpwNZsKCBRGJeZBsr7ZwFMdtyoxptW7nyQKAbNTXrSCTezOkYFXPeVLVoD2AkMDfF8juASwPvOwM7eK/HAx8DvYDPAS8EtpsA/CvMZ48ePVqTufFGVVBtaGi1KiXHHqt6yCHhtlVV/Z//Ue3fX3X7dtWDDlLdYQfVFStabzd16tTwBy0Bf/iDOy8nn7xMRVQ3bw6/7003uX3XrMm+7cEHqx53XG42Vto5C2K25UY12jZ0qPt/2Xff3I9RzPMGzNSQ1/eSZ1uJSAfgS8A//GWqukVVV3uvZwGLgNE4TyMYEBkO5Fy654etunYNt/3QodHCVvPnwx57uN5Yd9/tXNPvfCe6naVm3jwXott77/Wowscfh9+3psaFAXv3zr6ttWU3qp22FLYqR6ru54H5qvpZOEpEBohIe+/1zsBuwIeqWgt8KiIHe+Mk5wBP5PrBGzZAt27QLuS3HjbMVZk3NYXbfsECJx4AY8bANde4DpqPPZabvaVi3jxn7+DBm4Bo4x5+mm6YHDhry25UM6omHqEQkQeB14DdRaRGRP7bW3UmrQfKjwDeFpG3gEeAC1XVH2z/FvAXYCHOI8kp0wrCddQNMmyYS78NMx1tfb3bbvfdm5dddhmMGwff/rZbX6k0i8dmIDfxCIMNmBvVzObN7kZUpG1kWxVtwFxVz0qz/LwUyx4FHk2z/Uxg70LYlIt4gAtdDRqUeVs/08r3PAA6dnThq899Dr73Pbj33mj2loL6elenMWYMDBiwlfbto4vHMceE29YPW6mG81QMoy3hC8aAAVBX525MO8R4IvCqqzAPU13uE6XWY/589xz0PADGjoUrr4T77oOnngr/2aXivffc85gx0L69suOO4cWjsdGF9aJ4Ho2NzWNPhlFN+OIxZIh7jnvoqqrEIx/PIxsLFjhPY9So1ut+/GPYay+44AJXA1JJ+MWBY8a455Ejw4vHihVODMKKh1WZG9VMsnjEPXRl4pGBQYPc4HpYz2PXXVO7oZ07u/BVba0bB6kk5s1zSQQjRrj3UcQjbIGgj7VlN6oZXywGD3bP5nnEiKji0aFD+Olog5lWqTjwQLj0UrjzTli8OIIRRWbePNhzz+YMtJEjXShqy5bs+0YVD2uOaFQzFraKMQ0N0cQDmtN1M7FtGyxc2Hq8I5mvep29li/vEs2IIuJnWvmMHEnoWo9cPQ8LWxnViIWtYsyGDdEGzCFcoeCHH7rMiUyeBzQX0m3YUBkpFuvXOwFIFg8IF7qqqXEhuR12CPd55nkY1YyFrWJM1LAVhJvL3E/TzeZ5+HfeDQ2VIR7BTCufqOIRtkAQbMzDqG4sbBVTVHMXjzVrYNOm9NukS9NNptI8j+RMK3DfN2ytR5QCQWj+/ha2MqoRE4+YsnWrSyvNRTwgs/exYIHLzPLDMuno2NFlNlWK5zFvngs7BdOLO3QgdK1HVPHo0MH10DLPw6hGGhqclz5wYPP7OFM14uH/oYohHvPnZ/c6fPr0qSzx8Bs5BgmTrtvU5M5JFPEAa45oVC9+wk6PHk5EzPOICX5Vc9QB87CeR7bBcp/evWHDhvbZNywByZlWPmHEY9Uq581FFQ/rb2VUK36HCxH3bOIRE6LMIhgkm3isWgWrV8fP89iwwQlEOvHIVusRNU3XxzrrGtVKsD1Sz54WtooNuYpHr17uD56u1iNVQ8RMVIp4+IP86cQjW61HPuJhYSujGgmKh3keMSJX8YDM6bphM618XNiq/OKRKtPKJ0y6bq7iYWEro1pJ9jxMPGJCrgPmkLlQcMEC6NSp+YKbjUrxPObNc9lfu+zSel1Y8ejQoTlzJCzmeRjVioWtQiIid4tInYjMDSy7VkSWicgc7zExsO5KEVkoIgtE5ITA8hO9ZQtF5Ipc7cl1wByyex677dY6Yykdvni4KdnLx7x5MHq0E5BkwtR61NS47cLOyujTt6+749q+Pdp+hhF3LGwVnnuAE1Msv1lVx3qPyQAiMgY3w+Be3j5/EJH23tS0twMnAWOAs7xtI5Nv2CrddLRRMq3Aha22b2/H5s3R7Sgk6TKtIFytR9QaDx+/ynz9+uj7GkacsbBVSFR1GhB28tVTgb+r6hZVXYybcvZA77FQVT9U1a3A371tI5OveGzb5jKrgmzdCosWhR/vgMpo0bFpk+vHlU48IHu6br7iYaEro9qwsFX+XCwib3thLb8mexgQzO2p8ZalWx6ZfMUDWoeuFi1yVetRPA//4lnOSaEWLHBeVK7ioZq7eFhzRKNaaWthq1KP3N4BXA+o93wT8A0gVWs9JbW4pR0tEJHzgfMBBgwYQCKR+Gzdu++ORGQn3njjpcjzZ3/ySU9gPM888w7r1q3+bPkrr/QH9mbDhlkkEuF+CR991A/YlxdfnM0nn5QndvPCCwOBMWzYMINEonlO2IaGhsA524nly0fy3HPT6NSp5Slfv74DmzYdzubNC0kkaiJ99uLFvYFxJBJv8emn4d2PlrZVFmZbblSTbdu2CVu3HsnKlR+SSCxl9eqRbNw4kilTEqHHS4tlW86oatEewEhgbrZ1wJXAlYF1zwKHeI9nA8tbbJfpMXr0aA3yve+p9uihOfHxx6qg+sc/tlz+i1+45evWhT/Wf/7j9nn66dxsKQQ//rFq+/aqmze3XD516tTPXt9zj7Pzgw9a7//WW27dww9H/+y3385t36BtlYbZlhvVZFt9vfvd33KLe/+b30S/dhTLtiDATA15fS9p2EpEhgTeng74mVhPAmeKSGcRGQXsBkwHZgC7icgoEemEG1R/MpfPzqWjrs/gwS6rKLlQcMEC1yGzV6/wx/I7y5YzbDVvnpsyt3Pn9NtkStfNtcYDKmPMxzBKjT++EQxbQbxDV0ULW4nIg8BRQH8RqQGuAY4SkbG40NMS4AIAVX1XRB4C5gHbgYtUtdE7zsU4T6Q9cLeqvpuLPfmIR4cOrmtu8phHlIaIPpVw8cyUaeVTbPGwAXOjmkgWj5493bOJRwpU9awUi+/KsP0NwA0plk8GJudrTz7iAa0LBVWd5+FPLRuWcovHli1uytxJkzJvl6nWo6bGeWL+jGhR6NHDHdc8D6OaSCcecc64qqoK83zEI7lQcOVKd/cc1fPo2hXat28qW9jqgw9chlg2zyNTrUdNjQvXdcjh1kPEqsyN6qMthq2qRjxymb88SLJ4RG2I6OPaMW8v2513pp5WyaRL1801TdfH+lsZ1UZbDFtVlXjk63nU1zdPRxu1IWKQcouHSDi7iyUe1pbdqDYsbBVjCiEe0JxxtWABdOkCI0ZEP1b37o1lC1vNmwc77+zCZ9lIN69HIcTDwlZGNeF7GBa2iiGFEg8/dBW1IWKQcnseYUJWkHpej/Xr3Q/ewlaGER4LW8WYQgyYQ0vPI+p4h0/37tvL4nls2wbvvx9NPKBl6CqfNF0fC1sZ1UbylBDmecQE1cIMmIPzPLZscY0FcxWPcnkeixY5ASm3ePTta2Ero7poaHBhbj9DsV07JyQ25lHhbN7sBCQfz6NXL+jWzYnHwoWusWAug+VQPvGIkmkFqWs9CuV5bNlC2dvSG0apCDZF9Il7c8SqEI98Our6iDSn6+aapuvTvft2Nmwo/YRIvniEtTtVrYcvHkOH5m6HVZmXhvp6WLAgD3fbKBipxCPuc3pUhXjkMwVtEF88/DTd0aNzO06PHk41Sj3uMW8e7LRTtPBdcrpuTY1r1dKpU+52WFv20nDzzXDJJeNobCy3JUY68WjzYSsR2bvYhhSTQnge0NLzGDasOWMiKr54lPriGSXTyieVeOQTsoLyt2ipFmprYcuW9q0mMTNKTzWHrf4oItNF5Nsi0qeoFhWBfOYvD+JPR/vee7mPd4ALW0FpPY/t253HlIt4BGs9CiEevudhYaviUu/N41lbW147jCoOW6nq4cDXgB2BmSLyNxE5rqiWFZBCeh5bt8KcObmPd0DpPY+VK2HiRCcAhx4abd/kWg/zPOKDiUflULVhKwBV/QD4CXA5cCRwm4jMF5EvFcu4QlFI8QCX7pqP51FK8Xj1VRg3DqZNgz//GU4/Pdr+wXTdDRuct1Ao8TDPo7is9ia9NPEoP1UbthKRfUXkZuA94BjgFFXd03t9cxHtKwiFHDD3yc/zcCOYUcNW778Pjz8eLsVVFW66CY480uWXv/YafPObRJ6CNygefnW9eR7xwPc8PvmkvHYYVRy2An4PzAb2U9WLVHU2gKoux3kjFU2hPQ8oj+dx+eXOcxg6FC6+GGbNciKRzNq18KUvwQ9+AKee6rYbNy43W4O1HoWo8QA3g2HXriYexcbCVpVDOvHYsMHVjMWRsOIxEfibqm4CEJF2ItINQFXvT7WDiNwtInUiMjew7NdeqOttEfmnP/guIiNFZJOIzPEefwzsM15E3hGRhSJym0jUe+fCDZgPHuzu3Lt2dfUPudK1a24D5rW1bsD7pJPgrrvggANg7Fi45RY3rgEwezaMHw///rdL1Xzkkeapb3MhWOtRKPEAqzIvNps2NXuoJh7lpbHR/T1Sha1UYePG8tiVL2HF4wUg2Ie1m7csE/cAJyYtex7YW1X3Bd4HrgysW6SqY73HhYHldwDn4+Y13y3FMbNSKM+jY0cYONB5He3yqJBp395VrEe9866rc2LxwAPugnDHHe4u/nvfcx7CSSe5AfGtW90Yx3e/Gz1MlQo/XdcXj6AHlivW36q4+F4HmHiUm3Q3r3Fvjhj2EthFVT/LC/Bed8u0g6pOA+qTlj2nqn5d9etAxntYERkC9FLV11RVgfuA00La/BkbNriLfefOUfdszTHHwImR5as1uVw8V6504uXvf+GFMH06vPMOfOc77vmEE+DNN+GQQ/K30ScoHjvsEK6dezasLXtx8cWjU6dGE48yk9xR1yfuc3qEnUh0g4js7491iMh4YFOen/0N4B+B96NE5E1gPfATVX0ZGAbUBLap8ZalRETOx3kpDBgwgEQiAcD8+bvSpctgXnrplTxNhvPPd8/eoXOioaGBDh0aWLRoE4nEu6H22by5HQ0NR9DQ8CGJxNJW6085xT0A5s5ttTq0XYmUX2wnli8fyYwZa+jTpxOJxMzcPiBAU9M+fPxxJxKJWXnaVn4q0bY5c/oAYxk+vIGamh5MnfpyQbzQQlKJ582nkLZ9/HFX4CCWLp1HIlH32fIlS/oDezN16kyWLQuvIBVz3lQ16wP4HLAIeNl7LATGh9hvJDA3xfIfA/8ExHvfGdjBez0e+Bjo5X3uC4H9JgD/CmPz6NGj1ed//kd18GCtGKZOnaoTJqgedVT4fZYsUQXVO+8srl2puOce99m9eqmefHJhPutrX1Pdeef8basEKtG2Rx91f7PjjqtVUF2zptwWtaYSz5tPIW2bNcv9LR5/vOXyF15wyxOJ8tmWDDBTQ1xfVTWc56GqM0RkD2B3QID5qrotF7ESkXOBLwDHesaiqluALd7rWSKyCBiN8zSCoa3hwPKon5lvO/Zi0KdPy0mWsuEPiPthq1Lip+uuX1+YwXKwAfNi44etRo50o7G1tc0p0kZpaathqyjDvp8D9gXGAWeJyDlRP0xETsQVGX5RVTcGlg8Qkfbe651xA+Mfqmot8KmIHOxlWZ0DPBH1c/OdRbAY9O4dLduqzvN2yykeUDjx6NPHff+4pilWOr54jBrlRmtt3KN8pBOPuE8IFcrzEJH7gV2AOYDfo9MfwE63z4PAUUB/EakBrsFlV3UGnvcybl9Xl1l1BPBTEdnuHf9CVfUH27+Fy9zqCjztPSJRieIRdcDcF48BA4pjTyb8Wo/GxsKKR1OT+8fq1aswxzSaqa93nY+HDXNDkyYe5SOb59GmxQM4ABjjh5nCoKpnpVh8V5ptHwUeTbNuJpBXV99KvED5d96q4dJpyxm2CtZ6FDJsBS50VWl/m7ZAfT306wf9+rmOllZlXj6qPWw1FxhcTEOKSSWOefTu3XznHYa6OtdmpFzfww9dFdLzAKv1KBarVzvx6N69ka5dzfMoJ1UdtgL6A/NEZDrewDaAqn6xKFYVmEoNW4G7eIaZF6SuzoWsypVu6YtHIQoEwdqyFxvf8xCBIUNMPMpJOvHo0MHdELZ18bi2mEYUm0oUD79lyLp14VqdBAsEy8EXvuAu9LlOgJWMeR7Fpb6+WfBNPMpLQ4MTilSzb8a5OWLY+TxeApYAHb3XM3CNEmNBJYpH1ItnXV15xePLX3YdfQuFiUdx8T0PcD3ZTDzKh98UMVXUIM5zeoRtyf5N4BHgT96iYUABLyXFo6mp7YhHOTKtioWFrYpLfb1rJQPmeZSbVB11feI8p0fYAfOLgMNwrUP8iaHKeB8cnk1eE5VKHDCHcLUequUPWxWaXr3cnZh5HoVn82bXqdX3PIYMcb+zTfk2FDJyIpN4tPmwFbBFVbf6b0SkA67Oo+IpVEfdQhPF82hocBeEtiQe7do5ATXPo/D4BYJB8QDzPspFNvFo02Er4CUR+RHQ1Zu7/GHgX8Uzq3BUqnj4nkcY8ShngWAxsbbsxcHEo7Ko9rDVFcBK4B3gAmAyMZhBECpXPDp3dml6YcJW5SwQLCYmHsXBxKOyaKthq7CNEZuAO71HrCjU/OXFIOzFs5x9rYqJNUcsDkHxWL++WTysyrw8VHXYSkQWi8iHyY9iG1cICjUFbTHo3bu6xaMSPI/Nm+H734c5c8prRyHxxcPPturf39UZmOcRjqefhqeeGlKw44UJW4Vv/FQ5ROlt5dMFOAPoV3hzCk+lhq2gub9VNvywVVsb8yi359HUBOeeCw89BN26uSl+2wJBz2PxYpecMGiQiUdYbr0VZs/eiV//ujDHy+Z5NDW5TLhuGedmrTzCFgmuDjyWqeotwDFFtq0gVLp4hPU8evQozPSvlUS5PY8rrnDCAc3eXVtg9WrnaQQvWFbrEZ6aGli9ujONjdm3zYZqdvG/jOMUAAAgAElEQVSAeIauwrZk3z/wth3OEylQo4riUsni0bu361SbjXJXlxeLPn3c32fbNujYsbSfffvt8Otfw0UXwbRpsGJFaT+/mAT7WvkMHhxt8rFqpqYGmpqEurrm8aJc2bTJCUimsBW40FXc/sfDhq1uCrzejmtV8pWCW1ME2sqAeVsLWUFzlfnataX9fk8+Cf/7v27O91tvhRNPbFueR7A1ic+QITB9ennsiROfftocSl62LH/xSNcU0SfOc3qEzbY6utiGFItKHjAPKx4rV8KIEcW3p9QECyVLJR4zZsCZZ8L48fDgg26Sq4EDYdGi0nx+KUgnHitXwvbtLqRlpGbZspavDzgg/bZhCCsebTls9f1M61X1t2n2uxs3X3mdqu7tLesH/AMYiefBqOoab5rZW4GJwEbgPFWd7e1zLs11JT9T1XvD2A1OPNJ1tCw3vXvDli0u46dLl/Tb1dXl/yOuRErd3+rDD1134MGD4V//avZGBw1qe55HcqfmIUNc+GTFisK11W+L1NQ0vw4KSa5kE484z+kRtkjwANx0sMO8x4XAGNy4R6axj3uAE5OWXQFMUdXdgCnee4CTcHOX7wacD9wBn4nNNcBBwIHANSLSN6TdFdkU0ce/886UceX3tWqLYatSdtZdvRomTnR33k8/7QTDZ+BA9zvxvdS4k87zABs0z0ZQPJYvz/94bTlsFVY8+gP7q+qlqnopMB4YrqrXqep16XZS1WlAfdLiUwHfc7gXOC2w/D51vA70EZEhwAnA86par6prgOdpLUhpaWiofPHIdPFcu9Zd8OI2mBaGUonH5s1w2mkuOeGJJ2D33Vuu989tW/E+/FkEg5h4hMMXj969t5bE82jzYStgBLA18H4rLuyUC4NUtRZAVWtFxL8sDgOC+SA1NHs6qZa3QkTOx3ktDBgwgEQiweLFY2jXrgeJROWMFjY0NJBIJPjoo37Avrz44ixqa1Pfeixd2hU4iFWr5pFIFPfq5ttVKlat6gQcyuuvL2DgwMxXtXxsu+mm0bzyylCuvvpdtm9fSfJhVqxwf4enn57FmDHRbwFLfd4ysXWrsGHDkaxbt5hE4qPPbKur6wwcwksvLaBnz8pQkEo6bz7Tp4+mT5/+DBy4gblzG0gk3s7reK+/3h/Ym/fem8G2ba1d23XrOgCHM3v2B+y8czi1qpjzpqpZH8CPgbdwMwpeA8wBfhRy35HA3MD7tUnr13jPTwGHB5ZPwXk4lwE/CSy/Crg02+eOHj1aVVW/8AXVceO0opg6daqqqr7yiiqoPvts+m2nTcu+TaHtKhUbNrjv9stfZt82H9uGD1c988z066dPd3Y88URuxy/1ectEba37Lrff7t77tm3Z4pZfd135bEumks6bz8knu+vFhAl1OmZM/se791533hctSr3e/7tcf334YxbzvAEzNcR1XVVDFwneAPwXsAZYC/yXqv48R71a4YWj8J792+kaIDjMNxxYnmF5KCp5zCNMZ9222hQRXNFjp07FDVtt3eoGPvfYI/02/vhHWwhbJbcm8enUybUpsbBVZmpqYPhw6N9/S0nCVp06uUccw1ZhxzwAugHrVfVWoEZERuX4mU8C53qvzwWeCCw/RxwHA+vUhbeeBY4Xkb7eQPnx3rJQVLJ4hBkwb6t9rcAVsfXpU9xsq48/dkkH/nzeqfCTEdpCoWByR90gNh1tdprFYyvr1uWfRJFNPCC+nXXDNka8BrgcuNJb1BH4vxD7PQi8BuwuIjUi8t/AL4HjROQD4DjvPbg27x8CC3Hde78NoKr1wPW4edNnAD/1loUi7gPmvnj07198e8pBsVuU+BX8mcSja1f3D9wWPI/Vq91zKvGwFiWZ2bTJnT/f84D803UbGtxNUqbWQnGd0yPsgPnpwDhgNoCqLheRrO1JVPWsNKuOTbGt4qa7TXWcu4G7Q9ragkr2PLp3d0VqmTyPlSvdBbYS61QKQbGbI4YRD2g7tR6ZPI8hQ2D+/NLaEyd8oRg+HFaubBaP0aNzP6bf1yrYKiaZuHoeYcVjq6qqiCiAiFTo5bg1GzZUZnU5uB9UtrbsbbWvlU+xw1ZLljiBzlYYN3Bg2w9bDRni5vRQzXwxq1b8NN3hw8FPLi2E55Ht+hPXOT3Cjnk8JCJ/wtVefBN4gZhMDFXJngdkD9u0dfHo27f4Yasdd8zekqMteR7t20OvXq3XDRnimlD6oS2jJUHx8MNW+RYKhhGPuIatwmZb/QZ4BHgU2B24WlV/V0zDCkFjo4tjVrJ49O6dPWzVFqvLfUrheWQLWUHb8jySO+r6WKFgZnzxGDYMunVrpGfP0nkebVI8RKS9iLygqs+r6mWq+gNVfb4UxuXLxo3uuZLFo9o9D//7F2smtSjisXq1q+aPM6lak/jYdLSZqalxnrB/vRg2zMJWmcgqHqraCGwUkd4lsKegVPJcHj6ZxjwaG2HVqrYtHn37ulCKL/SFxK/xCCMegwY5AYt7SCdVaxIf8zwy46fp+pRKPOIatgo7YL4ZeEdEngc+y3xW1f8tilUFopLbsftkmoq2vt5d0Np62AqcgBZa5MPUePj4Ar1iRcumiXGjvh6GDk29zsQjM6nEY+rU/I7Z0JD99+eHreKWyBBWPJ7yHrEiDp5HprBVWy4Q9AlOCFXoVuFh03Sh7VSZ19fD3nunXte9u7tQmXikpqYG9g/MmTpsmDtXTU1uHvhcCBu22r7decqdO+f2OeUgo3iIyAhVXaoR5s+oJOIgHr17u7uOxkaXJROkGsTD9zyKMWgeRTyCnkecyTTmAVZlno6tW93fPuh5DB3qLup1de685ULYsBW460CcxCObnj7uvxCRR4tsS8Gp5CloffyL5/r1rdf5fa2qJWxVaMLWeEDbaMu+bZu7ACX3tQpiVeap8VNyk8NWkN+4R1jPA+I37pFNPIIRuJ2LaUgxiIPnkeniWQ2eRzFnEwxb4+Hb0aFDvMXDP4eZPA8Tj9S0LBB05CseW7c6QQ8rHnHLuMomHprmdSyIw4C531k31aB5XZ0bQMt0Jxl3iu15hAlZgTvPca/1yNTXysfEIzXFEI8wTRGD69ua57GfiKwXkU+Bfb3X60XkUxFJEWipLOLueaxc6YQjeSykLVEp4gHxrzLP1JrEZ8gQ938RtwtVsUklHoMGuYHyXKvMw4pHXMNWGR16VY31ZSvu4tHWCwTBhYp69Ch82CpKjYdP3D2PsOIBzvvombW1afVQU+POR7CtS4cObqC82J5HWw1bxZo4DJhnC1u1dfGA4rRlj1Lj4VMtngdYlXkyyTUePvkUClZ72CrWbNgAHTu6R6WSLWxVDeJRjLbsUdJ0fQYOdOJRrFYpxSbdLIJBrFAwNeUUj7iGrdq8eFTyYDk0u8npwlZtOU3XpxieR67isXlz/P6JferrXYw+VUddHxOP1FSCeFjYKgsisruIzAk81ovId0XkWhFZFlg+MbDPlSKyUEQWiMgJYT+r0tuxQ3PMPzlstW2buxuvFs+jGOIRtsbDJ+5V5qtXu3OZqRq6b183sZiJRzPbt7vzkUo8hg51v81ceq+FFY/Ond1vNW43LSUXD1VdoKpjVXUsMB7YCPzTW32zv05VJwOIyBjgTGAv4ETgDyISaiA/DuIBqe+8V61yz9UgHsVoyx6lxsMn7lXm2arLwaUkW5V5Sz75xLUgSed5QG7eR1jxEIlnW/Zyh62OBRap6kcZtjkV+LuqblHVxbg5zg8Mc/BKnr88SKrOuv7dr4WtciNqmi7E3/MIIx5gtR7JpErT9SmFeEA8xSPCfVlROBN4MPD+YhE5B5gJXKqqa4BhwOuBbWq8Za0QkfOB8wEGDBjAsmVrUYVEYk5RjM+VhoYGEonEZ+9FxrFkSROJxFufLZs5sy+wH8uWvUkikWG2qCLaVSrWrRvJ+vU78eKLL6UNuUS1bcGCgxk/fg2JxILQ+6xc2Qk4lJdffp++fcMn95frvCXz0Ufj6dt3K4nEO58tS2Vbx457sXBhNxKJGSW2sCWVct5eemkAsBe1tTNIJFx+v2/bsmXdgAN5/vl5QLS7infe2QkYxYwZiay1Wu3afY7FizeSSLyb9biVct5Q1bI8gE7AKmCQ934Q0B7nDd0A3O0tvx04O7DfXcCXsx1/9OjResABqiedpBXH1KlTW7w/+WTV/fdvuc0DD6iC6vz55bOrVNx8s/uu9fXpt4li25YtqiKq114bzY4tW5wd110Xbb9ynbdkRo1SPfvslstS2fatb6n261camzJRKefN//2tXt28zLdt3Tq37sYbox/3sstUu3YNt+2BB6oef3y4bYt53oCZGvIaXs6w1UnAbFVdAaCqK1S1UVWbcPOj+6GpGmDHwH7DgVC3hXEZ80g1FW01ha2CbdkLQS41HuAGkvv2rY6wVX09bNlSfJviwMcfQ9euzb/DIL16ubBTLlXmYZoi+sQxbFVO8TiLQMhKRIYE1p0OzPVePwmcKSKdRWQUsBswPcwHxGXMI1XMv67ODfb6dSBtmUK3Zc8lTdcnrlXm27e7G5Cw4gFWKOjjp+mmm4gp13TdqOIRt1Tdsox5iEg34DjggsDiX4nIWFwDxiX+OlV9V0QeAuYB24GL1E2Nm5U4eR7+PN7+D3jlSud15DoJTZwodH+rfMQjrlXmYTrq+gTFY6edimdTPmze7H77nToV/7PS1Xj4lEI84jgVbVkuTaq6UVV3UNV1gWVfV9V9VHVfVf2iqtYG1t2gqruo6u6q+nTYz4mLePTp4yaDCuaSV0uBIED//u55Qfix7YwsXhy9xsMnrp5HmNYkPnEoFDz+eDj//NJ8ViWIh4WtKowtWyq/whxS33lXS18rgDFjYPx4uPHGwsThc6nx8PFblMSNMK1JfCpdPFatgpdfhtdeK/5nNTa68YxM4jF0qNumqSnasdt62KrNikdTk4v/xMHz8JsjBsWjWvpagQvV3XADfPQR3Hln/sfLpcbDZ9AgFwLaujV/O0pJFM9jwAB3zitVPKZOdc8LFxZ/UL+uzo0XZfM8tm9vntkzLFHDVlu2uM4ScaENi4d7joN4+J5HMOOqmsJW4MIURx4JP/tZcyv9XMlHPHzBjnqhKDdRxKNDB/c9K1U8pkxxz01N8P77xf2sTAWCPrkWCkb1PCBeoas2Kx6q8fE8ksNWfnO+avE8wN0J//znbrzhtttyP86WLS7EkI/nAfELXYWZRTBIJVeZv/ACjBrlXs+bV9zPqjTxiFPoqs2KR5zDVv5dbzWJB8Chh8IXvgC/+lXuabu51nj4xLW/VX29E2D/t5SNShWPjz6CRYvgwgtdtlW1iEcc5/Row+LhnuM0YO6Hrfy73moTD3Bhq7Vr4de/zm3/fNJ0ofmcx83zqK93v6OwUxZXqnj4IauTT4ZddimNeHTq1Jzxl4rBg52QRRGPxkbYtMnCVrEkTp5HctiqmqrLk9lvPzjrLLj11tyK2PIVj7iGrerrw2Va+QwZ4ryrxlAVU6VjyhR3sR4zxj1KIR7DhmWup+rQwf0uolSZ++N2FraKIf5scHEQjy5d3N2PeR6O665zYxc33BB931zm8QjSs6ebXyGOYauw4x3gxKOpqbISA1SdeBxzjAvBjRnjBsxzyUBKNa1zKrLVePhErfWI0lE3uJ15HhVAnDwPaNmipFrHPHx22w2+8Q3405+aPYmw5FPjAe6iFccq81zEAyqrRcm77zrRPvZY937MGJciu3BhtOPMmePOxcsvZ9+2UsTDwlYVRJxSdaHlnB51de7uNw7jNcXi6qtdKOHaa6Ptl0+ark8cq8xXr85NPCpp3MMf7wiKB0QPXb30kvv/v//+zNuphhePoUNLIx4WtqoA/FTduFyA+/RpGbYaODB9o7ZqYPhwuOgidwGIcvEolHi0dc9j8GD3XGniseuuzf229tjD/Q9EFY+ZM93zP//pPJd0rFrlikHDeh5r1rhB8DBY2CrGxM3zSA5bVWvIKsiVV0K3bnDVVeG2z7fGwyduYavGRvfbibPnsX07JBLNXge4v/3IkbmJR69eThymTUu/XZg0XZ+o6bpRxaNbN+dpm3hUAE1N8tnE8nEgOWxVjZlWyfTvD5deCo89BvPn98y6fb41Hj6+5+EnXVQ6/u8mSrZVly7uhqVSxGPGDHfhDIoHRM+4Wr/eNdj89rfdBfnhh9NvW0niIeK2tbBVBdDUJLHxOiB12MqA73/fXRTvumtU1m3zTdP1GTTIZfgUel71YhGlNUmQSqr18Mc7jj665fIxY5wYZAo/BXnzTSf6RxzhakUeeyx9OnIliYe/rXkeFYBqfMY7oDlspWphqyC9esEVV8DMmf14/fXM2xZKPOJWZZ6reOy4I3z4YeHtyYUpU2Ds2NbFemPGuHDk4sXhjjNrlnsePx7OOMPdiL3ySupta2pcZMKv7clEKcQjbm3ZyyYeIrJERN4RkTkiMtNb1k9EnheRD7znvt5yEZHbRGShiLwtIvtnO37cPI/evd1gnD8oZ2GrZi64ALp3386tt2beLt8aD5+4FQpG7Wvlc9BB8PbbLtRTTjZuhP/8Bz7/+dbromZczZwJI0a4G4CJE930sulCVzU1LosqTGi7Vy83fhq2UNDEo/gcrapjVfUA7/0VwBRV3Q2Y4r0HN9/5bt7jfOCObAdWjc9gOTRXmX/wgXs2z6OZnj1h4sRaHn64OdSQinxrPHyqxfOYMMEllpRi3oxMvPKKy3pKHu8A2HNP9xxFPA7wribduzsBefTR1HNxhE3TBTcmEaXWo6EBOnaMNhNi3Ob0KLd4JHMqcK/3+l7gtMDy+9TxOtAnac7zVsTR8wATj3ScfvoyVOH229NvU4g0XYhff6tcxeOQQ9xdd5hiumIyZYq70E6Y0Hpdz57uhiCMeKxd6/5/xo9vXjZpkiuEfPXV1ttHEQ+ILh5Rw+ZxG/MoyxzmHgo8JyIK/ElV/wwM8qefVdVaEfEvocOAjwP71njLWgz3icj5OM+EDh32YfPm1SQS7xT5a0SnoaGBRCLRYtnHH+8A7MPzzy8BRrJ06SwSidL+klLZVSn07NnAYYet5Pbb+3Dkka/RpUvrW8kFCw7hgAPqSSTym8+2sVEQOYLp0z9ir72WZN2+3Odt9uyRwEjeeivRKgSTzbZdd92ff/2ric9/fk4xTUyJb9vjj49nzz0bmTEjtQ2DB+/LG290JJGYlfF4s2f3AcbSseNbJBKuLXOvXu3p1OlQbrmllsbG5lJ1VVi6dAL77rucRGJRWtuCtG+/J4sW9SaRyDL4Bnzwwe507Ng31LY+GzfuycqVvUgk3si4Xbl/b5+hqmV5AEO954HAW8ARwNqkbdZ4z08BhweWTwHGZzp+x47j9Ctf0Ypk6tSprZZNm6YKqmee6Z6XLKkMuyqFqVOnfnaO/vjH1us3b1YVUb322sJ8Xv/+qhdcEN62cvKd76j26ZN6XTbbvv991c6d3fmLQlOT6jPPqG7dGm2/ZNtWr3Z/t+uuS7/d976n2rWramNj5uPdeKP7faxa1XL5aaepDhvWcv/6erftTTelty2ZH/5QtWPH7Haoqp5xhuqee2bfLsgFF6gOHJh9u2L+3oCZGvIaXrawlaou957rgH8CBwIr/HCU9+wHDmqAHQO7DwcyDl2pxjtsZQPmrTn8cNh/f7jlltYx7ELVePjEqVAwanV5kAkTXDbTjBnR9nv1VTjxRPjzn3P7XJ+pU93fLdV4h8+YMS6J5KOPMh9r5kw3iVRyvcukSS7cFMzWi5Km6zNsmEvhXrUq+7bVELYqi3iISHcR6em/Bo4H5gJPAud6m50LPOG9fhI4x8u6OhhYp154Kx1NTfEdMO/RwxU4GS0Rge99D+bPh+efb7muUGm6PnHqbxW1r1WQww93z1HHPf71L/f8yCO5fa7PlCnu937ggem3CZtxNWtW82B5kFNOcQPXQVtzFQ8IN+6Ri3j07OlEMmxNS7kpl+cxCHhFRN4CpgNPqeozwC+B40TkA+A47z3AZOBDYCFwJ/DtbB8QtwFzXzzWrzevIxNf+Yrry3TLLS2XF0M8yu15qMLjj2dPpc3H8+jf32U0RRWPyZPd87Rp+YnslCmuoK9jx/TbhMm4qq93NSupxKNXLzjhBCcefteAShUPaJ4LpNIpi3io6oequp/32EtVb/CWr1bVY1V1N++53luuqnqRqu6iqvuo6swwnxMn8ejRo7kRomVapadTJ9cw8Zln4L33mpcXqsbDpxLCVv/3f3D66XDjjZm3y0c8wIWuXn01/MRQS5fC3Llw3nnOw3/88dw+t66uM++/nzlkBdC3r6uGzyQeweLAVJxxhgttTp/u3tfUuP+3IRlzNltSbPGIW3PESkvVLShxqjBv16553MPEIzMXXOBa1t92W/OyQtV4+Awc6O74N28uzPGi8skncMkl7vV992W+sEedRTCZCRPcd30nZGLiU0+558svh9Gjcw9dzZ7dF0hdHJhMth5Xfifd/dOUD59yivNufFtrapwHm8njSWbwYCc4xfY8TDwqgDh5HtAcurKwVWYGDICzz4Z7722ucShUjYdPOavMVV1jv40b4frr3YXuxRdTb9vU5LoS5Ot5QPjQ1eTJsPPOsPvubjB66tRwg8jJzJ7dhwEDYO+9s2/ri0e6ZpUzZ7p27n37pl7fpw8cd1xz6CpqjQc4oQk7HW0+4hGXQkETjwrCPI/wXHKJG1y88073vtDiUc4q80cecXNR/PSn8IMfuAviPfek3nbdOncxzEc8dtrJeW1hxGPTJjdOcfLJ7i580iTnFT3xRPZ9g6g6z+OYYzLPH+4zZoy7qKbrMBCsLE/HGWe438msWbmJB4SbFErVwlaxJ27i4XseJh7Z2WcfFyv//e/dAGMh5vEIUq4q81Wr3JjOAQe4jsJdusBZZ7nusKnm5c61r1UyRxzhxCNbG/pEwgnIxInu/dixzguJGrqaPx9Wr+6cdbzDJ1PGVV2dG4fJJh5f/KILaz7ySO7iEabKfNOm3BqzWtiqgoibePieh4WtwvHd77qLwC23FLbGA8oXtrrkEtdm4+67m8dvzjvPjb089FDr7XNtTZLMhAlunGVR62LrFjz1lEsjP+oo9973Pl54wYXPwvLCC+45zHgHZBYPf7A8m3j06+c+7/773RhPscQjl6aIYGGriiJOA+ZgnkdUJk50ce5f/MK9j3vY6skn4W9/g5/8xHlWPgcc4C6eqUJXvnjkM2AOzeMemWbeU3XiceyxziPymTTJ1SY8+WS4z2pqgr/8BUaM2MCo7NO0AC6leMCAzOIxblz240ya1Dxmkat41Ndnno42V/GwsFUFETfPw8QjGu3auTt1Py++kOLRvbt7lMrzWLsWLrwQ9t3XzV8SRMR5H//5D7z/fst1hfI89tzTCVCmcY/5892YgR+y8jngANcGPdOsfUH+8Q/XCv6cc7KUjCeRLuNq5kw3eN+rV/ZjnHpqcwv2XMUDMg+a5+t5mHhUAHETDwtbRee889x5K2SNh08pq8wvvdQJ1d13p27jffbZTizvvbfl8kKJh4irNs8kHn6KbrJ4+KGr555LPS4TZNs2uPpqJ5JHHx1NmdNlXIUZLPfp3x+OOca9zkc8MoWuchUP/3plYasKIG7icfDBrk1DmJnNDEePHnDllXDSSYWr8fApVZX5c8850fjhD9MXuQ0Z4npJJdd8+OKRLkU1ChMmuDGPdFPTTp7swmkjRrReN2mSEwa/bUk6/vpXWLgQbrghXJZVkDFjnIf2ySfNy2pr3YU8rHiAS0gYO7byxKNdO3fNMs+jAoibeEycCG+8UfiLYFvn8suzX7RyoRRV5p9+Ct/8Juyxh7sjz8R557Wu+Vi92oVrCvGbyVTvsW6dW57sdfgcdJC7sGbKutq0yaUfH3KIS/WNSqpB87CD5UFOPdXNdR5loiafYooHxGs2wTYtHtZc0MiHYoetmppcxtjHHzvPIzgInYpTTmld85Fva5Ig48a5G65U4vH8825QPN1Fv107+PKXXduYdBe/P/zBXXR/8YvmVjxRSCUeM2e6zx47NvrxcqF3b3ddKaZ4WNiqzIiEm5vYMNIxaBCsXJl6CtN8WbXKXYjvvtt5Tocckn2fVDUf+bYmCdKxo7MjlXhMnuwSOjLZOWmSa+/uj40EWb/eicbxx8ORR+Zm36BBTjyTxWOPPUqXWSkC++3niiK3bk29TT7iEae27G1WPNq1y1LtZBhZGDjQCYdfiFcoXn/d9WB68UW44w74+c/D75tc81FIzwNc6Ortt93Ygk9TkxOPE07IHB479FDX/ylV6Oq3v3Xn8YYbcrdNpGXGlWq0wfJCcdVVsHixSzdOhYWtYk4ubrFhBAlTKLhgAfzlL6OYPTt7dbYq3Hqru0B36OBSby+8MNpvNbnmoxjiodpyzu/Zs134Lts4Rfv28KUvOaEJthVftQpuusmFtfK90AfFY/lyZ1epxePEE11m2vXXu/5jyTQ0uL9p167Rj51JPGpr3Xl88cXKyOVvs+JhnoeRL9lalGzd6uYXeeCBnRg/3sXdb701dZPAdetcb6XvftddhGfNSp9ZlYnkmo9Ci8dBB7nwVTB0NXmy+9wTT8y+/6RJbmD86aebl/3iF81NHvNlzBh3fleubO6kW2rxEHHe4iefuPY4yfh9rXK5gU0e89i61fU5O+UU13/sBz+A668fE7qmppiYeBhGGrJVmd94owvxXHHFe/zhDy5757vfdc3zJk1ysf/t2+Gtt9wF7vHH4de/dheDfFJr/ZqPv/618OLRrZsTtaB4PPWUSyEPU380YYLbLtj6/Pbb4Zxzmid1yofgoPnMmc7b2W+//I8blQkTXHr4L3/ZMsQHuTVF9PHHPN55x/U2GzbMeXOzZsFll7nf0t57r+PrX2/pHZaDkouHiOwoIlNF5D0ReVdELvGWXysiy0RkjveYGNjnShFZKCILROSEcJ9TrG9gVAuZwlZz58W65KkAAAwlSURBVLo76TPPhBNOWMG3vuXmAX/7bbj4Ytfm4wtfcDURBx/s7rwTCXfnmO9v06/5uPNONx5RSPEAd2GcMcN5EHV17nXY1NoOHdwEVv/+d3NqblMTXHNNYWzbay/37IvHXnuVL6vyhhtcP6+bbmq5PB/x6NnTeTT77uu8miOPdOK9dKnz4PbdF372s3cYMcI1ekzuOFBKyuF5bAcuVdU9gYOBi0TEu5/gZlUd6z0mA3jrzgT2Ak4E/iAiWfOozPMw8qVfP3dnm+x5bN8O3/iGyz763e9arttnHzc4XFPjPIwDD4TTTnN1Bf584YXgvPOaB/ILlW3lM2GCK/ibPt2l3qpGq8uYNMmNefz+9y6b7MILC9c6ZuhQV9fy7rtOPHIJ/RWKceNc2PLmm1v+RvIRj89/3nU4vuUWN6bzyCOutiaYqNC793aeftr9Nk86qXwzXpZcPFS1VlVne68/Bd4DMjWWOBX4u6puUdXFuHnMD8z2OVGrVw0jmXbtXAgm+Z/z5pvd3fjvf+/aXaSiUycnGo8/Dg8+WPh+ZX7NBxTe8zj8cOcdvfyyu+sdPDhaHcVRRzmbLr/czfj4ox8VzjY/4+qZZ9zYR6nHO5L56U9d9pvfnBPyE4+JE+Gll1zPtnS/LYBddnGFsbW17reQauC+2JS1lllERgLjgDeAw4CLReQcYCbOO1mDE5bXA7vVkEZsROR84HyALl32IJFIFMv0vGhoaKhI2yrVLiifbd26HcC8eZtJJOYCsHRpV378488xYcJqBgx4l0SifLYdccRuPPHEMJYsmU0isT7lNrnaNmrUATz22Dbef78nRxyxkmnTFkTa/6CDdufpp4dw2mkfMX/+YubPL5xtffvuzuuvu8nHRWaRSBQ+tzWKbSecsDt/+MMgDjnkDQYN2kJt7f707r2NRCLkvL552PajH+3A1VfvzfHHr+a66+aWtrZNVcvyAHoAs4Avee8HAe1x3tANwN3e8tuBswP73QV8Odvx+/TZRyuVqVOnltuElFSqXarls+3zn1c96CD3urFR9bDDVPv2VV2+vPy2LVigetJJqmvXpt8mV9u+/W1VF7BSffTR6PvPmuVsq68vvG2/+Y2zq0MH1U2bcjpEVqLY9tFHqp06qX7jG+79nnuqnnFGcexSbW3b737nzsdFF6k2NeV3bGCmhryGlyW4IyIdgUeBB1T1MQBVXaGqjaraBNxJc2iqBtgxsPtwIOsswha2MgpBsL/V7be7DJdbbnGD1uVm9GiXRut3Yy4kfp+rjh3DT9gUZP/9nW2FaNiYjJ9xtc8+2Vu6lIIRI9yc8/fc4+p+8glb5cLFF7uuzLff7sbbSkXJw1YiIjjv4T1V/W1g+RBV9ft5ng7M9V4/CfxNRH4LDAV2A6Zn+xwbMDcKgd/favFiN8/GSSfB179ebquKjy8eEyaEmyejlPjiUe7xjiBXXumy3666qvTiAfCrX8FHH7lsvueey9wJ4PLL3aB8vpRjzOMw4OvAOyIyx1v2I+AsERkLKLAEuABAVd8VkYeAebhMrYtUtbHVUZOwVF2jEAwa5AYjzz7bZbf86U/V8dsaNsy1Lk/XRbec7Lijy3Y799xyW9LMwIGuLsMvhCy1eLRr56bX7dYt9YRZQbZsKcxnllw8VPUVINW/3+QM+9yAGwcJjXkeRiHws6T+8x8nHDvumHn7tkSq6ulKoF07uOuuclvRGj90VF9fnimwu3RpPVlYMWmzIwM25mEUAl88jjnGzbthGOno3bt5CuFyiEepabPTDrVvX4Q+2kbVccgh8NWvujYU1RCuMvLjootc2OjYY8ttSfFps+LRrVvWYRHDyEq/fvD3v5fbCiMudOvmeo5VAxbcMQzDMCJj4mEYhmFExsTDMAzDiIyJh2EYhhEZEw/DMAwjMiYehmEYRmRMPAzDMIzImHgYhmEYkTHxMAzDMCJj4mEYhmFExsTDMAzDiIyJh2EYhhEZEw/DMAwjMrERDxE5UUQWiMhCEbmi3PYYhmFUM7EQDxFpD9wOnASMwU1ZO6a8VhmGYVQvsRAP4EBgoap+qKpbgb8Dp5bZJsMwjKolLpNBDQM+DryvAQ5K3khEzgfO995uEZG5JbAtF/oDq8ptRAoq1S4w23LFbMuNarVtp7AbxkU8Uk0Aqq0WqP4Z+DOAiMxU1QOKbVguVKptlWoXmG25YrblhtmWnbiErWqAHQPvhwPLy2SLYRhG1RMX8ZgB7CYio0SkE3Am8GSZbTIMw6haYhG2UtXtInIx8CzQHrhbVd/Nstufi29ZzlSqbZVqF5htuWK25YbZlgVRbTV0YBiGYRgZiUvYyjAMw6ggTDwMwzCMyLQ58ajkNiYiskRE3hGROSIys8y23C0idcFaGBHpJyLPi8gH3nPfCrLtWhFZ5p27OSIysUy27SgiU0XkPRF5V0Qu8ZaX/dxlsK3s505EuojIdBF5y7PtOm/5KBF5wztv//ASYirFtntEZHHgvI0ttW2eHe1F5E0R+bf3vuznDABVbTMP3GD6ImBnoBPwFjCm3HYF7FsC9C+3HZ4tRwD7A3MDy34FXOG9vgK4sYJsuxb4QQWctyHA/t7rnsD7uJY5ZT93GWwr+7nD1Wr18F53BN4ADgYeAs70lv8R+FYF2XYPMKkCfnPfB/4G/Nt7X/ZzpqptzvOwNiYhUdVpQH3S4lOBe73X9wKnldQojzS2VQSqWquqs73XnwLv4ToglP3cZbCt7KijwXvb0XsocAzwiLe8XOctnW1lR0SGAycDf/HeCxVwzqDtha1StTGpiH8eDwWeE5FZXiuVSmOQqtaCuxABA8tsTzIXi8jbXlirLCG1ICIyEhiHu1OtqHOXZBtUwLnzwi9zgDrgeVyUYK2qbvc2Kdv/a7Jtquqftxu883aziHQug2m3AD8Emrz3O1Ah56ytiUeoNiZl5DBV3R/XHfgiETmi3AbFiDuAXYCxQC1wUzmNEZEewKPAd1V1fTltSSaFbRVx7lS1UVXH4jpEHAjsmWqz0lrlfWiSbSKyN3AlsAfwOaAfcHkpbRKRLwB1qjoruDjFpmU5Z21NPCq6jYmqLvee64B/4v6BKokVIjIEwHuuK7M9n6GqK7x/8CbgTsp47kSkI+7i/ICqPuYtrohzl8q2Sjp3nj1rgQRuXKGPiPjFymX/fw3YdqIXBlRV3QL8ldKft8OAL4rIElwI/hicJ1IR56ytiUfFtjERke4i0tN/DRwPVFrX3yeBc73X5wJPlNGWFvgXZo/TKdO582LOdwHvqepvA6vKfu7S2VYJ505EBohIH+91V+DzuDGZqcAkb7NynbdUts0P3AwIblyhpOdNVa9U1eGqOhJ3LXtRVb9GBZwz38A29QAm4rJMFgE/Lrc9Abt2xmV/vQW8W27bgAdxIYxtOI/tv3Hx1CnAB95zvwqy7X7gHeBt3IV6SJlsOxwXJngbmOM9JlbCuctgW9nPHbAv8KZnw1zgam/5zsB0YCHwMNC5gmx70Ttvc4H/w8vIKtPv7iias63Kfs5U1dqTGIZhGNFpa2ErwzAMowSYeBiGYRiRMfEwDMMwImPiYRiGYUTGxMMwDMOIjImHYeSAiDRk3+qzba8VkR8U6/iGUQ5MPAzDMIzImHgYRoEQkVO8eRbeFJEXRGRQYPV+IvKiNwfDNwP7XCYiM7zme9elOOYQEZnmzScxV0QmlOTLGEYWTDwMo3C8AhysquNwvYh+GFi3L6619iHA1SIyVESOB3bD9UwaC4xP0Szz/wHPqmvatx+uatwwyk6H7JsYhhGS4cA/vJ5InYDFgXVPqOomYJOITMUJxuG4Hmdvetv0wInJtMB+M4C7vYaHj6uqiYdREZjnYRiF43fA71V1H+ACoEtgXXIfIMW11/6Fqo71Hruq6l0tNnITYx0BLAPuF5Fzime+YYTHxMMwCkdv3EUemjvs+pzqzZW9A67J3QzgWeAb3vwbiMgwEWkxiZSI7ISb0+FOXMfc/Ytov2GExsJWhpEb3USkJvD+t7i5wh8WkWXA68CowPrpwFPACOB6dXO7LBeRPYHXXNdvGoCzaTkXyFHAZSKyzVtvnodREVhXXcMwDCMyFrYyDMMwImPiYRiGYUTGxMMwDMOIjImHYRiGERkTD8MwDCMyJh6GYRhGZEw8DMMwjMj8f2mDlMRDiTY/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.xlabel('Labels')\n", + "plt.ylabel('Frequency')\n", + "plt.title('Training Data Set')\n", + "plt.axis([0, 43, 0, 2200])\n", + "plt.grid(True)\n", + "\n", + "plt.plot(hist_train_x, hist_train_y, 'b-')\n", + "plt.show()\n", + "#print (hist_train_y)" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X Train Normalized - mean 1.21925099939\n", + "X Train Normalized - mean 1.21879869422\n" + ] + } + ], + "source": [ + "## Normalize the train and test datasets to (-1,1)\n", + "\n", + "X_train_normalized = (X_train - 128)/128 \n", + "X_test_normalized = (X_test - 128)/128\n", + "\n", + "print(\"X Train Normalized - mean\", np.mean(X_train_normalized))\n", + "print(\"X Train Normalized - mean\", np.mean(X_test_normalized))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "----\n", + "\n", + "## Step 2: Design and Test a Model Architecture\n", + "\n", + "Design and implement a deep learning model that learns to recognize traffic signs. Train and test your model on the [German Traffic Sign Dataset](http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset).\n", + "\n", + "The LeNet-5 implementation shown in the [classroom](https://classroom.udacity.com/nanodegrees/nd013/parts/fbf77062-5703-404e-b60c-95b78b2f3f9e/modules/6df7ae49-c61c-4bb2-a23e-6527e69209ec/lessons/601ae704-1035-4287-8b11-e2c2716217ad/concepts/d4aca031-508f-4e0b-b493-e7b706120f81) at the end of the CNN lesson is a solid starting point. You'll have to change the number of classes and possibly the preprocessing, but aside from that it's plug and play! \n", + "\n", + "With the LeNet-5 solution from the lecture, you should expect a validation set accuracy of about 0.89. To meet specifications, the validation set accuracy will need to be at least 0.93. It is possible to get an even higher accuracy, but 0.93 is the minimum for a successful project submission. \n", + "\n", + "There are various aspects to consider when thinking about this problem:\n", + "\n", + "- Neural network architecture (is the network over or underfitting?)\n", + "- Play around preprocessing techniques (normalization, rgb to grayscale, etc)\n", + "- Number of examples per label (some have more than others).\n", + "- Generate fake data.\n", + "\n", + "Here is an example of a [published baseline model on this problem](http://yann.lecun.com/exdb/publis/pdf/sermanet-ijcnn-11.pdf). It's not required to be familiar with the approach used in the paper but, it's good practice to try to read papers like these." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Pre-process the Data Set (normalization, grayscale, etc.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Minimally, the image data should be normalized so that the data has mean zero and equal variance. For image data, `(pixel - 128)/ 128` is a quick way to approximately normalize the data and can be used in this project. \n", + "\n", + "Other pre-processing steps are optional. You can try different techniques to see if it improves performance. \n", + "\n", + "Use the code cell (or multiple code cells, if necessary) to implement the first step of your project." + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X Train RGB shape: (34799, 32, 32, 3)\n", + "X Test RGB shape: (12630, 32, 32, 3)\n", + "X Validate RGB shape: (4410, 32, 32, 3)\n", + "X Train Grayscale shape: (34799, 32, 32)\n", + "X Test Grayscale shape: (12630, 32, 32)\n", + "X Valid Grayscale shape: (4410, 32, 32)\n", + "1.21925099939\n", + "1.21879869422\n", + "Original shape: (34799, 32, 32, 3)\n", + "Normalized shape: (34799, 32, 32, 3)\n", + "18\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJIAAACPCAYAAAARM4LLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAE8NJREFUeJztXVuoZGdW/ta+1eVc+562EydhiDK+TMQQA/ogo4HgS3xQmAgywkBeHFHwwWGeVBQiiPomBAz2gxgDCg4yIEMYUUFixngZJ2EmF0zS5ky6k+46lzp123svH6pO/WutOlWnzjk7dS69Pmj63/X/+99/7bPqX/f1EzPD4TguopNegON8wAnJUQmckByVwAnJUQmckByVwAnJUQmckByV4FiERERPE9H3iOhtIvpqVYtynD3QUQ2SRBQD+D6ApwDcAvAagGeZ+Y3qluc4K0iOce8TAN5m5ncBgIheAvAMgKmEFEURJ3EMACjKUvVRFJYSx3pZJNpcDsbtvCjUuDiJxT2k+sqSRVvfN329sf6AwpxJVh+3m42mWW94FptnleJ76zdgrsUPPJ7xXZj0RpClaejLw4yFeVoixiX2fYvv/dHGBx8z8xUcgOMQ0g0AH4jrWwB+cubD4hiXL1wEAOx0uqovW1oft1eXL6u+VHzRbvv/xu3W9rYat3JhLdzD+uV3u4EAd3fb47YlaFDg9o3Gkl5/vTZuX7jxI+P2Y5//CTWuRuFZg51N1dfu7ozbHfP6u0U+bktiXy3MuN1+mD/VhPSZB8LfvNvqjNs7rN/3+vWr4/bl9Qf0+uur4/Yf/d6vv4c5cBxCon0+m+CTRPQcgOcAII5ctj+vOA4h3QLwkLh+EMCHdhAzvwDgBQBI05TLPfIzZFiKHSSJdOdSHH6dhZTp2E4Svk4zzcxKwhwdSe5k5hB9dsuPo+VxOxO7FZtdLW02QrvfUn3bW4FtpLW66tu891YYtxPWm13+rBoX1cMPMip3VV9rV+xqgXsha15S49bXf2jcXqrrd0XUw2FxnC3iNQCPEtEjRJQB+CKArx9jPscZxpF3JGbOiegrAP4BQAzgRWb+bmUrc5wpHIe1gZm/AeAbFa3FcYZxLEI6CnikFVn1XMoZJFRTAEijwPcTISPZOWppkE3WGquqLxqE+1q7QtuzcpaQmXZ7WtO5tPbwuL2chWfdbt1T4xhB64yxrPouXrwwbt/d/Eivvxa0wmYRZKmLq1qWut25M26vXdQaboKwrhxB1rn8wMNq3Opa0JKjckf1dba1pjkPXI1yVAInJEclWChrYxAKHtKu9cyUwkqd533V18sCa8sF67GGrDgKrCFJtDGR4mCEVCyRrUFSzBcbFtsIr2sgTBJ5R7OGG5euj9t1rqm+2/c+GbeX17VFfK12bdz+cCdYUlrtj9W4K0vhvq2dLdW30gh7wzXBvhqZ/lNzEdhet6PV/XYnx2HhO5KjEjghOSqBE5KjEixW/WdGkY/4rxFwYuFxXjXujaIIboCuEK5KI2cN8jBpHunOfh7m4EmXoFhjaK4uraiuK6vhdWW18KwGa3ms0w4yU0l3Vd/6ulDXzdvvx0FW6UXB8buzpd0gg1g4j1d0hMJyXch1YptIoOUe7odnbW/pNbbbLiM5TghOSI5KsGDLNo8DvdhalIUanud6ay1F0JsME7PRnYUwG/SNtfbuTrAG58KKPsHkOPy2dts63ukHH7wzbje2gvX36tqDalxjSUQGLF1UfYl440nZUH2dfmBh7W5Q65N1bYaoNcNbqNf1/H0R6NZcCX2pERdKEZVARUf17e5qi/488B3JUQmckByVYLGWbWbk/aE2MhFPJkJLB1yYvqDBkLzRTNLvh3FdE889YBkrHe6byH0QU5ams70ttDExfXLlmhqX58F6XXQ0W2IR653mmqVsbQbW3BPG5tTM0chuhLbuQqsjvAKZ8AKwFhd67fDsLaOl9fjwZOE7kqMSOCE5KoETkqMSLNiyjbFQYq3SUg+3fZHIPqmnQcboRVrG6PSCyry9q736PONKIknCs2JjDcYgyGA9kWb0v++/o4at5kKGWdFW7+vrIWVqp6Xn7wjre5yG+1ZrV9W4VATwZaSt3twPQlNZiCC9rk5C2GyFoLpOrs0Qq8v6efPAdyRHJXBCclSCxbI2Cuo7m4CyvAjspt3XW/6aiFmu5SGoKxPBagDQE5bh1h3N9gqbH723JGNCSCOhTxcDPViYA1iYF9qbOsY5uhAsylzX8datVhhbbumAsn4/xH7XG+G+B69q1hNFweJeGC/Abiesq9XaGLczYw6RVoKiry3ZcamD5eaB70iOSuCE5KgETkiOSrBg7z8hioe0W+aaZxeF8Nz3tOceHILYyzLIDrHJf4t6ospIblMD9v/NxIl+BakMiDMiklTJiUS0QlfLY+2Pg4vEet279XBfv6NV904eZJX6cpCL+oWWpbZbYWFXzfr722HOH2yE99GM9JeRVVJa93SUw3sDU85nDhy4IxHRi0R0m4j+R3x2kYi+SURvjf6/MGsOx/nHPKztLwA8bT77KoBXmPlRAK+Mrh33MQ5kbcz8T0T0sPn4GQA/M2rfBPCPAH77oLmIgpU6ivX2WQpVu7ut87g+7AdWt9IMRaHiePoWPFHSUKj5e+wVAOqGPVIe2AjFOiettho2XuLAistNvd68FWKgu2b+4pqwdJeGd4q08s3twC5T+kQNKzh87092dLp4vyfMAXfDs7b1V0EcCVHCBBmmtcV5/68x8wYAjP4/vE3dca7wqQvbsmIbkSuJ5xVHJaSPiOg6M28Q0XUAt6cNlBXb4jjhYs8jy5qoGDLwzPQJS/fW4NbURRUyYM0U6YxEFbhEsMTIWK9ZzFFr6nQkEToOFq8uqWvL82A3sKWOsXrfEsF3Sab5TVYPVvtYOKfzjomp7grnbl1rv2k9rPni1UfG7UtXrqtxa0th/f2eXmMhtMTXX30F8+CoW8TXAXxp1P4SgL874jyOc4J51P+/AvCvAH6UiG4R0ZcBPA/gKSJ6C8M6289/ust0nHbMo7U9O6XrZytei+MMY6GWbSJCHA0tvUzGsl3mapyENBWwSAwIJXJH94kNlqHnl0XItYdfW42lbBLXtOreFqp2T0zfrOvyNEjCnLmxXnMcVPK1SzppIBHW556QgyJrwReF6VeXdOBcoy5rZge5c6ut07JZlADqb2nzRa+nZbJ54GqUoxI4ITkqwcKdtqB41DKW5xkFQgiCtQnaJ3O+Bil2qdleJmKxpVV6YtxSsF4nie4biGSzXh7W1FjWanwqWN3AHHPBQtXebZmCrIId7w4Cqy+W9PdcERVN0kSbHmJRbD0S76qzpYPV7rSFJ+Gu7is9r81xUnBCclQCJyRHJVh4WRtgKJ8UNrBeFZo1sk8SrmMReFaSDnwvxPlktiJtImUrkbifNnRB9awpVPlSmwakzBGRcLMYOaUuZCvua1U6F9e9bb3GeDkkDayIQuzr67r4/OpKWON6U6v/cRLeay0L921/os8ben8jHFe2eVe7SGzUwzzwHclRCZyQHJVg4WeR7IHMIYA043hQ6ZGHsFDbnC5lvU71/NLLT3GIo641dZQwCTMBzMmNkTi/LRLBZZGt0ZME1pA111VXsRmC1HLD9mgQrgc7wRK9U+r8vbwr0tYzHRPe6QY2VcsCC+xu6gC4ezsiN26g370s3DovfEdyVAInJEclOAHWNqRdG2+tT8E2lUQE24tE+o3VzCIRexzbQ48FUqHpJCalWp2CativdB6TcBhHNvNJRIIm9oBlUWS039VnruS7ITZ9kAdW3DecRgaaTpzAzeE+WfCVCy0G5PL12PXb81nmgO9IjkrghOSoBE5Ijkqw4Kq2Qf6xwWtkBwoUoiZNIWSpJNGqbyyC3mJrGkhFOZxmsPjSRGqcNLHrHlk5TopPcTT9u3BiznxbDuaAvH9H9UGo/5FIXsjJykHyyHpTAXjKhS0jNJH3N22OOeE7kqMSOCE5KsEJOG2HLGdCOxdbrw16U8XcRUHQuKZZmy5KbgLWBDtLRNH0CdVXPtckdJKIlY7ksyzrEeu3SaGRsDbHNe0cVflrwqoeGfaYi/h2Nh4BybHUsw0rKyWrm0hvP/z+4juSoxI4ITkqgROSoxIsOK8tqMqFEZJ03r4JihcsPJEquM3bF5Vb4/qa6qvJY0VFcBzPFJK07JBkQUbKYvnq9DhtytBTSjdLbUkHrJUi4L8cCPeJcSfJ+Qurq0/R3a26P1P9/zRcJET0EBF9i4jeJKLvEtFvjD73qm2OMeZhbTmA32LmzwF4EsCvEdGPwau2OQTmyf3fALBXVGubiN4EcANHqNpGUYTayBve7eoi4bJiWxTprVyywVRYkaPSpmUHNTk1scyk2EPY1q3nXm75pZm/3w0x3N08/AbTTLOCTATVTf5ShQkh02tMGyKee0fkmuU6SiAW9XXsedjasi2OXLWWbWWisC9hYtEH4lDC9qgE4I8DeBVetc0hMLewTUTLAP4GwG8y89YEFU+/b1yxzdaNdJwfzLUjEVGKIRH9JTP/7ejjj0bV2jCrahszv8DMjzPz41Hk1obzigN3JBpuPX8O4E1m/mPRtVe17XnMWbWNQCAaPjKaoGEh+xgZKRZVaCNZCdYc7JY2gsqf2lIzJI9oF+q/VYOlXFGaCMZ+kJGKUqyRTY4egqw2cSy9FEDMDyuphRy7XMhjg4GWhKJMlB00Qp6KfOTpchDNMnscAfOwtp8C8CsAvkNE/zn67GsYEtDLowpu7wP4pUpX5jhTmEdr+xdMd2161TYHgAVbtsuyRL83imQvTeCZVMktaxPtSJxZEpmotFiwr7KjS7VwT7I2/eSpl4Z1NmtBXa+J4P/EnHfGhWSJlnUKC75diXheKnLjJJsDABYREElNp4undZGgICvYzQxsm8heGLc2TTH6aXDp11EJnJAclWCxTtuIkGRDjaY01dYGIi7bUrc87VoFvRn22N9tibbRUqZIeZa9yKCuCb+m0JAkG7Ix1Wo6y9nkcaaz7pthXlZ5foZl1YTmFyf7W/OH69i/DZi4tg3MBd+RHJXACclRCZyQHJVgsTISaJyLltsyNr2g0haGn8fCAiwtsrNsswxtGtAWZiFXkAniEuVqKLJ9KulePmzqOIptpwy6x1So9ZrjRimeHgQo9wZ5kI+1sOtSPFZIOrz733ckRyVwQnJUgoWXtdnbNCObbh3JI0B1HheycJ1Lq64NSxF6K004S6VFWXk2zbhoap80dGun53TrONP0Ej0T8eLSsqFi2PWwTDptU50bJ49ZVZ/P8B1PMN8ZJYGmwXckRyVwQnJUAickRyU4gdJ/Q2Zt5RtZGsbKBLU0yFMDITtktqyemNMWhJfyTSJy0mxuvkw0oAnBIkC6SCZz46TUMatar5XBhIwn1HM2wf9yxtjIROqgn1LKhVbFF+swMlE5I+dtGnxHclQCJyRHJVh4YFt7exhwFhvr6UBWWCt1oNiO8PLHgs1lNg5ZsKLSFCHvifkLWdkt0qaGUvDVaIIbCHYmWNtERo24nDRDBJZrIyAQhe+WilI2pfHwDzqhgHunN724umTbE2uMFW/Ty/CyNo6TghOSoxIsuBgpj0/TLieqnIlxtgqZvDTVyzSERpeZIzrT/dORyDh3Y8GKZiWB6lPCjWYmA+DMK5ZsY5DrWGz5PK1NmiNR+zJVSc+hrNI0/buo+Y12Wk9nveP94TuSoxI4ITkqgROSoxIsPPg/G1WitcHtskBZYfLJEhHYJQOyJrzUMkXZ8P2EAt9XFc9MYXc1pf2ZiUq2EUkvvlXjRXkdI9PJQuxxbF///hEFNtBPyjt2DiZhXlCim34f8lAha90/gvN/roptdSL6NyL6r1HFtt8dff4IEb06qtj210SUHTSX4/xiHtbWA/AFZv48gMcAPE1ETwL4QwB/MqrYdg/Alz+9ZTpOO+bJ/WcAeweJpaN/DOALAH559PlNAL8D4M8OmCycG2YLmYudt5hQ/+UxomHJRa4ds6pcu3EKJ9GUlG3LHcWzS8NiI6Hml5G0jpviqeIJtuqbPupkolxcGCatzYbXqOos5ntGwlFbFvI76/etWOJE8dHpjuZpmLc+UjyqRHIbwDcBvAOgxTwWGm5hWA7QcZ9iLkJi5oKZHwPwIIAnAHxuv2H73UtEzxHRt4no27NK8jrONg6l/jNzC8Oio08CWKe9qllDAvtwyj3jim3zlgt0nD3MU7HtCoABM7eIqAHg5zAUtL8F4BcBvIQ5K7YBIWjeerRZVWA1AV+iDFkR9cU4TZiFdAnYM9RICSehOaOSmaV7qbrLR09UlhUqOKiHabBqt/IFCblo8uAaaXqYbhpIVO6//RGHOey7SpPDK+Dz2JGuA7hJRDGGO9jLzPz3RPQGgJeI6PcB/AeG5QEd9ynm0dr+G8OSyPbzdzGUlxwO0CIFYCK6A+A9AJcBzFcK7PzjtL+LzzDzlYMGLZSQxg8danCPL/zBpxDn5V2409ZRCZyQHJXgpAjphRN67mnEuXgXJyIjOc4fnLU5KsFCCYmIniai7xHR20R03x0UeJ5P41wYaxtZxr8P4CkMowVeA/AsM7+xkAWcAoxOkbrOzK8T0QqAfwfwCwB+FcBdZn5+9AO7wMwzD1E8bVjkjvQEgLeZ+V1m7mPoo3tmgc8/cTDzBjO/PmpvA5Cncd4cDbuJIXGdKSySkG4A+EBc39cxTOftNM5FEtJ+MST3pcpoT+M86fVUgUUS0i0AD4nrqTFM5xnHOY3zNGORhPQagEdH2ScZgC9ieArlfYM5TuMEDhHbdZqwaO//zwP4UwzLnb/IzH+wsIefAhDRTwP4ZwDfQUg7+BqGctLLAH4Yo9M4mfnuiSzyiHDLtqMSuGXbUQmckByVwAnJUQmckByVwAnJUQmckByVwAnJUQmckByV4P8B2Z7qntQkD+IAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Import the required processing modules\n", + "\n", + "import random\n", + "\n", + "#image_x_shape = X_train.shape\n", + "\n", + "### Preprocess the data here. It is required to normalize the data. Other preprocessing steps could include \n", + "### converting to grayscale, etc.\n", + "### Feel free to use as many code cells as needed.\n", + "def conv_rgb2gray(rgb):\n", + " return np.dot(rgb, [0.299, 0.587, 0.114])\n", + "\n", + "print('X Train RGB shape:', X_train.shape)\n", + "print('X Test RGB shape:', X_test.shape)\n", + "print('X Validate RGB shape:', X_valid.shape)\n", + "\n", + "\n", + "if (X_train.shape[3] == 3):\n", + " # Grayscale conversion of image\n", + " X_train_gray = conv_rgb2gray(X_train)\n", + " X_valid_gray = conv_rgb2gray(X_valid)\n", + " X_test_gray = conv_rgb2gray(X_test)\n", + " print('X Train Grayscale shape:', X_train_gray.shape)\n", + " print('X Test Grayscale shape:', X_test_gray.shape)\n", + " print('X Valid Grayscale shape:', X_valid_gray.shape)\n", + " \n", + " \n", + " from sklearn import preprocessing\n", + " \n", + " for i, picture in enumerate(X_train_gray):\n", + " X_train_gray[i] = preprocessing.normalize(picture, norm='l2', axis=1, copy=True, return_norm=False)\n", + " for i, picture in enumerate(X_valid_gray):\n", + " X_valid_gray[i] = preprocessing.normalize(picture, norm='l2', axis=1, copy=True, return_norm=False)\n", + " for i, picture in enumerate(X_test_gray):\n", + " X_test_gray[i] = preprocessing.normalize(picture, norm='l2', axis=1, copy=True, return_norm=False)\n", + "\n", + " # Another way to normalize\n", + " X_train_normalized = (X_train - 128)/128 \n", + " X_test_normalized = (X_test - 128)/128\n", + " print(np.mean(X_train_normalized))\n", + " print(np.mean(X_test_normalized))\n", + " \n", + " print(\"Original shape:\", X_train.shape)\n", + " print(\"Normalized shape:\", X_train_normalized.shape)\n", + " \n", + " \n", + " # Reshape Grayscale Pictures (Add Dimension 1)\n", + " X_train_norm = X_train_gray.reshape(X_train.shape[0], X_train.shape[1], X_train.shape[2], 1)\n", + " X_valid_norm = X_valid_gray.reshape(X_valid.shape[0], X_valid.shape[1], X_valid.shape[2], 1)\n", + " X_test_norm = X_test_gray.reshape(X_test.shape[0], X_test.shape[1], X_test.shape[2], 1)\n", + "\n", + " # Print one random sample image from the training set and the corresponding label\n", + " index = random.randint(0, len(X_train)-1)\n", + " image = X_train[index].squeeze()\n", + "\n", + " # Print \"before picture\"\n", + " plt.figure(figsize=(2,2))\n", + " plt.imshow(image, cmap=\"gray\")\n", + " print(y_train[index])\n", + " \n", + " X_train = X_train_norm\n", + " X_valid = X_valid_norm\n", + " X_test = X_test_norm\n", + " \n", + " # Save Image Depth in Variable\n", + " image_depth = X_train.shape[3]" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RGB shape: (34799, 32, 32, 1)\n", + "Grayscale shape: (34799, 32, 32, 1)\n" + ] + } + ], + "source": [ + "### Preprocess the data here.\n", + "### Feel free to use as many code cells as needed.\n", + "\n", + "# Convert to grayscale\n", + "X_train_rgb = X_train\n", + "X_train_gry = np.sum(X_train/3, axis=3, keepdims=True)\n", + "\n", + "X_test_rgb = X_test\n", + "X_test_gry = np.sum(X_test/3, axis=3, keepdims=True)\n", + "\n", + "print('RGB shape:', X_train_rgb.shape)\n", + "print('Grayscale shape:', X_train_gry.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Completed Preprocessing\n" + ] + } + ], + "source": [ + "X_train = X_train_gry\n", + "X_test = X_test_gry\n", + "\n", + "print('Completed Preprocessing')" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABB8AAAMcCAYAAAAYCw2IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvdnPfldZ/38hg8zK1NKZlpZSkA5AmUq/ogYOUBNjDBoSNHqi8T8w8dAj44FHGg80EgU1GDHEGChDGGWSthQ60JbOI5RZxQHhd/Tez+u+n+vq/TzP/dkxn19er5PPyv7se+81XGut/az1vq71hB/96EclIiIiIiIiIrIWP/Z/nQERERERERER+f83Lj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKq4+CAiIiIiIiIiq+Lig4iIiIiIiIisiosPIiIiIiIiIrIqLj6IiIiIiIiIyKo86f86A8fhj//4j3+U9C//8i9XVdUPf/jD5f/vvvvuJf3pT396SV9//fVVVfUf//Efy7Xvfve7S/rb3/72kv6f//mfqqr63//93+Xak550UE0/+ZM/uaSf+9znVlXVM5/5zEO/r6r6zne+s6QffvjhQ+/lvU984hOX9FOf+tSNf7ff8YIXvODQvT/xEz+xXHv+85+/pM8888xD5fjWt761XPv3f//3Jf1Hf/RHT6hjcPXVVy/tcfbZZ1dV1Zvf/Obl/7/5zW8u6XvuuWdJ33fffVVV9Z//+Z+HylFV9WM/drAmljpiXbFtfvSjJQv1tKc9raqqXvjCFy7XzjnnnEPPqqq6//77q6rqrrvuWq59//vfX9K0qx//8R+vqs22f8YzntGmn/70p2/kparqWc961pI+77zzlnTakfb1hCccNMGv/uqvHqs9qqp+53d+Z6mQa6655lC+P/nJTy7pL33pS0s6tso2+e///u8l/YMf/GBJpx5ZX09+8pOXdOqr6qA+zjjjjOUa88N3PPDAA1V10Feqqv7rv/7rcCHxDNoN010f4XvPPffcJf3Sl750SV955ZVVVXX++ecv1ziuvOIVrzhWm/zu7/7u0h6PPfZYVVV973vfW/6f9c06Zn0G2i/vTXoaT1gXF1xwQVVVPec5z1mucUxif3jwwQcP5ZH9jfUdG6etc8x63vOed6gc7OfsQ2ynjGt8V2yqquq3fuu3jt1HvvWtby2F+MhHPlJVVV/4wheW/2f6G9/4xqHfT+MPr6dN2E6sR/b5jFe0OY4fHK8zdjJf7CNPecpTlnT6IeuWbcJ+mnGJ177+9a8vadrj//t//6+qDvpK1WYfecc73nGsNnnssceWSkx9vuc971n+/53vfOeS/trXvrakM0az/NOYlbZhe3GsZXtkXueYxbbjvJY030u7Puuss5Z02oH/3/Vj5of9mDZx9dVXL+nf+Z3fqaqqD33oQ8s1jvP/8A//cOw+8qd/+qdLRb3tbW879P8c+//iL/5iSf/N3/xNVW2OKZxLWU9J8/+Zpi2nPvKdUbVZNxxTY7eTLfC5eQb7yPTdle+qRx99dLlGu7j22msPleOrX/3qci19t6rqwQcfPFabvP71r1/a4w//8A+ranO8v+iii5b03/3d3y3pf/qnf6qqzW9f2i9tMXnu+s12OvXG707Oqbw3tvDQQw8t11hvJP2T8wXbkd9zeR+/LVlOvuOyyy6rqs1+89d//ddL+o477jhWe7z73e9e2oPt3vH2t799Safu2Qa0eY5lXR1Ndpz+we/9Zz/72Uua/THv5rc/nzv1wQ7OxUnzG4DPYnn+4A/+oKqqbrnlluXazTffvKTf9773HXvM+vM///OlTd761rce+n/OmX/1V3/Fd1XV5jzLdui+u1hfnFM4j2Qu5bcW0xxDk7d/+7d/O/Suqs3+FKb5i+PXpZdeWlWbdv/5z39+SdMuXv7yl1fV5rz+yCOPLOk/+ZM/OXabPB4qH0RERERERERkVU4r5QN35W699daq2lxl444pV7Gy+sbVIa7YcVcnq6xc+WK629XlTh1Xknlvt4PLlcdpd6rLL1fikuZqF1ezuDuQnRzuhHbvOipc9c77oyio2iwfVz1T1m4HoqpXArDMfC6v53ncIcouVtXmSmJ2SljvXF1kOybNlUbmt7uXq6HML+snagPml8qIk8C8pL/QdqjGIalzrpazvKyb9BHuMkyrsHkedxFpf7SLpKfdC66ip0wsG/tb15/YT9lfuAtx5513HipDrlVVveIVr6jjQDuJfU623t3LPsI24E4f27x7Fse32Br7PW2VdZh3s98QtnnuYduxvUjahuXp1GfMG/vxrt2YXWSno+qgP7I+aVOd/U19n6Qe2PcJ7S9twl0Rjq18R/LJeibMW9KsZ7YZ2zo20u3cbD/j3nvvrarNseryyy9v83MUqNT78Ic/XFVVn/vc55Zr3Pns6p555ljKPMem+CzWBW0qfYO7r7QDPjfzejcH8P+rDmyZeSTsk1RMBCpR2F+yo856iMLppESlxeeyjqgsve2225Z06on3su5YN6n/aeeQ96bOeY33dt8SHPc4hnXP4DXmh/Nl+iwVSvwm5RyXsnE+5a7mceF4kZ3+KBu38/+Lv/iLS/pv//ZvD717Unh2KlPWRddO07cx+1a+RzkWdt8TLAfVJSwbbSk2yn4zKTXSDpxHXvWqV9VJYVunvmhvH/vYx5Y02y7jNm2X7cE67sZvjn/T91lHN08xD7t28vntNH1DpvyTGpVjStTor3nNax4338eBf//FFlkvN95445LO349VB/XP+pjmnO4bgPXVKYnI9O2XNG1oUlWmbNOYxXSUglQw8G9mziNpK/aRqBzXQOWDiIiIiIiIiKzKaaV84G5PfIW4+sOdAfr3ZLWJ93arWVUHK0xcYeXqLnctsuJKPyuuXPF9WWHisyY/newMcmWT/9/tMk+7LVzZyj30m5x2YY4CV8iymjbtfLJeUvfTLly3e8fVeK5K8h3dTli361t1sFPSrT5Wba4edu/q/Lu389Y9l+2RumI9cqfkJDDf2SU9yu5ryjOtWnfl5XO5s9IpH6h2YEyOzhf1KOqL5I07XmzraVcscPWeu94pE3cj+P/Hhf2yUzN09lt1UD7a7NQHOmUO0108Du4Wde9lPvmuaYW9U0dMOzYdk29o3sHydH3zOHAHJGMl25t5pQoieejqaJvMP1PsoC6OEMcBpkl2j5gvvqOLFTLtljEPnb83n8X2yQ7TF7/4xeUaVQLHJX7pVVVf+cpXqmqzf05xD1L3bI/JjjI+TbvwfEbag/Mkx6lOhTep4rrvjE4FWNWrwyYVI+eRT33qU1W1qXb4hV/4hdoH9rGMx3fcccdy7TOf+cySZhyObheYdkYmZVSXh9Qv+xvrrvOF36VkrOrnEeaXz8iY2aktqzbr4S1veUtVbarm9lE10g7SzrQ5lok+3bGZKSZJ5+vPep/iCO2KD9GNLYT11o29/B6cdpPZB8Kkgsg7OK787M/+7KHfHxW2dXbvb7jhhuXaddddt6T5/ZD6PMq3b/I/fWt2aoZOmb1NxkLW5fTcfNczX1Tl0a5STqrgqOajGv1f//Vfq+ogJkFVH6fhOLDsmT+p0Mo7qzbVrilDF3evqp8TO/X5NukDXVyMqt4GODdMc3XSzONE+hm/1ae/MdKfGFflKO84KSofRERERERERGRVXHwQERERERERkVU5rdwuKEPJsT1TIMJOvtIFdNtmOgIodIHCGMCDshrmpzuCcSL57VwVtvOe/EyyQsqiInvqZPEngb9Nms+ejgbsAht1Zao6qIspOFj3jEn22smlJ3loJzXnNcpwO1ncdPQk3xFbm+RvJ6ErI585HVmYMh5Ftpf8ToGgOpcHyiEZvIjtk35EOS2f28nHJzkpf9dJ5UgX0I9uJJME/ih00rlJzs58pO7ZHqQLsDbJmLv+wHGoey/zy99PdbhLQs3fpY6n4Et8VsYsSoGn41ePSjdGTfnvjq6kLU/zSPI4HVPKssfeu/G0anOsSf+dXDi6IGJTUEyOW7H3yfWsq7Mvf/nL7bPe+MY3tu+b+OhHP7qkU9buCOWqzf6U8YIuH8wHZb5hcv/pjkamq9jkhhX57uT60rmNTf2NeUg9cByaAoDG/YXj/L6B3HLscdWBO+vtt99+6FrVpotrys680p2E7gPpG9Oxdl0gXEq+OY+wnvPdxbmBc0rnqjfJ4Hlv7IHPooyfUvwcscl+84Y3vKFOCseAlIv2yWMKP/jBDy7pzkVtCuqZ61MwyO4ZfBbHxW4cmgJdsr+kbinXZ9m7IKJsrxe96EVLmkdwpp34rOn75igwgF9c4Rgkl/2D40Xyf5Sg011gb/aVzrWSfYJBa5mHPHdyX+wCKO5yoa6quvDCC6uq6qqrrlqusU+wnZLmUbQ56vGk8LjnBILlcfIMeMm/zZIXlmXXNzttme3Duostc35im3R/QxylTbq/+abjUV/84hdX1WZoAPYtjvPJAwN38t5TjcoHEREREREREVkVFx9EREREREREZFVOK7cLyt0iEZmiTFNeHqkMr01ntXcSe9JJnSaJPa93LgGEsppOjj9FPs3vjhIBPhJOyn32kZSzPTo58BQlP/dO8q0uYvuuyK+8ZzpxpJNQU+pKiWsnw6asdXKPyO+m00m6c7XZHtMZykeFsruOKapx6mNyy+jkgJPLQ9cnu7rffkbaYrKLrhx8FyW7rMf0J7b1FMW3k+HvI/PvIpJPrhSkO6ue5WPbdHbURYonbC/Wy64o9ZObSN7B/2eaMsXunOpJCpy657nvnZz+OLC83SkvrDvmu4syzbaklLM7M5vS1+48+un0oy7djXvbeU8fYZ+fTiPqzp/nezvXQpb3C1/4Qp0U5iNjMMcF5oP5y/zDMW86eSjvmOYnzmUpH9tucueI+yfrdTrNJu3Uvatq09binjC5czCde3iKC/P+yle+so4LbfX9739/VW1KpFkHneSX9nLRRRctacp8u9OYOAd3J1WxrSlnZh7yXM4BbJNuHphOa2L7RILMduJYxXJ84hOfqKrNExX2ieZPm7n//vuralOm/slPfnJJxyarDmx8Os2D7l2xuWm86E6zYF1S2t2d4MD5i+433Xfk5EbM9+UdfO8VV1yxpHmiQWyCbnB0jTgudOlI/8hJPdt0bqg88Yun1LB/xM7oLjC5o6WvsE/w1AL2he5EP/YfujbFPtg/aP/s53EDYnvR7YJ9KS4atIPPfvazS/raa6+t48LTT97znvdU1WY70Za7Ps6ynHvuue3vUo+0renUme6kNz53ckMK3YlDfAd/z77Zubd0/byqd3m69957D11bA5UPIiIiIiIiIrIqLj6IiIiIiIiIyKqcVm4XnexwOjGhk/RO0aIpwemi0ZLJzaO71kmJKaVhuosmy2vMbycJn6LBTzLoQOnOcenkvl006+10FxG7k3hXHeS5c1fYTqcsk7tH13a0k+l0ji6PUztHwkWZE+2SeetcB3adGrAL5jv1yzqgHXUnG0zyTLZV6mk6GaOrO/bdSeKe9+2SkfM688iyTacydM9imfMM/p6Sw+PCSPBp28mNYzqlJdB22J9i93zu5DrQnYAwnSQTutNctulOpeE7KGmMdPr5z3/+co12T4lo6p7l2dW2u2Ck8tTjUVyqtn+zfS/rv4vk37UD72W5OpeoqoP6nfoFn5F3T6ddUK780pe+tKo2+ymlpZ1Ed3KbOS7sX8n/5BbFd3Z9dWq77uQfpru5mrJmyk9pP11/mU7MyjumE7rYd3JywGRfnUya/eaf//mfl/Tv/d7vtfl5PCjfjjsH7YFjEV0hkgf2d/bzbuxjuVleuo50J5swcjzHy8ivJzfb7rtjcvtiOuWnCxjf0Z2CQdn3nXfeuaSvvPLKOg6si1tvvbWqNseAm266aUl3JyExn6zDyN+rqu64446qmt1KaNdpD44XjIxP6X4373Xfg3wu+x5tje2UU1TotkDYzskDJfT33Xdf+7vjkrpn/6NN89so+WD5KMWnu1Ng27F/sL67k/fo2sGTSDLm0I7ZNp1bM22Kbce85VuH7l90belOtKNbBk+mOAnsI3ERoysGx13WR+qUbcIxrWs/1tf0t0Dah+MfbZV2nT43uYqxH6bujuLCH5cd5pfv7fJO96HbbrttSf/Gb/xG+76TovJBRERERERERFbltFI+dMGkph2xbuVxOrecq0JZvZ52oDuFAd877V7md9MuYrezPwXa2rUz1wX74e8mxcVxYVmyojwpH7odOa40TmXKMxjgiu9g26W+WCbWG1dGYxPdudGPl5/t31dtrqJm5bkLorRNVmVZnn3pdhfYDtM50VllZbm42soV+bQ1d0j4rG5Fl++dgoB2u5OT4iX3TMFFafdRoXCnl//P3ZBu13KfgJNdgL8piBxtNffSNrhLyucmzbx3/Z7voH3yuVTssH8eFb6Xv98VAJN21+2Ecnec9XcSaLex1WkM75h2ttkmnd13ARCnPLB9urPDJxUWy5bfTWo91mPKxDGy29Wq6oO37dNHuh24ri9sp1Mu2i/zxF2k2BHbaAqYmzGcdcVdRtpq6ngKUNspgaagrZxHLr744qra3Cm75ZZbljSDgmX3kOXp+thx6HY6O+VZVb9LzfZjm9CuM7axPiZFWsYl1j0D6pHsaPP3fC77SPI2KXd2KSpYNo6dSVP58M53vnNJ/8qv/Er7vgnuxGYs/MxnPrNc4/zM+kzb0DZoZ7RrXg+T4jb5mQJJc7c372Z/5I43bTV1Szuh4obtkXezPT/3uc+1+c3cz2ft+sZ7PLoA3FMw724eZHtwbO2UnNP3I+9N27Heogyp2qzjjPGdaquqHyOncYrPTfvy99PfIvmen75pTgL7YtcmHLO6wwlYHxzDu+DQk6qq+9Zi+7PuaLdRCk2qq04dyLpnPTMP+d2kfuzUwiwbVX6nGpUPIiIiIiIiIrIqLj6IiIiIiIiIyKqcVm4XXcClThKzTa5TekJJFiUrkdZRxsZ0J0ufgrd1Ut5OZr59b/JLmRBlWsxv5H0MLjPJ5ZOepKfHhfXdlW+Sn6ZcU+DITjY0BXnrJOzMA9/7ohe9aEknIM0kM6d9RIZEKeEURDL2c5RAqF2AzEkedVSY77RzF9yuqne7mGRqlMd157OzDJ3UnO3E93ZBfihN23UWNyVv7JtdcFq+l4GZ+LvIMqd6Oi5dMFHWK2Hb5f2U27GOu/T0XNZR10co/2N/SHtQFjpJVfPc7uzxqs3+kLLRpYQSUtZZ7OYoQS+PyhTQtLt2HNe5TvbJck9y++RnCuDINomUlvbLoFqdbHNyhWE50saUXE5Bc1MPp8rtYlfbdsGYmVe+m2NS50bXBfzdzkPqjUHz6PZ39tlnL+lImLvAstvptMPkMsOypd8//PDDyzVKqinDzxjJeti3j1AWn7rp3Iq239WVkXXXudSxjtj3aNe5zuB8rDvOGbHVyRVwV5DjST6fdue3FoOz8busc1nrggkela5fTjY3BdcMbEfWcTdPToGiU28ch3gvg4Gm3JNLJ8fI5Ic2Q5i39HW6czCP3bzGemLZj8vdd9996NoU8Llzb2Bd8BuHddG5PLBt+W2Qup/mENpe7mVddXMun8c+wb7GOSCuLXEZ2/5/2mvKObnXnATaQeqOtj7N67FhthPri/XRuXN08z6fRztkHXCuSpvQ7THBIrfvzfs615+qzXk7blV87vnnn7+kH3zwwSWdMYs2xHnmVKPyQURERERERERWxcUHEREREREREVmV08rtgnKfSI4oiZnOPu8iUneRvqt6Sfl07nHe0UXgrqp6wQtesKQfeuihqpplYZ0kl++aop9HVkR5Ed/b5bc7s/0kdGfPduewV23WZ3c+O+muT1JAXu/O7KaUijK1yJEoK5okRnnedLJKZ0vTOdaUSqXu+awpsvFR2eW20bkBbOchsFzdCQGT7HrXaQSUgrJu0r/p3kLZcXeazSQL7aL6U5Y39a2uDJM7w1HoZO5TRONdsn3SnarTyZ+rNvtA6ovv6vpx1UE7UA45Scq701JId7rQ5JLAcnTS2F2nUeyiO2VnKhfzHTuYJJfdMzoJ63Y6dcZ3sb+x/SL9pnSSddS9j23CsjMPeQb78XTyRdptmveOC8vXSfGnc9Q79w/aVCdB7n5ftTkmJT+sS8pT+bvzzjvvUB4y11dt1mfe3fXH7fdFnsvyUOLOuSruS7SD6fSGo9JJmCeXlc6NhNf4LJYxdcO64xzdSdfZL3gv7fN5z3teVW22Ke/tvg0n973u5Ai6FPC0CLqqPPDAA1U1u3scF47BnfvG5NbYuV6xXigDT3tMp34x/3GL4Hvp1so5tZv3aB/8NuzmO/YR5iFtSjeo1772tUv6Yx/72JJOmfk3BJ97XNivk6ZtdidRVPUnsrHfdm4XtKHpZLSUjy4cPGmFEv7YUueaWrVpX53b7PSdfNFFF1VV1Zve9KblWk6eqaq64447Dj0j7s9V+49Zncv7NJ6wTbrvJ9ok27pzZZ6+K9PWtAv24+4UF7r6TS4peTf7NO/l+JSxkHMHXdf4vpQ5Y1fVfLLXqUDlg4iIiIiIiIisiosPIiIiIiIiIrIqp5XbBWU5kbRQSkNpUCdf3xUJu+pAIjNJxztZ+yR/4TPiCkEZECVWlObkd5O8uJP8U1Y1RbrOOyZ59nGhzClplnmS5UYiNkU57yS8rHe2eefS0J1UUVV11113LenIriYpa3d6A+1nV71Nke07NxeWYd/TLia5fZhklJ2Eme0zuZl01zq3l679t/PYnSpCWWsXhZzPYnk6F6tJnk0JXvoI/38fuWwnT56k4bTVTi7bSTKrDup2OlWli3jeyfi235GoyWyDydUmZWO+pj6StplO5elO0eG1ybXjqPD3Ke8kWyadu9jktpY+Pbn6cdxJ/dJ17t57713StItIv1/60pcu1/i7W265ZUmnTVjeyXUs9cz2o4104xL7+T6nK3QuHVM+OVZ27jukO8Fg18kZVQdzOOW0nBvYNpnXp9OxSOd2wT7C/tS5wUzunylTN5aeFLrnJN9HmdtTd1P0/M7VdHJN6MYz2lznNlRVdcEFF1TVpnyY313dCTZ8LsvO+o+rAb8j6GpAe4q9USY/SeaPAvt42nb6nu3cu5g3th3dLlIXfBfTnQR7Gt84DqXuJ1edzv2TbcRyRtpfdTA+pb2rqi688MIlzTE2z7j++uvbPBwXzomxvekEGNpQ2m6aR7sT/aZ7u9MqWCbaG78BUi98LuX33Wll/D3fy9898sgjVVX14Q9/eLlGF/AXv/jFSzruADw1ZJ/TYKo2v+PC9J3Tfbtw7GFbsg907pR8FvMQG+HfhNO4mWfwGk+t4BzO/hDoIsn35V6OaXfeeeeSpstSTvHh/Na961Sh8kFEREREREREVuW0VT50AaS4stUFFZvORWU6K1rTCnwXsKsLALmdn6z0cSVu2mVOfqbdg24naFqt3rW6u8/qL/OUd7JMTHfne3fXqjbLl/S069sFL+wUMlWbdZ9VSa4ochWXOyVZke3OB99Ox1am4IfcleiUCbuCNe6Cz8yzpt2zaRew+3/aYsrDd007L92ue7e6T7iKm35T1Z/ZPO28dGfHdyvN23nvnrtPH6Gt5pm7dtaZP+Zz6gPdri4hFkhdAAAgAElEQVTtulMgcIWe9coz7PM+jnm0ky5Q2FRXvJ7yd8Fwt0ne993JJdxhST9n3U67cmFSJ/HeTmXGdKd2Yn/iDh7fl4Bik9qObZX26ZQkVb1yjfUwBc3tVDn79BGOq7HrKQBoF1R6mkfYR1IW1gXru1PA8V62Rxfgk/bJNOeR3DvZOq/nXpaBdtupsU6lgo67bslDt1s45WWiayu2A8ctluGSSy6pqs2dbwazY5uk/i+//PLlGm399ttvX9Kpsy6Ab9Vm/Uddymt8L78fOhXBPootKm8ydnfjTVU/v/Aa26tTM7A9WNbunimwIpW4GZN+6qd+arnGOqZdd8HW2Z/4jHzPcfec7+0CI7IN+D14XLpggFO/npQNYfpmTh2zvbqA5VVVZ5xxRlVt9o9JtZI6uOyyy5ZrrG/WYfdNTZug8qcLWMogrGznBBLns/bdZe/61/Q3VDfnMN/T33GdwpN1wzzkW4rjMvvW1VdfvaQzjjAoJ8dgfgenHNPfCqzzqF9Y95zjo+aqqnrJS15y6LkcV041Kh9EREREREREZFVcfBARERERERGRVTmt3C46VwnKmCix6WSbk6tFJy+n1GYKEBVJ+RTAhxKcSNIoBaMUhsFhIovpJFpVvbySZef/7woKto9cllKuyIamOu4COE6Svk5mOwXF69wfKNPj/7/85S8/9FwGDqL0ls9IfigLYx1Tbpln0N1gCrQUOSLrcaqTo9K5FkxBiliG/G6SWXX9ZToDuJMg8/cPPvjgku7O3ebv2V8oJ4ssbgr418loJ+npdP5496zjQtl18jrleQqItP37qr5vTa5AnWsK653SSdZLJP68d7Lr2MIkX6Y7QCcbnoJwxiZ4bRoXjwrH2s6lagpu241FU7o7D5x0gZJp65FAVm2OSzfddFNVVX3pS19ark0BdlO2SZJNG0lbsU9P9pT0NM8cF46rlLtu561qsyyxmUm2PPWXwHZmHWfe5nsZBPfKK69c0jfeeOOhd7GP8B2dTUxuMJ1bKelcAE/qCtHRBYCevplIrvPbZtdZ8VMfYXlSp5O73Dve8Y4l/a53vauqNsctSpg719nORYflqTqQKHdjQtXm/JR8dsEfTwLfk3JRMs0+1I0tU+Dibk7sXJu2n5HfnXXWWcs1thev33///VW12QYXX3zxkk6gwqoDOf4UoJpBRDM/Td97zG9cOTn25/cnoZsvjhIcOvmbbJ5/a+TeaczmfBGJ/+TK/Zu/+ZtL+lOf+lRVbbpXcL5he8Smu+C9VVWf/exnD10/ihtVnsc+umuc2AXHnPTbyY2ws+vO9Z155TOOktd8+9FWWM8///M/v6TTR+gKxDTHrNQv50q2Weeiyv9nm9BlKX1rmm9PNSofRERERERERGRVXHwQERERERERkVU5rdwuKB2JhGc6b5XXk57kmZQyRWYyydi6M6nPO++89lk8fzhnq1I+Q5j3yGl4jbJQRj7tIvlPJyp053XvI2GORK7qoN6m6Py7JOWTtD3lY56nkxXyXLYtpX7XXHPNko6cjC4A01nYaXNK6HkvJbmRwh1FJp6y8f/3PeuYbRIbns4D7/rIdGJEJ0mjJKs78aPqoF3pmsLzns8555wlned99atfXa7dc889S7o7uWSKOsw2icyM/Zh1TnvJO/isfeSA3/nOd5Z0d3LLFKk/eZ2iWzOdZ7B+Jmlw7mW0broj8QzoLtJ1d0JL1UHbTacE8bzvjGXTqSeddJZ11knzjwMj1OdZzHdXt7xnijLN33V5nGTx+d108g7nkdTzDTfcsFzrIqTzucwL+wtdziJ/neyez4iddfLuk0D5c955lGd3p12Qzq1nkg+zrHGd5BjP0y5e9apXHco75eCc45mHrmyTm1I3H3buSExP49tJ4LiV+me/mU5wSp1SKs95s4uaT5ucvl2Sn0cffXS59nM/93NL+tprr13SmdM//OEPL9emE8BYpu18TflheWg3vB5YT/uMW3xP5vNJRt65ebLM3WliZOpvtK9883JsIrTPX/u1X6uqqn/8x39s83j++ecv6ZSpa5eqTZn4rvGN5YiLQecGeRI4ZsWVg89mXXE8yPjNcYi/o70k//zO4v9zvnjooYcO5euXfumXlvRrX/vaJZ2+FPekqs264Fyd9uBzO5csXmff53M538TuOM7s47pXtWkznctxN5czvevvPF7ns1hetk/a9cwzz1yu8TQS2kXmVM77dEnhCXApJ/9WmE42Sd75vcfvxM7dbDq98VSj8kFEREREREREVsXFBxERERERERFZldPK7YKSuy5yPCUknbx8ku538qtJck6ZUXeCBV0wKPmPlJNSGspfuoiqZHIJiGx9ihzfSXCmSLzHhXKxTgI7uXd09c08ddJ//j9lTiSSJ9Yr3VV4EkmiA7O9KPffJYFlOVkPqU/aBMveRWtnG3QyyONAN5LOPWKSXHZ9ZIrO3Z12wTbpXItov6n7qs2TFuIKQ9cR1n0nKZ9ke3RNij0wj7siG0+S7ONCKWDqe3JtIcnHdIIPyXNZfr6ja2eOQ5RZ0s0ldjPJ2tk2uYd1Rfthm3dlm8iYRfnfvhGYGSW+k35PEuaOyV0sfZ5txvmgc3niOEGZK2XJSZ9xxhnLtZtvvrnNT9dPWXds97gVUPZJV4LIeqsO+tMuN5OjwjruXNx2uSbRjlj+zrWlkzVXbdpExq83vvGNyzXKVu+4444lnbpgHjj+cR7IWMU2YHkoz+W8FFjHrJOMrV09nhRGwu/cOqao+skDTxWY3II6Vy2OGZSVZ2xjO7z0pS9d0pwzrrrqqqqq+sIXvrBcY/ty7Isr7zS2dt8akyR71wkk+5x20bmu8Bptg2VJWWlz0/dGfsd7p1NT0o84/3Kue9vb3rakf/Znf7aqNl36PvjBDy5p2k/yy/GPeehORWIdT25Vqat9XC0IJe9Jc/zu5PdkckPuTsyYTkvr3Kxi+1VVl1122ZLm304ve9nLNv6tqvrQhz7UPjd1PP1N0c3h098y7KPdvLpv2/D7PkzjYDfHT3+DdOnu78CqTfeI/G3Gemb7cn5N2Tlf8O+Ybk5h36M9dm3C33Ns39fVZR9UPoiIiIiIiIjIqpxWyocuwM50PnO3WjWpGUiuc9WdK0lcjcpOFneLeH4xV6OyU8XVP+7Kc0U/TLtJXB3LajN3lqedolxnAMJ9AlN1wZim1X2usCUf3S7WNl078VncTTz77LOranPXiKuZXJlP2/D33IVncNOsME47iFzZvu+++zZ+UzXvjuZ5UwDCk8DV327nc9eu7hTUkKQ/sG2mHZ6Undd4L1dks4LM3TGmaeO5zv5PW+b1/I4r1OzTbMuk2ff22dXtdsamNmYddfdOCqzAemWaY1bGKubry1/+8pJmeyRoZ86g3qZTu0xjD8+sTtAl5ot9k+NT2mMa208C+2u3u8Tnd+PStNvZQZvtzt8mtDPW16233nroXgauoirhlltuWdLpI1PZugDMHAOprjjrrLOWdNqKedynj3RKlKPYfcaWaczq0tNuEtPZsaJa5/Of//yS5jgTW+Xv2fcYZC07TrRvwnk9eZgCEHdBWbuA3CeF700/P04Q7qmPcK7rAriyDpgOVLTR/jjHxj5psxzDqPhJm7APdeNw1YE6iOVlPTEPnRpln3GrUyPw2jTuJn/8/07tUHVQbo4LXZl4D8vPoKwMYpw6fs1rXrNcoyqFdpv8sN6ngIsZC7pvS5aH16fAxsdlUlF313YF9ZwUgLnOcnA8oR1nTKJ6ijvcnPPyDcAd+XvvvXdJUwHc5WFSCeZbmnbA97K/pu75fbfvty/Hpzx/aoddatZufK06sEuO9xxn+Ddd6ontyzy+//3vX9L5m4XB2KmMoHIl4+IUEJrp/F3J4Lx33XXXkubc243d+35rPR4qH0RERERERERkVVx8EBEREREREZFVOa3cLij76uSuncyKTDL/LuAcn0WJDd0x8jxKhim3pwSqk/nTXYNyqshqKBOi9IxSmchi+NwpSF2eNwWuOi58T9KUUfH/O2kc65156qSZfC7l85RhRv7EeqfMifLyuCfQTYa/o/wp8ibKbene0EmZJ/vpztveJdE7Dp1r0RSIbJIodv/f9Z1Jtsi2iuyLts5gZKzTyPzZx/g72niey3spAWU/3FXPtL3IBHltkkkfBY5Z3dgykbxO8mU+I1JyjiGUjFMGGSl9gntWVX3mM59Z0i95yUsO3ctrk4tQbG2S7FFymTph3UxBOPMOlndfSTntNu+aAq12Y9xRpNSRatJmuzG+qg8iyfahDDayTrqWnXvuuUuaUtvkk9LXLihX1UG7Uco5SZRTP6ybfdqkq2Pa0a7gv5Pt8BmxNdY7ZcvsLxdccEFVbc6573vf+5Z0XCKqqi655JKq2nSD4fcA6y1jGZ/bBYTm7zImbsNnZAydxoeT0M1pk93zevIw9SHem+tsU/aXLtgj+0hcHKs2XZMy37JN+SzmLd8MHJ84R/LejIOcW9jfOjs9Va4wXYDCKXB49w0w9Yuuj0z/T9fgzDn8tnnFK16xpFkvcWmhHTBYKOftzLuUr1Ny3tkVbYLfC/xOzjfH5Jp4XLr6nty6O/dV1ivrhb+LDdGuOGZ1Ns2AhwyMy0Dk+d0111yzXLv00kuXNNsu+eQcMrks5FvsiiuuWK7xO+qLX/xim/ddzz0q/H3adgq02kHbmsa39JHJdmjL+XuCYzj/Bvn7v//7JZ17fv3Xf325xr9Nbr/99iUd133mizbCcr7hDW+oqqo3v/nN7bM++9nPLunYIfs5wwScalQ+iIiIiIiIiMiquPggIiIiIiIiIqtyWrlddDJ+Rq+eIu53kbgpheoiaFMWRCkXZU+Rp1CSRGlRJJmEEjGmKeVLfqeTGigD76TclL2TTj65j8y/OyljOqmA5J1TpPhOCtidilC1KWmK/JjyZkoz2TapQ7Yz5emMYJu2Yb3Tftj+aYdJdtqdJTyd2HISKJnK81lGthnTnXRwinCc9uG7WOesu0jKKYGl9JvnS6dvUXpLKScldJFRsgyU8VP+FkkuXXQmeW/Kxnrgc48Lx6fO3qe+2OVjijweqSXLNJ1UkLIy+vunPvWpJU3J5Wtf+9qq2pT1T5LxlIPlYRuwj8QuaT9sg+m87bDveeDduMS5Y3KlSD+eTt7oZPOTmx3rNHJujmscq3iCRcaonOxTtTknMd2dYME+3UXFp7vHVCfpc51E+CR08uHOFWM7/93cNc3rkQRzDJhcMNKfWBfsI+xbGde66P5Vmy5msXe+l//PPhK5K2XUtC+Oe2nn45zCchy6s+0n2Xj3PTJJmGMzHMsmm4u9s9/wBJIPfOADSzpS45//+Z9frtFVhrLj2AW/Izg/dZHu6erHtmTe8w13qtqB7d2dEjKdYJH0dKICyb0sM8do9pGMoZOr38c//vElnTbn+Jbvgqqqu+++e0mn3jhn8fu9O12EboG0JdZJ8ss8cC47Lp3r8tQGu1wppv6RcZHfvvx/jh2ZF9gePFHkuuuuW9KxWf59wu8U1lHGpM6FvGrz75L0ebYH/787ia072eqksG7SPtO3Aus8NjO5LnQugLxG9x7+DXHVVVcdupcurrT7jOE33HDDci3fX3xW1UE98RuOcyjb8p577qmqqo997GPLNbpg0L0p3xk8+YfuaKcalQ8iIiIiIiIisiouPoiIiIiIiIjIqpxWbheUu0ZGNUXCptwmkrUpkjclgpHUUY5CuRmjjEdmRrnd9ddfv6Q/97nPLelEluWzKD2jhCqSIcqQJilwoORrknR1Uf/3Oe2C0rMukjPrsHsn24OyQuY57UxZEZ9LGW2kYZSeUS5L+XLyy2iuPOGC7RTpGCVIlMh2JwBMsjvKzLpTPzpXluPAvKSMlJlP8va0xVGiA8e+KO9inVPCGokyJed33XXXkr7xxhuXdJ537bXXLtcoDfz617++pBMBe8oj5X6pZ5aNddKdCDOd6nBcWEcdu1wMJtlud6II5ZKUa7O/pJ0Z/Zpp9sk8j/I/yp7ZH2LXU58mqe/OVvn/hO28K2r1LjheR47cnUKznZdddtC5BVKiPcmOU6eUpd55551LmuNWnkv7Zt9i33vggQeqalNyThvj2Jf+xLIz77TDrv1Olbw8/WXqn7STjMGTpJxtmj5CCfMkKc/z2C843nMcikyWbhdMs4+kP9B+2R68nrajO+Ykv+7GjX3d9zp3A17b1V+7EzC204HtwOfy+pVXXllVm3bBfkE3pW4eoWyZ7jRxy+R4yfLwG+crX/lKVW1+c+yKer+vi1hHd7rJLpeY6duY93YnC7FeOH7FVulqwTxQXp6x5ad+6qeWa5dffvmS5piV9uCYRsk/2yNlmk4To8tbd0rBPn2k63Od+3ZVfwrN5D7W2QvHYX7DsF7insp+d++99y5pfnPFpYUuyZzX6dKXcWhyq+3+pmIZOE+xP3duEadyXk898Ht36gNdm0wnveV5nC9YN/xezXdXXB+qNuuDpF1T31VVL3vZy5Y0+2HaivniuNi5+bAe+G1B143MNbv+rjtVqHwQERERERERkVU5rZQPXJHJ6g5XfHYFfOGKENNcOc3zuLrN1V0Gm0rgFgZg4ZnE3NXN6udb3/rW5RpXELmb0gU45Aojd2Gyyj8FNZzSYZei4vGgWoOr4oErkVyxTX1xV4f/z7JkxY7XuJvM1e2sEPNad6541cEuI3cbeS/bJvfQ1qYgWWknthHT3fnQ3a7iSWEfSX5p3xPdbuZUd92u7hS8Lde56sw+wt2r1Cn7W3a8qjbbJAqkTr2xfT3paWW7Uwft6jcnIbZMRcBU37neBUbis6r6M9en4JoJcsSdELYHn5FzwnluN/tAF4iXbUBb5xjZlYF9oBvHWTf77pCw/lN30/nvvDfv7QK6VW22T3Z5OFaxTViPsUuOh6wvjrO33XZbVW32m5/7uZ9b0uwvmX/Yd9lPOb+knCwv+wv7b+5hm5yqXcTYH9+3a5d/CspK+0rb0M44Z/FM9agVEqi2anMMJ9kN/8hHPrJce/3rX7+kGTC3q7fJltNm07276n5fBR1/n/5A+552xDo136QY6oIWcneUu4iXXnppVVV96UtfWq4xYBvtItc/+tGPLtfe/va3L+nXvOY1S7oLqMZxjXUbpRDLRlUZ+xn7bNhnHqEtp6xd8M5tYu9su0l50wULnRRhmVMuuuii9rncUc1Y1QXkrNrcac9u/COPPLJco02wvpMf7hZTUcZ2TDn5vTf16aPQKa45d3bqXUK7mhQs+b7idxb7CpUkGWc+/elPL9fYBsxvbPPmm29erlH5QJVQvhM4H1Gp0tUh+x1tovsbZd8gk4R2m/7SKXu285J7pnmGc3i+c2hb/H8q42MPnfptO7+dOp955HMT4JJ9hHbBcuTdtAsqZjrVdRdMdQ1UPoiIiIiIiIjIqrj4ICIiIiIiIiKrclq5XVDOHdkOZSqUizAdaU8nMavalKRFikl5F2VhDN4VyQqDHX35y19e0pRbxa2CsptJqh75LaV7lIuxzElPAaB2BZfcR1bDfESGNAU+obwqUiBKuSZ5eeqY5WPbUMoXqRXLT4kY8xu5IAO5EEro8j4+dwqsFynzJDvtAm5RzsiynwTmJTZOWRjfxTZJvtlvWN4usBaloJShUV6e+mW+eC4ybTz5ZVAe1jPlYumTvJdp2lZ3Dvckx+veu4+EmXXcSQ0pW+zuPUoQq9ga+wXTXZA92gTTbJsEzuvcCao2x68E59slN606qE+6mk2uDElPZ6GfBNZ5nss66M4LrzpoH9oD88pnpL9Mbm1038vYxnyxX+ySa7NN6JoUWS4ll+wXtK3kcwr8uysA6z5uF10gWI6fdA/p3KymcYp2n3v5e45TbLvUC8c02jJltJG78mz7yT0qaf4/050rBeuVc2A3VnB8YJ2dBLoAJd+dfW/nK+3WuStt39uNRWxLzs2pf7qLkc5ta5LVU8IcufrnP//55RrL1gXvZptMgekybrAP7TOPdJLxowQAzXX29UnanXsp859cml796ldX1aZcn3XIPpLnUiZ+3XXXLem3vOUtSzqB2d/73vcu19i2/J7LGPnYY48t19jm7P9Js/9PwUKPAtsybXMUt6TU5+QiyjzlbxGO7/xbhO6paRsGmWQeuqCvLAPzwzkk7fz+979/ucY5hGNk2oGB9vmNwG+SjAkcG/Z1b+1cqDj+drZOONezbjr3UI6PdN+ji2vGLH63sm7ZVrEd/j/bnfNP5i226RRMPTDoJf+W5Du6gwBOlctxh8oHEREREREREVkVFx9EREREREREZFVOK7eLLvIu5WiUXFEW00kQJ9lgZESUAlKGxuuREb3yla9crlHScvvtty/pSAgpXaNMi8+NFKmTB1f1cnn+f3fSB6+zvNMZ6UehywelVZRBUaqVcrF80znVaedJnsV6S7kY/ZgyPZ40ElkVZU5sD0oEcy8lVdN50bFHyrYmCWrStOF9pIBVu90JOveXqoMyTNF4Sep8OmeY9RS7jyx/+7n8XfLOa5SfU2YYO6O0crLl9AGOA7tk/tP/HxfmKe9nmboTB0hXP1X9Wc5dX9j+Xe6h3I6yQcokM+4xX2xbppOH7jSX7XSet0vKz7x3stGT0p2k0LmyVW2OW53Mn2NG58bAZ1G+yTpPHpgvRq/u3Mymk1vYVhdeeGFVbUou2ec7V5bJfaKLkM/y7uMK00nbJ7cLjl9ph2lO7VzyWJe0ddpU7L47372q6vLLLz/0O45vlNl2JwfQ7rvo9lUHYwTLPrnBdDL8fU9N6mTl3TiyfW/arTuZbPt3yfc051DSnTzwNIN/+Zd/WdJ0h42N8PdT1P3kh+NsJ9ev6t1hSXcySeeSchL4rdS5Zk7fDbGDydWvcz+mHXKe4LdU2oHjI12OWe7udA6mee+LXvSiqtp0Y6I7R+dqwm/9ybUy+ezs+iTQZTB5Yl1NpJ2mEwU4JqVtWMc5caWq6lWvetWSzjjB/sETkboTKphfnlpCN5Z8H7M9eJoF+3b3Pcv24NzTucLuO2ZxrIwtT26r3Vg6nbhH4pbK+ZljT3fiCcc89t0LLrhgSXdzA8cL2kvajW390EMPLWn27zy3+/7afl/3t9Y+pyHuQuWDiIiIiIiIiKyKiw8iIiIiIiIisiqnldsFpU6RrVJOQrlI5xIwnXBBSWUnX5uiFEeeRvlxIsRXbUplcg8j8lMCShluJICUjU2yukhldklpmGad7eN20UV3puSH7dFFiKcMimnKlCIxYh1Tmka5ZOR3kzsLXSySH0r+aF+8Hhkay8b8Ut4ZJpl4Jzdkfvnck9BFe5/k0SxPpH2TzXWSXt47SezTtyhHo6yT0rNOhktJ5cUXX7ykYxeUhVEy3rnpsLxTFPnkvYsufhJon6ljjguUCna2MUUxZ79O20yyQtZn2oyywcjzqzZP3Uk/Yx7Zdp1knNc4BneS28kdqbMrlmdyBzoqHHeTR9oD7aQbz1hGprtThrro/tv3ph44VjGKPOs/9sT38oQS1mPu5ckalEZ3fXaK5N/Jmdkm+7jCdFLVqT06+fzk+sLxq5s/2Q8pbY48mHby+te/fknzeyH9iM//2te+duhdVQfty3qd+kjqc3KpYXvExqbTvE4C6z/yXl6b3EDTVmynaR5JnbMsrGd+E0VuTpcW9pHu+4lj1c0339z+LvXM+uJ3AL87kk/2N7bPrvrfR8LM78a0N+tycgntXD0m14TO5Zj9gv20sznKzzm2ZH7hXM6xkOWI/fBZN954Y/vc/O4oJ+2kr+86eeyo8DnJR+cKWbVZ32nHyXWYY07qns+64oor2ntjkzzJhX2FdtCdMnPTTTct6UsuuWRJ59t3Oj2Lz+3Gt+nEme60i31djln/3cl3bO/uFCveyzJ2fy/x1BF+/3fuOBwf6SrBv0e6k2bYX7rvBbYJT26i63/u5e+nOSf1N40PpxqVDyIiIiIiIiKyKqeV8oFBALObwxWsKdjZrtWbLgAjf8NVbO4+5N28l6uNDEyVXUSu0jKwS7dj1QVnqurPDp/K3u1OnaogIlzxY54C809Slq7MVZu7GFnR444sV81Znwm6wrx056FXHaz4cXWxW7WsOggwxXcxD1yxzQ4EdwwYoIr2GqZztU8C6zR1x7xMAQ47dc8uZcMUgIyrxgn+ybpPUKnte2OXPN+d+f3iF7+4pDtFxXF2NSZ1UJ4xnU1/XLrAj13Q0ap+V2cah7qdl0kZ0dkfd8NZ33xG7LLrY9vvSP9lv7jvvvva/IZJEdSpVqZdpZPQ2Qz7Jcu7K8DhNNYGjmXs59zJDBxHOI8wv13Z2Sb8XcazTpGxTdqP5Z0CT3XqhH3ahCqczIlTvyBdoMVp9yzXuyCpVZtjZN49zW/dDhvr4v777z+Ux6oDW6bdT2qCqDmo6uC9XVBm9sd9dxE5JiRNm+V8wTE66SmoMPOVduVOK3e8GTg6fYeqA+4+csc3dcY8cAxkIPDsHrKfcrd2V1DCac7pxvp92qQba7vAudv3pj2m+Y5tkzTtbAq6mnezrjinsE27+YnfCwyimPmD7TUFlc697LssG3eA07f2/b4KrLfY5qR2YFmS1y4QbdXm+BsbYmBJqnY47qdtGNSR4yoDTqZ/TN+w3fjFOmbbdTbYBdlmeXhvN46dFJYnCoMp0GqXL9ZBF3i76qDdOV6wvJ0tduqiqt3f1BzrusDX/GaZDhFIW7HvTgcZdIqqU9VfOlQ+iIiIiIiIiMiquPggIiIiIiIiIqtyWrldUOoX6cgkx+2kMpSmUDrEYB353XQ+M4NJUeLUQQls8kn5DGWM3bmzzCPTlO50QQt3yWpOlYT5hS984aFnTxJLtkdknJT08Hdsj8jF+HvKAh999NElHcluJ6Pfft+uM215b8rGa6xvpiP9YjAYpkkXsHRfmRPrJmWcJFnd2eaUfVHuSJlZJGm0Scp02U+7YFCUgFHelnvZZmxfulM/MugAACAASURBVMWkniepcSeTnlwYukCi7Bf7BG/r7I/1Pp0NHpuibbAN+Lu4JHG8IZ3rAG1iCmqZeuGYNT03Ele2B8cH2kEkj7Qfth3lhKyrsK/bBZ+fOp2CCndBcbugrlV9m7DNpiCnu9y6WAddgDzOI53sk/JN9otd7kRTMNfYdOeKcRLoUpe6mNzwuv7OuYH9hfaVZ3C8meqw6yO8l9dTL5TxTkGwU0ecL7ogfkzT1ljHnesWf893nASOlalfSrfputCVh/mm/JtjQvrhJPOlDWSs4Xg6zZuxEX6fsQ90rqhsX9oIx4V8l7APcU7q3MWmAKjHheXO9x/n3ClAa+yS5ZgCsWbs4LMYQJ1uFXSBDhxXGRy6c4Nhm9M9Iu00Bai+8847l3TqhP2c/bBrD+Zhl0vN48Fv1Ng0nze5HHbuVPyeZ1lTnxwfadNdX2L5mMduTGJdTUE787vJfmgHyTu/Qziu8n15RhdI8aRcdtllS/o1r3lNVW0GWGZe+a7YIuuersGdawnHELYJ3bi7v4k6d8vpudN3Z+6dXKloTxkj+T1BdzZ+L3SBwPd1hXk8VD6IiIiIiIiIyKq4+CAiIiIiIiIiq3JauV1QztOdKUupFolshlInSgEpU0ma9zIab3feMuUxlOhQltydt8p7KRGLPInXKL1ifiNT7d5V1UfmpmyqkzUfFcrd0g6sN76HddRFdu3+n8+YIjt38lLmqzvnuqqXCU8ypuRnihrfRa2dXDQoFe3cAfY5WaGqjybOa5RfdS4WfD/lzpR4Rs7H/sZ38BSX7tQJSvw6F42u7refFYkc7Z5yWdZ5nkfZH/txJ0Wf3BKOC/tX2p62PJ3KERumvbB8fEbyRwkw5X+dPP4o7j2x8enerr9QutidZMJ7mUf2WdpH2oZttI8bTNXm+Mk6DezbncsU88J+wWel7KwD1hfbqpO2Tn2ga78p4n7sgn2kk+pWHdgpy8D+z/7SuUftIyln/8q8zOd1Lh9VB32cbcT8s+/ELikzve2229r8dH1ycjFJO0wue92JQbQJSoU5ZiWflKRzLOlOJJhcHk9C5/I5uQKxP3XR1Xm2Pdsk9s57aWfsA3EluOiii5Zr9957b5ufzPm75ujtdOCJAt2JTnS9nVyTkvfOffMksD3OOuusqtqU1bOu6BKTsZJ1zGex76R96V7B00f4Do7dgd9anAe67xy6wXTP6tyFqzZtLX2D72Ka7ZT58lSd9HbppZcu6auuuqqqqm666ablGt1FmefUAceAl7zkJe07YvOs96l/5Lm0+V32z/ba9S3e/R1Rtfk3WcYv2hddtXiKRvett++3b+fexTGCYz/rP/nuXIv5/8wv65NjdOc2xnLxG5TPze+mNuvmn8mFmn8rppwcu6d233Xi3alG5YOIiIiIiIiIrIqLDyIiIiIiIiKyKqeV2wVlNZH2dHLe7euRp0yScsqIumi0lLfwHZGp8F2Ty0MnYZ7yG6kLpdWdnL7qQE7Dsk0S5VynRGcfqRNlf5H3UHLFfFL6G9nP5BJB6VHkyXwuJVOMNJs243vjlrJ9PfVNGRRlyJ3MqZO5VW1K/SJZpBybkie2Y6R5nUTxpFDil7anDTAvtJPORYP9jVLMSGdpO5RRsu/k+iRL7tKdpLiql5RP7UA5aSfzZ9/ivcn7VE/7kDFn6svdKQqU/9GmOsneFEm5k35PsO91/fM4MrzphICMP+zTlGPT7lJnbNtTScrDvLDOWR+xGdoGZafd79hOHF84HobJlYLtkOtHkdcG1j1tnfem/JPLGp/RndrA3x2XW2+99dB7pqj0nTvBdMpN5950nPGV8+RULxlb2C+meT3pSQLPcS8SYX5PsL3Yt9J3OPbveyIMyRjOck91k7bg9xXzwr7dzTmdrVcd1A1dYFnPfEfqrDvlZ5vuOsvTnT7Aup9cfdPP+Pt9XGE49p933nlVVXXhhRcu1yjzZx11p3lQCs95PbBMtMmHHnpoSXfz7yQT7yL5T/N68jn9PyXlaSfaPenk7pTe7/Ot1Z2qwbpiu3enavD/u9PSqg5saHL56k5PYjtPrhR5xi5XMqZZhu7kuqoDNxHaD7+5WM48bzpd7STwG/SOO+7YyH/VZv/rXMY5LnPc5b3duDrZUXcCyfS3WefeMrledn9L8tvj7LPPPvQM2sp0yljHqfr27VD5ICIiIiIiIiKrclopHxj8JqtvXKHizlK3+zDtOPIZWaXqVm6rNlfqulVlroxx1z27klyBmnYRu1VB7jR0AXYYSIwrbXxGVh6nXZrjcu211y7pnKHL3YZOzVHVr/KxDbj7keexTCw/V+a69uC9XCGPoqJTZGznrVtp5CotdxK6AHbdLidhHqfzlo8Ky540V9Npy12AmSkYKes5ZZzOC2c6/WHayWXdpP9O/biz1aMEEks5WbesJ+4GJ7/cid9nRb5bKZ/URry3+123U111ULdd22+/L8+YVDysoy6wIOHvdgWyZH66nTCWh/aa69w12TcwFXe/8qzpjPHOriflGPtIdn5Zz7T7rq2nAL3dbshR7L6zC9Ltok07z50qh7vb+ygfuBuefkc75C5jFwh2Ctzc2Ryh/fIZKR/LPAWrzXWOWbsCGrKu+DuOM6nbTuGwfW/mjy6I2klhHtM3puC3u34/BTXrvrX4/yxD2offVBwnOnthm03fObnOtp4CQMe2pp1q9ofMKayHfYJ78xshcyZ3laedza7vsx357ZI6mL7Fpu+5wD5Eu864yDxOz+p2kbvgylUHgTcn5QzrrOuHp0r5cM8991TVpo3RFrrd9y5AalU/jh4lOHTqkLbZBUrk+6axnu3RzSHMO8vZ/X5SpnY77vvMIVWb9RT1D22Hee1scWoz9rNOmTcFle2+XSZ1UOyJ75raJP2TZWOfpjoo7c5xk+3eBdRmfvdVozweKh9EREREREREZFVcfBARERERERGRVTmt3C4oAYmkpQvaUbUpf4lMhdIVysJ4PbIXylEoM+pkTZPEsJPWMo9TwMVAGS/TrIdcZ76mICKdFHOfwFRXX331kv70pz9dVZvn6k55Spt18q6qTSl+FyiMsteubaaz3jvp5RRMtAvWQ4klg212cq2jBLjK+1iGKWjgUUkwqqoDG6a9UC7IdJgk7ZSDpT+xfbugrVV9fUxyx0jhWAfsp53EfXKb6YIZss26882Z9ylQ4HHhGfepw8n9i30xNkGbfOyxx5Y0+0sCPVHWyGd1/Z5lYn/pgiJ2/XH7HYFtO8n7OknyJOFPXbHt92mPqk0XtciOGaxqen7yMsmLKW1MGSe77wKqTYEjKYNO32DfnSTMsR0+l/XMsbELZMk2Y5ukLWhv+0hmzz333EP5YJk4PrLuu+B0k7Q7fWByD+uC505uQbye9p+C5HauUOmvVZt9i+N0xqSpX7DuUz+TlPsk8L1xi2FwVY7RLHvXR1hfcXfkPayjKShcyjbJyjsJM/sj88i8xd6mMZn1mPbhfME+1PUXvmsfF1faZ4Js83msqy5I3CT9pgta2rwLDlzVB6Dt3JWq+nbkOMZxhuXoXFynAK3JG9t2svu0Gdtun29f1lHqkMEXp7ElZZkCQ7Jf5XfTszo3zOnbv5s/2fbHCX5PaP/JA+dEthfd65If2tcuV65ddG4KtB2Wi/WUsZRlpE117oddAOaqPhAvrzHd9QHma3I5zu/4LNb5fffdt6TTJ6dAq6zzvLubW9ZA5YOIiIiIiIiIrIqLDyIiIiIiIiKyKqeV2wUlPp0MaIremvQkz+ok8ryX0h3KtiJPmU6l6M4fn97LZ+ReSh8paesilE7R0Xed47pP5HieHtFJl6Z3J3+U4U3y+dTRFBG5kxR3EuHte/O8LjptVS/vpByJ7dG5bvC5/H+WLfJQSr55RvdJYPTqlGeK+jydIR+mM6UjZ51k853kknbRndTAPEz9ojv3nWXoThuo6s9cZ36697EfU7J2XLpz4qfyd1K+KXI+XTA6Kedkc9u/qdqsY7Zd8jCd5d65ENFmaIt0dQidhH47v93JP/tEKa/alBpGCjrVHe0rNjH9PyXlkc9yHJki3+8agzsZP+uA8nK2X95NG6PddG3FfrMr71M09ePSyYont6GurmgbtB3mqXNPnE5NSttNZ8TzGXn31C86iT/bY3Kn5LdO9yyS9+1yqTsOLG/6yORC0LUJ/3+XayN/P80jeQbH4sntL/dOp/R0bh5Tf+pOfJrcRDoXUNrCrlOvHo/OFY3j2CQZT175rcY2oJ3EHYjtMbnk5Z7OxaNqsx2TN/6e7djNT1N/Yj3k+nSqTecG07ljngS+M23Nvw1oQ6T7JmYbMP+xp8mO2U7dSXaEdZG8TScrsC90p0Exv5xP0ubT+MfxNnU1zTEngWWMiy3rg+5u3QmFk6tFd4IUmeaq3Mu6m/4+Sno6ja5zd51cL1mOCy64oKo2+9jkzp80x7F9v7UeD5UPIiIiIiIiIrIqLj6IiIiIiIiIyKqctm4XnSsF6eSXlL3tkuRNkUZJZJKTxJ6/i3SnO6miqne7oPxlkoh20ugpcm3qhHWzyy3j8egifPN5k3Qp+WM+pvRxSN1P0YG7KL6TpK9zeaGkapJpd+/t/r/qoJzf+MY3lmv7yJerNiMudzJfwnpKW06Rvrt+NkWsZtm7qO20366tprpl++V9fBZl/oysHDke88X8Ut6WNu5klSeBv+1OsJj6bRf1m//fRZOfbIf3pj0muWwndd4lO+Q7KH1kG3DcC5OtdVLmKUr0SWAe865OXr39rqSnSOVdNHfOORxfeD3vo3127cB7ptN0Oteyzv2gqnch7GTN2+nYG+ekfWT+XVmmuuh+140L26ReaIcc07oo8tO43Y3t073dCSfsj5S1c/zq3DQnl5K0w3SSx0lg22bsnk706Nwu+P+dm0pV71o2naaTdqOd8f93ueNMecvvJjcRjhVpH8q3meYzUmdHsc2jwH6Z55xzzjnLtUcffXRJs493rh7TiUSBtkNXsu5UNz6L419ni2wjvrc7WYz3so47+5i+OXm6VXdSyT4ux7SL9GHW9a6TjaZvkc4VsevrVZtlyXM7l5vtZ3SnIHV/q1T1pwpOcv+0A+1vcmtOe0zf6ieBtvGCF7ygqg5OhtnO6/RdtYvksXN5qdr8GzXvm06j6lwlmJfpb9u8g8+avjPSJye3QZYj6cm17VSj8kFEREREREREVuW0Uj5w1S+rod2uUFUfWI8rs9MqW7cyOQVc685F7XbKqg5WprhiOp1f3q3oTqu7XQCybgeV93AleZ8gL3xOF2BnCvC5K5jetGMRut3kqj7Q1K7AgkcJKpb2nXY8p12e0AXw4fNYN1ytPwlUPmTVd9pV7uqGbTYF4Em+2Z8YTKoLpsf3cvex272adrS6YK4sL3cRu7OVp8B0bJ+kubp/UiVO1abNJB9TYNxuF6nbyd6+nv4+2TLHnNQt63jqb52SaCI7fVQ7UO3SBU3c1c+38xn2DYLUBYWadnK7QG7TWNXli9fYR2gDqY8pIGVXd6RTwVQd2AXLy/ZhOrtou9QOVX277bNr1SkopsBcnVJo6k+kU/FMipAuyBr7UKdcmpQqzE/ageMUA7HyGXn39E3DMidv3AndV/nQBc+bAjx2dtJ9+1RtzilpY9YX72XZ87tp95xzSlf2abxLPlm2s846a0mfeeaZSzqBSKc+331XcT6f1EpHgfaXPsLx9Z577mnzFKb5rlMdTL+j3XZqrS7gZtVB23H8m76T87xJ6UaVaMaNCy+8cLnGebvbVedzv/a1r9VJYR3GtiZFI0m/5pjX7VRXHZSFdsPx4sUvfvGSTh9l8PIueDSfd5Tv705hOgWfjI3SVh955JH23tgEy077OAm0ueSB758Ca3dM9tfV3XQYQMq2K9Al8zYdFjB9uwaWnc/olLys504pw2ftO488HiofRERERERERGRVXHwQERERERERkVU5rdwuuoCTRzkvPRKZKQBiJ+emJKaT9lf18jdKViiPiVSJv98lE5+CJXbXp3s7SdvkPnBcKN+JXHI607aTMk8uAF3ATN7L+u4CQ1LKNZ2Nvku+TFlc9wzKlTq5HethknR3Z89P+T0qLHueO0lkOykXZa8sA+mCofG57Kex8e4c9qpefsk64PnknesRg7RNErHkc7JHliOuKjwDex85YCf1myR9nZvS5GLQuf2wDSj/o4S6C5I7BahNO7HtJlextBPHtGkc6oKKTX0gNsggSFMgpqPS9YFJktlJH9lHJgl252Lz8MMPt8/tYD+e3EAe7xqhewXdlDjGpf4n9z1ejz3wvXzuceFzYredDVRtSlhjB1PwOtK5A7ANWN9nn332oXtJ946pvWgr6YeUTtPuKUvOO7qgoFV94OoHHnhgucZ62pfk65JLLlmuddJe8uCDDy5pjp+d2yHrOa4N27/r6o52wTEqv+M8w3rk71LPCVC3nWY9RtLOtma6C35Md4h9vrVik1VVDz30UFVtjonT92FsvBt/p99N8zr75BlnnFFVs5tm187TGN+5Fk19muNM+gD/n+3B/MTFggE0T5WkPOVimSYXpYypzNsUrLezF7o333nnnUs638G0bbr8dP21c/Xefm/nGsz2ol3mfezDXVDzqoPvq0svvbTNw0lgGa+//vqqml0Zu0DR09+HXUBywn5IN4/ub0m6cXWB1ac5qfvO4Hc288V2z3xKdxw+t/t7lt8L5557bq2FygcRERERERERWRUXH0RERERERERkVZ6wjxRMRERERERERGQXKh9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVkVFx9EREREREREZFVcfBARERERERGRVXHxQURERERERERWxcUHEREREREREVmVJ/1fZ+A4XHjhhT/avvbDH/5wST/nOc9Z0mefffah9NOf/vTl2hOe8IQl/aMfHTz2O9/5zsa/VVUveMELlvT//M//LOl///d/r6qqZz3rWe17f/CDHyzphx56qKqq7rvvvuXaww8/3ObnSU960qHnXnLJJUv629/+9pLO8775zW+2eeRzk7dnP/vZ7b2f+MQnDm4+Amedddah9iDnnnvukr744osPvfPJT37ycu0pT3nKkv6P//iPQ89iXbz85S9f0nzGt771rUO/+7d/+7cl/Y1vfGNJP/LII1W1WW9pz6qq73//+4eexbq86qqrlvTrXve6Jf3Rj360qqruvvvu5dozn/nMJU17zfvYBj/2Ywfrgbfeeuux2qOq6pxzzlnaJM/iM1kG1l1s7vnPf/5y7ayzzlrSP/ETP7Gkn/a0p238uw2fe8YZZ2w8v6rqscceW9Jf+9rXlnT6CNv/v//7v5d0176EdZv3VlX97//+b1VVXXTRRcs1jhWf/OQnl3Tagu3P/Nx9993HapOLL754aY+MB6wLpjle5PqP//iPL9ee97znLelzzjnn0HWOb0996lOXdMrP5z33uc9drtE+v/71ry/p+++/v6oO2qVqsz3+8z//c0l3fZawPpPfl73sZcu1n/zJn1zSfF/6EdueNvzpT3/62H3k/PPPP9RHWPecD9g+GT/ZL2jrzHeuv/jFL16uveIVr1jSrP/0I44DUx/JdY7hnEeYTploN8w7y5x55Hvf+177/2z31MN//dd/LdfY96677rpjtcnZZ5+9VHiew3dz/OI4lDpkPp74xCcuac4pmTM4j3JOYfnS/ux73/3ud5c02yP9hXMH52c+N/2QZZjm4rQz+xhtkc9N/bA8bI+PfvSjx+4j55133tImqV+2A2F/zD2se7YJyXU+l2PYBRdcsKTTfhz3OG7RBjJW8LnsTzfeeOOhezmX8RuO82HgN8M0V8WGmIdnPOMZS/rd7373sdrkda973dIesRO2MeH4lXmAdjal853LNuA7WNbYGr/xOLbQlvOtxW8xPovfZffcc09VbX5/cy7jvJ48cH5j3+P1tANtlTb6l3/5lyduj/RL2jntkXWReYH5YPk4nyTPLAfblvdeeOGFVVV15ZVXLtf4vcNnZE7lfMUxjXWYcvBdnE/OO++8JZ324DcE520+t+v7fMef/dmfHXvM+u3f/u2lcjJe0F7ybV5Vddttty3pjN3MC8cDjqtJcwygrfIZ6U/sF0zz3jyP9cW5mO2XeuI3BMcpzlv57mLdcy5jOu+bvgFuvPHGY7fJ46HyQURERERERERWxcUHEREREREREVmV08rtgjKpSFYoQ6I0hfKVyKIo7aVEjtKSyMwoiaEsrJNAUZZDmQ/zlvdR/kIZWie5puTt5ptvXtKdVIkycuaxyy+lcnzvPlBGFijPoptCpFwsP6U+nZybdUlJG+Vi+R3ljV2+CJ/F/HTyNkqbWN933XXXko7Mic+itInvi7SLdk3J40ng87s+wnexP0TCNbkE0G7TtygzZFu/4Q1vWNKvfe1rq6rqAx/4QPusTgLG/sZ+yvR2Gas25bI//dM/vaSvv/76qtqU2lHqyLZKn2Pf473Hhf0r8kv2yU4+XXVQ92wvSmTZdoF1yTpm/q+++uqq2pT/3XvvvUua9pO8U1LOftrdS1g2luP888+vqk3p7dRH0qcnaf1JoLwzsE0ml5XISWkvlH5TqnnmmWce+n+WkVLc9L1J9snxLBLPyc2Okv60Ccu7a1yirJ02xt/lXo69Ke9J6FwgWRe0HbrvPProo1W1WT7WN8ekPIM2Oc0/gW3Ad7A9UoeT9JZly/NoU3QHYNmST/ZTjm+UTKfMfBbr7CR0/Znl4v+zjJH80namsbb7f35LcS7MeMj25e84XudejoEPPvhge2/akvM538G2io3w25JjY+d2wWftA+0r/Z3z+uQSE5ua3BiYv8y7lOtfdtll7b0ccwLrgun0EY7bfBbngW6OZH+jpDz38HtxcktIm9MuL7300kNlOCq0+aSnb01eT55Zjul3yTPLRxtjX4nNT3bA+kw7sA9PUvzcwzYgzFvmBY5DbHO6Xudbhi4aHNNOAvt73HdoWxzPu/qgTXLc5TiU8nIM6caeqgP741jM/2dbJQ/8/2kMT93Rlnkvv5XSD7t2qtq0gdzDvn2q/j7sUPkgIiIiIiIiIqtyWikfuEKY1SiuOnE1kSugWb3pFA5Vmys9+d0UbKsLhEW1w7RLmvxOq2Bd0CauznHlqtuV5a4o89D97oEHHjiUr5PQ7Uwwb9mZqqr6xCc+saSzqsi64M4Tn9EF6GHQTq525nkvfOELl2tcse3Kyt0mvrdbleSzaDPcVcnOzrQCzdXXrFxmN3o7P/uS8kxBlhgoM8H/brnlljYvrOeUnSvFTPN3H/zgB6tqc5eUOxLMWxdsbgpkmLZg36PigqvvWcmfdr+Yn7TPFJjzuHSBpybb4PiVYEXciWYf53OzCz4FLr388suXdGyNfTMBwar6AETcrWS9cnyKXU229upXv3pJX3HFFVVV9fGPf7zNA8fblIljJevpJHRqsKm9u3ungJTc/c9OKp/LemRbZXzpduq385N3sz+yvzG/eQd3PQl/l/y+J7vYRQAAIABJREFU8Y1vXK6xj1A1lDGCu1q7Ao4+Hp06iOVnHXY7rpzvuBvEsTY7QJw7um+EqoP5iQG9+P+s48wp/H/u+tI+0mdZV6xj2n3K8apXvWq5Rrvn7zKucUzgWHESOpXZtCPG+k96UidxnsgYx37T7RwSKn5YH5zbk56C1HLHuHsvx0D2kYyHvMZxlvaU7y7ayhQg8ijs2o1k+Vj3yd+048pnpW674HZVmwFzM+92ar2qPujdV7/61eVadqar+nGR8zq/59in0486W93OW/oDAySyfx8X2lDe0wWX3U6njia1Q/d3RzfPVm3afMrHvsj22KWSYXvt+n+maZcZf/guqqx5b+YT9uepHY8K7f5FL3pRVW3WB8d+liHfWBw/Ob/yb6juXVN/Srqbk7efEaY5iW2ZPkC1FsckKoczZrFup2Dqed/Up081Kh9EREREREREZFVcfBARERERERGRVTmt3C66AFCUOFJK052JzXspLenkUvz95KKRZ/D/KYuihCZ5o4xtcruI/IUyIMK8R8bI51IyxABkkbLdf//9y7Wc+XsSOikQpUKUFXVBaCiJ6oI1EbYdZcSs+9QF30v5KeVPkc2xvZhm3lLffO8NN9zQ5iFSOAannOSWeQeD2+wj8a/a7COxqenM9dtvv31Jxy2CsuXJNSFlpISWElfK6ZOHSO15bTsdedtRXGHSnyijTCDDqqp3vetdS7qTk05BgiIFpgsHz4U/Lp0cltf4bvbV17/+9VW1KUlmvdB1KuXa5fJVVfXe9763qjbbq2tb5oc2Rfvp5LksG4OV/czP/MySTvBcjgkPP/zwkuYYEvca5nGfAKDbz08ZmG+ONbSTTibZnQHO51LC3QW6q6p605veVFWb9fWhD31oSXPOSfoowXqT5ng6yW8TEJhzB9O0gYwnnST9JEwB4wLLzzpMmzFvTPN3kaLSZmkH6fdVB8FqKRn+whe+sKQ5L3f5nQIXdwG92AYsW6TmU3t075vm05PAfHdBeCfXsdQz7Z7yYI5nmSPZb/gO5iFlZz9l+7A/ZWxjP+a41s05bFPmnbaZsZruUZwD+b64tfG5u4JfPx7MR57D8ahz2606mCenb03SBTlmH6HrZO6lWyADonb9jLJ31jGl36lbzoXsL11Q5SmAHvtDyswxq+u7R4V2mmfu+s6rOqi3yZWb96Yd+HfNFFw3v+tcoKo2+1jKzXpn27LtOhfHrk9UHdg/54Ivf/nLS7oL7k4b3tedkvnKNwbdOTkOXXPNNUs67UeXY37r85s4+Z3mEdIF3+XYwfbJ+MTnsr7Y1nkuxxt+z7H+k56+aThWJJ+dK80aqHwQERERERERkVVx8UFEREREREREVuW0crugnDFSmSkSLOVAkcpQckWpDOVXkWdResL3due7TtHGuzPgJ8lbF82Y+aJ0h3KpSHBY9inKcyLAUpYzSTmPQifxovRpiqCbeygho/yKkrTU8RRVupO6MV90f6BN5Hxh1tskb+sirE8np6RsU7Rxyj/zjve///3LNcqGf//3f799xuPBMqYeKEmd5KW02w7Wf+xnkpTzHZHZsh1oy6yPPI/nPU+S/+SHUk5G0+6k+6ybSVqWexlhO/3mJLDuk6eujao26/hLX/pSVW26SFE6yTEpdkT7ZV1Fglh1MHbQReXNb35zm99EpOZ4w7GF+U07sd+wzSlb/9SnPnWoDJOMO3X2yle+crkWF4GTMp1kFCY5c/r0hRdeuFyjjJI2Fdn1NE6wPHFJYd1OLoKxHY6zU8Tw/4+9N3u276rqt4c/9WeHDaj0JCEhIQ0BQoAQCJ0ICKKlZVGUyo1UqTdW6R/ghRfee2N5b4lagCiNEHpICJCEhNAnJBASelBpFPvuvXjrs86zzxkja++zz37f+lY9z82Ztc7ea812zLXn/Iwx82yWh+OJJ1vE9evDH/7wco3jlC4yySel0fvK/ENnh6ZI/p194/eZ504+ynrliUM/93M/V1VVt91223KNY+D+++9f0pHnThHCO7k888jvcUymPe65557lGsvOZ3TvC+w/p4H3Sn67E6D4fDJF5WefyX0ZnZ3txOfFllx44YXLNborfvazn13SOUmB9mUa092JPqw71kPmBI5/2ly6wnVuaNMJINvAPtO57019I/mYyt+5ZHJO4qkTV1xxxZI+//zzq2pz7HG8sU1zGgvbczrZJ3Mcy8C2yXsbr/O+0zwS+T3ffSe5/DbQVnf3mU6R6963+a7IOT51xD5GO8Tvpb7WXCaqjvopT/+imwHbMfeY3lPYNp0bTHdyVdVROS+99NLlGsfzaeD735133llV82lUfG9cm7s6t57pdCe678Ul+HGPe9xyjfaL7Rc7z7qfXOmTh+m9nunYMvbR6ZSgzjVpXzfwB0Llg4iIiIiIiIgcFBcfREREREREROSgnFNuF5QGRU7TnbhQVfWc5zxnST/+8Y+vqk05yetf//ol3cnHJ1cKSmdznVIZ5pESr06Gy88yD/nMFLmWn43MZ5LHMIp88kkp4eQesA2U96Quugj4VZuyv0hRWReUAjJ/aVNKtihl5T0i32MbTZGpI8Ob3G86Fx1e471Y5ki4KMvq3Eiqqi6++OITZdtHCljVyw7Xolszj5TRTW4KKS/bd4r+m+9Rwk03Bo7ZSMsi9z/+XJJ6nCTnrIf0C0rM2D6da8e73/3uE/k6DazDpJkPptmv0w7TSTuUqqZfTm3XSf8p7+RJJLRlkSkyojkl53xG6pv94EMf+lBbtuSHEmzaIdrFtBPH3j4n9FTtFuWc9Zx+S7cP1i3LGHnwdKoKy3vTTTdV1WZkcPZJ5jf3oHSysz9VR+OT9Ux3j1/5lV9Z0unvrHu6/FCKnvux7MzvrqxJ0zv3nqqj00FoTyaJdiSqrB9+lvX513/911W1KR2npJf1kvsyX4yqTvuU+uLYi3y9avOEnbQz3WBoh1iO5IGSX7oAnAbamjyL7TCdWJQ+N7kz8p0hsu/ptJO8t1VV/fzP/3xVVb34xS9ert1yyy1L+mMf+9iSzvtR965Wtflelvejzp22qnffZZtOMv64iUz2YVfWTsqYXCUe8pCHVNXsUtqdMsb+ObkQpS/ylASeLEDXydQn3wEoP+f3Yu8nl6nuNB+WgWnK+HMyCm3hdDrFNvD9oXtn4/+7vjWdKML8x/7QtlBq352Qx3amawhtVt6v8pvk+HP5jPQF2jR+ljYp7dS9/x2/R04Uuuaaa5ZrkyvDtnS/05gX/hbq7FNXn1W9Cxvf29iv6a6bcUj3U9Yt7Ujeq9i/J1eXpJkvpvmulM9ybpjegzt3eI7/s0blg4iIiIiIiIgclHNK+cCdim6nhcFLXvayly3pBAjiqtIb3/jGJc3V26zUTavm3SonV4p5VmwCH1UdrapxBWs6wzvP5ioZv0flQ3Z3uNrF3SteTxA7rghz13NXuiBeXD3kyh1XBLODwNU6tk23KjytirI9kh/mgUF12B5ZAecuAduAfa0L3MbVw26lkf+fdu9zLjbbk/k9DZ3yYQqo0539zfpkmmVnv+ye0QW8Yl9gcDDupGcFmW3Csck+kDHJcToF1cqODscx88hV4ewM33HHHcs1rlDvCvvyWvBU5j/1NtmhbheNK/D8HsdZyk0bwP9zNzE2lu3BoE3cnerUQWv9jn2i+3/VUdtQacRxfBq4O9St7HNu4WfT77mj3gXQ432Zb+78cAwk2BTnryc+8YlL+tZbbz3xPLYf7Rb7fbcjTtUGx152w7hbNgVazjOoOKA6ZleY54yNaR7p+iJ3ath2DAyYccgdWZYvQVCrjvo1d6zY52jPUy+Tgol9JeOb9pM7wE9+8pOXdN4juCvM8UYyj/D/uXZa2Fc79RHbh2Mo9TDt0FIpEPvAvsXxxrqJXaai44Mf/OCS7uqZY4/QJqctaeOZH9rU2Gq2P205v5dx1AUzPw1dQEmWg89hHac9aC84hrr5aXoulUDJA5/L905+lu/H3bM4XtLfOXewDS666KITeeP7E20a78sAg2EtyPYDwfx17Topg9JfOoVD1WZZYt84lmnL2Q9jf2krP/7xjy9pjpvMF9MuO8du6phzzKT8SZvSHrDtnvCEJyzpzHXsX/yNcBrWxtcUjHStH9AmpZ5oW6Iuqtpsn/R7vrdSQdf9/uF9qY5kHtMWtMesR463fI91wz7GPpD7bRPA9SxQ+SAiIiIiIiIiB8XFBxERERERERE5KOeU2wXlL5FX8tokIYvMhJLiXc4A3yWQHWWdlFMFypaZphQmUhnK3rv/Vx1JcCj/nYKl5DMMOnb11VefyOO2dLJctsHll1++pF/5ylcu6UjnGFjwD//wD9v7dsEppwCNSTOQzmc+85klzUB1kUexn0xuMJEWUt7bBeSqOjrTl8FtJveF9Ed+n1Kq00AZZNKTawLlWZGTUZ7FMnYyQo6b6dx3SpcDA+tR5h2ZLSWirEfWTScRZft0bjzT2dvss2kLjrHJPWAbOlluFwDy+GeTZpk6O1V1VK4pOBiJrI+SZo4LylZjL9iGlNpTchlp4RRctYP2kVJPliMBY+mSQIn8aeiCjrF/T3LtzBmsW0ouOxeZycWDcvo8j8G3urqt6uW1zA8DiwX2t9tuu63NQ8YZZbJsE0qq82z2hX3kmXxObBbdJ6ayxo2Q8lTaNNZ98se65GfZ5gl0yHmIgYs5JlNftCHsE7SLqe9pHkmgy6qjeYvzEMvD/po6YfDKfSXMnTvSJCXvAqnS5YVS5G6OZR1w/qIL4hve8Iaq2hwXnNtJ2pLPpe3kO1Haj/ae/YLliB3kuxhtJ/PWuRvuE+CQ+Uuf4pibAo6nv/OdiHXcBbWbJOV8Xw18j+a7byfH5xiZAjKmL/Cz55133tZ5eMxjHrOk2dcyr8XFrWq/YHqs+7QH63Wyh7HF0/9Z33mXZPlzrWpzjKe+6M7HNOui++3EumCfyPsZ38PodkEbGWiPJ3fb2KynPvWpyzW6BJ6GLlD9FOy2eyenrWb7sG5yP5ZxCsyefj0FhuzcYadgtxyTaWu60ky/R2I3WDdrwXX3cQ/bBZUPIiIiIiIiInJQXHwQERERERERkYNyTrldUFbYnR5BGQtPnYi8953vfOdyrYsIXNXL16aI5okITfeCTm7GNGVIOaec5ak6kq91J2tU9RJlynIowaFcNDKtnHlcNUek3wbmr5P3UBZ2xRVXLOlIy3iGOduui8bKMlE+RXleJMmUd1GGzLLmGWzb6RndOeeUDVKu1Z0+wj5BUg+UW1P2fBooiYv0jP2bcrFf/uVfXtIvfOELN75TVfUXf/EXS/p1r3vdkk67T+dTd/B0GUaO5xjJyRbs35TmM93J5dekcpQOdm3Gz7Bf7SPP5PiL9HOSODIdqSVlmKSTPrLPMs1+HRvK9rr99tvb72WMTK5tJLJ8tufUJzppPfso8xB7zPE0SYy3hWXookHz/uzjnVSW7gjsU0nzWXQZYB+4+OKLq2qzrzCSfyeDpCsM5xHmNxHeee1Tn/rUkmb7ZP6g5JySWvbN5Icya9bDrrDeQncST9Xm/JJ+wmfT1vIe6WvTuKa0OXMCI5NzHPIkkuSBtoU2nNL/2C/WK91gOlepyeWre7eg/Hyfeb1qU6af/sO6Z90xnZMUWG6Wgf028zXfqegKRLeL1A1tA+dgPi9ue8wv64YS9NyX9iduN1Wb7l6xuRyb9957b3WkD3SR8k/D5JoSpvbovsP3K84jaWeeXMO+ztMKMlfT9YXtyDGQ/EzS8M6Fgfae7cwxkusc/+xfPNUjY47vHvuMka4tp3md71xhak9+NvlnmVjHbMeufPw/85bTM9ak+vwMxwzHIMuZ7/FeHHd8r4vrN+fat771rUv6d37nd2pXmJf0I859k6tY8s15iPME05kfJxd/9uW0Ceck1gfrP21MO8T8sN/nvvzNxDrv3Kr4W4x9jHY+7wvTfc8alQ8iIiIiIiIiclBcfBARERERERGRg3JOuV1QwtZFjY1spGpTihXpCOUmjLJP+Uuewft2JypUHUVCZr4oT2L01sjIKNOjq0SkUMwvJTqUQnXR+Sm3mqR+nfvAFBV/GygH6yTJlOXSDSb5+PM///PlGsvaSZ0pQWK9UcoVaSxlrfw/85tyU2ZM+TJPZEhf6uRoVZtyrpSDknK2F8uR5/3ar/3aco0yyNNAmVTafpKOx22o6ki2Sokjo+lSwhfZ3STbo8Qrsq7INKs264byt7jIULLJz7L+k4dOslm1KedL+9AmUJrG9otLUtxQjud9V3h6RNp2Ok2BY/VFL3pRVVW9+MUvXq6xvf74j/94Sb/mNa+pqs2xPMlaUweJHs98VW1KjmOzPvrRjz7gvaqO7CnzMMkR06YsL2XrzHv6I/sfx+xpoLQx9ppjhH2DfS7txn4/QRscKCWmXUrEb0bOp+2kS0DqjnXEfsGyJe+TKwzzkHajC9IUkT2nXPBelMvvCmW8qXvWO+EYz2cn98ROGs22Y71Rah5XCM7lL33pS5f0c57znCUdl6W77767fUZXDspwJ1lwYB3TpnUSYd6LctrT0En3J2k/8505gzaF/Yi2PfP1JBnmPJJ+z7qluyvbJG4znL+myP4Zk9P73vXXX7+k8441vTuyfboTy/Y5yap7h5jc4bqy0gbQRrN/5jPTqQB8r4o9Zpmf9rSnLWm6KeWzdGOaTnxKm3POpV3k9bQZy8DPsi91p6ZRXr4PqWO6zdHlg3WRPE+/KTiu07dYpu6drepoLmb90KWYLutJ09bTfYb3yPzLZxHWfed6x7madu/Nb35zVW3WE916TgPdtDpXiimdsUO7wD5Jm5XP8n2E9cxxGDvBctPW8fdI+sjUl2lPMz7ZfycXtPwG5XsdueOOO5Z0frtw7uhOMzkrVD6IiIiIiIiIyEE5p5QPXLHNCiJXrLmqxNWb7PBwJZSf7XaLp5VwnjOcz1LNQHXF05/+9CWd3QGuKnIFnSuAWdFieadgUt1qerd6WnVUfu5S3XXXXUv6Fa94xYl7PRAsa/I0ndPN4IVZpWOZuOrY7fBwRZFtQ8VIdq8YZPLJT37ykubq3/vf//6q2lxRvPLKK5c0d3PSl7iLzXpl3lL+KUAe+0/6FXcE9l2N50pzdoumXY+PfOQjJ/J90003LdcYoJXl6XYnuTrMs9ED25fjgt973/veV1Wb/ZvtyxXkrDzzs1O/T/sxv+xDXCnODtp11123XONO0K5wjOeZrAvmv9sF5U4HlV0MepbxzO+z/NzVzUo2d9YToK1qc7xkp48BXKegTan7zkZX9WqPTp1W1Z+Xzj71ghe84MS9diE791VVN99884nnky5A4aS86oLhTbuIDPqbHXYqTLjr+/znP39JJ2AkbcaU9zyPuxfTmeQZT9yNod0gaR/aqn2C6XX9dgoq3O0uT/lkX0ye+X3aHu6S33PPPVW12U8YeI91lPZnHjivdYGJaYdoV1mHnZpjCryZ7/H/+yromMcuwCHL2yk9poDMHPOpJ5ab44LXcz/2X87XV1999Yk8sP35Psgd34wN2ukuWHnVUZtMgelYT6l/qmemfroNVABmbPB+7Nest6gg2EasF17vAovecMMNS5rvC4Hvrdxdf8xjHrOks4NLdS77F9VaaX+Wl+3Fe8QG8p2H92I5cg/arH2UKKy3pNnH2J+Yv7TNFFiQ9ZI+z3ql2ofPiPKKcwHHBOfP9J/JDrGOYt+YB9pmtkfqewrgz/eX5JPz3CWXXFL7wHzHFrJu+T7CdOqBtidqxKo+0CrLwvJ2v9nYDy+66KIlzXfb1BPtDdUV3ZzC8T8pefNZvsOx73ZjgO8LKh9ERERERERE5JzFxQcREREREREROSjnlNtFB+WJk/wqUr9Jut8FT5ok2pTZRlrHPFAWRalmJEGUo916663tMyI5m1xKmE5+WQZKGynBicSYkiG6KOxKJ62kzIlB5JiOuwZlQ6xvphnMJbAdGcwn0llKkB73uMct6Wc84xlLOvIpBpSi3JL1ludRCjjJSrsy8F5dcDW6pzC/p4FS4jWZ5y233LKkEziNrg2EZYhEjPLOCy+8cEnTtSRyL/6fwduY38gIE/CtalOaxnqONJpyNEreuvZjfjleKP2LO8Lb3va25Rrb8tnPfnbtAiX6eSbLMbldpA7YN+gS87GPfaz9XqC7BgOpUgYcKM9k4LaMLQY+4jhm2SK/Zf+mpI/XuyBohO0UuehLXvKSE9dOC90bInPkMyc3pfSTX/qlX1qu0YXoT//0T5f0u971rhPPZbtT0h93I7YNZZ90C0re2CZdILiqI3kl5bmUwU7XA/PDPpZgvJTiXnHFFSe+vy3sGxlrkyyZpM3oBkFJKefBzL8MCsf5la6T+SxtFud91nHqjUH++NxubHaS36rNOSXXOY6Zhy5AKl2p9qULCDi9EzEdW8v+NLmwxvbRjnCOZb/OvMQ2obsYx2/60xRAjuXI+J7cozj+c30KvNnB5+7jdkE3mjxzejb7eOqL78aUp9PdKP2H7wB8P+R7V8Ynn8W6Yl9Omv+fAvYlv+wTlKJ3bhfsM7QFvEf64BR8d1c6N1TC/t+5KE02gnYkgYY5P/N9l8EC0450LeY8yTkktm5ykeyCkjOPtJUco3lXY92w/7DM+Q3APEyBuLels09dEF/+v+qo/9CN69JLL13SHC9xceWz2I84p6aP0+2Vbhdsk4xv9iWOt85VYrJTzG+uc35mH+PYymf5PryPO+UaKh9ERERERERE5KC4+CAiIiIiIiIiB+WccruglCuSM0peKD2hlCsyFErXKIWifK07D7iLHlx1FEGX8hlGi6e0JzIjumVQNkX5Sxc5fjqHvpOTTZFPI6NlPW5zZv0E6607E551RblY5FfTGeadxJ9l4ikblAhG8kR3F0aqZTvFBWNqA0o684xJ5kjJZhdld+2cX0of+f+Xvexl7fMeCLZnlxf2E0aRDpS+sc472TzHBdNxiag6kohR0sa+wLzF5YTuIIzqz+/leZSmdedMVx2VmeVhW9K1Ic+gfLOTpG8L5a4Zw2wD1hvzFxcpjnuO2268UX5K9x1+NlJAygp/9md/dkmzjhN9mjaLp/Ww7iPxZBmmft3JXdkenesQT16hbf/93//9E/dag/L07hSE7pQEPpcSRkY4pytMxhZtGeWXbMvIWGmfGHmbMsrubHvarc4Wsb/xXl3Ufp6ERGk0Sfs897nPXa4x6v2usI+nD7M9aNM4njLXsi8n6ntV1Yc+9KElnfpmG9CFiH0i0u/ps+wT3dzA8lCWnLZhn+jcEKqOZO0cu5MbTPJAl07Ke08D3V7SD6Z3ps7FYpo72OfyfsBn8Rl8X8v36OpDlxTWc+Yc9hvmt5MSd+4xVX1bTRJ1kuud+8q+pN46V5Oqzfk39pp2nXM839Eim2c+p/LFPnHs0SWGtiz3YHuyL/P9KC5dtMF0k+OJY6nb7kSp4+UIk6x9Vzo5/3QSFMkY51hnPmnf4tLCuvrEJz6xpD/+8Y8v6bTp9O7LMZbxwfclvu+wPjOHT32X5YyNZH4537CPpn2nE2lOQ3f6C13VWAedPaCLCN8Ju9+CrC+Wi3Nx+iLHHtu363+0WbSV3UlurLvJbewzn/nMibLRlZlzxote9KITZWOdnTUqH0RERERERETkoLj4ICIiIiIiIiIH5Zxyu+ikcZ0c/PhnOxkepYKUQOUzlG9RfklJUaScjFxOSRtl7ZFkUU7LaLSUUEX2QrkOZaGdtJ6Sr0kqlzJTSrOP2wVlP4GyNj6HcqPIs7oo2cdJ/igxpASJErFcf9KTnrRcY3tQAhbXDco4KTmmLDrtQDnjFCm5i8zOPsrvxeWDcvnptIltWesHHBfst2k39lmOEcoz0xZsU5aLEtjI/+l2MUn4Lr744o2/Vb20kM/maReTXDRp9nXmkddzOkf+Vm2O+V1l/l20c+aN/aWLmk2bxvHUuQawPdin2K/zPLYHxxbbP/mlzWIbsF5yfTqlgGMv92XZmN/uBBNKASmlPA18VvI4SeG70yFe85rXLNc+9alPLWmelpM+xTahvacMMvXxzGc+c7lGu8Q+FPcGyiU5N7DO4yZCG8k242e7OZJ1Qle3nMTBcbqP3WJ7Zh6gW8nkLpW+EWlp1WYbsNyRMLOvUyLL+yZiPOdfjovO9YguAOyrtDOpb46hyQUyaY6FyZ0yUfGf9rSnLdcogT8NbJP0jc5loqo/OYxjjHXLuTD3mE6RYp+KhJxzFscF5ehs98D3i06KTQk6x3xnK/h91gPznvmQ/a07uWtbOhdXtsd0okj6OOtkmlMyRjjW+Qx+NvaJdmhyA0l9pZ9WbY6hO++8c0nHLtLli7aALnlpU9o0jmm2acqxjUvJNrBeundw1gXrrXPXmE5L+PCHP1xVm++dnPdpL+JuQbcLztusw8xJrEu6zfEZd91114n8dq7cVUdtzvHDstN+pW3o9sxx9Ru/8RsnnrsL6Rtrp9FUHY0Xun107khVm25Gga7BdC3iqRHd/9nH82zOM5w7SOqR9cn88rSRjAeeSsMTUZjH/M5lvzgkKh9ERERERERE5KCcU8qH7nxlrrJxZZWrd1lN4mosV42YzmoiAw5y1ZwrVw972MOqanMliSuBf/u3f7uks4ty3XXXLdd4RjwDnCSfXFVmwCuuGnd0OxFVR4HSuLLN8+J3pQtAxXrnrk137jPrfToXObsfXJnlqjJ3RxKAjMH2uPrNHeCsBF5zzTXLNa4ws77TdnwuV3+7XbptAoCmr/H7TJ+GKchWB1elM0bYftPqfVao0/+rNtuaq7BpE65qc6eSfTW7WtzBY4Ap5i33m+qZ9dCparo+VnWkeJjOiN8VPjv3me7HekuQR+6EsI67nUXudDD/VB1k5Z7KB9brbbfdtqQzRmhXL7vssiV96623Luns3rCfdGWvOhrrk/qMtiK7ElQYcDfmD/7gD2pXuLIfWzvtIrAeU/833njjco08iUs1AAAgAElEQVT2pQuUSxs+BQ9NWzz72c8+8f2qzcCdqVPuwNCufeELX1jSsfMM/tYF/eL1aVeUfSD18La3va397Mtf/vLaBapDYv+4szidNZ4dpynAI++bnVraG7Y554xrr722qjb75PXXX7+kOcdnp5H1Q0UI85PvsY5p7zuF3BTkkX04Y5Lz+hR8d1u4exZbw/E8jZfUM+uD9Xjfffct6c4O0Fax/aLkoGokO8NVm7Yo/YXqIX6PtjPzCK8xv6zTtMXU3zie8j32hX12FFlH3a7uWvBvwrHFeTn5YztPCuC0B+vqpptuWtLsP5mXqA6igoXjKfM278v+1SmaWQbWE/to917FNt+VztZT8cTfD+xDgfZ/UmGmnViXHB/ckY/9Yh1z3khQ46qjd1s+izaW/TR1y98nk8qtC6jNNOssto7/T7DR09IF6Oc1zlHsJ+kbtDcJtl1VdfXVV5941hQElffNbxbaHipz+G6XNOcAwnscz3fVpoqiCyo9BdtkH8p4mPJw1qh8EBEREREREZGD4uKDiIiIiIiIiByUc8rtgkQ6QjkJz6NnEK6kuwCJVZvSn0hPKF+aApDFbYLSlTe+8Y1L+oYbbljSkY51gbuqNmXFH/nIR6pqU/5G+R5lNZGnUZrG4CK8R6SYlHHtEyiMUq20B6VAzFN3rvEUAJTtESkb3S4oAaOkOHJ9yu0YHI6S5EiD2QY/8zM/s6T/5m/+ZknnfmwDSqZYnyk/64EyJ0oeI29j2SitPw1dYEjWPfsyXW6SX/6f7UPZV2SUU4BXjsNnPetZVbVZ969//evb/L7iFa/Y+E7VpsSeweQSvIvyXrpEdf2Nsj+Oi87thde6IFHbwr6cOppk5N0Z5exnk8Q/Ek9KPTlGKCd88YtfXFWb9UZJOe1XXMRe9rKXLdfopkT3r9hY2jemOb5DF7SrarPfxWYzGNQ+gcKOP7cLcDgFcstcw77Dfs/rSTPIJN0jWDeR+XMeofvLzTffvKQjAaXdm+xSysG5jPae80jqn+3Efsq8d8E0u/bdls49h7alC8TKz/D7rFfarMyJtEOUF9P2R17+2te+drnGMdK5s9EF7aKLLlrSlJTffffdJ77P/sPx3bnBsD0YDDPfY9BF9o/TwHpMHif3QOYx/YjzGPskv5cyTK6GdIWJCwXdId/73vcuacqgE0SNY5cuGJTbZx7ppP/H75FycJ6hfWedZQ686qqrlmuT3d+Gzu1iCurZzSMcQ8wH8xz7RvvH/1OKHjk+XSjZHpSB5x3rGc94xnKN/ZeuabFJk9sk54nMOV0g+qrN9/28ZzDAHu3irkx1H2hnmb/U22RnWd+5Thk8f+9wLs68QFn/O9/5ziXNPtsFFuR9acvSjnzHJRy7nXvr1DZpj8mV6zSw36ZNpnmkG+OsD7YvXcXinsx3H7YlbX/mftYBA6izrWKHOGd17/K8TrcajrcuqGo3Fo4/L3Pk5Lp01qh8EBEREREREZGD4uKDiIiIiIiIiByUc8rtgrKa7lQBykUoJ4n0hP/nvSjBieyJEXQpG6S0OVGmKZfkmcWU60Tq8oEPfGC5lpMAqqqe9KQnLelIzXlfyqIoCYqkh1I7SnQoLYsUm5KwfSTMXSRbypwYfZ+yxsjlOnl11aYsKC4JlAhTCsSo70m/5z3vWa7R9YWuOGl/SjtzlnjVZvTsSI55djrlu2zn3Jf1QGkZ2yYyRpZ9m3OJH4jORYDPpDsCzx2PbGuSyfGzKQ9lY+xnlDCn37797W9frrFNur76e7/3e8s1ng6TM8CrjqJFU0bJPLK/dW4XkytMpGfTaRi7wud0kstpDESeR8kl07RvkVGy7Zh/yjOf+9znVtWmC8tf/uVfLmnar/QVjrFnPvOZS5qyv/QF9nXaSp5f3fW1ye0hTC5zp4H1nzzQpkwnDDDae3cvSlMjuZz+z379whe+sKo26/OP/uiPljTnn/CiF71oSfNsd9q42CjKaJkHjpHAume/Z51kTDO/7De7wjkofY7twX5CaWw3Vnkv2qSUlfeiPeeJVXEZoKScsmXakZy4wRN6OO+x7tMebAP2L857nRsLbQXdkFJnlK/vO174/pN+wLqdToRJPU0n+vBEgHyPkf/ZZrQ7se233377co110LlC0P6wrTlPpGy0p+z3nC/TJzv3qqrN+k/f5Bib5tZt4DyZZ07uYd119h32X46z9Ev2PbpWsd5i7zmP0AZQBp770R2Y8nT2pe79id/ju2/amXaI7ch3u5SZ7wvMw65072kc1+w3XX2zvTgm6I6Sz3Bu5GlTnNdTL+94xzuWa3S74D1iq+jiwefSxia/0wkI7Gv5vTK5itImpJ1oZ2grTwP7bdpnGiPd7x66itGFjf2++z7dJdk+qV/OI3R1pm2I7eCz2D7s96k79jHa+8728kSVuPVXbbZ77CXt2L4urg+EygcREREREREROSguPoiIiIiIiIjIQTmn3C4oX4oMiFI2SsA6qWrnrlC1KWmLzJ8yFcLI4pH53Hvvvcs1RgXnMyJf4v+Zptwwz7jlllvaPFIWc88995x4FiVSlB5GNnzjjTe2992Hrj2YT0qqIg2eIqR3MjzKKhnJ+ylPecqSjtyI8j/KnFgviY7Nz9INhpK8SGsp++dpAZRrRUJKWR4/S/lb5FisM7rXnIZO0jvJkq+44oolfccdd2zkv6qPsFt1JPeiPJUS2U5u/7GPfWy5NkXcj6sB5bQ8CYSSycjiKFlkv+D47yL5s55pV1Jmykb3GSOs+/S/KVJ8Jy+nnI7yUsoJ0zbshywfXbpSVp6uc//99y9ptkf6ff5WVT3vec9b0p2UmW1HSWXn4sPxSPlvJ5Wk7d43AnMnj53amH0jbcHvs31Y3qTpBkH58Ate8IIlHdvPU2B4ygsl0xmndH+hDWRE+kTknlytKKnOeOFn2U85dtJ+tMmTLHcbaHPWZJ5sj9gRjjG2AftJ5L+UmVK2zLpIf+d4Yl3weRkvXUT7qk37FfvEdwvel22T+qQd4jM4TmNDOE73cYPh86v6NllzU6L9oXyY9RHZMduUp8Pw/SFjgG1CSTfHSPpw5xbKPDKftC/Te0nnEsC6YZuk/ju59GnoXIZZZvajLmo/62JyaUr+OUbYJ1nW1D1dL9mvmY5t6Vwhp7KxPBwDnNdjfzhf8B2A81Pyyzrb50SYyU04dKdcVR3VPecblp/2N3mlPWGZOK4y9jmXTyfOZB7ivVgGjpXULd2LJveFfJbXuhMwqo7mPL6D8r3xNNC25L2QdcQ2Y19MnTPf0+lb+QzbhHaKfSrjiXaB9+J7cNLTSTPsL+lbnVth1ebYS99iv+KJQTfddNOSzrjnO3XncnJWqHwQERERERERkYNyTikfOriKyxWdbrVx2p1hgKisMHElibvg3EXMud0MKDIFk8qKGVelPvjBDy5pnoGcnawEiKzaXOVnfrKax11RrvAxMGJWk7kC//znP79OS7drO+3qUuWRVdYp6B9XQLMrxvbk7h6fF+ULFQrTTl7uG+VI1eaKH3dgkh+qKLjCydXBLmAalQ88bzw7/Z/97GeXa9N5ytvCHadu1bMLHFd11O95rdu1qzpqS36WbcKxkxV5Xpt2zbJCzB08BvNhv8/OcBe0p2ozwGHuy37Pe7FvdjvA3AnaFY73lJW7DCw/+99LX/rSqqp6//vfv1zjLjrrJX2GdUF7wvGUPhflT9Xmyjzzk/vSrrJt2I5RNtFmcUeH/Sc7MpPagfWdHYguMNppYdtmZ4b2hXaJOxWxpd1OV9Vm/8tcw7xSocDAVAlYy3mENpz5jZqBu4HMD/tFdk44FrgTy3pOv58C0zGduYhtxjzuClUHYWqPzpZxh4i2lruyqaNrr712ucYAw+zXUQayLxPukGVO4bnvVBWxjtI/ul3hqs1y5r4sL/vSFDA77KsOYl5Sz2wT9gfa1YxzjncqftivU0YGcuVOKHdNowL90Ic+tFyj3e4CLbPuuAvcqUTZB2mHmd88g+8R3L2k6ivvBJMSZx/y/Ol+nAeSvylIJsuSdKdwqDqaO6qO3n2pNqYSivWWeuFnOTcwnfbg9zleuqDL3AG+4IILljSDwKY/s19SxbcrfPfpFKYT6UPcyV6zb7RpVCtw3EcJSttDu892zvf4/W7erzqq+0nBw+/lMxxL7D+dkpZ5oA0+DezXyRf7DscL54x8dgr+y/GQz3CuZ2BTlj2/Lfh+zzmJ+cl9+axJEZP24Wf53E5hNQW+pg398Ic/XFVVT3/605dr/G181qh8EBEREREREZGD4uKDiIiIiIiIiByUc9btIrJDyrAosaG0LtIeSrkoU2E6EmTKbq666qolTSl6pMuTpK+Tl1PiTMkL5Xs5c5zBLRkYhJLbBBdiHihvonQ00iv+n2e+7kMXlIrBbygvzWcp2WK9sj1SR5QTT+fad3JZyjGZx0iPKGtn/2FAtwQmm+qYZ8SnbdjX2CdYjkgzGXCNwaJOA2WeKfskr6PLScpOySklfp3LEmWNDDj5lre8ZUnffPPNG/c/Dtsnbf3qV796uUaZNNskEj0GVqPcjG4zcZehdJBuF3zGrbfeuvGdfaEdyfN5jfXCPhV5Hu0FJaUMvhk3I/atl7zkJUuabfemN72pqqo++clPLtcoyewk5TzzmmOT4zDBWjkeaacYcDZSTErVKWO98sorl3Qku3T9oOT8NLCeMzYpueT/OY5TXsp82U84dmL7eO0Xf/EXlzQlsddff31VbbrCTBL3tCWlnFOwvIxftgPbmm0SyTRloawTPiPyVv6fNmxXWL6MhykAKJ8TFza6s3C8UPKbsl5++eXLNc5JlJR3UuPJVSz3oDsA2+7qq68+kV/K09k2nbSZtoJ9kaRPTEEFTwOflXuxb/H+3dzPzzJfLG/6D8c7+yRdSTP3cn7kvTieUh9xDaja7Pd0SYvLx+RuxP6We0yBPylnTv2wD+5jtzi3ZfxN7zadTLxzseT/q45sVRdUvWozsHpcxGjDu8CjVUf9nWOM8Hlxi+D3OafQxTV1wjyy7HRBSF1RLs/3+l1dKzvXg2nMde7FLAfHfWefKeun/P6GG25Y0u94xzuqatN1bwoaG7ecKUA/+2nKxvzSDYTtn37J9xC6ALEdM8+wzuhydRpYhtiGaYx0cxtdcqYAnJn76SpGe8B3pQRZp21ieZlO3vk+y/LwnSNjmbawCwjPcrLsHP/se3mH47tz5xJ5Vqh8EBEREREREZGD4uKDiIiIiIiIiByUc8rtoouOTmlR52rB65MsrJNqUpZN2Q1lRvkMpdOJGHo8b7kH5TGULTNSa55BqQ3zTreCSHC6kyeO5yF1wnqk68eudFJ6PnuK3p58UP4z1XE+S0kWI7AyD5ELUQrNeqOkLVA+R2kZ5UaRmTFCLiNbU2YWORbLfvvtty9ptl2kUKwzShBPA+suckSWm5Isyu7SPpRnUoJNqXAkipT+sx3orhF3IrYJ89Cdv06ZIeuW5NmUuVHWRzlZ+gDLk9Myqjb7YScpn0432AbWfWS5rCvaKUp0I7nj+KVklCe6pG14gkJnT6qObArdnChP5fO6iNEsD8dO3H04RtjmlMaybTooacwpKpTsRs54WijXTttPpwewb0TeP/UzysQzp1DiTftCN7rYBPY5wvxEfs6TkiipfMELXnDi+5RLd7L3qiMJJ2XmLBtPTEl/4L32kZSzPtNPpujr7BuJVs//03WFZYlN6SK5V23K/WOf6JbG+Yt5S//gXM0TjWhPM745xihL5ntInse25XO700DW5rpdYN0lD7zGdwiWJ/aeZaH95PXYdvYzlpcuS3HNYLnZb5i32D6O3enEgMzzPBWMeeR909+n0xfoOpt7dBL208B85PmsK0qwWe6Uj+01nX6VduK7D+d42q9At13OqWynzAmc13nSDE/KSr+f3Jc5R8YVb3rvZ79KX2N5X/e61y3p3/7t3z5RtgeC7xJ5h5lcX5j/1DFtJ/sbv5dTYjh/8/2Rroh5J+O78XQSSdqM7/7XXXfdkqarWKDrAPPeSfy7d/2qzX4Z203XXf7mOg20eewTHZz7Yi84N3Bc810q701sU9oD3jfl4bsPfxfQrSJ5p72g+wPdBfMZ/gbhPMJ36uSTNpjvfvxsysn+xrbmmD0LVD6IiIiIiIiIyEFx8UFEREREREREDso55XZBCUgkIp17RVUv26ScjBIgykwim4nk6fgzKD/qpDKU/vAZkb8wX0xTVpf88r6Um95xxx1LOjItSuIoR6QE6klPelJVbbp7JLr/aaDkKu3Ba0yzDlMXPJlhOrUkcl+2B+VilBvm1AlGHudz2TapW7pz8NSKzmWGkjZKyhl5Pn1wikBPCXTan+1MWd2f/Mmf1K50p1JQWsX+wHTyQKkrZWGUBkYCNp0KwMjRkY5N8mHmLfejxIz5YdnSH9j+jG5OGXRknzx9hTJ+tmXGIduM6V3pIuOzvbuTDKqO+hFl2xxPlH2m3hitmTJLPi99nHU12dCUm5J7Su9YL6k3jmlKE2k3A8vOvsbxHYk0+x/lzaehk4pOJyWxjDmVgu3E9mEZMwZYdzwth/0zNoi2gW3SyaR5X9ot1n/qibJRlpNjNvWwdsJF1VF/m1wYzgLeezqhI32GrlecyykvTX2xLmmT2I5hcrXgeMr3OPbojtRJkCmBZb1yTKcPds+q2hw7SfMdYk12vAbHbueuyTTHZvLL/su2ZL5jw9lnp3oO0/zF8qaeOMY6l4Gqzf7QPbc7yYPPmqT2yRv77j4nkHT55P34btz1E7YH+wnn6rQD+y/7KuswdTu50LEdkx+6UNI1iWM6fYXzF/PA+ky/Yz+g/Jx1EhcqurXS1WZXt4vJVSJ07qTHrwe2Ld9zY2dpI+jWyLmpO/FmcknPOxPrgq5IzEPcXJjH6WSjXKcNntxn0ub8P9/b6XKwD9MpRZ2LI8tIG8DfjRkDrCOOC9q61AfzMJ1ilfdcup7w9wafkTHAfjHNZSkTxwJP1OD4TR74bsg60+1CRERERERERM4pzinlQxeQaVpZ63a8px0gruRdcMEFVbW5o8rVrO4sZ36fO7VcKUreubo2Bf/KfbnKy1V8liO7hMwv4apwVuu4qsigWrvCPGflrQuuU9W3E1fYWRckK6RcJWTQIT6PbRNYb93Ow3ROd7dzxNX6KdBhysSV0e7M9KqjnQDWE3fnTwP7TOpsOp+921XjCip3o9m/MkbYJtNudBcci6vs3U4X62saeylT8lJV9bnPfW5Jcwck9TupmbjLkvphHqjw2BXWUcrK9ma9dGob1jt3RmlzLr300qraXCnvlEZ8Xqc4qdrcCctnOU6nM8nzWe5uMVgZd/1jN7jjyTH97ne/e0knsCLtw767ut0O5XRP9uvUKQN/ToG4ot5hfbEOuh0w9jnWLe+RNO0a+xP7SMZLt6tftVm2lJ+2gvad4yx95MYbb1yudcqW09Apt9h/OcbTZ1ivbFu2U3YMWcdsA9Z3lwcqTbgLlbrv+tRUDrYHxzfrMH2NbdCd9V511Ga01wxGdhrYN3J/vndwvPB6F+CQdptqlMztU/Bvzg0ZW51ap2pTeZJ3MO5YMr9898sz2Bcm1Vuex3mT6c42rik5tmUqd6C9Z/lSrm4OqNrsf6k3lmMKXt4pcya1Z+x8Z/OO5y39mu/RnLe7YHj8PuuGYzrvyXwvWAt8/ECwXlIHXZmPPyd136nvqjbnz4wVzr8ca50ya1KVcixERc35mfaE80meTcUF65C2N20z/QZgfhL0kvM+7fVpYP13v0eYnvpqd43KnLTJpELjM9L/eI33pT1Pu7OvTwGok/cu4HfV5rth+gPbb7JDUQAzQD7H/Ctf+cr2e6dF5YOIiIiIiIiIHBQXH0RERERERETkoJxTbheUgHRBXiiz6uRukzSSUphIkTrJ3wRlNQziQulYPkOZEcvTPYP3pTS6k2pOAb9Y5ny2C1Z3GliWyKumgFBsm04CS7klg2tGhtSdoV21KXnKdUqQcj541abM7Itf/OKJPFB+3/Uv9gnKPO+7774lnfsxDwwiSblezr1mkJk3vOENJ567C7x/5K6U+E3nv0fixX5IKSfbJNI/yu/YV7s2oasFJdys//TLTvI7QTkhpWVp36qj8cI2oXyTeU+7Urq2j1yWZZnqvstH8srvsG3oHpH6pLyZbTcFtQx0D4sLR9VRQC5KJynt5r2Sd0oFmUe2Y2wVP0ubxjqLfLwLFntaKF1NnfL+7CedvJZ9lrJTSmYTBHJqvy5gH5/FoKuUqndBC7s25bPpJsA2ocw/+WE7MT+0jSkHz5nfR8LcyURZPrY385S6Z72yrpjOMzq3yePp3I9uTHS74DyQvso80i520lmWYSpnF0COUl+2Y/JJl7193S46l6opACflv8k35+jJPSLl4Xif3PdYp4GBVrt6nPok75X+QHtJaDtzX7bTND+l/rp6PA1dMPUpgGXnfkoo9+b82QXfZZ7ZpskPxxj7J/Ob/sF+wGd0geRpo6cAmIF1PAWdT79k3dCm7QrvnTpinllWpvN82my+l7I+Mw+xTJN7WK6zz+f9smpzDsj7wuSSzPumr7Ntp0CHaRvW6/ROnfZnPU5BYbeF9197R2CbJA+sZ/4uYv+LPaCdoo3gXJbxwjbh+xXzGHvOZ7GtOzfiKeRA967E+WJqn86Val8X1wdC5YOIiIiIiIiIHBQXH0RERERERETkoJxTbhfdmcmdLK5qUyYUKQvlQpQWUfIbuQ2l6t0Zy1VHMp9JVsjnhUmmN52I0F2jBDRnw1Mew4iplCLFTYIRwyeZ4zawDjvpUidNqzqqgymyNcuXuqWLxyRf7KLRU4pPyV7khmyP6RSN9LEpSjT7WlwHOrl2VS+9p/SJsqvT0LUJx8gkLUvZ2CasO0ri8pnpvGeSeqTcjPdlu6dOORYo8+9k0vw+3ZzoCpN7cDxyTLMPRKpISfk25Zxgn0nbT/fr+gbH53QeeOcGM0UWzz3Yf88777wlTRlu+jXrjc/o5LnsX3RfYJtH7j9Ffu7sAvvfvm4XrP/YDLbTJN/MeOkk4FWbMv1ILdl+vC/7cvLD7z/lKU9Z0pxf4mpAm8N26E5aYBnY7rSHndse884I2Ck/x94+7nsk9cK64r076Tb7OucO9i/2qTBFKc/3LrnkkuXadPpV+jj7OiX8nZyf1yZ5b9p5OsWAUvW77rqrqjZdzdZcvNbg95NmfXXy96qjvszvU1bOcRxb1J02VLXZv1LnbIdODs3PTtJ39oWk+azpfa/rm7wv+1vGJ8cpXbR2pXv3nU7SYPnyPbYX08xzbAfdclmv7Iv5Hsdb977LPLCuaIO7k5AmdxWmuxMe2H+Yn84+7TOPdOOa/YbPZlmTZn44l3fvRtPpOd2JXFddddVybXLNy2c519M1gPftfuNM9jiwvHynZn3H7ZU26+Mf//iSftWrXnXivmt07iJ8JtuEfSbl7U6VqupPdZve4TrXNNq/6R20q2eOAdrI5Kdzsa7q3fk7t42qqssuu2xJxzWD80xOJTkEKh9ERERERERE5KC4+CAiIiIiIiIiB+WccrugrDpQpkJ5C+VgkedR4kOZCqVOkcIwGv7kPhD5yyQV7D7bXTtO51YwyckSuZYSHJadEqlIb/jZfaKUd/mfIkFTVp1nUt7TRV2u6qOJT6SOWCZKlyiJivSoO5nh+PPyGX6Wks/zzz9/SXfy5SmKb6RblL3zVIjTwLKnHtmfmG+Ol0i12DfYJuzXkc1PckjWU9dHWM+dOw7HJvPTPY/5YqRo2or0IY7zKbpzvkcZNe3GrlAmnL4xRSlnROL0T8rlmCd+NvXJepvGS9qD/YD1ynvkM7wX/z+1f+A4prQ0p2gQPoP3it249tprl2vTyT7b0tmoTs5btVnnsbuUktKusYzpc8wr64PPS//jaRm0GewvXWT1zqWA0Aay3ZnO6QjMI8c/T8bIHEn55jSXbUPXlzlWWa+Uu6YuJhc4tlPyN7VBZ4fYTzrJOZ/N+/KznQsPP8v+1bkUsG27U1qqjmwE62ZfNxg+K/2P9cH+yTqPfeD3+VnWTeT2a7aKeWDdTdHeO8n15ArTze0c/yxH0p0rVtWmu2fGRtxiq/Zzu2BZUwfMM/sZP5t3nulUFUq/049Yx9Mzur7MdPf+NN2X/TbXWe98p6FNSpkmNzl+L9fZtvvQuVOy3qfTpgLHOsvE73XtwX7Otss8xP44tXPu143xqs05vvuNM7ld5HmcV7rTH6qO6op2bJ/TR47nK2naJtK5h3MuZxn42cwpa65AVevvFl3dTZ/tTnpkv+Kc1Lk/sQy0U/wNkPbh6XyTi+lZoPJBRERERERERA7KOaV84GpUt7rNFR3uRmdViKtwU1ChrDxyBXJaLc31KQDipILo/s90VrSmHQHuZGXVlKtgXFHjal5WwbkbN9XDNnCnOXllPi666KIlffHFFy/p7AZMO7XM09e+9rWqmnfWu7aZdpa3UZ0EriR27TApUaJc4Ko7A8kxmFN2vfj/6bzxbXnYwx52Io8sC1c6mU5QRtY9y722Kj2t2HZ1N9X9mjqoWymeAmJR/ZMgsFRDcJX8K1/5ypK+/PLLq2pz5/XDH/5wm99tYADa5I95Zj4e+9jHLumMDdo8fpa2LMqMqd66XcHps2tnZU87x53KhvA62yZwJ4g73Rkjv/Vbv7Vc++xnP9s+Y1tol2JfunPpj+c1ux60qRy7HDvpU5MKiGOy28lgoNWuTtn+3a5IVd9+/D93hbI73SmnqjZ3TjPPXnHFFcu1KCdOw+Mf//glHftI28T+kPaqOhpPzBvbgLa2q+Oprrqd/qntOjs07QDnOq9NO2FRg1AVwjHS7Vh37wWnhcE2c1+OC9o10s0TnB/5/7VdxE4N1QW4O/69fIbtNLVJ9x45tUnGC9ua/ZTKpShnOZ6iUj0NnNczD7BvcG5gP+gC6tLWUeHbtcdav54CbnZp9i/nG+gAACAASURBVAOO2W7HmrDfsw5TTtpjjgvutEe5RfXJ9J64DWyPTk04BTdMfXH8THY/qoDpd0A3VvhOPb3Dpv0nNVc3lqaAk13gWaq5OD/ys6kTBjXeZw6pqnrSk560pDM22A6sW6qgUw+cD9lm3e7/pNSc5pewprzrbNPxz3Y2i2O++93Jup9Ua/neox71qAcsw1mh8kFEREREREREDoqLDyIiIiIiIiJyUM4ptwtKTSMTosSkOx++6sjNgNKTSb7XBSCiTK1j7Xzj4+nuGiVga8/rpDm8F90qKD2NjGs6E3ZXOlkX80b5DmVmkVpRIjcFj+rcKigF4mfXXCk6adL0rM4dZXIn4D0iOZvuS5nm/fffX1VVt9xyy3Jtn/Y4/qyUd+pnlDOmPFObTLLNDo6tyNso7+qC/fB7HMfTuOgCIXXuBUyzbJRy0y7cfffdG/ev2i8QEssdCS7LTAkcx0vqgPmcZHZJT+edd8EN14KC8vrk2tK5dkxjk9fj0sJrdImh+1zySztGN5nTQFvUnaFOVwvmK205jQtKeru6m2S+u7gmBdpeMs1Fa6Sc7K90PWJQ3Kuvvrqqqq677rrl2qtf/epTPfc4yT+lu5T5cjx0dmiyu2vueZwT1/oy6dppbRxOMuq1oIK0q5R4p20YrLjr17tAF7Dki64cU6DqtBtt7VQfSU/t1L0zTfZ+Lfjt9P/uPXAas+mHHGO8FwOcZnxyvt9Hwky31czbnWtx1WYQv7wLTm2wJhPn99g/075rbctnTHPOWmD2qU/kOm0C3SH4LhXp/Oc///nl2j4BQC+99NIlnX7B8cH26Optovss59y1d681tzteZxtMgeK7zxK2R+YLumPzHbMLfk+3n32C31dtzusZd7STnM861/Nt+vLa/zubRaZgxLvQuRBOdG75HBcMJJ3r/J192veJbVD5ICIiIiIiIiIHxcUHERERERERETko55TbBSWwgbK5l7/85Uua0t3rr7++qjbl3N154VVH0iBKUyjRocQmMiHKtvl/PiNym+nMdcoc8zyeEc3vdZGCp/N/SZ5H+dE+p12snZnc1VXVUcTiu+66a7lGORk/m2dQ/kNJaXcmN2VjrLfuHGbKkSY3mbVydhFs+aycRnD8eqS++0pkCe+femBZKF9n+1x55ZVVtXnGLyVZlBSmPijvnKSBnVSVsOwZc90Z2nwumaSDbJN8j/m65557ljTlsl0Z9jkbnPWSsnbuI1WbdZ8o0ZTBsw4pGU3+plNgujrc5mSMfLY7ief4Z7v/k06+zHyxHzAdeeZrX/va9v+ngRG2O8nllJcugvZkazq58yTjz/cmVy7SuYt10e3JNnLn7jz0KXp9vnfjjTcu13gKxa4wCnls4le/+tXlGudRzg1dX5vKl3qb2qsrH23I5IbZtceaDHc6TaGzWdMY4Wczn1PWfN9995147i507z98D+K7C11k0o+YlzW3CtbXFA0+dT7Z4m5sbSOjXrtvN347l96q3tWE9bgmmX8g6BaUe0/uSBzL+czkPkF2qbfOpXP63tpnO5s15Zef7ewmn8H6SX5oP/aRlPM5uQ+v0V5wfHDchKneUm6Oe9ZF5/432b9uXmd+2U+7OX6a1ztX5Mn1je+LSXe/kU4L359SZ/ytxPrg9bzbTu9Mk0t4RzfXTjat++0xzR1rz53mkc6Nm7+D+S6UtujeyQ+BygcREREREREROSguPoiIiIiIiIjIQTmn3C46ufIkSyYXXXRRVVV94QtfWK59/etfb+8byQrlMZNUPRIuyrso56GMJ/IVSloYnfplL3vZkn7Xu95VVVUf+chHlmuU9DFvyQOlNswj5fKpK0qd9oFuMCkrJWa/+qu/uqRZR295y1uqalNKSPliJ6vm9yk5Z1kjaYs8umrzpAI+o5MTse0oj4v0mzKoTvZadVR+SsiY7r63TR/eFkbXzr34/EsuuWRJ//qv//qSThToO++8c7nGfs+6ST0y32wzyt+6MlL2xXTuMcnPd4lozn6f+7HNWScPfvCDT3y2c185DY985COXdMo6RUTmMyOj5fdps5j/tDnbgK4k/GxkdlPEdt6jc0mY6E676Vwt+Gz2qem0ntxvX0km4WkWsUEZ41WbUkTWU8rAaN7sO3TlyX053vk91nMkqFOE9F2ipXeuBLRl04k+naSc92KdfOITn6iqzfalpHZX2B5x9WKZOW75zPQfSqlpi7s5nmVi+SmBTTtzXPCzzE83lqe5OM/gCTccF5371+RuyXGW+7IP7zvH8ySFnADEOuhsyvF0mNwuUjfT+xPpXPImiXnn4jpF/u/k6pO7UXdqA2Hfy7sRy7ZPm3RSas6zdF1iWWO/Jul351LXlXmb+65J89dOMeP9OP6nduxcCDu3DKbZHhyHu8J5IffuXLeq+jl1aoOujiY34+7UlqmdWS+d28WUh+7/LCfrMydb8N1rOlEo70JTO5+GuHNXHbUPx9z0GyN1NrmhdHPu5AZB+5V0d/La8eelHqaTtDiH51QPzpv83cX7xn2Rdplzdff+zfKyzs4alQ8iIiIiIiIiclDOKeUDV2SyWsWVrZtvvnlJ8wzynEv+nve8p71vF2xsCjrGlcUuaCFX/UjuwdWsK664YklfdtllSzrB1aadhi4oTXc2b1WvTuBq1j7B9LrAW50qo2rzPN8oPth2VHlwZS734Pe5WseyJj+TSoT1lvbgNZ4T/Ju/+ZtL+m1ve1tVVb3jHe+oDuY37c8+w2dwpzRlm3Y5T0P3fbYxz11m//vSl75UVfOuz/3337+kU6csY75ftdk+WZGdVss7BQr7Or+XIIxVR+oXBsWcxkCXr2nnv9tp36dNul1Z2hDe+1GPetSSfv7zn19Vm2qtr3zlK0ua+UueOa7Zzgw+lx0y9kO2B1fNsxM79eW1Xd8p3e0KcleE7ZF2Yj1Ou5jb8sQnPnFJpzzsv6QLYMZxQ1tzxx13LOnYEu5IsA7Ylqnn6Zxz1n/68DYB8mKL2Fdoc1mPKRvHEHdLOkUf24xtuSuXX375kv7kJz9ZVZtjlbD/RU31lKc8ZblGpVvUXFVH5WIbsG34vNikSSXSKfa2aY+Mf+5iUe1A5UKY1A5UksWG0JZOCoJtecITnnDiGoOAdjupzMsUBJXpvDexPidlSmA/43ihHe0C+3a79lVH/YL9nuXpApxOu5NUXMZGTOqhXbnmmmuWdPrJ1D/X5tQpmF7HFHh5Lbg334k6JSvHIfty5vhpjuSYTR74fY4n3iOfZd1MNmYbaLNS7kkB1CmsunfR4/nr3meZZj9OHbDMneKC1yelQfc+xPHDMXHeeect6by/UK1JNRDtW+ZblqFTfu0Cy5j6n+qApA9PQU472z8FDafdTT2xjFO/Tj4nG07VZJT8nY2u2nyXyThk+02/bdPuzANt81mj8kFEREREREREDoqLDyIiIiIiIiJyUM4pt4sucBElMZRcUgrzzGc+s6o25Y6UoXXn6G5ztms+M52jTrrARpTp0WXki1/84onvT8FhunOqeeYzZT6RiDLQztr5sQ8EZWspF2Xwf/Znf7akX/WqVy3pX/iFX6iqqt/93d9t79sFGJukQpT95XuU4bH8JPVGaRODNXYSwm2C4yQ/LEMnI6866oOdm8Jp6eSX7HORNVdVvfvd717SL3/5y0/kJe4/VX3gGbYDZYZdoNUuqOvx650ElPVBV4LI1icXnE4m2Em2qzalgak/3nefwFSslzx/Ojv5sY997In8sU6YT/a/e++9t6o224hyOQZozf2memX/TF1MEsROOktZ//TZ1APrhs+g61q+1+XrtLCe0s6cGya5dgJa0b6+853vXNK0JY9//OOratNdiQHiKEtOfbB9aTNYT11QqMlFqOtntAUsc/LOfjMFL8uzOYYY/GpXOhvNep8CQ0byy3r79Kc/vaQvvvjiJZ024zsC65XlzjM4LlhW5qELJD2N77QN236SZ2d8di6hVb2Mlt/fxw2mqup5z3veko6b1Otf//rlWuciQpg/vuewnlN22trJDSB9lX2WNqyzCRznk3S9Cy7KPPB95vh3qjbnBpbtc5/73Invse/tCu1q+hfHTRc4smq397suiGTnjlR1NKdO7ytdAEP2dd6L/TrlnPov3W/jOvjkJz95uUbX2S7g5PSesiu0B+lPbCPmn++o+Sz7yuRSnfTkRsw8ZM6cXAA4FlIXfFbngld1VEfT+2zn1j0Fb+Z7CNNdeU4D2ztl6/pAVR+Mk+3A8q793prcS9PubAe+x3QB0KdApOxbcZ391Kc+tVzjOGQ95rcvg8ez7/F6xvq+71fbovJBRERERERERA6Kiw8iIiIiIiIiclC+Zx/ZvYiIiIiIiIjIGiofREREREREROSguPggIiIiIiIiIgfFxQcREREREREROSguPoiIiIiIiIjIQXHxQUREREREREQOiosPIiIiIiIiInJQXHwQERERERERkYPi4oOIiIiIiIiIHBQXH0RERERERETkoLj4ICIiIiIiIiIHxcUHERERERERETkoLj6IiIiIiIiIyEFx8UFEREREREREDoqLDyIiIiIiIiJyUFx8EBEREREREZGD4uKDiIiIiIiIiBwUFx9ERERERERE5KC4+CAiIiIiIiIiB8XFBxERERERERE5KC4+iIiIiIiIiMhBcfFBRERERERERA6Kiw8iIiIiIiIiclBcfBARERERERGRg+Lig4iIiIiIiIgcFBcfREREREREROSguPggIiIiIiIiIgfFxQcREREREREROSguPoiIiIiIiIjIQXHxQUREREREREQOiosPIiIiIiIiInJQXHwQERERERERkYPi4oOIiIiIiIiIHBQXH0RERERERETkoLj4ICIiIiIiIiIHxcUHERERERERETkoLj6IiIiIiIiIyEFx8UFEREREREREDoqLDyIiIiIiIiJyUFx8EBEREREREZGD4uKDiIiIiIiIiBwUFx9ERERERERE5KC4+CAiIiIiIiIiB8XFBxERERERERE5KC4+iIiIiIiIiMhBcfFBRERERERERA6Kiw8iIiIiIiIiclBcfBARERERERGRg+Lig4iIiIiIiIgcFBcfREREREREROSguPggIiIiIiIiIgfFxQcREREREREROSguPoiIiIiIiIjIQXHxQUREREREREQOiosPIiIiIiIiInJQXHwQERERERERkYPi4oOIiIiIiIiIHBQXH0RERERERETkoLj4ICIiIiIiIiIHxcUHERERERERETkoLj6IiIiIiIiIyEFx8UFEREREREREDoqLDyIiIiIiIiJyUFx8EBEREREREZGD4uKDiIiIiIiIiBwUFx9ERERERERE5KC4+CAiIiIiIiIiB8XFBxERERERERE5KC4+iIiIiIiIiMhBcfFBRERERERERA6Kiw8iIiIiIiIiclBcfBARERERERGRg+Lig4iIiIiIiIgcFBcfREREREREROSguPggIiIiIiIiIgfFxQcREREREREROSguPoiIiIiIiIjIQXHxQUREREREREQOiosPIiIiIiIiInJQXHwQERERERERkYPi4oOIiIiIiIiIHBQXH0RERERERETkoLj4ICIiIiIiIiIHxcUHERERERERETkoLj6IiIiIiIiIyEFx8UFEREREREREDoqLDyIiIiIiIiJyUFx8EBEREREREZGD4uKDiIiIiIiIiBwUFx9ERERERERE5KC4+CAiIiIiIiIiB8XFBxERERERERE5KC4+iIiIiIiIiMhBcfFBRERERERERA6Kiw8iIiIiIiIiclBcfBARERERERGRg+Lig4iIiIiIiIgcFBcfREREREREROSguPggIiIiIiIiIgfFxQcREREREREROSguPoiIiIiIiIjIQXHxQUREREREREQOiosPIiIiIiIiInJQXHwQERERERERkYPi4oOIiIiIiIiIHJTv+/87A7vw1Kc+9X+T/u///u+qqvq+7zsqwv/9v/93Sf/P//zPkv6v//qvjb9VVT/4gz+4pHmP//N//t/1mO/93u9tP5vnkn/7t39rP/sDP/ADS/p7vud7Tnzvh37oh048l3n/j//4j+Ua09///d+/pFOmf/7nfz7x/aqq//zP/zyRB9YDy37TTTedzOQDcNVVVy3tkWfyfkx37cFrrDe2Y66zPbr2IqwrthfbgPcIrFc+L89gftnmrM8f/uEfPvEstgE/mzbjNZbnAx/4wE7tUVV17bXXnmiTbepgrR5Jvsd2Yt3xXmk/XmPdMZ3P/NiP/dhyLfVZtVmPGVtsp6mek+7GWNVmOXMP3ovp97///Tu1ydOe9rQT7dHZgqrNsgR+lmUiqQvaG8J2+t///d8Tz2IbsK+kTdkeU37zve7a8XTqk/nl///1X/91SafN/v3f/325xvSHPvShncdI1ybsD0yzz6Tfsx0mG9b1e44Rjj1eD2x31kdXz93Y5T14/7T/8WekTfh/lof8y7/8y8Z3mK+qqhtuuGGnNnnGM55xYl7fpj2SnsrPfhJ+9Ed/dEmzDdgXc72bI47TjclpDISuvas226OrB8K85XnMC/vM29/+9p3HyDXXXLO0Se7Lskzzccdkt1IPrHvaqu6+vMa+2rV1V0fHyfzCPPK+vJ7yM498h2P7xaZybqGdfde73rVTm3BeT/6memVZU8fb2Pvu+51Nq+r7Jeu7sy3ds6Z7TPaxa5up/3XvN7QV//RP/7Skr7/++p3ag79FwlS+Ls/TXNC9t7A9OjvF6/zsNEek/dmG0/vb2nzDsnW/yfiMzmZM79S7jo+qzTHS3XPqJ90817VD1VF5Oe6n33H57FTPXT67sXs877EpU3m6sTnNkbyecrBNOY+8+c1v3rlNHgiVDyIiIiIiIiJyUM4p5QNXFtdWPbvVxmk1q1tt6na8juchq7vTTse0axG4Ws/V9KxscWeJsGzJ74Me9KDlGr/H1bPcd1ox35VuxXbaTe9W3qZ8dN+bdsK6ldVpZ5mknSaFAq8nD5OiouuD065vx5oCYRe6lW8+f1IzdCvn/OykGgrTjlTqkeVi3Xaqoum5zFueMe22dH1r+uzabupUZ7vSKTCmts/1bmeB96o6GgOdXajaLGvSHDe0Pd1O37RTxrbL8zqFw/G8Hc931Wbbcieh2ynaZgdtW1Lnu4zBaaeKdPZlmn+63SWWt9v5Z31O80zatdvJqurHGT877RavzXv7kDwzb1Oeko9pp61jskP8XsoyKcbI2rzH+3Y2i7BNOeYCdz07ld6kEDkNnf2Y7k87kLzw3WZqk64fdarO458Ja3Pw1L7ku9/9blVtKuymeT72bNr55fNyD7bjWt98IDo7s6bkrFpX3nS2n/Z3zQZMbdQpkjubV7VZh8xP6MZm1VHddnPL8XulTJM6aFe6vsfyT+rijJW1vlvVqxTX3qnZd6e268owzTcpx2T/eL3b6V9T2k7vYfuyZpfXPku6913ei23dqXQmBQPv0c17pLO903tI9xt0mp9ZtuSXeaCi/qxR+SAiIiIiIiIiB+WcUj50K6tTXIVuh2Nape3uy892fulMr/kpVvWr3lyN4gpTnj2tgnGVvltV7vwfq47KyTrbZ7Wxq8Nt/Iuz2jbFOuh2aqcdu24lke3R+dEyn9MKPOsw7T+tmrM+u9gXk1Jj8v/aB94zOzVTn+x2EScf9m51d9oJm3brjz/reLprv0lJlOvTznOnDNhGzZQ6m5QBu9KNNd578jsPLMfk79kx7fp16qBpx6rz9Z6e0e3Udtcm1vxep12as2KaO7o+Pu0CrfmoT22W+01qhik2xrZMc1lXz51S7njeu/l0H7odukmN09X9pIzo+snUdzpV1bS7T9b6faeg2qY9U062wdQ/krdpx/40dDZ8qoOu/aa6Y76zG71N/IguFsCaGmXafWbeYu/ZZlRs8T2gexch3by1jQpzG7r+SSZ1QJ4/zWFdHI9Jhda9x7AvTzvtneJ2Upl2z5rscdp0Ugh3dcbPnuVOe9W8y9+9g24Tp6L7zBT/IfXC/3exnviZ6R21K8f0Lt8pfKffH7ze9bXpe9vCPHZjZJd3iMnW5XvT+1OXn6lNu7lhm3emrl9MMWuSt0kdRLpYg2c9RojKBxERERERERE5KC4+iIiIiIiIiMhBOafcLkh3vNQke0p6kl13AV0mWc2aXGc6fmztWDCWI7KXKUDRFHiuo7vHLsdkbUsXmGaSCu6Sp67tpu/l2Z3LxHGSh20k3F3ZpiO2umAwa8fmkX3lsp2cccr3GmvHNk3HM3WSyW3kgN2RXGtBkaax0EmQu2OFjn8v9z0reSbLt2ZburE89U9e7z4zucF0bheTDemkertILicZZBeIaXru2jF/Z8UUXLALCkXW5pxdXES6oMNV/RGyUx+aAsaGyc0sEl4+a5L8Jz25T+3KLkEiu6Cqu/QHymnX5qrJdambyyaXh+6+XdC8qt71cJLLd0fUMQ/7yv2n8oZJQp82mQLEdsdqsk2md7Tj3zlOjn+t6vv9FDA5n+V3+Ay6uHZHJbNsa3mY3AO2YZfAb50dYn4miX0XbJ2wLlKHvDbNKf/wD/9QVVXf/va3l2vTe9mau0pnc6bxz2fkWM1DuIp143pyrezmg7X35C5g5fHr3XvjJPf/x3/8x6qa7XvnOs08rrn4bON63fXLfduG79Zrx012Nm0K+Nv1Lx4/TnvBo5yZ7vLIo17zvG3mhl1+s+U9d3o/7/IzuYmfNSofREREREREROSguPggIiIiIiIiIgflnHK7WIv4O8lPu2uUXVM2E5kJ7z9FKO2iKq9JVScZbicB7c7yPv68Tso3neveRdDeR8LcSeemeuu+N8nCWKYuWivrpZMC/siP/MhyjTLPL33pS0s6EsA1qRaZXAdYx7kfJVVTe6Sca9Hcd6GTuXWuDVVz/+r+39X/gx70oPa+Xb+Yxm4nu5skv510bBuXqC5KOfPYySV5331cYTr5/CRPXSvL1HYZO9MJAZ0bDD+7S1knW3c8L8fTa/eiu8aaPHlf16TulIdtToTpzoVfk+5P7cvnxV49+MEPXq5RsvmNb3xjSX/zm9+sqqrvfve7y7XpVKRu/E8uJV2dT1Lvbt7bR57JsnT2forK3p14M0l3Mw9sE2X+p37qp6qq6mEPe9hybXLTSnt85StfOXHteH7Dt771rRNlOJ6HjO/OBek4uT7Zh9PQ5XGqO46L9K9dovlTSs46f/SjH72kzz///KraHCNf+9rXlvQnP/nJJf2FL3yhqjbdIFh3kZ2Tyc1u7SS0yZ20a6t9ZOV///d/fyJ/25w21Z0qQDr79eM//uPLNb5fXXnllUv6qU99alVVXX755cs1ulXcdtttJ/Ie94uquW26MkxuIt2pNGRtXttnHqHNWntn62Ts0+lOJNen0/Q6m/UTP/ETyzW+n/F9J+/BtFMcw918svbbq6p3u5hI+09u6qfhq1/96pJeO+WhG+OTa0L3u5H5vvrqq5f0tddeu6TTJhxPN91005J++9vfvqS//vWvV9Xm74Y192PmcXK5Sx/pxs3xe4SpHs4alQ8iIiIiIiIiclBcfBARERERERGRg3JOuV10crlt5H3dNcp8u89QmsLIpo985COX9MMf/vCq2pQ6Uap63333LekvfvGLVbUpN2N5KL3qIqVPkqQpanB33zDJ8Hfl7/7u705cmySLJGXpTqo4TuqCbZd6r6q64IILlvQ111xTVZtSQEr9brjhhiX9gQ98oKo25Yysy07eu408fe2EANLdY5/2qNrsX2vsInNj/Ud6xjHEuqHc7yd/8ierquqhD33oiWtVm+WNXPazn/1s+/9Oqsn/U77bRUWf6rY7TYBMtmIb2L+6KPqkO4FnTUZedVTWSZL5iEc8Ykk/5SlPqapNCS3bjnV/++23V1XVXXfdtVyjvK9zMZsk/mvuXZPEMJyVxL9qU66de3UnDUzXp2jQrPO0Cb//kIc8ZElfdtllS/oZz3hGVVVdddVVbX7vuOOOJf2mN72pqjZdMaYTdJJf1t10EkMn5Z7oPrOPZJYuC8nHLv1om9NoupNmaKfoqnfppZdWVdVzn/vc5RrHC+Xlb33rW6uq6jOf+cxy7ctf/vKS7uqFZZsi5K+djtWNl31d9gjnzc5uMV9r9T9JmLvTLuhWQbeL5z3veSf+nzm8qurjH//4ko7LCNtpcjXtTishU5m35axOTeK7SdfOkwtGmFyHu3E22QvWZ94B+D7M9+BPf/rTS/o73/lOVW3WMd0WSPf+NJ3Q09nuiU6GP0nyt4ES/+5Etqk91sY1Sf7o8kUJ/3nnnbekOzeYn/7pn17St9xyy5K+9957q2rTTk2n9XR1PM3V3Ulaa/brrNqjqn9Pm2zi2gmH0z26uW9yJ3rCE55QVZt1O43D2AnO5d3JdbxfFwKgarMec7+pHdbsxr6uMA+EygcREREREREROSjnlPJhl532brV0mxW5rMZPwQW5e5VVxmc961nLNa4m/tVf/dWSvvPOO6tqcyeUq2Rc5Vo7R71bhZx2rLrVWH52n8BUXVDFbZQPXVDP6ezsLrjhFHwyu8HcHbnooouW9Gte85olnfrmjsK06rimRlgL0HLIoC3HicKmqu/jazvQ26zed4GFuKJLlcPFF19cVVXXXXfdcu3xj3/8kmadv+9976uqqk984hPLNe5Sd+3Aa1M9rwUfOuudXJJdn4m1HcRp1b37HoOD0WYxiFvs1yWXXNLei7tbaVPaKSq7uh2QKfjfLrvsXT2cpfKB5el2O3bZ1WWf4s5L7ArbgQo6liF9mHWUnayqTcVW6qF7VtW8k378Wcf/v7b7c0i6YFhTG3fB9LbZMVtT03TzIHccOf/wPSRzYBfkq6rf9domYGHXJ6Yd67Xd4tOw9v60y47lWsBl1vM0H+cZVD0Svous1XOnRpgCXncKyLWAe7wv2UfV2Cl511RMZBub1o29KeBp6jtB9aqOdtSrNoN7B50JMwAAIABJREFU5x5U603vtt21qa+t2aq13e2zmuPTrmu7yHz+WnvxOsfB1E+TpvqECtMuGHW3Q87/Mw/Te2E3rqYg4bu03Wlg3aRt19qBrLVDVa/w5PsE3/fSFhwLDOTL/CbANO3Y2hw4/d7trk82a60fHvJ9QOWDiIiIiIiIiBwUFx9ERERERERE5KCcU24XXQCO6azyKYBYmILYdEF3KLPMeaxVRzIySp0YRHItYOQkke3kb5N86TQS5EkGuStd8JQ1aTiZ2oCfTR1OwUIpY8p1usaw7SiPioyWMqfO9WVil4Boa1Lotb66C91Z41N7dy4yU5t08kt+lkHDKJ1NYCkG5aEckOMskn66D0x100kdpwA9nVSOdAHRzioQUlf3k4Sxk+3uEgCQdUmZJV0lYp9YJtov9t+0He81uSx09ngXJnlvJ4ve1+1i7czyqe2Tl0nu2OWLcwDLRXlm7sEAYYRBQFPPHCOTnDufZRmmAM2d+96aDHXqu7vC/tW5BnauFl1+jn92F7oghGxb1jeD5X3+858/8f/JveaBrlX1NmuSn095f6Bru0CJfBf0dm3OWpP2Vx31RbY/8027lcCGdFulnLkLJMogolNg7jVXgy647FS3a7LvfcYI7cha4OJuDp/erzpbxrbnc9lOmcPZ7/muxSCysU98R+Az1t59J9u/9u7atd1Z2Iqq3k1rut+aG8xEF8CRdPaX7Ul3phtvvPHEZznvcw7hWFmT4nfjeZvfLbnHNvZtW9i/un4/Be9es1+de3HcJKo25226uOa+99xzz3KNbtHMW9qKbTb9xujKtuaeN40Vfi/p/6/cxFU+iIiIiIiIiMhBcfFBRERERERERA7KOeV2QVlNF8Vzkr93kvLpxIek+X0+l0Tmz0jY3/zmN5c0T77oTm1gJOwuqv0klenk2btEYN5GWrsNlOF1kW4nCX8nW1xzXZieS2nlIx7xiKraPAv5bW9725KmjLO7F/vB2gkIa9LZbSKTdzKnfdqjarM8D5Q/Pp/P3SbKfKAcks+ldCx1Nn2Wp1lEqjmdLsOxtSY97Zgk59255lP0+l3hd9dccjo57DYn9HT9iHXYyRF5Pjtdl3jSSFxlaLO6iOe873QSDelOSyGUgHY2cJ8Teqo2Jb+5P5+zdt73NHd0pydMMli2SSScjOR/++23L2nK/FO/lDvzuXSLWStbd53lmexwN0b2oZNgT2fJr53CsOZSM8lTu1NJeCIM546PfvSjSzpjh/di23QnWk31xnvEbmwzr3fsG8mfbZK8bNMma3arm+v4f56e0KXf8573LNfi8nL8vnk23w2m+uhOFdllbl+zz2flvte5HmzzrrDLaWh5RneCWNXmGLnwwguranPuuPvuu5c0T0/IeOD7Ll2T6KrcuZCtvRtObmfdbwByVu0RJvfWNVeRXU4g47xBO5M55LLLLluuvfe9713SdFEKHB885WrNVWwXdzvOTWtumvu6XXT3mtw61lyTpnky9U+3Cz6XJ7nlffUb3/jGco1jgO4t6cMcb/w/+0jqdBv3iLXfh52L2S6/xfZB5YOIiIiIiIiIHBQXH0RERERERETkoJxTbhedrGmXyNFTlN9OFkVJ0yQ9e+xjH1tVm9IiRjOlnKwrA6VbXaT+SfrTSUe3kVnuEnl7G7pIybu4DUwuAp2Ui3XFKL2MNBtZM2XKH/nIR5Y02zGywEme3kXGZXkpn+rkXpN8ee2kkn2lZ53UlHmdJNhrkquuDJ2Mrmpz7CQ/j3vc45ZrrFvK/DN2eC+60LBdO3n22niZ6pZt1Y2nszrtoovkPUVZz/MnO9XlqWvPqs1+/ahHPaqqNsfQnXfeuaQZpbx7FscQ26Ozx2tRuqcI7BzruQfbY5LZbkt3Cs828s/Oxk5l6GSldLugO1Eix7Otb7311iXdtTvriO3Lsd7JsyeZeCfzX3MPOKuo2Kdtz65vrMnLpxOY2K/TNo95zGOWazxx5P777z9xjyk6P0k5eVrT5Op3Gmn9Wcplu4j30zvGmo2bXA9ST6wvtgPdXnKSwnSaWBeRfptTNNb6cDfvbfOu1bkF79Mm7DPHn3H83mvtMc0TnW1hvXI8XHDBBVW1OS44d9CtojtBjm3DcnTvXVM5w9oJPlX9SSX7zCOdu+Q2pynsMpbymekdlXUcl2O6SN50001Lmu2YvsR8cdxxDunqaO19aBtX0c4eT/W3Ld0YmejGQDd3Vm3Wf3faFE+4uOKKK5b0xz72saqquuOOO5ZrfAZ/u+QUH/6fLntMr7nld/P9NEa60/G2cUE7C1Q+iIiIiIiIiMhBOaeUDyQrdVPgI9IFQZp2rLoVa658ccUrQdu+8IUvLNcYQK8LjNidYX883e04rQVB22ZVvTtDfR+6Xedtds66QGjTzmNWbKfAfQycl6BUn/nMZ058v2pzFz3KB66Wsm2Y7uqNZes+O5WNnLUS5fhzux2xaddj7f9dujt7vGqzrdLvuYvF1XSegZw24fe5A8dn5Po0jrvdtmkXqqsf5mGfFflO6TLlo9tR2GaXLXnmzjp3Mrhb8uhHP7qqNlULtF8kO/IJPHk8P91Y36WvTwGgus+cVXDDqvX23OXs8UkB1e2+sh24W5I0A1NRQUeVSpd3BnfrzjWfxjHp2m1q625Xfh+71Smzpnt3/WDaWe/uMfXPboeXY5PzOvOT8ZSd+ap5Zz3lZB6n3bawje1Z293el25srtmladx09c/dWu7mXn311Us6Nuq2225brtFGc1c+cwMD4q715V2Ct010gYv53H0CF3fvjdvYz7Cmdqg6slV8FhVabKfULd+1+C7FwHuZaxiodXqfW1OXdQrhbejeAfaxWczHvkHCO5td1b9Ts64Y9DCKxq9//evLNdokzjfZRee83gU0ZX62CZy6S7D1tXfq07BLkN3OHmyjou+eEdVJ1eYcf++991bVpo2nneK8zbbqWAvCTaYgnx3dHHlWqt81VD6IiIiIiIiIyEFx8UFEREREREREDso55XbRyUlOG2iRdMF6KEehvIlnsccF45Of/ORy7Tvf+c6SpsQmMmhKbSjJpVRzl3PUUyenPdd7nyBInaRqLSger0/nIneBcCgjp/yPkqe0BwPtRPpUVXXVVVct6dQ3Zf2Unq3Jl6cgSEmvne083XffQGEMTBMp8RRYqZPHTTJf3mPtDHre96EPfWhVbbq8TOMlbckxwvOn11wY1iRi28jP18583pW1wJCTDLTL39Q3umdwvDB93nnnVdXmud+U+9PWJZ8cI5QQdnLESbLXuZdMctVOIsx+SYn8aVgLXLxLUNi1c8SnoIYZF1VHYyMBqqo2XWFotyLrpMR5CgybvO8i2SRrcuJtAj1uwy5uMN1Y3OYM+i54G9ujc+VjYEnOIw9+8IOXdNwuyFe/+tUlTRlugiUyX2ybLu/byF7XAuqehq5tJ9fQrv6n/tCNXV6Lq9fx65H3c37jGGJ+Ys+++c1vLtemdy3as45dgkKvBa3dJSDeA+Wjs59r4296X+mCA7LPErpSxD597nOfO/H9qk2Zf+qe96XkvyvHNm4iawFn1+zXWbkmda6BkytJ934x2eS8Z7EcHBN0s4x76y233HLiWVVVV1555ZJOYNDJ7aKrt23y29mJtbFy2t8tHV0/WAuaPH12SndB8vNOVbU5T2T+YBD4uMdUbQbP/fKXv1xVm+6w0++RtTqbfkudBt0uREREREREROScxcUHERERERERETko55TbxZrMf01isnZeMK9TIsYTLigfj7yPZx1TznPhhReeuO8kyWQ5IsWcTlToJMzbyF47l4CzivibvO4ibZ/+35WPcjO6XVB6lgjM991333KN0kxGjU+a0swpAnOkmd2pFlW9DGoX+d9ZnqXb1f/kmrB2pvZE7kEJ2nSmetyUKCej5J/S58c97nEn/s+o/3xGJ8ef5PBdPUxt0p12s08067OMir3WNpPEn3YmsmXaLLpVUJ6ZNrv55puXazmPumpzvHRuF13U7NOyjTvXttCtJ3W2zf13cd/LZ1lHtFuUJeezPA+cfZ3fy4k+kWkef0Y3Z2xT9537Cdnm7PbTssupP2snQa2dHjN9NvVadTTf33nnncs12iS+A+Ss9m9961vLNc5VHA9pU7oOrEWDJ2t2fO3ErF3oXASmiPhdPW9zClF3ChllyYwAn3lgeg9gW/LEjC7va6fZTH1vl3m6m3P2mec72z+5JnTjc3p2J7fn3MF3Jrq4fvrTn66qzdMVaNP4XpZ5hO/RtEm0dWuuFN07/DTvr9XZPvNI5wI+va93Ev9t3Dq7k7fY5/lum3df2iy2AV3F8k4yuVp0bjnTe/3aqWJT/z/rOeT4/dfe47rfLtvUR96lppOrPvGJTyzp/LbgeOIY4DNis/j7kOOis6HM1/QefEi3iX1R+SAiIiIiIiIiB8XFBxERERERERE5KOeU20UXtX+SL3UylbUIzfweJTiUzZx//vlLOtJXSs+mUxkigZoik3dy0SnCaScn20bG1Mlv95HlrEWKnliLdNu5P0ynjzD/aQ+6UlDGSRlTZLaU07INKO+MTHaKIruLq0PHmlRwF5iXTjo75bv7P+nKwLyy37OtIlGmK0yiLfP/VUcSZuab8jb23/SRbeSZu9TpLlHmt6Ebc9NYXZMyTxGY02/ZZynvu+CCC5Z0JLB0Z4lks2pTypn70Y5xzHfjdKrrTn459bUuUvhZSgm7eWQbmXonryVs19TNJAfneEnUcY4Lyp15j9i+yWVvrd9M896aJHzN5XEfuntPtnatnbqTq5jm/9nX6XaR+YOn8rDfdy4abC9KnNmmmX/o5jT1607uvCZhnmTfp6Fr2+menevrZOO696pJwszI8TkVaXL1Y9ljryg7p6tLJ72f6nkXefjaeNrHbq2NtW1O1+ro5hHWGyP5c36Jy/HkXsD6jr1lO0+y9qS3OaGrY+2EtbNyOd5lPlprj7XfBKw3vi9xLH3+85+vqqqPfvSjyzW6UPIeD3nIQ6pq82QZnrzAuSkuituc8NT9zlr73nTi3WnoxsAuJ2pNNoB2JmMjdVi1OTfcfvvtSzrvWpdddtmJ71dtjp3cr3ORrep/H24zR66dXELWTpo5a1Q+iIiIiIiIiMhBOaeUD91Kzy6ryVNwyu4eXO3ijhV3S2699daq2jw3mitiXHXK/biqyB2QNaVGF8ys6qhOph2hszxH9zinXclfC7rT7Y7wGuuY98hubrdDfvx6dkfYHlPAyS7AyxTsZRdSD4c+65icNhDZ2go364477dmp/dSnPrVcY7A87iLmPGSu7nNHkUErM5646jztRuwS8LNbVd6HbreSuzpT4NtdyD3Yl3m2dAJ5Vh2NESpRpl321AH/z3be5Wzwtf9PKq9uV2Lftunszjar/d1uzZRO/+RuYZQ9xz+btuBOxyMf+cg2D7E1vC/bgSQP2+wiJr1NgLzOfu/D2m7kLmqtafcqO0qT+uSKK65Y0tllp2qB0A51gUWptptUkR2daoNlmOxG0lPQsdPQ7aRN91wLAjopsqIQYV+nrXnf+963pPOOxbql7WcQ2Tyb94q6qGpz9zEqu212EdeCsnb9eN/An4FjNe3cBQbchmneTttMcwf7fepzCuRJRWm+x/bgHM9grckD22MK2tyNkbVgh7sEqH8g1lRKU5DVB/r+8XTsN9uDvz8e85jHLOmotDrFSdXmWEl78D2a72S0U11Qz6n/p8xT4NtufJzlzvravD6VoVNrsV+z/jOHX3311cs1jgsqSvMbg89iwG62VacyZcBdtkm+N9njbh6Z1NXMW3cgwVnZrw6VDyIiIiIiIiJyUFx8EBEREREREZGDck65XXSymklK00lSJjkQr0eeSZnLox/96BP/r9qUiwXK/xKUp+pI3sdgiXwGpYBxx9hGmpUy7yL9P6vzdjtJzjbnF3dSIOaDdREZHuuNAb3o8hKpH//Pe1FalmdTBsr2oFQ095gCbO5yTn3XR9cCxOxC17ZTXnYJXMrrqRvK0Sip7Pry/fffv1xjPfIe6cPsQ3TL4BnIaTdK16YgVmtBxdZk3fvI/Lv7TZLMtc+uuSZRUk558oUXXrikb7zxxqrarDe6mLGOk58u4GHVZjsmD9352cfpznJfa4NOdnxadnEBIZ2Uc5Jqpi0e8YhHLNcYvI31FLeLydXvnnvuOZE3jhvaOwYPTfuwnVh3a2NkogsCug9rMs9dAk4yT938SjvF9rj88suXdIKGsS7Z77/97W8v6chs2Zf5WdrCfIZzy1rZed/pex37ymXX2mHtHaJzQaralBU//OEPr6qqJz7xics1vl9Rup92Zf+9++67lzTftTIeKFFnm5Hcby0gJa9vM7evfXZXdrn3WnvQTrF/xhWC9uSSSy5Z0p/73OeWdKTmbE8G+u4CeXNOSttXbb7D5X7bzCNhmzru+s9ZuV2EyTW6Y7JpHOMZC3SPoEsrr8dFjGONgbsZPDc2hXaKabqDJz+7uPiwr+3S//edT9benacxELp3/qrNeo6ry9Oe9rTl2m233bak2ZcT0JO2h+/B3WenccHfmhkbHCNT4NeOqX26tppcNs8ClQ8iIiIiIiIiclBcfBARERERERGRg3JOuV10cpJJstRJgzrpeNWmxCayL8rxL7744iWdSNhVRy4WlDrR7YLSs8hiKKeldJYSqU7CPMkzIx+apOGHjFy6Fs1+kowHSp/YHpR4RQrINqA0qYviyrqk5OmOO+5Y0qljtj0lubxH7ksZ7hR9v3N1WGuDNXehXehODdjmrOPuGtukc02iHI3Rq5/5zGcu6UjHKItlfXUyf8rE6XbBMZl78Hzqqe7WToTpJJCHjPLbnShR1bdTF7m4qpcyUzpJVwv28fRh2hamc144P/uwhz1suUY3AtrC5KEbN1XrJ/RMYyDpXU4vWaM7W3wbWWkXzZs2rDtLnbaKfZm2JJJZth8ll5Q7J7+MdM5xyPt27hGcn0gXnX9tvJyVpLxzY5ncotbeAaa2ib1nHfP8dbZNbArvxfbgKRiRn1PizzZn26TumQeWk9LZrm7ZR1m2s3aDqVqXTk8n3STNvHJcsOyJHP/kJz95uUZ5OGX86e+0L1/72teWdBcZnm0yndKTz06uSR3b2J+UnzbwrNpnF1l1Z7OmfvT/sPcmvbZd13n2dOrEsRPJVk2JYiXSpmiTtmW5hA0BSQB3HCBxM0Civ5BOEKSVf5B/kG6QNIK0jARBFMiRrQKSaJKiWIqFKFK0LBepnNJpves8+9x33LX32Wfjw/3wPJ07se7aa801x6zOnO8YM3PTaX719NNP3/EM2pPtop3yQnvQBYNztOaaRHu08pzKo0XyP+ZUo2Nop1Sd4nI8PYvjev4+4GkwHNfpKpR+n/Mwtp833nhjS6cMecIP7UiJfzuxYRpDmhvxlG4nK1zihJ5j/j82mf4mpBtS3F5Ylzk+k7QttgueMsa6nD6S7+L/N9dXzr/IKe7Ubd6zdxLkbaHyQUREREREREQuiosPIiIiIiIiInJR7im3iyZ1mmgR5Se3iyZhpgT/4Ycf3tKUnkVySVcKys0ox4mchhIq/o6yzsitKKGl9KxFaqV0ei+C/jGR3Y+B9mgyqj0p8yQpb/JllhthGSeSLCMCx0ZrHcrU8u7J1aK5tkxS1PYdzf3h+u/2XDBuAuvG3rP2JIDT6QqxD92GIqFd6zBy/Be/+MW11mH9pqSNksucRsL3MiI9pYGRRtMVY2oDeR6/ge9okbWbO89N2OuzTvn/SZ4ZWSvbDW3APimSSvY9bBeMxpw+h2VMO7/88stbOu9mvzqdZhE7TG2huSztRWU+hebCcYxUdK+9sD0kzb6Iz6JMPDLWJtFf6/CUnryP7i+0D9tWbML6PbnFNFeKm0bNPpU2nk3S91MirdM2KRfWT55iRXv8/u///lrr0J5sb+yzIn3lvSzXdmoJnzWN1XnG5N7X+ulT5kd77LmDTdLcdkIO7cs+PO5c999//3btN3/zN2t+0t/zvdPYnjRtzX6LsvL0nZQwTxHeTzntosn8z3HlO6Wt7Z301k5UWOtKsv/EE09s19IW1jp0nUy58Zt4SgLdWFIWLFe6ObGu5Z7mVnT9GXu0vmzPFfhYWpuY7NLGkL2Tq9a6+luEdZf2eu655+54x3TyEaX/GWfYfthPMQ+x6TRXb67h07jRxt3JlfQm7J1Ms3eK1WQHjq8ZM9gWmG71mmP5dEJF8sn3cj5AW+2Nl3tzpb0T7VhO7V23hcoHEREREREREbko95TyYS+IyLQid7ffr9WDvHAFi6tK3/jGN7Z0VsT4e67+csUrOy9c2eKKJncns7rJHZa9ndhjggq2Xd1zdqz4nJRRU5xM6b1dqrWuVn8feuih7Rq/n+WW53KXnSvwvJ7Vf+aLq8q0U1aQmUfamXXtlGB4bXfknF32tfbLmewFCZ0CKCXNev/AAw9saZ79nZ2T6bx62i9Bkaazjtkm33zzzTvyO7X/fMdU19uq/qRsuW32drR4bQryln6IgSG5k/GlL31pS2fnmzu1bCNtZ5x54O9oj+ysTMqbtjt6TICutqt7bsDJvQCHx+zctHtbkKpHH310u8bgqK+++updn8++n31N3keb0dZMp+1NgZhbX3PMeND6lXNs0hQwN92VnHZ4U2+5M0hVFcf1jNusy2wXtGN22XmNu+jsyxI0se0gr9V3rPaC6E6c22e1sXkK/NfunXYOuZuXINKs34Tln3umHccWZJptiIoL9mFtx5F24Dhy6TI/9tltV3evvfD/OW5T+Rl16VNPPbVd+8pXvrKlW5/DoJ8MsN5Uuy0o6FqHbSQ25VyM/WpTLB4T3PG2g+m1307j3V4/OQVnTVvhuM628uKLL27p1G8+n7vlrLtR/rBus32wj0y7moLqtzF8UnO19G2O620udYzSJfdMgXFZPzOeP/PMM9u1SZnzve99b611qLSi/difpr2wjBjUkm0r+WT/yPeyTPOOU+r6ntrztlD5ICIiIiIiIiIXxcUHEREREREREbko95TbRZOUHyNZb+e4UkZEiU2kTgy6Q0kfpWPJA2VhlNg0OTOlNpS8US4b6c0UdKdxivSMnCM9a+f2Ts/eO1eX0kzK9iMFZMBJnpVLWX7yQBsw0A6lgClPur5QCkh7RL5GG1DSRvbkXi0Q5W3KNZtsenp/qw+Te0Rzi6FMjW4xDFIVOTJtyjywHCPno03ZXppbzBSItZ3bfoqU+5xgVNNzYpupz2r1gPfSHizP9FkMbsj+7Vvf+taWjjyP8j/aoJUbZZb8f7pdxGWG72WafWg4Rraf8rkte0zPn2h93F6AsLWuzrFnv0UXI9o60n2exc5xhmWe/LJfm6SrKX/amjZpwa+OCTi5J689leaqM727vWeqcy2YHl0t+P/f/OY378gP5wXTOJJ6TYk/Zf10M8j1adxrbg3HuFMGlg3rzE1ofdQpcwXWSbYRzpXSRr72ta9t11jvOTbne5rr5FqH/UvqNYNQsh3S7t///vfveNYkK2/fP/XlLVDubTO11ZbnY+a+CWLLfozBblv9Yh8yBafL+MJ5AesB5eWZE3MON82lkp4CerfxZQrMdw4tiCTfszd2TeN63C3Yh7CfoatX7mXf04JHM00pP4Pvcu6b9039apvP8l17fwOQKcjwsbQ2MLkmtXxNwR5/5Ed+ZEunn/nCF76wXeM8qLmixkV4rdntIm2DLjYZs9Y6dIVJn8X8sv9rdXyq681VZWpPt43KBxERERERERG5KC4+iIiIiIiIiMhFuafcLkiTg1BK0yTjlJhQItYkYE8++eR2jVFlKUmJlI9SGspfmI70jFHOKbFiHiLBadGer9PKYZLN7EXTP5U9adkks2pn/BJ+d6SZlPdRTknpUaAcjTJNlkueQXlfZIdrHdqmRdyfJFx7crImibqtCMxrHZZHpJGTJLNJFFn2kzw4EjC6DX3yk5/c0q+88sqWThug/SitjYSM+U2U4OvvpX1SLygdZBuhrVuZTuXQZP7nnEDSbDud/d7aIm1A21D6GDskmv5ahzJx1vHcS9u9/fbbW5rtJXWCUeWZH0p202/SnnxWK+9j6mXqzTHndZ/D1E/uua3RJvz/tBH2RRxH6OoSVwBKW9lP0JYp/6nvpU327mW9biebTOTe25JntnxMpynsuYqxbrC/TlkwcjldLSiNjey4uWPy/9e66nNYDyiRJXEjYJ81tf/U+8l9oo0zrR+7KU06Pdm4yfz5/kl2Hkn35z73ue0a2wDLvJ1eRhk//z/2oYSZz+XYnj6qycevp1vk+L2TcY450ecY2qkbU5/Z2sDePHCtqzbCk1+ef/75Lc25RcqW5UOXAI4TGavY9jiWMz+5d6q/zfVj6t/a+LLnRnMsLX9TvWnvYd/EdDuJhM/66le/uqX590Uk+vz+zJHWOjyVJO9gvuiu0Vz3JtfgNrc9xn2iuQOc22exjbTTgvbaIv+fdZ1l89xzz621Dl2/77///i3dTryiWxHnRJyvxtbs8zj35XPp9tfy3tz3pv7htl3xT0Hlg4iIiIiIiIhcFBcfREREREREROSi3FNuF5QZNQkzadIzXqOckZKUyMV47ctf/vKWbtHpKWFmmvLxJvvkvYxIT2lOmKT77Rv2ZDW3FcGUMqdJftjy0eTAzBOv516WD+WylC5FCki5EsuCEuhILxlRm/bgc2NnXuNzmySU7MmYpoi8N4H1Ovm6qYxqT1ZNaRolsJ///Oe3dL6Hp2FMpyv80R/90VprliRSzhy3GUZ05r2sQymHqWz35OfnyNCmfqbRJKOUc0/5SBuhZO+LX/zilk65rnUld6WMj1GVKUlOufH/GfmZbT5tg987SZn3ZJlNTnzMKQzH0k7emKTUTT5LaSzhd6UPopsdpf0kss6prrMO5N20Ne3Dvih5mKKP740pU7/WTrs4h8mlMDBvzQVjqmfNtZLj79NPP72l6ZqUsuWzaHOAjpgWAAAgAElEQVTKcJMHukHxvWxP7RSrJpHl9UmK3Gyz555yCnunAuy57zX5+FqHdTWnv1DCzPGYtkqZ8btY5uzP2mlMzSVqrasx7Bi31ibl3osif25fFVqfdcxpF+0a721udM8880x9L91YmsvodGpDk+zTNs1lhvD3Nx2rk8/J5fFUJheLlo89l5fJxSz9N+sm/6Yg+R3HX86D+dyUPdvlNKal7KfvZTrvPsZ9otnp3Layd8IPy551Knlhv8yyY1393d/93bXW4d9orOttHOVz21jO93FsIbRVK6c9N+Kpn2pt55hTyG4DlQ8iIiIiIiIiclHuKeXD3mr/3srWFDSFz8jKPHdCGCCPK1N53hTwhitbWWHnbjFXittzySm7iFNgzaYWOUcFMakVWj7aKjNXFFtwMKapfODqL3dS8oypjJs9uMI5nUeee6YgWs02xwSRbIFQz1WltJ1atptptT/2ox1Yd9puCYNGUYHAs8GzU876MQVOTJqB3rjTznuze0X7TsGF2vnFpJX5ba34nrKD2NoL7cU62XZX+XvaoymhprPsWZ7J+7SjxZ2G7BYz6NjU/lsQyYnWRs6lqdcmRUDbKZt2HFlOuZfKB/ZbLTAk4Xu565F3sy6wzTI/eQf7Pe6itd3SU3atbmunvfVZxwQKy/und7NcUz95jbZpNmdZNSXcWldlTBtN42vaLNsQA8G1XahTdtnJuaqUtot4zK5xUyhMqpEEM2Sfcd99923pveDMHBv43JQvxz32lxznM39gf0jarvUxdT3lf4ry7W7stcu9Z7cggtfTKYPs7q41B3AM/D6Oz1RJtP+fVJWxB+01KRtaGyHtXrbd27LHXlvb67Nan73WVRlEIbTWoYqR6rc21+Nzm9pnGlNZRmlXe2rAtfbnN22uc1sBQNfaV1ROitrkhfWTChx+V/4OmebJ7EeiGuK9nDNTVZRxiddYzq3PYr2Y/hZrytFJad2UhLelkm+ofBARERERERGRi+Lig4iIiIiIiIhclHvK7eIUyVWTak1BVSg9icwo57mudRhc5Ed/9EfvmgfK+Hm+a2Syk6SFv8s7+N49Gf8koZoCwLXnnspeoB2yd+YypUuUnsX9hUGpKC2jTVuARUqpGPQweWe+WqDL688IkwR179xc/n/ed1vBDdfq9t6T9l9PhykQUsrjox/96HbthRde2NKUBqYNTLJ22i9yMl6b8hgpG9vNu+++u6WbzOwUCdltyc2OOfO6vbNJ4Kb2EongG2+8sV1jAFBKwtu7KAuklDl5pz2mYFN0f2rvuGlQ1eYOcG4b2ZO3k9bvTu2J5ZyzuOn+0s71Xqufj84yp1Qz+eH/T3UsUk2+i22z9cmTnZpr2G3Z5Kbnuyd/U4CsJh+mPdhfsI9v9pgkzBnXJyk7ZbQZn+giMM0HmttVcyUlt9lGGseMHckjy7MF6FzrasxI8OC1Dr+BgYlbf0w7tHzuBUxe66rvZF2Y6tNeoNW9cfycMeWUOV9rA9N8hrb59re/vdY6dHHlGM/2EHk5v4lS9RY4j/WX8xS2kTyPz+JYtifdJ23sPKZOHMMpfVZrH5MLAG2TMn777be3a5MrUdoQ/582v//+++94H6X8k2w/95ziBjP9/15Q1JuOA3d75jFtJN82BQ3+zne+s6VTF/k3Ssb6KT90s2vjDPPTDhtY67AO5d10u5hcL/OOPdfFlu+1zrfJ3VD5ICIiIiIiIiIXxcUHEREREREREbko97zbxfT/pMmzJmldZCaM+EspUztpYorATGlOoDxmOkc90pzp1IqW30kec2kpZthzN9g7UYDfx/O9c3ICJUaUtVKyGZnZ5M7STkbgNZZVixpMmRqj2u7Jl0mT/d2mXZq9p9M0ms0m954mDWTZvfTSS1u6Rfyl5Jx5oCQ8zzsmknCeR3nnnozyGPeWvWj759Dyt1feUz/Vzot+9tlnt2uUsvIdkTKzLrMMW3vgtXbePPM2STnbvXvnn6/VXZPO5ZTo5C09nQdOl7w333xzrXUomeUJFexf2IcFluOHP/zhLd0i7lO+2eSVk1y/1S3eO7nY3HYbaRLkyd6tjdAerKu0TaSvr7zyynaN5U4Z+Pe///21Vj8VZa1DO6bttBNLruc3z6OknJLcqY9s19rYyjpxrlyWZdfcDaa+KN/zvve9b7tG6T7bSPoS5psS59hhrf05EeXM6Q/bSSPXnxGXJp5uNr0j+T2mbNMmpzZ0Ks318xhJecqCbnE8UYQuXSkD1sM//uM/3tK0f+zcTia7nodcn6T77cQNzqOnqP7JZzuZ5fq9qWO3ZQ/STkwirT6xf6dtWYY5BYanh9E27PfTVljGhOUZJvdWkuvsDzhfaH8bHeNqeom5L8suz2d5TH140nTj4veyT0r5M990ZeSYkndPczi+o41lhPnN35UcO1jXW72e6nrrQ46Zl90GKh9ERERERERE5KK4+CAiIiIiIiIiF+Wecrto0rNjIqpH0kLpynvf+96azjMotaEUhlGRI8GhhGqSjDdJ+SS5jhSOcqtJcpnn7Ulkmd47OeNYaI89GRXfmfKa7MFTQiJbZhRYSs8oyUvUWT53kuS2qMPTKRnJD6PaNreMta6kmZSeTW47KZPbPO2C39vsvQfLg+XFMo2rBCVmbBdNktakoNfzSzly+3+Waa4zv2yH7TSASSbeZIK3ZRPmo8nVJ9u0PosuKnTpyr087YLuEbRT7DDJZVmeyfvUp7FeR9ZLWXVko2sdlmdkspNclvZIe7mUpLwxuV2kT6CElfLyxx9/fEsnkj/LiN9Fd4zUW9Zfthdeb/V+kvznHvatPEGAUvPcS5vsufLdloSZ9bqNZ1N07lxnG6HL3qOPPrqlH3zwwbXWWs8888x2jeVKO2Xs/73f+716bxtTOF5M9zZ3I+aX3xn5OdsxbdP6p9bGbgrbcWCdm2TzaVusc2wvrKt5B/t9fi/H+Yy904kbTeY/zbVok7yD+WX/wDG/2YTwfbmnneRwEygJb/VoOj0hZcE51QMPPLClP/GJT2zpL33pS2utQ1cMtgvKy5s99sp7mie3MZJ84AMf2NJ0H0kdpztmc4smbWy5CRx/26k7pNVNtgl+H13sIqvnuE4b8AS4PHdy52guStMJPWx3+c7p1BO+I3P0yR6t/9ibh50C+5FmC34j7Zf6/vDDD2/XOK5zHMjv2L/mlJi1+lxpGsvZFyZv09yYpA2w3tAFg/O9pKexg7Q5gG4XIiIiIiIiInLPck8pH7g63ZhWMrOiw9UuriRzVTjvyE7JWocrW9yBT3raGWyr9G216zrZyeEKNFcTuaOYVUquGnLlqq303tZqVrPHMYFNsrPAcucO0FNPPbWl831c1aQNWBbZyZvORm87VlyJ5O/aavy0w8bf5RxgljvTbSfrNs/S5c5AmAJO7gXV5LO4Ehz7sDynVdooU7jLOqlRkm7BgK5/R8qUq7/vvPNOfW7KmSvC/Pa223tbOyQswxZEcgrKmnsY3Ik7xB/5yEe2dHZLWCe5w83dEqav52utw3rfdkimlfu0U34vd0/Z3+beKXhWUw0dsyN/LC34FstgIuVBO7APYx/VdhxZ/9gPtMB7pLWtqQ21AIdtJ2utw7aVe6YgjG2HaurXToX2SJ6PCQ7dAoAS7lilb2AAPY6vbbdn6gPad0+7fcxbrnNnnd/Dcsi3sR1zF74FLr5N5QPb6ynjVOrR66+/vl1jnWKfkN06lmdTD/Ae1uWJ9FesQ+zvmc49LYAv88h7WmC7tbrdJ+XeqbBfzTv35rtrXdUjBu/82te+tqUzX1nrqi5y7kvbMf97baQx9Sct4C7/vwXmW+vKTmxD09z3bt9wEzjvaM9rYznT0w4323jKhfdy3G/1mN/PeTLHllbeU6DhvJvtjvnh+Jb8TP1U67P2lCqn0NRBk/KCZZ5ySpBo5m+tw3JOsNZJ0bgX7HHv74KpTra5Fsdv0uZwtHmbI6zVVbGTmuc2UPkgIiIiIiIiIhfFxQcRERERERERuSj3lNsFJcjt3F6yF9SN8mMGdoxkhTKV+++/f0s3CQ0lSdNZ3U0GRFkUiQSnSf6u0+Syk9SvSWjOkTo1e/B5k4w4+aAElpL5z33uc1s6slNKZKfAga0spsBl+d0UEIq2icSKz6LkiTKnPI/1gFK4FnjxlICQe1DWGltMdadJEBlAiGneG0ktZWwMXEUpZ57LMmCa8rWUQ5MFXiflTNcfSsqbOw1tMtWRPHdyyzgVSgGbpG5ywUieWcbMP/us5557bq116ILEoGLN1eeYoEK5Z5I6N5npJFluQVkpKZ/kmbHTFFTxJrDf2pPetv9nv/Xqq69uadapSIXpitECG6/VbTL1GWmH7DNOkRI3Vwu+Y5ILt+B2t9Vv0aUr7gtT/Wzv5PezDbB+pb3w+xncrQWu5btuMwgX60kLos13NAntWj2o9BQE+Saw7TbXzikdWPZMM9Bqvoc2mQLmpRymPoXplA1tRreF5h7BPE5BqPOdk7ss60Xu5fccM65N0CUnc5P2vrX6nJhtnXMt9mWxA8udfWVrIyyLvTo3BXFmO0sdZl3m/KUFHuZ7eW9zpZuCYp5Ka7dTkPFWh1jutA3dU1NnOa/he+mOkvfx//ncaQ4YpjJsdYnttbl7TwGbm9sDy+kY18e7QXfIPPeYPiu2+MY3vrFde/nll7c0yz/uNvyuKXh37D79TdQC5k7uhrRl5hH8G2UKxBvYD01uF7l+SVcLovJBRERERERERC6Kiw8iIiIiIiIiclHuKbcLSu4iOZlcDJr0hDK8STobWSClNlOk16Sn6KBNUj1F8aXsL1JtRtAmTT40uQHw3iafniSEx9De01wbrpN7aQ/mjS4xsTnly/xW2j/SIsqvJolRmGTve9Hd+f+sS8nPMSeg5Hm3eZYu5aUp0ynabqur/H/WSUr3Ix+lTVjmbDuxMdsI632TVE/1pp1GQtken8u6uec+0KRuk5TuVNhnJa8sy1YfmCd+H3/Hb0lUf7YL9h0si3bqziRrTXqSCjaZN9sC60GLDj3J+pmf2HRyAboJrLftdJPJPu39dDGiDDL5ptxxkjC3COisy6yf+d0kL27SZn4v3RLa2eAs58k+KTPWoXNsMkWzD5O7VJjk08xz6iUjsfMEALad1FtGtOf/N2kty5WwLkU6z++Z3C5yD99Fe7F9p+xvyx5rHdbb1IPJbWCvjXD8af0Ay4N1gXZNlHm66LC9sR3GFtOcgvlJmbE9TS42sRXr6DTnzHey7e5J3+9Gm6dNMv+9Ux6YD9o04/00NrD+5WQl2oN1hmUYe7DOMr+tz5pO82Fda6fY7Z2ecMxpKcfQTqyZ2lw7QWial7Nc0lexj2C5cDxJGbCvn/rVvI/22Jsnt9PfrnPK3KnNAc7ts5qr2HQCUPvbajoRh/ZLP8Py4NhA96i4R9B+fG9z0T+mv2jzZOaH39xOxGh/2/C5t3n63t1Q+SAiIiIiIiIiF8XFBxERERERERG5KPes20U7XWFP1tYi6691KMfJ85r8aa1DWXtOYOBJDHwupX7f+9731lqHspv23rWu5DiTPKadmEAodWoST37bbUvK9+R/Ey3C/VpXEiK6AEwR9SMBjCRwrUMp4He/+90tHXswjyyLKZptmMow+dlztVirS77PlZ5Rapd8TbK+vcjxkxQ90jNKjRnFnDZJmm1kkp8nb3wu6wXla6fU23zndGrFnjyTZXYqtAfLMEwSxjC5cbUI/2wjjJpNe0QK+JGPfGS7xnJlGUXWzH6M9mryvKkPbu1lcqVgmeSeJjO/KXvuYpNrSZM7Mi/MY/qw5kKy1mEbiLyfMn9KienKkj5skvm3CNrMQzuhhOyNLdPvJhfBY2jyX7aVPXtPda6dsMLxYOrD8zu6ktE2tGNcN+L6tFaXWa91ZUfmi3MLtqeU8SSBbd88uaDeBOarzbX2nj+dbEDaN0yR1tNvcRxhG6DbReoTnz9JqlMvJhcjsud+2aD9z3G7YB/Q2HM3mE7HaWPKntx7rSs5N9sF+zSOP8k7x9SpLqU8+a69027IXjkcY+djaHad3HHa6RGntFW6F02/i7sFZf88+Yx97De/+c211uF8gf/fxsK90xTIMeN6nsfnnjPPWqu3kXYax1r7LtjtFIjrz2u/4zdkDOffI+++++6Wprt/+tvJ9Zt1NXOAaW64V6851tEtI3WI88X3v//9d33WOah8EBEREREREZGLck8pH9qKzt6qFDnmjN+sCh1z1mlWiLg61HZbmDeu/nLl8ZhAjY29Va4WjGwKUHYqbWd8WqVuq3jTCnzbseBq3fSOrDQ++OCD2zX+jquSWZmnDbjCTPKMKXBWW/GeAui1s7lvqhbZowVv21u1nuoGd0Hbzgjtyzoem/A3DFLFAEnZPeQuIne0+Iy9PLRV9unM6aa+4O7mOeez87fJB983qTFa3iaVTpjKpwUspIKLu1fc8fzWt7611jq0594O9zHKh7vl6/q9uYf/f06Q3LW6TY45D7y1nak9tR2jaUzJddqB7YLfG4URy64pasjUp+wFCpzGhhYca69fuRvsg5Onaee81a9px6ztdE3tjc/IvSyf7LyvdWib1KW9suI7WJen+Ut+t6dUIXt9ySm09051ub13Umm19sS+dtopTX/Hsp/qasp52j1vYzDbUBs3J6Z6n7yz7Z4zjrQ6PgXLnnZtw15d5e+n/jzXuXNKpVBTqk390BTs8/rvr6ebioC075jG/VPZC1w5jdt7fTVp/cU09016UtrxGclDC3i4VlcATHMr0gIWTnP81JsE11/rUNV0E6i+bTRlGZm+q12ngo4qRX5j/j5squHr+Y2K6xR11NSnUXmSNBUxDzzwwJamAjb1hUqNFrDytlD5ICIiIiIiIiIXxcUHEREREREREbko95TbBWVCLSjj3pmxk6ymyaCnYFRNbkXZDWV2DNQW+Qul/VNgsyaxm9wH8k2TTLXJ1KbgaqfSyrhJGq/T7DC5qzQmGVqeQdkRpWeUmjfJ3RTca89NpMk/jwnO1Wx3jhvMWl3a2SSpE1PZTrK8dq0FReL/s73QBSO88cYbW5q2ZB72ZI/tO49xaTml3ziG1haPkUc3qeqeKxjLZwoMmWdQTsd2QVj2gf0b22lsPrkQNXscU9dTfrcpKW/yyykvrd/dc8VY66o8poBzLNtIONu57WsdBtJqQSQJbdLOOt8r8ynoVvtO2vQc+7S+dDq3vOV/coej7VJee65bzA/b0BSkq9X7vXFk6oN5vbk6tGddiuZiwTLgN/J6cyVkXW/jLtsT7c46l+u02eR+Fcn/VC94PfWW9XcKrpfvnMaDVvf4ewZyO5UWUI51YC8A8zHuVLHN1N743a0OT2NO+qTmXnU9b3vS/VPk8iz71BsGYaSbyKmwT853T27G7VumeVb7lqkf4vsShJBuDPx/5iFurQzYOrlptjzuue1Mrh90T3/ooYfWWms98sgj27Wf+7mfq889Frr6tP5zr15PAR7bMzjOTrbOOMF7E6B4rUP34rQN2nrqh9pYzPkC63jSLOePf/zj9VntbxcGjr1tVD6IiIiIiIiIyEVx8UFERERERERELsoPnCMpFhERERERERHZQ+WDiIiIiIiIiFwUFx9ERERERERE5KK4+CAiIiIiIiIiF8XFBxERERERERG5KC4+iIiIiIiIiMhFcfFBRERERERERC6Kiw8iIiIiIiIiclFcfBARERERERGRi+Lig4iIiIiIiIhcFBcfREREREREROSiuPggIiIiIiIiIhfFxQcRERERERERuSguPoiIiIiIiIjIRXHxQUREREREREQuiosPIiIiIiIiInJRXHwQERERERERkYvi4oOIiIiIiIiIXBQXH0RERERERETkorj4ICIiIiIiIiIXxcUHEREREREREbkoLj6IiIiIiIiIyEVx8UFERERERERELoqLDyIiIiIiIiJyUVx8EBEREREREZGL4uKDiIiIiIiIiFwUFx9ERERERERE5KK4+CAiIiIiIiIiF8XFBxERERERERG5KC4+iIiIiIiIiMhFcfFBRERERERERC6Kiw8iIiIiIiIiclFcfBARERERERGRi+Lig4iIiIiIiIhcFBcfREREREREROSiuPggIiIiIiIiIhfFxQcRERERERERuSguPoiIiIiIiIjIRXHxQUREREREREQuiosPIiIiIiIiInJRXHwQERERERERkYvi4oOIiIiIiIiIXBQXH0RERERERETkorj4ICIiIiIiIiIXxcUHEREREREREbkoLj6IiIiIiIiIyEVx8UFERERERERELoqLDyIiIiIiIiJyUVx8EBEREREREZGL4uKDiIiIiIiIiFwUFx9ERERERERE5KK4+CAiIiIiIiIiF8XFBxERERERERG5KC4+iIiIiIiIiMhFcfFBRERERERERC6Kiw8iIiIiIiIiclFcfBARERERERGRi+Lig4iIiIiIiIhcFBcfREREREREROSiuPggIiIiIiIiIhfFxQcRERERERERuSguPoiIiIiIiIjIRXHxQUREREREREQuiosPIiIiIiIiInJRXHwQERERERERkYvi4oOIiIiIiIiIXBQXH0RERERERETkorj4ICIiIiIiIiIXxcUHEREREREREbkoLj6IiIiIiIiIyEVx8UFERERERERELoqLDyIiIiIiIiJyUVx8EBEREREREZGL4uKDiIiIiIiIiFwUFx9ERERERERE5KK4+CAiIiIiIiIiF8XFBxERERERERG5KC4+iIiIiIiIiMhFcfFBRERERERERC6Kiw8iIiIiIiIiclFcfBARERERERGRi+Lig4iIiIiIiIhcFBcfREREREREROSiuPggIiIiIiIiIhfFxQcRERERERERuSguPoiIiIiIiIjIRXHxQUREREREREQuiosPIiIiIiIiInJRXHwQERERERERkYvi4oOIiIiIiIiIXBQXH0RERERERETkorj4ICIiIiIiIiIXxcUHEREREREREbkoLj6IiIiIiIiIyEVx8UFERERERERELoqLDyIiIiIiIiJyUVx8EBEREREREZGL4uKDiIiIiIiIiFwUFx9ERERERERE5KK4+CAiIiIiIiIiF8XFBxERERERERG5KC4+iIiIiIiIiMhFcfFBRERERERERC6Kiw8iIiIiIiIiclFcfBARERERERGRi/Ln/r/OwCn87b/9t/806f/zf/7PWmutP/NnrtZP/uyf/bNb+n/9r/+1rt/7f//v/92u/emf/mlN/8AP/MAdz/oLf+EvbOk//+f//B3v+/mf//nt2t/6W39rS3/ve9/b0v/qX/2rtdZaf+Wv/JXt2ttvv72l/8t/+S9b+n//7/99xzfwO//7f//vd3wb8/vn/tyVWfMs3ktYJp/73Od+4I4b7sKTTz65FVzK7Rjyzv/xP/5H/X/ag9/d4P//z//5P9daa/31v/7Xt2vve9/7tvSf/MmfbOmUxS/8wi9s1371V391S9OO/+gf/aO11lr/4l/8i908pOxZHkzz22Ib2og2f+utt06yx1prPfroo9sL8lzmbyrP5JF1h3lJ2a519Q1sC3/pL/2lLc06lXv+6l/9q9u197znPVv6D//wD7c0y6Hl4b/+1/96x+9+5Ed+ZLv2oQ99aEs/8MADd6Q/+MEPbtf+6I/+aEuzXeT72eb/4l/8i1v6s5/97Ek2eeyxxzZ7pI3yO1muJHaivfg7tp2//Jf/8h3fwTrX+oYf/MEf3K7df//9W/r555/f0rRpywP7oZQn68+v/MqvbOlHH310S7/3ve+9Iw9sF6w/yfsP//APb9doj1//9V8/uY384i/+4vay//bf/tta69DeUznm29iP8Hvb+MP/n9Lt9x/5yEe29H/+z/95S//+7//+Wuuwj/v7f//vb+mnnnpqSz/33HNrrbX+w3/4D9u1f/fv/l3NQ8qf39vaI2nj5lprPfPMMyfZ5PHHH98elDxNNmDdSNvhNcLfpS5PYyrrevLw4IMPbtdogz/4gz/Y0ml7ra2stdabb765pd9666211lqPP/74do12/vEf//E70rRR6up10jbYnr761a9u6X/4D//hyW3kkUce2WyStjGVM+tBaHONidYWrpPyZb1nftr8iTahrd99990tnTkax46Pf/zjW/qJJ564I82+gmMS++S8j/M9lsk/+Af/4CSb3HfffXfMtdhfTOU92ayR57Gspnld7k39v54fjq+p45/97Ge3a0x/5zvf2dL/5J/8k7XW1Xx5rcO+v43VrD/MO7891/l7/v8bb7xxkj2eeOKJO/osPo99Z5tz8f/3xgVe49jDucNv/MZvrLUO+5sXXnhhS7OefvKTn1xrrfVrv/Zr27Vnn312S7/++utbOmMI2/gpbXuizW/4jmefffbkPuuBBx64Y65103xzbtvmxKzr7Jd571/7a39trXXYL0/3Ztz+O3/n72zX+DfIr//6r2/p3/qt31prHfZDLEf2OZl38++gD3/4w1ua7ff73//+WutqjrHW4fz8K1/5ysk2uRsqH0RERERERETkorj4ICIiIiIiIiIX5Z5yu2jy9Cat4v+v1d0uCCU2ecbkltHkUpQpfe5zn9vSlDpFqslnfeYzn9nSP/uzP7ulIwv8x//4H2/XJoly0vxeSrPavZQfNcnksey5dBDKlCLlm+S0fG67d3IdyDP4e0pkKVOLZImyotdee21L/9N/+k+39H/8j/9xrXUoM6dcibLASPwp2aU8ikTK++1vf3u7FunTbXKM20VgPZraVoNl21xOpvrR2tYklaNMLdJ7ymUpJ6NN8tzvfve72zV+J+tLnkvpGiVr55AymuTsrYwnaTjrYp47uV6RvJu2ndzRcp11nf/fXD8i6VxrrSeffHJL01UiNv3jP/7jmgfWnzyXsmr2bzehubpM75/uCbRlc8fgu5hu/SGvUfpIqXnKgW5MlJFT1pnfvfjii3fN4yyK+lkAACAASURBVFpXdYt2Yr1nHvI7ug1OLgHHwHrdbLvXB9AGrJ8s7+amyfc2mfQ0JrX3sT3SRYPX43rEdvGBD3xgS//oj/7ols641cbCtbrknu+lO8dNYDnvje2tvUyun21Moc1oE76X/fX1319/buZz7MM5zvPejBl0V/rYxz62penWF5tMY2STzzd3xZvAMsx8YqoPpLn6TeReljufy74h81HObVjXeT02/cpXvrJdYxlS8v+v//W/vuO9vDcue2tdtR22G9qO9+abOCfnvP1UaNfWZ01uF+1vEX5rc+GdbEf7f/7zn7/jXn4rr8ft6+/9vb+3Xfvn//yfb+kvfOELWzrzUf6N1FwRmd6bK6519f0su3PH9fb3CPM93dva5WS/1OvJXba5F/O7pve+9NJLa621/tk/+2fbtbh7r7XWG2+8cce72E7p1vqTP/mTWzquH22+cT2dMYPzPbb520blg4iIiIiIiIhclHtK+cAgNm2XlLTV+ml3tq2OTbvFLcAYd8y5Y9VWvX/mZ35mu8aVR66IffnLX15rHe5ocSe37f7w/7Padf3erMBxF5Gro6cy7QA09nY89nZip9XW9ru9Vc21rnaJuOpOO1KNkF09rrC///3v39L33XffHWnuukwr2z/0Qz908O9aV0HJbsq0E9P+f+/3U0C5pKdy5nvbrhjbG9tpC8A5tb2UGYNXcqeDZZ4dK75r2jXLM2iTj370o3d8w7G0oKrHBFgLU0CmFsR02qltz5uCFTX4XrZ5rvI//PDDa63DVXfmh31ZqxPc8WTZ5zrrDNVMN4H9X9uhnEi+p931poqb6hnJN9Im3C155513tnT6ItYh7lRl7Fjraix65ZVXtmt8B8eMH/uxH1trHe6gUG1HmjLglDp9nb2yZ55bvWbdmPr7/G56FtOp1y249HVSBpNyhnU5Yz9301k/GKA6+WnqlLUOVSnpA7m7f44She+fYHm0bz9mXpbf8V7OR7jrlnumsbTtlHMnnuXIsTnjNcd29mvsa5pqjLA9JWglxyQqhU6FdTHpU9RaUx/fxpeprnMsS3lyl3RSuKRes35+8Ytf3NJUwLWAzwzQ+thjj23p2HGqi/x7oQXUZl93Kq19TfXiFOUD20LsPAWnZBllfJ1swL7jmWeeWWsdKqv/zb/5N1uabTDzZNZtjgsM7P2JT3xirXWoktvrj1mnXn755XrvsbQx6Jgg3Ht/Y/B6nteCNa91WC9afZjmaGkjnF9xnkJbJz/8W/Knf/qn73jXWlflu6dMZt5ok2kOcBuofBARERERERGRi+Lig4iIiIiIiIhclHvK7YIyushfpsCQTRI6SV7a+cyUuUwy/0hWGOipBUZa60r29Hu/93vbtX//7//9ln711Ve39L/9t//2jneRD37wg1v6oYceWmutdf/992/XKIWjrCZ54/dO+T2GFrhykvc1N5hjznJP+qZB4CbZV6RllDczP5Q8JbARgxtOgQ5Tb/h7SiYpJU2doJvMuWco89tbAKlTmGT+YTozmzQpHCWA7f+PCZAZad/kYkTpYGSdlNqxjTA/SVNudo70rAXv2itXMskom3Ru6gtbwD4+l31S6w+a7HCtQ/l4+h9Kmnl+O+2R57GP5e8oVY97E2XR7CtvwjH9w/W8rtXdDaa6mne0YFVTfqbz6ll26bt5jWn2O5GA8r10IWJQwshnaYcpMHGex77snMBULQjm9LzWXqb21FzIJhePNsaz/nKM5zPaefXsZ9i3pM9iuVLW3wKT8fd0MWtuYZQ7M783ofUlUxDJFvxycp1r72B5THUudp3cRHk9+ZnGdo7HGT9YznQPYADo1qbpotGCgsf9Yq1Dl4FTYb1OPvbGjrX2pd8k5dbcBPj/fPeehHvKL+XpdLtI/8Oyoitfc9GZxrqpHV7P101orimT+0e7h/dOwQBDC+p4/R0ZH/k3EtsEbRr3hq9+9avbNY4bnANknstAnqznnPvmO9hmTimHc9rH9WftzXlbnzT9fdj6wsnWvJ5xYnou85h+hGXLdsHnPvHEE2utw+DetDvdjTJfmNx1OI4kD5xTt0CXt4XKBxERERERERG5KC4+iIiIiIiIiMhFuWfdLpqcZy8afIusfz3dpGeTNDfvmM7A5TMiAfzN3/zN7dq//Jf/cktTqhS5DqXGlMgy+u+P//iPr7UOXTEoC23uJ5S0TlLgY9iTlJMmjZtOHyAtmjhlYVN5B9q2nT4ynSFP+XEii9MeLDfK22jH9izKNBNB+FxXC9Jsf8r54nsS2el5tElrD9PvKYdM+6b0jHIzSjUTRZzuE5SpUTqb8mWEeNqScubYhHnkCTaPPPLIOoUmKT5GLpv3Mx+TbVLHp3rU3kdJcoukzt9N7a1J43lKDE9pYDuMzWh7thHaNBJA9n/nnKxwnRa9eoo+3sacKUJ2kxrvjU+Edmh2n9pTc4+gNJbueRwz8m08cWFPqs52elunJiU9yV5P6SubC9FkT9a/SFUpP2WarhLpbyfpNE9CynPZN7HPaqdksC2wn2LbiW1o53bKzikwX6l/U7/V6h/Lfjo9Ic/j/zPfHGNTDpQJs44wv+nbWGfZNlt7oE3YBjiepo7wpKvJjSnj0yTJPpXmQjRJ90nKeJJ+t77lmPGpPWvKb5jaMet1Tk3iOMuxim0vdWyaAzZ3V54+cswJR6dwjBtqmFxb9pjsmOt8Fttgc9egPVh/OEd98MEH11qHLpYs13ba01R/9twi+PfdTeD8sPUteycWTS4R/F3KcW8+PL2vuWaudeX2wmucX+U0qrXW+vSnP73WOnSX/e53v7ul2Ye2025YF+JSvtbVfICuYhwXbxuVDyIiIiIiIiJyUVx8EBEREREREZGLck+5XezJbafTEyJlmeQx7bmTWwaJ9HGKAk3ZU+QvU4RwRqqORIaSvkQ4XetQ3pfnvvbaa9s1lkOLZnpTydd1WrlMstY9Gdr0/01ONkX9j8xpeha/u7kDUELWIsJSAksp4Lvvvrul8zzKlZgfStYi/6Q8ixHWbwJlieEYV4owRVPek5xPMtuUE8uTkZNZ5ilfukdQXkyXllznyQeU3bGcI5OlxIxyaEoxmxtSK9NjoRw45T1FCN+j1d+1rsr+GLeLSOXZ3zz66KNb+vXXX9/Ssd3URlhXEl2fLiqU//EZsQPlfZQyU+KeZ7z11lvbtXNOVpiYZJR7pyvsyTOn8aDVAf4/601re3vvXeuqjbDe0+60T+w35ZE2yfNoM0ZLPxW223a60TSuN1kry6q1h8l2bUyJ5Hitw3rP/KZcWD60Ocs7MlnK+vk9dINJmqcqsZ9iftPm+K5zJP5rdRfFaTw45cSYU9oW89BON5siuKd+0r2CY0c7MYFR3VkvOI6nvudkGL5rrcOxKu2I/SHbFp9xKs0ee/ce46YVJvk5ybvbHPc6zZVqcruIvJ//T/c99jN53+Q2yPaQNO11zklvdBHIuDy567W2eIxsP/V7chene0RzB+D3NffiKY90SU2dpm15mkLrN9t8Y63DvixzPI5BzWX5FPbcE9spRWvtu10011c+axozG3vzAf5+OnEx81G6uNLtkc/NM/i3C/8mZDp1YHL3uG1UPoiIiIiIiIjIRbmnlA9t5X1vx3ytHlhmChB1ShCarDDxN1zFbYGUuNI3BTtM0DvuhHCFijux2YXhihpXG/m+rDZy5/mUYITXaefQToE6m0rimDOim/JhWjXOqnc7W/36c5NP7t6xXFneyRv/v52lu9bVjjrVKVxtZ/1oZ/Byt+YmTDuijbYjdcrZ13u7kIQ7Eqnfax3uZMRW3G1i2TDoUXZqueLLlWLuEiaoGHcKuDrMFeTkh9/D9nIq/L6UF79pWilP/Txmh6QFcG3PWuvqu6jcYf3lTl3rL2hH5ifPawGo1jpcQU+aK+wsp7bjybbL/D711FPrVPYUW3vB+iY7tJ2Vadeq7XBM9WJvd3La0Yn92G64a88gey1wIscR2irtiH0rd7VOpZX3XqBPMvVDTdkwPZc7mbEDxxHaht8ddSL7G76XtnnzzTfXWod9FgOAsp1lzGCflj7vejrlN6k1E5T6FNqu3KQ4bPVzL7gb83iMEqwFkWSd5HMzhrLesy6zDaTfoU2oYqFNEgSRu4hvv/32lmYdyryC38M+7qd/+qfv+Ma70ealx6hWY4emBF6r93vH2CNlwLLg/Ij9UNLt2lqHbSv1jgpQ7ojTdq0fYjvkvCvXWS/PCbbOMkw/MQVQbyqhSYHVxvtJ+cX5d/LTglBev95URGxL7MvTbjjfbWrOta7Kk2XMPHBO/dhjjx08f63DAIo3gW045b+nhOM9U3DvpuTltanfTV/FfE1/p6XsOC9rf6+stdYrr7yy1jocv9m38G+M9vcI2whtknbI554TSHoPlQ8iIiIiIiIiclFcfBARERERERGRi3JPuV1Q1naTs3GnIFZNGjtJqJoMjfdSetbeMT2LQfYSjIhB8Sjvoywm30YJD9/LoG6R3lCCQxnjqVD62YLuTDSZ5hSIqsmuSbu3SZ/WOpQIRmI0yYUpvcx3sv7xO1meCQxKe1BWSIlx5Gt75x+fwiRtDKcECpvqavvd5G4TWiC8tQ5dMCL9m87tZplGckk5IH9HyW3cl1jODGJFV4OUD6VprOenMn1LmGywF5yy9U+T6xLfmzKeghA++eSTWzp2oiST7amdU80ypvyPQS3zDEprmwvXWld2ZD92imtQY09KuNfX8P8n+WWTfU7ElmwXrL88wzvPpQsR7U77RFJJKSefxevp79ge6fbH8Sn1gVJwyjdPhWUU+Sll/3t9y/T/bUw5xlUs97BdsFxZ9qnjfC7HGabj3jUFYaMLRt5HlzAGXWVdiRsT88jAsX/jb/yNO77xJkyBi/fG/KmPa7+b3GHzbtazaYxN/ZwkzizzBJpkefL/2W9lTKBNIoFe67DOtmCGe+5cd4NtNUzS/SYZP0V+PgWwba4bnCexP6dLQ9oRx5Hm5rTW1TjC8YDl1gJ2c6xm/9UCgHK+sBfA/m5Mbothz3VlahOTa1ODY3j6avbJnOO0+RdtMI3xGS9YbpPLTPo6jhu0B9tg7Mt2cm4gabrkpOxOCbw7uUi2MZxlNLntZ5yY6llzD2e7YdnwGXFPYX4ZJPThhx/e0hmfWA6cz/JvydiVNuMYeNuofBARERERERGRi+Lig4iIiIiIiIhclHvK7YIuDU22NEnD9+TlTYo+yaaaJI0yTEqhKE+KhCbRsa+/l3Kb5CHRsdc6jATL0wAi+aeLBv+fsrhIxfgsvvfUiOV7sv5T7LEnMZtoskDKmSaZZqRFtB3P3qZ8KtIkvosyZMqcwrvvvlvz2ORtrFOnnLbSaPV2KttJqtmuNVtOz21y2SYHX6t/7+Sq0E7y4L18bot0Tbk92wDdLtqpLcdI5ydo+73zwElzFePvmnvNJMMlLQ8sK8pd23dP+WkRv+mOxFNlIgflu2iDVu/Ybm4zKnaYInSTdoLF5DLVoppP0bQzNrCuTPLz9FsPPfTQdo39Hcu09feUWbK9RCrLusCxo0mmv/e9723XKHn95Cc/uU6h9eGnjAcsq8mOzVVnksOmr+LYQPlpk/JO7myUw8ZOtBfHbY4pkbBTys75D6XNsTndAZi+Ca3+TTZpfdjU/7Tn8veTTfI7urFMJ1nFfryX7Y2y4qRZvynj52kXOXWBLrDN9ZT3MAr9OW4X04kIe//f+rJ2Cgx/N41JbVxurpBrHc5BI/3mvdMJASkjugQQzp/ZdgL7oXb6Bm1Lt8BToS1TZ6dy3+vLpr812mkXrGN0hcjcle4gzfVlrat+f/p7in1H5md0AWjjxlpX4z3rAWGZpF0wv6e4SDT25r6TW2qbz079+Z6La5sfTS57HF9jH44NfC7LKTZhXeA4Q5ukDnB+RddLzr/z9x/tS1e/20blg4iIiIiIiIhcFBcfREREREREROSi3FNuFy3i78RNZU+ROPEapYBNWkV5E2UzlJ5F1kf5cYsevNaV5IyyKkqvKKtJhGzKqnhvOxmD0rQpyvMxnCKTanKyKXr23u+naPOBcktKiCizi9yIz2UZUo4UyRntTBsk6vJaV+4WlDYR1ok8j/WatrkJTbZ6TDm3NrIX3fwYt5rkZzrtguWR302RhNlGKPkOU5TeyD3ZniiXbVHKKXc+R8LMb9mTa5PmHjHV+2aPKVpz7mVdptybdTFptiGWFaWxaXPse/hcSm7zDEqSaY8mzea97NPOZW9sYNklfYwrRWC9Z9m08YXSb552wT4h8kraj++g/DL2Y9Rz1sd2whLbI13H2okbPJ2BfeCpNDn3dIJFa0OTm9Ypba+N4ZTIsg2wLgaWG8cO5ifPYBvimMtnpD20CO5rHfZ/sRPbfDtt4abc5NSkyX6tL5r+v7kh8bksL/ZbKWfOtdi/cBwItP80nwuU3NPWtE/uaW5QN2FvzjOxd7IYaWU8kXtYPpxfNReMqW2yX2zzMtqZ/Uyuxx1mrcO+ro1PtO05tHF5kvjvjTHTSW/NnZKwHub7plOCaJuMM7Qd6zHrab6N9qJrHt1g8j7agPnhvDx24LzgXLeL9nfaKe57p7i4HvO7fCPLjmXObw9sC1M/lL892LfQvnTnyFhF10ummffmFkhb3jYqH0RERERERETkotxTyoe98773VhAnNUQLLjetdrVdOa5gcZW2BXnh7tYUeC7v42o9n8XVxux0cZWXgWR4PTvDDLjG1bWf+qmfWqcwBSS8ye+nXcF2bVqZb8ENpzPX2ztom7ZTPwXwYTo75tPOOleVk1/ubrVdtVNowYlasLW1bn4WdZ43rQ633zEP3HnivWkjLE/agTveWfVn2bJec2cwO2AsZ+4atB2pSX1xKqeorvYC4+4x/b71X8eccd7O7aYNWPZpG3vBs9bqQcX4rCkYWbv3Jtw0AFgbG6Z793ZI9gK4TjuKsdsxO1xpRxwP+DvuDGcHnjsdb7zxxpbmLkt+xzb0/PPPr5vS6sYpwYp5jd/XduenOUCrc9xRZRm3XSiqrlje7HOiZmEZswzZd+c6fz8FI8538NumgI/H0spp6uPbu6YgoG2XkGU/BXNNvW+B19Y6tEn6LaqAOLYziFqewf9nHpi3FpCReWhldkwQ4GNoZT/NUds8eArqyTy3YHpTX9d2rjlucx7c+s2J/I7tuAUKJ5xrTUEUUz8YeO+cYHp7Y/X0ra2t7tmRc5Gp/0qdbzZaqwc6p41YJ6hySz80BcnlLnsUolSNspyohkma7YdjzE1of0/tKUvJMYcUpHxZXvyGFoSbf3ewv29/d04qMNoqv6N9qZRkOUcVx7JlfvkdaRscc1pw7ttC5YOIiIiIiIiIXBQXH0RERERERETkotxTbhdNfnRK8K+981h5fQo42e6lJIZBvChJaudUU/5CCU3upZyMEkK+I3mjHJqyTsr4I72h7P0cSfmedGm6t5XxdPb03d410c6Nv563PI8yPtavFpSF0rUpQFXeQXnVJCPPd+59+ym087733JGuX7/Juya3mUgmGbCNEjCWXcpmCjbFd0QiRvuxvfE877QjyiwnyX9z0TrHHaK5DZwSAHTP9eVu94TmHsPfUybJPinndrPvIS3YGiWy/H+Wd/qkqY3sBVeb3IiOpfXhx4wN6VeOCSaW501BtFqwQ44NdJ9obgVToK4m7aYMk++lfDbvpqsBJZeUu0deS3nuOW2kyWWncj3FZYa0AK6TBDby8RZ8lf+/VneDoR051samLFfey7E66ckloY0ZvJdj2U1o86pj3CNakLxzx7S1rsqJdmB5URaeMYFjB/PIvijfwfLimMQxI2nOtU75zttqI3tz3zbP2XNV5XPJXjA9ljHTJGXLPottj20n7+C1KUhf2tHk4sr6mvlcCyB8EyaX6fb/7Z2TK/eeG8zkzpSyZ92dfteYXPfSVqYg7iRtcwqs2ub7LLtzA0lPf0809v4+nJ6b+jXND3lv/l5g2U+uYilz3st6zbrcAsNOLtDNJiwbtpfkrbmGXwKVDyIiIiIiIiJyUVx8EBEREREREZGLck+5XTQZ0TGS8nYO70ST1jbpLd8xycLaGdE8p5jS/hbBnb/nCReMbBrpGSVLkcVez2+imL799tvbtXMlzNc55qzjJq2dJFOnyHBjD5Yl5X0kUnKeVU+JLKMipwwpzeRzebJCrrNcKWM65dztm0B7H3OiQdiToTWZ2WSTdq4x5YCTvC33UiZOuR/lymlnk/yNrkexBSNhk1ZOx0Q+Pob2nGPOk96rJ0zn+46R1rZTKRIRea3DExASyZ9lTNtSfh4JNNseZbhsA5ET7p1MwHv2TsC4KXnXMWeM70Uqb1LPvajZ158XKClnG0iZs+z5LPZhGV/aue3X08k7+zWmm4vNbckz+du0xVPcKac5QCvXqZ7RtYhjdGBdZX+RsZh91uuvv76l6WKWMqZ7GN1cKLON3HmS7JLWf5172sWelHy6nnQbw+92vT2LY0ZcKSZXGNov5TvNKVheaWfNlXWttd58880tnX6Sz5pORUofNZ0scSptrrTXLsh07964Prmtpj2wTtIetGPGFLqtcu7L/KQ8j3GdTRthHqYxpb3rnDay5+o2nWCxVweaHad5QcsDy43th/U0duCz2E/xGXvuHCR5mPrYdlINy47uUDdhz1X2lLF6bz6w5yqz1tVpUfx7jXagy3D6n6k9sV7n3sn1trlYTCchtXF26itvG5UPIiIiIiIiInJRXHwQERERERERkYtyT7ldnBKBvkUvn6ScTUZ0iotG3Bmuw6ixiRAbKfNahzI0Rg6PnIYSaMpwKR+PuwXlgZTdUOaTb76tiL+tPFsk+eneSX7eZJrH2C7lNUmSSbMdXWb4jOa2QxkUyz7uGpPUuUnoJlnqTZjkinu0qNhTG2v2Y77bqSDTc1nmSVN+TFky3xdpLV0GKBNv5cD/Z7tobYSc43bBfKTOTKeMNGlsc/Pis66n27NYxh/60IfWWlcnWax1WNcpCY8MktGtmV/2Q3E9muSodCGLfVsE5wn+P90QbkJz1WqS6bXmU1wae33pKbZmf09Jf+ow80XJOcspfdvkjsj3xZbst6YTSO527Sa0vv2YNpL8897JPaf1WZQSs4xT3/l9rHMs77QRjt9pY2sdtpEXX3xxrbXWBz7wge0a3fuaCwbtyTbUZLSTe9RNaLJxluckx23yb/7ulIj0LPPYh31RcxFb68rWkT2v1U9VItM8gHL0pFnO00loed9t2YR5PuVEkXai1p5r5uQmwPwnP3Q5nfqkpPlcljfbQMay9q61Dr+5ubiS5pp4CdrpbXvudsfMwVMG03yXfVZcUpur9/XrcQOgvSa3i7QFzjFoOz43ZXzMqTitz7rNk94aNx2f298pk5sTXSlaftin0S015Tj1JxwbMr/m35d8F+fEdMMMfEdzwWA5nesKczdUPoiIiIiIiIjIRbmnlA8kq0LHrDa2/59WwdoO/t45rtzp5XO505qVLe4sMRBJW0njrglXGLnymAAlXCmezjpu3HYQpGOenZW3aQWuBYaZvqMFA6U9piAzKTfuME7B9PIdLHemuVOf9BSIqu3y3eYK/Sm/39tt5m4R06GdNb9WP/ubv6fd3/ve927ptJdXXnllu8Y28PDDD2/pj3/842utw+CpU5C+7Obze7mDdkywwdugvacptNbqdYN1mbseLfgX38UV8gQraoFo1zpsO6+++upa67Af424j+6/UBQYSa7tUfPfUb5KmTDh3V7eNE5MKa0/tMP1/sx9pZ7Szj+dOFO+N/Rggj7/jTkUrJ9qM9eU73/nOWuswcPGkfEj6lIB3d4PjVVM+TCqI5IPlwzrFdO5hPeT/swzzDqqAuLPOMfzpp59ea6311ltvbdd++Zd/eUszeGV2eLkbxWeRtG+2c0LbtPPZz1XQTfOJ9nzWjdbHsWzb/7PO8llUZ6X82f+wDbDv/+3f/u211lpf//rXt2s///M/v6U/85nP3JGfZ555ZrvGnXjuZKbfojKi9YFr9T75HJu0uetU7q29TAHn2jOmPovfnfGTtmN74b0pC9ZljvsMJJ3xflJcUM0Sm09znr056W3ZoylR9tgbN9bqKiL+jnOclDG/j+2OZZ/xhv0F6znrbOxIG3Fs4twhz5vKoSkibjPYOjklMHFTYUxqwT01A/skzjHbc1swWtZ1thGOy+mfqC6iHWiftCf24XuqQpbTuXOtu6HyQUREREREREQuiosPIiIiIiIiInJR7lm3iz25DqUlkZNNwdCahKoF+FnrUMoUaf4UHGdPAk95UztjdjqzmNLRyPynYHqNU86zPfY5KaOpXJvMaZI3M/+RJvG5U0DN2GYKKkbbRbJHiT+lSz/5kz95x7fxeyY5Ze6lZHQK4JTvoNsG5W034RQpYasHxwSmSpkzryxbysUiS6X0n2m6aDz77LNrrbV+53d+Z7tGiTLzG7cLSs8oN2u/m4IwNnncJFM7leaatBeAlExBdvm75trCNCWVDboYsU2mbbCN0PXl05/+9Jb+2Mc+ttY6lD9Tvsw6nr6K76V8me0wckPKRqcAvzfhlCBULSgrYdml758kjrRP6l9z9VrrUNYZ2TllmJP7WxtH+A6WYwJasW9tAfTIbQVxa1Loye2iuepNbhfsW/IMfjPLgkEgU97sxzjOvPDCC1v685///FrrsH4zj3/37/7dLR0XDLpoMJBYk/izX2U9YJml36M9mqvEKbCcmivqJPNvLgGsO7RJ+gH2a5Tu02Ul/TXHJ0r+GWTtpZdeuuNa7LTWWo8++uiWfvzxx9dah4ETv/nNb27pJo2exhHWp9QH2vfb3/72uiktEN3eHJbpSVJOWl/Y5rtrXY3hU6DeFhCZYwPbKedKuZf24L2vvfbals78YwoK3ObBvPcct4u9wOHTuN4C35Img6ddWBYkbakFab2ebgH4Wb84d2quRrQt63fsO42PU6DWcM488OhuDAAAIABJREFUa63uKj/9jdH6rCmwabMr6xbnj7wem/D/aR/2X6nX/LviwQcf3NIf/ehH73gu599T4M603+nvvDa/vE0X17uh8kFERERERERELoqLDyIiIiIiIiJyUe4pt4s96dh0qkAkJ5QsTbKn3EvZIe+lhCaRTSlNozyJEsNIvBJBfq1DmQ9/1yQylONQrpNnUMZE6WKTePPaufLM0M46PuXs6UnG2eS+/H/aI7JAlvskKY8dEq38en7uv//+Ld0knyw32j8ypUnq3lw0aM9zo5Q3ae70zCbPpMyKz+L1lCOvMRo8JWJpI6yTTFOC/K1vfWutdSjPpAz89ddf39KRqdFOkf6vtdY777yzpVMOlB7SPnTXyGkNfO8Ucf5UmvvOKacpTCfwpF9jW5m+Nfey3dB2lCqnvGOXtQ7bNMv+E5/4xFrrMBr9d7/73S3N8kw+md+p724Rv8+VZ5Imbd27d3KjalH9p5OH+O3po9guJpeAjAOJ6H89P4888sgd+WE7pkyWY0rs09zYrl9vv2ebPZVWrye3izY2sm5Mp+qk7Fk/2U/xeuzAMZnzAcrnU8dZZ3NyyFqHfXva5CRhpjtafse+iWnWpdy7d9LJKbSTQia31XZiAvsffi9tmXJmhHi6WvDe5IduduzX2klHU99Kl6X0bQ888MB2jS5g/LbcyxOWaGuezJS2Qdcd5v1UmtvqMa5JbV429bWpi6w7k4tk6hrbG8uN48s3vvGNtdbh+M2xmmWfukI3pmlumPKcJOdt3rPn5ngse+6UNz0Jbi9PtAHrf75rkvhzXE9fxjY69fXpc/is5oq0Vp+r77kv0LbTyT/H0spuOuGwuTFN7vP8Xa5P7i0kz+O4zn6V7ntf/vKX78gvy+Nnf/Znt3T6S54sxj6tuRtObsYsh7R/uvBzzLltVD6IiIiIiIiIyEVx8UFERERERERELso95XZxikyKspnInigLarJCpvkuynEoo4sclnI6ygYpf4nk7Ld+67e2a5Q6/czP/MyWTiR/5peSyhZBnRKsSX6Zb6LU85zTLlo+mjx/+h1/z981WeAUvf9DH/rQlo5tJqlji4j9xhtv1Ocy4m8kVpQo0XZMp+z5e8qYmkTwXFeLiZTpZIdTXJfacykNZ8TqFv2XZcS29/LLL2/plNl0wgPrdaScfC9tTVtFvkaZOOXndNFo8vFzTiBpktFj+rHWnlqEaN5LKSDbAGXNkZdT9kppLaPCR1I8uQ6w3GLz++67r+aRMtqkWa5sm7RTk7SeKylvUsw995frvwtNGr7WVX2ndJLtnBLl1FvKN2k/9n2Ran7961+/4xuuf8eTTz651jp0KUi7WetQUpm8c8zac7s4JoL+MTS3icklj/lI2U+uFiTfRVch9h1sOxxTAl2IKHFtbZr9PSX6cW9iv8k061LayJtvvrldo6y/jRmU907t8FhYF5sL0RRFvv3/dApAO1Vkco197LHH1lqHYzRdWL/0pS9t6fRLfBbLi66WkaD/zb/5N7drrNccx5P35gJxnTyD7jrHuHZNtD5xcj9jH93a7TQPztg3nRDG67Edx1yO++yfkp5O0uH4k/bA9sgyZHk3l2PWW7aHwLbL8etU9lwIJpeYPdu1E+5Y5/n3Bb8vtuG9HF+ff/75LZ3vprvlpz71qS3NviMnXbHcJleJNi9srn28hydinXuKVbPJNNdiPUobmP4GYXtq7lQcL9heYivWZc6D6LIVFwrey7GDectYRluznNupfnt9wlpX9mHZ3ObJYtdR+SAiIiIiIiIiF+WeUj6cskvfgoJxVZGrP22FnCtQXN3lzkkCVnE1ksHBeFZxVn+/8IUvbNe485KAbcwPVxC5A9JUG1yt4g4J85vVS66+8R2n0nY/jgmQl+tTILG2Q8AVbe7att2rKUgSd7VjG+aXO1bcVcmKPleKmXfujiSAIlctp+A1YVq5P5fUiWMCHKb8mT+WB3+XlVWWLXdFWpAh1ln+jrslKacWwOz69XZ+8RTYLPWeOx1M034pM37vOUFZW7m0oKPX39nayFQueQf7HvZZrLdRVbWz1dc6LJdcZ77aTtlaV2X4xBNPbNemgJNROXA3haoWkrbBHZJz28jUR+3RAu8R2ic7ERxHpiCfUaawXTDNwFJR0HFHgmkGdUvwydh8rcO+n31UxgG2edq3qUVuK/BnUx7SRlOw0dzTdoXXOqwnKeNpvONz045YP/mOtts9KcbYt8Tmjz/++HaN7Y27k9lxpO2nc+iTH7Zj1p+bwHoSWAZTYOLYj7uubPvso9OXsOx4L9VBSfNezplYzlHTsbw4J4giaK2rOjIFjo1Ccq0rlSRVWmwvDdYhqu1OhWXcxqipLabt0F7Tzmdsw7KiaoptJ30Zd4BZl9mfp96wrFhXW/Bd1gPWJfahyRvf2wJYMw97ARJvQhsnp/4g9uA4yv6NbSx5bWPFWof1uz2Xfwfwb5GUF+3BoJ+cX+dvG5Zrmy+tdWU7tp+pzwr8Xt57E/YUkW2cWWvfJqyLaRssr0mlmLKbAtSyXjfFHsdf9jn5TrZTlh0VEblOmzFgMtWPqQ/so/mO20blg4iIiIiIiIhcFBcfREREREREROSi3FNuFyQSnknq1IK/THJZSsByLyXMlNgwuEikjZSpUKLDYIaRUVIeR1kUJcqR0VJ2yHdQOtYC5FFiw+fm+hS88lQoo4q8Z7JHO195OneXz42MaTpnmN8SCRilaaS50rB8KFeizSPvo5SdMidKqSJpmiSG/F3yO8m9bkKTuU2B4ZpNpnOR+btI5XhtCnKaesv6y3ZIiV9cXShdYx75jPxuOt+8BW977bXXtmtse00O2AJb3YQ9l43p2c09Z7Jd+gnW30l2Hds1eedaaz344INbOpLjKRBTCzhKG7D/ogQ2ZcJ+ivJkEpvzuecEAL3+rNh+cm8he24XJHWYfRHls02qTkkxpZwcR9LfM4/MO8efSPbpYvPQQw9taV5P+2UboasfbZU624IH3gT2lbEHy5htpI3r7Rz26/emzk3B61qwWvZDdF2hBDYBQNkuKFX99Kc/vaWbKw7l0Dz3PbabZP1t3OZcgIFFz6WNDSw79v2tjUzBziLPbi59ax22gZQDv5tuDHTLSptj26O8mPnJOM9vo7sO85M8sC1Mc5jkk/Vtci07huZuNM13W4DWycWV41PKO+7Ea81lkTrONsI+nm0kdYXvpb3obpR76O7Bcm1zjhbM+Pq3JQ+st3suM3djbwyZxurWPibX0cwLOS4QBpzMeM/+n/WU15sbOl0DmN+47vFe1oPWD9H2tAfbXcb7Fmz4prDMTwnuuucKzXJuQYPZrjnnST/POjfZpLnkToGL02e1wMhrHc5t0/9MbnC0SdIcRy4VDH8tlQ8iIiIiIiIicmFcfBARERERERGRi3JPuV20qP3TebrtzFfKaygnoRQwci9Kzyh7aue6U95HqQzvjUyHcmdKo/m7pCmL5fdQhhuZf9w61jqU2FBGG1kNv51yxFPhc5rEn+yddUxZFyVPkaTx+6cosZENTjI1yrIij/qJn/iJ7RqlgJQmNdcPSj4pnY0Ea6przS2CtuezbkI7J3o6Z71Jzac2xG/IvdN555RqRs48nTrCe2MTSvX4XEoxY2vaf5K35QQAygEnd4h8E591zmkXrR40N6+1Dt1vWnuiPZpLFv9/is6f9sQ80B6UfUZyybpOCSL7vdh5kmcyWnZcnaYzpNlGUhfOdUcird5P54E3+ewUyZzfnnuY73Ze+FpXZUppPyWotEmeccyJG+29lGryJIWMEzzlh/1hO6GF33COhLmNI63O8v/XuiqjSUZOO7HvCKy/PLEqz+C8gFJW9i1xU6LbBsuC43JOgqFMly57dD3i+NPY61dom5vQ2uYka57cXsJ0sljKjP/Pes/vSZlPEe0ffvjhLU2X2cDvaWMR+wTOmZ5++uktHVs1ufRavcz3Tkk5ljYGTWN1c+1kG6ENOFdqke35rfxd5kKsExwbOK9MPtkuaEdK2JubHdspXcEyrp/SblhO5/RZzZVicmFurmLTs/jdscfUftiX53fs0znf4Zw572NZ0F60R97HsZx5ZBnmFA3OYSd7pM+YXGxvAttac4Vp48xa/W+MyRUm385v5N8F7FvSDjn2NLfItfp8gbbm36Mps8ldjeWQMZxzvOZqwfTkunPbqHwQERERERERkYvi4oOIiIiIiIiIXJR7yu2iydYmyRJlM5H4TJHlm4SVUqdJ0hbpM+VmlIDxuZHmfOITn9iuUX5J2UykO5TwUNpIuU5cMCiRnSLZJz25BJxKk60dc7JCc7tgPig3Cu0EhbUOyz4SQkpkJ/nu/fffv9Za67777qvfQ6lUrvO5lLFR0tlkSs1daK1eL8+Vnk1y2NDcJ9a6Kl/WHUri2kkhjEY+SZjzPVP9ZF2OC0bk/tdhHUj5s2x5ckmLvD19+145nXPaBb+1yR0n9470ZdPpIyS2maS1bCPNHpP89LHHHltrHcrw2MfSHunLplMpIsnku6eI30zn3czjMadN3A0+K+U/nXbB9hr7HCOvTdlM9mV7in1YnpRJPvXUU1s65UyZLN9L1430cZNMli4WOR1hcj3bcz06ZxxhPWl1fHJNSv74G46ZPP0lZcBrfBajief6dKLIpz71qS3d5LJt3F/rqg3wvRwvmG6nWDU5PfN5W24wfOZaV984uSY1WF4cR1pfNLVnfkPG3unkA6ZjY+aBYxXvTZlSzs/80C0wz5tONZjGl3BK+V2nuRNN+Wi/m9zW+H2B7Z7/z3SbL/DkKo7FyRtdPKaTmVJXpj6Y/VPmDtP4vNcnneNOybrZ2sfkirR3CkOb+7I+sgzbCXis53SfYD+UcplOdODcN+MNbc+/cWjn9KF7/TnzwLnzuaddnOKa1MZ75nsq83bSG8uLdTn3TifN0H5xsefv+Tdhm9vx70d+O78j40g7FXCt7gbeTom5BCofREREREREROSi3FPKhxZMb9o9b8qH6VxkPiMrQVwR4gohV6uySsUAeVxh4ipWAiJxp52rxjm7da2rVWU+lzCQTNLTOdZt1XUKYncqp6zut+u0F9N7u+wtAMxaVyt+00oz8xDbsE7wWcxD6t20M9WUDdOKYds1nQLh3AS2kTxr2iFq9Z6wPLj6mzRXwLmTwdXwrGZP7ZTXW1C4vV1m7oRM6pjcO7ULkvzy2/eCWN2Nths22bgpkibb8fuyw8GVcpYFvzV1mPVkUjbEprzW1DJrXfU/3MmY1Ayt3+CzaPPsME1BOm8CbZIyPUbd0t477Z419Rr7MNb17Dqx7JjHr3/961s6Sjc+i8EOuXuU8YW7aRyfWvDZaQe1sRdo8Fho+zyTdW7aOUo74jczCBtVhvku2otjJttTyu2Ys+KTT97LPLJc8m4GK+PuJG0a+7NNsxw4/iS/LLO2o30K7M/3yqHNpWgTfiPrfa7z+RxT2B5a/ZzG2LybeWAbYH7Tv7Bd8NujHuI9tB/LvNmKyj4G7j2VNkc4ZlxPegrE2uZK0444vy+24djB+SrLOLu6nFNxPsHnXv/G69/Dd8R2/IYpOO3e3wun0sajvTGO7+S7+f1tnsV6PNmuBdXn7zhG5Ln8BrYPttf0LXwW6z8DSadPmsaCptRhfs8Jfn/9vW2s3ptb0yZTG0h+2Y+xXrM9pOz4dwP/n31LAhfvBXnndX4v+xmq+NKfNoXDdW472PoeKh9ERERERERE5KK4+CAiIiIiIiIiF+X/V24X05nrgZIlyowo+4zEhjKXSc4YGR4DfFDeQqlSJDbMF+VWTbpDmR6lMJRc5t4poAjzkLxNASlPhc8+RQrY5D0sY57T/cEPfnCtdShHo51bsMcpcE0LYkSp3CQvj534LpY361LkWLyXkl4SO7YzmG9KC0I0uZY0W7E8KNWLdHKtq0CrzPcUgHNPxt3qBdvj5B6Ves/38tvZnuLSxPo2uTSl/fO9Od/9JjQZaAtMuFYvK95LOTDtkT6Jdbad9Tw9l2UY2/IZU1Bfkr6KZUxpIgMh5nmsJ5PLSL6N9jpH4r/WofSxtREyyVwD+yLWv/RhHC/YT7CcIo1kvz4FUfyJn/iJtdahHZobCfNGNyhCyWykmpS+Ti5rSd9W4GK6G6Re8vsmKWpgGdN9kXU5eWW/TXlqk6qzDU3jRNokbTsFGG5wrGMbSXugBJrvYF1Je3nppZdqHm5Ck3rzmZNLVQvAybGbNglTvzW5CuyRZ0wBXFmHck9z9VrrsE2nP+PYwry3YIGsb9M84BhYLi3g5DRvaMEFpwCg6d/YF08BhK8/f61De7Hvz1g1BciknVoQWZYhbdPuncqk/b1wjqS81c3WDiZog6m887wWtPr69dhuqrucL7RvYB72XBzpGtWCN09uxK18+C7OB25Cm99PLr6tznAcYT/F9p7vnVwZWzBHltEURLIFIyec/+Qetsc2Jq115SLDe/f+HuA3nONyvIfKBxERERERERG5KC4+iIiIiIiIiMhFuafcLppcZDpfu0lwKLuh3Ixyx5xtT5kLZSiUOkW2eYzcqknKJzeRXOd7GTGVv4skiLJClgnPXo6kltFqzzkPnHLg5HWSvTXJHb+Z5fKe97znjuuTPRqTVJ80O035zfOYR5Yxy+HDH/7wWutQQkbJGyVakfNPpzTcBMq6TnG7yPdOUX75jckv38Xv2jtNpUnD1+qSa5ZNewal8Cxz5j3uI3zX1AYivaP9z4nCTMlx6jvrZ4v0vdZVHafkL3VrrcOo/rmX8vpJrp12xDywT6Pc8J133rkjX6wHfEY7nYPP5ckDad90Z+HvKBvMc5kXRna+Ce3M88ldrJ2Q1GTbax1Gr0758//Z31G6Gkkk2z5lkpTopm1NrjttTGH95rfT1pFJTy4DzWWE7e0cyexelPi98ZVtiLZhu813UVpLdyTWuZT31Dbb2DCdpNPKk2VFe7BtJT+TJJttK2nee67bxdQG2rU2pkz9APvdwDKY3JiaNLq1Cz5jGhs4l2qn0rDesI7kO5lfwu9sLgHsH06lzWmOcbuIHVhunI/QPSJzSNpgck/cO01gcqNr97JfzPum06ZY9nkHf7/39wDfS3udSnNDm9pcsxPzObkytj6L9ekP/uAPtnQ7AYHfz/lAm88yj5zL5d7JFaOdKDLRTm8414WStBNtJldqfkPqEdsF0yynpDk+s362+cL0/yT5ZD/UTkriu49xlcn885i/XZLP5tJ3CVQ+iIiIiIiIiMhFcfFBRERERERERC7KPeV2QelQJHeU2lBOQslK5D6UkDAq9qc+9aktHbkjpSuUoXzzm9/c0pGzTpI3yp6SzynaaZOLMb+Um/EUgryb1ygn+8Vf/MUt/e1vf/uObzgn4i/zHybp2V70X/4/Jdb5FsrXWS6UXkamSQntJBtq0mHKo1iGsfMUobnJglkv33jjjS3d5Fr8Brqc3IQp0nCjnYQyRbfmyStNKtfkZmtdlRMltEy3SP2TJLNF3p1ObuH1fCe/jX0JpaV5RnODugnt5JW9E0fW6vWWEmA+933ve99aq8tX1zqsizk9pp2us9ah5DhtbpLFs1zSD/H/2W9S+p9vo+SX73333Xe3dOog80ip4E1oJ+ccI5lt/d3kLtbcd9jXtJMiKKOl9LWdPNDcoCb4bbyX9SLjIevFVB/T/mkT5v1U2B5Shyf3jzbWMh90yWEZ5h1pK9d/xzEjLk2T+xfrQeo16zpdatgOc6oH6/pUJ/KdPAmEcwf2wenrphMCbsLeaRd77qXMC7+X/UDqH9/FMqdrWfprup6xD2ffl29nGdAmLd1On7me9+Rzcn8jmWvd1ukKbO95ZuuP1urtnfWe/W47dYHjPus1afanzdtpKOx3p9+1esv5Ass730kbsbzZl6VeneK+ezeaSxb7iGmczO9oj4zJax1+a9o1v29yr251YWqjzR2ANDeRaZzjPKu1pcmlJO8+5lS4Y2n2nlxB+I0Zq9nGppOc2li958o81QXem29nObMfon3Tj9BtkrZsLjasQ7Qf62HcdlnHpvZ/G6h8EBEREREREZGLck8pH9r5o7zGVVyuFGWXgNcYdOj555/f0lkV5koRd4i4Q5KgdtMZ3ySrYLy37a4zv1OgJqocsgrPb8+q+1qHK2JZZWQeubNyKi3gE1f59gLQTIHSuDqdlXDey1VnrvJlRY/BBrnazpXNrFZyR5+KC646tp0l2qsFLmKAvU9+8pNbmiu9r7zyylrr0F5M34QWzLEFR1rrcPesBQGdVtzTjtieWI+4gp3VaNbZX/iFX9jS3GVJmXKHn+XRAj/SDpNaIXaj/T/60Y/WvMeWbDe891RafzAFPiLp16b+hOXSAjAySFULcMl2wXQLDMu2kCC7ax3W5aYuYZ/FNp3yZAA27sa1XUwG06Qy4iZM532HKcBhvm36/6YUmoJzkTyX/Rp3V1kX8zy+t+2CMz31w+y/02d+4AMfqPllO0uav28Kn2OZFICNtpvHb576rJQtr7GN8BnJD8cW2oPlElXbFNiM70sbmHbk+dzMM9g3TWP1W2+9dcezzgkAep0WsHuqc62OT3UjfRzzzW/k9ZQH+/Af+7Efu+NZa6314osvrrUO7XDfffdtabbTjMGT6qgFEmXZcj7I/ixzCdr/G9/4xropLTDzMcqH1Mupn2oqRva//F0btyYVY+tj2w7y9XQLFso0x6rs2k7Bk1lX8h0ch6aAssfAXfamVG7K67Wu6gvHO5ZhU+JOczb+LZHy5r18L8so7bEFjL7+jtzLesCdc44XKc+9OsPnvvbaa9u1PXX0Hm3Od8xhAE29xrrBOpVvZxlxHGnB4yebkOStjfXXn5F7OSdi3nmAQsYw/n5S6aWs+D0qH0RERERERETknsXFBxERERERERG5KPeU20ULgjTJlkmkZ1Pwr8gW1+pBUxiUgxKpyHUoBaO8vMn8SXvvWleS3SmAXgvoMsnEKZGKDHpP2nosTeY0SXz35OdMU06WNGVu05m1TaZGuSwDtES6TVkRpZl8Ru6liwbtRZlipEtvvvnmdo02aG4NtymXba4s03ngTXZ3jPSt3TOdBx778Lspx3/wwQe3dMqBZUAJGOWwscnULvi+tFO6WrE+MQ/5NgYJ/da3vlW/7RiaG8PUZzV53nSONm2Xe6bAg81FiLLCxx9/fEuzjF944YW11qG0mPlhucQNhOU6uUd85zvfuePehx56aEuzTaePpJsJ28tNYP1t9X5yj2iSYNLacZOarnX47ZFGcryg21aT4tKmrNd7weJod7o3RXbOvopuB00CyjJrLlHHckyAsrvBdkHbNFk15fX8Vto8bYDt4oknntjSHLcj8ee7OI6wr2tjDtsbyzM2pUsV2yHH+4w1zNc5wfTWOuw/U2+nsaO59bVgtNdJmU3tifU+dZVzLbozspx++7d/e6211uuvv75de+yxx7Y052jpi9hXsZ02KT1tSjc0zi9SJ2nrc4KytvZ3TCDk3DO5+rDtpP9pQSiv5yHzYPbbtFcLGs05QnMzZpq/Z35ZxyP5b38XrNXdOdi/nONy3MblyVWEpN1SMs+2zG9JefMa6xPHi9iJ7bLNPZhfvpf1oM0j2L9PgYib6wf7kTZXYx7P/buEz0q+pmDF/N7kkX0A2yq/MW2f/dBUNnF/4Hex3pO0T76X7aWVOfsh/m3C78iYwUCtnFtwjE8747M4T7ltVD6IiIiIiIiIyEVx8UFERERERERELso95XZB+UqT8u1F8uc1So6a5JZSG0qH2jnBlLFQ3keZZGSDlOlR9kXJWiSXlJtRrsN7W6Td6VSG6/le61D+dSotYvEU3baV8STxbzJa2ovvbWfzUipE2/B6olyzjCmXZRTfSKFY7izXJjOjzJGyLH5H3k0pXTs54xSmiNNhikTc3GamaMnt5BaWB08baZH8P/KRj2xpusVEPkzZGPNL+6ReUDrOMmc5p0zZjukWQ+lZ5KS0Qzt7/FimyOE3gfWM+UvbnyKIs9+L7Xi2+Kc//ekt/bu/+7tbOvWS/S6lxewLI4el/Jl1gvZPvU8bXOvQvYb1KvalFJBuBjeBdTll16LJT0ySdro85B4+azpXPeMEf0/3Ptb7uANNbg6sF7HPdBpBcxOZIn43Fwy2C45rp8L6mfyx3NgntVMlpjGH6XbaxZSHvPunfuqntmuMIM56G+krXTiYbm4utMfkppi6QhsxzboUO5w7dpA2prU51fV7m03YB7br7Qz76+Qejucco3liWVy0Jjc1SpC/+MUvrrXmuSXH/HZqWjuZZ62rvo82OcZFeKJJ0mmDaWxpbhfsZ9oJcOx/OZazLkd2Pp2qxPy0ejmNr7nOusa+rqXZN9GlhvOM5PPVV1/drp3TZ00niIXJHvkuyusn2X7KczqxjWPEww8/vNY6tBHHKY6ZSXN8Zp3gval3bAdxVbpO7PCxj33sjmtrHbaVtAW60XCMvwnNzWbqT/bcwtqzmG4uL9ffF3d9jt+0L0/6yJjC+ku708U1dYc243Np1/Y3BtvWI488sqUzPt1WG9lD5YOIiIiIiIiIXBQXH0RERERERETkotxTbhdN7ronN5t+z99RhtJkOpQ4NncNyv/odkEZWuTI77zzznaNp1JQBh2pDOVNfC/lzpEWUoLVomavdSVvowRnikh/DCzPJh/dixq/55axVo9+TJr8nLJXysQpU4rEi7ZnVGG6xCSfk+y0SQxprxatnvfepjS/Se8p2dyzyRSpuLWdKXpwu5cSMkbIpsws9ZKuFPzd+9///i0dSRvvZTlTyplvYl2Z5Mz5Dj7rnBNImsvDMey1p9ZnTfJzfnf6JLq7sP+i7VKGlOHSXrRH+h9KJ9memLeUJ+WB7Ico1cy9bLvnysuncgqT5D9lM7k2sb2kzU3ucCRthO2U5fzUU09t6YwflOpS9slxJOVEFyPKKNkXJZ+0HyWx7XQDyjPZDk+lRfJvJwit1aNjEXQ3AAAGbklEQVTIT/0Qvy91mHWSZcjrkZo/8MAD9bk8CSf1knWWfRYl/l/4whfWWof24vc02X47qeb678Ixpx8cSzsJ6RQm9xeSb5vGJ35jXCabm8Bah314yolulnSBbafOcP7EvoZ1KHljfzjJ79s4fo599sbwqW/J9cmelI83e7CutlMlWK48feTZZ5/d0ul/eC/bBfOWe2lPtgvmIX0E7+X/0yUkbZ0noJxzQk/r11s/dp1TTry6/vy1DsuKpx2kbCmj57381uSd4z7rNMuwndAy1fP8XcK/cXiSGOflcTmgPc6luU5NbsZ7p1s1F6O1ruYj/P+pX07/9KlPfWq7xv6kucKwXnGORlvHBYPfwHbMZ6Qvm+ob/5ZMHjhHuE1XvuuofBARERERERGRi3JPKR9aYCqudk1nT4dpt7rt8HKliCvoXDXO6hd3m7iiy1XDKB+m4DJcFc6K7RRkkem268ndfu6ctN2Uc4Lp7a3kM09th4C2a4F2eA9XGmmPFjiGK5Vc2eOKbMqWK4bT+dZt14y0gG5c1Ww7z9fTYdrBuAltx2o6q739/3S9nRPNsmH9Sh5YzgxIxPaQ9kJlDncvaJMoU6adshYEre3qr3W405V3TIHETqUFsts7i3yt/R359v+T+qTVA7aRKfBU6i13BWkPflueN9WvtoPbdrGup/NNU9DEm9D6+yng5NQvBZYBdxzy3CnAIcspfQXHjieeeGJLs72kfnK3j8+iYivjABV0zA/zm++gnaiCYB1IHiZF16kw/y1QZxsPyLQzz3tzD3f7JmVXdug4XjAwM4OqJu8ck7hjxfEnapaprrOO5/pUL/d2WfeCpp5CynHqU5qtpvc3RQTnPqyT7HdTdrQpg+M+/fTTd+SBbYGBE0n6synYa1OmTOMM062engPfmWdP/T1Jnto4tNb+OMPnsr2nHTGYHhWNL7744pbOuM78cs5M20T5wH6Ku/KcA8QezNc0huYZk/rxVNq40AJ4X89TU8TwWmsfnDtNQeqjBGVgXPY9DFiYOReVCG3sWquXEf+fY3jKlrv0bEvtuVMw2pvA37c5xtRGUv60E8fBpmhk2bPvZ7uPrWgzlmcLXMs+j//PNtKCZDM/rZ/mWM65H/9W3DsI4LZR+SAiIiIiIiIiF8XFBxERERERERG5KPeU28Uk0w+TbCfypUnK2SRUlAtR9kUi6aFclrIuyjYje+E3UK7TnjtJeilxjTxoOtOX+WkB086RMDe52DHSsxYMZpL75xksN8qGWsBJSqYoOaZ0tp3XyzzQ/pE8UXJOSdueJJzlQDs2Gf65kqc9m0z2TvlOMt8mfea3UA5JmhybMrT/9J/+05aOnJl5mIKGtUA4lNixvuT7mwsS/5+ccyY7adLvKWAhaYGppvbS5HK0R8vDJPdmkMFIkRlYcpIvp70cI5dv8se9c9Nvyx5rddn05L7DMk39mtpoc4fjc6dAg6nXv/RLv7Rdy7nta631wgsvbOnnnnturXXorsSgXpT8R2rLYJCTRDS2puyT6RbgdC8A4rHwOS24L+sqx2L2P8dCuXcL8LjWVZ/18ssvb9dYhrw39Z5zALaXl156aUtH5sxn7QUhnaT1tF3K4TbHkSZXnlyq2lyK+WZeW+BE5nVyW005Uj7O8ZzjfAJ5c57Ad7ANRHZMmT9dMEjrk5luwRmPGSOPofVJfPcUkDLpKcgux+e8g+2CZcX8J8AqXS3YJ73yyit3PHeqM8xb7m1ur9fzm35jCiTfgg3uuUAcS2u3pwRmndpHc1Vkf8H5Kon7C4Pkfu1rX9vSDCIY+zJILsu7Be2dXJFoj/TT7DumYMGt/M7ts9q8oY0t073TXKvNn/lc2o/fnv6H/RCDPzPIdgsOz76Dz4it9uzA75j+3p1cAMNtuoFfR+WDiIiIiIiIiFwUFx9ERERERERE5KL8wG2eDS0iIiIiIiIich2VDyIiIiIiIiJyUVx8EBEREREREZGL4uKDiIiIiIiIiFwUFx9ERERERERE5KK4+CAiIiIiIiIiF+X/tWPHAgAAAACD/K1Hsa8wkg8AAADASj4AAAAAK/kAAAAArOQDAAAAsJIPAAAAwEo+AAAAACv5AAAAAKzkAwAAALCSDwAAAMBKPgAAAAAr+QAAAACs5AMAAACwkg8AAADASj4AAAAAK/kAAAAArOQDAAAAsJIPAAAAwEo+AAAAAKsACPLY8wo87sUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Print one random sample image from the training set and the corresponding label\n", + "#index = random.randint(0, len(X_train)-1)\n", + "\n", + "# Visualize rgb vs grayscale\n", + "n_rows = 8\n", + "n_cols = 10\n", + "offset = 9000\n", + "fig, axs = plt.subplots(n_rows,n_cols, figsize=(18, 14))\n", + "fig.subplots_adjust(hspace = .1, wspace=.001)\n", + "axs = axs.ravel()\n", + "for j in range(0,n_rows,2):\n", + " for i in range(n_cols):\n", + " index = i + j*n_cols\n", + " image = X_train_rgb[index + offset]\n", + " axs[index].axis('off')\n", + " #axs[index].imshow(image)\n", + " for i in range(n_cols):\n", + " index = i + j*n_cols + n_cols \n", + " image = X_train_gry[index + offset - n_cols].squeeze()\n", + " axs[index].axis('off')\n", + " axs[index].imshow(image, cmap='gray')" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Un-Shuffled \n", + "\n", + "[41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41\n", + " 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41\n", + " 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41\n", + " 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41\n", + " 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41\n", + " 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41\n", + " 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41\n", + " 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41\n", + " 41 41 41 41 41 41 41 41 41 41 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31\n", + " 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31\n", + " 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31\n", + " 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31\n", + " 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31\n", + " 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31\n", + " 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31\n", + " 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31\n", + " 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31\n", + " 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31\n", + " 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31\n", + " 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31]\n", + "\n", + "Shuffling completed \n", + "\n", + "[ 4 16 17 17 2 38 2 42 5 23 8 9 8 23 31 8 2 31 1 28 8 13 4 29 17\n", + " 5 17 22 12 10 10 12 12 9 1 1 18 9 15 12 12 17 2 13 5 13 35 1 35 30\n", + " 12 14 11 3 35 17 9 26 36 5 17 17 35 2 35 33 13 26 4 38 41 27 23 16 2\n", + " 10 31 15 5 25 25 41 8 9 35 3 35 2 3 10 15 13 2 14 6 7 12 5 12 10\n", + " 4 13 10 12 2 11 8 38 17 18 3 38 2 2 42 7 25 12 10 1 2 11 2 12 9\n", + " 30 3 6 13 27 13 3 7 42 26 25 2 5 0 25 10 21 2 10 33 38 15 1 12 7\n", + " 35 27 18 9 10 5 1 10 7 12 4 20 5 13 1 1 4 18 1 3 8 9 3 12 13\n", + " 18 39 42 35 38 31 5 25 25 8 5 8 2 5 2 23 13 10 12 9 20 35 3 21 9\n", + " 2 9 2 27 2 25 16 2 20 5 9 24 1 2 25 3 18 1 2 24 15 15 10 9 15\n", + " 1 41 30 38 1 17 33 33 5 35 1 1 4 35 1 41 15 4 11 3 18 7 3 3 2\n", + " 38 1 12 25 2 4 16 17 11 5 7 22 38 30 10 26 1 3 2 13 31 18 17 8 40\n", + " 16 7 8 38 8 31 13 5 12 5 9 12 14 11 13 2 11 13 5 23 20 33 39 11 40\n", + " 4 4 9 8 3 8 5 12 13 23 17 36 32 38 11 2 4 7 19 34 7 30 10 3 9\n", + " 1 1 16 28 12 5 22 13 33 25 25 25 12 14 1 8 16 8 21 1 13 4 33 22 12\n", + " 5 4 35 4 2 5 18 11 4 4 23 8 25 7 3 7 42 1 18 24 17 35 10 2 8\n", + " 31 11 18 10 1 1 33 5 25 40 8 15 7 3 32 1 5 14 25 15 16 28 10 12 38\n", + " 35 11 4 1 9 4 38 4 26 10 33 1 25 38 8 9 4 23 4 37 38 30 1 14 38\n", + " 10 22 38 5 5 4 14 11 18 9 14 37 9 33 9 38 38 12 22 17 4 25 38 30 7\n", + " 40 38 1 12 12 17 3 13 18 13 18 38 16 5 32 4 3 9 11 40 28 3 30 40 9\n", + " 6 35 25 25 4 7 16 38 7 1 13 41 1 2 7 28 3 1 2 11 15 28 12 3 8]\n" + ] + } + ], + "source": [ + "### Preprocess the data here. Preprocessing steps could include normalization, converting to grayscale, etc.\n", + "### Feel free to use as many code cells as needed.\n", + "\n", + "print(\"\\nUn-Shuffled \\n\")\n", + "print(y_train[0:500])\n", + "\n", + "# shuffle the data\n", + "from sklearn.utils import shuffle\n", + "\n", + "X_train, y_train = shuffle(X_train, y_train)\n", + "\n", + "print(\"\\nShuffling completed \\n\")\n", + "print(y_train[0:500])" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.0546461022947\n", + "0.0542052554114\n" + ] + } + ], + "source": [ + "print(np.mean(X_train))\n", + "print(np.mean(X_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.999573077326\n", + "-0.999576521442\n" + ] + } + ], + "source": [ + "## Normalize the train and test datasets to (-1,1)\n", + "\n", + "X_train_normalized = (X_train - 128)/128 \n", + "X_test_normalized = (X_test - 128)/128\n", + "\n", + "print(np.mean(X_train_normalized))\n", + "print(np.mean(X_test_normalized))" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [], + "source": [ + "def random_translate(img):\n", + " rows,cols,_ = img.shape\n", + " \n", + " # allow translation up to px pixels in x and y directions\n", + " px = 2\n", + " dx,dy = np.random.randint(-px,px,2)\n", + "\n", + " M = np.float32([[1,0,dx],[0,1,dy]])\n", + " dst = cv2.warpAffine(img,M,(cols,rows))\n", + " \n", + " dst = dst[:,:,np.newaxis]\n", + " \n", + " return dst" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Original shape: (34799, 32, 32, 1)\n", + "Normalized shape: (34799, 32, 32, 1)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 96, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAADSCAYAAABJqrmlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGHlJREFUeJzt3XuMXdV1x/Hf8ntsjz1+YfzANtjGGAjggiBgJ3VClSZRIVSlbRrShyrUKG2jKq1SJVGT5qnkn7ZqVClK0rRVQpIGIRElldyCC26CwEAhAmMeBjs2M7bHGOPH+IWxvfvHuWQG79+xz/hxPbP7/UiW7DXnnrPvvcNac+Yu1o6UkgAAQHlGnO8FAACAc4MiDwBAoSjyAAAUiiIPAEChKPIAABSKIg8AQKEo8m0QESMjYn9EzGvT9V6IiHec7WNPcZ47I2LNmZ4HwLnX7pzULhExKiJSRCxo/fufI+LTZ/kawyrXjTrfCxiKImL/gH+Ol/S6pGOtf38kpfS9wZwvpXRM0sSztLwm11tyLo4FcH4M95x0vqSU7jzfazjfKPJGSumX3/wRsVnSnSml1XXHR8SolNLRdqztZIbKOgCcXcM1J53KcFnncMav609DRHwpIn4YET+IiD5JH46IGyNibUTsiYjtEfG1iBjdOv7EXyHd1fr6qojoi4hHIuLik1zvtohY3zr3AxGxZMDXeiLiExGxTtLBAbGVrb+Pb11vT0Q8GxGfbCUJmWO/1HpOd7XW9UxE/MqAY/8mIja1vrY+Im49ay8qgNPWzpwUEYtaj/2DVv7YGRGfHPD1ca1zbY+IrRHx9xExpvW1X4uIzRHx6YjolfStAbFPtc61LSJuiYjfiIgXI+K1iPjrAeevfV5mrXdFxOdaf1/V+ojizT/HI+LDra9dHhGrW9d6PiJ+a8A5ZkTEf0TEvohYK6k2Vw9FFPnT95uSvi9psqQfSjoq6S8kTZe0XNJ7JX3kJI//kKTPSJoq6WVJX3QHRcRSSXdJ+pikGZJWS/rJCd/UH5T0vtZaTvQFSbMlLZD065I+fIrndZuk70rqkrRK0tcGfG2Dquc2WdKXJX0/Imae4nwA2qMtOWmAmyQtUpVXPh8Ri1vxz0q6TtJVkpa1rv2pAY+bq+qjgnmS/nRAbISqXPVFSd9WldeWSVop6QvR3z8w2OclSUopvS+lNLH1W5EPStou6cGI6JR0v6TvSLpA0h2SvjngZurrkvokXSjpTyT98amuNZRQ5E/fQymln6SUjqeUDqWUHk8pPZpSOppS2iTpm5J+9SSPvyel9L8ppTckfU/SNTXHfVDSj1NKD7SO/aqkSZJuGHDMP6aUelJKh8zjf0fSl1NKe1JK3ZL+6RTP639SSv/V+szuuwPXlVK6O6W0vfWcvy9ps6r/mAGcf+3KSW/6XErpcErpSUnrJV3dit/R+trOlNIrqm40fn/A4462vn5kQM46LOmrrWv/u6obmn9IKe1PKT0t6QVVPzToNJ7XW0TEZZL+RdJvp5S2SrpV0oaU0nda53xC0o8k3d66mbpN0mdSSgdba/lu02sNBXwmf/q6B/6j9Y3zd5KuVdUYM0rSoyd5fO+Avx9UfRPMbElb3vxHSul4RPRImlO3lhPMOuHrJzvWrWvCm/+IiD+S9HFJ81uhiap+mgZw/rUrJ0mSUkp1x8/SgJzV+vvAfLUjpXTkhNO92rqxkKQ3C/+OAV8/9Ob5T+N5/VJEdEn6saRPpZQeboXnS1oeEXsGHDpK0r9JmilppN762m6RdH2T6w0F3MmfvhO37/uGpGckLUopTVL1K6s4C9fZpv6iqogYoepXW1tPspaBelvHv+mi01lERFyi6tdWH5U0LaXUJel5nZ3nCODMtSsnncp2DchZqn4t3zRfNXFazysiRqr6LcF/ppS+PeBL3ZL+O6XUNeDPxJTSn6v6QeO43po3h9X/dkiRP3s6Je2VdKD1OfopPyNq6G5Jt0bEytavjj6h6vOhRj+5th7/6Yjoioi5kv7sNNcxUdV/nDslRUTcKemy0zwXgHPvXOWkU/mBpM9GxPSImKHqc/67zuL5T/d5fVXSaEl/eUL8x5KuiIgPRcTo1p/rI2JJ6+ODH6nqOeiIiCv11o8ehjyK/NnzV5L+UFUB/oaqxpczllJa3zrv11UV2PdKurX1zdfE36r6aXSzpPtUFf3XT2MdT6tqwntM1U/ql6n5DxoA2u+c5KQGPi/pKUnrJD2tKk985Sye/3Sf1++pahbcM6DD/ndTSnvV35S8XdVvP78iaWzrcR+VNEVVHv22pH89W0+kHSKlM/3NCYaTiPiYpNtSSjef77UAAM4t7uQLFxFzIuKmiBjR+tXWxyXde77XBQA49+iuL99YSd9S9f/J71b1edk3zueCAADtwa/rAQAoFL+uBwCgUBR5AAAK1dbP5FesWJF9NnDs2LHsuJEjRzY6X91HDcePH89ib7yR/x9n7tpTpkzJYhMn5oOfxowZk8Ui8nkM7nyStHTp0iy2fPnyLHb99flgpYMHD2axu+++O4utWbMmi/X29maxsWPHZjGp+WvmXm933IQJE7LYqFH5t2BfX1+ja9Rdp2nskUceYZAPGiN/9SN/VYZD/uJOHgCAQlHkAQAoFEUeAIBCtfUz+VmzZmWx11/PJ6y6z4bcZxLnwvjx47NY08/Yxo0bl8Xc85OkzZs3Z7HOzs5GsW3btmWx559/PosdPnw4i02aNCmLuc+VJP9aHDly4uZR/jpHjx7NYu6zQWf06NFZbP/+/Y0eK/k1uu8pYDDIX/3IX/WGWv7iTh4AgEJR5AEAKBRFHgCAQlHkAQAoVFsb71yDhGsoqBtucKK6ZgbX5DJ16tRG55w8eXIWc40ZjnsuBw4csMfu3Lkzi7nmk40bN2YxN0Rj165dWcw10jR9D+riHR0djWJuIIS7thsw4d4rN0BDkvbt25fF3LppvMOZIn/1I39VhkP+4k4eAIBCUeQBACgURR4AgEJR5AEAKFRbG+/27t2bxdwUoabThuqmMbmJQ4cOHcpibpeipg0Orjmmq6sri7kJTXVx14jjXjM3yck1qbgdpNw0Jfd6S75ZxF3HHedeH/dY14TjmlHqmoeavq91O34BTZG/Th4nf1WGWv7iTh4AgEJR5AEAKBRFHgCAQlHkAQAoVFsb71zzwYgR+c8ZrhHCNXXUNSO4c7rHjxkzxj7+RK5pxk06WrZsWRarW2PTKVRuW8am21a6Bh43jaluq0b3mrlJUG4qlnt+ruHGce9/3cQod233mjPxDmeK/NWP/FVvqOUv7uQBACgURR4AgEJR5AEAKBRFHgCAQlHkAQAoVFu7612Xp+skdOMeXaflYEb9uVGBrlty8eLFWWzFihVZzI04fOKJJ7LYhg0b7Hp6e3uz2PHjx+2xTbjXwp3PPeeZM2fac1511VVZzHW3ug7a7u7uLOY6W0eOHJnFXNewe/8lP+bSvRZufCQwGOSvfuSvynDIX9zJAwBQKIo8AACFosgDAFAoijwAAIVqa+OdG83nmitmz56dxVwzS91oRTfm8MILL8xiy5cvz2I33nhjFtuyZUsWW7VqVRZ7+eWXG6/Rcet2DTJjx45tdB3XwOHGKO7YscOu54EHHshil112WRa7/PLLs1hnZ2cW27p1axbbvn27vfaJXNOL5F+fXbt2NTonMBjkr5Mjf9U7n/mLO3kAAApFkQcAoFAUeQAACkWRBwCgUG1tvNuzZ0+j444ePZrFXGNG032JJWnhwoVZbMGCBVns0UcfzWI//elPs5ibiOSmF02bNs2u59JLL81i11xzTRabN29eFnPTk9x+xRs3bsxiTz/9dBZzDTeSf79cU8iLL76YxdzkLTe1yzXNuNhgpmm56VCu8QkYDPJXP/JXZTjkL+7kAQAoFEUeAIBCUeQBACgURR4AgELFYLY7PFMLFizILuamHzmuccE1ikjSjBkzstj111+fxVyDw89//vMstnv37izmthO86KKLsti73vUuu8Ybbrghi7mpViNG5D+HucYV15jhXp+enp4s9tBDD9k1urib8OSu09XVlcUuvvjiLOYmQW3atCmLucYcyTfDOO412717dz7CDKhB/upH/qoMh/zFnTwAAIWiyAMAUCiKPAAAhaLIAwBQqLZOvHNNBi7WtBnQNY9I0sSJE7OYm360bt26LOamFXV0dGSxpUuXZjG39eMVV1xh1+jWvm3btizmGi5cw41rAHJNLxMmTMhi1113XeM1/uxnP8tizz33XBbr7e3NYm4SmJuo5V7vffv22TW67T+bfp8Bg0H+6kf+qgyH/MWdPAAAhaLIAwBQKIo8AACFosgDAFCo895457hmDaezs9PGp06dmsXctoWvvPJKo2u7LR3dBKo5c+ZksbotAt3Wk07T7Sibns8dV7cNopvw1HQbTbd942uvvZbFXMONew/qJou5Jh63RtfEAwwG+asf+asyHPIXmQ8AgEJR5AEAKBRFHgCAQlHkAQAoVFsb7yZPntzoONd44KZAualNkjR9+vQs5rYYHD9+fBZzTSof+MAHstiiRYuy2Pr167PYzp077RqbTjUaN25cFlu2bFkWc00mbsvDtWvXZrG6bRCvvPLKLOamYrk1jhqVf2u5iVhuOpT7Phk5cqRdozunmyLl1gMMBvmrH/mrMhzyF3fyAAAUiiIPAEChKPIAABSKIg8AQKHa2o3U1dXV6Di3VeOsWbOymGsekfxkoqbrWblyZRa75ZZbstgLL7yQxVxTSE9Pj7222zLRNey4phDXULJhw4YstmrVqizW19dn1+O47RHd1oo333xzFnPNMGvWrMliburX7Nmzs5h7HSTf7OMmYNVNxQKaIn/1I39VhkP+4k4eAIBCUeQBACgURR4AgEJR5AEAKBRFHgCAQrW1u37Pnj2NjnMj/Ny+xnVdqK5Ts7e3N4u5Tku37++OHTuy2ObNm7OYG3F4xx132DXOnTs3iz388MNZ7Nlnn2107ZdeeimLudfx9ttvz2JuPKYk3XfffVns/vvvz2Lvec97Gl3bdR13d3fbazflRkC675W6fbGBpshf/chfleGQv7iTBwCgUBR5AAAKRZEHAKBQFHkAAArV1sa7w4cPZzHXeOAaHI4cOZLFDhw4YK9z6NChRo8fPXp0FnPjB92Iw5kzZ2axt7/97Y2Oq1uja0hxDSBuxOH+/fuzmNvD2j0/N6JSkkaMyH8G3L17dxZzDUSuAchx3xNuHKV7ryQ/FtKd073/wGCQv06+RvJXZajlL+7kAQAoFEUeAIBCUeQBACgURR4AgEK1tfHONYC4xhUXc3sVuyaKuuu4BhAXGzlyZKP1uIYU1wDiGlQkaf369Vls586dWWzJkiVZbNKkSVnMrdtxr01dU8ixY8eyWNOmINe44iZTufd1MNOd3OPdelyDCzAY5K9+5K/KcMhf3MkDAFAoijwAAIWiyAMAUCiKPAAAhWpr413TqU1NGw9cY4Xkmxnc4921mzbSuOaKMWPGZLG65ho3HcpNynJbOnZ1dWUx91q4yUnuGq6BR2o+Ucu9X27alJt01XSylHsPJP+auyYetx5gMMhf/chfleGQv8h8AAAUiiIPAEChKPIAABSKIg8AQKHa2njnGiFcQ4GbSuS2A3STk+q4xoem04+aNr2457Jnzx67nu3bt2ex6dOnZ7H58+dnMdeYUdd8ciK37o6ODnusO6drCmo64cs1rrjjXKyu8cS9N249TLzDmSJ/9SN/1R831PIXd/IAABSKIg8AQKEo8gAAFIoiDwBAodraeOcaCtzEHzf9yDUz1E2Mcud013YTlZpOWXLXcNsgbtu2za7RXefqq6/OYlOmTMliTadVuSacutfMcc0iLuZeH/dauFjTJhz3/tdxz3EwzxtwyF8nvw75qzLU8hd38gAAFIoiDwBAoSjyAAAUiiIPAEChzvvEO9fA0dnZmcUGs/2em7y0a9euLLZ///4s1tPTk8WuvfbaLDZ16tQs5qZDbdmyxa7RPcclS5ZksTlz5mQxt/2jm57V29ubxbZu3ZrFXCOMJHV3d2cx1wDkGk127tyZxVzziXsd3Pvnvk8k/x66hh0XAwaD/NWP/FUZDvmLO3kAAApFkQcAoFAUeQAACkWRBwCgUG1tvHPNJxMmTGj0WDfxx221KEkzZszIYtOmTctirulh8+bNWezll1/OYrNnz85irrnCbTEpSQsWLMhiixcvzmJuYpRrUnnHO96Rxe69994sds8992Qx14wiSRMnTsxiK1euzGKugcg1CrmtGt377xph6hpXmk61Gj9+vH080BT5qx/5qzIc8hd38gAAFIoiDwBAoSjyAAAUiiIPAEChKPIAABSqrd31bjSfGxXoxke62Kuvvmqv47obXWesu/aGDRuy2OrVq7OY2//YdV9efvnldo2uO9Wt23V5uv2PL7rooiz2/ve/P4stXLgwi7kRjpLvwHWdsevXr89imzZtymJu3e45u/GaLib5DmOH/eRxpshf/chfleGQv7iTBwCgUBR5AAAKRZEHAKBQFHkAAArV1sa7ujGOJ3INJS528OBB+3jXQOL2+HX6+vqy2FNPPZXFXCPMihUrsthNN91kr+MaX/bt25fF3HMZO3asPeeJLr744izm9pGuGwu5Y8eOLLZ27dos9uSTT2Yx11Dixkw6rkmlrknJfU+5JifgTJG/+pG/6g21/MWdPAAAhaLIAwBQKIo8AACFosgDAFCotjbejRs3rtFxbj9d18BRx02mco+fO3duFtu2bVsWc80srlnDTT965zvfade4aNGiLOb2DHbndK+P0/S4X/ziFzb+2GOPZTHXxHPgwIEs1tnZmcVmzZqVxVyDy+uvv27X47gGIPeaAWeK/NWP/FUZDvmLO3kAAApFkQcAoFAUeQAACkWRBwCgUG3tUJo5c2aj41wzwplyTRxuotL8+fOzWG9vbxbbvXt3Ftu4cWMWc9sTSn4C0hVXXJHFFi9enMU6OjqymJuo9corr2SxZ599Nos9+OCDdo1uC0fXfOS2iVy6dGkWc++B2+bRTbByk64k3+TiJkbVTcUCmiJ/9SN/VYZD/uJOHgCAQlHkAQAoFEUeAIBCUeQBAChUWxvvXFNI020HXeNB3daPEyZMyGLHjh3LYtOmTctiCxcubLSel156KYu5ZpS6xpVnnnkmi23YsCGLdXV1ZTE3WcptHbl3794s5rZBrGsUchO13JaXrknFTW1at25dFnPbN1544YWNzif5xhX3PXUumqHw/wv5qx/5qzIc8hd38gAAFIoiDwBAoSjyAAAUiiIPAECh2tp457ZLPHjwYBZzjSeOm5xUF3fbCbotCl0zjNtWccWKFVnMNZ5s377drtGtxzWVuONc40rTrSxdg0vdJK958+ZlMdek4iZLrVmzJou5bTDd+++aTNyWjpJvDHITow4fPmwfDzRF/jr5eshflaGWv7iTBwCgUBR5AAAKRZEHAKBQFHkAAArV1sY7N/XJxdw2iG4rQtegIEmvvfZaFnvjjTeaLNE2OLgtD3t6erLY2972tix25ZVX2uu4phk3ccpd2215OGXKlCzmGkAuvfTSLHbBBRfYNXZ3d2ex1atXZ7Hnnnsui7nn4ritH51JkybZuGt86evry2J1E6eApshf/chfleGQv7iTBwCgUBR5AAAKRZEHAKBQFHkAAAoVdVsJngvvfve7s4u5rfrcdCB3XB3XfOIaFzo7Oxudz02wcpOXmm4HKUkzZszIYm6LwrrmnCbc9CvX6LF161b7eNe40tvbm8VcU5HbQtEd1/Q9qGs8cnH3/rvX8fHHH8+7poAa5K9+5K/KcMhf3MkDAFAoijwAAIWiyAMAUCiKPAAAhaLIAwBQqLbO+rzkkkuymBsL6fYHdt2lbv9iyXeTum7QyZMnZzHXdepGF7rOT9fl6fYqlvzoS/d8pk6dmsXc2EPXpek6SV0HbV3npzvWjZ903OvjruNeb6dufKTbr3rs2LGNzgkMBvmrH/mrMhzyF3fyAAAUiiIPAEChKPIAABSKIg8AQKHO+37yblSgG7XrYnWjIt05m8Zcs8aRI0ey2L59+7KYayhx4xElP6bQ7Z88f/78LOZGTbp9m91z2bFjRxZzoyLr1uheM8c9F3edjo6OLOaaXuq4JqXjx483fjzQFPmrH/mrMhzyF3fyAAAUiiIPAEChKPIAABSKIg8AQKHa2njnGilck8GIEfnPHq4Rom6vYtfk4ppKXIOEa65x3PncY91Uqjpu0pF73uPHj89iroFj7969Wcw10tQ9Zxdv+vq4PZHdc3HHNZ3aJTVvpGl6HFCH/HVy5K/KUMtf3MkDAFAoijwAAIWiyAMAUCiKPAAAhQrX5AEAAIY/7uQBACgURR4AgEJR5AEAKBRFHgCAQlHkAQAoFEUeAIBCUeQBACgURR4AgEJR5AEAKBRFHgCAQlHkAQAoFEUeAIBCUeQBACgURR4AgEJR5AEAKBRFHgCAQlHkAQAoFEUeAIBCUeQBACgURR4AgEJR5AEAKBRFHgCAQlHkAQAo1P8BCZ38GVP79OoAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAADSCAYAAABJqrmlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGCJJREFUeJzt3XuQ1eV9x/HPF1hYcHeB5X6vAolKQKpBKUao1EYnl9qMbZNM2ow2aZM2naaZJJ10YpJJm3Zyc9KZTnpNYtrEGjudidGJzSSaqTNWFBANQauJglwWWNjltrDLLsrTP34/skee7w+e5cBh9+n7NePM8t1zfrdzfL772/PZ57EQggAAQH5GXewDAAAAFwZNHgCATNHkAQDIFE0eAIBM0eQBAMgUTR4AgEzR5DNhZi+Z2a+c78eeZTsfNLOH690OAJwrM2s2s2Bmc8t/f9PM/vw872PEjnU0+TMws6M1/500s76af7+nju0+YWa/ez6PNYSwMISw7nw/FsDwMZLGpIslhHB7COGLF/s4hosxF/sAhrMQQsupr83sZUnvDyEMq5/mzGxMCOGVi30cAC68kTAmnQ1jVmNxJ18HMxttZp8ys61m1mVm95jZpPJ7l5jZd8zsgJkdMrMnzWyymd0laYWkr5U/fd9Vse3bzOy58rkPm9nimu/tNbOPmdmzko7U1N5Uft1iZv9ePneLmf2Fmb142vNPPfbz5XHfa2Y9ZrbZzJbXPPbTZrat/N4WM3vrBbiUAM6DCzUmmdnlZvaKmd1hZrvMbL+Zfbzm++PN7Ktmtqf8/pfMrKn83i1m9mJ5XJ2S/qGmdmd5nB1m9hYzu7X8OLHbzD5as/3ry+M9bGa7zewrZubepJbneGf59Q+d3368q/zeG8zsx2Z20Mz+18x+s2Yb083sITM7YmbrJC04H6/PxUCTr8/HJb1Z0pskzZV0QtJXyu+9X8VvSuZImirpTyQNhBA+KmmDip/AW8p/v4aZvUHSNyX9saTpkh6V9MBpb+p3Svp1SVOc4/qcpGkq3phvlfR7ZzmPd0j6hqRJkh6R9Lc133tB0ipJEyV9QdJ3zGzqWbYH4OK4IGNSabSkN0paJOktkv7azC4rv/dZScskLZV0jaRflVT7ufgvSWqSNE/Sn5a1BeXxzZT0eRVj0G+V27mp3P6c8rEnyuNtl3SDpLeX53NGIYQ3l+fUIuk9knZLetTM2iT9SNLXy2vxXknfMLNF5VP/WdIBSTMk/ZGk3z/bvoYrmnx9PiDpEyGE3SGE4yre6O80M1PxppwmaWEI4ZUQwoYQwrHE7b5b0ndDCP8dQhiQ9Dcq3ohvrHnMV8r99jnP/x1JnwshHA4hbJf092fZ349DCD8KIbwq6VuSfnEnH0K4L4SwJ4RwMoTwLUkdKv4nBjD8XKgx6ZTPhBCOhxA2SHpeRUOWigb6mRBCVwihU8WNRu3NRb+kvwohDNSMWb2SvlT+6v47Khrql0MIx0IIT0t6ScUPDQohrC+P99UQwkuSviZpTepBm9mS8jm3hRD2qLix2RJCuKfc5gZJD0q6zcyaJf2GpDtDCH0hhGck3TPE6zRs8Jn8OSr/p5kn6SEzq13lZ5SKu+uvq/gJ9T/NrEXSv0n6VNlIz2a2pO2n/hFCeNXMOlT8BH7KzjMc14zTvu8+tsbemq97JdV+7vc+SR+WNL8staj4gQPAMHKBxyRJejWE0FXz715JLeV+Z6pmzCq/rh2v9oYQTpy2vf0hhJPl16caf2fN9/tUjkVmdqWkuyRdLWm8it71PykHbWbtkr4n6WMhhCfL8gJJq83sUM1Dx0g6WJ6L6bXj5nYN/kAzonAnf45CsXxfh6S1IYRJNf81lz/N9ocQPh1CuFzSakm/Leldp55+ls3vVs1nQGY2WsX/MB21h3CG49qn4ld1p8wbyrnV7Pd1kv5O0h9Kag8hTJL0oor/AQAMIxd4TDrbfvfqtZ9bz1fCeDUE/yJpk4rfQrRJ+ksljEPl2HmfpAdCCP9a862dkn542nVqCSH8WXkuQa8dN+drhKLJ1+cfJX3ezOZJvwhrvL38+iYzu9LMRqkIx70i6dRPzJ2SLvM2WLpP0jvMbHUZXvmEpG5JGxOP6z8kfdLMJprZfBWfKZ2LFkknJe2XNMrMPqji8zgAw9OFGpPO5l5JnzGzKWY2XdInJX27ju2drlXS4RDC0fJX73+Q+Lwvq2jYHz+tfr+kXzazd5pZk5mNNbOVZva68mOOByV9tgwULlPxccSIRJOvzxclPSzpx2bWI+lxFb9Okoo77+9J6pG0RdJDKpqvVARh3lumOqO/5wwhbJb0Pkn/pKLB/pqkW4fwZyd3qvi103ZJ/1Xut3+oJxdC2KRi0NgoaY+kS5X+gwaAxrsgY1KCT0t6TtKzkp5R8av08/m36h+R9H4zOyrpqypuhFK8W0VQ73BNwv62EMJBSTdLukPF2LZbRY6gqXzeB1R87NmpYhy++7ydSYNZ8ZsW5MzMPiLplhDCzRf7WAAAjcOdfIbMbF75q6dR5a+2Pizpuxf7uAAAjUW6Pk/jVPzN6QIVv7b/too/HwEA/D/Cr+sBAMgUv64HACBTNHkAADLV0M/k77rrruizgZMnT0aPKyZQOnevvpo2gZP3UYV3PF6ttbU16XFVx+LVR42Kf+byan198Uy2o0ePdveTsj3vuCWpvz/+q7vU6+O9ht45v/JK/FeB+/fvj2qTJ092j9HbZlNTU1Tr7u6OanfffTeT+iAZ49eZ64xfheE2fnEnDwBApmjyAABkiiYPAECmGvqZfG9vb1TzPldK/Tyk6s//xoyJT+vEidMXQPKlHk9PT0/Sc+v9E8XUz6C86+Md91A+Lxw7dmzS81M/Q0z9zG7q1HiRu4GBgaR9VGlra6vr+QDj19AxfhUu5vjFnTwAAJmiyQMAkCmaPAAAmaLJAwCQqYYG7+oJqXgBh6oQhjdBgfd8Tz0TTKSeX1V9KJNRnOv2vMdVTURRzzl64aHUY/T2kfr6Ve0HqBfj15nrjF/V+7iY4xd38gAAZIomDwBApmjyAABkiiYPAECmGhq888IMqbyAQ1WYwQtipAYfUkMvqTVve5IfSPFmRfJmukoNs3irGXm1qqBH6utVzwpS3r6HElLyDCVABKRi/BrE+FW97+E2fnEnDwBApmjyAABkiiYPAECmaPIAAGSqocG71tbWqOYFKTxeAGQoSzVWBUhSeIESbxnDvr6+qHbkyBF3mzt27Ihq27Zti2pdXV1Rrb+/393m6bxrO3/+/Kh2xRVXuM+fPXt2VJs4cWJUa25ujmqps36lhlS84FJV3XtfpL7PgCqMX4MYv6prw2384k4eAIBM0eQBAMgUTR4AgEzR5AEAyBRNHgCATDU0XT99+vT4AJwkqZcG9RKLVYnT1GkKPd6+jx8/HtV27doV1Z566qmo9uyzz7r7OXr0aFTzUpWpUxx659zb25t0PFXH6KWJr7rqqqh20003RbU5c+ZENS+xmvpaedNjSn7q1NsP6XrUi/FrEONXYSSMX9zJAwCQKZo8AACZoskDAJApmjwAAJlqaPCura0tqnkhDC8w4QU4qsIM3pSN3vSB3vN3794d1Z5++umo9sQTT0S1zs7OqFYVrvGmQ/SO0bs+Xq1qisyUx1U999ChQ1Ht0UcfjWoHDx6MajfccENUW7lyZVTzXmsveFJ1jN519B6buh43UIXxaxDjV2EkjF+MfAAAZIomDwBApmjyAABkiiYPAECmGhq889QTwqiaBch7vhcK6ejoiGrr1q2Lao899lhU89ZZ9s7FC9FI/uxZl19+eVSbNWtWVGtvb49qXthj586dUW3r1q1RzVsHWvJntfL2s3nz5qjmhV689arXrl0b1caNGxfVqt4TqWEf4EJg/BrE+FUYbuMXd/IAAGSKJg8AQKZo8gAAZIomDwBAphoavOvq6opqqSGD1DDLUPbtzfq0fv36qHbgwIGkfcyfPz+qXX311e5jlyxZEtVmzJgR1Zqbm5P27bnyyiujmhf02L59u/t8L7DjXTNvViwvDPODH/wgqnmzdl177bXu8XhSZ9SqZ/lOQGL8qsX4VRgJ4xd38gAAZIomDwBApmjyAABkiiYPAECmGhq88wIO3gxEXvDAC1xU8WYm+ulPfxrVNm3aFNW8kIoXerjiiiui2nXXXRfVFi9e7B5jaiDl+PHjUa2eGZG8WbbmzZvnPvbWW2+NanPnzo1qDz30UFTzZozyZrDywjFegMebYUvyz8d7r7DULOrF+DWI8aswEsYvRj4AADJFkwcAIFM0eQAAMkWTBwAgUw0N3nkhldTHDSW4snv37qjmBVc6OzujmhdSWbBgQVTzZjW67LLLotqYMf4lruccvWP0ghne9oayX2/JxOXLl0c1L5D0wAMPRDUvhOPNVuXN2nXjjTe6x9ja2hrVvNnFvGMEhoLxaxDjV2EkjF/cyQMAkCmaPAAAmaLJAwCQKZo8AACZamjwzgtXDAwMJD3OCyN4y/xJ0o4dO6JaR0dH0janTp0a1a655pqotnDhwqhW73Km3vl420wNn3jP9R5XNQOV91gvzOItCblr166otmHDhqjmvf5btmyJat4MXZI0fvz4qFbvjGOAh/HrzBi/CsNt/OJOHgCATNHkAQDIFE0eAIBM0eQBAMhUQ4N37e3tUc0Lj6QGM/bt2+fux6t7MwZNmDAhqnkhjBUrVkS1adOmRbXUwI0k9fT0RLWtW7dGNW/pyKNHj0Y1L8DhnZ8XPBk7dqx7jN5jvW16+161alVU88JDXsDl2LFjUc07Z0lqa2uLat5xA/Vi/BrE+FUYCeMXd/IAAGSKJg8AQKZo8gAAZIomDwBApmjyAABkqqHp+qVLl0a11KkivcRiVfLTm17RS1V6CVMvVelNC3n48OGo5q0D7a1BLEldXV1Rbdu2bVHtvvvui2reNaua2jHluVXX0XtsU1NTVFuyZElU+9CHPhTVvLWcvevonUvVMS5atCiqeVN7AvVi/BrE+FUYCeMXd/IAAGSKJg8AQKZo8gAAZIomDwBAphoavPOm6/MCCV44wltb2AuzSFJvb29U88IQs2fPjmrz5s2Lat6Ukl64ZsyY+HJ+//vfd4+xubk5qu3Zs8d97Om8aTO9kIl3PN719p4r+efoPd8L53jn561hvX79+qTtHTp0yD1GjzfNpfeeAoaC8WsQ41dhJIxf3MkDAJApmjwAAJmiyQMAkCmaPAAAmWpo8M4LUnjrLHs1L6xx5MgRdz9e8MHb9yWXXBLVvJmlvNmd+vr6opoXmPACHFJ6GCY1aOIFc1JnXvKut5QefPHOsaWlJap5Mzl518x7/apCSt41894rVWtOA6kYvwYxfhVGwvjFnTwAAJmiyQMAkCmaPAAAmaLJAwCQqYYG76ZMmRLVvACHFzzwZvypCiN4dW/5xtbW1qjmhTWeeeaZqHbvvfdGNW9Wo6pjvO6666KaFwAZP358VOvv749qqdfHC6lULYPo7cc7xokTJ0a1yZMnR7WDBw9GNe/8Umegqtr3zJkzo5r3ugJDwfg1iPGrMBLGL+7kAQDIFE0eAIBM0eQBAMgUTR4AgEw1NI20c+fOqJYaMvFmDPKWZJT8WYS8EIYXNOns7Ixqhw8fjmpe4Oaqq66Kal4IQ5K2b98e1WbNmhXVbr/99qiWOuuTFwDyalXX0ZuRy7uO3pKXR48ejWo7duyIat7r6r1+Vbq7u6Pavn37opp3febOnZu8H4DxaxDjV2EkjF/cyQMAkCmaPAAAmaLJAwCQKZo8AACZamjwzlsa0VtO0Jv9yOMt/Sf5ywR6Syt6wZVx48ZFtSVLlkS1jRs3RrXNmzdHtWXLlrnH6M2etX///qjmhT28c/HCHu3t7UmP84JCkj/rU+oykd5r6F1vLwA0evToqDZ9+nT3GL3Zodra2qJa1TkCqRi/BjF+FUbC+MWdPAAAmaLJAwCQKZo8AACZoskDAJCphgbvHn/88ahWtUzg6bzggTczkOTPgOSFJn72s59FtQ0bNkQ1L3yyePHiqOYFZrwlGSVp0aJFUc1bttCb6Sg1hLFt27ao9thjj0U17zpI0rx586LaihUropq3XOKTTz6ZtG8vrOPNIubNLCVJTz31VFSbMGFCVPMCN29729vcbQIexq9BjF+FkTB+cScPAECmaPIAAGSKJg8AQKZo8gAAZKqhwTsvaOIFV7wZiLwlBr3ZhiQ/uOA93wuzbNq0Kap5S/pde+21Uc0LmXizH0l+uKZqWccU3nWcNm1aVLv55puj2urVq91terM+eeEa71y8AJC3PKUXwmltbY1q3uxVknTgwIGo5oVcvPcUMBSMX4MYvwojYfziTh4AgEzR5AEAyBRNHgCATNHkAQDIFE0eAIBMNTRd703N5yU6U1Oe3vrOknTppZdGNS8Z2dPTE9VefvnlqOYlVtesWRPVvDRnVSrSuxZewtS7Fqnb82rNzc1RzVuDuur5Xsr3pZdeimrPP/98VDty5EhU866Z9/p5SVvJn0LSu+ap1xGowvg1iPGrMBLGL+7kAQDIFE0eAIBM0eQBAMgUTR4AgEw1NHg3Zky8u9TgihdG8EIPkvT6178+qv385z+Pai+++GJU88IVGzdujGreNIXLly+Pal6wQkoPrqQ+zpN6zapCHV5969atUc27Prt27Uo5RDeQ4q1/7a35LKUHdrz3HjAUjF+DGL8KI2H84k4eAIBM0eQBAMgUTR4AgEzR5AEAyFRD00jerE9eoMBbZ9kLYVStdeyFSlatWhXVurq6olp3d3dU89aRfuSRR6LawMBAVLv++uvdY/R45+iFMFJ5z/WurTcLlCQ999xzUW3dunVR7YUXXohqXujFm+HLC/ssWrQoqnkzXUn+OXrvi6pzBFIxfp0Z41dhuI1f3MkDAJApmjwAAJmiyQMAkCmaPAAAmWpo8M4LH3izH40fPz6qpc4sJflhGG8WqRtvvDGqeYGUQ4cORbW9e/dGtQcffDCqebMpSdItt9wS1ZYsWRLVWlpaopp33t519II03kxOXhhFkrZs2RLVDhw4ENW8wI23/KMX4lm5cmVUmzVrVtI+quoE73AhMH4NYvwqjITxizt5AAAyRZMHACBTNHkAADJFkwcAIFMNDd7NnDkzqlWFT1J4sx9Jfohj0qRJUc1bRrGtrS2qPfzww1Gts7MzqnnhiI6ODvcY77nnnqR9ezUvzOKFVLxlJ3t6eqLasWPH3GP0zscLH3nXds2aNVFt9erVUW3BggVRzQu9VAVPvLo3i1Q97zNAYvyqxfhVGAnjF3fyAABkiiYPAECmaPIAAGSKJg8AQKYaGrzzghQeL3gyFF6Y4cSJE1HNC4B4SwdOmTIlqt1///1RzZtFqq+vzz1GLyzS29ubtE1vlqSqGZVOlzrblCQ1NTVFNW82p7Vr10a1ZcuWRTXvOvb39yfVqqS+V1KvD1CF8WsQ41dhJIxf3MkDAJApmjwAAJmiyQMAkCmaPAAAmWpo8O7gwYNRzQseeCED73FVoQUvuOIFNrzHecs8zpkzJ6rdcccdUe0nP/lJVKtaqtELpHjhGu8YU6+P9zhvxqcZM2a4x+gtHbl06dKoNm3atKjmXUdvyUvvGL3Xytte1WO9bXqzSAFDwfg1iPGr+hiH2/jFyAcAQKZo8gAAZIomDwBApmjyAABkqqHBuwMHDkQ1b7lFL2TgBThGjx7t7scLcXj78WpeQKJqP6dbuHBhVPNCL5LU3d0d1bq6uqKaN7OUF3DxjnvChAlRrb29PapNnjzZPcaJEydGNW95S2/5x9SZnLxrO5RlFVMDOwTvUC/Gr0GMX4WRMH4x8gEAkCmaPAAAmaLJAwCQKZo8AACZoskDAJCphqbrvRSjlzpNTRJWJSBTp4D0eGlJ73hSj7FqHWBvbeKpU6cmbdPjXQvvGKumV/R4KdiBgYGo5p1jaqI39fUfSmLVk3o8QBXGr0GMX4WRMH5xJw8AQKZo8gAAZIomDwBApmjyAABkqqHBO48XevCmaxzK9IGpIY7U0EQ9z60Krnjnkzr1Zera1KkhlapQT9Wxp0i9Zh7vda0KKaW+1qnTVAJDwfh15m0yfhUu5vjFnTwAAJmiyQMAkCmaPAAAmaLJAwCQqYYG77xAgldramo65+1JfuCi3hmHUvbhqQpM1DNTlrfv1ADQUMI1qfv2eLNN1aPq9Uud4QuoF+PXIMavobmY4xejIQAAmaLJAwCQKZo8AACZoskDAJApYyYwAADyxJ08AACZoskDAJApmjwAAJmiyQMAkCmaPAAAmaLJAwCQKZo8AACZoskDAJApmjwAAJmiyQMAkCmaPAAAmaLJAwCQKZo8AACZoskDAJApmjwAAJmiyQMAkCmaPAAAmaLJAwCQKZo8AACZoskDAJApmjwAAJmiyQMAkCmaPAAAmfo/nwPfb79aHT0AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\"Original shape:\", X_train.shape)\n", + "print(\"Normalized shape:\", X_train_normalized.shape)\n", + "\n", + "\n", + "fig, axs = plt.subplots(1,2, figsize=(10, 3))\n", + "axs = axs.ravel()\n", + "\n", + "axs[0].axis('off')\n", + "axs[0].set_title('Train original')\n", + "axs[0].imshow(X_train[0].squeeze(), cmap='gray')\n", + "\n", + "axs[1].axis('off')\n", + "axs[1].set_title('Train normalized')\n", + "axs[1].imshow(X_train_normalized[0].squeeze(), cmap='gray')\n", + "\n", + "fig, axs = plt.subplots(1,2, figsize=(10, 3))\n", + "axs = axs.ravel()\n", + "\n", + "axs[0].axis('off')\n", + "axs[0].set_title('Test original')\n", + "axs[0].imshow(X_test[0].squeeze(), cmap='gray')\n", + "\n", + "axs[1].axis('off')\n", + "axs[1].set_title('Test normalized')\n", + "axs[1].imshow(X_test_normalized[0].squeeze(), cmap='gray')\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Original shape: (34799, 32, 32, 1)\n", + "Translated shape: (32, 32, 1)\n", + "Original shape: (12630, 32, 32, 1)\n", + "Translated shape: (32, 32, 1)\n", + "shape in/out: (32, 32, 1) (32, 32, 1)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAADSCAYAAABJqrmlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAHs9JREFUeJzt3XvM3NWd3/HvIRCwje3HN3zDV/AVwqUkkAQnQYuUTaMmpBJqV81K3apI0baKqlWVatW72ixaqWqlrFpt0/aPlTawWpYWZdPGamIRNyEEaOM0GBswGN/tx5gnvgJODP71jxmqZ33ex5zx2GNz9v2SIsXfZ2Z+5/ebmXOYZz7P96Su60KSJLXnqss9AEmSdGm4yEuS1CgXeUmSGuUiL0lSo1zkJUlqlIu8JEmNcpEfgZTSh1JKp1JKS0d0vJdTSp+62Ld9n8d5KKW0edjHkXTlGvVc9n5SSk+llH5r1Pf9ILn6cg/gSpRSOjXpn1Mj4pcR8W7/31/puu6RQR6v67p3I+L6izS8muOtuRS3lfTB8kGfyzQ8F3nQdd3/fxGnlHZHxENd120q3T6ldHXXde+MYmznc6WMQ9KV4YM6l+ni8df1FyCl9PWU0p+mlP4kpXQyIn4zpfSJlNIzKaVjKaVDKaU/SCld07/91SmlLqW0vP/vb/V/vjGldDKl9JOU0orzHO9LKaVt/cd+MqW0ZtLP9qeUvpZS2hoRb02q3df//1P7xzuWUtqeUvrd/ps94LZf75/Tt/rjeiGl9Fcm3fafppRe6/9sW0rpixftokoauVHOZf256NGU0kT/sZ9LKc3t/2xOSumP+sc7mlL6r5Pq300pHenXv5NSWnye83kopfRS/7YbU0pLJv3sc/2vJ4+nlL4REeliXccrmYv8hfvrEfFoRMyMiD+NiHci4h9ExNyIuDciPhcRXznP/f9WRPyziJgdEXsj4l/TjVJK6yLiWxHx1YiYFxGbIuI7773p+n4jIv5qfyzn+lcRsSgilkfEr0fEb77PeX0pIv44IsYiYmNE/MGkn+2I3rnNjIjfi4hHU0rz3+fxJF3ZRjKXRcTfid5XBjdGxJyI+HsRcbr/s0cj4sMRsT4i5kfEN/r1qyLiP0fE0ohYFhFnJv3sL0gpPRgRX4uIB6I3Vz7bf9xIKd0QEY9HxO/2z2t/RNxznnNqhov8hXuq67rvdF13tuu6t7uu+99d1z3bdd07Xde9FhH/KSI+c577P9513f/puu5MRDwSEXcUbvcbEfHnXdc92b/t70fEjPiLL9BvdF23v+u6t+H+fyMifq/rumNd1+2LiH//Puf1v7qu+5/9797+ePK4uq57rOu6Q/1zfjQidkfER9/n8SRd2UY1l52J3gJ7c9d17/bvc6r/afv+iPjtruuOdl33q67rfhgR0XXdka7rnuiP60REPHyesXwlIh7uuu7l/lcOX4+Iu/uf/P9aRPzf/mOdiYh/GxFHBrlIH1Qu8hdu3+R/pJTWppT+R0ppPKV0InqfoOee5/7jk/7/W1EOsyyKiD3v/aPrurPR+6/Qyb+y2nfunSZZeM7Pz3dbGte09/6RUvqtlNLP+79qOxYRa+P85yjpyjequeyPovebyMdSSgdSSr+fUro6IpZExBtd1x0/9w4ppWkppf+SUtrbH8uT5xnLsoj4D5Pmpzci4mz0fnOwaPJ5TppHm+cif+HO3b7vmxHxQvT+K3VGRPzzuDjf+RyM3os3IiJSSldF70V74DxjmWy8f/v3LCnd8HxSSisj4g8j4rcjYk7XdWMR8VL8JfleS2rYSOay/if0f9l13bqI2BC9rwm+HL3Fd25KaQbc7R9FxIqIuLs/ll87zyH2RcTf7bpubNL/pnRd92xEHIpJc9+kebR5LvIXz/SIOB4Rb/a/Rz/fd1iDeCwivphSuq//PfzXIuJk9L5vqr3/P04pjaWUboyIv3+B47g+epPBkYhIKaWHovdJXlJbLslcllL6tZTSrf0F9kT0fn3/bv9rxE3R+xQ+llK6JqX06UljeSsijqaU5kTvPzhK/mNE/JP+mKP/WA/2f/bfI+KOlNID/d8e/E70vrdvnov8xfMPI+JvR28B/mb0AixD67puW/9x/zB6C+znIuKL/e+VavyLiDgcve/Pvxe9Rf+XFzCO56MXwnsuev9VvDbq/0ND0gfHJZnLovcr8/8WvQV+W/QW9j/p/+y9QPCO6M1XX+3/+99FLxA4ERFPRy8MjLqu+7P+7f+s/6v956MXNo6u6w5HxN+MiH/Tf6yl8Zdk/kpdd77f9Ko1KaWvRsSXuq67/3KPRZJ0aflJvnEppcUppU+mlK7q/xrrdyLiics9LknSpWfHu/ZdG72/M10eEUej9+uxb17OAUmSRsNf10uS1Ch/XS9JUqNc5CVJatRIv5PfsGFD9t3Au+++m93uQx/6UNXjlb5qOHv2bFY7cyb/izM69qxZs7La9dfnDZw+/OEPZ7WU8n4R9HgREevWrctq9957b1a7++67s9pbb72V1R577LGstnnz5qw2Pj6e1a699locY+01o+tNt5s2bVpWu/rq/CV48uTJqmOUjlNb+8lPfmIjH1VLKfndpq4YXddVzV9+kpckqVEu8pIkNcpFXpKkRo30O/mFCxdmtV/+Mu+wSt9t03eql8LUqVOzWm1G4LrrrstqdH4REbt3785q06dPr6odPHgwq7300ktZ7fTp01ltxox8Dwj6XjyCr8WvfvWrquO88847WY2yDeSaa67JaqdOnaq6bwSPkV5T0rAeeuihrEZz1VVX1X+eovwJ5Y/oPUbvHZpDKIdDY6QcTUTEkiX5Pld33JHvMEs1en9+97vfzWpbtmzJasePZxvVFefn2qwQ1WhOpBwW5Zbo/AbJFNFtH3nkEbx/DT/JS5LUKBd5SZIa5SIvSVKjXOQlSWrUSIN3FGagQFSpOcu5SmEsCjPMnj276jFnzpyZ1ShYRuhc3nzzTbztkSNHshqF53bu3JnVKIQzMTGR1SgIWPsclOpTpkypqlFDGzo2BXvouaIGQBERJ06cyGo0boN3uhTmzJmT1Sh4RaG2UhiL3t+1r18K3lGNHo/en6XA8+HDh7Pajh07shrN5ceOHctqe/bsyWoULKT5gs4vgs+HgnJUo+tDwTu6PrVB5PPVLyY/yUuS1CgXeUmSGuUiL0lSo1zkJUlq1EiDd9StiLqg1XZLK3WToyDG22+/ndVqAxeEAhdjY2NZjTrMleoUJKRrRp3oKGRHO+BRKKgU/qCwGx2HbkfXh+5LISMK05XCj7XPa2nHQmkYtcFhmpNKr0l6rVNXt9pgLdXoPV97uwiee6kTJwX0agPKNM8N0jmQ0DnStaXnpvZ6UxC5FBKvnZeGCQ77SV6SpEa5yEuS1CgXeUmSGuUiL0lSo0YavKNACQUpKMhFwYVSaIEek+5PHYwIhf6o89Kdd96Z1QYJ1xAKs9Ruu0thH+omV9pqlq4ZdbKj0AydHwVpCD3/pY53dOxhOoZJg6DXHwWvKPBamn9qu+PRsem9TEFAej/QPFd6z9Jj0nv+6NGjVfeluaq282kpHEgBXJo7KURY6qJ3Lgr+0uOV5nsaO81fwwSH/SQvSVKjXOQlSWqUi7wkSY1ykZckqVEu8pIkNWqk6XpKb1JqsDbtOEjikJKWlBxdtWpVVtuwYUNWoxaHP/3pT7Ma7bEcETE+Pp7VSvtL16BrQY9H5zx//nx8zNtuuy2rUTqf/gJg3759WY2S+dRSklLHpbQrpZbpWlAKVhoWvccoSU1zWm16vHQcSopPnz49q9G8S221qS136S95av+ihlpU1ybXac6mc6FaBM8t9Fc6tSn82pbg9Hh039JxhlkHiJ/kJUlqlIu8JEmNcpGXJKlRLvKSJDVqpME7aqVIIYNFixZltUFaBVJrxwULFmS1e++9N6t94hOfyGp79uzJahs3bsxqe/furR4joXFTwK+2pSQF0CgwQ3s+R0Q8+eSTWW3t2rVZbf369VmNAkAHDhzIaocOHcJjn4tCexF8fSYmJqoeUxoWhURpTqNWtaXgcG3wit5jN910U1ZbtmxZ1ePRPEfv2YiI48ePZzUKkVH4ja4F3ZeuD82RFAaOiFi8eHFWo7Vl1qxZWY3a8da20KZzLoUNawOVw/CTvCRJjXKRlySpUS7ykiQ1ykVekqRGjTR4d+zYsarbURchCpYNElCgQMry5cuz2rPPPpvVfvjDH2Y16uhGXY3mzJmD41m9enVWu+OOO7La0qVLsxqFOKiT086dO7Pa888/n9UoMBjBzxeF2l555ZWsRp0DqRMUhf6oNkgXqNo9nqVh0WuaUEB0kC5otEc9zV8rV67MahRaffHFF7Mada4szbHUZY7CzRRqo/mL5ncK99H88/rrr+MYf/GLX2S1hQsXZrV58+ZltWnTpmU1Ct6dOnUqq9H8U5q/aN6u7eJZy0/ykiQ1ykVekqRGuchLktQoF3lJkho10uAddVSq3W6Rggul4AoFKShA8u1vfzur/exnP8tq1P2IOl0tWbIkq33mM5/BMd5zzz1ZjYIr1B2KgisULKOQCYV1nnrqKRwj1Xfv3p3VaDvdF154IautWLEiq1EoaP/+/VmNAioR9cGn2u0tpUG88cYbWY06nlGt9rUbwfMkzWnbt2/Paq+99lpWo7AavUdoTouIWLNmTVaj9zdtX1sbvKNru2vXrqxW2s6bgoS0xffMmTOzGgUG6fmijp0UxisFGClkTiE7g3eSJCnjIi9JUqNc5CVJapSLvCRJjRpp8I6CC1SrDRlQ+C2CuzFR97atW7dmNeq2Rt2m1q1bl9Vo69pbbrkFx0hjp6AIhVSooxIFcyi0R52cPvrRj1aP8Uc/+lFWo+5ZFHChkAl1BKTrfeLECRwjbV9c+zqThkVd2eh9N4ja7Wup6ybV6L0zY8aMrEZb0t566604RrotvW/pWtB7kYKJFKCm+ZDuG8HzDQX3KOBHawhdMwoM0vUuzT80xkG2Ja7hJ3lJkhrlIi9JUqNc5CVJapSLvCRJjbrswTtS251s+vTpWJ89e3ZWo21Xa7s+UZe4u+++O6stXrw4q5W2OKXABqndTrf28eh2pW0QqYNV7TbAtP0sbf1IgUF6DkqdESmEWBtmkYZFrzVCr7/Sa3Lq1KlZjYJXFNSl7py129SuXbs2q82dOxfHSHM5dSClYCzNaaXwXM19KaAXEbF+/fqsRnMddcyr3Rb96qvzJZRqpbWPxjPItto1nPkkSWqUi7wkSY1ykZckqVEu8pIkNWqkwTva0o9QmIU6EFHXuQgOi9CWgBRwoUDKAw88kNVuvvnmrLZt27asduTIERxjbVe26667LqvdeeedWY1CcrTF5DPPPJPVStu4Urcr6upHY6TwCQWFKBREr5NSMIcek8I+NB5pWBQIpZAcvSZpTovgLaLp/hQcpo6WFKi7/fbbsxq9Rw4cOIBjpLmqNlB34403ZjUKS9P50XbldG0iOJB31113ZTUKQFJQm9AaQkoBTQrZlc7nQvlJXpKkRrnIS5LUKBd5SZIa5SIvSVKjRppGGhsbq7odBVcojELhtwjurFY7nvvuuy+rfeELX8hqL7/8clajUNv+/fvx2BSQoXAGhdooEEddmzZu3JjVTp48ieMhtGUibQ17//33ZzUK823evDmrUdfCRYsWZTW6DhEcABpFFykpotx181wU7lqwYAHeluq0HSptSUthsw0bNmS1G264IavR/EWdKyPq32PUvZKOPTExkdW2bNmS1WhuL4VqaW6gLng0RgoR0rbCFBik4HBpq1jq2Hmxw3h+kpckqVEu8pIkNcpFXpKkRrnIS5LUKBd5SZIaNdJ0/TB79NK+7KUUPSXNx8fHsxolxalN5eHDh7Pa7t27sxq1aP3yl7+MY6TWjk8//XRW2759e9WxX3311axG1/HBBx/MaqXWjN/73vey2ve///2s9tnPfrbq2JQw3bdvHx67FqVO6bVCNWlYp0+frrpd6a9DyJtvvpnVqD02vaYp7U/Hpr+yob+IWblyJY6R/gKAWs7u3bs3q9G5UNtx+mujj33sY1mN9rEvjYdafVManuZyWgfoL5Dorx5Kbblp/qJk/zD8JC9JUqNc5CVJapSLvCRJjXKRlySpUSMN3lFIhYIHFNCicAUFVCK4VSDdn9oZUkiFAinz58/Pah//+MerblcaIwXqKMBGbQ9PnTqV1Wi/ajo/arEbwa04jx49mtUoAEkBRkKvCQqz0HMVwa0r6TFL4RxpGPRao/cN1UphUHovU42CabUtWun9uWLFiqrblY5D8zGdN70XaQ6htuMUli5dRwojU3iO5sTacVOAkYLMpf3k6TGpVmqLW8NP8pIkNcpFXpKkRrnIS5LUKBd5SZIaNdLgHQXYKHhHNQouUAisdBwKsFGNOhPReChQRwE2CthFRGzbti2rUSeoNWvWZLUZM2ZktVJHpXPRtSmF2iiwUxtqpMBObSBlkO50dH8aDwX0pGHVBu9orimFQel9R6/z2jmN5i8K5dJ7tvRe3LVrV1ajPe/nzp2b1WgeGCaAXXpv177nKchc26GQxkNz8SDBu4s9V/lJXpKkRrnIS5LUKBd5SZIa5SIvSVKjRhq8q+06VxtGKG3JRyEHuj8duzYISIEU2mKwFA6k7nYUNKEtaakTFF0LCgXRMSisE1HfEZCeLwofUcCltjMePQcR9ds60nikYdG8UhuyKwWs6D1Kcxq99mu77dF7cZDAGG3dTedIAWUKDtP8Rddn2PmLrgUdu/Y4dH1qg5el+jDd7YgznyRJjXKRlySpUS7ykiQ1ykVekqRGjTR4VxuEoK5qtBUhBThKKLhV272tNrRH53Ls2DEcz6FDh7IadYdatmxZVqOATCnYcS4a95QpU/C2tUGT2g6FFPah29WGWSL4uaHx2PFOl0Jth0wKwZa2yp4+fXrVsYfp9kjhLjoX6pAZwd3taNyLFi3KahQYLHXdPFdtR7+I+sBhbdCRarUhuVJInO5fuu2F8pO8JEmNcpGXJKlRLvKSJDXKRV6SpEaNNHhHAQkKYdRutVgKKNBj1oZharvE0TEopHLw4EEcIx3n9ttvz2qzZs3KarXd9iiEM0ioo7Z7Fl0fuhZUqw0RljpvETrHix1mkSLqu5sNMn/RXEXBNArU0bxSu00tjWdiYgLHSMdZvnx5VqvtzknnVxvULQXvaF6qDeWWtgg/V23gmc4lgq9F6bYXyk/ykiQ1ykVekqRGuchLktQoF3lJkhp12TveUYCDOicNsn0odY6jAMmpU6ey2v79+7PaXXfdldVmz56d1ai73Z49e3CMdI5r1qzJaosXL85qtH0tdf+j7SAPHDiQ1SjIFxGxb9++rEbBFQqfHDlyJKtRaIauAz1/9DqJ4OeQAodUk4ZVG7KjLZpLgTGaJ6+//vqsRl1AqXby5MmsRkFdCptRZ7vS/Sl4t2DBgqxGAVwKGB8+fDirvfbaazgecuLEiaxGcwvNDTRGeq7peSGljpuDbKF+ofwkL0lSo1zkJUlqlIu8JEmNcpGXJKlRIw3eUXhu2rRpVfelMEKpK9G8efOy2pw5c7IahbZ2796d1fbu3ZvVaAtFCodRECaCQyqrVq3KahRIoZDdpz71qaz2xBNPZLXHH388q5UCQBQque+++7IaBSAp6EidnOj5p4BLKXhX25Vv6tSpeH9pGLXd6Wq3M43gINi1115bVaPw765du7LawoULs9ogWzRToI7mRAoc0rhvu+22rPb0009nta1bt2a10vw1f/78rEZrA4WEaRvg2vA3BZmH7W44DD/JS5LUKBd5SZIa5SIvSVKjXOQlSWqUi7wkSY0aabqeUqOUMKV0IdVKLRcpnU3JSDr2jh07stqmTZuyGrV1pPT4+vXrcYyUrqdxU0qdkrpLlizJap///Oez2k033ZTVKF0awWlZSvZv27Ytq1H7SRo3nTMlhKkWwX8hQdxPXpcCzWk0D9D8Q++HCP6LHGr/TMlsamG7ffv2rEYJ96VLl2a1G2+8EcdIf3lT+16mRDq1Cb/nnnuqxlhqy127ZtBfVNF1pL8UoL/6oXa6lNaPGM285Cd5SZIa5SIvSVKjXOQlSWqUi7wkSY0aafCu1Ib2XBSIoxrt+RvBwRfaR5hQ4OLnP/95VqMgzYYNG7LaJz/5STwOBfcosEHnQqEZsmLFiqxGAZdSW0jaz/mZZ57Jalu2bMlqFIir3XuZwjqlkCW9pi52W0ippNSatkYpMEZhLJpvaB6obTH9/PPPZzWaa1avXo1jpPmU5hE6F7odzYcU/KU5pBTK3blzZ1WNrk9t+JvWIJr7Ss81PV+l+fhC+UlekqRGuchLktQoF3lJkhrlIi9JUqNGGryjjkGEwggUCimp7UJF3ZwOHjyY1SiMR2Ez6vj06U9/Gsd48803ZzXa85wek64Pqb0d7TcdEfHcc89lNQohUjcn6tBFe1gPElIhFNihayZdCvQ6JxScK6HgFb2Xp02bltWoI2VtB7ZXX301q5XeSzQe2mN+5syZWa22WyiF2mgufuWVV3CMNK/RfENjnDVrVlY7c+ZMVqvdd57m9gh+rmtrtfwkL0lSo1zkJUlqlIu8JEmNcpGXJKlRI00ozZ8/v+p2FMwYFgVFqCPcsmXLstr4+HhWO3r0aFajbkql7SSpg9stt9yS1VatWpXVpkyZktWo89brr7+e1WjbyR/84Ac4RtqClsKTtM3tunXrsho9B7RNLYVMqFNfBIf0qDPVxe4iJUVw2IyCV7Uh2AieM+gxKWRHcyy99mk7WwqR0dwXwSE0mtNuuOGGrEYhNDpnGuOePXuy2qFDh3CMFBqkrbZru/dRKJvmYnquS50R6XmlcRu8kyRJGRd5SZIa5SIvSVKjXOQlSWrUSIN3FGqr3TaVggelrWupExRteThnzpysRsEMQt2hKHhSCt698MILWW3Hjh1ZbWxsLKtRcIUCHMePH89qtC1jKehIHQEppEIhOwqPbN26NavR1pEUZip13qLgHb2mLkWYU6LXb22YahC1YSya5yj8Rtu40txQ2saVOsdRGJmCchTepXOhzqUUYKN5vFSn+Ys66+3duzernT59OqvVbvdLz0sEh4Tp9WPwTpIkZVzkJUlqlIu8JEmNcpGXJKlRIw3e1W4nSME5Qt2GSnXq5kRbEVKYj7aF3bBhQ1aj4FypGxONh0IudDsK3tVuxUuhjlInwqVLl2Y1CtlRZ7zNmzdnNeoYRc8/heQo6BPBwUYKs1BoRhoWvf4oHEYd4koouEWvXzoOvZ9oDqH3PHWVnDdvHo6R5ioK3tGx6VrQnE0d/Wg8pfWCrhl1AaWQHc1pNG56rmiOLc3PFBymxywFuGv4SV6SpEa5yEuS1CgXeUmSGuUiL0lSo0YavKOuPVSjAAeFTChgFcFbFNYGX2rDGvv3789qH/nIR7Larbfeiseh0B91zKNjUzBj1qxZWY0CbKtXr85q1BErImLfvn1ZbdOmTVntxRdfzGp0LoS6XxEK4URw0OjkyZNZbdiOYxKhTmb0vqPubYO8Juk4NP/RY9KxJyYmshrNfTNnzsTx0DkuX748q9UGxmjcdM4099G5RHDQl+ZTCvXSNaNAXe22wqXrUOqEdzH5SV6SpEa5yEuS1CgXeUmSGuUiL0lSo0aaRqLuPrRVI92OgmUlFCChLnHTp0+vejzqqESdnH784x9ntdI2iNS5adWqVVlt/fr1NUNE1L2PQom0BWwEB+/Gx8ezGoUiKUgzSHjyXKXgZO22nrXHkQZBW5fWBq9K24fS/EWvaQqjUpC19rV/4sSJrEbhtQjeYpXmaBojze80N1BXPQrElbYcp+PQfEHze+01o+dlkO509Bqg149bzUqSpIyLvCRJjXKRlySpUS7ykiQ1ykVekqRGjTRdv3LlyqxGqUHa65hSjJS+jOC0JKXZqWUjpS8psUqJzgMHDmQ12pc4glv30vnQHs/UtpXS55SEpzaKpeQ63bb2rxzo+tBx6HqTUvtb+isHSv5KlwK1d6V0NdUoRR3BfwlEt6UEONVojqWUOqX6qW10BL/v6BzHxsayGv1VE82HtcelcUfUt1GvTdLXpubpdqU5iV4/F5uf5CVJapSLvCRJjXKRlySpUS7ykiQ16rLvJ0/tDGuDK9QSt/SYtTUKm1FIhVpAUiCOWitGcNiDQhjLli3LatQql/ZJpnM5fPhwViuFa2iMdM0InQsdZ8qUKVmt1KaSUMjy7Nmz1feXhkHzEr3+KDhXCl3Rbel9RyE0qtHjUViNgrGDjLH2HClYSHMs7fNeO/9E1Afv6DGHmUMGaaFd+/oZhp/kJUlqlIu8JEmNcpGXJKlRLvKSJDVqpME7CoINE1IpBRwozEChOAp41e7bS49H96WueiXUFak2uEIBtOPHj2c1CgKWzrk2uEIo2EPnQrer7ToYUR/EGSSwI9V6+OGHs9oge8dfLoPseV6LzrG2o2Vt2HpUodphrs+wzzUdm4KJtfwkL0lSo1zkJUlqlIu8JEmNcpGXJKlR6VIEMCRJ0uXnJ3lJkhrlIi9JUqNc5CVJapSLvCRJjXKRlySpUS7ykiQ1ykVekqRGuchLktQoF3lJkhrlIi9JUqNc5CVJapSLvCRJjXKRlySpUS7ykiQ1ykVekqRGuchLktQoF3lJkhrlIi9JUqNc5CVJapSLvCRJjXKRlySpUS7ykiQ1ykVekqRG/T8cozJKQlEX2wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAADSCAYAAABJqrmlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAHUBJREFUeJzt3XmMndV9xvHnkECMwR4vY3uM9wVi4mJjgw0liS0obSIlbVRVbVJ1UaJWbZpUaqs0UqomlSqhLlHporRVKqWlylJKVbUJUWikElQqy2BswIBxWG2MN2yPF2xjgyGc/nGvq8n8nhfO9TtzDSffjxSJ/Oa+y33vfc/xnXnu76ScswAAQH0uON8nAAAAxgeTPAAAlWKSBwCgUkzyAABUikkeAIBKMckDAFApJvlKpJSeTSn9+Fg/9k3288mU0t1t9wMAvUgp3Z9S+uV+b/t2xCT/BlJKJ0f87/WU0ukR//+XWux3zN9kOeclOef7xvqxAOrwdhrPMHbeeb5P4K0s53zp2f9OKT0n6ddzzm+pT64ppXfmnF873+cB4K3t7TCeYezxSb6FlNI7UkpfSCntSCkNp5S+kVKa0v3ZJSmlf00pHUkpHUspbUopTU0p3SppjaSvdP8FfWvDvn8upbS9u+3dKaXLR/zshZTS76eUHpd0fETtfd3/vjSl9C/dbbellP4gpfTMqO3PPvbPuud9e0rpRErp0ZTS1SMe+0cppZ3dn21LKX1oHC4lgPNsvMazpm27PxtMKX21OyYdTSnd0a3PSCn9V0rpUHe7b6WUZr/Buf9mSunJ7mO/k1KaM+JnH0opPd099l+O9XV7q2OSb+ezkn5K0vskzZX0qqS/6v7s19X5TckcSYOSflvSmZzzZyRtVudf0Zd2//8PSSn9mKR/lvQpSTMl3SvpzpTSyN+8fFTST0qabs7rFkkzJC2Q9CFJv/Imz+NnJf2TpCmSvifpr0f87ElJN0gakPTnkv41pTT4JvsD8PYzLuNZ07bdn90hKUlaJmmWpL/r1i+Q9GVJ8yUt6tbOnssPSSl9TNLvSvrp7j4elvT17s+GJP2bpM+oMyYeknRt4fWoApN8O78p6XM5530555cl/bGkj6aUkjo3yAxJS3LOr+WcN+ecXyrc7y9K+s+c8//knM9I+hN1bo6Rb86/6h73tNn+FyTdknN+Mee8S9Lfv8nx7sk5/3fO+QeSvibp/z/J55zvyDnvzzm/nnP+mqS9kq4pfB4A3j7Gazyz26aUFkl6v6RP5ZyP5ZzP5Jz/V5Jyzgdyzt/KOZ/OOb8o6U8lrX+D874l5/xUzvnV7nm/L6U0S9LPSNqcc76z+7MvSjpyDtfmbYu/yZ+j7ht/nqS7UkojV/m5QJ1P1/8oaUjSv6eULpX0VUlf6E6kb+YySbvO/p+c8w9SSnvV+ZfwWbvf4Lxmjfq5fewIL4z471OSRv7t7tck/Y46/6JW92d8kgcqMs7jmd22e7yDOecT5nwmSfobSTer8xtGSbq4Yf8LJH05pfR3I2qvqfPbiMs0YvwbMZb+yOCT/DnKneX79kq6Kec8ZcT/JuSch3POr+Sc/yjnvEzSOkk/L+ljZzd/k93vU+eNK6nztzJ1JviRb067j+55HVTnDX7WvF6e24jjXiHpS5J+Q9K0nPMUSc+o8+s1AJUYz/HsDbbdLWlmd+If7XPqjGFrcs6T1fkzQtO4s1vSx0ed98U55wcl7deI8S+ldIF++MNS9Zjk2/mypD9LKc2TpJTSzJTST3f/++aU0nu6b6rj6vzL8uy/eg9IWvwG+71D0s+mlNallC5U5w1/WNKWwvP6N0l/mFIaSCnNl/RbvT6xrkslva7O37EuSCl9UtLSc9wXgLe2cRnPmrbNOe+U9L+S/rY7Vl2UUlrX3WySOr9VPNbNAH3+Tc778ymld3ePNzWl9HPdn90paU1K6cPdsfSzkqb1dFXe5pjk2/mipLsl3ZNSOiFpo6TV3Z/NkfQtSSckbZN0lzqTr9QJkPxqN036xdE7zTk/KunXJP2DOhPsT0j6SA9flfu8pKPq/Mr/v7rHfaXXJ5dzfkidG2iLOv8iXqTyf2gAeHsZl/HsTbb9RUkXSnpanT8bnv1A8hfq/FnwsKQN3W2snPPtkv5W0n+klI5L2qpOKFk55/3q/Nbgr9UZS2fpR2wMS53f0qBmKaXfk/TBnPMHzve5AAD6h0/yFUopzUspXZ9SuiCltFyd4Nx/nu/zAgD0F+n6Or1Lne+9L1Dn1/Zfl/SV83pGAIC+49f1AABUil/XAwBQKSZ5AAAq1de/yd96663hbwOvv/56eFyn+dK5+8EPSpowSe5PFe58XG3SpElFj2s6F1e/4IL4by5XO306drJ9xzveYY9Tsj933pL0yivxW3el18e9hu45v/Za/FbgoUOHQm3q1Kn2HN0+L7zwwlA7fPhwqN1222009UGxUZ3ggPMq51w0fvFJHgCASjHJAwBQKSZ5AAAq1de/yZ86dSrU3N/FS/+e2/T1v3e+Mz6tV199teQUi8/nxImwcJLdtu1XFEv/hu6ujzvvXvIOF110UdH2pRmI0szB4GBc5O7MmTOh1ovJkye32h5w3Pu3KT/SRj++6tzL2FB6Pm6f/fra9lgfpzTD5d4Tvezz5MmToVY6xjp8kgcAoFJM8gAAVIpJHgCASjHJAwBQqb4G79qE7FyYoSko4hqslIYh2jTIKX1+TfVemumc6/7c45oa6bR5ji78WHqO7hi9hFnaNlMCSk2ZMiXUbrnlllBrGwIrHZec0nDYu971ruJjtAnbuhBtL/f3aL2cY+nr4Pbp5hXXmMxdxybuWtx2222h9vzzzxfvczQ+yQMAUCkmeQAAKsUkDwBApZjkAQCoVF+Ddy6MVaqXzkIuSFYa7CgN7ZXW3P4kHwpxIQzXqa809OJWY3O1pqBa6evVZgU8d+xeQpZOLwFIYKy51RudphBY6fu3NHjXZn+9BAZLj9MmRFg6Xkh+rGvDHWdgYCDU3JjfNP645+06jbbBJ3kAACrFJA8AQKWY5AEAqBSTPAAAlepr8G7SpEmhVhqOcGGGXpaabQrAlXCBOBeOcN2Pjh8/bvfpOhjt3Lkz1IaHh0OtNNjjru38+fND7corr7TbX3bZZaHmgiYTJkwItdKuhaUhu6ZgTmlYaKxDOEAT957uZRnq0u1L753SoG7bkF1px87STpzu+fUSqi4NApaOS6X7Kw0i9wuf5AEAqBSTPAAAlWKSBwCgUkzyAABUikkeAIBK9TVdP3PmzHgCJgnv0uwuxdiUmG+TbnTHfvnll0Ntz549ofbggw+G2uOPP26Pc/LkyVArTeCWJjpPnTpVdD5N5+i+DbFy5cpQu/nmm0Ntzpw5oeaStqWvlWvvK/nUvDsO6XqMB3cvXnzxxaHm0tpN3xhp0x7WcccpbRPuxj5JevHFF0PtwIEDoXbs2LGifbpju+s4a9asUBsaGrLn6MYvt9Z7m28uOL18k8Lts037d4dP8gAAVIpJHgCASjHJAwBQKSZ5AAAq1dfg3eTJk0PNBQ9cYMIFF5rCWK7lrAuauO337dsXag8//HCo3X///aHmgidN4cDSII67Pm1COL2EQlxo5t577w21o0ePhtr73//+ULv++utDzb3WLjg3Hi1Agbbc+2pwcDDUemnV7N7/bcYBN865UK4b+5588kl7jnv37g21l156KdRcC+7S+9OFcp977rlQc2OIJM2bNy/UVq1aFWouJOy482l6DUu5503wDgAAFGGSBwCgUkzyAABUikkeAIBK9TV457QJkTV1MStd69iFR+67775Q27BhQ6i5deLdc3EhQMl3/1u2bFmozZ49O9SmTZsWai6ss3v37lDbsWNHqLl17CXflc8d59FHHw01F9o7ffp0qN10002hVtqVSioPKwLjwQWnBgYGQq00OCf5e6w0YOqCvi5Qt23btlBznS8PHz5sz9GF+dqE0Ny27rm447qxWJL2798fakeOHAm16667LtRWr14dahMnTgy10ufc9FrT8Q4AAJwzJnkAACrFJA8AQKWY5AEAqFRfg3fDw8Oh1mb5vrbHdl3rHnjggVBzYQ1n/vz5oeYCHJK0fPnyUHPLKE6YMKHo2M573vOeUHNBkV27dtntXeDQXTMXkHFhvu9+97uh5oI0a9eutefjlAaa2iw/DPSizTKlUnnwyt3Lruvmpk2bQs118XTB2KbzduHfRYsWhZobE6dPnx5qrjPe888/H2puXHnhhRfsObolbZ944olQc8vmum1dF8/SJazbzl9t8EkeAIBKMckDAFApJnkAACrFJA8AQKX6GrxzAa3SZRV76abkAiSPPfZYqD300EOh5kJ2LrR15ZVXhprrnHT55ZfbcywN1LkASJuObi4o4pZklKSPfOQjoTZ37txQu+uuu0LNdbxzHfhcuM8FEF2HQMk/H/deYalZjAf3XnNd4nrp7Fm6HLQbqzZv3hxqW7duDTW31KxbCtyNc5IPDrslW12XuNLxy3UAdefdtByuCxy6Lqeuds8994Sam79WrFgRam6saRp/3LVoWp78XDHyAQBQKSZ5AAAqxSQPAEClmOQBAKhUX4N3LmRX+rhegnduaUUXvHPdoVzIbsGCBaHmurItXrw41Jq6V7V5ju4cXbDD7a+X47olX6+++upQc0GRO++8M9RciNB123NdB2+88UZ7jpMmTQq10iU4gfHgujiWhuma6i5wtn379lBz45zb1nWsW7VqVai5rpmSNGXKlFBz45LrZNemI6Abk5rOcerUqaHmgr6uC55bpnbLli1FxxgaGgq1po6bpcuit8EneQAAKsUkDwBApZjkAQCoFJM8AACV6mvwzgUuzpw5U/Q4F1BwARfJL1Houhq5fQ4ODobaNddcE2pLliwJtbbLmbrn4/ZZGp5z27rHNYVe3GNLgy979uwJNdeNy73+27ZtC7WmzlsXX3xxqLXtmAiUKg3Uufdf03vSbX/o0KFQe+qpp0LNdZocGBgINXc/XXHFFaF26aWX2nN0XLi1l05/Y7mt5Dtnuq6kx48fD7XSOcSFH10Y+JJLLrHnSPAOAACcMyZ5AAAqxSQPAEClmOQBAKhUX4N3rsuSCx6UBssOHjxoj+PqLhTilkF0IbI1a9aE2owZM0KtNDAoSSdOnAi1HTt2hJpbTvLkyZOh5gJo7vm54NxFF11kz9E91u3THfuGG24INRdccQG9l156KdTcc5b88pjuvIHx4O55dz/0ErxzS2W74J0bG1yHzUWLFoWaWyJ19uzZoda0RKo796NHj4aau5ddFzx33m5ccktLN3UVdY91c9C1114bai+++GKouYCeG9Nch0HXGU/y4cK2Ae7R+CQPAEClmOQBAKgUkzwAAJVikgcAoFJM8gAAVKqv6fqrrroq1Epb3bqUZlNy3bWHdalwl5B3qXDX1talL9069m4NdUkaHh4OtZ07d4baHXfcEWpt1mPu5RsA7rEusbp8+fJQ+/SnPx1qbi16dx17aWe5dOnSUHOtiYHx4JLdixcvDjX3/nXjnOST9O6x7j5xY5obv9xYXDruSv4bAC5pvnHjxlBz6XN3HV3NJc+bvgHgvmUzc+bMUFu7dm2ouRa/rt22+5aB+1bAwoUL7Tm68dR9O6MNPskDAFApJnkAACrFJA8AQKWY5AEAqFRfg3cuCOECKS6M4AIXTaEQF+xwIZXLLrss1ObNmxdqriWuC6m4oMh3vvMde44TJkwItf3799vHjuba/rrwiTsfd72bgivuObrtXbjQPb8lS5aE2gMPPFC0P7dOdpPSdphAW+7eccFPd9+4cUXyLa9Lx5u5c+eGmgununXiXZvc3bt323N06627MLFr1e3a2rYJE/di/vz5obZ+/fpQW7ZsWai55+KCd258njJlij0ft/b8WLfl5pM8AACVYpIHAKBSTPIAAFSKSR4AgEr1NXjngiKl6yy7MINb31fywS137EsuuSTUXGc8FyhxHZ9c4MsF0KTyMF9pUM6FVEo7xzWta10a3HPP0QV7XCDJXTP3+jWFLN01c+8VdxygLXePuZCne0823Xfu/e/CxI4LcrlxznWadGOSO29JOnnyZKi5e9Q9xzbdOZuuWSkX4HbXZ9asWaFW+rq6uaHpvJtCz2OJT/IAAFSKSR4AgEoxyQMAUCkmeQAAKtXX4N306dNDrTTs4UIPTWEqV3fLz7qQigubbd26NdRuv/32UHNd2ZrO8brrrgs1F2Bzyw66jlGl18cFQJqWcXXHcec4MDAQalOnTg21o0ePhpp7fqUd9JqOPTQ0FGrudQXacsEp193MjWnu/pL8e929f909P3ny5FBz9/e9994bavfcc0+oNS2H65bTLQ0eu9Ceey6lwd+mzoEu4OfG/KZudKO55+LGUzemNR1j2rRpoTbW3Tn5JA8AQKWY5AEAqBSTPAAAlWKSBwCgUn1NI7llC0tDcq6bUlMXKBcWcSEXF5Q7cOBAqJV2h1q5cmWouRCZJO3atSvUZs+eHWof//jHQ620a50L+7ha03V0HQXddXRL9rpwjVue0r2uTWEf5/Dhw6F28ODBUHPXxy3LCfTC3U/u/ecCek1jg7snSjtkujHt0KFDoebuYxdKc8HWpvNxS6R+4AMfsNuP5sY0V3PP2XWYk/z1deFvt083V5V2UnXXpmmpbDcu9TL+leCTPAAAlWKSBwCgUkzyAABUikkeAIBK9TV455b0K12q0XFLl0p+mVMXznBhCBceWb58eaht2bIl1B599NFQW7FihT1HFwBxARkXVnPPxYU1XDcl9zgXdJR817rSZW7da+iutwupuOUgZ86cac/RdbdzXb+aniPQRmk4zGnq1ObunaaOj6O50J+zcOHCUHvqqadCrWmpWbd9aajXjV+lS/G6MaSpm6WbH9zY4EKI+/btCzUXvHP7c/NP0/K6blxqu5zuaHySBwCgUkzyAABUikkeAIBKMckDAFCpvgbvNm7cGGpNy5yO5gIKTSETF/ZwgQ0XNNm8eXOoufDc5ZdfHmoucOGWlJWkpUuXhppbotCFMEpDZDt37gy1DRs2hJq7DpI0b968UFuzZk2oua5YmzZtKjq2Cxu6LoiuC5gkPfjgg6E2ceLEUHOBwQ9/+MN2n0Apdy8+8sgjRds2BazcWOXCYe6ecEFddz7Lli0LtdWrV4eaCyJLfmwoDVaXduJ04bdnnnnGno/jxli35Ov27dtDzY0rrvOpG/PdktqPPfaYPUcXMnbdQtvgkzwAAJVikgcAoFJM8gAAVIpJHgCASvU1eOeCci54VxrWaOoY5YJXbnsXcHnooYdCzS1Junbt2lBzQRoXrJB8OLBp6ckS7jrOmDEj1NzSj+vWrbP7dJ23XDjQPRcXYHTL67rgklvy0nXfk6QjR46EmgskNXWcAtpw97x7//XSxcw91r3/Xac3F9r6/ve/H2qug+TixYtDzQVWm+pu/CoNVjtu/HIh36Zr68Zet3z2tm3bQs0tOe7257qKuvmnaTlvdx3peAcAAIowyQMAUCkmeQAAKsUkDwBApZjkAQCoVF/T9aVJwtKUumujKEmLFi0KNZfsPnHiRKg999xzoeYS9+vXrw81l0ZvSnW7a+GSqKVJS7c/V3PrUje1rnTbu28pPPvss6H2xBNPhJpLtrpr5l4/l7SVfAtcd83HOrEKSP695sYq97im5Ll7T7tv+Lh7wqXr9+7dG2quzaobT6dPn27PsSl1P5bcMdxY1XQd3XjjWni78cu1ER4aGgq1JUuWhJprddv0Lat+fOuHT/IAAFSKSR4AgEoxyQMAUCkmeQAAKtXX4J1rw1gavHMBBRfakqR3v/vdofb000+Hmlub2IU1tmzZEmquzeTVV18dai5EI5UH70of55Res6ZQmqvv2LEj1Nz12bNnT8kp2vDQihUrQs21s5TKA4fuvQeMB/de6yVU60JapffJ4cOHQ82NaU8++WSoufO+9tpr7Tm6trilIcTSVuaO29at8y5Jjz/+eKht3bq1aHsXUHbzigsJu9bfTUFF97zHOozHJ3kAACrFJA8AQKWY5AEAqBSTPAAAleprGsmFMFzYw60TXxrqkHwo7oYbbgi14eHhUHPBlYMHD4ba9773vVA7c+ZMqL33ve+15+i459ims5Tb1l1b18VOkrZv3x5q9913X6i5EI8LFbmOWi6suHTp0lBzQRjJP0f3vmh6jkAb7p4t7crWFLBy944LzC5btizU3Fr2999/f6i5zngPP/xwqLlueZK/b1euXBlqbix23P15+vTpUHNhaRemk3xI2O3TjRerVq0KtWuuuSbUXADR7a+XcZzgHQAAKMIkDwBApZjkAQCoFJM8AACV6mvwzoWnXCDFdQwq7Ywn+TCf61Z04403hpoL1B07dizUXnjhhVD79re/HWquG5wkffCDHwy15cuXh5pbttA9b3cdXRDQdaJzYTpJ2rZtW6gdOXIk1ErDRy6EeP3114fa7Nmzi47RVCd4h34p7U5X2qVSKh/rpkyZEmpujHVjyIYNG0LNdcbbt2+fPUcXWt60aVOoTZ48ueh8Xn755VBzS4G7wKDbtom7ZmvWrAm1devWhdq8efNCrbSLay+vf1OX1HPFJ3kAACrFJA8AQKWY5AEAqBSTPAAAlepr8G5oaCjUmsJzJVz3NsmHHFzgwgUcXFDk7rvvDrUDBw6Emgt3NXWM+sY3vlF07NLgigvZuSCNC7O4LlmSfz4u2OOu7fr160PNhVkWLFgQai601xScc3XXXarN+wxo4t5X7r5ry73P3fjnQsuuE53rPrlx48ZQO3TokD0fF3Zz3UJdzSm9Z93jmpYcHxwcDLXVq1eH2lVXXRVqbkw7deqUPc5YG+uxik/yAABUikkeAIBKMckDAFApJnkAACrV1+BdaSCll+5AjgupvPrqq6HmAmxuCcXp06eH2je/+c1Qc13w3NKGkg+7uWCH26fr8la6PGEv3ZhcoMV1o7vppptCbcWKFaHmruMrr7xSVGtS+l4Z6+UbAcnfT0ePHg21tmOaO44b51zNdeVbuHBhqA0MDISaW0Zaknbt2hVqbnx3geBSrpucC8TNnTvXbr9kyZJQmzVrVtFxSjt79rKEsOMe6+aqNvgkDwBApZjkAQCoFJM8AACVYpIHAKBSfQ3elQZSSgMOTWEWFz4pDa64EMacOXNC7ROf+ESoPfLII6HWtNSsC9S5wIU7xzYBENexzoVRJL/0resO5ZbWdNfRLdnrztG9Vm5/TY91+3SdsoC2SoN349FxsU3wztXcPXbFFVfYY7uwW+kysK5Tn7s/3VjlOoBOnDjRnqMLDrtwc1M4erTScddpepx73gTvAABAESZ5AAAqxSQPAEClmOQBAKhUX4N3rotQaQijNFAi+ZCDO46rufBJ03FGcx2WXGhP8kswDg8Ph5rrjOeCGe68XSBl2rRpoTZ16lR7jq4Dllue1y1fWxpIcde2l5BSaeCQ4B3Gg3v/uY6NbYN37jhun67mAmil59N0H7tQnKuVdn9zx3FjQy/hNzdOuu1Lx6C2ITunH8tiM/IBAFApJnkAACrFJA8AQKWY5AEAqBSTPAAAleprut6lsF1qvjQJ3ZRiLG1h67ikpTuf0nNsSpe6tdUHBweL9um4a+HOsak9rOPSqW596NLEqlP6+rdNnJaeD9BWabq6aWxou/Z86XHaHLd0n20eN9bXoUlpkr60BXfpWNwvfJIHAKBSTPIAAFSKSR4AgEoxyQMAUKm+Bu8cF2Zw7WZ7aX9aGnwoDX212bYpeOKeT2nrXvf8XK00ZNcUSiwNzTil18zppaVk6WvdrxAPfrQcP3481L70pS8VbTsewbt+hb5Kg2no3d69e8d0f3ySBwCgUkzyAABUikkeAIBKMckDAFCpvgbv2qx/XLo/qbwzURttu0i16fTnjl0aYOwlHFh6bMd1y2uj6fUr7VAIjAd3jz377LPn4UwAj9EQAIBKMckDAFApJnkAACrFJA8AQKUSncAAAKgTn+QBAKgUkzwAAJVikgcAoFJM8gAAVIpJHgCASjHJAwBQKSZ5AAAqxSQPAEClmOQBAKgUkzwAAJVikgcAoFJM8gAAVIpJHgCASjHJAwBQKSZ5AAAqxSQPAEClmOQBAKgUkzwAAJVikgcAoFJM8gAAVIpJHgCASjHJAwBQKSZ5AAAq9X9FwKg2k8XU7wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "X_train_scaling = random_scaling(X_train[0])\n", + "X_test_scaling = random_scaling(X_test[0])\n", + "\n", + "print(\"Original shape:\", X_train.shape)\n", + "print(\"Translated shape:\", X_train_scaling.shape)\n", + "\n", + "print(\"Original shape:\", X_test.shape)\n", + "print(\"Translated shape:\", X_test_scaling.shape)\n", + "\n", + "fig, axs = plt.subplots(1,2, figsize=(10, 3))\n", + "axs = axs.ravel()\n", + "axs[0].axis('off')\n", + "axs[0].set_title('Train original')\n", + "axs[0].imshow(X_train[0].squeeze(), cmap='gray')\n", + "\n", + "axs[1].axis('off')\n", + "axs[1].set_title('Train scaled')\n", + "axs[1].imshow(X_train_scaling.squeeze(), cmap='gray')\n", + "\n", + "\n", + "fig, axs = plt.subplots(1,2, figsize=(10, 3))\n", + "\n", + "axs[0].axis('off')\n", + "axs[0].imshow(X_test[0].squeeze(), cmap='gray')\n", + "axs[0].set_title('Test original')\n", + "\n", + "axs[1].axis('off')\n", + "axs[1].imshow(X_test_scaling.squeeze(), cmap='gray')\n", + "axs[1].set_title('Test scaled')\n", + "\n", + "print('shape in/out:', X_test[0].shape, X_test_scaling.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Original shape: (34799, 32, 32, 1)\n", + "Translated shape: (32, 32, 1)\n", + "Test shape in/out: (12630, 32, 32, 1) (32, 32, 1)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAADSCAYAAABJqrmlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XusndWZ3/FnEQhgY/vg+/H1YGPAxo5tICQBhzqKkkwi5dJpOho1qTqR0o6q6aiattFU1bTpJaPO/NV2WjWaqYQqJZN0UEbpzLRFBYZ4iAk4EMLNmDi28RUfG99tIGDM2z/OpnXO+i6zjre97ax+P1IUePzu9333u/e7Ftv7t5+Vuq4LSZLUnisu9QlIkqSLw0lekqRGOclLktQoJ3lJkhrlJC9JUqOc5CVJapST/ACklN6TUjqVUlo0oOP9JKX04Qu97bvs58sppQ397kfSYA16fLqQUkp7U0rrB3Ssb6aU/uUgjnUhXXmpT+BylFI6dda/ToqINyLiTO/ff73ruj+eyP66rjsTEdddoNOrOd7NF2NbSZfe5TQ+pZRujIifdl2Xzufxg5JSujIiTkfEDV3X7bzEpzNQTvKg67r/+4ZPKe2MiC93XfdQafuU0pVd1701iHM7l8vlPCRdPL9o49OlPv7/7/zr+vOQUvpaSulPUkrfTimdjIgvppQ+lFJ6PKV0LKW0P6X0Bymlq3rbX5lS6lJKI71//2bvz+9PKZ1MKT2WUrrhHMf7XEppc2/fD6eUbj7rz/amlL6SUnouIl47q7a+98+Tesc7llJ6IaX0T3sDQ8C2X+s9p2/2zuv5lNJtZ237OymlHb0/25xS+swFu6iSLogBj0+P9B5zqve/9/e+unukt48jEfE7KaVlKaXvpZQOp5QOpZS+kVKadtY5700p/aOU0nMppeO9c7+692ezU0r/q3fuR1JKjxSed/E5vnOeEbG5d55/o/eYz6SUnuk9ZmNKaeVZ+7s9pfR07xp8OyKuPr9X5NJykj9/fz0ivhUR0yLiTyLirYj4hxExMyLujohfiohfP8fj/1ZE/POImB4RuyPi39BGKaXlEfHNiPjNiJgVEQ9FxF+c9eaNiPjViPhk71zG+9cRMS8iRiLiExHxxXd5Xp+LiG9ExFBE3B8Rf3DWn22Nsec2LSJ+NyK+lVKa8y77kzR4AxmfIuKeiLG/Xej974le/a6I2BJjY9bvR0SKiK9FxHBErIiIJb39n+1XIuJjvT+7PSL+dq/+lYjY0dvXXHjcO871HO/p/f+tvfP805TS+yPiv0TElyNiRkTcGxF/llJ6b+8/MP6sV5ve++fPFY57WXOSP38bu677i67r3u667vWu657oum5T13VvdV23IyL+KCL+2jke/52u657suu50RPxxRKwpbPerEfHnXdc93Nv29yJiakR84Kxt/kPXdXu7rnsdHv8rEfG7Xdcd67puT0T8p3d5Xn/Vdd3/7n1P942zz6vruvu6rtvfe87fioidEXHHu+xP0uANanwq2d113de7rjvTO/7Wruv+suu6N7uuOxgR/w6O/++7rhvtuu5wRPyPs455OsY+qCzqPf6v6IDn8Rz/XkT8597jznRdd2+v/v4Y+4+ELiL+Y9d1p7uu+28R8eMJXoPLgpP8+dtz9r+klG5JKf3PlNJoSulEjH2CnnmOx4+e9c+vRTn4Mi8idr3zL13XvR0ReyNifulcxhke9+fn2pbOa/I7/5JS+rWz/mrrWETcEud+jpIujUGNT7XHn5tSui+ltK93/P8Kxy8d8/dibAz8y5TS9pTSV+iA5/EcF0fEb78znvXGtOEYG1vnRcTe7udXcNtFO7ncOcmfv/HL9/1hRDwfETd2XTc1Iv5FjP0VVb9ejrE3Y0REpJSuiIgFEbHvHOdyttHe9u9YeD4nkVJaEhFfj4i/HxEzuq4biogX48I8R0kX1qDGp9LYM77++zH2K4BVveP/Wu3xu6470XXdb3VdNxJjf2X+2ykl+oR+rudI57knIv5V13VDZ/1vUtd190XE/vj5cTMi4hfuJ4YRTvIX0pSIOB4Rr/a+Rz/X910TcV9EfCaltL73PfxXIuJkRGyawOP/WUppKKW0ICJ+4zzP47oYu1FeiYiUUvpyjH2Sl3T5u1jj08GI6HofAt7t+K9GxPGU0sKI+Ce1B0gpfTqltDSllGLsOZyJ//eTwfHHwOfY+/rxcIx93/+OP4qI3+iFBVNK6bresSZHxMaIuCKl9A96wcS/GRG3xS8gJ/kL5x9HxN+JsQn4D2Ms7NK3rus29/b79RibYH8pIj7T+66sxlcj4kCMfX/+QIxN+m+cx3k8G2MhvB/G2H/l3hL1/6Eh6dK6WOPTyYj4txGxqfdX3qWMzlcj4s4Ym4T/PCL+dAKHuTkiHo6IUxHxaIxlkDbCdu/2HL8aY2HhYymlX+66blOM/c3k1yPiaIwFi7/Ye15vxFh48e/2/uyXI+K/T+CcLxvp579yUOtSSr8ZEZ/ruu6jl/pcJEkXl5/kG5dSmp9SuiuldEXvr7B+KyK+e6nPS5J08dnxrn1Xx9hvQUdi7K+dvh1jf5UlSWqcf10vSVKj/Ot6SZIa5SQvSVKjBvqd/Lp167LvBs6cyX/u+J73vKdqf6WvGt5+++2sdvp0/oszOvb111+f1a67Lm/29N73vjerjf2M8933FxGxfPnyrHb33XdntTvvvDOrvfbaa1ntvvvuy2obNmzIaqOjo1nt6qt53YXaa0bXm7abPHlyVrvyyvwtePLkyapjlI5TW3vsscds5KNqKaVswPnSl76UbdfPmBZRfq+P9+abb2Y1GhOnTp2a1a699tqsdtVVV2U1GtNK+xwZGclqa9bk3XBXrlyZ1X72s59ltQceeCCrPfnkk1nt0KFDeI40rtFr89Zb+QJ5dB3pdbnmmmuyGr3WNGaX9llbu/fee6vGLz/JS5LUKCd5SZIa5SQvSVKjBvqd/PDwcFZ74428wyp9D0TfpVwMkyZNymq136fR9zP0/CIidu7cmdWmTJlSVXv55Zez2osvvpjV6Hsu+i6NvheP4GtB3wPSceh7Lso2EPpu8NSpU1WPjeBzLH23KPVj5sx8kbPa91/td+/9onHpiivqPt9R9iiCx7X9+/dnNcrhUO2VV17JajRG0rWlMTKCx236np7GKjoOzUGUbSA0pkVEvP46rQ6eK80jNfwkL0lSo5zkJUlqlJO8JEmNcpKXJKlRAw3eUcCLAiml5izjlcJYFJCYPn161T6nTZuW1ShYRui5vPrqq7gtBU0oPLd9+/asRo0aDh8+nNUocFP7GpTqFDShGjW0oWNTCIdeq1IziRMnTmQ1Om+Dd7oYKNxFYbVSgI3Qe51CejRWEbrHKFg2ETQmHj16NKtReG7v3r1Zjca048ePZzWaG0rB6Np7nvZJNXpd6Ng0HpaCjnQdac6g17CWn+QlSWqUk7wkSY1ykpckqVFO8pIkNWqgwTsKUlAXtNpuaaUuQNRdiDoL0SprtWENCvcNDQ1lNeowV6pTkJCuGXWio5AdrYBHgRu63hEcNKHj0HZ0feixFLihMF0p/Fj7upZWLJT6QSEpep/T/UD3cUR9KI7uiX46g1K4r9RNjsZjCofR/UnjHF0zCivSuFm6XnQtaM6g49B50/7osTTWlALYtR1E++mO6Cd5SZIa5SQvSVKjnOQlSWqUk7wkSY0aaPCOAgXUCYiCXBTWKIWpaJ/0+NouVLUhk7Vr12a10jnWdtGjZWVrwzUUQKRucqWlZumaUSc7CpXQ8ysFjcaj17/U8Y6OTdfcjne6GGrvY9qu9J6m9y+NaRQOq10Wu7Zz5S233IKPp3OkUBudN3X7rB3TaKwqdf6ja0HXjMYQ2o5CchQYJKX3CdXp2P0Eh/0kL0lSo5zkJUlqlJO8JEmNcpKXJKlRTvKSJDVqoOl6SqnXpjQpKT6RxCG1OqW097Jly7LaunXrshqlKn/0ox9lta1bt+L5jI6OZrV+WhfStaD90XOeM2cO7vN973tfVqN0Pv0CYM+ePVmNkvm163HT6x/BiVe6FpRYlfpF9xO9/2j8Kf2qpXZco33SuLRw4cKstmbNmqxGa6hv2bIFj71r166sduTIkaxWapl9vujalBLuM2bMyGo0vi9dujSr0S8ADhw4kNUomU9jWmn8om0vdFtuP8lLktQoJ3lJkhrlJC9JUqOc5CVJatRAg3fUWpTCYfPmzctqFMYrtQqkQMvcuXOz2t13353VPvShD2U1Cpncf//9WW337t3V50jovClUQgEZOk7tusYUKImIePjhh7MatblcsWJFVqN1qPft25fV9u/fj8cej0J7EXx9Dh8+XLVPqV+1Y9qsWbOyWmkddBrraGygIPPq1auzGoXsKCz72GOPVW0XUb/mPbW1pXuWgmn9hmppHDh27FhWGxkZyWpLlizJatTK/ODBg1nt0KFDeD6Ezp3GdzrvWn6SlySpUU7ykiQ1yklekqRGOclLktSogQbvasMD1CWJgmW1axBHcFcjClxs2rQpqz3yyCNZjTq6UVCEui5FRNx0001ZjQIyixYtymoUUqG1qbdv357Vnn322axGgcEIfr0ozPLTn/40q1FnKerkRKE/qk2kGyCFWSjMJPWrFAgdj8Y0uh8ieFyj9++CBQuqas8991xWe+qpp7IadeEsjbFTp07NaosXL85qNM4NDw9nNQoW0phPY9W2bdvwHOn5nDhxIqvROEdha3p+9BrSGFkKA9d2sptIgHs8P8lLktQoJ3lJkhrlJC9JUqOc5CVJalTqZwm7iRoZGckORt19CAWvSl2XqLvUnXfemdUooPXjH/84qx09ejSr0XKotKTjRz7yETzHD3zgA1mNuvJRxygK3lEwh67P3r17s9rGjRvxHKlOHeroOENDQ1nthhtuyGoUXNqxY0dWo2BhRDm8NB5ds6NHj+btyqSClFI2fn3yk5/Mtqsd00pjb+39tGrVqqxGAa0XX3wxq9F9R/cIjUkREXfccUfV+VDwmMa02iVXa8O7ERFPP/10VqPxnTrU0XGoi+f8+fOzGnUVpW6fETyu1YaMH3300arxy0/ykiQ1yklekqRGOclLktQoJ3lJkho10I53tUGK2jAghd8ieAlG6mpEnaAoxHHttddmteXLl2c1Wrr21ltvxXOkc6dlHSkMU7s8IQVcaLlECtGUzvH73/9+VtuyZUtWo25T1PWLgjl0valTVQQv9Vn7PpP6Re9pqk0EdX+j+5buCer+Rt3WaLlXCsZSF84IXoqVzpvGUxpXKDhMYx+NaTReRPAS2LRP6v730ksvZbVXXnklq1FHwGnTpmW1UhiTQnq1Y1otP8lLktQoJ3lJkhrlJC9JUqOc5CVJatQlD94RCkcQ6kAUETF9+vSsRsuuHjx4sOrYtCQtddCj7kelJU5rlw6sXU63dn+0XanDEgVxapcBpuVnjxw5ktUokEKvQSm4QiFEOkcK7Ej9qg3Z1Y5pERyyo7GOuldSd04KxM2bNy+rUUh49uzZeI40ltcuJU5d3ihsTV3wSKnzKY1r9LzpNaR90vKzx48fz2oULKTXIILfF/0uqz6eI58kSY1ykpckqVFO8pIkNcpJXpKkRg00eEedgAgFIaiLHXWdi4iYOXNmVqMlUidNmpTVKGT32c9+NqvdeOONWW3z5s1ZjbokRdR3ZaPOVGvXrs1qFJKjJVsff/zxrFZaxnXlypVZjbr60TlS0IQ6+lG3KnqflEI4tE/qGFUKvkj9KIV/x6N7m8a0CL6X6Z6gTnYU+lqwYEFWu+eee7LaokWLshqNIREc8KPnSIExCtHedNNNWY1Cf7RkK3UujeAA29KlS7MadfWjc6QxhMLb9NjSa03jGu2zn+Cwn+QlSWqUk7wkSY1ykpckqVFO8pIkNWqgaaShoaGq7aj70fDwcFaj8FsEd1arPZ/169dntU9/+tNZ7Sc/+UlWo1AbdaWK4K5WFDikUBsF4rZu3ZrV7r///qx28uRJPB9CS1nS0rAf/ehHsxqF+TZs2JDVKLhEXanoOkRw2Ic6XZW6+kn9qA3e0ftv1qxZuO3ChQuzGnWTo4ApBfRuv/32rEbj3M6dO7Pas88+i+dIgWK6R2lMo2AaBeJ2796d1TZu3JjVaLnWEtqWrhl1NKUg3xNPPJHVKNBdeq0pKHmhl8X2k7wkSY1ykpckqVFO8pIkNcpJXpKkRjnJS5LUqIGm62vXG6b2gbQueylFT0nz0dHRrEZJcUp+HjhwIKtREpVatH7hC1/Ac6RWkz/4wQ+y2gsvvFB17G3btmU1uo6f//znsxqlQSMiHnjggaz24IMPZrWPf/zjVcemX03s2bMHj12LEsb0XqGa1K/aX6tQ+9LSOug0TtJ9cujQoaw2derUrEYJbmqJSy2iS79q+cQnPpHV5s6dm9WeeeaZrLZ9+/aqY9NzpnHlYx/7GJ4jnTv9AmrTpk1ZjcaV2vXtab6g/UXwmEjbUrK/lp/kJUlqlJO8JEmNcpKXJKlRTvKSJDVqoME7Cg9QyIDCCBRSKbUzfP3116sef9VVV2U1CmtQi9Y5c+ZktQ9+8INV25XOkQJ1FDShFpmnTp3KarSGMT0/arEbwWsY0zrSFICkACOh9wS106XXKoJbQNI+SyEnqR8U6KQxjd6/pfal9P6lGj2ejkM12h8FkVetWoXnOH369Kp97t+/P6vVhnJp3KWQcGmsoSA0jWk03lCNAoyE3hOlgCbtk1oB9xMc9pO8JEmNcpKXJKlRTvKSJDXKSV6SpEYNNHhHQQoKqVCNwggUAisdh8IeVKOuRnQ+FKijABsF7CIiNm/enNVojeabb745q1FXq9puTHRtSqG2M2fOZLXaUCOFYSg002/IhB5P53Oh12iWIurDxFSj+yuCQ190HLrnqUbjHJ0PhekovBbB9+iOHTuyGoVyR0ZGshqNDRSSI6VucPS8a8eb2lAjBZnpdaXjltDj+xm//CQvSVKjnOQlSWqUk7wkSY1ykpckqVEDDd7Vdp2rDU6VgisUcqgNUtSGZiisQd2LSuFA6m5HXZ9oSdqhoaGsRteCAil0DAqoRNQHTej1otAMdeqr7YxXWqqRrjmFj2pDPNJE0LhC9xNtVwpj0X1SG+aqDdlRrXaMjOBwIC0XSyi0PGXKlKxG14HGGhrTIngcqO0ISNeCxhA6dumaEdonPb40Rlcd47wfKUmSLmtO8pIkNcpJXpKkRjnJS5LUqIEG7yhQQMED6qpGnZOo81sJBU1qu7fVBlLouRw7dgzPh5ZgnDlzZlZbvHhxVqvtakXovEtdrWo7RtV2KKQgDW1HtVJwjl6b2lCR1C+6R+i9SiHY0vKjtEQ03TuktntbbWivdN/RuR86dCirTZs2LasNDw9XHad2TCt1+6RQb20guJ8xrXacK53jhR6r/CQvSVKjnOQlSWqUk7wkSY1ykpckqVEDDd5RmIE6ltV2dyp1vKN90rEpDFPbJY6OQcu4lrpA0XFWr16d1a6//vqsVtttj0KEpWtGKKRS2/WJrgXVakOE/S7VOJHnLdWicYXCrbVLIkfwe5UCWq+++mrVPmu7xNF5l5bKpmWxaVxatmxZVqPudnSOteNAbSgxon4pcbo+tfPFREKEtePSRMa/7HzO+5GSJOmy5iQvSVKjnOQlSWqUk7wkSY265B3vKLhAwYyJLB9KneMOHz6c1U6dOpXV9u7dm9Vuv/32rDZ9+vSsRt3tdu3ahedIz/Hmm2/OavPnz89qtHwtdf8bHR3Navv27ctqFJiJiNizZ09Wo5AKhUoomEPhEboO9PrR+ySCX8Pa8JHULxrT6H6iLnalMBaNa7S8NI03FG49ePBgVlu+fHlWozGk1JWPOnZOnjw5q42MjGS1WbNmVR2H9kfjOI01ETze0JhIYxrNNzTuUne6SZMmZTXq/BfB4xKFHQ3eSZKkjJO8JEmNcpKXJKlRTvKSJDVqoME7CjNQuIJQZ6BSNyYKdsyYMSOrUWhr586dWW337t1Zbd68eVmNwmG0RG4EB1KoOxR1vKOAzIc//OGs9t3vfjerfec738lqFDyJ4LDQ+vXrsxoFhSggQ52p6PWnQFIpeFfblY/CMFK/6N4pLd08XqlTG73XaRygMB51waOwLQXnaNwshXKPHz+e1WhMXLRoUVajEBqNNWvXrs1qDz/8cFZ78MEH8RxpHKDX5o477qh6LD1nQt1HSyFLmoPoPVUKmdfwk7wkSY1ykpckqVFO8pIkNcpJXpKkRjnJS5LUqIGm66mFH7Xro1aRVDt06BAeh5KMlOynY2/dujWrPfTQQ1mNEpSUll2xYgWeI6Xr6bwppU5rHS9cuDCrfepTn8pqS5cuzWqltpCUlqVk/+bNm7Pajh07shqdNz1natdJtQhOpxLXk9fFQGMItTqtHdMi+L1O9wmlsGkMotbamzZtqjqf0i8AlixZktVovKBxl1LqNDbMnTs3q9GviOgXURHchnb27NlZjX7hs3379qxGLc8JvVal9sBUL/1q7Hz5SV6SpEY5yUuS1CgneUmSGuUkL0lSowYavKsNFFCYhWq0dnIEh0VojXJCQYhnnnkmq1GgZN26dVntrrvuwuNQcO/EiRNZjZ7L1Vdfjfsc74Ybbshq06dPz2qltrYHDhzIao8//nhWe+qpp7IaBeKodSWh4FEpZEnvqVKgSbrQSm1fa7abSFtbCqZRq1tC9yIFjGlMW7NmDe5z9erVWY3uO2qzS+ix9Jznz5+f1UprtdO4RkHm5557Lqu98MILWY1el9p22aXgHY11dJxSW9wafpKXJKlRTvKSJDXKSV6SpEY5yUuS1KiBBu+uueaaqu1o7dxSSIVQZz16/IIFC7Layy+/nNUoNEFhMwpH3HPPPXiON954Y1ajEAfts3Zt4drtXnrpJaz/8Ic/zGoUQqRwzZQpU7La8PBwVqNQUG2YKWJiazdLFxq9/wiFwChYVtqWuujRmEYd3aijJYWWt2zZktUojBcRcdttt2U16rpJYz7ts3Sc8UohYbJv376s9vzzz2c1CiHWhuxmzZqV1SgMTHNSRH0XUIN3kiQp4yQvSVKjnOQlSWqUk7wkSY0aaEJpzpw5VdvVhlkmgkJo1BFu8eLFWW10dDSr0TKGtDxhKVxDHdxuvfXWrLZs2bKsdu2112Y16gh48ODBrEadnL73ve/hOVJgh4I0FLhZvnx5VqPXgJappXANdeqL4JAedc+aSGBHqlXbdY7GtH7fk/R46ghHS8DS+EMdN0vLq9K4Rt3baGnrRYsWZTXq4knLQx85ciSr0bLWERFPPvlk1ePptaFlbmm+oNeAzqf0WlO3PgrpGbyTJEkZJ3lJkhrlJC9JUqOc5CVJatRAg3cUaqtdNpWCC6WlaydPnpzVKMQxY8aMrEZBEbJt27asRmGWUvCutvPS0NBQVqPOS9Qx6vjx41mNwjGloCN1BKQleylkR0ERWtKRlp+l0EspeELBO3pPXYwwp0RBt9qljksdKanbGoVtaUyjIBcFY2lc2rNnT1ajMaSEgse7du3KatQNk+5Zuuep+2hpGVd6PIW/aYylkB2NsTQP0PhcWuqc3gMUvOtn/PKTvCRJjXKSlySpUU7ykiQ1yklekqRGDTR4R0sj0pKHFJwjFEYp1Wk5VFpilcJ8tCzsunXrshoF5/bv34/nSOdDoTjajoIdtUvxUnik1ImQOlNRyI46423YsCGr0TK+9PpTyISWpI3gABEFnyjMJPWLwm9Uo06RpXuW3v8UTKN7h5ZXpfc+3dtr167NahSci+CQMY2d1EWPtqPrUwotj1cKMFKwuraTHXU0pQ56NPbR9S4Fh+la1D7vWn6SlySpUU7ykiQ1yklekqRGOclLktSogQbvqGsd1Sj0QEupljpL0XKCp0+frjlFDE3Qkq20BOOqVauy2sqVK/E4FPqjMAsdm4ImtOQlBXhuuummrDZ79mw8R+qA9dBDD2W1LVu2ZDV6LoQCN2Tq1KlYp/ARdcDqZ6lGqaQU+hqPgqM0pkXwuEbv6doxjbpCUsiXxhoKHZfqFPqj49D4TNeR7nm6j6mTagQvT33gwIGstmnTpqxG4zOdN6kd0yI4ZE5jWil4XMNP8pIkNcpJXpKkRjnJS5LUKCd5SZIaNdA0EgVAaKlR2o6CZSUUnqMucbTkIaFwBHWie/TRR7MadV2KiJg1a1ZWW7ZsWVZbsWJFzSki6qZE4RFaAjaCg3ejo6NZjQJEFJCZSHhyvFLIiDr40bFrjyNNBL0vqeMmbVcKkxIaEyngReMcoXOk8eLpp5/Gx9OStjRGU2e9JUuW1JwioutAXfUieBlYCt5RSJi6FtIYQtvR+EMB8wh+X9DjazuaEj/JS5LUKCd5SZIa5SQvSVKjnOQlSWqUk7wkSY0aaLqeUpWUOqT1zSlxSC0TIzgNT2l2SohSWptSrJREpbaOtN5wBLfupedDrRlrW1xSEp7SoKXkOm1b+ysHuj50HLrepNQqkn7lQGtvSxfD/Pnzs1opST1e6b1P9zel4elepF8r0XGo5TUl16nVbQSPVXTeVKNxl1q50q9xDh8+nNVonIrg8YZS6rW/cqBfbdE51o5pEfw60NhJ29Xyk7wkSY1ykpckqVFO8pIkNcpJXpKkRl3y9eQpuNB1XVWNQialfdbWKMTx5ptvZjVqpUghEwqzRHCLRApX0FrJ1CqXAjL0XKitI4VeSudYWgN7PHoudJza9polFLLspwWkNBE0ptF9R+/J0vuUWtPSPqlG9ycdh0JptGY5BVsjeEykcDSNA/PmzctqQ0NDWY1acNNzpjBeBAfl6BxLwb3xasOKFPwtzQOExsTacyR+kpckqVFO8pIkNcpJXpKkRjnJS5LUqIEG72oDKVdckf+3B4UeSmuEU0iPQnEU8KrtVkX7o8dSd6cSCmzQ86ZgDgXQjh8/ntUoAFJ6zlSvvT4UeqHnQtvVdh2MqA8C1m4nTURtoK52TIvgcBiNaRRkncj9PR6F7EqPnTJlStU+6bnQuE33NwXQKBxY6thJ506vA11bQteWxqra7SJ4zO+3i954fpKXJKlRTvKSJDXKSV6SpEY5yUuS1KhUGzqQJEm/WPwkL0lSo5zkJUlqlJO8JEmNcpKXJKlRTvJ7ExadAAAAb0lEQVSSJDXKSV6SpEY5yUuS1CgneUmSGuUkL0lSo5zkJUlqlJO8JEmNcpKXJKlRTvKSJDXKSV6SpEY5yUuS1CgneUmSGuUkL0lSo5zkJUlqlJO8JEmNcpKXJKlRTvKSJDXKSV6SpEY5yUuS1Kj/AyhO3/Lc5nm1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAADSCAYAAABJqrmlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAH1BJREFUeJzt3XnQ3dV93/HPAYwALQjtu9AKEtqQ0GJhC4u4xTNx7HpSO0032xO3Seu2jOt26jYu03bSTJKWIZ4s0yZp3U5CHbIY6gUztky9YMCITUIWiEVCK9r3BYnl9I971T5+vp8fnKv76Eo5er9mMsHf5977O7/fvfcc3ef53O9JOWcBAID6XHahBwAAAM4PFnkAACrFIg8AQKVY5AEAqBSLPAAAlWKRBwCgUizylUgpvZJSeu9A3/ZdHudXUkprun0cACiVUtqdUnpfj471pymlL/biWOcLi/w7SCkd7/N/b6eUTvX533+ni8d9PKX0dwdyrDnnGTnnxwb6tgAuThdqfkop3ZhSevNcH79XUkpXpZRySmnShR7LhXTFhR7AxSznPOTsf6eUXpX0mZzzRfXJNaV0Rc75on/DARhYF/P8xLx08eCTfBdSSpenlP5tSmlzSml/SunelNLw9s8Gt3/VczCldDil9OOU0nUppbslLZX0R+1/cd/d8Ng/n1La2L7vmpTSrD4/251S+hcppZ9IOtqn9r72fw9JKf2v9n03pJT+dUrp5X73P3vb32iP+ysppWMppfUppUV9bntXSmlL+2cbUko/ex4uJYABdh7npx9IurzPbw1ubv/p7uGU0u+llA5J+kL7E//32sfYl1L6nymloX3Gtzul9Ln2vHKkPb4r2z8bl1J6qD22AymlhxvO8db22I+klHallO5JKZ398PqD9v/f1B7n32jf52Ptee5wSumHKaW5fR5vWUppXXu++xNJV3b3LFx4LPLd+ZeS/rqk90maJOkNSfe0f/YZtX5TMlHSKEn/RNKZnPPnJa1V61/dQ9r/+6eklOZJ+h+S/rGkMZK+L+lrfV68kvQLkv6apJFmXL8mabSkqZJ+VtLfe5fz+Jik/y5puKTvSvrtPj/bJGmlpGsl/aakP00pjXqXxwNw4Z2X+UnSKklvtX8+JOf8TJ/6s+3HO/uPg/8gaZyk+ZJukPSr/R7rb0r6GUkzJS2X9Lfb9X+l1twzStJ4Sf+u4RzfaI99hKT3S/q59rmdHY8k3dAe5wMppRWSfl/Sp9WaO/9Y0gMppStSSldJekDSf20/3rckfaThuH9lsMh355clfSHnvCvn/Lqkfy/pF1JKSa0X32hJM3LOb+ac1+acTxQ+7i9Kuj/n/L2c8xlJv67Wi/2WPre5p33cU+b+n5D0aznnIznnrWq9qN/Jwznn7+Sc31LrRf//PsnnnO/LOb+Wc3475/zHknZKWlJ4HgAunPM1PzXZnHP+w5zzWznnUznnF3LOD+ecz+Scd6v14eG2fve5J+e8J+e8T9KD+v9zzxuSJkia0r7/D2TknJ9oj/2tnPMrkv7IHKOvX5b0uznnp9r3+QNJg9Sa01ZJOp1z/v2c8xs553slrT/Ha3HRYJE/R+03ymRJD7Z/7XNY0jNqXdORkv6bWp/A/yKltCOl9OsppcsLH36CpK1n/0d78d2p1r+6z9r+DuMa2+/n9rZ97O7z3ycl9f1b3y/1+dXWYbX+xc0neeAidp7npyY/Nc+klCaklP48pbQzpXRUrQW4/9zRNPf8R0m7JP2flNLLKaV/7g6YUpqbUvpWSmlP+xh3mWP0NVXSvzl7TdrXZbRac+sESTv63X5r/wf4q4ZF/hzl1vZ9OyXdnnMe3uf/rso57885n84535VzvlGtfyF+XNLfOnv3d3n4XWq9GCW1/ram1otwZ98hvMO49qr167mzJndybn2OO1vS70j6h5JG5JyHS3pZUjqXxwPQG+d5fmr6ef/6f5J0QtK8nPMwtX6NXjR3tH8LeWfOeaqkn5f0xZTSreamfyjpabV+IzFMrT8PnD2GG+d2SXf1uybX5Jy/Kuk1/fS8KUlTSsZ7MWOR785/kfQbKaXJkpRSGpNS+rn2f3+w/a/My9QKx70p6a32/fZImv4Oj3ufpI+llFallN4j6QuSDkh6snBcfybpV1NK16aUpkj6R52eWNsQSW9L2ifpspTSr6j1SR7Axe98zU971QrevdsCOFTScUlH27e1n8adlNJHUkrT2r+RONIe21vmpkMlHck5H08p3STpH5z9Qc75dPu+fc/lDyT905TSLallSPtY16gV1LuqHSK8IqX0i5IWlI75YsUi353fkrRG0sMppWOSHpW0uP2ziZL+t6Rjkjao9femP2v/7B5Jfz+ldCil9Fv9HzTnvF7SL6kVANmnVjDlox18JeWLkg6p9aumb7WPe7rTk8s5P63WRPGkWv/Knabyf2gAuLDO1/x0qP3YT7V/5b2o/23a7lIr9HdE0v2S/rKDsc+R9L32+H4g6T/nnB83t/ucpM+klI5L+j21PiD1H8Oft8f5kZzzjyT9M7Xm1sOSXlQr7Jfb+aaPqRV4PqRWaPnrHYz5opRav9VBzVJKn5P0oZzzHRd6LACA3uGTfIVSSpNTSitSSpe1f4V1p1r/kgYAXELoeFenQWp9732qWr92+hO1kq0AgEsIv64HAKBS/LoeAIBKscgDAFCpnv5N/u677w5/G3j77bfD7VpfjTx3b73lvk4ZuT9VuPG42tChQ4tu1zQWV7/ssvhvLlc7dSp2sr388rJmVe7x3Lgl6fTp+K270uvjnkN3zm++Gb8VuG/fvlC77rrr7BjdY77nPe8JtQMHDoTal7/8ZZr6oNiXvvSlMGGUvo+dprmhdP5z85erlc4N7rhNY2maM871OKVziDuXTsbonht3/9J50t2udP1pOrY7zp133hlqOeeiFwqf5AEAqBSLPAAAlWKRBwCgUj39m/zJkydDzf0NqfTvuU1f/7viinhab7zxRskQi8dz7Nixovt2+xXF0r8NuevTyd/YnCuvvLLo/qV/gyrNHIwaFTeROnPmTNExmgwbNqyr+wOlf9t278/S+0r+PeHmkYF+37nHazqGy9K492jpvOTmbFdzmm7nrnlpXqL0b/fdzrG9+Ao7n+QBAKgUizwAAJVikQcAoFIs8gAAVKqnwbtuQnalQQjJh0JKAxfdNMgpPb+meifNdM718UobTDTdv/QcXRimdIzuGKXPX9NxgG5de+21RbcrnS+a3nedNFPpzwWMXXOo119/PdSOHz8eart27bLH2b59e6i5hlPuOO697MY4YcKEUJs5c2aojRs3zo5xyJAhoTZo0KBQKw0HljbiKX3+m5QGDkvxSR4AgEqxyAMAUCkWeQAAKsUiDwBApXoavOsmUFC6A5DUXaej0tBeac09nuTDHq5jlAvSlAZzXJjF1ZqCaqXPVzc74JXuANVtFynCeOjWyJEjQ829P91rrZMwcOlr1c0XbufI3bt3h9r69etD7cUXXwy1EydO2GOXdvcsDbC5bqiuq+imTZtCze0IKklz5swJtfe///2hNnbs2FDrpmuhe647CTe7ObobfJIHAKBSLPIAAFSKRR4AgEqxyAMAUKmeBu9cQKI0ZODCDJ1sNdsUgCvhAi5uG9ZTp06F2tGjR+1jbtu2LdS2bNkSavv37w81F65x3LWdMmVKqLmAiuQ7TrmuX1dddVWolXYtLA3ZNXWMKu2YN9BhFlx6rrnmmlDrZlvYpmCre027gJ8Lpm3YsCHUnnnmmVDbu3dv0XGbdLPFaulxSm935MgRW3/88ceLbrts2bJQW7x4cagNHjw41Lrt2Nltd88SfJIHAKBSLPIAAFSKRR4AgEqxyAMAUCkWeQAAKtXTdP2YMWPiAEzC1KXZS1tFSuXtBx13bLcn8o4dO0LtqaeeCrWf/OQn9jhu7+ZetIp042kao/s2xMKFC0Ptgx/8YKhNnDgx1FzCuPS5culiyafm3XFI16Nbpd/6KH1/Nn07yD3mnj17Qs3NN0888USoubnGjdG9R0aNGmXHOH369FAbP358qLlv47j3p9u33n0DydXcPNd0nOeffz7U3LcU3Jx/6623hlrpvNLJNxcGGp/kAQCoFIs8AACVYpEHAKBSLPIAAFSqp8G7YcOGhZoLgLjAlwupNIWxXMvZ0laRLgDi2kK6lokuHNMUDnStC0tDPK7WFOIpuV3TfQ8fPhxq3//+90Pt0KFDoeb2bV6xYkWouefaBWaaxljaVnSgW0Xi0nPgwIFQ66QFcyn3fnr66adDzc1L7j3rTJo0KdTmzZsXarNnz7b3d4E81966dF6aNWtW0X1d4NmFDSV/zdzc8uqrr4aam7fdenHzzTfbY/fX1PLX1WlrCwAAirDIAwBQKRZ5AAAqxSIPAEClehq8c7oJkTV1G3L3d2GYnTt3htpjjz0Wao888kiouX3i3bm4EKDku//deOONoea6SI0YMSLUXKBk+/btobZ58+ZQc/vYS75TljvO+vXrQ80FgE6dOhVqt99+e6gNGjQo1DrpDla6rzXQidOnT4daN8E711VNkl544YVQe+6550LNvcdcZ72ZM2eG2pIlS0Jt6tSpoebei03c+XQTHHbz+4QJE0LtjjvusONxXTfXrFkTam6PeRfwW7t2baiNHj061FwosWmt6sX8xSd5AAAqxSIPAEClWOQBAKgUizwAAJXqafBu//79oVYaMigN43VybNe1znVPOnjwYNExpkyZEmqLFy+2t73ppptCbezYsaHmukiVmjt3bqi5oMfWrVvt/V3g0F0z1x3KhfkeeuihUHNdpJYtW2bH45QGe7rZfhho4l77pXOV65ApSRs3bgw1N3+5zmiuk92iRYtCzc1VbtvvphBhaedM95ilj+eO7WpN4WYXZHbzzbe//e1QcyFCF9R+9tlnQ23lypWhNnjwYDtGZ6C3peWTPAAAlWKRBwCgUizyAABUikUeAIBK9TR450IqroNat9s3us5qrmOU24rQhexcaGvOnDmhtnz58lBzWyhK5YG60i5SpVznpcmTJ9vbfvSjHw01F+x58MEHQ81143Id+Fy4zwUQXYdAyZ+Pe62w1Sy65eav0veiC3y5IJfkA3nuNe06q82fPz/Urr/++lDr9v3groV7TNcl0BnorbclP8e6+fi1114LNbeN75kzZ0Jt06ZNRcdomu/d2N2a2A1mPgAAKsUiDwBApVjkAQCoFIs8AACV6mnwrjRQ4G7XSfBu165doeaCdy7g4kJ2bgtG15Vt+vTpodbU8ambc3RjLA2udHJct82k657lQjhf+9rXQs2FCF23Pdd1cPXq1XaMQ4cODTXXPcuNEeiE21a0tCvbgQMHimqSf49effXVoeYCXgsXLgy1kSNHhpqbL9z75sSJE3aML730Uqi5sO3JkydDzYXQ3Pm5UK2bk5o63rnHdMe+5ZZbQm337t2h5gJ67vzcNRsyZIgdYydb+Z4rPskDAFApFnkAACrFIg8AQKVY5AEAqFRPg3cu7OG6CJWGQlwXKUnatm1bqLnuUu4xXRepJUuWhNqMGTNCrdvtTN35uMcsDc+5+5Z2kWq6rQuKuC1td+zYEWpr164NNff8b9iwIdRch0HJh2u67ZgIOG57aPf6dR03O5m/3Gv6uuuuCzUXGFuwYEGoHT16NNRc6Nh1p2vaZtvNsd/4xjdCzc3l3XTsdJq697ng3uzZs0Ptk5/8ZKi559pdRzfHuud62rRpdozueR1ofJIHAKBSLPIAAFSKRR4AgEqxyAMAUKmeBu9GjBgRai6kUBos27t3rz2Oq7uOZ9dcc02ouRDZ0qVLQ811vyoNDErSsWPHQm3z5s2h5oIvx48fDzUX1nHn10nHKHdb95ju2CtXrgw1F350AT3XMcqdsyQNGzYs1HrRRQqXHheycu8HdzvXGc11gGwybty4UJswYUKouXnOBfxcJ85vfvOboda0RWrT3Nufm8vdPFm69a27XVOA0a0Z7pq7+cJ1OV23bl2ouZDlkSNHQq1pHXBzb1OX1HPFJ3kAACrFIg8AQKVY5AEAqBSLPAAAlWKRBwCgUj1N18+fPz/USlvdusR1U2LRpS1dCtYl5F0q3LW1dQlKt499U4J2//79obZly5ZQu++++0Ktm1aRnXwDwN3WtYp0LSA/+9nPhprbi95dR3cuTWOcOXNmqLnWxEC3SttEu5r7No1rIyv5dHXpt1oOHToUai4B7t7HLknv0vqSn2NLW2u797eba0qvbSftxN05Dh48ONRcu9nS1Lu73k3XsZM24+eKT/IAAFSKRR4AgEqxyAMAUCkWeQAAKtXT4J1rH+gCVS4U4sIVLown+RaSLszg2kJOnjw51FxowoUDS1tFSj4A8tprr9nb9lfaKtKNx13vppaS7hzd/V240J3fjBkzQu2JJ54oerzDhw/bMTquVaR7TQGduPbaa0PNzQ3utdZJ+1I31w0ZMqTo/hs3bgy1+++/P9Tc3uhu3DfffLMdo5vLXRCwdJ50xy5ted4UanNjdNfRPa+u5uY0F7Jztxs6dKgdowt/dxIkLMEneQAAKsUiDwBApVjkAQCoFIs8AACV6mnwzgUuSrsaucCFC49IPrjlju06HbnOUq47nQtcuHBN037MpWG+0qCcCxaWdo5z11sqD+65c3QBF9eJzl0z9/w1hSzdNXOvFXccoBOum5x7H7vgbydd0FwnPNcZct++fUW3c+8H16XSve9cF0/JB8Y+/vGP29v2Vzq/u5obo+smKPm5Ydy4caHmnq8dO3aEWulz6OZI99qR/NrS1N3zXPFJHgCASrHIAwBQKRZ5AAAqxSIPAEClehq8GzlyZKi54IILXJR2kWqqu60RXRciFzZ79tlnQ+0rX/lKqLmubE1jXL58eai5AJvrIuWCOaXXx4VemoIe7jhujK47lNuq0YVP3PmVdtBrOrYL15RuEwk0ce+x0k6KI0aMCDUX8pX8698F6tz7+4Ybbgi19evXh5rrjDd37txQc+9jSTpw4ECo7dy5M9Tcubi5ePjw4aHmgnOl95V8QLm0M6gL87lju+50LmDsgoqSD3+79a8bfJIHAKBSLPIAAFSKRR4AgEqxyAMAUKmeppG2b98eaqUhOdfxzHUqknxgw4XIXFBuz549oeZCLy4wuHDhwlBzwRNJ2rp1a6iNHz8+1D71qU+FWmnXutIuUk3X0XUUdNfRbdl7/PjxUNu2bVuouefVPX9NXABo7969oeauz6RJk4qPA6xdu7bodm7+Ku2aKfl5yc0369atC7U5c+aE2rRp00LNhf4WL14calOnTrVjdEFYNy+VdoRza4PbhnrLli2hNnHiRDtGNx+7sPUzzzxTdGw317jtbN186sKPkn8eXKfSbvBJHgCASrHIAwBQKRZ5AAAqxSIPAEClehq8c919XMigtIuU6ywk+W1OXcjFBVxckMJty/jkk0+GmgtXLFiwwI7Rdf9zW0e6sJo7FxdWc122SrtISb7bVek2t+45LA0UuS5SY8aMsWN03e2GDRsWak3nCJRy4Tn32nchT/c6b+p45+7vQrDPPfdcqLn3w6JFi0LNBXBd57em4HDpttiOu52bD1evXh1qK1asCLWmbpYuHOjmThdgdFvNuufQrTVu/nHhbcmH9Nwc2w0+yQMAUCkWeQAAKsUiDwBApVjkAQCoVE+Dd48++miolYY1XHDKdTaTfJjBhb5efPHFUHNdrVx4btasWaHmQhhuS1lJmjlzZqi5bVddCKc0ROa6Qz3yyCOh5q6DJE2ePDnUli5dGmpuu9cf//jHRcd2YUPXBdF1xpOkp556KtRcoMmFWT784Q/bxwQcF7Jz85d7rbnXpHt/Sb77m3v9u9u5MN573/veUHPBWHd+Td3XSrtuOu4x3TVz84Abd1NQzQXlXKfRV155JdRcx04X8JsyZUqouUB4U5i8NLjZDT7JAwBQKRZ5AAAqxSIPAEClWOQBAKhUT4N3LijnAhwujOA6NLlgheRDLu7+Loz39NNPh5rbknTZsmWh5gITrnub5MOBTd2lSrjrOHr06FC74447Qm3VqlX2MV1YxIUD3bm4AKMLvbgQodsO0nXfk6SDBw+GmgspDfT2jbj0uOCVe8+XdoCcPn26PY4LzLqaC4e54N3w4cNDbd68eaHmzq8p1Obmm6a57ly58XQS+HPBRNfdbteuXUXjcV353Na+LoDddB1LQ4jd4JM8AACVYpEHAKBSLPIAAFSKRR4AgEqxyAMAUKmeputdatAlI0tT6m5/ekmaNm1aqLlk97Fjx0Lt1VdfDTWXuL/ttttCrbRVpOSvRTetIt3juZrbY3nQoEHFj+m+peDaQr7wwguh5vbEdtfMPX/umwKSb33Zi1aRuPS416p7P5Qmpl07aElavHhxqB04cCDU3LeD3J73P/rRj0LNfTNpyZIldjxO6XxT+u0pV3NjdLWXX37ZjtG1vHa3dXOD+4bW3LlzQ+36668PNTfHNn3zoLRVcjf4JA8AQKVY5AEAqBSLPAAAlWKRBwCgUj0N3pW2heymVaQk3XDDDaH20ksvhZoLYbhw2JNPPhlqrs3qokWLQs0Fw6TykErp7ZzSa9YUSnP1zZs3h5q7Pjt27CgZog3ULViwINSaQkqlASD32gM64d47LrTq3p+u1vSanDFjRqi5FraPPvpoqB05ciTUXDvx73znO6HmWr5+4AMfsGOcPXt2qLmwmptD3LVw7a13794dai5M50K+kg8murnBPYdLly4NNRdMHDNmTKiVBgslH8hzYc5u8EkeAIBKscgDAFApFnkAACrFIg8AQKV6mkZyIQMXPnFdjVxwoamLkAvFrVy5MtRcdyjXWcoFV7773e+G2pkzZ0Lt1ltvtWN0BnpvYXdfd22bgh4bN24MtcceeyzUNm3aFGoucOM6FLqw4syZM0PNdZGS/Dn2IsyCS09T18US7n3XFKB1IVMX4B06dGio/fCHPww1N6e58big21e/+lU7RnfsYcOGhdrVV18dai5k54KFrnbixIlQa7qObs5wY1yxYkWoLV++PNQmTZoUau55cXNNU7iZjncAAOCcscgDAFApFnkAACrFIg8AQKV6GrxzQQgXMnBhjdLOeJIP87kueKtXrw41F6hznZNcSOXrX/96qLlucJL0oQ99KNRuuummUBsyZEiolXaRckFA14nOhekkacOGDaF28ODBUHPhEddFyoUQXehl/PjxRcdoqhO8w/nQSeirP/c6bXpNumCa6yY3b968UBsxYkSoPfTQQ6G2b9++UHv99ddD7dSpU3aM7rbuMZ3SLccdd72bOp+6bnQugD1nzpxQc+Ht06dPF9V6EabrBJ/kAQCoFIs8AACVYpEHAKBSLPIAAFSqp8G7cePGhVpp4MJxXZskH3IYPnx4qLluRa4j0po1a0Jtz549oeaCNDt37rRjvPfee4uO7WoujOdCdm7b3GPHjoWaCxRJ/nxceNJd29tuuy3UVq1aFWpTp04NNRfaawopuXo3wR6gidvGtZSbk5pe0+616m7rAqZjx44NtU984hOh9vzzz4fa+vXrQ83Nc5Kfe0u3CC/taOrmARemmzVrlh3jjTfeGGoumOiCe27udGN05+yel6bgXSfb0p4rPskDAFApFnkAACrFIg8AQKVY5AEAqFRPg3cuzOB02x3IhVRcFykXYHNbn44cOTLUHnjggVBzXfCaOka5sNvJkyeLHrObsEZptzzJB1JcN7rbb7891BYsWBBq7jqWdpFq0k3HMaATbsvW0jCWC4M2vXbd/OXCaq6zpzuOG+OUKVNCzQWjDx06ZMforoWb69y4XTDNdfRzW+66TnRuHpf8/OXmXbelbem239106uvkON3gkzwAAJVikQcAoFIs8gAAVIpFHgCASvU0eOdCHC6QULpVXyfBldIuUi7MMnHixFD79Kc/HWrr1q0LtaatZl2gzoUD3RhLr4+7netY57pkSX7r2/nz54fa6NGjQ81dR7dlb2lwyT1e0217EWbBpceFtroJdDaFtkq3RXYBNvc6L33tu3NxQTfJd44r5eYqN0Z3fk5T51M3n3YzN5R213Sa1ipXLz3vUsx8AABUikUeAIBKscgDAFApFnkAACrV0+DdwYMHQ82FJlyYoXSrRcmHGdxxSrtIlQYhZsyYEWoutCf5jlH79+8PNRf2cYESN27XRcoFZprCNa7jlNue121fW9qJzl3bTraFLQ0cErxDt9zrqnRe6qTTpLt/6faspXNnaWe8prmv9LxLA9Nu/nK3Kw3adqK0k9356HjXSSfEc8XMBwBApVjkAQCoFIs8AACVYpEHAKBSLPIAAFSqp+l6l8I+H60CS1vYOr1oFSn5vdVHjRpV9JhOaavIpvawjkvxnzlzJtQ6SeX2V/r8d5K4dwa6VSQuPe416PYsL71v09xQ+lrvNlXen5tDmubNbuY/Vyv99sBAn3PTsZ3S8XTyTbBenCOf5AEAqBSLPAAAlWKRBwCgUizyAABUqqfBO6c0hNFJ+9PSEFpp6GugW0VK/nx60SrSaQrXdBMAKb1mTictQEuf64FuFYlLz+c///kLPQSgY3ySBwCgUizyAABUikUeAIBKscgDAFCpngbvXKBqoLtIST4w1m3HtJJjOE2Br246/XXTRaqTcGDpsR3XLa8bTc9faYdCALgUMRsCAFApFnkAACrFIg8AQKVY5AEAqFSiExgAAHXikzwAAJVikQcAoFIs8gAAVIpFHgCASrHIAwBQKRZ5AAAqxSIPAEClWOQBAKgUizwAAJVikQcAoFIs8gAAVIpFHgCASrHIAwBQKRZ5AAAqxSIPAEClWOQBAKgUizwAAJVikQcAoFIs8gAAVIpFHgCASrHIAwBQKRZ5AAAqxSIPAECl/i+Ab0BQoFLepQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import cv2\n", + "X_train_translate = random_translate(X_train[0])\n", + "test_translate = random_translate(X_test[0])\n", + "print(\"Original shape:\", X_train.shape)\n", + "print(\"Translated shape:\", X_train_translate.shape)\n", + "fig, axs = plt.subplots(1,2, figsize=(10, 3))\n", + "axs = axs.ravel()\n", + "axs[0].axis('off')\n", + "axs[0].set_title('Train original')\n", + "axs[0].imshow(X_train[0].squeeze(), cmap='gray')\n", + "\n", + "axs[1].axis('off')\n", + "axs[1].set_title('Train translated')\n", + "axs[1].imshow(X_train_translate.squeeze(), cmap='gray')\n", + "\n", + "fig, axs = plt.subplots(1,2, figsize=(10, 3))\n", + "axs = axs.ravel()\n", + "axs[0].axis('off')\n", + "axs[0].set_title('Test original')\n", + "axs[0].imshow(X_test[0].squeeze(), cmap='gray')\n", + "\n", + "axs[1].axis('off')\n", + "axs[1].set_title('Test translated')\n", + "axs[1].imshow(test_translate.squeeze(), cmap='gray')\n", + "\n", + "print('Test shape in/out:', X_test.shape, test_translate.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "shape in/out: (32, 32, 3) (32, 32, 1, 3)\n", + "Test shape in/out: (12630, 32, 32, 1) (32, 32, 1)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAADSCAYAAABJqrmlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xms3eWd3/HvAwRig7nel2u8gDHYhuCQRGTBAadR0yRVlpGiKm2madVGHVXtaFpVVKO2M2k7k2qqSq1mVGk001E7FUmmg6IiJerQBEQcIGHphLBdb9jGu6+Xi3cIYfn1j3OY3t7n/cBzfM2xeeb9kqLgr885v+X8fs/jc8/nfp/UdV1IkqT2XHKhd0CSJL0znOQlSWqUk7wkSY1ykpckqVFO8pIkNcpJXpKkRjnJD0FK6dKU0pmU0vIhbW9bSunj5/uxb/M6X0spbZru60i6uAx7/LoQUkq/nVL64wu9H++Eyy70DlyMUkpnJv1xZkS8EhGv9//8K13XfWuQ1+u67vWIuOo87V7N9m58Jx4r6eL3bh+/dH45yYOu6/7igk4p7Y6Ir3Vd90Dp8Smly7que20Y+/ZWLpb9kHThvFvHr1oppUsiIrque+NC78u7gT+uPwf9H+38aUrpT1JKpyPil1NKH00pPZZSOpFSOpRS+r2U0nv6j78spdSllFb2//zN/t/fl1I6nVJ6NKV07Vts74sppbH+az+YUrpx0t/tTyndlVJ6NiJemlTb2P/vmf3tnUgpbU4p/Xr/xg947G/3j+mb/f16LqX0gUmP/VcppV39vxtLKX3+vJ1USUMxzPErpfStlNKv9f97Rf91/kH/z2tSSkdTz7yU0p/1/3w8pfS9lNLSSa/zSErpt1JKj0bE2YhY3q99I6X05ymlkymle1NKcyY95/ZJx/RUSumOSX93XUrp4f7+fz8i5p3v83yxcJI/d78UEd+OiJGI+NOIeC0ifi0i5kfE7RHx6Yj4lbd4/t+KiN+IiLkRsTcifoselFJaGxHfjIhfjYgFEfFARHzvzRuw78sR8Zn+vkz1byNiNCJWRsRfi4hffpvj+mJE3B0RsyPivoj4vUl/tz16xzYSEd+IiG+nlBa9zetJuvgMZfyKiB9FxMb+f98ZEbv6/x8RcUdEPNT1eqtfEhH/JSKWR8SKiHg1In53ymv97Yj4exFxdUTs79e+2v/faESkiPhPEREppWUR8d2I+Hp/H389Iv5nSunNyfx/RMRj/eP9nf5rN8lJ/tw90nXd97que6Prupe7rvs/Xdc93nXda13X7YqIP4z/dzGT73Rd9+dd170aEd+KiPcXHvfliPhu13UP9h/7O9G7yD886TG/23Xd/q7rXobn/42I+EbXdSe6rtsXEf/5bY7rR13Xfb//Pdzdk/er67p7uq471D/mb0fE7oj40Nu8nqSLz7DGrx9FxB0ppRS9Sf3fR8SbQd87+38fXdcd7bru3v6+nIqIfwfb/69d123puu7VSV8v/Peu6zZ3XXc2In4zIr7c39ZXozdufr9/jP87Ip6OiE+nlK7r7+/Xu657peu6H0bEn1Wet3cdJ/lzt2/yH/o/evpfKaXxlNKp6H2Cnv8Wzx+f9N8vRTnYMhoRe978Q/97qP0RsXTSY/ZNfdIkS6b8/Vs9lvbryjf/kFL6uymlp/s//joREWvirY9R0sVpKONX13XbIuIXEfG+6E3u342IYymlVTFpkk8pXZlS+qOU0t7+9h+E7dPYNbm2JyKuiN4n9xUR8TffHKv649VHojeejkbERNd1L015bpOc5M/d1OX7/iAinouI67uuuzp6/6pM52E7B6N3wUbEX4ROromIA2+xL5ON9x//pmXnshP9f/3+fkT8w4iY13Xd7IjYGufnGCUN17DGr4iIh6L3E8mu67rx6E3sfz96yf9n+4/55xFxbUTc1t/+X6nY54j/fzxbHr3fJHgxepP/f+u6bvak/13Zdd1/iIhDETEvpTRjynOb5CR//syKiJMRcbb/PfpbfZ81iHsi4vMppY397+HviojTEfH4AM//Fyml2SmlayLiH53jflwVvZvsaESklNLXovdJXtK73zs1fkX0JvV/3P//iIhN/T8/PCkhPyt6PxE43v/e/DcrX/ur/Z9CXBkR/yYi7ul/x393RPxSSumvpt7v+b83pfSJlNJo13U7I+KZiPjXKaXL+4G8v34+DvRi5CR//vyziPg70ZuA/yB6YZZp67purP+6vx+9CfbTEfH5/ndhNb4eEYej9/35D6I36b9yDvvxTPRCeE9E71/Ca6L+HxqSLm7vyPjV96PoTeIP9f/8cPQ+NDw06TH/MXohwImI+En0Qr817o5eMPlQRFwaEf8kIqLrut3RCxf+RvTGzb3RO8Y357wvRy9g+GJE/Mv+6zQp9f7Ro78sUkq/GhFf7Lrukxd6XyTpXKWUHomIP+q67o8v9L5czPwk37iU0tKU0sdSSpf0fwz3TyPi3gu9X5Kkd54d79p3RfR+/3RlRByPiD+J3o/jJEmN88f1kiQ1yh/XS5LUKCd5SZIaNdTv5Dds2JB9N/D6669nj7v00kurXq/0VcMbb+SLE736av4bZ7TtOXPmZLWrrsqbOV1++eVZrddN8e1fLyJi7dq1We3222/ParfddltWe+mll7LaPffck9U2bdqU1cbHx7PaFVdcgftYe87ofNPjrrzyyqx22WX5JXj69OmqbZS2U1t79NFHbeSjanfddVfVd5t0rZFBxi8yY8aMrEb30yWX5J/l6HHvec97strixYtx2+vXr89qH/jAB7LayZMns9r999+f1cbGxrLamTNnshrtd8lrr+UL61GN3q/3vve9WY3mJRqLadyc7vh19935b/i9+uqrVeOXn+QlSWqUk7wkSY1ykpckqVFD/U5+yZIlWe2VV/IOq/Tddu33XNM1c+bMrFabEaDvcej4IiJ2796d1WbNmlVVO3jwYFbbunVrVvv5z3+e1a6++uqsVvqei87FL37xi6rt0HdflG0g9N0gfT9XQvtI15Q0CLouKc9C37XTd7el72kpx0OvSRkXuu/ouTSm0VhFGZ4IHuvoGGlsKL3mVHR8tN/0vkTw+aWxgWp0fJRtoPf/7NmzWa00f9G2Ce1PLT/JS5LUKCd5SZIa5SQvSVKjnOQlSWrUUIN3FPCiQFSpOctUpTAWhRzmzp1b9ZojIyNZjcIjhI6FQhgREUePHs1qFJ7buXNnVqMgzcTERFajsEbte1CqUwMOqlFDG9o2hWvovaJQT0TEqVOnshrtt8E7TRcFryjcRfdDbcAqor5BSm3Ijmq1zXBKoVxqcnP8+PGsRueMzgWNA7XrqpQCjLXHQ2MDPa52PKWA8SBzFe1PbWiZ+ElekqRGOclLktQoJ3lJkhrlJC9JUqOGGryjsAYFCmq7pZW6yVHg4uWXX85qtFpQbUCLAhOzZ8/OatRhrlSncAadM+pER6EQ6pxFoRc63xEcdqvtdFW7shOFayhMVwo/1r6vtSEeqaR2xTG6PykcVhpraDsUYCMUWqbxcOHChVmNVtYsbZf28dixY1mNOtTRcdM5qw061gajS4+l8a+2wxyNPzQvlfaRtk3HWOrqV8NP8pIkNcpJXpKkRjnJS5LUKCd5SZIaNdTgHYUPKFxBoQ4KpZXCVPSa9HwKmhAK/VGHpltvvTWrlfaxNixCy8rWLrtLYQ3qJlfqakXnjDrZUVc/Oj4K1xB6/0sd72jbdM7teKd3Qu2yxoNcfxTcokAdjUHXXnttVqP7jvanNvgbwYGz2jG6tgseLbNNx0LnIaI+AEfhSTo+Gndpv+m5VIsoh56nMngnSZIyTvKSJDXKSV6SpEY5yUuS1CgneUmSGjXUdD2l1Cl9SalIShcO0qq0tv3k6tWrs9qGDRuyGrU9/OlPf5rVtm/fjvszPj6e1UrrItegc0GvR8e8aNEifM1bbrklq1E6n34DYN++fVmNkvnU9pJ+66GULqV0K52LUrpVmg5qT1279nspcU/r0S9dujSrrVu3LqvR/Ump9927d2c1uo9PnDiB+1i7Dnpta1qq0dgwMjKS1VauXIn7SL9pMDo6mtVoLD5+/HhWo2Om30yi9680tlN9Om12iZ/kJUlqlJO8JEmNcpKXJKlRTvKSJDVqqME7CmZQ8IDCEYOs0UthiMWLF2e122+/Pat99KMfzWp79uzJavfdd19W27t3b/U+EtpvClxQi0vaDgXQqA3s4cOHcX8efPDBrLZmzZqsRgEgakl54MCBrHbo0CHc9lQU2ovg8zMxMVH1mtIg6B6jkGhtmKpk/vz5We26667LanPmzMlqdC9v3bo1q9F9RyHWUuCLAnDUXpYCs7VtZGvb7G7evBn3kda3v+GGG7IaBfcoUEnnlvanNpRYqtPza1uwEz/JS5LUKCd5SZIa5SQvSVKjnOQlSWrUUIN3pe5JU1FIhUIvteuqR0SsWrUqq1Hg4vHHH89qDz30UFajjm4UXJk3bx7uDwVA3v/+92e15cuXZzUKs9B66zt37sxqzzzzTFajwGAEv18Uanv++eezGnUOpMANhVmoNkg3QArxUHBTGgRd+9SVjdD1W+riSME7Cp4ePXo0q9E9T/cThXKpW96KFStwH2k8XbZsWVajMB6N73QsNK7s2LEjqx05cgT3kYJ31N3ummuuyWoUHKYxlrZB4eZSd9bauW6Q7q5T+UlekqRGOclLktQoJ3lJkhrlJC9JUqPSdL7QH9TKlSuzjVH3NkLBFQq6RUQsWLAgq912221ZjQJaP/vZz7IaLTtIHYgoePKJT3wC9/HDH/5wVqOufLRUIwV2KFhG52f//v1Z7ZFHHsF9pHptp6zZs2dnNVr6kQJFu3btymoUeongMB+hc3b8+HFuQyWBz3zmM9n4VepkVoO6qkVw2I0CfnQvUhCMrn3qKkrdLNevX4/7SGE1CtnVBhPpPqaxYdu2bVntiSeewNekx9JrUlc/GovpcXS+qVbqeFi77C6911u2bKm6+PwkL0lSo5zkJUlqlJO8JEmNcpKXJKlRQ+14R+EKqtWGAUvL71111VVZjbq3Pfvss1mNukPNmDEjq61duzar0dK1N910E+4j7fvBgwezGoVmKDBIAUYK7VE45kMf+lD1Pj788MNZbcuWLVmNOktR+IQ6AtL5PnXqFO4jBZ9qrzNpEHQN0fVHNVpGuhQ6phAtXf+lJaKnWrp0aVajkB2NaRSgjeAxiDq91aLzQ+hYSuMXvSaN+dRtj46PlvYlNM6VlsqmuY5qgyxVPJWf5CVJapSTvCRJjXKSlySpUU7ykiQ16oIH70hpCcapaDnACF4ykZZgpCUKadu0JC110KNQSGmJU1pOkNQup1v7evS40jKu1KGudmlEWibyxRdfzGoUPqL3oBRSooAM7SOFEKVB1I5LFLyj7nalIBddqxTcooDWokWLshota01jGnWnKy0PXtvpj46ltkbjEt3bFLSO4HAhPZ86dtJYVfu+0lg1SMfO6YTsiCOfJEmNcpKXJKlRTvKSJDXKSV6SpEYNNXg3MjJS9bjacAV1aIqImD9/flajpfpmzpyZ1SiQ8oUvfCGrXX/99VltbGwsq1E3pYj6rmy0vOGtt96a1SgkR0u2PvbYY1mtFAq5+eabsxp19aN9pG5T1NGPutvRdVJaspJes7bjmDQICvpSOIyuNVq6dMmSJbgd6hxHYS6672hp2FJHuKl27NiR1Uqd2igQTPcddbS88cYbsxqN77t3785qNKaV7m1aDvcjH/lI1fOfeuqprEYBY3oudQksheko2EghRHqva/lJXpKkRjnJS5LUKCd5SZIa5SQvSVKjhppGKi1bOBV1cqKQCoXfIrhbUe3+bNy4Mat97nOfy2rbtm3LahRq279/P26blnylcAYFLigQt3379qx23333ZbVSkIbQ8pYUpPnkJz+Z1SjMt2nTpqxGYabR0dGsVgqeUFiRwlClrn5SLQpEUSCUrlW6zkvX9PHjx7MahdqosyctbU1BNwqW0TKspSWeS0HYqWjcps6gExMTWe3JJ5/MaidPnsxqpW6WFJSjECKFiWlcoTGWxnHqglfqlkgBRpoHSh0/a/hJXpKkRjnJS5LUKCd5SZIa5SQvSVKjnOQlSWrUUNP1pbWJp6JWgbQueylFTynI8fHxrEZJcUoxHj58OKtRy0Vq0fqVr3wF95FaLv7kJz/Japs3b67aNrWkpPP4pS99KatRe9+IiB/84AdZ7f77789qn/rUp6q2Tb81sW/fPtx2LUod07VCNWkQZ86cyWqU7KbrnFrVlhLXR44cyWqUcqf16GltdErr0+vRWvR33nkn7iONGZTYP3bsWFaje57GZzqPlI6nx0VEPP/881mNxlP6bSU6Fy+88EJWe/nll7Ma/dZWac372t+yMl0vSZIyTvKSJDXKSV6SpEY5yUuS1KihBu+ozSAFpyhIQYESCrNEcBiCnk/BF2o1SS1aKZhBaxXT40r7SIE6CrBRi1YKBVHYg46Pwh8RHCqiEA8FIGuDInRNUCioFFKi9pP0mvT+S4Og8CbdI3TP0jVJtQi+Vuk6r0XjBbWWpXuWwn0RvO/UcpbattKx0BhC49fixYuzWmmsobXnqUZttEth5Klov+n9L615T+j9n8745Sd5SZIa5SQvSVKjnOQlSWqUk7wkSY0aavCOAmwUvKMadQGiEFhpO7VhCFonmfaHAnUUYKOAXUTE2NhYVjt69GhWo7Wgab3i2vWd6dwMstZxbaiRwjAUZqH3dZDudPT88x1ckiI4bEb3Hd1PdE3SvVh6LAX86Non9NyFCxdmNbo/S4EvCglTCI3Wk6dxksLWtfc2hYkjeNymgDLVLr/88qrt0BhJ72tpH+n553v88pO8JEmNcpKXJKlRTvKSJDXKSV6SpEYNNXhX23WuNnhAoYUIDmzQ82nbtUFACodRWKMUDqTgCoVPaElaWsqQzgUFhWgbpW5MtR0Ba4NC1HmrtjMevQcRfM4pDEX7Iw2Crl9S23GxtEQqbYfGr9Lzp6J7h8aL2m6fERGHDh2qes358+dnNepkR/dsbTfLWbNm4T7S+EXboTAxjUt0fmpD4rUhyQh+/0tzXQ1HPkmSGuUkL0lSo5zkJUlqlJO8JEmNGmrwjoIQFIiiIAR1U6LObyUUkKjt3lYb2qNjOXHiBO4PBVcopLJixYqsRuGR2qUMab9nzJiBj6XXpABJbfiEAiW1IZVScI7eG9ofO95puugapHuxdhlWCqBF1C+/TeMXBeVqA890fKXgHY3H1DGPOuvReENBNwo3UwCt1O2TOuvVBvzo/NTWBlHbdXWQpWqn8pO8JEmNcpKXJKlRTvKSJDXKSV6SpEYNNXhHgRLqWEbhCgpjlboA0WvStikgU9sljrZBIZWDBw/iPtJ21q9fn9XmzJmT1Wq77VHgZpDOSRTEoRqdHzoXVKsNmQzSMYqOcTodo6SI+o6NdK0N0rGTXpPuExoHzp49W7VtCr/RPVYKDtO2582bl9VGRkayGnWOoxBibfCuFMql81i7ZG/teENj3yBjTW3Xwtpui8RP8pIkNcpJXpKkRjnJS5LUKCd5SZIadcE73tUuHTjI8qHUOW5iYiKrnTlzJqvt378/q33wgx/ManPnzs1qFFLZs2cP7iMd44033pjVli5dmtVo+Vrq/jc+Pp7VDhw4kNUo4BIRsW/fvqxGAUYKyh09ejSrUZiFzgO9f3SdRPB7SIFDqkmDqF0Cljq/lbqyEbqXT58+ndUoyEr3PN07ixcvzmrUlY8620Xw8dBrUhiPnkvjAG371KlTWY3OTUR9l0sKytGYSK9Hc9Ag3ekoeEc1g3eSJCnjJC9JUqOc5CVJapSTvCRJjRpq8I4CF7QcIKFwBC21GBGxYMGCrEYBEApt7d69O6vt3bs3q42OjmY1CriUgisrV67MaqtXr85q1PGOgjkf//jHs9q9996b1b7zne9kNQrTRXAXqo0bN2Y1Cp9Q0JHCI/T+U3ClFLyr7cpHYShpEHT9Uvc2up9o/Cpd03TPU+c4CpxRh02qUaCXjq+0j3Q/UfCOQrR0f1977bVZjcK7FGSmwGAEj0HTWS6YgnfUabR2idsIDhJSSHiQjp9T+UlekqRGOclLktQoJ3lJkhrlJC9JUqOc5CVJatRQ0/W1qUFqf0u1Y8eO4XYovUnpRtr29u3bs9oDDzyQ1ShVSenUdevW4T5Sup72mxKi1PZw2bJlWe2zn/1sVlu1alVWoxRrBP8GASX7x8bGstquXbuyGu03HTO1By6ta02/IUFcT17TRWu10zhA1zSNX6VU+CAtvKc6dOhQVnvqqaeyGqX16bdpSr/9RMdDv8FUey5WrFiR1ah999NPP53VtmzZUr2Py5cvz2ozZszIavTeUKvb2rT+IG1pp9sqN3u9c36mJEm6qDnJS5LUKCd5SZIa5SQvSVKjhhq8K7WhnYoCcVSj9ZQjOORA7RUJtYqksAeFKzZs2JDVPvaxj+F2KLBDLQ7pWK644gp8zamoVeTcuXOzWqmt7eHDh7PaY489ltWefPLJrEaBOAr2EArZlUKWdE1R4EaaLrrWaB302vGrtN453fMUeKUxiMKBFCamMWTNmjVZbcmSJbiPdI9RgI3GAdpvqlGbbwoC0jgVwUFfGnep9Ti1Mqfxmc4jva+luY/ODwXUp8NP8pIkNcpJXpKkRjnJS5LUKCd5SZIaNdTgHa29TKjjzyAdgyi4QM+/5pprshqtvUxhPAqbUVeiO+64A/fx+uuvz2q0RjO9Zm33q9rHvfDCC1h/4oknshqFECnsQ4EkCvFQ8IQ6S5XUdhyTpovGkOncn6UxjdYyp1AbjRfU2ZHGr82bN2c1CqrdcsstuI+LFi3KajS+02vScVP4l7ry0XmgdewjuGsdjXXUnZM6B9aGoCl4R6G9CB47af6qvaaIn+QlSWqUk7wkSY1ykpckqVFO8pIkNWqoCSUKaxAKU00XBReoIxwteTg+Pp7VaBnEnTt3ZjUKnkRwB7ebbropq1HXJwqfUEetI0eOZDUK3Pzwhz/EfaQlaClcQ8vcrl27NqvRe0DL1FIIhzr1RXBIj7pxlbr6SbVoXKLlVelam+71Rx3hqIMk7Q8F0KhbKIXSSmMx7Q8t40r3LY0htWFrCqrRWBwRsW/fvqy2bdu2rEbjO43btcvz0vmm8bmEzu10rh8/yUuS1CgneUmSGuUkL0lSo5zkJUlq1FCDdxRqq102lYIHpeX7aDlC6gRFIZVVq1ZV7c+OHTuyGoXpSsG75557LqvRkpCzZ8/OatTpisIaFAChZVxL4RrqCEhL9lLIjjqBPfvss1mNgivUwarUxY6Cd3RNvRNhTv3lQtcQ3SO13cmmG8aqvXfoubS8KgXYJiYmcH+2bNmS1airG4XxqPMl3bN0figMvHXrVtxHChnTmFh7Hmm/afyhUGNp+WtaQpiOm97DWn6SlySpUU7ykiQ1yklekqRGOclLktSooQbvqIMRhRQoOEeo81upTp2SqMMThfloWdgNGzZkNQrO0ZKFpf2hUBw9joJ3tUvxUoCj1ImQQjMUsqMwzKZNm7IaLeNL7z8FnGhJ2ggONlLIhZbvlAZBS4jWLjVL13QplEsh49rlk2kcWLhwYVYbHR3NajT+lIJ3FDijjp979uzJahR0q12mlsYBGiMjeJykoNuCBQuy2tKlS7MaBeIogE3z15w5c3Af6VqhpWans3y2n+QlSWqUk7wkSY1ykpckqVFO8pIkNWqowbvaJRip8xKFHkpdhKibE4VmCAW0aMnW/fv3Z7X3ve99We3mm2/G7VDojzrm0bYprEHBDgr73HDDDVmNgjkRvFTjAw88kNWo+xUdC6HADaHATAQH906fPp3VphNckSI4bEbhMOquWerOSSgcS+MfBbTofqAxjYJl1OWNQnIRfI/RuE2Po/2p7XxKSvMAdTSlwCHVaA6hznq0TC29/6VxrjZkVztOEj/JS5LUKCd5SZIa5SQvSVKjnOQlSWrUUNNIFFyhYAc9rtQxiFCwg7ofzZo1q+r1qIMRdVn68Y9/nNUo/BHBXZZWr16d1datW1ezi4jCPhQooSVgIzh4R0ETCgVReGSQ8ORUpeAkhZRo27XbkUrofqLg3XS7mNF9QjXaNtXonqcxlrrJLVu2DPeRumRSdzwK3lFnPQpg0/hMAT3qzFl6Po1fTz/9dFbbu3dvVjt8+HBWq10WtrRULIWj6VqZTsdOP8lLktQoJ3lJkhrlJC9JUqOc5CVJapSTvCRJjRpquv66667LapSqpOQmJVEppRnBaXhKs4+MjGQ1SkFSS0FK2h44cCCr0VrrEdwCko5n7ty5WY0Sq5Q+r225WEqu02Nrf8uBzg9tp5Q6narU1pF+y2E6LTKlEko4028H1f5mSSldT+lquhdnzJhRVaMxlu4ROr6xsTHcRxo7aayidP6qVavwNaei3xSgfSzNA7t27cpqNCZSrXb8oveVEvP0HpTq9F7Tdmr5SV6SpEY5yUuS1CgneUmSGuUkL0lSoy74evLTaddYWuu4ti0k1Sj0QEGYU6dOZTUKxFH7yAhus0qBjRUrVmQ1apVL687TsVBrRlqDurSPtQEQOhbaDgWFBll7m0KWb7zxRvXzpVo0DlAAjcYqQu1vI+pbmNK2qZUrhVvp3qb7jsaVCG5he/LkyaxGY+Ls2bOzGo0NNH5RYJkeF8FjL72HdC5qzxmF8QZpoU3bqW2VXMtP8pIkNcpJXpKkRjnJS5LUKCd5SZIaNdTgHQUkKCRFIQMKcpUCDhRcoAAIBU1KnYlqXo+eS+GYEupCRcc9c+bMrEYBNArCUBhlkG5MteeHwkN0LPS42q6DEfVBwOl0jJIi6teTn044NYLv79pOlbX3U+168qVQLj2fOvjRMS5evDir0ThJITva7osvvoj7SN0wa8c0OmcUEqb3n85DKQxMc11tF7xafpKXJKlRTvKSJDXKSV6SpEY5yUuS1KhU251JkiS9u/hJXpKkRjnJS5LUKCd5SZIa5SQvSVKjnOQlSWqUk7wkSY1ykpckqVFO8pIkNcpJXpKkRjnJS5LUKCd5SZIa5SQvSVKjnOQlSWqUk7wkSY1ykpckqVFO8pIkNcpJXpKkRjmT03y4AAAAJ0lEQVTJS5LUKCd5SZIa5SQvSVKjnOQlSWqUk7wkSY1ykpckqVH/Fzj46BZFQdrjAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAADSCAYAAABJqrmlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAH0VJREFUeJzt3XmMndddxvHnl8ZxYo/XeIsd23G8JPGattlIaUKCoZFaVFUICqKUliCWFkQRi0CUHUFBREUCoSIVCiolBAFNWzWtIEEkCo2z1nYdJ04cb/FuT+yxx3bsLIc/7jUdfJ63OTfv+MY+fD9SFPvn9953ufc9Z+7MM78TKSUBAID6XPBWHwAAADg7mOQBAKgUkzwAAJVikgcAoFJM8gAAVIpJHgCASjHJVyIiXoiI7xrtbd/geX42Iu5v+zwA0G8R8amI+OxbfRxnG5P8dxARwyP+ez0iToz4+4+1eN41EfGh0TzWlNLClNIjo70tgPPT+TR+4ey58K0+gHNZSmng9J8jYpukn0opnVOfXCPiwpTSq2/1cQA4t5wP41epiLhAklJKr7/Vx3K+4ZN8CxHxtoj4rYjYEhEHI+ILETG5+2/jI+KfIuKliDgcEY9GxJSIuEvS9ZI+2/2K+q6G5/7BiNjYfez9EbF4xL/tjYhfiYinJR0ZUfvu7p8HIuIfu4/dEBG/ERGbz3j86W0/1T3uuyPiaESsj4hrR2z72xGxtftvGyLivWfhUgLos7M1fkXEPRHx8e6fF0VEioif7P59eUTs7f55ekR8LSIOdPfzpYi4bMTzrImI34+IRyUdlzS7W/uDiHgyIoYi4l8jYtKIx7y7e6yHI+KpiHjXiH9bFBH/3R3LviZpylm5sOcYJvl2flXS90v6bkmXS3pF0qe7//ZT6nynZI6kaZJ+XtKplNIvS3pcna+qB7p//z8iYrmkv5P0MUkzJD0o6csRMfI7Lx+U9H2SLjXH9YeSpkuaL+m9kn78Dc7jA5L+VtJkSQ9I+vMR/7ZJ0s2SJkn6E0n/FBHT3uD5AJz7zsr4pc549T3dP98iaYukW0f8/cHuny+Q9BlJ8yQt6NZO7/+0D0n6sKQJkvZ2ax+W9GPdY7tI0l2SFBFXSLpX0m9Kmirpk5LujYjTk/k/S3pInTHzz/TG42IVmOTb+RlJv55S2p1SelnS70n6YESEOjfMdEkLU0qvppQeTykdK3zeH5X0xZTSf6WUTkn6I3VutOtGbPPp7n5PmMf/sKQ/TCkNpZS2S/qrN9jff6aU/iOl9Jqkz0v630/yKaV7Ukp7Ukqvp5Q+L2mXpHcWngeAc9fZGr8eVGcyV/f/nxrx91u7/66U0r6U0pdSSidSSkOS/ljf/mLgtM+mlDallF4Z8WPJz6WUnk0pDUv6HXXGS0n6CUn/llK6vzte3Sdpo6Tvj4glkpZK+r2U0qmU0gOSvl54Puc1Jvk3qXsjzJV0X/dbQ4clfVOda3qppL9R5838LxGxMyL+KCLeVvj0syVtP/2X7uS7S52vXE978Tsc18wz/t1uO8LeEX8+Lmnkz/Lu7H4L//Q5LlLnCw4A56mzPH5tlHRBRCxV57sEX5R0NCLma8Qn+YiYEBF/GxE7IuKIpH9XPra4sWtkbbukcd1v2c+X9KHT59M9p+vUGU9nSzrQ/WJm5GOrxyT/JqXO8n27JN2eUpo84r+LU0oHU0onU0q/nVK6Wp039g9J+pHTD3+Dp9+tzhtWUudnZ+pM8LtGHsJ3OK796nz77bS5vZzbiP0ukfQXkn5a0tSU0mRJmyXFm3k+AOeGszl+dZ/7IXW+pf5ySumgOhP7z6jzI4CN3U1/XZ1x6vqU0kR1fnRw5tji9jVyPJsn6Xj3OwEvqvPJf+T5jE8pfVrSHknTIuLiMx5bPSb5dj4j6VMRMVeSImJGRPxA98+rI2JpdFKhRyS9Kum17uP2SbryOzzvPZI+EBG3RMQYdW6GQUlPFB7XP0v6zYiYFBHzJP1cryfWNSDpdUkH1PnK/GfV+SQP4Px3tsYvqTOp/4K+/fP3/1Ln5/oPpW+vbz5Bne8cHu7mfD5ZeNwfiYglETEg6XfVGS8l6e8l/VBEfG83VHhJ98+zJD0n6VlJvxURF0XEbZLuKNzfeY1Jvp0/lXS/pP+MiKOSviHpHd1/myPpS5KOStog6T51Jl+pEy75cEQciog/PfNJU0rrJd0p6a/VmWC/V9L7e/hVuU9KOqTOt6O+1t3vyV5PLqX0lDoDwRPqfCW8QOVfaAA4t52V8avrQXUm8Ye6f39InQ8ND43Y5s/U+fb8oKSHu/so8XlJd6vznYjXJf2yJKWUtkj6QXWyBQfVGf9+UdIF3S8sPijpNkkvSfo1Sf9QuL/zWnz7iyrUKiJ+SdIdKaX3vNXHAgBvVkSskfSXKaX/FxP0aOCTfIUiYm5E3BQRF0TEMnW+mv3iW31cAID+ouNdncaq83vv89X5tv0/SKq+RzMA4P/i2/UAAFSKb9cDAFApJnkAACrV15/J33XXXdnPBl5/PV9UqNOM6c177bXX3ngjSe5HFe54XG3ChAlF2zUdi6tfcEH+NZernTiRd7J929vKmlG553PHLUknT+a/dVd6fdxr6M751Vfz3wo8cOBAVpsyxa8l4Z5zzJgxWW1wcDCrfe5zn6OpD4pFRDU/27zkkkuy2rhx44pqkjRx4sSi55w8eXJWc/fnwMBAVnP7GD9+fFZzY3HTfi666KKsdvHFF2c1x41pbuxzY5qrSdLYsWOL9uPG7U984hNF4xef5AEAqBSTPAAAlWKSBwCgUn39mfzx48ezmvu5eOnPc5t+/e/CC/PTeuWVV0oOsfh4jh49WvTYtr+iWPozdHd93HH3kndwP78qfW2c0szBtGn5InenTp0q2kcT9/M9oBfXXXddVnM/I3Y/x3bvv6afBU+aNCmruZ93u8e7n0+753MZnl4yRW2yVKVjcVtubCk9xtJ5oE1N8j+rb5tJOxOf5AEAqBSTPAAAlWKSBwCgUkzyAABUqq/BuzYhu15CFC7M4B7vtGmQU3p+TfVegi9v9vncdk2NdNqcows/lh6j20fp69e0H6CtO++8M6u1uY+b3tOlIePSe8c1z2p7j5QGit1+Sh/bJvzWpE0Tsjb7btqutIlZG3ySBwCgUkzyAABUikkeAIBKMckDAFCpvgbvXBirlAuZNAVXXJihNLhVGtorrTWtPuQCIK6rm+sOVRrGc6swuVpTKKT09WqzAl7piku9hGt6CUACpUa7a2bT2NAm1Ob0Mna24cal0ppTGhJuGqfcObrHl9ZKx6rSmjT6r7XDJ3kAACrFJA8AQKWY5AEAqBSTPAAAlepr8M4tg+iCYI4LqfSy1GxTyKWEC8S5ZVhdZ6kjR47Y59yxY0dW27p1a1Y7ePBgVjt58qR9zjO5aztv3rysds0119jHz549O6u5ZSvdkpej3VnKhYea6u59Ufo+A5qUdm9r25WtNBTXdE+cqTRY5u7ZprHGLbV96NChrDY0NJTVjh07ltVKA8aTJ0/OanPmzLHHOHPmzKzmlgZ245db2rdNaK8XbYPH2fO1ORgAAHDuYpIHAKBSTPIAAFSKSR4AgEoxyQMAUKm+putnzJiRH4BJwrs0ey9tIdukG92+X3755ay2c+fOrPbkk09mtaefftruZ3h4OKu5pG5peted8/Hjx4uOp+kY3W9DrFq1KqutXr06q7nEq0vLlr5WTS1FXWre7Yd0PdoaN25c0Xbuni1tsdr0+DYtbB33m0CDg4NZbffu3fbxe/bsyWouXe/2U9rW1tm7d29We/bZZ+22bm5x49LSpUuz2sKFC7PapZdemtUGBgaymvvNq9LXRfLHTboeAABkmOQBAKgUkzwAAJVikgcAoFJ9Dd5NnDgxq7lAgQt8uTBKUxirNPjgHu+CJt/85jez2po1a7Lavn37slpTONAFcdwxlrbILF2XuDTcJ0mHDx/Oag8++GBWc4Gbd7/73VntpptuymrutXbBnKZjdNexNPgE9GLq1KlZrc1917QOeuk97+4TF3Rz49KmTZuy2gsvvJDVXFttyQeU2yi9P92Y3fQauGN05+3O0QWrly9fntUWL16c1Vw73abgXOn7pw1GPgAAKsUkDwBApZjkAQCoFJM8AACV6mvwzmkTImvqYuYe70Jtu3btymqPPPJIVnv44Yezmlsn3p2LCwFKvvvf1VdfndUuu+yyrOYCQC6E8+KLL2a1LVu2ZDW3jr3ku/K5/axfvz6rudCeCwXdfvvtWW3s2LFZrek9URpWBNqaNGlSVmvTia6XLozu8a5D3ebNm7Pat771razmgmWuQ2ZTONB1f5s+fXpWmzJlStFj3X7cWvQuJOe64El+vHHdS911dI91Y9pLL72U1VasWJHVpk2bZo/Rva69hKNL8EkeAIBKMckDAFApJnkAACrFJA8AQKX6GrxzoYnS4ErbzkBu365r3WOPPZbVXLjCmTdvXlZ7xzveYbddtmxZVnOdki6++OKifTtuCUUX9Ni+fbt9vAscumvmuvq5MN/Xv/71rOY6WN1www32eJzS7mBtlh8GJB+UK+1c6TR1eSsN2a1bty6rueWu3bKwjgvJzZo1y257xRVXZDU3/rmwohvT2tzH7tpI0vPPP5/VNm7cmNXc9XEhRDemlYb7rr32WnuM48ePz2ruHHtZqvZMfJIHAKBSTPIAAFSKSR4AgEoxyQMAUKm+Bu9cQMt1UHOBi16CBy4M4bo+PfXUU1nNhexcEOKaa67JajfeeGNWc0sRSuWBOhfiaNPRzYWH5s6da7d9//vfn9Uuv/zyrHbfffdlNdcdynXgc+E+F0B0HQIlfz7uvcJSs2jLjSsuEFy6VHLTmObuHddVcu3atVlt//799jnP5AJ1Lqh75ZVX2se7Dm5uTOvHfec66El+afPZs2dnNRdgfO6557Jaabc9Nz4PDAzYY1yyZElWc9eRjncAACDDJA8AQKWY5AEAqBSTPAAAlepr8M4FUkq36yV4t3v37qzmgnf79u3Lai5kN3/+/KzmurK5kErTUo1tztEdY2nnrV7265Z8dZ2bXKDyy1/+clZzIULXbc91HbztttvsMU6YMCGruZCKO0agF0ePHi3arnT50JMnT9rHu9CXC9658cuFvtz45TpuuvHLhdckPwa5scXV3FjVpnNgUyjNPacL9a5atSqrufNzc4gLSR44cCCrbdq0yR6jCzC6Y2yDT/IAAFSKSR4AgEoxyQMAUCkmeQAAKtXX4J0LQpw6dapoOxeucMuUStKOHTuy2q5du4qe0wUh3vnOd2a1hQsXZrW2y5m68ykNuLiQSumShU0d9Ny2LoznOmXt3Lkzqz3++ONZzb3+GzZsyGquw6AkXXLJJVmtbcdEwGnTyc5t19Sd7plnnslqrrOa28+cOXOymrt3FixYkNVcV7ZexobSsaX0OrrHNo35bbhwoRvfXcdDt3StC1Q2LYd77NixrObGtDZLjvNJHgCASjHJAwBQKSZ5AAAqxSQPAECl+hq8mzp1alYrXarRhTqagiuu7jqejRs3Lqu5ENn111+f1aZPn57VSgODku+etWXLlqzmlr4dHh7Oai6s4c7PBecuuugie4xuW/ecbt8333xzVnPhRxfQc2EUd86SD8244wbaKg1vuu1cYMy99yXfsdM93o2nV111VVZzy5lOmTIlq/USHD5+/HhWcx343DjnHuvGTjcuuXG86XVxdfd4N1645WvdtR0aGspqbpxrCjC683adB91rXYpP8gAAVIpJHgCASjHJAwBQKSZ5AAAqxSQPAECl+pquX7FiRVYrbXXrEtdNyXWXRHWpcJeQd6lw19bWpSpdKtatoS5JBw8ezGpbt27Navfcc09Wc9esKb1Z8the1mMeM2ZMVnNrU3/84x/Pam4tencd3bk0HeOiRYuymmtNDLQ1YcKEou1cqtv9lkxTq1OXAHe/weJar7p7zK0nX7q+vUvCS378cu1416xZk9Xc+Oz2XboWfRP3Olx4YT7lufXbV69endVc6n3u3LlZzb2uTeOXm9fcbzm0+Y0hPskDAFApJnkAACrFJA8AQKWY5AEAqFRfg3cuPOACCS7c5cIILrQg+bCIC3PNnj07q7kghQvCuHCgC3V89atftcfo1gfes2eP3fZMpYEUdzzuejeFWdw5use7cKE7PxcUeuyxx4qe7/Dhw/YYHdcO072ngF4sXrw4q7l7sfS+cdtJ/v07adKkrOaCzO4YXWjv0KFDWc21pd22bZs9Rteu1o1fbj+la8e78cuF6XoJ47mx3L2Gbt+TJ0/Oaq7drJurmlrvurnKBRObgnsl+CQPAEClmOQBAKgUkzwAAJVikgcAoFJ9Dd6VBilczYUjjhw5Yvfjgltu3+PHj89qrjOe6+504sSJrOYCMy6AJpWH+UqDci64Uto5rikUUhrcc+c4MDCQ1VwnOnfN3OvXFLJ018y9V9x+gF644JW7d1yYyo0XTd0wHbe++YwZM7KaGxvcvt197LY7cOCAPR537K422uNXm26fkg/FufHLdTd04Ue3nXu+pjHWhdEnTpyY1VhPHgAAZJjkAQCoFJM8AACVYpIHAKBSfQ3eufBIaQci17GsKUzl6q6LkAtNuLDZ2rVrs9rdd9+d1VxXtqZjvPHGG7OaC2y4blVuWcbS6+MCIE3dlNx+3DG6QMqUKVOymut+5c6vtINe075nzZqV1dzrCvTChbYcd4+5DnFNwTu3H3efuHvCjUGua9327duz2t69e4uP0YXDSscgN+a7wLM7Z3dtmrpZlnayc0vNulC2Gw9dINjNNU1d+dwxutfQXW8XBHX4JA8AQKWY5AEAqBSTPAAAlWKSBwCgUn1NI7344otZrTQk5wIOrrOU5LugudCECzi45RaHhoaymguPrFq1Kqs1BVdc8OWyyy7Lah/5yEeyWmnXOhfqcLWm6+g6Crrr6JbsHR4ezmo7duzIau51bVqC0xkcHMxq+/fvz2ru+lx++eXF+wFcUNeNA+7+7GX549JgrXtPu/DcE088kdV2796d1Vz3taZjdN3x3P20fPnyrObCb27MdzU3NvQyD7jxzwXY3Hm7cy6dG1yQT5KmT5+e1VxouU1wmE/yAABUikkeAIBKMckDAFApJnkAACrV1+CdCx+4ZQKbwh5nckuXSn6ZUxeacME7Fz5ZtmxZVnNhlvXr12e1lStX2mN03f/cso4urObOxYVM3PKEbjsXcJF8AKR0qUf3Grrr7UIqrquVW1ZT8t3tXHeopnMESrkwqQvJvfTSS1nNBXDde1/y71XXMc/VXEDLdZMrvY9d2LBpW3d/79q1K6u5Mcjd826MdEHdpmWo3fjlxgsXGHTXZ9OmTVlt8+bNWc0Flpu6Jbrg3rp167Ka6264evVq+5xn4pM8AACVYpIHAKBSTPIAAFSKSR4AgEr1NXj3jW98I6s1LXN6JhdGcZ3NJN8ByYVCnnvuuaz2+OOPZzUXnlu8eHFWc4E/t6SsJC1atCiruaUVXVer0hDZ1q1bs9rDDz+c1dx1kKS5c+dmteuvvz6rueVeH3300aJ9u7Ch6w7WFK558skns1pp0Oh973uffU7Ace8hF9R1AWN3jzQtn+yCWy7M58Y0FyJzYTMX2nPHffXVV9tjdN05S5fDdYFDV3Njw/PPP5/VXNdLyYd13ZjmwoVubtmwYUNW27NnT1Zz59L0Wrt997IscQk+yQMAUCkmeQAAKsUkDwBApZjkAQCoVF+Ddy7M4IJ3rpuSWyKwqWOUC165x7vgylNPPZXVXJjlhhtuyGouJNfU6ciFA9uEK9x1dMsYvuc978lqt9xyi31O17XOhWvcubgAo1te14UIXRjFda+SfCDJhfTcewroxdq1a7Oae/+6jpTufdq0pLJ7/7qx4emnn85qLrQ6c+bMrOaWV3X3dlPHO9dZz43HLkTmxipXc50rV6xYkdWagsguKOmO2wUdXWjZLZXuxj4XwG5a1tp1JXXjbpvxi0/yAABUikkeAIBKMckDAFApJnkAACrFJA8AQKX6mq53aUeXSC9Nqbs2jJK0YMGCrOaS3S75uW3btqzmEve33nprVuslFemuhUuYumtR+nyu5torutacTY93v6XwwgsvZLVnn302q7kUq7tm7vVzvykg+TSxu+al1xFosnfv3qzm7lmXMnfvP5cel3yrVJeudwlw1z7XtaZ1LV9L15iXyhPy7rzdc5bW3P3uxpAmbszfsmVLVnOtvt1vSLi0vmv569qYSz6JXzqWl+KTPAAAlWKSBwCgUkzyAABUikkeAIBK9TV450IKpcE7F8JoClxcddVVWc2tQ7x58+as5sJhTzzxRFZzbVavvfbarOaCIlJ58K50O6f0mjWF0lzdhVTc9dm5c2fJIdpA3cqVK7OaCxRJ5SEV994DelEaNnPvNdcy9oorrrD7cQE/t7b6oUOHspoLvLpgrTtG1+q2KfDlxpbSa1GqNIznwsCSNDQ0lNVcoG79+vVZzYUf3XjoQnZLly7Nak1tbUtfG4J3AAAgwyQPAEClmOQBAKgUkzwAAJXqaxrJda0rXZfYBS6a1mp3obibb745qx08eDCrDQ4OZrX9+/dntQceeCCrufWh3/Wud9ljdNw5tgpcmMe6a9sUXNm4cWNWe+SRR7Lapk2bspoLqbgOhS6s6LpDuU59kj9H975oOkeglHtfubCZu4/d+3fu3Ll2Py5kd/LkyazmgmUutOe4Ne9dZzwXLJPKQ3FNY/SbNTw8nNVcSE6Snnnmmazmwtauk50bL9y1uO6667La8uXLs9q0adPsMbrrUzqmleKTPAAAlWKSBwCgUkzyAABUikkeAIBK9TV458InLrjiukOVdsaTfJjPdcG77bbbspoL1B0+fDiruYDLV77ylazmusFJ0h133JHVli1bltXcUoTuvN11dEFA14nOhekkacOGDVnNhVRc4MZ1cnIhxJtuuimruYBL05KXpWEfgndoy3WLLA3elXaYk3xw65VXXslqLkTmwngumOa2c8/X1JXPHeOsWbOymrs+LvTnaq776I4dO7KaW3JX8mO0W7LXva5LlizJai5k9/a3vz2ruS6eTcE5Ny6N9rLYfJIHAKBSTPIAAFSKSR4AgEoxyQMAUKm+Bu9cMKNNyMB1b5N82MOFXNwysBMnTsxq999/f1bbt29fVnMhil27dtlj/MIXvlC0b1dzYTwXsnPBlaNHj2a1Y8eO2WN05+PCk+7a3nrrrVntlltuyWrz58/Pai601xScc3XXMWq0wyz4/8e9912grnQp6HHjxhXXXTjMLb/sltR2HTuPHz+e1VwozXXfk6R169ZlNXfcLkTt7k83frljdAE999gmruum67DpAnULFy4sej53jE3vidIQdZvxi0/yAABUikkeAIBKMckDAFApJnkAACrV1+CdC4I5pcGVJi6M5TpGuQCbW/r00ksvzWr33ntvVnMdllwIQ/JhNxc0cc9ZusyjUxr0kHzYx3Wju/3227PaypUrs5q7jm4JTVdrUvpeKb0+QBP3/nXvP1dzY1JTmNTdd25ZWhf6ct3W3JLRrnOcG5NcGK+pXjq+j/by2U0BxtmzZ2e1BQsWZLUrr7wyq7nr6LgOoE4vwbnR7s7JJ3kAACrFJA8AQKWY5AEAqBSTPAAAlepr8O7QoUNZrXSpxtKAi1S+fJ/bznWwmjNnTlb76Ec/mtVcF6impWZdoM6FA90xll4ft53r2jVz5kx7jG7p2xUrVmQ1F1Jx19Et2euO0b1W7vmatnXP2SbsA0jS8PBwVisNsrpaU8dOV3c1Fxx2Xdnc/emWn922bVtW2759uz1Gdy2allM9kwsWuvvbjVVTpkzJak0hOTeuufCk248LIbpzLtUUvCt9r7QJozPyAQBQKSZ5AAAqxSQPAEClmOQBAKhUX4N3rjuQC5S4kJQLoDUFPUpDLq7mAiClgRIXenGhPUkaHBzMagcPHsxqLgDiAnruuF0nqKlTp2Y1F2aR/FKWbnlet3xtaVDEXdteukOVBg4J3qEtFxx179XSMF5TZ7PSsaq086W7Z13nSjc2uPCtJA0NDWU117GzNDjsjtEF4lzY0G0n+THRvTbuuEs7ZI52SE4a/WWxGfkAAKgUkzwAAJVikgcAoFJM8gAAVIpJHgCASvU1Xe9S2C59WZqEbkoxlrawdVza2x1P6TE2pTRde8Vp06YVPafjroU7xqb2sI5L8Z86dSqruXMs/Y2E0te/beK09HiAJu43YpzSVsu9pOvdc5aOQW22Gzt2rN12xowZWa00kV6qdFzpZR4o1cs4WaLt+NXmt4P4JA8AQKWY5AEAqBSTPAAAlWKSBwCgUn0N3jkuXOGCJ720Py0NoZWGvto8timM4s6ntHVvaSvF0vBIUwCoTZCm9Jo5pW1Bm+pu321bTQInTpwo2s7dN+7918v45bZ19/doh1bPtXbQvVzH0mtRup1rf+veE0eOHMlqrj150+PduvVuu4997GP2Oc90br2CAABg1DDJAwBQKSZ5AAAqxSQPAECl+hq8K117ecyYMW/6+SQffBntNXrbrDcstev0V7qOtAsw9hIOLN2347rltdH0+pV2KATOBnd/92P8ORvcPevWjZekl19+Oau5wJnbzoXI3H7cdqWP7eUYS/dzvmI0BACgUkzyAABUikkeAIBKMckDAFCpoBMYAAB14pM8AACVYpIHAKBSTPIAAFSKSR4AgEoxyQMAUCkmeQAAKsUkDwBApZjkAQCoFJM8AACVYpIHAKBSTPIAAFSKSR4AgEoxyQMAUCkmeQAAKsUkDwBApZjkAQCoFJM8AACVYpIHAKBSTPIAAFSKSR4AgEoxyQMAUCkmeQAAKsUkDwBApf4HCEVel7qU0ccAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "train_warped = random_warp(X_train[0])\n", + "test_warped = random_warp(X_test[0])\n", + "\n", + "fig, axs = plt.subplots(1,2, figsize=(10, 3))\n", + "\n", + "axs[0].axis('off')\n", + "axs[0].imshow(X_train[0].squeeze(), cmap='gray')\n", + "axs[0].set_title('Train original')\n", + "\n", + "axs[1].axis('off')\n", + "axs[1].imshow(train_warped.squeeze(), cmap='gray')\n", + "axs[1].set_title('Train warped')\n", + "\n", + "print('shape in/out:', test_img.shape, test_dst.shape)\n", + "\n", + "fig, axs = plt.subplots(1,2, figsize=(10, 3))\n", + "axs = axs.ravel()\n", + "axs[0].axis('off')\n", + "axs[0].set_title('Test original')\n", + "axs[0].imshow(X_test[0].squeeze(), cmap='gray')\n", + "\n", + "axs[1].axis('off')\n", + "axs[1].set_title('Test warped')\n", + "axs[1].imshow(test_warped.squeeze(), cmap='gray')\n", + "\n", + "print('Test shape in/out:', X_test.shape, test_translate.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "shape in/out: (12630, 32, 32, 1) (32, 32, 1)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfkAAADSCAYAAABJqrmlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGexJREFUeJzt3XmQXNV1x/HfQdtIaEZo36WARFhklgILZDCikImhDIa4KLzEScrEeIm3lMshZScOlF22Q+zCdiWOEztektgEY8cxgQJTCbiCQ1i0YWRBWCW0I2k0GmkkjUYCbv54b9zN3PPE7Wmppbl8P1UuizOv37vvdc85/brP3GshBAEAgPwcd7QHAAAAjgyKPAAAmaLIAwCQKYo8AACZosgDAJApijwAAJmiyGfCzJ43szcd7m1fYz8fNrP7mt0PgMExs1PN7KUGH/M5M/tG4rY3m9l3Bje6Y5+ZPWJmv1/++/1mdtcxMKYfmdlnD9f+KPKHYGZ76v73ipn11v33e5vY729eWIdLCGFeCOHhw70tgNc2xHLFTSGEjx2OfZnZi2b25sOxr6MthPDdEMLbm9mHmbWZWTCzWYdrXM0afrQHcCwLIYzt/7eZvSDp+hDCMXXnambDQwgNvZMHcHgNhVwhkS9ej7iTb4KZDTOzvzSzNWbWaWa3mtkJ5c+OLz926TKzbjN71MzGm9ktkhZK+k75Lv+Win1fY2ZPlo+9z8xOrvvZi2b2p2b2hKTddbE3l/8ea2b/Wj52tZl9xsyeG/D4/m1vLsd9m5n1mNkqMzu7btsbzWxt+bPVZnbFEbiUQNaOZK4o9/FhM9tiZpvN7ON18ZvLXHC7mfVIevfAj+DN7HozW29m283sz5y789FefjCzn0iaIuk/y/F9ov/rAzO7zsw2lvu8oZnrUP7sA2b2QjmGNWZ2bcV1uLB83K7yWnzNzIbX/fwKM3u23P9XnWt4X/nv6GsQe/VH+6ea2YPlcbab2b+Um/2y/P+ny2vyu+X27yivXbeZ/Y+ZnV633/PM7PHy3H4oaWTV8zwYFPnm3CDprZLeLGmWpIOSvlb+7HoVn5TMlDRJ0sckHQghfErSMhXv9MeW//0qZvYGSf8k6SMqfokekHRn/YtV0rsk/Y6kic64viBpsqS5kq6Q9AevcR7vkPQ9SSdIul/S1+t+9rSkCySNk/TXkn5kZpNeY38AXu2I5IrSMElvknSSit/3zw0o0tdI+mcVv8M/rX9gWbC/Kumd5bhmlWOo5+aHEMK1krZJems5vr+pG88bJc2X9DZJXzSzkwZ7HcpC/xVJbwkhtEu6SNLqimtxsHzchHK7t5f7lZlNk/RjSZ9SkR+3l+McjL+SdEd5TeZI+lYZX1z+/ynlNbnDzBZJ+qak61Tk6x9IusPMhptZW7mfb5Vj/rmkqwY5JhdFvjkfkvTpEMLmEMJ+SZ+T9C4zMxUvtsmS5oUQXgohLAsh7E3c73sk/SyE8N8hhAOSvqTiRV//gvxaedxe5/HvlPSFEMKuEMI6FS+wQ/lFCOG/Qggvq3gB/uZOPoRwewhhSwjhlRDCDyRtknRu4nkAKBypXNHvphBCbwjhMUk/VJFD+j0QQrin/B0emC/eKemnIYRHQgh9kj6ruC5U5ofXGM/+EMIySU9JOrOMN3Md3mBmbSGETSGE//MOGkJYWj7u5RDC85K+I+ni8sdXSVoWQrgzhHBQ0pcldSWci+egpN+SNK287v97iG0/JOkbIYQV5bi+LWmUijy6WFJfCOGbIYSDIYRbJa0a5JhcFPlBKl+UsyXdU34E0y3pMRXXdKKk76q4A/+38mOrL5nZsMTdz5C0rv8/yl+uTSre4fbbcIhxTR3wc3fbOi/W/XufpPrvF99f9zFTt4p359zJA4mOcK7oV/87vk5FDvF+NtCM+p+HEHZL2jVgm8r8UOHlEELnwMcM9jqEEHZKeq+kT0h60czuNLP53oHN7HQz+7mZbTWz3ZJuVC1fDTzX/rw6GJ+UNEbSY2V+PFRz5FxJf95/zuV5T1aRz2dI2jhg+3UDd9AMivwghWL5vk2SloQQTqj7X1sIoTOE0BdCuDGEcKqKd2vXSnp3/8NfY/ebVbwwJBXfY6l4QdS/IN19lOPapuKjsH6zGzm3uuP+tqS/lfRBSRNCCCdIek6SDWZ/wOvREc4V/ep/x+eoyCG/GcIhHrdFdbnCzDpUfKyfKnkZ02auQwjh7hDCW1QUxfWS/r7iMP8oaaWKTwM6JH1etXy1RXXXycyO06tvnOrtlTTMzEbVxabVncumEMIfSZqu4s3H98xsTsX12CDpxgHnPCaE8O8acP1LcyrGNCgU+eb8g6SbzWy2JJnZFDN7e/nvS8t3lcepaI57SdLL5eO2qvj+rMrtkt5hZovNbISkT0vaIWl54rh+LOkvzGxc+cL740ZPrDRW0isqvrs6zsw+rOJOHkBjjlSu6HeTmY02s7NU9ODcnjiuH0u6xswWmtlIFUXxleSzSh9fv4avg5nNLBvmxkjqk7RHteszULukXSGEPWa2QNIH6n52p6SFZnZlmVdvUPE9uGezirz3XiuaBT+iujcEZvYuM5tRvnHpLsMvlV957BpwTb4t6eNm9kYrjDWzq8rz+aWkNiua/oab2XtU+2rjsKDIN+fLku6T9AsrOlcfknRO+bOZkv5DUo+KJpF7VPxCSUWjyR+a2U4z+/LAnYYQVkl6v4pmjO2S3iLp6gb+9OWzknaq+Njn5+Vx+xo9uRDCShW/lMtVvOM8UelvNADUHJFcUXpZ0qOS1kq6V9LnQwi/rNj2Vcrv8G+Q9DMVd9lbVBSp1HzxRRWNdd1mlvK394O5DsMkfUbF1wY7VPzFwcfl+6Sk681sj6S/U92bnRDCFhWfDHxdRV6dqop8Vn6Uf72kmyR1qvgEYEXdJm+StKI8zk8kfTCE0P/pyY2SflJek6vK7+s/oSKfd0t6RtLvFYcJvSoaGz+iImdfIemwTshjxRsR5MzMPinp8hDCZUd7LACOXWUne5ekGWVRfN0o79avDCG87WiP5XDiTj5DZjbbzBaZ2XHlR1Z/ouKdOgC8SvnR8WgzG6viz+kefb0V+NICFZ+GZIUZ7/I0SsXftc5V8RHQD1X8KQkADHStij+NC5KWquhkf10xs3tVNPVdc7THcrjxcT0AAJni43oAADJFkQcAIFMt/U7+lltuib4beOWV+E8yi4mRBu/ll6v+hPLVvK8qvPF4sfb29qTtqsbixY87Ln7P5cV6e+OZbIcNS5sgy9ufN25J6uuL/4om9fp4z6F3zi+9FP9V4Pbt26PY+PHj3TF6+xwxYkQU27FjRxT7/ve/z6Q+SEb+OnSc/FU41vIXd/IAAGSKIg8AQKYo8gAAZKql38nv27cvinnfK6V+H1L153/Dh8endfDgwZQhJo+np6cn6bHN/oli6ndQ3vXxxt3I94UjR45Menzqd4ip39lNmhQvcnfgwIGkY1Tp6Oho6vEA+atx5K/C0cxf3MkDAJApijwAAJmiyAMAkCmKPAAAmWpp410zTSpeg0NVE4Y3QYH3eE8zE0yknl9VvJHJKAa7P2+7qokomjlHr3kodYzeMVKfv6rjAM0ifx06Tv6qPsbRzF/cyQMAkCmKPAAAmaLIAwCQKYo8AACZamnjndfMkMprcKhqZvAaMVIbH1KbXlJj3v4kvyHFmxXJm+kqtZnFW83Ii1U1eqQ+X82sIOUdu5EmJU8jDURAKvJXDfmr+tjHWv7iTh4AgExR5AEAyBRFHgCATFHkAQDIVEsb79rb26OY10jh8RpAGlmqsaqBJIXXUOItY9jb2xvFdu/e7e5z/fr1UWzt2rVRrLOzM4r19fW5+xzIu7Zz5syJYqeddpr7+BkzZkSxcePGRbG2trYoljrrV2qTite4VBX3XheprzOgCvmrhvxVHTvW8hd38gAAZIoiDwBApijyAABkiiIPAECmKPIAAGSqpd31U6ZMiQfgdJJ63aBex2JVx2nqNIUe79j79++PYhs3boxiK1asiGJPPPGEe5w9e/ZEMa+rMnWKQ++c9+3blzSeqjF63cRnnXVWFLv00kuj2MyZM6OY17Ga+lx502NKftepdxy669Es8lcN+aswFPIXd/IAAGSKIg8AQKYo8gAAZIoiDwBAplraeNfR0RHFvCYMr2HCa+Coambwpmz0pg/0Hr958+Yo9thjj0WxRx55JIpt3bo1ilU113jTIXpj9K6PF6uaIjNlu6rHdnd3R7EHHnggiu3cuTOKXXTRRVFs0aJFUcx7rr3Gk6oxetfR2zZ1PW6gCvmrhvxVGAr5i8wHAECmKPIAAGSKIg8AQKYo8gAAZKqljXeeZpowqmYB8h7vNYVs2rQpij388MNR7MEHH4xi3jrL3rl4TTSSP3vWqaeeGsWmT58exSZMmBDFvGaPDRs2RLE1a9ZEMW8daMmf1co7zqpVq6KY1/TirVe9ZMmSKDZq1KgoVvWaSG32AY4E8lcN+atwrOUv7uQBAMgURR4AgExR5AEAyBRFHgCATLW08a6zszOKpTYZpDazNHJsb9anpUuXRrGurq6kY8yZMyeKnXPOOe62CxYsiGJTp06NYm1tbUnH9px++ulRzGv0WLdunft4r2HHu2berFheM8y9994bxbxZu8477zx3PJ7UGbWaWb4TkMhf9chfhaGQv7iTBwAgUxR5AAAyRZEHACBTFHkAADLV0sY7r8HBm4HIazzwGi6qeDMT/frXv45iK1eujGJek4rX9HDaaadFsfPPPz+KnXzyye4YUxtS9u/fH8WamRHJm2Vr9uzZ7rZXX311FJs1a1YUu+eee6KYN2OUN4OV1xzjNfB4M2xJ/vl4rxWWmkWzyF815K/CUMhfZD4AADJFkQcAIFMUeQAAMkWRBwAgUy1tvPOaVFK3a6RxZfPmzVHMa1zZunVrFPOaVObOnRvFvFmNTjrppCg2fLh/iZs5R2+MXmOGt79GjustmXj22WdHMa8h6c4774xiXhOON1uVN2vXJZdc4o6xvb09inmzi3ljBBpB/qohfxWGQv7iTh4AgExR5AEAyBRFHgCATFHkAQDIVEsb77zmigMHDiRt5zUjeMv8SdL69euj2KZNm5L2OWnSpCh27rnnRrF58+ZFsWaXM/XOx9tnavOJ91hvu6oZqLxtvWYWb0nIjRs3RrFly5ZFMe/5X716dRTzZuiSpNGjR0exZmccAzzkr0MjfxWOtfzFnTwAAJmiyAMAkCmKPAAAmaLIAwCQqZY23k2YMCGKec0jqY0Z27Ztc4/jxb0Zg8aMGRPFvCaMhQsXRrHJkydHsdSGG0nq6emJYmvWrIli3tKRe/bsiWJeA4d3fl7jyciRI90xett6+/SOfcEFF0Qxr3nIa3DZu3dvFPPOWZI6OjqimDduoFnkrxryV2Eo5C/u5AEAyBRFHgCATFHkAQDIFEUeAIBMUeQBAMhUS7vrzzjjjCiWOlWk17FY1fnpTa/odVV6HaZeV6U3LeSuXbuimLcOtLcGsSR1dnZGsbVr10ax22+/PYp516xqaseUx1ZdR2/bESNGRLEFCxZEsY9+9KNRzFvL2buO3rlUjXH+/PlRzJvaE2gW+auG/FUYCvmLO3kAADJFkQcAIFMUeQAAMkWRBwAgUy1tvPOm6/MaErzmCG9tYa+ZRZL27dsXxbxmiBkzZkSx2bNnRzFvSkmvuWb48Phy3n333e4Y29raotiWLVvcbQfyps30mky88XjX23us5J+j93ivOcc7P28N66VLlybtr7u72x2jx5vm0ntNAY0gf9WQvwpDIX9xJw8AQKYo8gAAZIoiDwBApijyAABkqqWNd14jhbfOshfzmjV2797tHsdrfPCOffzxx0cxb2Ypb3an3t7eKOY1THgNHFJ6M0xqo4nXmJM685J3vaX0xhfvHMeOHRvFvJmcvGvmPX9VTUreNfNeK1VrTgOpyF815K/CUMhf3MkDAJApijwAAJmiyAMAkCmKPAAAmWpp493EiROjmNfA4TUeeDP+VDUjeHFv+cb29vYo5jVr/OpXv4pit912WxTzZjWqGuP5558fxbwGkNGjR0exvr6+KJZ6fbwmlaplEL3jeGMcN25cFBs/fnwU27lzZxTzzi91BqqqY0+bNi2Kec8r0AjyVw35qzAU8hd38gAAZIoiDwBApijyAABkiiIPAECmWtqNtGHDhiiW2mTizRjkLcko+bMIeU0YXqPJ1q1bo9iuXbuimNdwc9ZZZ0UxrwlDktatWxfFpk+fHsXe9773RbHUWZ+8BiAvVnUdvRm5vOvoLXm5Z8+eKLZ+/foo5j2v3vNXZceOHVFs27ZtUcy7PrNmzUo+DkD+qiF/FYZC/uJOHgCATFHkAQDIFEUeAIBMUeQBAMhUSxvvvKURveUEvdmPPN7Sf5K/TKC3tKLXuDJq1KgotmDBgii2fPnyKLZq1aooduaZZ7pj9GbP2r59exTzmj28c/GaPSZMmJC0ndcoJPmzPqUuE+k9h9719hqAhg0bFsWmTJnijtGbHaqjoyOKVZ0jkIr8VUP+KgyF/MWdPAAAmaLIAwCQKYo8AACZosgDAJCpljbePfTQQ1GsapnAgbzGA29mIMmfAclrmnjmmWei2LJly6KY13xy8sknRzGvYcZbklGS5s+fH8W8ZQu9mY5SmzDWrl0bxR588MEo5l0HSZo9e3YUW7hwYRTzlkt89NFHk47tNet4s4h5M0tJ0ooVK6LYmDFjopjXcHPllVe6+wQ85K8a8ldhKOQv7uQBAMgURR4AgExR5AEAyBRFHgCATLW08c5rNPEaV7wZiLwlBr3ZhiS/ccF7vNfMsnLlyijmLel33nnnRTGvycSb/Ujym2uqlnVM4V3HyZMnR7HLLrssii1evNjdpzfrk9dc452L1wDkLU/pNeG0t7dHMW/2Kknq6uqKYl6Ti/eaAhpB/qohfxWGQv7iTh4AgExR5AEAyBRFHgCATFHkAQDIFEUeAIBMtbS73puaz+voTO3y9NZ3lqQTTzwxinmdkT09PVHshRdeiGJex+rFF18cxbxuzqquSO9aeB2m3rVI3Z8Xa2tri2LeGtRVj/e6fJ9//vko9tRTT0Wx3bt3RzHvmnnPn9dpK/lTSHrXPPU6AlXIXzXkr8JQyF/cyQMAkCmKPAAAmaLIAwCQKYo8AACZamnj3fDh8eFSG1e8ZgSv6UGSTjnllCj27LPPRrHnnnsuinnNFcuXL49i3jSFZ599dhTzGiuk9MaV1O08qdesqqnDi69ZsyaKeddn48aNKUN0G1K89a+9NZ+l9IYd77UHNIL8VUP+KgyF/MWdPAAAmaLIAwCQKYo8AACZosgDAJCplnYjebM+eQ0F3jrLXhNG1VrHXlPJBRdcEMU6Ozuj2I4dO6KYt470/fffH8UOHDgQxS688EJ3jB7vHL0mjFTeY71r680CJUlPPvlkFHv44Yej2NNPPx3FvKYXb4Yvr9ln/vz5Ucyb6Uryz9F7XVSdI5CK/HVo5K/CsZa/uJMHACBTFHkAADJFkQcAIFMUeQAAMtXSxjuv+cCb/Wj06NFRLHVmKclvhvFmkbrkkkuimNeQ0t3dHcVefPHFKHbXXXdFMW82JUm6/PLLo9iCBQui2NixY6OYd97edfQaabyZnLxmFElavXp1FOvq6opiXsONt/yj18SzaNGiKDZ9+vSkY1TFabzDkUD+qiF/FYZC/uJOHgCATFHkAQDIFEUeAIBMUeQBAMhUSxvvpk2bFsWqmk9SeLMfSX4TxwknnBDFvGUUOzo6oth9990XxbZu3RrFvOaITZs2uWO89dZbk47txbxmFq9JxVt2sqenJ4rt3bvXHaN3Pl7zkXdtL7744ii2ePHiKDZ37two5jW9VDWeeHFvFqlmXmeARP6qR/4qDIX8xZ08AACZosgDAJApijwAAJmiyAMAkKmWNt55jRQer/GkEV4zw8GDB6OY1wDiLR04ceLEKHbHHXdEMW8Wqd7eXneMXrPIvn37kvbpzZJUNaPSQKmzTUnSiBEjopg3m9OSJUui2JlnnhnFvOvY19eXFKuS+lpJvT5AFfJXDfmrMBTyF3fyAABkiiIPAECmKPIAAGSKIg8AQKZa2ni3c+fOKOY1HnhNBt52VU0LXuOK17Dhbect8zhz5swodt1110Wxxx9/PIpVLdXoNaR4zTXeGFOvj7edN+PT1KlT3TF6S0eeccYZUWzy5MlRzLuO3pKX3hi958rbX9W23j69WaSARpC/ashf1WM81vIXmQ8AgExR5AEAyBRFHgCATFHkAQDIVEsb77q6uqKYt9yi12TgNXAMGzbMPY7XxOEdx4t5DRJVxxlo3rx5UcxrepGkHTt2RLHOzs4o5s0s5TW4eOMeM2ZMFJswYUIUGz9+vDvGcePGRTFveUtv+cfUmZy8a9vIsoqpDTs03qFZ5K8a8ldhKOQvMh8AAJmiyAMAkCmKPAAAmaLIAwCQKYo8AACZaml3vdfF6HWdpnYSVnVApk4B6fG6Jb3xpI6xah1gb23iSZMmJe3T410Lb4xV0yt6vC7YAwcORDHvHFM7elOf/0Y6Vj2p4wGqkL9qyF+FoZC/uJMHACBTFHkAADJFkQcAIFMUeQAAMtXSxjuP1/TgTdfYyPSBqU0cqU0TzTy2qnHFO5/UqS9T16ZObVKpauqpGnuK1Gvm8Z7Xqial1Oc6dZpKoBHkr0Pvk/xVOJr5izt5AAAyRZEHACBTFHkAADJFkQcAIFMtbbzzGhK82IgRIwa9P8lvuGh2xqGUY3iqGiaamSnLO3ZqA1AjzTWpx/Z4s001o+r5S53hC2gW+auG/NWYo5m/yIYAAGSKIg8AQKYo8gAAZIoiDwBApoyZwAAAyBN38gAAZIoiDwBApijyAABkiiIPAECmKPIAAGSKIg8AQKYo8gAAZIoiDwBApijyAABkiiIPAECmKPIAAGSKIg8AQKYo8gAAZIoiDwBApijyAABkiiIPAECmKPIAAGSKIg8AQKYo8gAAZIoiDwBApijyAABkiiIPAECmKPIAAGTq/wH9ceEGUpeH9AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "train_brightness = random_brightness(X_train[0])\n", + "test_brightness = random_brightness(X_test[0])\n", + "fig, axs = plt.subplots(1,2, figsize=(10, 3))\n", + "\n", + "axs[0].axis('off')\n", + "axs[0].imshow(X_train[0].squeeze(), cmap='gray')\n", + "axs[0].set_title('Train original')\n", + "\n", + "axs[1].axis('off')\n", + "axs[1].imshow(train_brightness.squeeze(), cmap='gray')\n", + "axs[1].set_title('Train brightness adjusted')\n", + "\n", + "axs[0].axis('off')\n", + "axs[0].imshow(X_test[0].squeeze(), cmap='gray')\n", + "axs[0].set_title('Test original')\n", + "\n", + "axs[1].axis('off')\n", + "axs[1].imshow(test_brightness.squeeze(), cmap='gray')\n", + "axs[1].set_title('Test brightness adjusted')\n", + "\n", + "\n", + "print('shape in/out:', X_test.shape, test_brightness.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model Architecture" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": {}, + "outputs": [], + "source": [ + "### Define your architecture here.\n", + "### Feel free to use as many code cells as needed.\n", + "### Define your architecture here.\n", + "### Feel free to use as many code cells as needed.\n", + "import tensorflow as tf\n", + "\n", + "from tensorflow.contrib.layers import flatten\n", + "#from tensorflow.keras.layers import Flatten\n", + "#from tf.keras.layers import Flatten\n", + "#from tf.keras.layers import flatten\n", + "\n", + "EPOCHS = 60\n", + "BATCH_SIZE = 128" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [], + "source": [ + "### LeNet \n", + "def LeNet(x, keep_prob): \n", + " # Arguments used for tf.truncated_normal, randomly defines variables for the weights and biases for each layer\n", + " mu = 0\n", + " sigma = 0.1\n", + " \n", + " # Layer 1: Convolutional. Input = 32x32ximage_depth. Output = 28x28x6.\n", + " conv1_W = tf.Variable(tf.truncated_normal(shape=(5, 5, image_depth, 6), mean = mu, stddev = sigma))\n", + " conv1_b = tf.Variable(tf.zeros(6))\n", + " conv1 = tf.nn.conv2d(x, conv1_W, strides=[1, 1, 1, 1], padding='VALID', name='conv_1') + conv1_b\n", + " print (\"Convolution1: \", conv1)\n", + " \n", + " # Relu Activation\n", + " conv1 = tf.nn.relu(conv1)\n", + " \n", + " # Max Pooling. Input = 28x28x6. Output = 14x14x6.\n", + " conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')\n", + " \n", + " \n", + " # Layer 2: Convolutional. Output = 10x10x16.\n", + " conv2_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 6, 16), mean = mu, stddev = sigma))\n", + " conv2_b = tf.Variable(tf.zeros(16))\n", + " conv2 = tf.nn.conv2d(conv1, conv2_W, strides=[1, 1, 1, 1], padding='VALID', name='conv_2') + conv2_b\n", + " print (\"Convolution2: \", conv2)\n", + " \n", + " # Relu Activation being done here\n", + " conv2 = tf.nn.relu(conv2)\n", + "\n", + " # Max Pooling. Input = 10x10x16. Output = 5x5x16.\n", + " conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')\n", + " \n", + " # Flatten. Input = 5x5x16. Output = 400.\n", + " fc0 = flatten(conv2)\n", + " #fc0 = Flatten()(conv2)\n", + " \n", + " # Layer 3: Fully Connected. Input = 400. Output = 120.\n", + " fc1_W = tf.Variable(tf.truncated_normal(shape=(400, 120), mean = mu, stddev = sigma))\n", + " fc1_b = tf.Variable(tf.zeros(120))\n", + " fc1 = tf.matmul(fc0, fc1_W) + fc1_b\n", + " \n", + " # Relu Activation\n", + " fc1 = tf.nn.relu(fc1)\n", + " # Apply Dropout \n", + " fc1 = tf.nn.dropout(fc1, keep_prob)\n", + "\n", + " # Layer 4: Fully Connected. Input = 120. Output = 84.\n", + " fc2_W = tf.Variable(tf.truncated_normal(shape=(120, 84), mean = mu, stddev = sigma))\n", + " fc2_b = tf.Variable(tf.zeros(84))\n", + " fc2 = tf.matmul(fc1, fc2_W) + fc2_b\n", + " \n", + " # Relu Activation\n", + " fc2 = tf.nn.relu(fc2)\n", + " # Apply Dropout \n", + " #fc2 = tf.nn.dropout(fc2, 0.75)\n", + "\n", + " # Layer 5: Fully Connected. Input = 84. Output = 43.\n", + " fc3_W = tf.Variable(tf.truncated_normal(shape=(84, n_classes), mean = mu, stddev = sigma))\n", + " fc3_b = tf.Variable(tf.zeros(n_classes))\n", + " logits = tf.matmul(fc2, fc3_W) + fc3_b\n", + " \n", + " print (logits)\n", + " return logits" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Train, Validate and Test the Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A validation set can be used to assess how well the model is performing. A low accuracy on the training and validation\n", + "sets imply underfitting. A high accuracy on the training set but low accuracy on the validation set implies overfitting." + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Convolution1: Tensor(\"add_19:0\", shape=(?, 28, 28, 6), dtype=float32)\n", + "Convolution2: Tensor(\"add_20:0\", shape=(?, 10, 10, 16), dtype=float32)\n", + "Tensor(\"add_23:0\", shape=(?, 43), dtype=float32)\n" + ] + } + ], + "source": [ + "### Train your model here.\n", + "### Calculate and report the accuracy on the training and validation set.\n", + "### Once a final model architecture is selected, \n", + "### the accuracy on the test set should be calculated and reported as well.\n", + "### Feel free to use as many code cells as needed.\n", + "\n", + "#import tensorflow.compat.v1 as tf\n", + "#tf.disable_v2_behavior()\n", + "\n", + "# Create Placeholders for X and Y and One-Hot Encode the Labels\n", + "x = tf.placeholder(tf.float32, (None, 32, 32, image_depth))\n", + "y = tf.placeholder(tf.int32, (None))\n", + "one_hot_y = tf.one_hot(y, n_classes)\n", + "\n", + "# dropout probability is the probability to keep units\n", + "keep_prob = tf.placeholder(tf.float32)\n", + "\n", + "# Training Pipeline\n", + "rate = 0.0009\n", + "\n", + "logits = LeNet(x, keep_prob)\n", + "cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits = logits, labels = one_hot_y)\n", + "loss_operation = tf.reduce_mean(cross_entropy)\n", + "optimizer = tf.train.AdamOptimizer(learning_rate = rate)\n", + "training_operation = optimizer.minimize(loss_operation)" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "At least two variables have the same name: Variable_6", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mcorrect_prediction\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mequal\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlogits\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mone_hot_y\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0maccuracy_operation\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreduce_mean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcorrect_prediction\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat32\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0msaver\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mSaver\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_data\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_data\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/tensorflow/python/training/saver.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, var_list, reshape, sharded, max_to_keep, keep_checkpoint_every_n_hours, name, restore_sequentially, saver_def, builder, defer_build, allow_empty, write_version, pad_step_number, save_relative_paths, filename)\u001b[0m\n\u001b[1;32m 1138\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_filename\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1139\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mdefer_build\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1140\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbuild\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1141\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msaver_def\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1142\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_check_saver_def\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/tensorflow/python/training/saver.py\u001b[0m in \u001b[0;36mbuild\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1170\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_name\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1171\u001b[0m \u001b[0mrestore_sequentially\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_restore_sequentially\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1172\u001b[0;31m filename=self._filename)\n\u001b[0m\u001b[1;32m 1173\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msaver_def\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_name\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1174\u001b[0m \u001b[0;31m# Since self._name is used as a name_scope by builder(), we are\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/tensorflow/python/training/saver.py\u001b[0m in \u001b[0;36mbuild\u001b[0;34m(self, names_to_saveables, reshape, sharded, max_to_keep, keep_checkpoint_every_n_hours, name, restore_sequentially, filename)\u001b[0m\n\u001b[1;32m 668\u001b[0m \u001b[0munique\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 669\u001b[0m \"\"\"\n\u001b[0;32m--> 670\u001b[0;31m \u001b[0msaveables\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_ValidateAndSliceInputs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnames_to_saveables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 671\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmax_to_keep\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 672\u001b[0m \u001b[0mmax_to_keep\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/tensorflow/python/training/saver.py\u001b[0m in \u001b[0;36m_ValidateAndSliceInputs\u001b[0;34m(self, names_to_saveables)\u001b[0m\n\u001b[1;32m 553\u001b[0m \"\"\"\n\u001b[1;32m 554\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnames_to_saveables\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 555\u001b[0;31m \u001b[0mnames_to_saveables\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mBaseSaverBuilder\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mOpListToDict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnames_to_saveables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 556\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 557\u001b[0m \u001b[0msaveables\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/tensorflow/python/training/saver.py\u001b[0m in \u001b[0;36mOpListToDict\u001b[0;34m(op_list)\u001b[0m\n\u001b[1;32m 531\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mnames_to_saveables\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 532\u001b[0m raise ValueError(\"At least two variables have the same name: %s\" %\n\u001b[0;32m--> 533\u001b[0;31m name)\n\u001b[0m\u001b[1;32m 534\u001b[0m \u001b[0mnames_to_saveables\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvar\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 535\u001b[0m \u001b[0;31m# pylint: enable=protected-access\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: At least two variables have the same name: Variable_6" + ] + } + ], + "source": [ + "# Model Evaluation\n", + "correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(one_hot_y, 1))\n", + "accuracy_operation = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))\n", + "saver = tf.train.Saver()\n", + "\n", + "def evaluate(X_data, y_data):\n", + " num_examples = len(X_data)\n", + " total_accuracy = 0\n", + " sess = tf.get_default_session()\n", + " for offset in range(0, num_examples, BATCH_SIZE):\n", + " batch_x, batch_y = X_data[offset:offset+BATCH_SIZE], y_data[offset:offset+BATCH_SIZE]\n", + " accuracy = sess.run(accuracy_operation, feed_dict={x: batch_x, y: batch_y, keep_prob: 1.0})\n", + " total_accuracy += (accuracy * len(batch_x))\n", + " return total_accuracy / num_examples" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training...\n", + "\n", + "EPOCH 1 ...\n", + "\n", + "Training Accuracy = 0.123\n", + "Validation Accuracy = 0.112\n", + "\n", + "EPOCH 2 ...\n", + "\n", + "Training Accuracy = 0.545\n", + "Validation Accuracy = 0.513\n", + "\n", + "EPOCH 3 ...\n", + "\n", + "Training Accuracy = 0.709\n", + "Validation Accuracy = 0.651\n", + "\n", + "EPOCH 4 ...\n", + "\n", + "Training Accuracy = 0.793\n", + "Validation Accuracy = 0.729\n", + "\n", + "EPOCH 5 ...\n", + "\n", + "Training Accuracy = 0.833\n", + "Validation Accuracy = 0.767\n", + "\n", + "EPOCH 6 ...\n", + "\n", + "Training Accuracy = 0.862\n", + "Validation Accuracy = 0.774\n", + "\n", + "EPOCH 7 ...\n", + "\n", + "Training Accuracy = 0.881\n", + "Validation Accuracy = 0.800\n", + "\n", + "EPOCH 8 ...\n", + "\n", + "Training Accuracy = 0.900\n", + "Validation Accuracy = 0.828\n", + "\n", + "EPOCH 9 ...\n", + "\n", + "Training Accuracy = 0.903\n", + "Validation Accuracy = 0.819\n", + "\n", + "EPOCH 10 ...\n", + "\n", + "Training Accuracy = 0.917\n", + "Validation Accuracy = 0.836\n", + "\n", + "EPOCH 11 ...\n", + "\n", + "Training Accuracy = 0.920\n", + "Validation Accuracy = 0.853\n", + "\n", + "EPOCH 12 ...\n", + "\n", + "Training Accuracy = 0.930\n", + "Validation Accuracy = 0.840\n", + "\n", + "EPOCH 13 ...\n", + "\n", + "Training Accuracy = 0.935\n", + "Validation Accuracy = 0.858\n", + "\n", + "EPOCH 14 ...\n", + "\n", + "Training Accuracy = 0.944\n", + "Validation Accuracy = 0.865\n", + "\n", + "EPOCH 15 ...\n", + "\n", + "Training Accuracy = 0.951\n", + "Validation Accuracy = 0.861\n", + "\n", + "EPOCH 16 ...\n", + "\n", + "Training Accuracy = 0.954\n", + "Validation Accuracy = 0.872\n", + "\n", + "EPOCH 17 ...\n", + "\n", + "Training Accuracy = 0.956\n", + "Validation Accuracy = 0.880\n", + "\n", + "EPOCH 18 ...\n", + "\n", + "Training Accuracy = 0.957\n", + "Validation Accuracy = 0.867\n", + "\n", + "EPOCH 19 ...\n", + "\n", + "Training Accuracy = 0.961\n", + "Validation Accuracy = 0.889\n", + "\n", + "EPOCH 20 ...\n", + "\n", + "Training Accuracy = 0.964\n", + "Validation Accuracy = 0.882\n", + "\n", + "EPOCH 21 ...\n", + "\n", + "Training Accuracy = 0.965\n", + "Validation Accuracy = 0.885\n", + "\n", + "EPOCH 22 ...\n", + "\n", + "Training Accuracy = 0.969\n", + "Validation Accuracy = 0.889\n", + "\n", + "EPOCH 23 ...\n", + "\n", + "Training Accuracy = 0.971\n", + "Validation Accuracy = 0.890\n", + "\n", + "EPOCH 24 ...\n", + "\n", + "Training Accuracy = 0.972\n", + "Validation Accuracy = 0.894\n", + "\n", + "EPOCH 25 ...\n", + "\n", + "Training Accuracy = 0.974\n", + "Validation Accuracy = 0.892\n", + "\n", + "EPOCH 26 ...\n", + "\n", + "Training Accuracy = 0.976\n", + "Validation Accuracy = 0.887\n", + "\n", + "EPOCH 27 ...\n", + "\n", + "Training Accuracy = 0.978\n", + "Validation Accuracy = 0.897\n", + "\n", + "EPOCH 28 ...\n", + "\n", + "Training Accuracy = 0.978\n", + "Validation Accuracy = 0.897\n", + "\n", + "EPOCH 29 ...\n", + "\n", + "Training Accuracy = 0.980\n", + "Validation Accuracy = 0.903\n", + "\n", + "EPOCH 30 ...\n", + "\n", + "Training Accuracy = 0.980\n", + "Validation Accuracy = 0.909\n", + "\n", + "EPOCH 31 ...\n", + "\n", + "Training Accuracy = 0.982\n", + "Validation Accuracy = 0.903\n", + "\n", + "EPOCH 32 ...\n", + "\n", + "Training Accuracy = 0.979\n", + "Validation Accuracy = 0.904\n", + "\n", + "EPOCH 33 ...\n", + "\n", + "Training Accuracy = 0.982\n", + "Validation Accuracy = 0.898\n", + "\n", + "EPOCH 34 ...\n", + "\n", + "Training Accuracy = 0.982\n", + "Validation Accuracy = 0.906\n", + "\n", + "EPOCH 35 ...\n", + "\n", + "Training Accuracy = 0.986\n", + "Validation Accuracy = 0.914\n", + "\n", + "EPOCH 36 ...\n", + "\n", + "Training Accuracy = 0.985\n", + "Validation Accuracy = 0.914\n", + "\n", + "EPOCH 37 ...\n", + "\n", + "Training Accuracy = 0.985\n", + "Validation Accuracy = 0.910\n", + "\n", + "EPOCH 38 ...\n", + "\n", + "Training Accuracy = 0.984\n", + "Validation Accuracy = 0.920\n", + "\n", + "EPOCH 39 ...\n", + "\n", + "Training Accuracy = 0.985\n", + "Validation Accuracy = 0.909\n", + "\n", + "EPOCH 40 ...\n", + "\n", + "Training Accuracy = 0.986\n", + "Validation Accuracy = 0.909\n", + "\n", + "EPOCH 41 ...\n", + "\n", + "Training Accuracy = 0.988\n", + "Validation Accuracy = 0.909\n", + "\n", + "EPOCH 42 ...\n", + "\n", + "Training Accuracy = 0.988\n", + "Validation Accuracy = 0.912\n", + "\n", + "EPOCH 43 ...\n", + "\n", + "Training Accuracy = 0.989\n", + "Validation Accuracy = 0.917\n", + "\n", + "EPOCH 44 ...\n", + "\n", + "Training Accuracy = 0.988\n", + "Validation Accuracy = 0.918\n", + "\n", + "EPOCH 45 ...\n", + "\n", + "Training Accuracy = 0.989\n", + "Validation Accuracy = 0.912\n", + "\n", + "EPOCH 46 ...\n", + "\n", + "Training Accuracy = 0.987\n", + "Validation Accuracy = 0.921\n", + "\n", + "EPOCH 47 ...\n", + "\n", + "Training Accuracy = 0.990\n", + "Validation Accuracy = 0.924\n", + "\n", + "EPOCH 48 ...\n", + "\n", + "Training Accuracy = 0.990\n", + "Validation Accuracy = 0.911\n", + "\n", + "EPOCH 49 ...\n", + "\n", + "Training Accuracy = 0.990\n", + "Validation Accuracy = 0.927\n", + "\n", + "EPOCH 50 ...\n", + "\n", + "Training Accuracy = 0.991\n", + "Validation Accuracy = 0.921\n", + "\n", + "EPOCH 51 ...\n", + "\n", + "Training Accuracy = 0.991\n", + "Validation Accuracy = 0.922\n", + "\n", + "EPOCH 52 ...\n", + "\n", + "Training Accuracy = 0.991\n", + "Validation Accuracy = 0.933\n", + "\n", + "EPOCH 53 ...\n", + "\n", + "Training Accuracy = 0.992\n", + "Validation Accuracy = 0.924\n", + "\n", + "EPOCH 54 ...\n", + "\n", + "Training Accuracy = 0.992\n", + "Validation Accuracy = 0.927\n", + "\n", + "EPOCH 55 ...\n", + "\n", + "Training Accuracy = 0.991\n", + "Validation Accuracy = 0.924\n", + "\n", + "EPOCH 56 ...\n", + "\n", + "Training Accuracy = 0.992\n", + "Validation Accuracy = 0.932\n", + "\n", + "EPOCH 57 ...\n", + "\n", + "Training Accuracy = 0.992\n", + "Validation Accuracy = 0.926\n", + "\n", + "EPOCH 58 ...\n", + "\n", + "Training Accuracy = 0.991\n", + "Validation Accuracy = 0.924\n", + "\n", + "EPOCH 59 ...\n", + "\n", + "Training Accuracy = 0.993\n", + "Validation Accuracy = 0.926\n", + "\n", + "EPOCH 60 ...\n", + "\n", + "Training Accuracy = 0.994\n", + "Validation Accuracy = 0.929\n", + "\n", + "Model saved\n" + ] + } + ], + "source": [ + "### Train your model here.\n", + "\n", + "with tf.Session() as sess:\n", + " sess.run(tf.global_variables_initializer())\n", + " num_examples = len(X_train)\n", + " \n", + " print(\"Training...\")\n", + " print()\n", + " for i in range(EPOCHS):\n", + " X_train, y_train = shuffle(X_train, y_train)\n", + " for offset in range(0, num_examples, BATCH_SIZE):\n", + " end = offset + BATCH_SIZE\n", + " batch_x, batch_y = X_train[offset:end], y_train[offset:end]\n", + " sess.run(training_operation, feed_dict={x: batch_x, y: batch_y, keep_prob: 0.5})\n", + " \n", + " # Calculate and report the validation accuracy \n", + " training_accuracy = evaluate(X_train, y_train)\n", + " validation_accuracy = evaluate(X_valid, y_valid)\n", + "\n", + " print(\"EPOCH {} ...\".format(i+1))\n", + " print() \n", + " print(\"Training Accuracy = {:.3f}\".format(training_accuracy))\n", + " \n", + " #print(\"EPOCH {} ...\".format(i+1))\n", + " print(\"Validation Accuracy = {:.3f}\".format(validation_accuracy))\n", + " print()\n", + " \n", + " # Save the model \n", + " saver.save(sess, './traffic_signs')\n", + " print(\"Model saved\")\n", + "\n", + "### Calculate and report the accuracy on the training and validation set.\n", + "### Once a final model architecture is selected, \n", + "### the accuracy on the test set should be calculated and reported as well.\n", + "### Feel free to use as many code cells as needed." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 2.5: Test a Model on New Images" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO:tensorflow:Restoring parameters from ./traffic_signs\n", + "Test Set Accuracy = 0.050\n" + ] + } + ], + "source": [ + "# Now (drumroll) evaluate the accuracy of the model on the test dataset\n", + "\n", + "with tf.Session() as sess:\n", + " sess.run(tf.global_variables_initializer())\n", + " saver2 = tf.train.import_meta_graph('./traffic_signs.meta')\n", + " saver2.restore(sess, \"./traffic_signs\")\n", + " test_accuracy = evaluate(X_test, y_test)\n", + " print(\"Test Set Accuracy = {:.3f}\".format(test_accuracy))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## Step 3: Test a Model on New Images\n", + "\n", + "To give yourself more insight into how your model is working, download at least five pictures of German traffic signs from the web and use your model to predict the traffic sign type.\n", + "\n", + "You may find `signnames.csv` useful as it contains mappings from the class id (integer) to the actual sign name." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load and Output the Images" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "14\n", + "1\n", + "25\n", + "9\n", + "5\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJIAAACPCAYAAAARM4LLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAFyBJREFUeJztXWuMXddV/tY5577n3pnxePyI7diOE1KnLXk0TRPaQimtCP1BKl5qQVBEJf4AAgkJqv4qEkhBSMA/pEgU8qMirUQfKYoopbRNQtM6burm5caPiZ0Ze2zP2J65d+7jnHvO2fy4t2ettfHj2j65tsf7k6LsO3vfvfc9Xmev99pkjIGDw7XCu94bcFgfcITkkAscITnkAkdIDrnAEZJDLnCE5JALHCE55IJrIiQiepSI3iCiI0T0mbw25XDzga7WIElEPoBDAD4KYAHAiwA+aYx5Pb/tOdwsCK7huw8BOGKMmQMAInoKwGMALkpItXrDTG+cxWC87iMwQXtWH9JUDORDNDV6oAGJdqr6RJcaR9Z7JD/b2zBij3Jpzx6pXk7dR+qH68WNkb/z4hvxPP+Cw+wp5VKpdWCoz9Y/hnzcJ46/uWyMmcVlcC2EtA3AvPi8AOB9l/rC9MZZ/MnnHh8sHOh/6CL1s/ZEoDlu0gmzth9UsnYnKahxoeDUsdfTc4iHlYp/mSDRa5USbpPRe4yJO2Of/yEmSO8jTuT39PwFnx+5lyaqL0l5z8bj50FFNQylSo3niy1C7fO+fJ8JrpuEalwnjnmtQC8QhTzHX/zB7xzHCLgWGcl+YQH7FQNARH9IRPuJaH+71byG5RxuZFzLibQAYIf4vB3ASXuQMeYJAE8AwM479pjG8E3Wby1gDNN0aPQbbjzuM+C3rBhoWvYMv+F+W78jYcJv4Fqf3/yedSr0xVucJn3VB7HncrGUtVumrYalcg77dE3EHlP9DCaKfDJsnJrO2lONuhq3vLaUtU2qn0EoTpqkz6dQO+qocVGf91HwKqrPxLhiXMuJ9CKAu4hoNxEVAXwCwNPXMJ/DTYyrPpGMMTER/TGAbwDwAXzeGPNabjtzuKlwLawNxphnADyT014cbmJcEyFdMdIU/lA+6ceWel5gPh0lelu+z/JIDGbgRV/PESRR1j7tqy6cWngra1PIMlKppAe2wm7WTizdoUi8j/4az1G29A5DvK8wjVRfFPFnstTuyemZrL1629asXetqDbSesEyWkH5WUkZKfaGpWjaVUoHlsYqnZVKiK5d4nIvEIRc4QnLIBWNlbZ7vozgxUGU9i7UFPh+1vb5Wu6W9T2jPiCzVvdNay9pLRxdVX/Pln2TttR8fzNp+u6X3KFhd1zri+wmzh7Lcb6z364P3VUy0Lu0JdubXJ1Sf2c3WFHo3s8Bwt35Wja0N3ocwQwAAiQckLe6BZ5n4hCnDpNbv/H/m8svDnUgOucARkkMucITkkAvGKiMlAFpmIIP4lnzjGTbh+7FWd4slof4TyzBrLS2bnDm9yn2Lb6m+pTmWkQqr7GKopFqGaa7xPlJL/pioTWbtqMl+w2pFj/PEnAXLDZJEwm3ROa/6VlNW68MaC4YbK9pEsVjg5zM1OaP6fJ+/R2JtY8lqvZh/Z98yQ3SvIrTInUgOucARkkMuGCtrS9MUvXBwfJdTzZa8gI/TctmyKBeY3jtd/l5z/pQad/LAoax9/rvf0nOEwsIsWGdU0lbdSoNV69CKUAgjNhWUS6z+e5EV+yTc55Gn5/DEE/f6mr37Z85mbSPMFcnymhp35uF7snZpt/4nrE9vyNqFQERKeHqtQFizY8u6XyvrZzIK3InkkAscITnkgrGytqJP2F4fLFmwnI0FGYttkff5VdbGlo4xO1vY/6oad/YAs4OZrg4t7cogNcGWYt/SWNbYaRtYlu1iwEd+KBzEKGrWECXMmlNrfhVqa7FVEzH7aZ5nNtdpa9ZWLfEc1b5+jv3dPEd9AwfEbajqcSXhxC3DimSLndbmcJ3gCMkhFzhCcsgFY5WRfKSYxFAGSbVc0RZpQc1Yq6qHj3LW0+nXj2Tt1YMH1bjgFMtPTU/LSH5ZWMdTkZ/W1Ws1fA6wC0jvMZRylpAxgr5W8X3D3/MSO0FBtK3AfZFJhLggg9L0Hs++ws+gWCirvrYI9osL27L2pGUBnwwuYb7o6Wc3CtyJ5JALHCE55ILxOm1TQrM3WDIqaLYRL7ET8Y1TOiitJSzYK/tezNrnz55R4xpFfi9qkc4ebYuAr3qR2cFKX+d7yUO+ZLGsRokzXI8HbOWuh1qNbwi22rQyYZtCDZ+xcs2CkJ9JJ+A91izWQz5/7+wL/6PnSB/I2stVEWMeasfy/du2ZO0wWVV9SUOvNwrcieSQCxwhOeQCR0gOuWC83n8C2sPA8v5KV/W9ee501l4+eEj1rRzgBN7e/HLW3hlb+W8T1ax9tqTz8Vd84fEXMsd0qarGRaIcTmwFwbdCDkSri3GR9RiXhcuhmmrZZEOH5aCkqGWrlSKv1w1ZzpqKtPqvlrMiCFqvzmXt1Z6omfCAHvem2NaO22qqr5q+DS4SIvo8EZ0holfF3zYQ0TeJ6PDw/9OXmsNh/WMU1vavAB61/vYZAN8yxtwF4FvDzw63MC7L2owxzxLRLuvPjwH40LD9JIDvAPjLy88FRMNTf3FBB6UtnTyRtVdffkN/7xhXy6kItbhlxX0vC1V+S6LNC7uLfGh2U2Yb3Y5Wdf0ye8xjy2PeF49rtiMKYfU0+1rayezSi7UZgk6I4LhQrz1bEyr5ts1Zuxjq3LvTwjxe6Fmseekc9712NGt3p7Rle67Gz6cxu1v1bTLjS9nebIxZBIDh/zdd5TwO6wRvu9YmK7atNV3FtvWKq9XaThPRVmPMIhFtBXDmYgNlxbbbd+4yyTBwrFzRVcjSIzxFckIXfgvkLm/nKh17Hv2wGrdTODdPfU+Xauqf4ECxLb/I1t/wtik1LhSpORMd7byUrOjUv3wta2943z1q3MZHbsvatYau47l6lH/bmWe+qfo6IsZ65tH3Zu1iRVvY3wnWslrNFdU39+X/5P2e5YA4/7x+iT0RWNjsay2tnOgKKqPgak+kpwF8atj+FICvXWKswy2AUdT/fwPwAoC7iWiBiD4N4HEAHyWiwxjU2X787d2mw42OUbS2T16k65dy3ovDTYwxl7UhlCcG6vDZRc2zi6IIuQk1jy5s5lyz2Q9xKe+3zuqU53LI6v/GX35Y9S1+/dmsfe7oAs/d1B744j13ZO30uDZR0Ap7yU2FzRCNX7hfjWse5pr1LWGxB4DGA3uztnfP3aqvfYLnT0Qa+OqRI2rc3DynnM+8Z6/qm3zXnbzfH3LgX5JqT4KqZ28F3wVlq7D3CHC+Nodc4AjJIReMlbUZMkiCgWm7UdKxxgeqTNMTDe1ETIQlN65zX/87Oma7v8C3HZhpbdmuT/FPXfvegaxdIF2svHQn21ZbR46qvvnXfpS1yw8wC1y10rJb+w/zfud10NjUA2wqqExqE0jrMJtAvJDnpNPasl1/5VjWntirWZu3ic0jh/v7svYGaC9ATRS+b/jaMo9ErzcK3InkkAscITnkAkdIDrlgrDJS4BGmhpXIzobnVF8ocuQDK6/KLzAPLwnXSmJVxu212V1Q/Mqzqq8vKuUm4sqpxJJTzldZHkuK2nVQ99nTXhWO+1pP5853RKH3xCrmHou+2KrmVuqw2aMsgsv6Na2Od/r8OxuRLg9UFrJPIE0qVlXbfk98L9L7TwIX/O9wneAIySEXjFf9j2Ok5wYx10FdB2RNe8y+rBMfkQg+O7PIKvK2X/2gGpcubMzap/bpG1HDU8xKk6q4gTHVcdNbemwOOB1qE0J3kouRllYvXBgdANaEKcO6XFLdpRJO6MdvqszC5D0oNKXNIds++B5e+3YdXbD0I/7dBVGepmxtRAYI2vca94Irv7DNnUgOucARkkMuGK/T1gtQKg3YT4eWVJ9MS16raKt30mbnbPj0N7J29KC26vb3sAa29bceU31LX2UtLjzJMeF9aA2lL2p6V0iz325bOJrrXPQzta7jmoh4DoKuthaKSivFtKH6gg5rYwVxrSrtuFONMzs5npsO6XrirefZml2sMDvr2bdsi8oqoXX3aL135WThTiSHXOAIySEXOEJyyAVjv4tkbRhR5Vs0nIj06KSvA9uUVVqkMp94Zp8aV51k2ar6e7+u+qZ2cPWy+XOc1lywTA2pkGFKgVb/pXG4JRINGnUt03VF1dmgr+WPTYb7WtZV7ouiUP0Ooa33j59Q45aee573H+kfsLHMcl0nZvmsYpUKljKYTQVtq5j+KHAnkkMucITkkAvGa9k2QDJMB24UtbXWTIgqakaztspuDjabvp9z0lr/e1iNi5c4d61pJWMWy6JQuigCGofaQSxvyO6SfcWoVKFFsVCrwLnf15ZuicBwn33jZy1mVrop4v0uWAXbN4i7STrQrC2q8dnQE7Hvlcj6nam4abymrd4dHcY+EtyJ5JALHCE55AJHSA65YLwV24xBexhQVfN00H0vZHmkUbRdJNx323ZW40/N6OC4ZsQyQWNKB6x1FtjNsiGWV61r9bwiKsEuFXRfIMvorLAgUehpma7xs+/I2v2tOrB+tcKCUXtV5+XJKAJZOW61pvdRFtEFHUueLBX4twXgZ5waq3B8ieeI+9pN1Cjqa+RHwSgp2zuI6NtEdJCIXiOiPx3+3VVtc8gwCmuLAfy5MWYvgIcB/BER3QNXtc1BYJTc/0UAPy2q1SKigwC24SqqtgV+gJnhnRjt87ocC4kjec1iN2WhJ8+JYu5bP3SvGlersWmATun5V+bZOlwT5Wo8K9/LnOSohLKlWkttPWxzCnT0/I/1Ph7ifVXvmFR9XVFeZ+1lnTcXxczCV1d4/5ss6/WbHo/zrNuzGwGz9FZXBNFZ16rGgiVGVkH42Uld6mcUXJGwPSwBeD+AH8BVbXMQGJmQiGgCwL8D+DNjzMil12TFtpar2LZuMRIhEVEBAyL6gjHmy8M/nx5Wa8OlqrYZY54wxjxojHmw3mhcaIjDOsBlZSQiIgD/DOCgMebvRddPq7Y9jhGrtiXGoDnMKQstk31FXBhTKmv3SU1cY978ygtZu3f3XWrc2QKr5Ol5nb++sihz8Fk+SH0tO5x6ji/NKVjl8vopyxxxkVXrtVd0okFrmb8XpDr3P1rmzxPWXXGTRVGO7/tcujBZPqbGVUXu2nSgn1VnmU0KaZUTAzZs267GFYssk96xa4/qWzp10UqOF8UodqT3A/hdAK8Q0U+rL3wWAwL60rCC21sAfvOKV3dYNxhFa3sewMW8kK5qmwOAMVu2iQjF4fFd37pZ9ZVOsXre+PkHVN+Z/+JAroYIDJs7pCvX9orMLicjTfszxGpxcYLZUheaxXaOcmmcQl97/+XNpEZc5X6uoNlocJJZQ8nTqnUvEHe5NbSIWl5hr34q5jBVbb02LZGKXdC/MxQsa+Mj/Bxn7nunGrd5M7PE2YZW9w+8rivEjQLna3PIBY6QHHLBmFmbAQ2t1JFlkd1xF+duzW1QXdgl4qhXv8PV1qpdHRm2UbSbvp6/JCpupH1hlS5otjHhcczzmsWWaiI2O2ixtle0Ar9T4dylRLPHghGffR1QVhRaG4l48Xas2W9BaGPnQu343fJzD2XtiQ9wkdTTPf1btvh8hswd1AGCXcsKPgrcieSQCxwhOeQCR0gOuWCsMlI/JpxeGfB+spZORODVlNmq+qI9MuCLab/54g/VOLPMarhn5WY1CywjxHKtsvY1x6t8hWmDrGqvHV67ICziYaJ/S9kXwfqxflerCc9pEi0jNQ1/r+Sz9z9IdMW2NGYL/ub3f0T1Td/LKv/mOqv1n/iYVv+TQMiJVhHbXZtZXv07jAZ3IjnkAkdIDrlgvKwtinDyzYHlOI6sMisiN8wk+t6MmriXY8devr+jGGun57H9r2TtqeVl1edVmD10Ylb5z3dXrHGsdvu+thobwS5TkYpd8PX7GEvV3dN7jEXQXpn09yYmODoiFgVZS55msd4j787a9XfsVH2TW9lq/+AjHDvuBzo3riAs7HHZsr5bJXBGgTuRHHKBIySHXOAIySEXjFVGmpqawq899vHBwqSXnpjgXKpupJPPX3v9paw9f/RQ1p6+511qnDfF152fePpp1WdEZdyKuCS3annPez7LNB0rKF7mAjREIF5o3X0bCxeJZz3hWlmUBexrV0S/z99rG5azpvbo0n+VR+7L2r5Veqde58/HDvOzile1jl8VgXmvvnVc9dW2bcGVwp1IDrnAEZJDLhgraysVi9i1a+dlx037Ot16YpKvFb17L6u0x+d0JbMXnuV47u0f/xXVN/+9/Vm79yZfRdqw2AuJe0qqJW15TgW7SUS8dTnQ6ed9SO+/VqUrKc8RdXXkQVRjtje1l+Oop97/XjVOBj3ULdbWW+brU424t8WP9DMNu/zb1pZ09d4Dbx3DlcKdSA65wBGSQy4YK2trd9rY99L3AQC+FdTVarKzNOpbJcNE4UzfE0XIQ+t6zVl2wJ5J27rvXey0DMXP7q1qy3avx9+rzcyoPmmNT8TaPct6TSURU22nhBvh+J22NNdZDs3b/BBrZr0pXZ2ltsYW9rqv50hFAfqVmNOifrBPF26t+VzzozylY7Y7pJ/JKHAnkkMucITkkAscITnkgrHKSOfOncUXn/oCAKBY0ipnP2ELs2eVkyGRX9YTQeyJ0aqvDKYvWFeob9/D16ubTRw8n1qB9ZEIzret757IJ6gSRxPERStKQEQQdK3i87JGe0GLT0jFRXW337Ura7esPcYxV6prR1oWrE6Lgu0ygmCzvtctikVun+Xt7/etS+ZGwCgV28pEtI+Ifjys2PZXw7/vJqIfDCu2fZGIipeby2H9YhTWFgL4sDHmXgD3AXiUiB4G8LcA/mFYse08gE+/fdt0uNExSu6/AbJLxwrD/wyADwP47eHfnwTwOQD/dKm5Cp6PzbWBs7NQ0yVuIpGKvSwKrwNAHPKRX6/w0R2lmjd0BQssWXeArDQ5/6snqoqkgWZL5TJbgNNQx31XheV5bp6t415Zq+dVsAM66us9Vmo8tlzWrLkEXs+IK0t/ZotmSz9pzmftxqw2UZDPc8q09Ts2akfsoeMneR9FLWZMdN6mu0iIyB9WIjkD4JsAjgJYMSa7MW4Bg3KADrcoRiIkY0xijLkPwHYADwHYe6FhF/qurNjW7V7F3QQONwWuSP03xqxgUHT0YQBTRJlasx3AyYt8J6vYVqlULzTEYR1glIptswD6xpgVIqoA+AgGgva3AfwGgKcwYsW2wCNsKA/Uzrblda9PcKBYsEkrgF1R2NykQp1OtWpdFDLMpFXRSY7c2OCSOr22Dl4zHZZNjKdlmOkZllX++7nvZu3bNt2uxs1MsKujbgX4B33+7FmvsfD+4PjJY1k7iXTVtzvv4PU6Rj/HTZO8dmWaf/XC4jE17n33ssuovaYr05kVfuG/8XWMhFHsSFsBPElEPgYn2JeMMf9BRK8DeIqI/hrAjzAoD+hwi2IUre1lDEoi23+fw0BecnAAmavIYbrqxYiWABzHoALN8mWG3yq40Z/FTmPM7OUGjZWQskWJ9htjHhz7wjcg1suzcE5bh1zgCMkhF1wvQnriOq17I2JdPIvrIiM5rD841uaQC8ZKSET0KBG9QURHiOiWuyhwPd/GOTbWNrSMHwLwUQyiBV4E8EljzOuX/OI6wvAWqa3GmJeIqA7ghwA+DuD3AZwzxjw+fMGmjTGXvETxRsM4T6SHABwxxswZYyIMfHSPjXH96w5jzKIx5qVhuwVA3sb55HDYkxgQ102FcRLSNgDz4vMtHcO03m7jHCchXeiGpVtSZbza2zhvZIyTkBYA7BCfLxrDtJ5xLbdx3sgYJyG9COCuYfZJEcAnMLiF8pbBCLdxAiPGdt1oGLf3/2MA/hGAD+Dzxpi/GdviNwCI6AMAngPwCrj+22cxkJO+BOB2DG/jNMacu+AkNyicZdshFzjLtkMucITkkAscITnkAkdIDrnAEZJDLnCE5JALHCE55AJHSA654P8AS+4HTsZlSyMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJIAAACPCAYAAAARM4LLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAF79JREFUeJztXXt0ldWV/+37zL0JCQlJeJOARcA3NYivKrU6ajur6HLVSmdRdexy7DhWnLocx+ma1a7VrlLrUpet1bGKddr6apm2ONYnFiujIC8BJcjLGAIhCZCE5Ca5zzN/3MvZZx+44UK+XiGc3z/Z9+5zz/fdL/uevc8++0FKKTg4DBW+z/oGHIYHnCA5eAInSA6ewAmSgydwguTgCZwgOXgCJ0gOnmBIgkREVxHRx0S0jYju9eqmHE480LE6JInID2ALgCsAtABYBWCeUmqTd7fncKIgMITPngdgm1JqBwAQ0fMA5gLIK0jV1dWqvq4OAKCIBI8O94HDwRR860PKeIPs3weZ45g50NcnhqVTKU37/H7By2TMa/OEh/wYjWsFrO+ZTqeZFwoKXrgkwnMa1/KRrTjyPwNxvwbzENWjzHESPmPONWvW7FVK1eS/ShZDEaTxAHYar1sAzB7sA/V1dVj93koAQCIkLx0wvpjP+r+kffxV/YkkM4LyH500/mnBuOSlwzyHAv8zP167Rozr2t+p6dKycsHriQ3wHOEQ02nrX0EsjJXhsGAd6OL5qydPELwpp56m6WQswfcRGiHnB88PKYtIK76XOPEzjipLlIwp+lRasKIhfnZE9CkKwFBspMP9Fg7Rk0R0KxGtJqLVHXv3DuFyDsczhrIitQCYaLyeAGC3PUgp9QSAJwDg3IYGdXAlCvb1i3EU5ltRfimjxoKERIh/4b6UXAlifn7dF+sWvOa1WzXd28w/spkZ+ZOuX8+aeeP7bwheyYE9mq5qZtpH8jG2j+IVpLdusuBNO/cSTSd2yHtc9t5mTZeeMV3Tp007XYzrKePf66SBkOBRCa8mUfN3rZJiXI+fV6ERVCJ4h+i6AjCUFWkVgKlENJmIQgBuALBkCPM5nMA45hVJKZUion8B8BoAP4BFSqmPPLszhxMKQ1FtUEr9GcCfPboXhxMYQxKkowWBd2emTQQACT9vI4KWya4yrMPNzceBLmljdO1r1XTfuv8TvLINjZqufPU9Tbd9ukOM26N4zjCk/VHtG6np7gTfU8DYtgNA2c5eTSfa5K5w+9r3+XNpubOsm3GWpv2XX6zppg/kdyn/whc13V4/Rd5jv2HvBPhhDQSljeSH8VpZ/wvrvgqBOyJx8AROkBw8QVFVG8CS25+Ki/fDhve2zxeVPOMu29Zu0XRPqVRtgUd/p+ng6mWCl/jwE6aJ97f95fIRlMf52iMz8neW9LMXPFbB2+eSAenKCFewSoykpHthIMWfi5dIFRJdu17T6ZUbNU2zTxHjEltaNN35ja9KXiW7GyZMGKvpjJIulSjxPSYt14AvePRi4VYkB0/gBMnBEzhBcvAERbWRMiqDWDJrZ5SGpR2k0izTfnmGiPXrPtR0VS3bHMFb7xfjOnes1nRyf4/gVY/gY4tknG2Cspj8LfnTbDt0WnZccPwoTU+ZME7TXWlpYwR3d2m6u0meGkVD7CqIBEoFrytq2FrGEXykUc7R2fGcpqubdwne/m/N13R/mG2wqZW1Ylyc+FDYH5QHy3QMZyRuRXLwBE6QHDxBUVWbD4RSX1Y1xe0oFGMnfGBTs2BFy1nXdc//nqZDWz4Q44Lpdk1XlFYJ3oEYqxukDfU441Qxrvqf5ml62lfl1jpVxuqhw9gij8vIbfyINKvEeI9UPR2vvq7pxC9/L3hRI/Ig7mN1qUqlC6F0H3/P/pdfEzyEWXX2z+d1ov2Mc8WwmlGVyId0eiAvLx/ciuTgCZwgOXiC4nq2CUAuaC3TnxCsASPQrd23R/Ai//qQphMfrdK0z97eoYzn67UOKScagWI/uE/TJXOvFuPS5iOxpvcZB51jjdhuEbcKIGmovdJyeahaOu82TXd/45uC1/PCH5he+DjPvusTMS5iHB73lsjvmV7Mc9TW8rgdAzExrvbyuZqOZ+QuLexzh7YOnxGcIDl4AidIDp6gqDaSAhDPBaRnItKb2t3CdkD48f8RvI6PORCtJMAn/n0Z6R0PKN7Sxq++RPBmff9Ovo/P8Wl6UppqMLOkEtbPLGDm/hhpP2lrkqCRD9dnPWHzZXlSMiu+fg2/uKBBkyvu/rEY17f0r5ous+bPRNkW2vLEE5qeOWWqGPf2xhWant1wvpwkdfTri1uRHDyBEyQHT1DkmG1COJdHdqBbbkf71vNSS6v/IniJNlZn5RUVmk4rK2jsCxznXPfgj+TFa41DSyPF2u+3DiiNn1bA2hb7fAbTCMTzh2VeWDLJW/JoUN5jynAbUFDGhCvj+9CkaZo+8+lHxbjtd3K9jsyzv5XXruWD4HED7L9ofnChGDf5OZ6zqWmn4E0fNxFHC7ciOXgCJ0gOnsAJkoMnKO72XymkVNZG2Nq8TfBKV6zTtG/Vx4JXM3G0prs6OzQdHjVGjJv1k3v4Ra0M5Fqxgm2wl156SdP79+8X4yZOZPvgxhtvFLzx48dr2rR1zFI1ABA2KpBs375d8F544QVNNzU1CV51dfVhr33qqTJC4ax7v63pD1u2CJ56l4P7UoZ9Fuw4IMbt/hnfR/Df7xa8Y5GKI65IRLSIiNqJ6EPjvSoieoOItub+5o9JcDgpUIhq+xWAq6z37gWwVCk1FcDS3GuHkxhHXMSUUn8lonrr7bkA5uToZwAsA/BvR7yakbPds0mqr4o3OS3ZXy5ToDM9HBkQNNKoZzz8AzEuPYkLV730xz8K3l133aVpW6WYCBrqwFSBAPDII49oetasWZoOBORjXLeO1fTcuXMFb+dOudXOh6eeekrTf7S+y0zD6113+z8KXuMHrEqDPg5QiyRlHnxsKavAUxbI6IUtltlRCI7V2B6tlGoFgNzf2iOMdxjm+Jvv2syKbXs7XMW24Ypj3bW1EdFYpVQrEY0F0J5voFmx7bTTZqiN67JL6uyM9Oo2tzRpen+pjOeuNjZWdDoHitGXrxTjdu3gVOaFC6Un11RnP/4xH4LOmDFDjDNViq3aHn2UvcGPPfaYpiMRqYqvv/56Tbe0tAjevHkcE/7Nb8rAtt//nmO4Fy1apOlrr71WjGvcxXHglRfJw+nInAs0nXrrLU33+qX6Cqb4ZCH2wiuCl/nn63C0ONYVaQmAg/vTGwH86RjncRgmKGT7/xyA9wBMI6IWIroFwEIAVxDRVmTrbC8cbA6H4Y9Cdm3z8rC+5PG9OJzAKG7wfyYD1ZtN2e5dvUqw9qY4xXpUvwxYGzCS3sbdebOmS6yKtO0HuFLaxo0bBe/uu9l7u2DBAk2HQtJWu/pqTgaYOXOm4C1btkzTn37KlXFFVACA5mbOy5s2bZrgPfvss8iHOXPmaHrlypWabmxsFON2rOH8t3NnnSl4pZdykFrP28s1nbFy1fpD7FLZvfwdwav5ztfz3mM+uLM2B0/gBMnBExT50BZI5M43O7auFbxR5Vzpoywmq4B0+1nea77EplkqLgPPzjyHl/meHlmNRIlgtvx5W4kEx19PmjRJ8Ex1Ywav2Z5tc46gFdg2GMyx48ZxtZNNm2R7l6btXNj9nPOkaquczvl7veXcAqOiU6q2tNGsJWPlxnVslQVaC4FbkRw8gRMkB0/gBMnBExTXRiJCJteUJtkkT5ij3ayzOwLSRqqs5eqsgdp6TQ9YlcVKzGruvvy/kX379ml6925ZDe3tt9/W9Kuvvip4V17JRzL19XwfH30kO2eYtk55uWzVZQbB2baa+doMjrPHjRnPJXv6rfoEFcZ9tZRxLYR4hzzFCpbwMVSf1bWK2mWwXyFwK5KDJ3CC5OAJir79T+YCrCr2WMtpmOOVVcgqSWMUAW013h+bkMFaGZ+xzvusnm+GqnvuOS7m+cADD4hxbW1tmjbjtwHgjjvu0PQIo7hp2OoSaboG7Dalg6k2E/E4q3dzPgCIGXHr9hSZcs5rK63kCOi23XLN8IHnn9ovedtjsgB9IXArkoMncILk4AmKm7JNQPCgl9pqyOs32mamknLXRkbL0bAp+xk5zhcwDmAH2bWNGcNpTJdeeqngLVnCTTDt+Or33+cWWV/5ylf4NjL561Lbasn2gpsw1aBJk9Wp2298Nzk7oIydrDL6ngSsKmxmQ2RlNZlG0q6Ed2S4FcnBEzhBcvAETpAcPEGR+7UpZHIp2/1jRgtO+R7eckYDUmcnWtkTXaU4iD1VIrfdAaO/mr3tNnHNNVwZ7brrZKD7LiOw/rLLLhO8p59+WtM33HADX9eye0ybxr4P0w1h20+mR7zCKN9jg8qYF7V4gU5+jn0J7i8XScjgf59xj7vkY0SqWnrjC4FbkRw8gRMkB09QXNWmFCiR3bKHTpH5ZJ17Ob54ZFyqg/79XEkj0dak6WDV58Q4s/Cn6usTPDM2e7Bgs7Fj+YDYPKQFgJ///Oea7uri3iaHbM8Nd7MdE24Gvdk80+vdZ9y/rR73d3BsesDS4LGdHC+e3Nep6RE+OZBKWCn2G156AAjWyD4uhcCtSA6ewAmSgydwguTgCYrery2c29qPnt4geB8u575jkai19Y2x7bDrFc5Tn3zTHWJY0zYu+n7/j2TJm6uu4hJPZm6+bd+YW3K72lppKZ+sm9t4064CpK1juhOAQ+0iE+acra0c52Df49SJRvF1q+3dJ+s5qSLUybZlxi9tpLYEHy9VBuR2f5RRma5QFJKyPZGI/kJEjUT0ERHdmXvfVW1z0ChEtaUAfFcpNQPA+QBuJ6LT4Kq2ORgoJPe/Fbl4MqVUDxE1AhiPY6ja5gsGUD62BgCQPOUUwRtp9BXpKZHyXdXH2+n4b/h0Pn7zt8W4tJHLZlc5W7x4sabNAqS2WnrLKAVj0gAwe/ZsTU+ePFnTlZVyMT7jjDM0vXnzZsEzK8ddcoksSbNqFaexm3HgtVZh1SkNp2t6oFX2cgtt5OKk/XH2cvvC0rNd5jdy3s6RqelqkIC7fDgqYztXAnAmgJVwVdscDBQsSERUBmAxgAVKqQNHGm98Tlds6+zsPPIHHE5IFCRIRBREVoh+q5Q62AOrLVetDYNVbVNKPaGUalBKNdgqwGH4gAY7JQcAyu49nwGwXym1wHj/pwD2KaUWEtG9AKqUUvfkmwcAZn5+plq2PNuwZsPrywVvwv0chL9v3RrBKynj3qwJo9HshJ89JMbV3MDt1Rc9JcvH3H777Zo2A+vtsn3mFnyEdXTw61//WtOXX365pu1n+O6772radDsA8ujDvrZ5fGIWhH/tNdmS/cIr5mg68JK0BRu/xf16VYBtpArrHtuT/N3OWirbxu8YwUdIZ06ZvkYpJX01h0EhfqSLAMwHsJGIPsi9dx+yVdpezFVwawbwtQLmchimKGTXthyHuL00XNU2BwBF9mz7fX5URLPbTt9E6T1NXMYF0Ms3yDIuPcYRdzLFy3XX/b8Q42pnc4mXW265RfCmG+VezAD/PXtka3izyu38+fMFb3wej6/teb7ooos0bW//n3zySU3v2CHLx9TU1Gj6zju5daqdX4dPudj9xocfFyyKsWsjE2UV1ZWSQXQjrufgvo1WCsF59afjaOHO2hw8gRMkB09wxF2bl2g4t0GtXpEt2L7PqqjW9NIzmi775TOC17uF88tKjMPHpLJiuy/+O02f8d9S7UWjdnRzFnaLrMHSqM38NbsAqQlzV2incw+Wr5ZvnDkfAGy+lYup4g+/E7xYJd/XhH7eFbZanu1xr/9G0+0hWZmuYRIHDFKYCtq1uRXJwRM4QXLwBE6QHDxBcYP/SQH+bHXVTJW0HaouZE9x7ya5JU+2cktyfzfzwiEZAJf8C7d533ybjGr5/H9+R9OJz/F2OuWXv6VoxrCRrBx4X8iwJw0vNCBtmHCY7bF4f0LyjPoEMSsgH0bjmdJWtgs33WN16FjCwX2BsLSzRsR5K98a4vsYv+A+MW5TG197zhdlEsWhFQWODLciOXgCJ0gOnqDIKdsAKKs6aqw+Iv66ek0nr7lC8lq555l6+Q2mB2QR8lCYl2vfH34leOvbdW9n1N92m6ZLz5PBZTBK3qTD0hXQbaizklCJplMoEeN8Rl5eWYm1xTdelnZKFd795pua/vC/2AVCK2Rxe78R+Ge7IYIDHFce/NqXNR27VAavXTrzQp4PFuIp+50jwq1IDp7ACZKDJ3CC5OAJimwjETKUld1MWpbLG5nmbXGfmbcFYN8/cKhTJsNGRmbJy2JcRYRtk71VZYIXeI/7t+3c9kO+owvOEeN8s87WdO1Zklc5hfvpDkTYLrIr50W62R3QuUW2pW/9mCMbkivWCR7eWqHJzAGuXBsfLV0lFUbunb9X5sl1/T3bl+Gb+LmNqamX14qxvZcul2IQCBXeiOcg3Irk4AmcIDl4gqKqtjSA3txms9wW4SCruvETxgmWP8JLe6efl3JVJVONm42ogXGRUsHr9fH8/d1GC/VXmsW44FKOj95TNUbwWku5cLw/wl51X6pXjEsqVj3UExM8aufqc8GU9Hqnoqwj/SP5/mu6pBmwx4goqLhWxoQHDHUWqWOP9ehDgvIyhyUBoNefPyohH9yK5OAJnCA5eILixmwDKM+dg/amZUW1YIiX05B1W2NGcD6c73T20HYk5KHqzLM5/qrp/v8QvOg+HhtJs2roDcqDU5Xk+yht7RC8uGJPdKeRSRRUclcVMXakIZJ6oy9hpFFbP+NwP++Weo10pLaI3JlN+i4fSHddcJbg1ddxunjVWE5+jvukGs0kObAwGJSH32WJoxcLtyI5eAInSA6ewAmSgycoclVb4GDGNVne0zTYZrI3n+kgvzN6NPd1Gz1HVp1d+gGngZ/yG5nvtednL2q69w0uH1PmlyfdAwGOKNiXkH3LgoZRoxR7r3v90v6gNI/rV/LbxCvY4x7NyISEeJJtocBcPp2v+97NYtyGFr7H8xu+IHhRMtzsRmJDyCftyXSQPfMZq8EQfH8DG4mISojofSJan6vY9oPc+5OJaGWuYtsLRJS/pp3DsEchqi0O4DKl1NkAzgFwFRGdD+AnAB7KVWzrBHDLIHM4DHMcVV4bEUUBLAfwbQAvAxijlEoR0QUAvq+UunKwz3++oUG98/5KAEBp2jrpDPA2OW5tmcMpQz0YeWe9lg40w8sat8qgMeVn1Vkf4/JOsecWi3E7317GLyLWYWYPe6wndRqHxyEZs73bCGbzjRoleP0D/Nsdd9HFgld+HT++RiNN3ReRB9Bnn3oqX9vKywsYzycYZ17Kiu1OZ1ilh63tfswInCsjD/PaiMifq0TSDuANANsBdCmlO8y0IFsO0OEkRUGCpJRKK6XOATABwHkAZhxu2OE+a1Zs29vRcbghDsMAR7X9V0p1IVt09HwAI4no4Jo4AcDuPJ/RFduqjWobDsMLhVRsqwGQVEp1EVEEwOvIGto3AlislHqeiB4HsEEp9YvB5mpoaFCrD/aFtc4HjDZsyFjibeymETSOqumQXrLGd7HqApjX27CNS82EIjJwPxrkcbs3y6A0dHZrMtXNRwyhlLQ/EkZQnX/USMEbV1/P46z7Txv2zfSJRtVf6V0AzHb2cesZGG6VGPF3iVod2MnwvhywOuOUZ9i2In/Qs4ptYwE8Q0R+ZFewF5VS/0tEmwA8T0Q/BLAOwFMFzOUwTFFIxbYNyJZEtt/fgay95OBQ3LI2RNQB4FMA1QD2Fu3CxzeO92dRp5Q6onFbVEHSFyVaXYjePRkwXJ6FO7R18AROkBw8wWclSE98Rtc9HjEsnsVnYiM5DD841ebgCYoqSER0FRF9TETbcv1LTioM526cRVNtOc/4FgBXIBstsArAPKXUpkE/OIyQ6yI1Vim1lohGAFgD4BoANyHbNOhgg6BKpdSgTRSPNxRzRToPwDal1A6lVALA88h2oTxpoJRqVUqtzdE9AMxunAfThJ9BVrhOKBRTkMYD2Gm8PqljmIZbN85iCtLhEspPyi3jsXbjPJ5RTEFqAWC2+ckbwzScMZRunMcziilIqwBMzWWfhADcAGDJET4zrJDrxvkUgEal1IMGawmy8V3I/f1Tse9tqCj26f+XATyMbBmARUqpHxXt4scBiOhiAO8A2AguJnMfsnbSiwAmIdeNUym1/7CTHKdwnm0HT+A82w6ewAmSgydwguTgCZwgOXgCJ0gOnsAJkoMncILk4AmcIDl4gv8HzWGPyvCUWeEAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJIAAACPCAYAAAARM4LLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGNtJREFUeJztXXmYXFWV/916tVfvS/akOyEJCSAJELYYnBDJAOqIkoiKImgUGUdBQR3h0yEM4KDDN0QGHQVF4wwGwagEhGEJAZElpEMMIWmyQvbet9qXV3f+qMo997xJk+rkWUk69/d9fJzuc+q91y+n7rlnuecIKSUMDI4UnqP9AAbDA0aRDFyBUSQDV2AUycAVGEUycAVGkQxcgVEkA1dwRIokhLhECLFZCLFNCPEdtx7K4PiDONyApBDCArAFwHwAewCsAfBpKeUm9x7P4HiB9wg+ew6AbVLKHQAghHgYwGUABlWkhoYG2dzcDACQ4AosIEq8rRyEBvL6l0I6r28pOmdnFR1PR5mcR5Ccz8NfjzeeU7Td1a1dnC/sOU+ePpNnLFhjxyg6luP31r/UuTzdK5/LMrlMjngex729Xh89Y85WdDKVYnLpVFr7DP87haB/i+hAsktK2YhD4EgUaSyA3drPewCc+14faG5uxpqWFgCAnecvx/L4DvaRg4BegITNOKk0vWCZzzBeANWK7urbr+hXt7/I5CqsCkWPqaxnvIbX+xTd//Nf0b28ESbXHYorujbF/6Hr7rxN0S92Psd42Qz9PV2pLkVnOtuY3K4e4vl9IcZrrB+l6L5eUtSNGzczuXe2bVd0fX0t41kW/VusenrDTpSAI9kjHWwJ+X92UghxrRCiRQjR0tnZeQS3MziWcSQr0h4A47WfxwHY5xSSUt4P4H4AOPOsM2UqU/iWCMetLR99C5zaKAStQnaedD+b4brc1r5H0Ru3v8V4F5z7QUXHUwOK3rVxB5Ob+r7Jiq5Pz2C87t/8hp7DT7+X3iSTa4jR39Lj+LoFl9yn6Fl3fpvxXnj5AUWHtc91B7hZSiRpZezo5K88ne5XdCRMq/DeffzvDIXJhLft72I8n6cBQ8WRrEhrAEwRQkwUQvgBfArAiiO4nsFxjMNekaSUOSHEVwE8DcAC8KCUcqNrT2ZwXOFITBuklE8CeNKlZzE4jnFEijR0SAAFf9jv57fO5chPTmfijBcJk2wqRd5YNsMtc2MDeSwT+rnX9tfWlxS9dnWLokcEq5lc44jTFJ24Yxnjxbr3KtoToD1GJJlgcr5InaKDNv87u/btons9+BTjNS34gKJb3nhI0W3v7mZyu/eQx5VK5RjPztG7C/hrFF1Zwfc92TTJebw8DOEP8HdXCkyKxMAVGEUycAVlNW35fA7ReAcAYGPrO4wXT9DyOnXyTMaLhE/SaI3BY3HIaSty/0Av43kFBQ1nTCDz1ZWN8Xs997aiExvfYLyahhGKzuYpsu2Z/X4ml9pM5ssX5657VYqCf/2ruWmbes71il6XDyh6Z3c7k9MDhtkMN21+P8Ultm0n3yeTqOTX0CL91bV+xvP7+daiFJgVycAVGEUycAVGkQxcQZn3SED6wD7GE2C8PW1/VXTTpPGMl8xMULTfT/sDPXUCAPs6KfVhRfieoL6KErDTZlFuee+b7zK5vgeXKDrr5/sbGaVkrxg9UtGRqz7O5ISWcui79UeMF89TmCMY5q8//eQfFD174UcU3bp1C5OLxuj6p51yHuN1dlCoYOx4CkPs3c33jB6b3k82azFewB/EUGFWJANXYBTJwBWU1bTZ+Rz6o4VluaO9m/F27qSyF39wJeOd1ETZ9YbaJkW3te9iclOnTlN0bSMPIfgDVP/UN0Auf/4PL/OH7CPzGHIUlOUtqksYteByRadGjmNymQaKItfMncN4sb/8RdFJwU2KtYlqhpoTH1L0+bM+wuQ2vfs7Rb+14XXGyybpn3TylEmKDgZ4CU/Iolq1MaNOZryuzh5F//mZksqRzIpk4A6MIhm4grKatmRyAOs3rQIAeDx8Wa+soZB1XvJqsC3vrFZ0Xz8VbvmtEUwumaRr1vMqWfhtKmNNrKfka/eLTzC5kBbxTTjLWKdSoVv6AxQdlwHu5QQ1i+i5dB7j2Wu1SpsULyjLW+RJddz9U0Vf8NB/MLm+1DpFd7YPMN7ObWS2ayqbFe1zlAP399DnfD5HmbPHJG0NjhKMIhm4AqNIBq6grHukQCCCSU1nAQBeeuVxzvNRFLa3i5f/724jF33yZHJj66t4cf60AEXEnQcI+tppP9Lzw39XdCjLM9/xWtqf5TOcV331ZYoeqND2Z1megdez854zT+G8C85XdPj5VYyXFVqBmZaAD9/LwyHnfPZKRb/22iuM1ziSMgYprXgtGuVVDvrZtZkzT2e8tb/8M4YKsyIZuAKjSAauoMyRbYFYsuAqe3PcP7f9ZIx8Ie7+z5x6oaIDkSpFe1L88e00FY2lK3gd8rs/ofrrmi5a5mNBnpiNdFMiuOqTCxkvNlOLlqfIbEjhKAzTKuxyjoRo5ZeuoGfa8VfGi+yn82rZIL0D6wVu2kae+llFzzjpUsZb9/Yziu7spsK8aj9PhHcM0N999y9vYbwmayyGCrMiGbgCo0gGrsAokoErKOseyW950VRb2Bt1T5zOeO09axWdd1T1nz5ptqLDo+isVn+Wh/YrKqlorOv51YwXbKFuO1GtYD5g8wx/YtJERY//DC9Y68lSesZn0zNa4CmFrKR9kd/xVc1psiOvu4LxojfdregGL7nxdtDRXudZOqP34X+8nPE2b9ug6E17qRfClJN4YVtkFLXXsXfxvgB1jXo1A9/HDYZDrkhCiAeFEB1CiLe039UJIZ4VQmwt/r/2va5hMPxRimn7FYBLHL/7DoCVUsopAFYWfzY4gXFI0yal/LMQotnx68sAzC3SSwG8AOCfD3WtbDaFvW2Fc2NdbdsYLxKhbLrP4q57OkL6XiWoaCyM/Uyuaw99Lr3sWcYLxOhYtfRQJYAnUsPkxn/hGkXHBDexGe0ocyBJ7rkI8Th6optMZ2e+h/EaK8gc14w8ifHyl8xXdHwFPb/X4pHz6JZWRTe1zmK8M86mkIVvPTXy2vZOK5NrHkM159Xh0Yy3L1W+7P9IKeV+ACj+f8Qh5A2GOf7mXpvesa2/f+DQHzA4LnG4Xlu7EGK0lHK/EGI0gI7BBPWObc2Tx8p3uwtL7GmTeKIw1EjLfF0dNzdvbF+j6HyaPLP27bzu+7Qkmbr4hrcZL+chU+TxkWnznX0+kwvPOFvRaT/vJFqZowK2gBZ5Tvl59PobN35F0a+8+hLjLfnRDxQ996K/Z7zqhR9VdHQlFa8lwf/OPMij6/z1bxnvih/fquhVr1Dfs+rQFCb3kXlXKXrz1jWMt7GVv7tScLgr0goAVxfpqwE8dpjXMRgmKMX9XwbgVQAnCyH2CCEWAbgLwHwhxFYU+mzf9bd9TINjHaV4bZ8ehPXBQX5vcAKizB3bPJCi0Me6J8W7nG1/iazjxJNmM55Xa/HS6aXM/bSayUyu78ffox9svr/xeGlPkwlQBcGYq3iG/9V1lDGPWtwNlh36EXF6/mmnn8bkOvupDU1bLz9P5g1SH+94hFcNeEHFfZmLL1C0tfxRJmdpZXs5mz9j74/uVfRNi76l6CX3/YLJbW6lqPfO3TxE4bVL7XlOMLk2A1dgFMnAFZTXtEkvZL6QtH1tPR+fcO40KtCa1MTjm9Mn0dHjeJweef9N/8LkrG6KQgT8juab2uiJqis/pegndvHRCrffSE3U+7odTUaD9L0La8etgxVVTO6/H31Q0XaOF+lNaKTOKskob/QuQxReaPwSJWO7X1/L5LzbqTtJqpqbodo3yXWvaaUk86KrvszkXn+TIudnzeTb3Ycf5x1USoFZkQxcgVEkA1dgFMnAFZT5XJsPk5oLBVUjq3hlyrmnz1V0ZQ1vop7RCu0HnqZBA6E3edfZaJD2GLks33+EZpyh6PxHL1L0r77wRSZ35UIKB3z5uq8x3ryL6Rx/VzflDYOOWWgd3bQ3mXMaP3uXs7WhPDZ3/9NZcuVDUqt4uP4LTK7vu3QurzLN0yfZIO3X2v64XNGz7+Ix43WtVFEwfWIT44VDvBNeKTArkoErMIpk4ArKatqknUO6rxDplek6xtu0kVzcSMNIxhsTINn4I9SwM1PFo7rhNLVu8daHGS94LZ0F69hLYYLVz/Pjyd/+HJm6Wxd/k/F2dNAkxwrtSHXAy+81rpHOkPU6TKzXS+Ys67AgPovqx5Mg0yOmTWNy9fPJxCYe51HvHktrdhqjQr/4YzyvPmMCFcTdfd93GS/SNHS1MCuSgSswimTgCspq2rxWBUbVFpKRv29Zynij6ylxeIrvHxiv6+VX6RpbafSmqOcFZbE8JTMbL+RFCxWV5AkmGsi7e/jx5UxuwxoqKHtoxf8yXl7rOjL91FMVvbeLe0411XQvmeMDnPVJ2pEQ/x6n0/Sz0LrFCZubx8THyetMbnqV8areIZsbT5FpSzpM2/m//k9Fr907l/GeevHHGCrMimTgCowiGbgCo0gGrqC8bW1kFv25wqyMOefx81ivt1D3sok+3vKm896f0TW0cwHV4Me+k03UFXbEvLMYLx0itzuiZeTPOZPLPf8EzVAb28CrEEJa99p582mfsuxRvs+qraVwQE8PP6OXzZKLn7P5eTitiRqXy/FzbZEx1Gzd/rv5jCd2UjhA6IV5Xj77pf1myvB/4p5vMN7u7vWKXvsc7/o7GMyKZOAKjCIZuILymrZcHL3FLmIRRyPRK+Z8UtHdt36f8dI2NRIdkSKzZ/e0MbnqRdcoun8yN48hm+xGIEFL/lNP86X7ldWvKXrGqe9jvFkzKfG7eTMVxHm9/Pvo16xIMMhNSiajmRvB68oPTCAHeENTn49fQ2oN1ms+xueUxNZQIjvYSrTj1DfkDpoxIh7lHeEunU+Ff0uXGNNmUEYYRTJwBUaRDFxBWfdIwiMQCBbse90EvoeRd1DXWc/6Fsbzp6jbWEwbOuObexGTq790rqLbJC/cH5HXRpynKO3+wAMPMLnJ02h22brVvOi+tpKKxpq1zm6P/YnvIx5eRmfuL774YsaztPN1UvLvsV4ZsGULFfjn83wvNfkUqgZIO/4Fq6+/WtE7rqH36PXxdBICtO+qfYJXQMw+nRf0lYJSjmyPF0KsEkK0CiE2CiFuKP7edG0zUCjFtOUA3CSlnA7gPAD/JIQ4BaZrm4GGUs7+7wdwoKlWVAjRCmAsDqNrWz7vQSJZWFLt1byVSv8ayk57evcwXraSIsq+CdREs+F7vPBMd61rfLwe2rbJ/31Mq/ve+i5vxLnkZz9R9I7N2xnvO9+kI9CLFy9W9P0P/JTJ7dhB1/zNsv9hvAULFmAwLP8dFe3deiu1p9HnhgDAJ6+kuvLFN/OitNSkZkVXXUVufGI5P0coMxRxT/TwY+XhP3LZUjCkzXaxBeAZAFbDdG0z0FCyIgkhKgAsB/B1KWXJrdf0jm0D/dFDf8DguERJiiSE8KGgRA9JKX9f/HV7sVsb3qtrm5TyfinlLCnlrKrqyoOJGAwDHHKPJAoG+hcAWqWU+nDVA13b7kKJXdskPEjJQmbcXsbdbqGF7JHn58QCjXT2v+IGylRnw3wf5MvTXsIX4wcDYjFqh3P7HXco+vIreFubhlo6aDBh3gTGm3LyVEWvXElphbv+7XYmN2cOteVZsWIF4z3+OM2pa3Qccrjtttvo+bU9nsfDv++/X/6IoqdO4fPgFlxO7QODC2k/Fl3N94IhbaBOvoJ/wTtefgFDRSlxpPcDuArABiHEgbvfgoICPVLs4LYLwCeGfHeDYYNSvLa/ABCDsE3XNgMAZY5sB22J6b0Fk5N5kWecrX7qZBby8FYtqZE0P6zyImp/k3EUhsUsKnyfUMvNxo1fJ5Po1QLFX7vuK0zO56VXkktwEztlInXe7dfGxjssD2xtvsmFF17IeDdopnn7tncYTzsXwEIZKUcDdX2K/D3f/yHjzZxBhxJOnUTVC70L+Nj43H3U/sZj8yxAVYhXG5QCk2szcAVGkQxcQVlNm7V7H6puXAwA6AWfw+GpoeI15yiMUYuuJzmtfln6+datShtv9ds/cW/puecoWvutr5J5aR7HR3T2xChE5nO8nnySkr2xAZJLJONMTmjfz1tu4WM+W1ookSrz/PkDWk14RhsF5vHwqrSM1tGkt6uL8b54xTWKfuYZqj8ffzFv8LrlKUo0V7/NswzZqDmybXCUYBTJwBUYRTJwBWXdI+XsLHr6C2f3k479jT9JLmjk8s/yz330Q4r29NA+Jejl+wPpIbd1zcpVjNc0iaLUi264VtGxeB+TC1p6RzXed6ZiBIUoUu3kuufBwxVLlixR9JN/eobx8lnqBeD18GIzkdZG1gfJxx9I8E1jUOtkm3KMtt8Wo2bx136GOr398o98+M3J131e0Xuu51UOVgWvBigFZkUycAVGkQxcQXlrtoWAv3h0OJtzJGab6Pi1f8kNjGfFqG2MTzvvlUvyx89oDdUvuownYxd8bpGio9qRbb8/wuSyWhsay+JmY+GCzyh65AiawyayPMI+0EOhgas/fw3j2bY2K85yhBfS5Obr9eHpJH9XltYhLsvz1sjrc0q053p7XzuTGzeFGpDaN1zJeLl//TmGCrMiGbgCo0gGrsAokoErEHorur81pllC/qKisO+wo/y+DX+gc21VZ/PWf94Q7SXiaSrXrXOMU88GqEWejPMMdrCC9hUZLc2SE/w59BYyIT+/hlerppHaPLiojDE5/RoBHw8NZLT9jvPd+zTZnNbWxlnY5s/Q/qlf8v1TnZY+sbXn9aZ5C8JAhN6pjHF3f9e3aObb6U/fu1ZKyXsQHQRmRTJwBUaRDFxBWd1/j7QQzhZariWC/YzX8fmvKjpUdyfjde56S9EpWvHRM4o3MvdGyJUPyyzjxfvJJdd6mjNz5USvo11NVjODWa0Fjc8xulM3Ub2O4ruQ5tZzYwN4NFOazpN5zEtHFsBL10wLXhkgtbUhkSCTKxyVBnroIeHoeRNyVuqVALMiGbgCo0gGrqC8s0ggkbYLXobI8VvXad0y2nfyozNpbRkOV1I3Um8VP0YTzZCxCDgSrlK7naWN44KfP4fuIfm9nCe0cVp+rTm8s8I5kaBCt3CIR879WsF4Nu8wnRnt+lrSNpPlRjAbpGsIm5usuGb2wto0ca+jWjCheZY+cO/X7+c/lwKzIhm4AqNIBq7AKJKBKyhv8T+A6mI0ty3P3XPPAIUDLIvvbwJaWzKriuy3d98+Jlcdoei1Vc/Hmdpa8Dmj7X3SjrNrlUEts97PI9Z9bRQBrvDTPssKB5lcNk97ml3tOxmvYQIdNqip4w1ccknax4gURenDHv7PZMfo+inH0Jywdvw6r52Ny6a4ix/w0TVTGX4Njz14SGQwlNKxLSiEeF0Isb7Yse224u8nCiFWFzu2/VYI4T/UtQyGL0oxbWkA86SUMwDMBHCJEOI8AD8AcE+xY1svgEXvcQ2DYY5Szv5LAAfWeF/xPwlgHoADFVFLASwG8F/vda1cxI+uM5oBAHWhcYynN1zy2nyptYJkpuwQuf9VOce8tnpytbMe3sCzRquPzsSoPjzscPHj2nzQtJ9/z8J15E53a5O/fSP5GT3o1+/sZSyRpefKO0xW2E/PmNf+NOffEtIamgqLBx98kn6W2tFx6eemTWhJ4UrBI/MJr/bzPS+gFJTaH8kqdiLpAPAsgO0A+qSUB55uDwrtAA1OUJSkSFJKW0o5E8A4AOcAjrFERbGDfVbv2NaXdWaXDIYLhuT+Syn7UGg6eh6AGiHEgbV5HIB9g3xGdWyrcfZ6Nhg2KKVjWyOArJSyTwgRAnARChvtVQAWAngYJXZsy4wajb033wwA6AnyPVI0QQtazDGsZvop1CltyjRq25Jx6GVtlHZazmbom1pbFT0QJ7e+tp6Pjd+xeauiZ597HuPZMXLJLW2ObVUVDzXohXjPv8LP1+3cT2fIQhWMhcpKeuYBrdNsRZA7xLXVVGeWiPK9T1+c9j4TR49W9Ic/cQmT2969S9GvPcWfsaF66H1lS4kjjQawVAhhobCCPSKlfEIIsQnAw0KIOwCsQ6E9oMEJilK8tjdRaIns/P0OFPZLBgblrdkWQnQC2AmgAUDXIcRPFBzr76JJStl4KKGyKpK6qRAtpRSUnwgYLu/CJG0NXIFRJANXcLQU6f6jdN9jEcPiXRyVPZLB8IMxbQauoKyKJIS4RAixWQixTQhxwg0KHM7TOMtm2oqR8S0A5qNQLbAGwKellJvK8gDHAIpTpEZLKd8QQlQCWAvgYwCuAdAjpbyr+AWrlVK+5xDFYw3lXJHOAbBNSrlDSplBIUd3WRnvf9QhpdwvpXyjSEcB6NM4lxbFlqKgXMcVyqlIYwHs1n4+oWuYhts0znIq0sEqyk9Il/Fwp3EeyyinIu0BoM9rGLSGaTjjSKZxHssopyKtATClePrED+BTKEyhPGFQwjROoMTarmMN5c7+fwjAEhSOuD0opbzzEB8ZVhBCzAHwEoANgOqLcwsK+6RHAExAcRqnlLLnqDzkYcJEtg1cgYlsG7gCo0gGrsAokoErMIpk4AqMIhm4AqNIBq7AKJKBKzCKZOAK/g/Oq/CsKs68kQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJIAAACPCAYAAAARM4LLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGEpJREFUeJztXWmQXNV1/s57vS/Ts2o02pAQMhJit5BkULxhHCW2gcQ4tuxQmOAycUgRJ6RiTJwyTmyCKykvlXJsUzYx5XJAeAOvsSkCduxgjFiF0D5IaB9pZrp7en/93s2Pbr1zz4uWFnpupNH9qlQ63ee+17ffnL5nveeSUgoGBicL67WegMH0gBEkg1BgBMkgFBhBMggFRpAMQoERJINQYATJIBSclCAR0Woi2kxE24jo9rAmZXD6gV5tQJKIbABbAFwFYDeApwCsUUq9FN70DE4XRE7i2uUAtimlRgGAiB4AcA2AowpSLNmrktkRAIAiuRgqYoEmz5UXEvlk09LGBX4EttK+Dkkege+hPKUzjorgT8zS5uFpn32scQjMUb+OrMAz0OdlHWtizLPgBljavLRxFPii1jHm72p/m8rYxkNKqaGjT6aFkxGk2QB2aa93A1hxrAuS2RGsfPd9AAAnlhI8J1736XgpL3heIu7T46mmTyeqTTGuxx3waTcieVHtoboNx6etqHwErvL4cz1P8GJxnkdFu4dryXGJSNSnqSl5Ve26uHY/AGjUec4Uj/l0MyBwqPPrVKQkWE3i59hw+bsllfyeiaY2/4CFU4hnfPq3n79kJzrAydhIR/rJ/D89SUQfJqJ1RLSuUc0f4RKD6YCTWZF2A5irvZ4DYG9wkFLqHgD3AEB65HyVz7Wk3WtKQR+q8K+gnh4RvIYz4dOzDtk+bc2Q46pT+/mFFxO8qTj/Zmp8C6QCsk+apnDkLVBN8upSs/iXP4x+MW6yWvTpRNwWvH5tFSpOTghebqDXpysV7R6O/L1XYtpqa2UEL+2kfTrp8ndzLakCKzGeVzOgHhOqghPFyaxITwFYREQLiCgG4H0AfnAS9zM4jfGqVySlVJOI/hLAzwDYAO5VSm0IbWYGpxVORrVBKfUTAD8JaS4GpzFOSpBOFJbnIlkttz44Je2KsRjr5XhtUvAGVY9PN3rZTilUpI2RcdheoJT02lBnLyUZZ9thdp/U7otK4z694JXNgjdc2cPfhdhxmAw8xYY1zLyhiwTvhegsny6newSvXOa5pGNZn3bsshg34PH3LJD0Cl236tNVYjsoaiXEuJTmK3mRmuBFnCpOFCZFYhAKjCAZhIKuqrYIgD60luJDJbnUpnM8lQQVBC+fYj+83mRXdUZAexWG+J4znXHBO9vj0MAFo0/zuM2/FuPqE9t9upiICt5Bu8+nVZ55SashxiktGDoQe0jwLm/ydVeef7ngbZ97oU9vsub5dMmeIcbtB7v4vZ4MSJaHWG33afELpyLXjKIWeO0NePvFmAxZdAKzIhmEAiNIBqHACJJBKOiqjdQkIB9p6fBoVIblkwWeSi2SFLyI4nSEHeE0QhHSDroytsmnL3rq+4LnjnL2hgpsg02m5W/JyczhcTVH8GJ1LXOfZfc5amXFuGqDwxeNeCD9kGT7Kbn+ccG78MXneb5JfgbJq68U434Zu8ynJ+rS1oyOaYlgi42fYDFBSgsvVPrk/LO1KZwozIpkEAqMIBmEgq6qNhCgEi31YDtyyZ+Ka758RLqfCZvVmeewu3vNUCDiu/ZffTpWkbGBQo1ddDvOLni8KVP8VoJVSnORXPKtIX7dl+V6qkpJhgl6Pf6s0uio4GUPsdqzm3XBc2McUV6p1U9V7r1fjLvgQ/xn+37qUsHbEeOCjKrFKipWk1mAuKtlCALZ/1hNPtdOYFYkg1BgBMkgFHRVtRGAw4rE9aQ6SHCwFnVPhlqrmnf254OsDnq/+mkxruhxUrVAacGjJntc/edy1Dj95mVy3GVLfToyLAvnlMsqNw7NO/Jkyaz+1abKMkpPeVYx3tPrBW/b2u/5dM5ltVTtl0lVe+1XffqCkTcK3sFV1/Ick+f4dLkmS5vHwCbCWXnp+eUzUqV3ArMiGYQCI0gGocAIkkEo6K77DxsecgCAeFRGTxvEernuSdf99nlsF1W/eBtfE5Vuasxmm8YKbFXKvOv3fHrgvVf7dHNI2kFugV1huyzDwQ2LI915zSyKRopiHNX5umxSFq/lNU87/c6rBG/VFa/36Wc+z3ZQ34Ydco7g8MLIpKxeePfzvDY8uvR6nz6QnCvGDWrR90Jauv/VWh9OFGZFMggFRpAMQkFXVZsNhZ727tU8ySU/7fBSe/6g3GuWfOAufqFvecawGJee4ns0P3C94M247u18P5vV6GRB1ienovzbmoQMQwx6Wg20FhmuQEbiM1rCtVKR98/163vXZFFaKcO8lZ+4w6d/+sB3xbj5Dz3s0xOeVL/Dzz3p01f28neZWHCbGFcEq+lcbVDwyvF9OFGYFckgFBhBMggFRpAMQkFXbSQPQKXddiWRlC6nZbFdsXRcdsaZOsh7yPosztbn64HUwZvf4NNzrn+r4KkKhxAKWta92SMfgaPZHMmEtH0qJf48N8LX9ZDcf18use1jBzqJ1OtsM9mBTiiOyyGLyQbP8eobPyDGPXGIbZjcL56ScxzWqhme3eiT58x6Vox7oZ83GriT0ha0KIcTxXFXJCK6l4jGiOhF7b1+InqEiLa2/z/xwIPBtEInqu0bAFYH3rsdwKNKqUUAHm2/NjiDcVzVppT6JRHND7x9DYA3t+n7ADwO4GPH/TTbgp1rZeXregsaADP7WbUtWS+X6/EGu9pNh9VLZKZsJDbjg2t8ulCR1QWpHDfhypTZ9U1MyOKych9fV5yUkXM7wios6XJ1Qa0ua8d7UvxdHFeGMprafrJGoDOdFeM/R13r+vZKoK/U6269xad3vvBxwSsqroCYWeP7LXxZ7q/blFvELzKBum/ISoFO8GqN7WGl1D4AaP8/4zjjDaY5fudem+jYVp44/gUGpyVerdd2gIhGlFL7iGgEwNjRBuod27JzlqpyuxtYxpaezhuH2GOpPfNLwUso9p5UgmV/1qrlYpw7/2yfzpSk0OY3sSdY3cfTHUnIrU/OIfZ6hkkWrOXP5gQvaT0Zo1GpRsnWvL2G3M6d1tReNirrxT2b1WDN4esaDemd1iOsVkdueo/g2V/+ok9XXFbNg9uluXDpxawun7DOErxos3sd234A4IY2fQOAh48x1uAMQCfu//0AngBwLhHtJqKbANwN4Coi2opWn+27f7fTNDjV0YnXtuYorCuP8r7BGYguF7YpoN0HOm5JR+/8Ihdo7a3IordcD1cKFLT+0/HzzxfjqiW2syIBl7l65zd8uuedvOV5O+RnLdzPoYFNG7cJXu9H2B5JL+VNAhSTNlKlxtHrzVu2Ct4PH/6RTzfqckv4wCB3sRuexfbYshXSFhwZ4mz91IULBc/TemSntMi5V5OVBmePcpXAEwtfJ3ipuAxndAKTazMIBUaQDEJBdwvbLEJPohVFjZN0u7GJu6hFe2VoQLlaBDjFUVdvhixsy2rR4MSvpVoqLprJ495wnk9Hxg+JcfkV7PLPW7VU8Ma++Ti/+ArXV6MoXXw7wup37Xe/J3g3f+jDPE7JpHCtzG73nv2cmP3O/d8R4/7+72716VT/fMHbvoRDILXHuVt1o18+06Edz/l07+IbBM8JHInRCcyKZBAKjCAZhAIjSAahoLvuv0ewai07JjdTynBzPdsZeusaAKg22S7qS3PpU25gphhXArvdW7/2ZcEbcNn2eXkr22NnOTINEqlyOmI0LW2FgTI/rt2f/YJPn3ubrKL53k/5MITnN8oivY998pM+7Val+5+McBZ+3nxOW2zcukmMG91/wKcXzJChB28W2439Ga4EqLnSFqzs4u69wylZAbGnIe2pTmBWJINQYATJIBR0t62NAiyn5fI2LZmdr4H3mqVIutPx3gU+7WiutqrJwrByklVFtF/um9ub50x4X4lDD3sDJ01mbH4kkcAxohNJ/t3N0Rqmxm35GHeOvsz0yzsELzuoRfQbUnVGFN9/yyt8nl3dlSrwjn/i1OYj3/yW4PVnOTqeb7Ka7gk0lW8kuNDP8g4Knts88fIysyIZhAIjSAahoLuRbZuQy7VU21hdfvTMmbzMl+zAFuIpVoPRfo4GVyE9lox2xFR06SLBo1+x5xO9lBOdPc/vkHPsY5WVcaTac7TTp5OaCnFiUkXVytydZDglVWyjzPcsVOV27qS21dspcZQ7WACXsFhNlyyZdE457LU1YtwtrhINeGJNrXNcTHa3cyC95k5gViSDUGAEySAUGEEyCAXdPYvEA8ZrLZd6IOAyZ5dd4tOb1soG5fNS3G2soBW0q32yGXo+wfvcNs6dLXhR7PLp1912o08Xi7Lb2jlz+CySPT/+lbzHE/x55Vve7dOVQ/Lo1Fv/+m99+sUN8jjTq6++xqethLR9XtnHkehFSxb79J3/eKcYd/vf/APPqRo4S2UnZ/wLNttc/XUZKsnEOFvgag3xAaDPlZsNOoFZkQxCgREkg1DQ3ci2ZSHWdodrBem22r/Px3LGemXD8GhVCw1UOEI789mnxbi+FX/m029513sFL3Yd8/YXWBWlLZm0fXEPJzfTFy4WPOdiLoizN/LeOCfwezzQZN7Nt35E8Hoy7GqnArXer9c+b3yKXfe/uPlGMS4T5W4h+bqMWGMPhzlS2pFkTWe3GFbNsOqPQnYfaSoZSe8EZkUyCAVGkAxCgREkg1DQ5a62QBYt938qIe2gDR67o3POk+kN+1l23XsjnHIY+9kjYtx57/8Tny72SdunXtJsq37OfFczgfY3VbZNFkZke5cprduaG+HfoF2V96hpx6yq1DmCV9f2l2VIXmfV2RZcMpfTOK8/5wIxbtLRbJgd0vYpT3ImX2+945Js0bP/Um5gPx44prRqydRQJ+hky/ZcInqMiDYS0QYi+qv2+6Zrm4GPTlRbE8BtSqklAFYCuIWIzoPp2magoZO9//sAHG6qNUVEGwHMxqvo2kbkIdI++bnsyC5hv9nF0dQ1K1YI3tQLXCiWVeyqFiqyDnnHV77u07Nvu0nwGjmO8o5HeS3Xu7cBwHywOjjoSHWQ0n53lSZf15eWe/SUdozoVFneozfNKt0NRJv1tjaTDVYvVkw+q/lDrLa33/UjwUNNa6YaZXWeiEkXf92Fb/HpHUqeKTc/euKm8wld0W4BeAmAJ2G6thlo6FiQiCgD4LsAPqqUKh5vvHad37GtVjId26YrOhIkIoqiJUTfUkod3oN8oN2tDcfq2qaUukcptUwptSyR6T/SEINpgOPaSEREAL4OYKNS6nMa63DXtrvRYdc2T3kouy0bqTcuher5zbxX620XXCF4jYGf+3S6yC6ynZUhhMbPH/fpg4vPFbwZf8ztnHrzbN+48cB5tFrie7hH9hbYq1Ue9Nh8XcGVFYWWdhR9jy3tp6irtZqxpd9dszWbyebfuJWQf6YNX/o3vsdvnhS8gbh23LxW4Tl17koxbnOE9wTmmtJOjJPsSdAJOokjXQHgegDriehw54E70BKgB9sd3F4B8J6jXG9wBqATr+1XaB2QfSSYrm0GALoc2Vaw4KiWK5tLy+WzQRxtfmhUGuXXXstFZPvv/w+fnqmkauuJcyR6/1f/U/Dm9XDxu/0m7tg21iN/Iwnt7JCDdelTZLVI9JR23plSsvi/N8Outgq4+JMlVo/xjCxs6/HY/c9q1RE7HvmFGNdY+yjfY0DeIzLJrvz+Pj6Wfstl7xLjSi5fNy9QZDjhyE0JncDk2gxCgREkg1DQVdVmkY1021srB5KIVGYVQMOXCt5PJtf59DXLOQmae0xGHEopVj09gWNEt36KHc6Bt/ARXD03vkOM671wiU83A0nV/nH2glytcXxMycizU+dxDUeqtt657C3VyrJhauQVTrju+vaPfbrwY9nAfm6DP3tbSnpcNrE6nrqMu8ptOUd6bYlx7SjVqEzSRqPSZOgEZkUyCAVGkAxCgREkg1DQZfffQ6Ntu5Aj3e5IhsuZNh+U9tN5i7mQ/0svbfHpG66QtsmM53gPWbou99yPDbItMfbC//p07qPPiXHVczkinr3hjwSvuOwin4412X5K12XHs0aWs+52IEhsbeEObqVv/5fg7XmU5xUpsv0Uj0l3fCLN33vBlLQFt6y62qfXLX+fT9ersp9COsr2mBOX4YsmAh2HO4BZkQxCgREkg1DQ3X1tZCN6+Jw2Ty7XTo2PJk1m5NK6ZS+PXbiKC9Ye/O+viXGrlnOz8iVbDwhefD8nVmdrRV5FyK5s9Q28V27ylscEL5nj66whPitkYlBWGaeLnPmt7pDd0Opau5pkToYGsjWOSie1pHbDkQlu0o4bXbdCRqyfWcaqLR/h66gmi9dqYJ3rVeR6kmiYs0gMXiMYQTIIBUaQDEJBV20kT3moNlv2TtqSMqxbRUTSdqAUu67bprg4f+iNfyrGrbmL97V9bsUqwVt9Fu91Lz633qfdmgwhIMV2kJeSRW8Fzc5IHNzr0839srCtBu4tkMhKG6wR57DBZEGmN+b1cVue8TLbKfaQnOP345wmGl30JsErJrQQRVGzi+KBlJTFaZBoTYZinHSgn0AHMCuSQSgwgmQQCrp7FomlYLez1ZYjt0NHtEi03ZTTcj1WAXr9clXNEuM++s9c8HXXZ24WvG9neLm+5VKuCV+8R0aGhyusDlxHRqxrMVaxEYfdfzsnC/G8En83J3DeSA8xb2afzLLvbHA1w6bz+JjVh10ZpXcv54i1PXC24PXXuCAu4vH8i3H5vK2a5v57UpVVIrLqoROYFckgFBhBMggF3Y1sgxD1WktqvSkj27EUeyy1miy08rSzSSJRvi4V6GhSyXMk9w8+8UPB2/X4N3z6X9YzL793uxh3dpZrx6+YIZt0Lh1m7ynmsRoaqMq66eQQdxLZWZfFdy/VWJU+MxY4A2Q2q6nmHO4WEluyRowbjPOfrRKRjVCrNhe2JbQjxGINOUeHtERtXD7vVO130I3EwKATGEEyCAVGkAxCQXdtJI9AlZZrGUlIPVzWosFIygNYPMXTbBJHiisVmdFWFkele5oyWrvoci6Oq76Jm6YXm9JOefkxLjb7wXPrBO+Lj3F4YfV1vDd00UJZrXD3vz/o00OL5ZHv8y/h7r3zfu9awRs+izceVLSWOuTIwrMGOPsfkwFrKK0FTk3781JVhjL0MIqVkmIQDbTi6QSddGxLENFviej5dse2T7XfX0BET7Y7tq0lotjx7mUwfdGJaqsDeKtS6iIAFwNYTUQrAXwWwOfbHdsmAdx0jHsYTHN0svdfAf4BXtH2PwXgrQDe337/PgB3Avhy8HodRIR4rL1wRWX0dKqhb4+W+73SmpvfbPDSbSUCEVit01i9JMMLDa0LSII48TsnLtXorHdw0znn7VI9ro6wSkmVf+vT5G0Q4z7+0Eaf3l6WndJi2jkfGSUL4uo2q5R6kwvzshFZ+J1P8/ccLsmEbszlCHYhyiqxEaj7jkBLjHsysezYMlndCTrtj2S3O5GMAXgEwHYAeaXUYUNnN1rtAA3OUHQkSEopVyl1MYA5AJYDWHKkYUe6VnRsmzp0pCEG0wAn5P4rpfJoNR1dCaCXiA7rizkA9h7lGu7Ylh080hCDaYBOOrYNAXCUUnkiSgJ4G1qG9mMArgPwADrs2EaWgp1oZcNLVWl/5NLcy9TyZDsZq8o2U8zitIXTkLZDvck2RjQhXeaY1g035jLPqspNAq6WgmkiuAeeH1fxIM8xVgiEKyJ8XToqv2dWO4PWDaRWDmiFApkZfG5cY0LaNz117h9Qj8oUSVmzLz1i+ykak59laZsvVFOuJ7GI7FTXCTqJI40AuI+IbLRWsAeVUj8iopcAPEBEnwbwLFrtAQ3OUHTitb2AVkvk4PujaNlLBgaglnffpQ8jOghgJ4BBAMbybuFUfxZnKaWGjjeoq4LkfyjROqXUsq5/8CmI6fIsTNLWIBQYQTIIBa+VIN3zGn3uqYhp8SxeExvJYPrBqDaDUNBVQSKi1US0mYi2EdEZd1DgdD6Ns2uqrR0Z3wLgKrSqBZ4CsEYp9dIxL5xGaJ8iNaKUeoaIsgCeBnAtgA8CmFBK3d3+gfUppY55iOKphm6uSMsBbFNKjSqlGmjl6K45zjXTCkqpfUqpZ9r0FAD9NM772sPuQ0u4Tit0U5BmA9ilvT6ja5im22mc3RSkI52wdEa6jK/2NM5TGd0UpN0A5mqvj1rDNJ1xMqdxnsropiA9BWBRe/dJDMD70DqF8oxBB6dxAh3Wdp1q6Hb2/w8BfAGADeBepdRnuvbhpwCIaBWA/wGwHsDh6ro70LKTHgQwD+3TOJVSp9VJ0iaybRAKTGTbIBQYQTIIBUaQDEKBESSDUGAEySAUGEEyCAVGkAxCgREkg1Dwf/OSmsM1/vHsAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJIAAACPCAYAAAARM4LLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAGG1JREFUeJztXWmUXMV1/uq93pfpntHMaDaBhCxhydGBYBkcloQ1yNg+OAHnQGyDjQMhxlu8AGExkMQ2xHhJnMSExD4QLBvhAw6LwRwZIzYDYsdsQkJoGTSavad7en/9Kj+6qVv3WUuP9GikUX3ncLjd9773Sm9u113q1i0hpYSBwd7CercHYDA7YBTJwBcYRTLwBUaRDHyBUSQDX2AUycAXGEUy8AV7pUhCiBVCiHVCiA1CiEv9GpTB/gexpwlJIYQN4HUApwAYBPAUgLOllK/4NzyD/QWBvbj2SAAbpJQbAUAIcSuA0wHsVJHC0XYZT/UCAKRdZTxXuNoHPiwhiWdZpPhOzWVytkXXScl5rv6DETQR21IwOQmSq8kaH79N10ltHJbLnyUF3fMPfqfaF0LwZ1dr9DxX2NolNpMLuPq/hT/A1W5pacMScJhc2SLBoEcNai79bfJjW8aklF3YDfZGkfoBbNU+DwI4alcXxFO9OPlTPwMA1Nq3Ml7RqtCHUjsfZLWg6EiMXvZkJs/kUtFORTu1AuPlHXqRbiBC1zhhJldxynRNLct4B7XTddUwvex4vsTkakG6Z9mj0LJK14WDIcYbzuQUXbTaaEwyzuTa83QPO8R/kEVNASNlenawlmFyb8RJkeaKOYw3XRhV9O/++8LNaAJ74yOJHXz3B3ZSCHGBEOJpIcTT5UJmB5cYzAbszYw0CGCe9nkAwDavkJTyRgA3AkDnwCIZ7RoCALw1FWFyrvbrTFt8phEu/cInNFYkHWVyVoZ+nTLE7x8L0G/GqhQVHU3zWeeI/HZFL976OuNlfrNG0YduGCZGkM9IAW0msAN81sl1pRS9tYdbjOrhxyh6W3KhogcrFSY3GKdZp5Dn96900cxbmhwhRojP8gMB+jyRGWK8OR7ZZrA3M9JTABYJIRYIIUIAzgJw117cz2A/xh7PSFJKRwjxeQD3A7AB/ERK+bJvIzPYr7A3pg1SynsB3OvTWAz2Y+yVIs0UNSmRr9b9k2RbN+PJHDk/QZtHUrkQfQ5pUU+ER7QYTpDPFJouMt57+0j4A4MvKjrxo/9hcqlpLZoM8Nih240p2k1RJJW1uD/WHQgq2qmWGa+UHVP0e3KTjNfxwgZFbw6R17Hs+MOZ3PqjzlT0Q7UpxovmkoqOhMgHG55mYshVyK9rSyQZL1/kPl8zMEskBr7AKJKBL2ipaQMCkG59uk1IbnryNTJZoWQn44Ucmr6rWla3wK0G+rTLPtq/nvG2XPkDRfdr2eXQ2AiTiyXTii56fme2Q1N+MUCmeH6OD2RKS4jLKE8mtjl0z2SYm8S8Re8kVtNC/oefYHLH3E8msOsrH2e8X0eWKLo0Su5DR5CnEGqCxj9kcR9hYXDm84uZkQx8gVEkA19gFMnAF7TURxJCIhCsOxCFab5UZ7f3KHqyOMx4UWhLH2my+33lMSZ3xJOUWF90352Md4ggfySgraPmknyZZbpMSybRBF/MxMmnK7Lr4MMUXermC7Od28nvyj3yOOMFBrfQszzhPxL050hEaLzRLI/da0G67pAb/p3xzlryIUWvPPEMRZeRZnKFAjly7TZXg2ye+6/NwMxIBr7AKJKBL2ipaXNRQ1HUQ/lQ5zzGK09SLU4izqfh8TJNtUfHiO69/yYmt+S5tYre5vCitM4wXTfuUq1Sx4XnMbmBL39V0dkRntlOagVflXaikxWepS+UKV2RvuQixnPyVEqzdNME4z34WapWDo6QeawEuemcCtHqf3eQh+7R9Xcr+iP9lGF/sO8EJpcPJmhMNZ6+cBI8/dIMzIxk4AuMIhn4gpaaNsuyEW2YrWyOR1wd2sJstcSn6+MOpkKr9p9+U9GHPsoLD1ytJDUY5wuP0VP/QtF9V/6DonMhnnl2x8lkiQg3j2VJEZ5b0iI6ixfHRbQiOneY/1tSqQFFr1vIC8jmrb5B0Ym76N/21je+z+TsqPb752u2KIUog73kvnsUnfkmr4LOrSe5coyb5nBuR8Wvu4aZkQx8gVEkA19gFMnAF7R29d8F3EaS9iCZYKyJBBWNBcpvMd7Cx/5P0XNf0FbCBfdvCjHysxZc82+Ml/rQ+xU9WSb/KVnjIX4tTPd0He5nVSMUJicrFMbXtII3AMjGKVyPpfgrLgxR1j6d8KQ5IlSIJk+jVf2+9kVMLvq5Tyi65A3VBX0uS1rhX3bl9XyMF39D0Q+N8TE6UU9ZRRMwM5KBLzCKZOALWhv+A2iz69P+aJSHmPES6fSZB/OMb+A7dyjascgk2naOyfV9l8Ln4HHLGW9akpmyA2QCa54FS9cluXiET/E1h8xgRXQouljhJvDbF39L0ZlJPsb3LaX66wsuPIfxUjVanBUxbVx/egyX+7t/UvS2W7/FeP2SxlycoFTGXHAT2O3QYnK6fDzjlVILMVOYGcnAFxhFMvAFRpEMfEFrV/8tC9lwY5lB8FYtXXEq1hq5/DrGW2qTXxTIUnuB2Ne+xuQSx1GIX3Z4WB+JUoh+y/+uVPTEOO8zcO6nKbQOVLiPlE7Tksb4CPlFZ3/iLCZXKNK6hZT8t/r8c7QZuSZ5x5SLPv9J4mktbkI2v0fgIlruSd5yA+PltDUTVyuUG7P5++7+r9WKXvj3H2a8F7eMYqbY7YwkhPiJEGJECPGS9l2HEGK1EGJ94/8z7zpgMKvQjGm7CcAKz3eXAnhASrkIwAONzwYHMHZr2qSUDwsh5nu+Ph3A8Q36ZgBrAFyyu3tZsJBsmKlph9cFL3ep0dvCAt+DNaRVCqQX9Sp6zhl/xeQKVa0bmhtkvDP+kmQnJykrHQ3z7PIDDzyg6Lvv/jnjuTX63V1xxVWKrlZ5s6uVK8l0JpMpxjvnU+crevXq1Yz39a9fqGhHu2d5mpvYajuZ+kMvv4zx3rj6ckWHtK54uRJPUSzI0zvekt3CeC9GezBT7KmzPVdKOQQAjf9370beYJbjHY/a9I5tpenJ3V9gsF9iT6O2YSFEr5RySAjRC2BkZ4KsY9u8JVI2uqUdModvA5L/+G1FjxR5hNHeSVtz5v0LyTkR3rUkJejz1dd/h/EqFZrmf3rLzxR9/69/y+Ru+wWZs7Vr1zLesmW0BWndutcUHQp6xpEic5ZM8k4flvbTtWqeLVmC/hyVKpn+ZBs3j84EZctzK45lvPBV9IBwkMx7yOGmfipK0Wr/+CDjoW8AM8Wezkh3ATi3QZ8L4M5dyBocAGgm/P85gMcBHCqEGBRCfBbAtQBOEUKsR73P9rXv7DAN9nU0E7WdvRPWST6PxWA/Rosz20A+Xi+G7ynwtjNLR8hmj8Z5EFjVsuCZhX+k6I4qL6zPanVuw8O8U2skQj5C/wCFt4sWv4fJOQ6FxVVPYVskSq8rHicfr1DgcrEo+UzhCPf3ACp6y3u2RjtaL3Bby0QX83zLtpUg3yo6yf+E20J0/5xL/5a44HvjghWtB3eWB0Hh3pmrhVlrM/AFRpEMfEGLu5EAAbs+Lcefe4DxCkE6MiHk8H1iXedSxjfpUiqgVuOmoRYhE6ObifqzyRyEw2R6XNfT0ZSZAG4OAgEyN+UKmWLb9jRN1xus5/n9k1pt+lSGn4QQ1jq4OdoZI67DM+dTLj37kPZexpNpun8hQ8+2SnwDXFuK5OR2Po45i3iqoBmYGcnAFxhFMvAFRpEMfEFLfaSgZWNepJ7uT7++kfEyoEKupOA+QfAMaskSKpN/MGlx36Rd84va2viq/sY31yl60yY6OeqRRx5jcvqSxkknncJ4uRyF4QHtsJpK2XNmmuZ3hTy9BQIBeuXlMl/Vr1TouprW6N32bFCYY9MYBys8NdChtauJ611zHb6KNVohPzQW5PcP2DM/DNLMSAa+wCiSgS9o7ZZtKVUtcnmEh+792vZiW3Cz5PbTFF2YpJA81M5X1mtZWhU//28uYLwvfOlpRV/0uS8oulziIX5PL2XVvceIhkOUzRagVEBgF28xEuHmt1ql1EDA4mG2rZ2lWGNHlnq2lTv07HSNZ863T9B7dQt0v2KMuwsph8a1Jc7/AdMBs2Xb4F2CUSQDX9Ba0yZqgF3PsKYntzPWtEXRTUeYDytVmktyEZq6E9N8YbaoRUirfs636Vig6frmm25S9L2/4oVtq1atUvTDa9Yw3tFH09ZpSzM3E2FuCqLa8daxvPckcMoo58Lc7OWLdJ9OkDnPeY4zdaIUcSWyfC7Iame8pEGLsdEqdwOmtYXwUud8xouAb5NqBmZGMvAFRpEMfIFRJANf0OK2NgIx2XikZ3V+QPMDpjxtYoYDFNZb0+SbJJK865utrdZvHeQnx/f00ip5Tx/RfX19TC6Xo2c5nmPS4VL2XWtci/ZJHp7bRfqc6+Ehflk7N62rwkPyqFZ5kLHJX7I8RWnhGqUhsi7vbtetvbpSgjZA5wvc79Eb1VU7OxivVOP+VDMwM5KBLzCKZOALWmraJAQc1Kf6RIwvZmYytJDqBnlzz74omYdCgK6rvOXpVr5Aa/pe46YzqO3xmp6mhU59D5oXuRy/vwXtGNS8dhxXmN+jlqAxxqc949BO7s6FPM1OC/S8YDuZr6jn514qkYl11jzMeHltu+BUQavLDvI9dF1lesePt/Nubll4jhdrAmZGMvAFRpEMfIFRJANf0OIlEgtWtJ763xDkIfOyBKXsJ3O8i9rk7fcpOnzsnys6EOG+FLRzx7zF/yWtACyiHfPpLS4r5LSCryjf0x/TVvI722mzwutjfF/Yo09Qx9iuTu4/vfmy6leGhb39jDfnkAWKHh2l5Z92z+p/PkT/lrGr+FGkCa2CoKq5Ra6nWO2Zg6jKYSTOw/9Ujh8j3wya2bI9TwjxoBDiVSHEy0KILzW+N13bDBSaMW0OgK9KKZcA+CCAi4QQS2G6thloaGbv/xCAt5tq5YQQrwLoxx50bXOFRNaqT7Fti9/PeKOPU011m+dsj7Ef3aroeaeRaYtK3hpnvEAmJp3i6YXXXqM2NFd/g87hePqJF5hcz1w6D+TUk3l7A6dK4fqll3xd0X978VeZ3NWX0G9qKsCz4x0u/Xa/eAm/bmz7uKLnu2Q6X0tzUx+7lY4bnePZLp7Vtmk7HWTO5jjcTFfP+ww9N8eL4yI2P6euGczI2W60APxjAE/CdG0z0NC0IgkhEgBuB/BlKWV2d/LadapjWzFrOrbNVjSlSEKIIOpKtFJK+fbBIMONbm3YVdc2KeWNUsrlUsrl0Tbjj89W7NZHEvVN8z8G8KqU8nsa6+2ubddiBl3b3u49Xlr8AfZ94jdUmRj1hKrOxk2Kjo3TeWfbk9w/6AiSz3TVFdxdO/98asR+792/VHSvpzrw8svovFvb4ssK+hLJUUeSj/f9K3mc8dvfPaXoLsFD6Y+cdbqiuxfzw2MiNfpzFLS9fT2beGu+DZfS2WtWis8Frtal1xa0p/81l6chNtsHKboS4P5k0PL0Q2gCzeSRjgHwKQC/F0I83/juMtQV6LZGB7ctAD6+k+sNDgA0E7U9CmBnxy6brm0GAFqc2bYlkG5Ep1uXH8l46Sj5TyXJzzgLCApHnzqXwu5l9/KsbjhPhW59ndwfe+whaqOzfTu5c+1J3pxcz3S7nqby0iLTFtXM6GmnnsDkjj6efl8dQV4kNl6m5vM9FV6wlomSSZkskgkvfIKfuRJz9AoCnpm3q2TqilqXXOvSi5ncoKANFYEE31zQ6fLPzcCstRn4AqNIBr6gtR3bLAHRaOgZFvMZb/DDdERn8g6+1ywmSN8Tb1Itdv6GXzA5+7wvKjpgcbOUndL2eGn7ybzd0CIhKoBzXF7nHNUaxBcLZFIKQR49tkWpUGy8xMcR1jp/bE7wrHf3JkrPjZ5DkWBudB2TE2Eyl12e7dWZMj2v/CdHKHoteH27G6X8cazA69vzSR7FNQMzIxn4AqNIBr7AKJKBL2ht8b+wUGvsz5dFHuLjtPMUWV79EmM5RfId8mHyR8au+zG/h6PtOzv/M4zVl6DV9IlpyvhWw9y/Sbr0SjosHrpPZum6UEoLkR1erVCVFNYHgnxf27hFPk3fM7xp/fOf/JKiu7T2N0GHh+NBQZ/LlXHGy8yn4rjtH7tI0aPhQ5mcpXXGzcb4GPs9++iagZmRDHyBUSQDX9BS0xawgK631zBtHrY60cWKfvqCCxnv2OvojLZEgML4agdfiKx+9xZFF2//DeO5/3mNoiNL36fodJlP6wWLTN2mKA//w2HKZlsVWoy1PY3dHS0k797MQ+vKFXSC+Po1/CjSdJgy1qGwFq67nvNMglTPnUu+l7HK1/+Hoh8dpvv1lPmfuqSdZ3KwxTvkTeY9bkcTMDOSgS8wimTgC4wiGfiC1ra1cV3EK3W/QzjcR8pGaG/VwpPOYbxnx99U9Bkr71D0CHjF72CafJo5W3lYvPlMKmzb3qa1GVyxgsn1nHCaolPLuP8RDVPIXH32CbrfmgeZXOn2exQ95nr6ExRpSabPU3kwoa3WOFplgBPj76rURUVpgz/8IeM9OUb3HNCWlsYTfByBPKVKxmqecN/2tPNpAmZGMvAFRpEMfEFrw/+AjVS6nmHO1vgKc79L8/p0mdcMpz/+FUWvSlLB2nHX/SuTmzuP0gEC/IyOopYN7spRWGyt5KXmE7/8laKrgk/xtRKNKxqi8Dzs8H1n4Qo9Ky94djyQpN/uVmuM8VLamXJ5rWta8UReiPr88hMV/fo2/icMa43eqyDz7tqeKocgvcdwkGfOh+P83TUDMyMZ+AKjSAa+oKWmrVKpYOiteme2iOTbdIbGtij6+SLfIjc5RMPsLMxXtPO9a5jcUdf/TNFzMsOMZ4XJbOhrlMKzpdrRGrsHJX89tpYFb6uSac4HeQY8FKMMuPfEKqdC908V+DvYNJcaozrXXKnoOws8qrLmHKboBYIXrL2iZf5trXF8d40/qxQiMz09xReuLWvm84uZkQx8gVEkA19gFMnAF7TURypkMlh7x10AgHHJs7U9ISqYn4jwUDWnZVqjWVqpfu4l7ju89ulTFf1nIR6SL77vSUXXnqGz2wJtTAxuhX5bQc/+rkgXheRbqhRaJxyeysjlyD9LwVPYdtJxin55xUcZb7R9qaJLEWqv0x3nLWmgZay3xvnmgj6tKqE6TVUDMsTflRC0KhAZ4CmKtjFPtUETaKZjW0QIsVYI8UKjY9s1je8XCCGebHRsWyWEmPmuOoNZg2ZMWxnAiVLKwwAcDmCFEOKDAK4D8P1Gx7ZJAJ9954ZpsK+jmb3/ElBp4mDjPwngRAB/3fj+ZgBXA/jRru5VcR1sK9Sn/VqUT/mbJ2jqnYzwmLnNJjNV1ExWoegZ/ha6x6oiv//Bx9CibccRZyh6fpxP+d2CTFbPGE9DjGW0fWedFHZHk7zALqPZy42e5vMvacelhjdnGK+w/iFF9y5bRmPq6GVy1TilF7omeege0LrYVSNkcoueGvmY1jjeqvEUSG4PupE02x/JbnQiGQGwGsAbADJSyrefOIh6O0CDAxRNKZKUsialPBzAAIAjASzZkdiOrtU7tlXLxR2JGMwCzCj8l1JmUG86+kEAaSFUu4sBANt2co3q2BYMR3ckYjAL0EzHti4AVSllRggRBXAy6o72gwDOBHArmuzYJqVUh82UeHSOco0Kr+ZPc5+jqBV5DYVoL1j3AD+MZWqKriuHeb/K9etJz0MhCpFfTfLC95rW6D0U4rztOTqHNzUxoeixzkOYXFteaxwf5z+ecpmWUyzJz1pL2vTn2PoG8Z6M8fB/Ue8iRSeSPFhuf8+Aom1tX16bzX21dJhW/8cmeRFgIPDOdGzrBXCzEMJGfQa7TUp5jxDiFQC3CiH+GcBzqLcHNDhA0UzU9iLqLZG9329E3V8yMICQcoc+8jvzMCFGAWwG0AlgbDfiBwr29XdxsJSya3dCLVUk9VAhnpZSLm/5g/dBzJZ3YRZtDXyBUSQDX/BuKdKN79Jz90XMinfxrvhIBrMPxrQZ+IKWKpIQYoUQYp0QYoMQ4oA7KHA2n8bZMtPWyIy/DuAU1KsFngJwtpTylZYMYB9A4xSpXinls0KIJIBnAHwMwKcBTEgpr238wNqllLs8RHFfQytnpCMBbJBSbpRSVlBfozt9N9fMKkgph6SUzzboHAD9NM6bG2I3o65c+xVaqUj9ALZqnw/oGqbZdhpnKxVpRycsHZAh456exrkvo5WKNAhgnvZ5pzVMsxl7cxrnvoxWKtJTABY1dp+EAJyF+imUBwyaOI0TmMFpnPsSWr36fxqAHwCwAfxESvnNlj18H4AQ4lgAjwD4PaBa4V6Gup90G4CD0DiNU0o5scOb7KMwmW0DX2Ay2wa+wCiSgS8wimTgC4wiGfgCo0gGvsAokoEvMIpk4AuMIhn4gv8HDx3QfAfmqwoAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "### Load the images and plot them here.\n", + "### Feel free to use as many code cells as needed.\n", + "\n", + "### Load the images and plot them here.\n", + "### Load and output the web images\n", + "from scipy import misc\n", + "import imageio\n", + "\n", + "# Create list with downloaded images\n", + "image_features = []\n", + "for i in range(1,6):\n", + " # Save image data as ndarrays in list\n", + " #image_features.append(misc.imread(parent_dir + \"/traffic-signs-data/web_images/\" + str(i) + \".jpg\", mode='RGB'))\n", + " image_features.append(imageio.imread(\"./traffic-signs-data/online_files/\" + str(i) + \".jpg\"))\n", + " \n", + "# Create ndarrays with image_features and labels list\n", + "X_online_test = np.array(image_features)\n", + "Y_online_test = np.array([14, 1, 25, 9, 5])\n", + "\n", + "# Check that the same amount of features and labels was stored\n", + "assert(len(X_online_test) == len(Y_online_test))\n", + "\n", + "# Print out all images and the respective labels\n", + "for i, im in enumerate (X_online_test):\n", + " print (Y_online_test[i])\n", + " image = im.squeeze()\n", + " plt.figure(figsize=(2,2))\n", + " plt.imshow(image, cmap=\"gray\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Predict the Sign Type for Each Image" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(5, 32, 32, 3)\n", + "5 32 32 1\n", + "Restoring the model . . . \n", + "INFO:tensorflow:Restoring parameters from ./traffic_signs\n", + "Model restored.\n", + "Samples: 5\n", + "label : [ 7 12 8 30 8]\n", + "Prediction : [False False False False False]\n", + "Probability : [[-0.05272397 0.0200924 -0.02898298 0.01673755 -0.08419205 -0.03762679\n", + " 0.03831628 0.06204474 0.04633746 -0.00369399 0.00028991 -0.03284062\n", + " 0.04292487 0.00033031 -0.07380268 0.03232404 0.0106379 -0.02614592\n", + " 0.05854928 -0.06415991 -0.02431366 0.05885797 0.01719164 0.02671637\n", + " 0.00368808 -0.06297641 -0.01792141 -0.03138649 -0.04680558 0.04311337\n", + " 0.04592644 -0.00433451 -0.03371209 0.01040761 -0.07567389 0.00718888\n", + " 0.01283679 -0.01119118 -0.05361966 0.02946863 0.00955878 0.05358161\n", + " 0.01561081]\n", + " [-0.08777672 0.04671842 -0.03775029 0.0331738 -0.11082038 -0.05027482\n", + " 0.08584332 0.06615224 0.07362001 0.00471378 -0.00890311 -0.03574736\n", + " 0.08802235 0.021572 -0.10240909 0.06745846 0.02125342 -0.03268972\n", + " 0.06655553 -0.06983723 -0.0063286 0.0763821 -0.01714872 0.03738204\n", + " -0.00049521 -0.09494743 -0.02475868 -0.06174196 -0.07132331 0.05949117\n", + " 0.07527985 -0.00752712 -0.05320283 0.0195926 -0.11854727 0.01869976\n", + " -0.00885749 -0.00057224 -0.06994482 0.0433789 0.00977214 0.0757581\n", + " 0.03878306]\n", + " [-0.09376074 0.0560858 -0.03345569 0.0245378 -0.10693439 -0.05247346\n", + " 0.08020743 0.05258867 0.08438073 -0.00241724 0.00581015 -0.03225713\n", + " 0.06919475 0.02389145 -0.09105806 0.0638646 0.04512401 -0.04085054\n", + " 0.04898861 -0.05798281 -0.00939433 0.06057328 -0.01228815 0.04343882\n", + " -0.00605242 -0.078105 -0.0126108 -0.06189059 -0.0695322 0.05294734\n", + " 0.08094086 -0.00869423 -0.06637179 0.01607309 -0.1014633 0.03004041\n", + " -0.00274768 -0.00064941 -0.05030634 0.021656 0.0078701 0.06637596\n", + " 0.04310768]\n", + " [-0.06790014 0.05463304 -0.03993287 0.01449109 -0.10981572 -0.04017065\n", + " 0.06604658 0.06630396 0.06010216 0.00708817 0.00284931 -0.02451229\n", + " 0.06885841 0.030113 -0.07616169 0.04884559 0.03089231 -0.02948997\n", + " 0.04251918 -0.05742372 -0.02047449 0.06624461 -0.01597602 0.05114175\n", + " -0.00209544 -0.08034035 -0.02445792 -0.05671862 -0.0660364 0.04063787\n", + " 0.07529487 -0.00217792 -0.07658137 0.01589962 -0.09525847 0.00281279\n", + " -0.011819 0.00988896 -0.05837277 0.01057923 0.01024974 0.07154107\n", + " 0.03972166]\n", + " [-0.0990802 0.06089159 -0.03384258 0.0196156 -0.11072821 -0.0348698\n", + " 0.07570217 0.0534768 0.07912411 0.01047641 -0.00279518 -0.03494272\n", + " 0.07616524 0.03378806 -0.10314354 0.07545938 0.04195642 -0.04075868\n", + " 0.05139469 -0.05371378 -0.01369004 0.06562958 -0.00595029 0.03812341\n", + " -0.00747221 -0.10210795 -0.02265135 -0.07147704 -0.06164541 0.05473521\n", + " 0.07781244 -0.00700341 -0.05928572 0.03739 -0.11872007 0.02254168\n", + " -0.01066274 -0.01003572 -0.05917569 0.02621492 0.00333758 0.06409727\n", + " 0.05332711]]\n", + "Labels : [ 7 12 8 30 8]\n" + ] + } + ], + "source": [ + "### Feel free to use as many code cells as needed.\n", + "# Covert to Grayscale & Normalize\n", + "print(X_online_test.shape)\n", + "\n", + "def conv_rgb2gray(rgb):\n", + " #conv_rgb2gray\n", + " return np.dot(rgb, [0.299, 0.587, 0.114])\n", + "\n", + "if (X_online_test.shape[3] == 3):\n", + " # Convert to Grayscale\n", + " X_online_test_gray = conv_rgb2gray(X_online_test)\n", + " \n", + " # Normalize Grayscale Images\n", + " from sklearn import preprocessing\n", + " \n", + " for i, picture in enumerate(X_online_test_gray):\n", + " X_online_test_gray[i] = preprocessing.normalize(picture, norm='l2', axis=1, copy=True, return_norm=False)\n", + " \n", + " # Reshape Grayscale Pictures (Add Dimension 1)\n", + " X_online_test_norm = X_online_test_gray.reshape(X_online_test.shape[0], X_online_test.shape[1], X_online_test.shape[2], 1)\n", + " print(X_online_test.shape[0], X_online_test.shape[1], X_online_test.shape[2], 1)\n", + " X_online_test = X_online_test_norm\n", + " #X_online_test = X_online_test.astype(np.float32)\n", + " \n", + " # Save Variable Image Depth\n", + " image_depth = X_test.shape[3]\n", + "\n", + "\n", + "### Run the predictions here and use the model to output the prediction for each image.\n", + "### Make sure to pre-process the images with the same pre-processing pipeline used earlier.\n", + "\n", + "def prediction(X_data, y_data):\n", + " num_examples = int(len(X_data))\n", + " print (\"Samples: \", num_examples)\n", + " sess = tf.get_default_session()\n", + " \"\"\"\n", + " #for offset in range(0, num_examples, BATCH_SIZE):\n", + " #for offset in range(0, num_examples):\n", + " #batch_x, batch_y = X_data[offset:offset+BATCH_SIZE], y_data[offset:offset+BATCH_SIZE]\n", + " batch_x, batch_y = X_data, y_data\n", + " \"\"\"\n", + " for offset in range(0, num_examples, BATCH_SIZE):\n", + " #for offset in range(0, num_examples):\n", + " batch_x, batch_y = X_data[offset:offset+BATCH_SIZE], y_data[offset:offset+BATCH_SIZE]\n", + " #batch_x, batch_y = X_data, y_data\n", + " with tf.Session() as sess:\n", + " sess.run(tf.global_variables_initializer())\n", + " predict = sess.run(correct_prediction, feed_dict={x: batch_x, y: batch_y, keep_prob: 1.0})\n", + " #print (\"prediction : \", predict)\n", + " label = sess.run(tf.argmax(logits, 1), feed_dict={x: batch_x, y: batch_y, keep_prob: 1.0})\n", + " probabilities = sess.run(logits, feed_dict={x: batch_x, y: batch_y, keep_prob: 1.0})\n", + " print (\"label : \", label)\n", + " #print (\"probabilities : \", probabilities)\n", + " return predict, probabilities, label\n", + "\n", + "# Open session with restored model\n", + "with tf.Session() as sess:\n", + " #sess.run(tf.global_variables_initializer())\n", + " # Restore model\n", + " print(\"Restoring the model . . . \")\n", + " saver.restore(sess, './traffic_signs')\n", + " print(\"Model restored.\")\n", + " \n", + " # Verify accuracy of the trained model via test data\n", + " pred, prob, label = prediction(X_online_test, Y_online_test)\n", + " print(\"Prediction : \", pred)\n", + " print(\"Probability : \", prob)\n", + " print(\"Labels : \", label)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Analyze Performance" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Testing...\n", + "EPOCH 60 ...\n", + "Test Accuracy = 0.007\n", + "\n", + "Model saved\n" + ] + } + ], + "source": [ + "### Train your model here.\n", + "\n", + "### Calculate and report the accuracy on the training and validation set.\n", + "### Once a final model architecture is selected, \n", + "### the accuracy on the test set should be calculated and reported as well.\n", + "### Feel free to use as many code cells as needed.\n", + "\n", + "### Validate your model here.\n", + "rate=0.0009\n", + "\n", + "with tf.Session() as sess:\n", + " sess.run(tf.global_variables_initializer()) \n", + " print(\"Testing...\")\n", + " for i in range(EPOCHS):\n", + " #X_test, y_test = shuffle(X_test, y_test)\n", + " \n", + " # Calculate and report the validation accuracy \n", + " validation_accuracy = evaluate(X_test, y_test)\n", + " print(\"EPOCH {} ...\".format(i+1))\n", + " print(\"Test Accuracy = {:.3f}\".format(validation_accuracy))\n", + " print() \n", + " \n", + " # Save the model \n", + " saver.save(sess, './traffic_signs')\n", + " print(\"Model saved\")\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Output Top 5 Softmax Probabilities For Each Image Found on the Web" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For each of the new images, print out the model's softmax probabilities to show the **certainty** of the model's predictions (limit the output to the top 5 probabilities for each image). [`tf.nn.top_k`](https://www.tensorflow.org/versions/r0.12/api_docs/python/nn.html#top_k) could prove helpful here. \n", + "\n", + "The example below demonstrates how tf.nn.top_k can be used to find the top k predictions for each image.\n", + "\n", + "`tf.nn.top_k` will return the values and indices (class ids) of the top k predictions. So if k=3, for each sign, it'll return the 3 largest probabilities (out of a possible 43) and the correspoding class ids.\n", + "\n", + "Take this numpy array as an example. The values in the array represent predictions. The array contains softmax probabilities for five candidate images with six possible classes. `tf.nn.top_k` is used to choose the three classes with the highest probability:\n", + "\n", + "```\n", + "# (5, 6) array\n", + "a = np.array([[ 0.24879643, 0.07032244, 0.12641572, 0.34763842, 0.07893497,\n", + " 0.12789202],\n", + " [ 0.28086119, 0.27569815, 0.08594638, 0.0178669 , 0.18063401,\n", + " 0.15899337],\n", + " [ 0.26076848, 0.23664738, 0.08020603, 0.07001922, 0.1134371 ,\n", + " 0.23892179],\n", + " [ 0.11943333, 0.29198961, 0.02605103, 0.26234032, 0.1351348 ,\n", + " 0.16505091],\n", + " [ 0.09561176, 0.34396535, 0.0643941 , 0.16240774, 0.24206137,\n", + " 0.09155967]])\n", + "```\n", + "\n", + "Running it through `sess.run(tf.nn.top_k(tf.constant(a), k=3))` produces:\n", + "\n", + "```\n", + "TopKV2(values=array([[ 0.34763842, 0.24879643, 0.12789202],\n", + " [ 0.28086119, 0.27569815, 0.18063401],\n", + " [ 0.26076848, 0.23892179, 0.23664738],\n", + " [ 0.29198961, 0.26234032, 0.16505091],\n", + " [ 0.34396535, 0.24206137, 0.16240774]]), indices=array([[3, 0, 5],\n", + " [0, 1, 4],\n", + " [0, 5, 1],\n", + " [1, 3, 5],\n", + " [1, 4, 3]], dtype=int32))\n", + "```\n", + "\n", + "Looking just at the first row we get `[ 0.34763842, 0.24879643, 0.12789202]`, you can confirm these are the 3 largest probabilities in `a`. You'll also notice `[3, 0, 5]` are the corresponding indices." + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "top 5 : TopKV2(values=array([[ 0.06204474, 0.05885797, 0.05854928],\n", + " [ 0.08802235, 0.08584332, 0.0763821 ],\n", + " [ 0.08438073, 0.08094086, 0.08020743],\n", + " [ 0.07529487, 0.07154107, 0.06885841],\n", + " [ 0.07912411, 0.07781244, 0.07616524]], dtype=float32), indices=array([[ 7, 21, 18],\n", + " [12, 6, 21],\n", + " [ 8, 30, 6],\n", + " [30, 41, 12],\n", + " [ 8, 30, 12]], dtype=int32))\n" + ] + } + ], + "source": [ + "### Print out the top five softmax probabilities for the predictions on the German traffic sign images found on the web. \n", + "### Feel free to use as many code cells as needed.\n", + "with tf.Session() as sess:\n", + " sess.run(tf.global_variables_initializer())\n", + " top_5 = sess.run(tf.nn.top_k(tf.constant(prob), k=3))\n", + "print(\"top 5 : \", top_5)" + ] + }, + { + "cell_type": "code", + "execution_count": 115, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'\\nprint(len(X_select_rgb))\\n\\nfor image in select_images:\\n X_select_rgb = np.sum(image, axis=0, keepdims=True)\\n \\nselect_images_normalized = (X_select_rgb - 128)/128\\n\\nprint(X_select_rgb.shape)\\n'" + ] + }, + "execution_count": 115, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQcAAACQCAYAAAAFv67oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAD4JJREFUeJzt3V9sFeeZx/Hvs3EgwjS0EEsBjEQsJ/wxsqz6EFJpL6oUicQSJ6rq8ucihbLBoJKttDe7W1UiIjfLNQtqlrLYJVIg2+QCN0EglQollZaS41XLgrIFO3aLHaTYVI2qUhmMnr04Axj7hTPAjOd4+H2kI/n1vBrenxkezp/x+5i7IyIy0d9lvQARqU4qDiISpOIgIkEqDiISpOIgIkEqDiISVLE4mNlBM/vCzM7d5biZ2R4z6zWzs2b29eSXmR7lUz4Ji/PMoQt46R7HXwaejR4dwE8efllTqgvlUz6ZpGJxcPePgD/dY8orwCEvOw181czmJ7XAtCmf8klYEu85LAQujRsPRt/LC+Wb3vKeLzUW5/ZpM1sMfODuKwLHPgT+zd1/HY1PAv/s7j2BuR2Un9pRW1vbunTp0odafFJGR0fp7e2lqalp0rGLFy8yf/58Zs+eDcCFCxdYuHAhtbW1k+YODw8zMjICgJmhfFMj6XxXr14dq62tramWfEnr6ekZcfe6ihPdveIDWAycu8ux/wA2jhv/Hphf6Zytra1eLfr7+72pqSl4rKOjw995551b4+eee84///zziudUvqmTdD6gVE35kgaUPMa/+yReVnQD34veFX4B+NLdLydw3qpQLBY5dOgQ7s7p06eZM2cO8+fn5yWr8snd1FSaYGaHgW8CT5nZIPAG8DiAu78FHAPagF7gKvD9tBabho0bN3Lq1ClGRkaor69n165dXL9+HYDt27fT1tbGsWPHaGxsZNasWXR2dma84vujfNM7X5ZiveeQhkKh4KVSKZM/eyoUCgWUb3oys57W1tbWPOdz90KlebpDUkSCVBxEJEjFQUSCVBxEJEjFQUSCVBxEJEjFQUSCVBxEJEjFQUSCVBxEJEjFQUSCVBxEJEjFQUSCVBxEJEjFQUSCVBxEJChWcTCzl8zs91FjkH8NHN9sZsNm9tvo8VryS03P8ePHWbJkCY2NjezevXvS8a6uLurq6mhpaaGlpYUDBw5ksMoHk+dskP98maq0ySTwGNAHNAAzgN8ByyfM2QzsjbNp5c1HtWzgOTY25g0NDd7X1+ejo6Pe3Nzs58+fv2NOZ2en79ix477OWw350srmnu98aIPZ2BvMPg/0uvtn7n4NOEK5UUgunDlzhsbGRhoaGpgxYwYbNmzg6NGjWS8rEXnOBvnPl7U4xSFuU5DvRL0I3zOzRYmsbgoMDQ2xaNHt5dbX1zM0NDRp3vvvv09zczPt7e1cunRp0vFqlOdskP98WYtTHCzwvYm70v4CWOzuzcAvgZ8FT2TWYWYlMysNDw/f30pT4oENds3ujLx27VoGBgY4e/Ysq1evZtOmTcFz7d+/n0KhQKFQoBryJZkNHp18wLJqyJe1OMVhEBj/TKAe+Hz8BHe/4u6j0fCnQGvoRO6+390L7l6oq6vccGcq1NfX3/G/yeDgIAsWLLhjzrx585g5cyYAW7dupadnUjMvADo6OiiVSpRKJaohX5LZ4NHJB3xaDfmyFqc4fAI8a2bPmNkMYAPlRja3TGhMWgQ+TW6J6Vq5ciUXL16kv7+fa9euceTIEYrF4h1zLl++3aOnu7ubZcuWTfUyH0ies0H+82WtYlMbdx8zs9eBE5Q/uTjo7ufN7E3K73p2Az80syIwRrnj8eYU15yompoa9u7dy5o1a7hx4wZbtmyhqamJnTt3UigUKBaL7Nmzh+7ubmpqapg7dy5dXV1ZLzuWPGeD/OfLmprapCTPTV8g3/nU1KZMd0iKSJCKg4gEqTiISJCKg4gEqTiISJCKg4gEqTiISJCKg4gEqTiISJCKg4gEqTiISJCKg4gEqTiISJCKg4gEqTiISJCKg4gEJdXUZqaZvRsd/42ZLU56oWmq1BhldHSU9evX09jYyKpVqxgYGJj6RT6EPOfLc7bMVWpsQbymNj8A3oq+3gC8W+m81dI0JE5jlH379vm2bdvc3f3w4cO+bt26iudVvvSllQ01tUm0qc0r3N6O/j3gWzZxj/AqFacxytGjR29tad7e3s7JkyeD26JXozzny3O2alBxD0kzawdecvfXovGrwCp3f33cnHPRnMFo3BfNGZlwrg6gIxquAM4lFeQhfA14EvhDNJ4LzAb+OG5OE3ABuB6NVwD/R3lD3fGeAm7uaT4LuPs+6FMnz/mSzAa38z0Rza+G6zMNS9z9KxVnVXpqAXwXODBu/Crw7xPmnAfqx437gHkVzhvrqU3ajxTz/TXrbHnPl+a1WS3XZ0o/t8ReVlRsajN+jpnVAHMob1E/HSjf9M2X52yZS6SpTTS+2WesHfiVRyVqGlC+6Zsvz9myF/NpSBvl1219wI+j770JFKOvnwB+DvQCZ4CGGOfsyPrpVcr53s4616OQL61rs5quzxR+ZrGyZdbURkSqm+6QFJGgisXBzA6a2RfRx5Wh42Zme6K7I8+a2deTX2Z6lE/5JCzOM4cu4KV7HH8ZeDZ6dAA/qXTCSrdjT7EuEsxnZifMbMzMRqsgGyhf7HxRoflzlK0ars1EVSqkE1UsDu7+Eff+6OcV4JCXnQa+ambz77HAx4B9lP/SlgMbzWx5nMWmIcl8UbYVwLcpvwGWaTZQPu7v+jwE/AUYoAquzRR0ce9CeodYb0hGv0j1gbuvCBz7ANjt7r+OxieBf3H3SS2Kozsk/wlYUFtb++TSpUvjrjNVo6Oj9Pb20tTUNOlYb28vTz/9NLNnzwbgwoULLFy4kNra2klzh4eHGRkp3xRqZijf1Eg639WrV6mtra2afEnr6em54e41FSfG/OhjMXDuLsc+BP5+3Pgk0HqPc7UDB6rpF1v6+/u9qakpeKytrc0//vjjW+MXX3zRS6VSxXMq39RJOh/wt2rKlzTgbx7j330Sn1bEuUttvGnxC1k31dfXc+nSpVvjwcFBFixYkOGKkqV8cjdJFIdu4HvRu8IvAF+6++V7zJ9YTKpasVjk0KFDuDunT59mzpw5zJ9/17dUph3lk7up+LrDzA4D3wSeMrNB4A3gcQB3fws4RvkutV7gKvD9Cqf8hPI7x1Vh48aNnDp1ipGREerr69m1axfXr5d/gW/79u20tbVx7NgxGhsbmTVrFp2dnRmv+P4o3wPlm1bPbtOSyR2SZtbW2tr6Yak06T3L3CgUCijf9GRmtLa25jmfU37p/4a7/+fd5mVyh6S7H8vizxWJKet9KtL2P+5ef6/CALp9WkTuQsVBRIJUHEQkSMVBRIJUHEQkSMVBRIJUHEQkSMVBRIJUHEQkSMVBRIJUHEQkSMVBRIJUHEQkSMVBRIJiFYdKW8mb2WYzGzaz30aP15JfanqOHz/OkiVLaGxsZPfu3ZOOd3V1UVdXR0tLCy0tLRw4cCCDVT6YPGeD/OfLVKVNJoHHKPchbABmAL8Dlk+YsxnYG2fTypuPatnAc2xszBsaGryvr89HR0e9ubnZz58/f8eczs5O37Fjx32dtxrypZXNPd/5gFI15EsLUPKENph9Huh198/c/RpwhHIvgFw4c+YMjY2NNDQ0MGPGDDZs2MDRo0ezXlYi8pwN8p8va3GKw0Lg0rjxYPS9ib4TtRt7z8ymzQayQ0NDLFp0e7n19fUMDQ1Nmvf+++/T3NxMe3v7HbsZV7M8Z4P858tanOIQ2mxz4saTvwAWu3sz8EvgZ8ETmXWYWcnMSsPDw/e30pR4YA9Nszsjr127loGBAc6ePcvq1avZtGlT8Fz79++nUChQKBSohnxJZoNHJx+wrBryZS1OcajYl8Ldr7j7aDT8KdAaOpG773f3grsX6urqHmS9iYvT12DevHnMnDkTgK1bt9LTE95isKOjg1KpRKlUohryJZkNHp18wKfVkC9rcYrDJ8CzZvaMmc0ANlDuVXHLhN6DReDT5JaYrpUrV3Lx4kX6+/u5du0aR44coVgs3jHn8uXbbTi6u7tZtmzZVC/zgeQ5G+Q/X9Yq9q1w9zEzex04QfmTi4Puft7M3qT8rmc38EMzKwJjlJuabk5xzYmqqalh7969rFmzhhs3brBlyxaamprYuXMnhUKBYrHInj176O7upqamhrlz59LV1ZX1smPJczbIf76sZdK3AqBQKHhe+wJAvvs6QL7zmVlPa2tra57zuXuh0jzdISkiQSoOIhKk4iAiQSoOIhKk4iAiQSoOIhKk4iAiQSoOIhKk4iAiQSoOIhKk4iAiQSoOIhKk4iAiQSoOIhKk4iAiQSoOIhKUVFObmWb2bnT8N2a2OOmFpqlSY5TR0VHWr19PY2Mjq1atYmBgYOoX+RDynC/P2TJXqbEF8Zra/AB4K/p6A/BupfNWS9OQOI1R9u3b59u2bXN398OHD/u6desqnlf50pdWNtTUJtGmNq9wezv694Bv2cQ9wqtUnMYoR48evbWleXt7OydPngxui16N8pwvz9mqQVJNbW7Ncfcx4EtgXhILTFucxijj59TU1DBnzhyuXLkypet8UHnOl+ds1aDiBrNm9l1gjbu/Fo1fBZ53938cN+d8NGcwGvdFc65MOFcH0BENVwDnkgryEL4GPAn8IRrPBWq5syA2AReA69F4BeXt929MONdTwM2GB7OAuzdJmDp5zpdkNrid74lofjVcn2lY4u5fqTir0usO4BvAiXHjHwE/mjDnBPCN6OsaYISo8NzjvLFe96T9SDHfX7POlvd8aV6b1XJ9pvRzS+w9h4pNbaLxzT5j7cCvPFrFNKB80zdfnrNlL2alaaP81KwP+HH0vTeBYvT1E8DPgV7gDNCQVPWaokqaRr7M/2d9FPKldW1W0/WZws8sVrbMmtqYWYe778/kD58CZva2u7+a9TrSkud80Xtj5PX6jPtvL7PiICLVTbdPi0hQJsWh0u3Y05mZnTCzMTMbzVs2yHc+MztoZn+OsuXx2jxoZl+YWayPaKe8OJjZY8A+4GVgObDRzJZP9TrSEGVbAXyb8htguckG+c8HHAL+AgyQs2sz0gW8FHdyFs8c4tyOPV09T/nGmf8FnHxlg/znGwU+A67n8NrE3T8C/hR3fhbFIc7t2NNVnrPBo5Hv8rhx3vLdlyyKQ+gXsvLykUmes4HyPVKyKA6DwKJx43rg8wzWkYY8Z4NHI9/8ceO85bsvWRSHOLe8TlefAM9SvqiMfGWDRyPfM8DjObw279uUFwcv/0r365R/IeZT4L/c/fxUryMNUbY/Aqcov9u9GHghwyUlKu/5gLeB2cBzwFWgLy/XJoCZHQb+G1hiZoNm9g/3nK87JEUkRHdIikiQioOIBKk4iEiQioOIBKk4iEiQioOIBKk4iEiQioOIBP0/6nlDu3M/gkoAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "### Load the images and plot them here.\n", + "### Feel free to use as many code cells as needed.\n", + "\n", + "#reading in an image\n", + "import os\n", + "import matplotlib.image as mpimg\n", + "import cv2\n", + "\n", + "fig, axs = plt.subplots(2,4, figsize=(4, 2))\n", + "fig.subplots_adjust(hspace = .2, wspace=.001)\n", + "axs = axs.ravel()\n", + "\n", + "select_images = []\n", + "select_images_gray = []\n", + "\n", + "def conv_rgb2gray(rgb):\n", + " return np.dot(rgb, [0.299, 0.587, 0.114])\n", + "\n", + "for i, img in enumerate(os.listdir('traffic-signs-data/online_files/')):\n", + " image = cv2.imread('traffic-signs-data/online_files/' + img)\n", + " #print(len(image))\n", + " #axs[i].axis('off')\n", + " #axs[i].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))\n", + " select_images.append(image)\n", + " #print(\"-----------------------\")\n", + " #select_images_gray.append(conv_rgb2gray(image))\n", + "\n", + "# Convert to grayscale\n", + "select_images = np.asarray(select_images)\n", + "X_select_rgb = select_images\n", + "#X_select_gry = np.sum(X_select_rgb/3, axis=3, keepdims=True)\n", + "\n", + "\"\"\"\n", + "print(len(X_select_rgb))\n", + "\n", + "for image in select_images:\n", + " X_select_rgb = np.sum(image, axis=0, keepdims=True)\n", + " \n", + "select_images_normalized = (X_select_rgb - 128)/128\n", + "\n", + "print(X_select_rgb.shape)\n", + "\"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Additional work needed getting errors and will continue to work on this" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO:tensorflow:Restoring parameters from ./traffic_signs\n", + "6\n", + "5\n" + ] + }, + { + "ename": "ValueError", + "evalue": "Cannot feed value of shape (1, 32, 3) for Tensor 'Placeholder_17:0', which has shape '(?, 32, 32, 1)'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_select_rgb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mselect_labels\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0mselect_accuracy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mevaluate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mselect_images_normalized\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mselect_labels\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 14\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Test Set Accuracy = {:.3f}\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mselect_accuracy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Done\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mevaluate\u001b[0;34m(X_data, y_data)\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0moffset\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_examples\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mBATCH_SIZE\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0mbatch_x\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_y\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mX_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0moffset\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0moffset\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mBATCH_SIZE\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0moffset\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0moffset\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mBATCH_SIZE\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 12\u001b[0;31m \u001b[0maccuracy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msess\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maccuracy_operation\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeed_dict\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbatch_x\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbatch_y\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkeep_prob\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;36m1.0\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 13\u001b[0m \u001b[0mtotal_accuracy\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0maccuracy\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch_x\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mtotal_accuracy\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0mnum_examples\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 893\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 894\u001b[0m result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[0;32m--> 895\u001b[0;31m run_metadata_ptr)\n\u001b[0m\u001b[1;32m 896\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 897\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1098\u001b[0m \u001b[0;34m'Cannot feed value of shape %r for Tensor %r, '\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1099\u001b[0m \u001b[0;34m'which has shape %r'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1100\u001b[0;31m % (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))\n\u001b[0m\u001b[1;32m 1101\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgraph\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_feedable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msubfeed_t\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1102\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Tensor %s may not be fed.'\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0msubfeed_t\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Cannot feed value of shape (1, 32, 3) for Tensor 'Placeholder_17:0', which has shape '(?, 32, 32, 1)'" + ] + } + ], + "source": [ + "### Run the predictions here.\n", + "### Feel free to use as many code cells as needed.\n", + "### Reviewer - Please pay additional attention here; This is throwing errors\n", + "#select_labels = [11, 3, 1, 12, 38, 34, 18, 25]\n", + "select_labels = [14, 1, 25, 9, 5]\n", + "\n", + "with tf.Session() as sess:\n", + " sess.run(tf.global_variables_initializer())\n", + " saver3 = tf.train.import_meta_graph('./traffic_signs.meta')\n", + " saver3.restore(sess, \"./traffic_signs\")\n", + " print(len(X_select_rgb))\n", + " print(len(select_labels))\n", + " select_accuracy = evaluate(select_images_normalized, select_labels)\n", + " print(\"Test Set Accuracy = {:.3f}\".format(select_accuracy))\n", + "print(\"Done\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Project Writeup\n", + "\n", + "Once you have completed the code implementation, document your results in a project writeup using this [template](https://github.com/udacity/CarND-Traffic-Sign-Classifier-Project/blob/master/writeup_template.md) as a guide. The writeup can be in a markdown or pdf file. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> **Note**: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to \\n\",\n", + " \"**File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## Step 4 (Optional): Visualize the Neural Network's State with Test Images\n", + "\n", + " This Section is not required to complete but acts as an additional excersise for understaning the output of a neural network's weights. While neural networks can be a great learning device they are often referred to as a black box. We can understand what the weights of a neural network look like better by plotting their feature maps. After successfully training your neural network you can see what it's feature maps look like by plotting the output of the network's weight layers in response to a test stimuli image. From these plotted feature maps, it's possible to see what characteristics of an image the network finds interesting. For a sign, maybe the inner network feature maps react with high activation to the sign's boundary outline or to the contrast in the sign's painted symbol.\n", + "\n", + " Provided for you below is the function code that allows you to get the visualization output of any tensorflow weight layer you want. The inputs to the function should be a stimuli image, one used during training or a new one you provided, and then the tensorflow variable name that represents the layer's state during the training process, for instance if you wanted to see what the [LeNet lab's](https://classroom.udacity.com/nanodegrees/nd013/parts/fbf77062-5703-404e-b60c-95b78b2f3f9e/modules/6df7ae49-c61c-4bb2-a23e-6527e69209ec/lessons/601ae704-1035-4287-8b11-e2c2716217ad/concepts/d4aca031-508f-4e0b-b493-e7b706120f81) feature maps looked like for it's second convolutional layer you could enter conv2 as the tf_activation variable.\n", + "\n", + "For an example of what feature map outputs look like, check out NVIDIA's results in their paper [End-to-End Deep Learning for Self-Driving Cars](https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/) in the section Visualization of internal CNN State. NVIDIA was able to show that their network's inner weights had high activations to road boundary lines by comparing feature maps from an image with a clear path to one without. Try experimenting with a similar test to show that your trained network's weights are looking for interesting features, whether it's looking at differences in feature maps from images with or without a sign, or even what feature maps look like in a trained network vs a completely untrained one on the same sign image.\n", + "\n", + "
\n", + " \"Combined\n", + "
\n", + "

\n", + "

Your output should look something like this (above)

\n", + "
\n", + "
\n", + "

\n" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "### Visualize your network's feature maps here.\n", + "### Feel free to use as many code cells as needed.\n", + "\n", + "# image_input: the test image being fed into the network to produce the feature maps\n", + "# tf_activation: should be a tf variable name used during your training procedure that represents the calculated state of a specific weight layer\n", + "# activation_min/max: can be used to view the activation contrast in more detail, by default matplot sets min and max to the actual min and max values of the output\n", + "# plt_num: used to plot out multiple different weight feature map sets on the same block, just extend the plt number for each new feature map entry\n", + "\n", + "def outputFeatureMap(image_input, tf_activation, activation_min=-1, activation_max=-1 ,plt_num=1):\n", + " # Here make sure to preprocess your image_input in a way your network expects\n", + " # with size, normalization, ect if needed\n", + " # image_input =\n", + " # Note: x should be the same name as your network's tensorflow data placeholder variable\n", + " # If you get an error tf_activation is not defined it may be having trouble accessing the variable from inside a function\n", + " activation = tf_activation.eval(session=sess,feed_dict={x : image_input})\n", + " featuremaps = activation.shape[3]\n", + " plt.figure(plt_num, figsize=(15,15))\n", + " for featuremap in range(featuremaps):\n", + " plt.subplot(6,8, featuremap+1) # sets the number of feature maps to show on each row and column\n", + " plt.title('FeatureMap ' + str(featuremap)) # displays the feature map number\n", + " if activation_min != -1 & activation_max != -1:\n", + " plt.imshow(activation[0,:,:, featuremap], interpolation=\"nearest\", vmin =activation_min, vmax=activation_max, cmap=\"gray\")\n", + " elif activation_max != -1:\n", + " plt.imshow(activation[0,:,:, featuremap], interpolation=\"nearest\", vmax=activation_max, cmap=\"gray\")\n", + " elif activation_min !=-1:\n", + " plt.imshow(activation[0,:,:, featuremap], interpolation=\"nearest\", vmin=activation_min, cmap=\"gray\")\n", + " else:\n", + " plt.imshow(activation[0,:,:, featuremap], interpolation=\"nearest\", cmap=\"gray\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.3" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} From 1ffa859883ac3fcf38b86aeea38b48471098a4ff Mon Sep 17 00:00:00 2001 From: Prasanna Kolar Date: Tue, 16 Jun 2020 20:18:58 -0500 Subject: [PATCH 2/6] Add files via upload --- 1.jpg | Bin 0 -> 1351 bytes 2.jpg | Bin 0 -> 1560 bytes 3.jpg | Bin 0 -> 12323 bytes 4.jpg | Bin 0 -> 1583 bytes 5.jpg | Bin 0 -> 1640 bytes 5 files changed, 0 insertions(+), 0 deletions(-) create mode 100644 1.jpg create mode 100644 2.jpg create mode 100644 3.jpg create mode 100644 4.jpg create mode 100644 5.jpg diff --git a/1.jpg b/1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..614096e699f62cb79ab577782ccd74af4d980e0e GIT binary patch literal 1351 zcmex=9d zZ3brsW+o;O0s6Oj-S5fuR$!pIEN!@|nR%E~Fi%grl7GWdUpL6Cz%fkAil`f?t3L<98`-B;yLR1GPz2O1|Qz`z6q%m|y9S(sQE*@Q(IghYU5 zasXYy$jVf?@VZ{?&Ygm>duPl|Q~0rsKkcnu>5i%kDZ8!}?d>~dC*8c0sq$u<>XnwD z-C0$~#dQUhr+j@WalzWus~%{J3eanepkRhOoRNt^P)HFN>cS#QhK_*?6Tx-?{cO(| zYnGhReQc>sU-HM-`Hg2ZvYpMIFJE5p&DYp!)^-h(Gw(`u*V*yExifo;;rA%tmAn0} zp8urQ8Lj<+=k1)e{8#PMek@wyD0tiBYSJf8f5jPhnkGIlme{^O4df6xphHl-%fKio zBy7l}q-Ycfb^;T~37d>&swbDqPZAMz{+jV*LCv;EuBha9Ss8$CpIqJc<>@DZtWGh5{|r>*Ctmyjb{Qxo z2$)z_G@6x$hOa2uK5eh#qLW9Ij0+cb|9fwEfN5E{XzJaxj~X7E*glvnw_NGcwPco) z^_8}(C+5ke)m*5{TK$U8vcY`9*8P(<9yu!`96HJ3PSIKyrINVCYq^T=fzpC3&>hSu znF$m^Kz9^QTnKgpC@Ba?p5IvB=JZOEZ8c-?s+~Laa=$SjTHVn4Xo1DMMZWX?GbnhU za}r(>`daz?F+BsBTz{a!@&dq20}OYhpciC-c(8FI#CyO@WiL?v#4r4Sy~KjUQF7DV zzgMnr&*`7B_Gnt#gupw7t$YT1GF;N`Sjq3nnYr?JD#L?)XIPB>by;M5lyc z-t^`*jHgxxxhCjp>euseiG0Yp(I+N<&tTS?Zl%0~chd})NtcP~U2uLU8DYt=KEzYr nxuyA(R=CFnQ=1b}EQ?eb8TQ1_ap_vROJT}#b(MWP|K9`vh;y-M literal 0 HcmV?d00001 diff --git a/2.jpg b/2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..901e2e2d4d55939bf399dd9def6f507beb6ca1c3 GIT binary patch literal 1560 zcmb7@X;c$u6ozLeD_LMd5Z!1VJDQ`2gJ<;2{vLnBcL80}j`OK#&0FA}qK;0NXLV*ATqhJ646T`M$UA`~l@N;#Z zc#k zS~=W(@sRf2?qDw2=HkUe#F==pB3gbes*^q(du6&!t$pL!IbO1(J-DwtJpb`pqAh9J zCB|%m>b%7ovl=bsExcz4H za)3USEbzfGd7FBZEpCa0-UW!ZJq&;l8jW34M_LEa7-I^RX+`5W@#PKHAyU!5503SO z)NVtj>-)31d)p)2YI;2Svv?XO_nN}=qp$Ox*IG6d4Ze7xEdDCIKdVR`v>~9Re1sy>QfDLMD@Hb-aM-wPcZI^P?ud6l17s61S?klaa#gg`05dDS zvtFfH6JX@;%XjVTa3>F@s|HL|J4(FIIlQ~ZiI~BRgdh!D!H944Yqj8C#M~S{QzDhg z8(xJdAN=PnPbMVE4Nb}*W*Y~LlDK*8+2~>=KAr8jq_ujor5u>iu{DO4to7Et!c&``h1OUWbw}33(H{ggQP0cVqOMfG{1CR%b)tsHcsQ3t zU`_;7h^42F@2$Jh)S(#HhBuO@E@x}PW8pNC!t)4w2wk4+^2bJ@ly9xT*g3f1KVTz6 z-^U|7pCLP=r&)9*2p~XmCCpccG%VN>PC2w3?-~#n>hF9ZhyzNp5B4R=DO=V@tUftu z1@%zZs%hfmrE|y1q7C-i)U7~-Es+7u>n=?Uq`2U0S(K~EYPN8Xsfe4w w`nl98LtL>x$8C?#vF+Ernu3)Bmm6;+Ul)>p`q3J2CZK$#L3U7BjHm9--w9(4LI3~& literal 0 HcmV?d00001 diff --git a/3.jpg b/3.jpg new file mode 100644 index 0000000000000000000000000000000000000000..bd9327d9e16fb9cc39f3ff74e19db6671a329151 GIT binary patch literal 12323 zcmeG?XIN8N)Ay!9AV4T0ASHCfKzc)32t-hjj$#iRJ~SdtKDEyDsjEb(Qbjn?g``-`)4$`#fLr+;iv7nVBE-uF=neQR z028b9^2tE1m4Rj$z*kmTK$gIexd4W~GnC7q)8X$rZG-tvZyO3A!J5H%13Vt+Y`a!p zt`fj@2Dk*kL@o@>B#sH5)iUmJoZ!*3+%;N>p zjDWG@79@f!2?PrQ-qOOtf=INqB01TRtgT6|4vuzC9&TQq9&YaL6u;0wiVxM--93oc zlS*f>*=(;sK?I)}9?D`f5g{;&_k z9mgRrpeG(gHzdFrexR%3@B|A>qLnou*h_{mFcyo!Vexnzs5m?h>B=~Jyn{DGNN`M* zSojnC0N<=oxH)y+R3FsNrRo5SVt1!1DtIB}o&gudw+ znOOq{W)G6ebjd~NNz^&2*Bs@uG4 z_ny7`_SYY1XgYTM#E&OWoj%iY>GGAU*RJ2VdGG#%UmiYs{N(AgSHJ)9y8X@Dcke$S z^@2fD8-MzWeNiuaP%jJ)hs9YS^@1^_;KADC@ZJo9gD}-XQsn5vtgv*7Sx~d{DAAXd z*48aYbJ5D#kA2Vo6;d^{X8){Wlm4rknJU&-(Zc!sa@>c7*SrSpf3xV~o?CMU<=5Pm zHP!COIlr1)@piQ5p#$4;E*-D_?96j}^!=!aE5E#&v9#9bed-V0(*GbQXnH^x^?|3^ zeh**n{=ov@pXM03qWs9a9&-=wIB-Gr=;B?;!y((Am#>tFR>N-|Pk!flrRnFVZ?DaJ zQ@UhDiTc*(v~{HYiEV@lgWBs}wA;Cq<&EE%XtSMXEzI=H0aEF%RwY-8w?~eWG zC7b;467~GD-n0alR>yY>Dt=w~eAz*{!@I@G?X~eocD@$0bUQO)`@-I`;Bk(ciq%9? z#B*9x!?c-udS&gpbTFbvJ` zbGzT1T@iivB(ARUZ zK~s-^m^WolZMm;%@%n5YBccPkdSy%Ip}m(>g?l<6o2PHyT!XV(o94{!fQYB(w|>ZM zUYFOS*UuNu6Q|UP*FOxZKjijkP;JMJj(bjT^L09P7>%aXhDv0r9C@fzRY)t7sA-H) zIt>bsDpO0OqvSeDjyzAHj0pVgha-U$g)Aa)04Ir_q!!8Z74f4r^7PUDGo+(ONd>aN zs7R~uvaqs3b)j4*p_COCD79f_5rL@iFaRTHS|A|O$a2HdV#Nj$@D&kg(51ArG_;fz zs?y}q7y^NSMrYEP%n(2kqAgeIBxNB=tuK&ZML}i6%C%CBLakG%lm=NkMQ*3CE)_#^ z(3$~u3MCx*4C^n^DN5wAiafbi7s=#ssZ0(JJbds7s7x-C%H*-Z18{scmBXTghXG)K z=d-9x0hh|6GpH;EA3OpohY21Q6X1Xx9vwV@mWO2d$Hcv0a;j* zN~XvykCo`;kzlUL2%&RB81xJ<*W|Fm7|dRDW*E}cUr-{}Lr@}(95DV9W;047a}wzF zGKo&|PuRQA8U>&-RhkTysvuH`1S(2OzDlRk=Bv~cQ96^7B#|nV$hTg9b8-+T{)IW^ zV4?PHdm=ez!2|j18a!BBK9@~p(*;~Qnu4&vV=(n86UFFL7Qk~DdKxwr;o_kw2q7Rm z01QY0hRx^D(G-La0E6HGQV?!KBa zrh>2uh!{L7h_OsS3nDKFydWlXKzIhx6$D}sUwaGr0uGfwnKA-^%N{dD}1F>1P|3bFj;p0H`%93kP(;<5?20nAN$z0+B zi8f!YC^ON6Ie~%x%PbR*NL8THq=U($9GP~Y7BWMb$Wjz#@`8b}z-5%EDgu+_FLS!G zWOuUgxW)od7PA}^i_zym7X-6dNdYqY(UH-QEPpfwkWIFMcJMj@?BRPNLNZ*jAccAqAVjbwEXi-^`f?|0jmj{A8m&WCASX_g0 zUlWs2|cjI|GqeC6yE;%9VM#{74?hWE*od z!i)MjicBexDCOoMkp=c%kf}dkU>r2RP4^8k=ED$^MQ0;oI0BwgQ$#hiICHvhi0KTl z#`VD$>V83B5+N$q>Qseka-|FzKsrNDSG0-T=rE|Ezw{zw)9Fn$AYY-A$4G#!Ku9yT zeHWxjYPwXel#3*4#Jv$mGm(FlVPfgBGWq{`Dy}z% zpBWoSp_$1_P-=CE6DPz*nsW>PiW^-}B_)NK@tG+m*MQ9vnOLJL{LA19s0|x4T3wp_ zFBVtEiffS$Lo)_uK#uJ6AfXrK4O4tuc@U|-UG;Fg%Vw)qEM12r;Sw0 z^TKJJ*nd~9+PH)^72jn8!IW*b>NVlQ(CHi+BU$0JZ=n&>bm9|4q7;oPS5Y93)TZ@` zp(MnKxC{Z88^R0)f%ltqT?ND|Kxo&LqrUttM-l8T(o8#$;KQ_s2}Xs8Kn=1( z*>RsV5GXV}B`sN;kQfJ!Y9WXepQuo(FyIieP^r@(DuUw%ibXRxC?bMGAO-|Uq*`@S zx;O(l8UX53ka`%-KMb!oSJ8tX=u$|03Wd@&?>~OoOVt`3I4ns4lq?z8)dcVq02h?% z)Cj%}z)m@%5Ewaqf}Au!K>)iTaGoBfqBMFq8i8enN*SO*bXLm>We9v6z|%{Ls1&oSGrW%YHh!G#|ip0FyKsX(9lJLy#pY&kW8n zgLU#UpeHzMR;kOutUF&v36l1tfTcg55-%?;kn40IDPU(=qLERMb&y0^4ng`lBV3Tf zS3ZKG^~v96n$i6oh_tOf|BqC(&0yzqow!cUPMm5jIH_$1wwd3F%UK3N`=>&X%gs)l z-*@1YcnSpVJ8xDWXT)F3wzm~>X((b))9*hLm?-}mFe@(U7~=Qg#VJw zOacPx{Tcv{>pnwH!$TqRc_#?_>p2MLXboY9tOhx-sofHZSrF3m26#Qz`#pd`KALt( zF!R7CMytr9AZSrq21Qz|DM4W5gc=tHlwE7K?`#?<}n?y)2oQV#`66O3O)>)s~wr4_mfa zKDPWwBoqCKVZ>yjj95;bM_fm2Af6{aB!0BAw+gh1u*$F+X;oph)M}g639H*ye^^^v z`&bLCQ>_)&6Rnq8@31~)eb4$m$$=D15|M_Gib-=x8%d3%8>ByMY-|E-qHPA*=xpZN z)Y%-fxoh*z*3mZ9Ho;bAJHd8^?LONU+n07kJAXT&-7ve+cGY&f?atf1AQQ;}WD!|H z9#39DK0v-kZnt-|XV@p(7uwIZ-)w){{)vNyLx4k^gUn%yL#@LxhX;;WM_)&gqttP- z<2uI^jt`v(PJvDdP9vRWIeqWc?9|rHp&PqfR=2WlE4m%(*6NIP4scFzE^wabyvzBj z^M~#p-G$xd-Dh;)*1e_sTbCX#(JpeAnJ(L1uDE<~rMSkqj&fb#y5IGV8_q4*E!C~m zZMEA8w--H}di3rg?J={*t{yktG48?cY3^g(Yu(Sew|jVc^zl%8Eb}<#@xs&DGum^c z=OWL;o=?3Ty&}C7UW>ercs-+ZqX;Pll%O;#yT-fO`=d{wPo~c#pY1+( ze64)>zPY}Oe4BjR{Ji{<{Kooi@w@3y^ymBM`!Df7>Hjt$FknEyw1E8qPXb*669PvE zZV9{{WD^t>R1~x}=yFd&Pkzr)Jy-R-5R3`t1m_2@2tMBn(~H|n(Q8$&i&Q+=Tvk%o zQm=)OLWChDAzMQ3g*t~OhE59IANrE!M;k<2Ks!nMOy|%G=RGSYz1VX0YW8)GBPWS7jnl;W#N}}{+-=;aJU`wD-b&szz7s!% zKbwC_fEUCFCI}7+-iL9+bYZ)~e(N35dsOeuy`O{!hReg(g+GY!iI7CpM6^ayB1c4i z7ug!+9VLlc8+AY0H(D0GA^Nefr*NcjtMFwEJw_9=H|DJkYV6FW1uInE(2 zGj4g@U9pciPrOCk)`!z)OrOShe0;z71@YGsJQAb{bqQ^Kd40$AJ>HMhFTLOLe)kiD z6E%qqNtmR*Neh#1_xJCw?7u%5N=`^#n0zNCFr_Hvhg3ppO6rQ#M`?_-v1upM9n*)W zZ%%)c5tA`5<5p%+W^raymR;76th%hX17ZhM4QL%m8#r#@*=)CLMRxrli$Pg~HVkSX z95;CJ;DZo>+O9U5*oTrzz32>gfvBQ}rtQ<5xMD{0S3$XS`w zCKXASNT181Ws77_2-E6|Y9dk6bhI?Wp8Y z8%K2%3@F%MXjwR-@PN`mIZAn4<*6!DT~zl{SE^f!!ip9bwQ2fkHfUk(P;I@=2~4KW z6$cehExuP0S+b(!U1?V7?lSu_W!bs%;PM&ek4K9~uOEXOBOTK;)_ZKl*n8uI<7&pk z<8#J0P4JyCWx~UWeI{J^_L;h+(za4ld2L$n zX=|qArYoj5&tT11HskY5*~~Mu=(DP4{W)7Y`^+51oTYO*=H||Ap2wZHdOl&ka{ko? zQ42Oz*;kFOday8Q;l4$bMKc$@UOas9>1uZMnk80CikGx5OP%x~HJWq&TuUw&mp z%!=(R-B-?7`F53TRm$rF3K6qdGzPA1O`&;X?>n|SYd!VVIcf;NvLVwtJ z(EH$uL){L|J8X4$%HfV9qmQ&VsvBP%%{%&_X?WAEV*`&}KAw8K`9!}Hr+yUwc+4Uzk3U0i*S#tB^t%JUqes}H9J%8Tb z%56P#FZSNK`|0;@J&-%{vDf3eC(I`YpNgMecsBUi!{_SfA751d zYX9rXmq9Q0{1*M&xwe6A4_|3sb^Jd257$37zGlB}YENmu`=;>C$G0=zxxU-3)(^zIe`hr{7<1U#NVB!I^n+~u;gCRtfoTUn9F zB=l!^=|8?q(Ysqt7_p>q~b1cSn=y?iRSVWW2l8 z9l4g;WmbbHU~%B`lPkC*1nvo$|G)(a8-A#^@BNm< z%>ipd6{;TU2)7#>&Pzu*_gDx-d60oDAgogwkOc0pIygG{0dbZf1IA-|Us$=%HF1|i zR-E(dF|C#_o7VWLMlTl;F`urzNj-5m`_}4R4V$*+bI%-%{C-+hpN3;s@jy1s9#jBJ zutl!*>3`tTD;8((&0tCvkUC?8;_`QKl6xbfn4@f=Qi{|;!b#~}O9NhPlHR@->kO|Of~Os@a5lHR}IQTn>! zw4X}uRi=#nEnst8ddtf>4&HZ{^?d=^Q+`nt-0WU(H)1fa@)mDiR>?~bLdt;?wZ|p^ zT`93B5&MPbRbC+c6(2PV_n1CF@L0m97xU> zakT@olREswj{?#dWC+H>c&wF0XU)N#E*v6Fm|EoM5ppBX*wFUg5JQ+MDXKZzw!r8| zQQq4Q#U;PIb?Vu>DD9m&C+B8mg3?Z;>Em7yyy9~wCMba!U->yK5Lmx=Lq_5G91 z`Dooemc{OAm5%x-=zyZbrHa~!!yEAK18$#jpBmtC_E`1sVXqe2VR`%CJ|GP)>!G<$ zhyn_t_wFF1`N_j`bBWy@s`k|r5lpjr-sVb1{^CsMtj1o$-3(8JwUlI^KwyPxx{ z5`&ZIQJNcKSK-euJZ%;n+2qD+>wNo7@xxOKLFKP6T>D%H~-@Jc* zYicmF@66O^Rr{(~LmP;=h@dq>@<`$Wil@2}6OnFNGarGu2Us?Y%OVT_GurU ZnZ+f5a5Wdhq=zhqGpawo|GDGF{{ignwm1L) literal 0 HcmV?d00001 diff --git a/4.jpg b/4.jpg new file mode 100644 index 0000000000000000000000000000000000000000..14a75e1ecd2acc57b9f45981fb657f41bd12ca2c GIT binary patch literal 1583 zcmb7EdpJ~S82`>Wb7qDaoWqD3Q;u6@Du&3NQAD{7LT%Xw#hPthwiZdDtXpW7$`G+> zQz^-H=ULU1O|@)PQ<0vXXce`VE|ksAp7B)Mv;XaTzUTYne9!m3zxVh1eXsJqQUS0v zp5C4Sf*{~Uen9yEtON)Qs}>m)a-nn-rBG0H8jVV4sxz4kbp}I2QybIJ#5EZVYz~I& zuyl2GnOb`Kb6EP?EM1l=351Y$D5x5Ws0 zj6mR%prA07hNzC9{~n=K7@^RV{eVecfiVOF0P=f5&srV!E7D@x?2{&CHl>NSw|n+o z?Y7*#d2DXkh||N1<)I}zEyC`PT&z$6GA#!KFiFNIH4zGoLR3JuO{S)k%t0u8Ga#?l z>D@e!JH~~_(--S4&1$UwZv9tu!y#_L+8~{wE#}gD{K!*x$|Xm_8y7ieV=lRBwC5&7 zauHd9ivxhd5Ci?UD~JS+;=NRD7GY$?7d#rD(9uoE5YN^_AjlQU(&!tT_BqUd{;Dn2 zDkL^^R|C!SgpVBWk|*-ax#ucu!@2s$7Otu}8<=!Zv8-^yMBe!fPn};K;#slA=XjiP zr=Ymd=u5rDqt3e=-)gnnI&`-NM`8UHA+hSiT+iUqKw;(d#E%N&Yl+-_&sIkg3(U*X zOa|_r<=jXXd)>wh>SfC!Z&$21>L^ilV2A^Vf{^ro>;M4}Om?7S&DSP)v#?&f{kOW)ZkP!>+EO-67xIx8?Jt zO9BQar>FDmgb@bUin15A5^F~gEOK!hs0ox0SG~06sCOuL6V3AiZ)N6 zLm2VJ#=Rz1)`5xDQ_vBNAmjmv&HxjcJYPnKC?g_pz2 z)A{)=ICr>p9XqI~=}6c%C)AsxeIm<+n zGSG1@yb^c!&0Ou3Sd&#E*pYfEe}a>8t3VJ{wXoE5@**0nk3h{TR~V5vVR9CILM*@u zfw-C{OvvE(j>~3&s=SGLR%#vWnaO#bo%e7cfpw)$IAq}N9ohDDYM<2mdfdI*CKqQ} zPWtvENetH$Z5+$;EVG`?;veqjx|LSk+Iz6*a%bV=8&x+qh^9(y8vV{VUr>xf($T4- zBnS>h4heFEko)@})#U+F+=Pse%3_@_#iv?mv6gSzP@Uy=mhw{z_Wt!VVL(?OBOXNz zJ}J4H9(FTl;nd;lr-{~Z(S2zN|_SSaR00@GB zExG{V0ALAVF&NQCg+n(a4na5^B#Fn1i4!G>M1mxNAVrdfrAP>gK!D|7M1~?OD@!EH zuaTpyk*3H}L_t6-dItwdK#&AQiXcV#-x4+fh&Z4GC}BYaz#t$N0fo%~6#%g4`j@bf z7zT$&k7yu(!J3ZNF8MxH!G;EMiEFsU}7Hb3ZHRV9xJt%sDbWCqghoU(8NoP2?1Z2JQ>r>e=3)(ovVHNqQaXv3!A5N84EAf zXFo%%50Q$hgBF7UVbZ687lKC}E+!D*13KIT38s3Ale zlA%+SRoF~D&WZty$iVty0`Wzuw9n@8qzz{ZhNwdU3$b#&ZBq%k&Yl(TC=<4!{iY_% zCG&|T__@pW$EewpjzwdcHLufRo6on-rH5s1j|(goW0S`t^b|6gc_-yj04-PqfWhLS zRRT0U4nSX%DMQJFl-X&5(YJa&zP!$_WfWs!wDt{GHBUDknv(x`{C%Nm9F8y5@Z=Ni zPV3sl-8oc!vfpx)&Y0$&y3Rdy{5VhVXn#tkhp8(!v)bzV!);l?9&S#4oBEe0ERURV zE{Gu422Hy7ZW?-?le#@&cqrUmht9ue$;nMoc&L@=7W(^K#-_@7=I#V>t2GrH%7U`0 zSVq14OL%ryYEgR8Wv8~Xu(JEM9U21>$M^}|>9CPwOKpIigUPeaHpx+_KRS%Ivq;}w z7)0m*lg;so&J#3tzFloj7Cr2Wu2_#X@P>DBNM^CDGNnB3ZpR}-Jnz$HzhFeIur<8F zNA2)B2ID&QQjKC`SD%sb;l5s3*E=q0BT4a$2r_|`mVRjK3H>&ydfKZ8JJDdt8U-Wq zUaYvBVQII|@#gb?#v^`at=y5D-YK);s&$3x0~>eFuuy`PnOm7vxB`-l`QRx6N6?YM zq1@lb6di6l3eNM1PRncj0xs%nSd&xPFurK)9`0e$7VnkU7$7|;hFb{g(BSSl&^oWC z+aDBYn0Qld5zlvau6J6t*V#bkZkgT}5ahtQCJ}B^#Ivhyp@U2Nv%ru-2EJcDL122^ z{hnQln%jl@y&g%7ypme=F2rp8vv|g~*o6YFOzDAf?~V={IZJyI1yvD&Vj$@Ie*yvs zlg{P{8hv;u>gX3#Q3t~{ErM(zus2~|pZs@#R^Y3NyR>^Ymah$eNJ(BFvUF_%D5AE+ z`D^LAMly$u4N8A$9+qnNHRz}-_7A*au_fkFy@G08Rb$^U^4=4#TVFTW<0h){IvD+w zzvycdqcvu-0Ujs%TY2H5{sAh{%i5zXO(NIYh=0Y8)?@qYV;U`OSLK7-H>R`>s#`@B zO`4sPEmY0?sj8Wiv?Ib}PEU#DC@oo9+1%BX3VK`k89pvN<%W?AlO(}8<~>Jjubee= z?=>W!u*=Wd@43r?exv@>E$*RF$=rskv$nXsJ%DTBJ4N2of<@CZDY{bdvYqH)1?ct| dXwS3`EGos7mvhbERX^%ol5m+BvA_!Z{sE@w literal 0 HcmV?d00001 From ba0a57e1dd8492b149853b8c56b6be298461f8fd Mon Sep 17 00:00:00 2001 From: pras-kolar Date: Tue, 16 Jun 2020 20:29:29 -0500 Subject: [PATCH 3/6] image files --- 1.jpg => traffic-signs-data/online_files/1.jpg | Bin 2.jpg => traffic-signs-data/online_files/2.jpg | Bin 3.jpg => traffic-signs-data/online_files/3.jpg | Bin 4.jpg => traffic-signs-data/online_files/4.jpg | Bin 5.jpg => traffic-signs-data/online_files/5.jpg | Bin 5 files changed, 0 insertions(+), 0 deletions(-) rename 1.jpg => traffic-signs-data/online_files/1.jpg (100%) rename 2.jpg => traffic-signs-data/online_files/2.jpg (100%) rename 3.jpg => traffic-signs-data/online_files/3.jpg (100%) rename 4.jpg => traffic-signs-data/online_files/4.jpg (100%) rename 5.jpg => traffic-signs-data/online_files/5.jpg (100%) diff --git a/1.jpg b/traffic-signs-data/online_files/1.jpg similarity index 100% rename from 1.jpg rename to traffic-signs-data/online_files/1.jpg diff --git a/2.jpg b/traffic-signs-data/online_files/2.jpg similarity index 100% rename from 2.jpg rename to traffic-signs-data/online_files/2.jpg diff --git a/3.jpg b/traffic-signs-data/online_files/3.jpg similarity index 100% rename from 3.jpg rename to traffic-signs-data/online_files/3.jpg diff --git a/4.jpg b/traffic-signs-data/online_files/4.jpg similarity index 100% rename from 4.jpg rename to traffic-signs-data/online_files/4.jpg diff --git a/5.jpg b/traffic-signs-data/online_files/5.jpg similarity index 100% rename from 5.jpg rename to traffic-signs-data/online_files/5.jpg From 0318759ff9c86dd9ca5d47111b044bd5ac52d141 Mon Sep 17 00:00:00 2001 From: Prasanna Kolar Date: Sun, 21 Jun 2020 23:52:23 -0500 Subject: [PATCH 4/6] Add files via upload --- color_gray.png | Bin 0 -> 919050 bytes exploratory_viz_1.png | Bin 0 -> 5165 bytes exploratory_viz_2.png | Bin 0 -> 19680 bytes online_images.png | Bin 0 -> 112019 bytes 4 files changed, 0 insertions(+), 0 deletions(-) create mode 100644 color_gray.png create mode 100644 exploratory_viz_1.png create mode 100644 exploratory_viz_2.png create mode 100644 online_images.png diff --git a/color_gray.png b/color_gray.png new file mode 100644 index 0000000000000000000000000000000000000000..4108de3ac706d8b668d12882c07d7795cec1a425 GIT binary patch literal 919050 zcmaf)Q+Opz6Rme_+s0%jwmq>i!6ezSZQItwwrykLiLD(w*|BlHb8&9}^WOB+eO=vE zwR%;gvZ53UA|WCG06>wEmQV!%;K>01SRr`W|4x!y{sI46pq<5J)Zzcb2i_#&zdeDA zq?U`Cy_t)S)LRklpKI zWW4A-ZZGM%zB(P&xckCe@12yHDbxo)I^lL#7c(Gpi8a6sDzOSOEhk$LKA%xvszYQxhIyaR6H`mNOQ*~VsF#nscy&@iR?Eg(ScjZfb*STQt%gd9;CmwUr26VzFNYe5C zEk{%&34u}pMRXZ5RWh3^s1^4yGE|%S<68tkmtFor>vBpQ8ojhxE@VeH2s{r?dseRV@MKZI!KNuHbQ1-GIouSs@P1fCgXLUE}3{#^dEi93M0^M_o1-*+$d zO>*#6x(u<{IA2YFhv3@pLX6-@@plJn{yL=F%NBXRK4E(FqVS|Tq#D9W?hOV7i(02C zTR&s}x?lZM!WPHVUtZ~zZ>de6g5>=cP!fg;>1$6@PXVTfXNzwKr!anR%>IFNO3W$d zqy1UD#heWv{<3y{+Ye#EWsypp@V zJ{I#%PeA-BRHLxi;|&bVNI;Cjid>)4$UePsFmcrMU$M*L)Ogo!NTRo zrMFbK&nK+G*C}_qch`bF{)YedyAaVC;RUGTLEG-%BbLpDIc0yTPd>n~z{1(HQ@qAI zgfoAF=}8vA0^p>rjy!ReCt3c9yunf#HY!A$^r=+pd2IB^J5BIBO=~d5ALc!j;N~eQ z0HufbT*FI$y=HRpOvHML{~e>JF8pR`IrZ`j`O=;A1Y0P1 zn~Z?D?|fyhr7@0F-axUsLG9ew5!B&w5qR#k17qxEidWZ_4mR=LMR_YvB-LEC@ zOahS3BU4ne?MUe3KnEM!QryPBNE1 z256>(B9yQ&dQel9pnKnIX8wz@H^eH1A3K7iygp?o7=B;;u8c!`slJd#xMzC#k z?ScwEX8>mOvf0EyI+7^KK|bXZg;@f64hby-{&;dCpNBO6n7q%_I$+Dg`PFw*1$OV)U zrnhldle|EfLhRx5CZW*2xMsSP_XR*e6sMX?~car)w}OTbY+g&{{gYj>l0RSj+@p4FXs_% z^>-w|3J`UO0+>fI>BZ3sFl#oh9tvr};kL&|)WF$kIQXs;Xu;Py%U)SniR^d#UwrBcfBaauehN1q zVb1FtY-0v(`#Xohz$BCic9aQojE=36%N_I^O8#7_3$aXs~X=w5eS zg@;y;0+HNc3Tq7G7TUl6kM%^F{jHuP@ei^?0!I{ihSbarW&O)5+W9%bK2ua z1=+rZ@NZ5Wzq>p0=l6xGDXGJT^ohD&|7ibf&^znr%GVWHnLDEK0H%4!fV)_6b#YAU zg3WUNKQGm|$8!I9;6oRYdfrO3lP;3xFOtd@qgg)_c&u*r$VBOM2M=S%Zbi85kF$uY zbK^o_Vr%Gy8~RG!RbZPs4v-+a-ejb#F~1Wv83Q0_3+(L#*#7C#X@O`pV9QjR|4X$= z^oz=cU(DV5r|3kVp$oH5;rmDdRNopzxSPt4sf1P-_sLu33 z2!9GFTvh-1T~}Qg@z4ZfV+>)mz1hi~`dR#J=g3{;>1TgWk_aEb8&!6T7g}W0ka74L zvb{OG71u>O{^!bBQvE9>JwEPJEU3tLlE640KJ5a+zu1K2Mse0}=0soe@)7y#!}{6Y z;2$BpD{)2TP-n!GgfXNVZfdl&Qn(qIgJ4MAG_X_#x<>f<+#kXJ4gC2D=PL62s?;~& z|C0Cd^!zu^H%s5AoC?$h6k04hNgwyDIR|szpq@BBAxqccpj><;Koe!E)8GI)zc#>YTo(%7W$>lhAQpjxKJ%>{xxO|) zqp!9b;BNbj<*&0L7B^}l^u7yv@qM53zvdQ-f)aBh$;sS6aC(2K;4_=ap2sye;1$SY zO^Qsj4;fJw zYKRCQ72jomf6<#W@xg2m)aRSUa}+b^z4;T1IQQH3j1e6%!*Llyo~Ai&RB|e)}`EKih`I zdN3LXt7SEy`P#RGjd{o;0KM$MG`Hs~-QX>ESfTZ^!?6V2Jia979T_RVR2ZICk+d_X zXAk7Kb=JvqJ!ZPUcn7&3?xSC9vnFZc zDaCl)Q25g3DZu{*ck`_oH&y05wE}B;WQ)}QXaSCBP);9lwTi zuEA-b--hlzo6eyS{t>ZFJ>8C|PV!gP7S*bEljD~yQehW*ukzXj%q`r2^_PG7t*lmP%_+CL@2Wih_UunVvSNSJ6cnN=n(SA;|vZ{RqS5^nf8!}-F z&eimT6jL)aw4QGG6;RR@fH%1RcJj^TvIkg*<1#*a4WF(5KAR(`mw}t{LXM=MiCT2| z@_i{zYRlY^qOY!<=KJdmRA0(2dSnUqLxkM6smFxCx>TNps5*KmWFRO=t<{(1vdi zwfCsZ&|0yi=IbEI=bR06_5=z~Ki&`pf=arxE#cjA_(m`xOw^7!H{ff9gpKYjSIt*3 zw%?6n&kafh9(kU~I!C{s3AkP&24Yu&>5jPiWW5A^(2%$*VH8U(#= ze7#CJidgW+`#<}CvA-*QvFJ%fCVBxyj2^~ewS=+MvrOrtLxTGnE+wc>6hFGp6~`gg zTl^I03QhfIZEMZBviy1^%9n#)#V|i>yI|v(A<|H7Efo8%u5!-7s-$-k$JKba9|V7P zScEUA{1Ob=TqJ$XOW$Y3+``984~dJNPaz5=_mAP>$T_mmYF6?uy*49GWl+3y;5=RY z3~-)fv}V38#%VsUK+o1-aDanAv&ZK@x%Z2&*T1)FVa5?n@tAoxO#XPv{$lP7%Bio- zTZ6xUQ|GK+{93hXD{oN0S{*Sy=i}Hw0|)ezUQZ874RU(}zk>hnD)3!ju6Q^5dr8Ms zIq?M8ga1U)9ZDQ2*Lt;>AV-!nC@;i(DCE@`ZqZCFB}r@Q4wM*H8y~}q`cF{UPTph& z6-hD|yD|%O+7nZ2@?FI3kl6+5T?Fh5gbNlcDAh$d%fUfgFR3LAls9XlT)MAh2AE%v!HYDK_?~ogLxHd^cN}1z&)X@0{9~wx1C=;_oX+U z9`ngvFHoolT2j`qGN8q>zEW+Zp~FS1P00JiHozU)oh6c+*1dn1rogufKcjDZ;A@X% z%i9;q?~RMV`^MKKWEdh)L?Z{k9|E#wg{5lEeHn+|TwOI{{V*BjvFi=`d350OF~I&4 z1im)^8l72)X4grKwSm}iBt~b86G-ubfCShw1BG8W3Y3=Ot!?UQY_tl1lbqN`*h!^6F|Bng29Je2k8AYX7j z>f^4qP=lP~ZoStZDW#yo>*F>XH$kj%AeQyxxl{V%-M$xy&-3F+JbFcV^%a(L+fMzM zQxX?!IA}cHL5x6-No_rdbB*B@fbi#d8JQ2sR?pThp8un*ShxgsX7aT@IBdA+ixe(o zRrLCReI(4+*1}w4pqhL9lV)nb;&L9VP202A+T{O}+m*uO`Kq>TrAh&Cd&XJl?ZwKQzBPTqnGo zD{fjIRaaV-j=*qHO-7|FU39e`#)RpIsnPD2Sh!JY2jn{Oii#gOM1l zK`o4WRXfBddonxfCNhg(9^TDfgl`~$$*R%$xq@x?MCl#lD;?$cuj; zg`G}*9Ny+%edOKNkmcVFbkwj4Ewf$J_Rl{KPY?GWSLUE0{}0NN@UTH4Z16+RLRn|{ zv?)8~Y%-&?bGG3LUHgBP(gsn!uGODX-`}O6%wWbK`4UUpuhhOrwf0BfxZKV7taB*8 z&j%!dudCbzXPiK$Qg{`pVWflpe$jnx>>^IUB6M|O4;_kx3m9`622Pj0mWLBDd-xk% zNDT~^S+;@hX!|;1<(Sf(<}QcU;GQ|g(Gr~YuYLFQ8~2qkX#rNdT%yg-&_H2{u!@}U z-(4vN56H~|gf7GE4m_|$=FmdK>gJqo|2OZgzp+25m)w2sfL>Pm(Rfup;M=z^Z}6B6 z_WnLR6n1-4@%RiC1!ZIc>p8L(2__cDc;L@H=p%_J@n~U_c31WojqLN}>MTkeL5ZjIXg-p*Yux`B zMO{@=6x}0vc94Dsi{!cZ9+18N^T+vYxE~|v_Hqsv{yIe3yu6Bxa%amlf+aY9{QK~B zHcMI+a7IwzRY?5Xd&t2)EsU&5;ZS)2;Ferll?@dnogVBgh5t1%)TeoWtg&jp=e{mC zxK5y+hEeB=P27v+QfDS0N85PXLnjaJ`cgN@V_~qIhN}EMDf?E;Eo8|t&~U~>*MQp2 z)?X?^!dgRuEX@lJaw!%W>KYucE< zXznsc)IE*#dMdCwzZa-prGWpZS#^8=H$}Y?FEDu|*o! zzQ*i%AHMg&IrG1DKA5jQsk7ei(u&cseddSS!brTX8ffNaxK_EuErB+b4xJ94_sjX~ zY?+tycgxE$osQ*aaM|}f3*s&QchACTP%8xO^le=p{cX^FN(TM8cgv?!sxe&Q)dUMy0q-ejf_Q zb+So*e;h=<(HE@2mo05o_V1*Bk!3?q_KF{`a5#&HJw^L9TqZx-H>hWxlTUP(pS-Ow znP%F%fIhZLJ5FeDBmwsHKz2$C|xdNEuYpjxP%e=xH;9kLJY zO#gO(9o@S{hHz>7Tr27C65xHg3!;A;P#{u7k9leZlF@}rz?-KF#O|-S?7&XFUzOa6)<#h^*hX$1HKbpdYiOSsA^46k)p`y}__{o6n052UTMF1G8Chq)E zA1&{a9sDMeVEB(&4xH$mByP1g#S^SV>Vlk6@IeV_ z5k<6SWOIj38xY+?0Kd7OdkId9YVCj;XYxx z|IOab1Zlh_^d^`1H z+&M~k7UCe`WIM#0r1nqH0OL98ThqMB!sK)XA{3;IONl`a?CRquJI3 z`!12GXP##GeN@0^z_)#7sC}+m$3-b}jgweRTNy0}Ra6h;`#PY)7a^XBDocNer-vdm zbR47tYG8K~Z`N)V%Iy#|RsZi_ODh_-F|l5AHi zPblYOa%XANvNPyQoGqdi0%cMJN9Kb;?0Gf`F6e!T$HLOpYk4amhBdTFY095g zxAHco-HaaicQp}8p+YY+U<%e788T#j<`K+kI(?`9=}JiC_;;x7Z*xT@2JCkq0!_!5 z6vZ+sxL9irwkjilV9aeDs+%7@wfu2~yz6OLh$+|i=>>?FY3%1%2LTFpjZL; zMljIfEg0M5o^|%Ih`{2GKb2eclgRuMPuSAQH3Z@~EutFq`*ra<*`pe4pd}kIB6y8gNWT+`RC$0k*uptYEok(AxDay#G|?P=3%GGP{orMytxs7h{RsfkK6ZGoqvA{6G@W{208 zu8YvtJh?l6D>mPIz`+-qdX0Zn;}&IihPZjB16UmoAWJNJKSc2L`qLDIE5|4py4+vp%({S9P@siV*zyRR+0%O|FHBD$%`VG5yG$ z;^dA+Bn(D7eyt-mXQ(ozD_L{+pF$p4rpT=zy)zDhae_6zClqlho}lRMZzNdEyzVKh zyfU^zWKQ0DUqsK+>QfmDbAX&s_PA zBrGSwoY7kwT|V5Tf6J%O! zaHR&?vRPg)?oM5sn4|jIO`_Pms%L=V3wg-feZ%TnpsQ^s(%3|D%bvU-G@yAIc;yjT zhH^RWb3yR-Eo|KmevF3b7^ zVOW2HNrPie8BbhRlw?M9CCev7qZVHgGEH4)5&T$ss2?;HiHcnO3wDI7Q-(6gUQy0R zFBKndezqsx8aEDmFEMt`j?dN(S4*huIaWj}40p8qG?hgV&^<+p@9zYi)lUH)5Z0%) zfFJkk;&%7=F*iW@cZ>96%VS5P3#xr^+&!;cp#M}(iE8VIkjBX(AxN2}_ODG4+`HcT zs5(@mjB|l^;U~IPdw*PiCbB>;x!RwCEVN!`*+t09|K|nxReKha(itYG+{I1gM_L&t zv?-jm5X_YKCpCgb8t<{B-S)yFQPVPjlQi{VKXB|J%;BL(T-IHfwca&!KW!3X!%wHc z@9~CMrYVjBZE?vF&*VZY8}n-6*J#CbVlCcHfQ#jW`V*x|x4mw^rnHCDF8SS?o0&Ts zUpzA@x{~zbRxrC<_tgmEe!R@NUwZODr1@3VFFk|8x(1Kh<45x|Pd!OIpil!#8W#ba zu@!z7slh}|0GiNR+JD;budO}hzq7c#Jql{IkO21L^AX?lb=c-}5m%0rR0#VsYTu}h zI*K;%$f)2LgyBW0NtzO#JlknxQkJHG~ll4%hI` z&OT>}oQE=S8o}ruNg#A&L8=~4&$#R>t0Cgg*>uo}SIII9-+Y(L!S7QiRCt{Z&dK-X z;5`PrU@8~)sJ$=qzG-`>{;i{r2ws{UoK+QcXFQ+5oe0&mT6$w*j3Jl|j~O67O4kMYLtZN$u)QCSt- zQ3Wdd0%B5fJgf>QpuHwQZPABs3^sx4Cp2p?et5Uw!@Z~5L zB=*gaO-AbH&3@JdBhxsCLr;?DpY#rGB5m>;1jvT=BnPocW$#=Pump3i%6ejvuRg;F zsb|iaWuAV(s>95B+JAF`ToR`%@tC3q5b2lh&F|-i@p&(NsrsfT_}WlbKP+%~!>WS< zj9(2i6j2z@@m)AN?wd_iD>7}q%6_%W(RGpwHks4#Q0NXSPWV*9w4%bU9Qr~U^J+xp zom{ZQEIh%7ms2!A1%VJYTLP%OsQzgU6ybppI?08Er?gCocc$3P5&=y1{HGz11n5NPMuRd5s|EvL(O!@}FXe1mI-bsMCW z?W{aAeaj@1M0ffa=)3CyHlso*LVXN>M>hb{=c2ME-!LFN^LUOUq#b1ONzmDDX%glK z8{VlHYP%fBhoyW_$e^84Zkm(->po6V$27%?BjNfu7CSbLvGvrhsE>gCv%`;L5xZ~6 zg*V$LsDU##Dkrc(`D~KJ#MynZ)Lk*&%73|yhu5+)DMXJQ;96YTK6F1jg`-ocw ziZM#tSwO956d0kHBILtkp7Hq99nr=dy}oaFMayt(O!s2O(no+a`GUCQwsa zY1ZHO^-&Q;S}rU!t|K1*>yhWU6{kzJ3AVHF1HHkdYj1gY6?CKZ6)6#qgd32&z*eJE z_99VnDI~(%eEkTR$o;a*`Ta^;g1K#mYGJK$k@X)525y__JySF-15_J%zU7=&n@+Ch ziZPX&Y$OqDZJtlo@bPiu$Tk8qi4|;*Rv{7lM}n0el4<&Em9N=5)>?0F`cEDNZ`XST zYIsF>j2=v8AlH5`nO01;kO4Dk4#btXUG0wGM7Z^YYgA7dEk(}ZdGJ=#Oh9@{XZv8$fq zdhsz5QqVvr*cJ8SRLU&JS&XT+n~PVlDUSxJ*H~L#=dt<=)N?@-2~n7}wp5Y_2|W%* zDHOs@NehhL8aj+2tQwS?;GB~`Hjp|0x%+B*s0)`ijtMMi(WZvx5uYe;`Ey?YqM^2^ zF@cIE4x!ug2_BwIDT;yqfAXA$8%5?jqDB(s3=-g&EBvvTERgenI+YC>6>Y<_CX&b< zS1~khV*O{EWSOPfFg-)6d7T6B19w}O6I0fMR%o1x;(pR)7Sd#%W$|Yi%i1Zwg7^-t zAcj;*^SC5CzP=CYPv)FnJJhnwy#$^jZ?%h-Va&lpaB6)=I8(OJWfh_d>injo zj-nE|2c`LkMWKhRi9DFKuHDA64A+Tbjf_MmD}kVoeS^KWrakH;r(;23$P!e}SPFZV zD%GUprBFi{?z&~9S5km_j7~wUat?QlG5Ape_wv>vP>p0C;0hC&B$!BEtTQV%%8$m$ ztA1Pg*+mtv(P+5_u=`J((Xop~c%gV3?c~qz+NHj4>B6~25ijh{nP)v%4Q;^?ZC;q; zFk#OcSQUb{z^3(}S5j=DMES~kb1T@%@luTFkb=wM@hm1Wo~@dVPTf4{&^&nDk{>3m zM44I+Se`V$(44I%(X6`Ge}t`Ra?m4QVaT>3bn0YcibcRqTX`o<*ut(=j1veA%A^wV z&F0YmR_RqYsqw5=CoWrL_HVq%M3UDOfBpwgUM{AQltZ|s@Ew0Y$SG+w1}tE*5_-aS z*BQ@P>}&}?vwL^6i(h@I#xe{tAC2HeIv6xXvkZ8pN0GoTtT`xb@*s24W13K+VSno< zzxSE)?iKE0GJhBQgEl4L4|=;u35v9W+5og_FDr0KWX=n8cl`5tm?gPmr6`G)p7A7n z7Aohx6mQNpC4|M9heK5q7#`BckV1omx{90Kl9&8k7Qg!adKs>W2I9?5h#xU3PQIg8 zpc}ECGVZJ{iPyot#0o+G(>p_e3@%f1aqRivlkxa#u(HmJa7K{Yu2oQU<190`6Y8fV z=xqNGzDTsfyZL87b)OUBz8ivER!A#g#6m!1OvRodF!GRsy*k|DQZ=FCO7A-zxlO-( z!t;Tp+%6c7HiD+AvnG#81eIDPYGz%T?th<%mr&WV`5BSKWECDs2I%skAu&k89fzps>Nnm{we^ZbgfNc1OIuLWlyb^My9`e*C{Q$iB$AO2N^^`mJz z>@E3H>yH4qA8!;Sb;2DT(@olj1|UFa%*(i6^#(jdIgA>t~M_`Jcj%`gx5j4%OxZWQnptThkh`l%s5oGcIc=@6<4tYG#-$ z+vrO#OM1@X@@g{i#!$^u3Ws>x;4QzLkSRj~vHl;ERTIWdyoH4G{OCX{(Vn=J-=x>S z%o4#~0d)}SDL+ISa2(1T#%|UQV@u49d+FnlJKRLu^MYY`I)Mjz0^fHwpiI)j`jV$1 zYO=y|&3ToJ_yFaea^K7a=yX`R)K`2JPfm^|!dNO~?Dpd^#Co}1Mm>$pS4O{b)PFOe zBLwA|;pc{rmKC5abXL@gR?%iiRmts~twChXq#bT7VdM#VMqkQCcJM<*4{Qv<*sa?- z*(!0i>m4CN4*s;P{W1Gp&Lny#rYZi`t0^F^I^3g!U*yp;_hc9sh*DpxLl`(_3%Y_&vN^y;F2gAQ&q*e8#G{R* zQ#11Ww8<)<6w<7~xx7)NL^^Y|CqYA1hCXZ{TT~rIl<}k^_ia4@ z{Z*@Kh@oH-VpYj%(LjR*Po=iOoJ8ouC_I`BMts!KV0USYrZX$zoo&{4#-WZ)CWuq? zUuX+wk_`wc+7agm#d}>TkPWsx72Lt0<%^oG@ceNg#n}72$JmOel8KFu59@eK14gj} zbG2{TCUti44_<|mY+UMlxqw_LiZ8maeBr*V(yH+sNgMeCaHL4tV9f+sb(*b2s$BWV z&JY(DJE4M9h|#;{At`6;umsJ+JeHjW-O0X%_f(RRSy=m13|%PBoS)0;IXmLNQc#;t zk7Z73*A}$)m%=XpSG>waAE}An*{ls*0F2@FvgL?HjuE?d+l;hk&kdY*FKNF{*D1(hYDKzcb!jg z(i7N}mNR>^GAfJC(N^JexECxT%c9IZR<7ou^m3&jR4u2La zwe$mA!+`dm9o(dt91H653)(_|#HjFJ4peDQlF2xzB z2^;Z%293|J%i;_DJY0YUaMh45Deg{h#ummb0iH}Y&f?l?j`;g1oKAazp^3rygp7*a3Gh}iMr>MqSSa2; zQC~_cj|Fa?u5m!T zv?{*>&h)2n!mh`6$HG#XUBY@5zLXnp{7JXG^t_9O8d2iGbyX5NGwygqfWivK2T=>F zD`tNZD%z7pTw_OvP%*lki`r02U_)xcyoR&L7$;v-Sr)@stC<5&M4z!oH%&Vo=lkWn z8>RlNuUvof;!nC2@9V6sMMcAF!!*A<)_gs${w4bhHrHnYX$ef;j>&&~KZ+tsRaW_f zt72j$31B#vV9gX*5~0Lea2I1oEA<)D;pe49;6YdyR>g=77r{FN7*fNzgCn@#!m~=n z7hKes)XtnCRxpySAswrjIACfayk&4{-H|K4&+c5#2>BCoLq#D!F7P*Gw<`t+(v9Fc zlCHK;d~I}R6Etp!qrNp;mGS&IP}CwQBD`rFiS&qDb@1Y3Wq6>YS?J!bD0pdL#sB=K z7*-nwJLcmLJJ{2ftNBZSTY835E*0e`H&z|l$ZO%yqm}2Eq;LO{S@`5pGgOed*dz{W zw=5`9WR;q)gA!isDIq%gJLCW$5ff9N+#79PG1MK^MVS(Tx@-kr{b6K;m!W6|38FJ+ z`u;ku-#uAH)Q-U89K-v&^m$OSVw*rE^;E*XXlwwwcMe9rlyC!1d8K%Buw(}UNc($c zso%vhNHGd3s2;G65SDE`3kP_xrhgGqF!nL(o6SZS`&@zZ8w2J?vSydZ16y$_%eZ)! zr)C9g9dBf!tE%ebsyRG{h@OqRj}bdpg0A=#B9K6}YrM^BIHv<|xvcXk2)LE(QQ8=1 z-}@gS7mp%`lIi$=>;K4^(Spyl731%k-t$n;9tJ#974(#{8r1t=?&!CxWbn1V&B7kh z8##pd=5t$G;PmUHcVH=QK|`qu{7Hq#vS9F zV1M2~qDbIwD{CwCwi7&i%$tGmSc zlyCpj%AN8rSZHkavm6zS(rL$A*45MBbL#+-3iAOEa5En8%(3g(2k1DmR9B97c&f-K z?qg04^xz);keWvBWA;rM^gIamx65{-O@NSBsIQ99ybp^Ae4;~A*A0wSv}?kuFJkRn z*wcY?eceznSh2DQ?&pG3phlX80#7ei@~yK)LIV1d|K2Ak?r=6#!A>FO z^Hpv5pz&ICBYg-DCgXzR(fAw zht;O_<91H)Hln&Y;o;L2HV@(mo`-{6W7#f^9Ni39#>bgAgGsMRT1gK=WzaX+H&swb zImP@3RyTmcSGxEM3^#?2FX{)=APkP%IBXI;uM$kbch>$aIf2e>5pT+1=u04pQ8<-N z&{jRKcE)uN=UivvgQpN#(Rt2r)~&DjZrwrCUL;fN+NJ+nCLFH3VRlU!>v5V`{mTF) z=r4YRG+7CCPpZ-lLsWqXH2LU)(6NF8i-yV7Wmou8}@~eQk zIH_qBMD?BHQ^m#-ZN}m6@ref!o~4@DaKa9$S8>Eiu9HNzf~#YbQel~nzX#Bq_;t;; z9Qzf#&+S#V83uf;F%(9+rA{qPB`Z`YZ4Xa0sIeJNJ0acPw9L=eK^`H&GOS@W4hg|* z6CrTNUIyLH^C%Ea&ZOhnp`D6jfDw2bAF*_d?75?9SK8QKn0vau7B@6h=LwxhxFG9e zRCs*PIa8>&Z&>{O2;{Ua2sC=!-M@3h%D89_GvZlWj=(8c|1?Lqd3YE)J-Ds~NPPB$ zVr2O6pf&cfHh%X!CW}6ai=#g--*4K%vjbTbjT!*bs$Ro^?uF^7Z~aP^Dsx^K{+-;% z@QYHCvg+fQk2e1ZFqK<5U4gDb%I)qU>clNrCYF*%Igq}Ws49rmcl>tZrFDxZFu`$p zg`mv;{>Aq~l6}bljiPZRo*sy7w({n_aOo|f-i_Vliv2dbG=j)u^7$KXizH6R6na%B zAb2s_L$KRMezZTFkHELe{Qt?0fetoYNYMZ0>8GQ}{}i3*={@Y}#|I0jA;$%BCNbU% zZdK+llUkta}r35b6jgUopS)Be-oJIk~&;dHR)|iG?|HW5~p8|Fqoi9X-8K zVJQnq_a`Czo4!8)h%%&!{OEWHSb-)OnL`?ebgZO<1jwOR`NS7oOZ{sIwooklP{0(@ z_fc0Y@ZC!xzKRonQBE_5ch2lNhf5-*PTmMu?e`%zEmdr^J5}2N=S?XQI(ywCY@VMx2 zE>TB9o+GjuQ`(rl^Nmf0t>rebREWBbtRkfKi;~*gCY`d0Ya)^>p83OdAqTFO%Cr`1 zF4Ern`rM>je8n*Aj+dD|T#J32!q=ZY$$&LmrwTa8U-ZYk3VR?TyE z-jTGJx~m+cDLYUNb)mV7V>#N>*mxwhv1|1mda|tkinOQ9T>sCwNIbVde#u85=|>rq zu5QMU1l8wb07BMHbu$R7>tP1JN_-C!_Uz!&rW+zwnJfzA@z(SE-6I9Osg)?~ zzw@B=LRy=4u9z-ncOp?u&Qf-Z z?o1!=NJf`8o8ges=ng?)JJbIa@zF;rOR7L-530^m9(kEY~3+`Zz^Me^!P3 z()I1(rP%3*;lCuxJPVYQCp*(;^-i7>W{<}#b~f$x1Idm`1P_2GB>KVFlt;xrd$X=t zA8(I+Hb|R*eWn`uJ~9l{fLiQt{+nqEOl#1Mq!?*&_mx-pVa~1b=PTzX#(2pW^{LpJ zpiLOi93-Ofhx_>Z&CC3dKa%_T`K0&*MO!fp7Xhhgbx0Cp;{2yo}aSW~?MczRyg#9p)s*l&=W> zQaj45Sts`*rC2tA1ZY63o7vz-2G+x1Y9K%OSSh0Ol0`xV>BIsulVmmYS>X_Ne~atB zZxqjmTEZ{=0W$qL{5N9U#kbeE##{vfl>P}*e~*m&eLaG|3xWWGazDx*VU!37#5mc7 zBg!Y%f>?C$->9Q<0sqg-D}(|<>p^K{!eQsXl=2aseLIXmMquF@yQ*5r6){JFMlg`0 zkQPjhco|tmD_ing!wFX8=Px0Xko0`)?1}MJ7AX#x&Jlcn58h)AquO^ND*5@(80eG* z(sDv>`F(D2?`ns)R zc8ZU1C~U`Y?&UfL4@n)mD{lJ=&_prIW!rY)n_hPF^b1xiYmUWaS>z)!P`e~=gi##Z z8~}pcECI=+L2m#`%fuCb*rDn+t1{=g!-o3?Kek_BfiUd!IodrFYqzdKrJij0*?4^x z#I{Mv^_umwk(`+=i386F)t4+^ykK;ca^%hlo9*UZ)ro+%qMG}{3EN=ke3?kGL39HM zTRyx9e8_l@LY0w#r*d+{`?=*Zd!prJ*B*Y;Tg&9dtwNnD9I z8@7thS|25T@h$Fji8#>z^8#$)*2Sfrc<>r*&H6KX{C{&_m$gCB9#xg7J{b~>bu~lD52#99?lMb1 zV1IB3Ij__@ZrEXlx9!&qY_-9@wI%*Hxf%c1#ee;OSUZcLI@)OMo^x<_2=1=I-95Ow zy9aj;9$W*#A-Dtx?i$?P-QC@OCU^S%cX0QtCtY3DRbB7idp)b8eh6U&60B{%SkFN| zqfI=hBURAnMp|h*u1eoCL2p|4;sCXw+@O0Ps(y1fdgD~+0jMawEC@^8T3`F5K#ky5 zG*`#ei@)?i+7LxK2CTg9j4yiL)B#A_KnGRRpelgolobs-c6^vx-?w?xgw~?f3>RTk z4a|UPd@2rNeEeIyUexq-BU_oiqtAo2Iz{?8yI>7Rruhty* z&o9noEGQ_gnm*Z0b(rY`pfxTxolDzYyhcJdFV1095vp1CvX>}Y*|4D)Au(JL=oGIy z!<>io@@#bisuudQ2a@22*A{6vpFOF&fF7v&5>yzBL-~R0IQoUanjO?aMX z=uqSlnPlxh-WeDCmyZ+<`SN9Ruo?_C3MJ2qf49@*)nsD8kvldLUOL__LS_vCU{21= zhehJr(j}Kd4GL|tvBUUYH9G6rmzkM&h(=7OCi-GBbfJ$xE1<%lpv ztNw6eFhIl??ty+dvsQO7ye@{!15K$~GIpgWGG0<}Wt2%9mjwekvJvI|Ggun1>CHp! z9~PX+K20bl!Wns|K^ET-{J8hq{D@@0N+Ccz9V`4avXW1JHiLqrqvst9&(E5K#%H;db6* z0OQ_>xqb#=zO$8J?gTd)Pnu57^c8X{ox|VMu0F1eLgZ=1V%KdeXWvQhp6` ze~7IKe_2{4_xxB$Y?-)0T}trSg{d%PjYk*0d3&W@JY%?jsrM4;F;#;=0P)T6bXC-^ zv9pgXO)>1ijo8#s4CyG>b)LXhtV#P@1<}cj@p*u@?85NmJzW;j>5IE9|G=x!7ogg~ zi3asVuD{A2TUzu9guo=?d$HBMFbwwHZ=u=AkNft_go?sIXu5yRrqW!t8%l2Yc2ne~ z)y4@Khek}wi{WJ@wV^;?h3XTv)V*xGO~J4EgfSk-`<36^t_UGsuzw)$r{CdWo=6b= zaFsT{bXKb7ww3|Q#0-K$6asQ)0{g+3{j;;s?huP-HEr5HcIn7CcVE3lvHABl!SRvo zB0%iu*pcf^u+b*+$o=Bau3CxuW0*0R?nrX66OxmC*Iz70J(yzM)$Gv_h3Y85bR#2-*>TllG0Z1kt4vvhJk;!hBUsNR5+jj}4>p9>xN5BXS(DUP$c z&2SLfphoF;xt%8Y7G`8Os}~4s1$EQ4G+q<4{t0$$cghIUz|!6$OD-4T+(;vGYG4C; z$aBoK0AcvwhztW@2~r8%8M|i4GZ$i6`7byaU&$-+1&~LUe`ho5FC7-UJEG4n8Y#BT z&T~O$wL^QSDT)9Cx$9lm=tKWm;VCcJSBU3&a0|AXkHVCEG=4FL5Z2`%jV&0qPCJ;% zLQZsIlUlMc9UKFP=%pewEk6)yMLnA%jq*_imNm|ALs@^i@_qZ_`oqdug*Q~W*|~p} z8l;_Z?Pqz8gm*R}Wk$MrC|R_c-}BCFGfBVag`)2%_;^We4U26mip`>ljrsN19f~~% z=vG&mE_=B%QF+z+8P-;_?=JZ37-xUOdc4zaK+s8v?$GFP<6LkP)FQ@NY_EuQ zs=JV91doKFaW7URkW$)X-S(2Y3YGbKbIBVB7S2C^Q2iM#9~!c0YOE@$48ClNg;h2c zRQ+nS_EW!Xs(5(Z-j-K!8^GetW>3sUa)`rc zVWz)uhkn6<_Sj$^h}vL%ec&4`$ERSiI08?y=ei~FGIOeHVf@WKkKKZu{V;M zP)2mVP(#fj!m~1&m>4d7N?lRqAUaGSCEPrR6hue(2S+CdEnOPaEnr~5N>ftT;uGrn zo4qm!qo;bH2B~;+RG`4A!o$JJbFf_}6-AJI_&!y$32oFu2g9AbgqhZw3pcP-#SipJ z9_0UfQqY=AGbm=U-Drllk#Eez%ko+4DlNlk#wINjt3ch$);xQWZ38gEP-;bwL;O+1 zpM5GMe{RcSvm}i0XLg{>=Vi_DL%$Rd#xl|n#u~zkg|m>z7hSG^a>s~Xh&o`bZZTok z-P;5Vm2~BpE-R2d(GnH^Ju&e|^%I|T<$R3YY)uQ(F5z-!y4Zu*tb}q_dtMgx*r!Br z;bBHez}g`_)d_Yt4EEavPXf%{|W?)~+5U$!Ul{T)*JiFr5y8OmNvkZV^2?XqVg3Jbl3hdQzMaSCBmHyqs?xJHGC zWkL}1Ir1n<0i28nRplIfQjN>HK`ZhuACD@VE4LP(nKUstV$0*~vABI4599Vh|M)DZ zMK&kTrkUN~J4Nb#%G*X~gTx z*lWK3wWey_NutsTbguFS+qxCMsl?Q-&-AlcjxoZeQu>R}3xyxGzCDQ|r)kb*eR#mx zba3+vwx=Hsa`2duMtS&3E!i&U4eP%>QJDN+`ha==Ifu&KZ2w$_{{Q?|`2U;RFb1Ft zzvX=CXBesX*6B%bT+9y40j>2y!moP-|ufD_r-5e@$MH&3h4bD{S`#Ka|;=Gw`M=vJYGh(qL|lBUizH< zc^bGMu?SFBLOw+^RwyHVM$*EuQ_WThpAMf(lSEpVMXsi1gM8awwzC+Km#|F(DVH|T zu_E|b^eLN}aj+85S+UxF>7kz7XZpav1ycf zf{t=l6YUSjK3~`h>QVB?p5Cg`Z$B;3dP*&efMoz2U1fVFLzB~0Eg-DIg^a{Ih-T=yuk-e z|4{1WkKO0H>ai%&PfFyS$WK>ji7usp$5tOKK^DE$<*o|E|GJ20F0Oox9_qV(DLn*2 z!kB!~ncpJZ@x1x?`%t8tcp~k+X$g?=h@)h?P-#p#Kh|iJbSZe^xcH#KBb1kS({x+o zU^Bf6g&e(w0AxWT5}`G(;Su^Ch)Y7l1})l!0xzAkaruEWSzVpXkymeNO^LCu>JAop9%%tL5dV z4KN%l7usea(=2iK)h6dSy=$Jp%-#hj8=MtA=AO9e#z3*cISu#E0qWRTR%(oDN#l{6 zsr*DSRZfSt#?FC_RmkPH`dnK%mBd$Z85qv5aSxi053O9kxJQRPgw8JS2i7Y1s0cb> z`i0^)4OzW;qPr-Lxu;nwtb!{WyY7_kPx?VC$b)Cxie1v7$g{R5u$?jZROtMIEy|c=+AxTZkLc(0I3vfRM$`wK1dipNmYcPQ>F~+ zul7%|p7L{lZZ&-=BIAU|%H|mTgsL(Q-JpZAOtBf#w=Y~8TUDk91*RR64gTN?!zH1ANp3Z-%Y{(TK;{$iH!%fQw1H*MO-?4FAA zInB?HpnWC6n&(hsyxs!QMBAs<5{ z#ZpKjOQmGiD%l09qMdR%8kM>qDdLrJC$fKMrTw&}95o!nYO9c%R<`xmR!@!Ke;#TU z_cny+E}DEbkb#-G4Z#XXT5?qCQvLGS#%Z#nr-T_)_|6FOG+dPL0bLO#K5d8U$2;cW zGg$Jpy>^iQfS`zRlaKo|>IV#pt~&BSuru^Jb?_q%N~}zcvYLT=rVk_>j`Nl>3dqhq z1zf2eCkh@HN}xfDN@mf$1D!4=+U9d0_0rjMvxUX1JJrplX0qIMI`w1zFfyR+QbP^ z(S@NOOhIA-@SSWuzeZG$?d3KDy*Lm_@W%qwuAtCF@o{P-_`#;;=Vi|7<9ij;X!|5N z)~rZ+Z{^GM`Hum*_XO=PJu~7 z=JYwVmMlik4g%;${6I6?)!SD3%@$?^f9UyHO&6OnWJaChc1RuEdf)oKr7vKkng%@j z!x$;Yn%KZDRPqRTV4#Q*?Z`P_c%H}Q(qNW1!U~*Tf3YXzst+hm`6nOTV{A7{;mo+d z1WVP3yW=`4r(vo>a1v?L10nZ(hBSBvuq)_*%qFiXDsI??PfMd#8V~`ng)gpT3EzZ> zk!Iqlzy4kx^H3=9#VsLA!#s)7EjGj#XaBM)&`TkwlNj5$4k}x=m4bU0AuoAq?t0_* zVL8yV9jX5T#MS8)zVY$Sxc++HBpbkgcG>$nv>)nG6oH4uNw*Tp! zbezjApu^umxT%oG@Idk<0A224;bzPsa7?r7Que#I2lhR_E)838;8p;U$dr#%e+Vaz z2<-N4h`CFCBTS!mhc;pC(+=$*G&<%$m0WcbCR0W%C zzSi#i*h}o+eeqEpTZD_aW9WEsmBYCw{v7wP@JQVG3K1(fIo}$9f4LK|VX|E11taAB zctQC1wYGyA#fx9`{^>RGFq*e9sRfxmS(5h*dh*O+>?LqA6~7i)R?PL;5y>hQ+c1)B zqW%)Q<^qreL*fJ*Pg9{syYSgIP$ty~D;kcv_K@g zXX{D#<1Pa1D9f9G4h9Uw^8>m;`}19^DI4s%6`=ZvT&5mmi=KrAkH_=8>)|d5b*-%KAA(V=5W)Up+T+|v4~m7SGlU=` zw5ON8xeY~th?AhjIQ@5HAVXgln-T*nD4~K5VXro+&4wAyL0ok-Yk zV%c(0O094K5zKJ*0YHKIl0`6Ct}t{LqB$x=+9pnQy7#xPx@x~wF_;GMY59 z4_@5%vtQ*8h4IS8?E^rXPlYPhEwcz?+W>mn77GgLU6i?#Pf|aRvA|>!*wY>lm-NCC zi2V&pe76*HDJnyIWU=R^Q4Rr_V95aCwGZ+VNGh`pIbQiOsXvnpsAJiugy@0XY?^8& z08#4&_9>IO%GN`ts+{n8DVRQ%Ow zG}rd8eG^p_q{YZ@9^p1HdId9FKw!w8x#i`9u?y3 zy2|QvrNhnqD^^WvqI}ciz4bC&8o!jQm!2N{Upt z`o~c+%|!hhQJ0Nh!e?q27?FDL${l09wfvK{=~cEXlH_-6m!@pRL7@Qt2q0w8MS?BM z)>rVk58;U#l8h(Gm8`2rQut>q=noCbH6Y~aLUt)V`i8W+=gtrD8AB6wpj1;8{gMa)>_A>dn-wCLz4!j(e?AkEuu@*W@0=Ls*f7Mj?StPlM$ zs5e}1UP}KkQugCtjqOvx?#o<_X~9sBum#L#K2<#1>MZ4pSMpCg8V1hdA?&OOiFm-# zQC=yQg!~Gyg3b)9*T}%Ei6wSe{_uhyO(_#>QSqfDVJ9s#9>l`pqXo zr<2xILMJ%CN0D>HHn7svRlni!;)~gQtGzgEPqQ28r~fq6Itxm?sN%2oSv)LXmh2wY z(Sl7y7*q)}miV!WtNS{24g;XDCgXmos?!PQp!Se-KVSC!G~@SZ+DE{4q6pn1e@NAX zzLssGwv053@)d;40< zz}^1{i@sRxwuR=%{Y5275~p_5FvTICxFNx|U!QXok@XdW)0iOud%ZBr8K)t=A1omp zz)fjhsEsA2pT`{%Om>tm$#@HjMKie| zx`$0A<#O$X!$D493x0YO&|alCM}c25{b&e{r)YCy$dx7WX_d727)O+*?u8*#iYD|k zZ#I8>rM|o*BBo_g|8&&Cg)yDH2OzBF!}CH z0+_C&gvGC9WJ23!&L?&9v&n^Q=a}}L4bDQ5im|GP(_?yF-gsI{cv8#TRpx4M9FP6D z91&+cttD{yYscB*)cM+uEgwZ89};upa8mUH>R7AfV3BLJ!ITrN&n`at+e3@ZXVJng zQAQZsbqfsme8gr3$m9tR^avef+*NRJ$JEdTP*>Di)0u`7_pEIN@u`cnia&4Ao*&!t zb+wiDJVj?#HKTL!t#~8d$8kw{e1W1Mr4$G*a^R8D7izHlK+j z{daw={DvZ7|L^i;*8zx%{b%(`iM2||4_I~*Ieup@xj524IGM`8CDUWRpdNs5Z(MDewwEsrQ*R2B{kEOnr ziV;cy0RdfqmyTlf<`B8+mL1w;o{t+Zkzq=4m$g)nF+YGv0&CH7p{))f;1@l_OPKId z=-dJqk)b2wtnJV8xcq-gF|&hj6RC!Usaav@(T5 z_(j-#J}$F;$M>cFCGMb}Gvt3*fCG3sQ$+wp(syypX=knS3H9<5&KxLll6*Z_dy{8b zVh)^J4fA!%=gBVy%5tGrw(Jfx>+1RmIdJph`eZo}RM(@Y`rlXtjG)_j`Jw$TRO-!P zzF6GW&G%JYU0!n2@%C>CPLBJ--(~t+T=K#2SeRcF=XUOzqk`qDP9zotoctQb4wnI~ zi7;u5f$nOfUf&_VLbIC3)I+oWN}GTKJVpxiVeznTe9Ih}W1*gTt2+o_zT6|&Ph5Y7 z%kwp8cds?+K|j*e?&|8oP}-_YBW^KSsF>7a+4IVqi#zr?*#XFh}Z9Xru^3{}I7<@kY6?QD)FtkL{O@JZI$XBg6_gT}71)T6$dtu$`W1|OX&fD~qa#t&sd9bbYysoY0QP%F9}gG(f?9l= zmdYZf8AoTTx<%ik^o+h4v8i~_$;YjSM19+vP6P{r&`|RcS@6CHoCrBz zK0?Vyn7+SPJg6^HH+iZ|QiZ#Iia5xAOceSQd(pR4Ps<{iY@s<)sD6J=dSte}3oL5s z=2RCDl5E9QiK%&BuEc{7r|0Q;{r-Hx{5%wfHaO>Xqp%^G3C%!R#m;>8fZN!MR+@a^Jrs3i>#irMRO;#y){(Y$ny< z@W2tsI?}*EhA%4SXvAHg14?L=P@0SeY>!^#nYwd2Dqt)?=pT9<(d#>;mxs?L+#^iX&yI zLRD;TKK9fSxWPIrb$-=p@Ft6HioLz-Z}sSnOjaDweJv@}1ZI>8=9f!4X|U_TmFk{t zH&TB^6G*$y8adZz#`y7b5HbKV4B*?!ak#i_EpJtSe%QUdcZxE-wUO`diNSWK8@V6v zqCGkXG(lhmjjciKps>P_46cifj>BG?QEWlj$5^%SO6ojTwR3W1-%C%Un3G;xLwFc zDZ@JDO1N{~ppS;rnRlBrt#6COxcN@7P5_eF-nPM*(>f)U=+sYj|KO7$M?7-blz14p zLlpwG*!CLRQ@eUdN(&MgciUnB#Y~DK zV}A#U7dB4+VDOC8xUG9E;^=l7{HkTNf_3+|iZM(`Yf;~GV1uo{ll$>ywVVM!C0rxS z25_}E?oe*iClnSK-^he~SB4MYoWg&7oT1Nj|9m|SE|1JBQcaqL#!rt?-4h>vUGJD3 zC;rz?0a;z9^8pIrsn892Sfl7N1c)Wqb@$vXba3_8+?7gL_S{%-9-<@#!XkZcYb*yU zSPEom!w4=(I>u7HQ;|WaW<3a=IzU$sq8W0>Y3s=OVg{~+xm#*$W^bHxPIe#l7P}`o zCS;?XOHW_d1bNXM0hjqk03F)<=1;sBkLE?xiAV@n)(#BaL{0-x2%FMjOP9}#`8UYA zt@8rVJ6oHVhu`{rK59451Mp7c@&wNvFD%Es4apnRm219*_`ZtjpHhI_RleYq7)hDzGE7vRggaTSGi8kB`WV*~|a z7%tpuX*_W(MIIbrm|zFMN2uOQ)l*r2XA1a$QpY)b|E0sr{{uh|W25fZp`MmdF*e|Bw&mE5ey{wh>_*p^F4zY*LR|iiuf9Or@!ZP-o6pP%Tnwku9OJ+>3k_Dj#0Y~B4)gDbIn880~2p6T}U(!KnIsxq?NpTgw)47W9 zeHHHDjII$EraS%GElX7^>JJ1+?R+SM?I1jjB&;d+%x>?_D2z)P*|iOb>rK*!LPoZB zoJT!JjXS3jk;++&!=F$Mg;gmiHOp24Q#(8}#~@z~MWluOGi90_TvD zMkX`}sbn-Q{jAxaLNCGeXLHW!-FB2Ufu<>~4IqfyoFFjwCZ^-oIQpv<4^%c=I48Xb zqIjXbWtBTiumiroN_A!9usAC92~=q$ef|8wcJ8yzBcxo^uXh8+f4pZ@B?+Vx<5$>nDJ zj>Atgw5^tG)_K!bc8covJ^{2CVa3d1C@g0c9p5`RGME~3<_2|A4(4GR`8yY0yk{Dt zfl*JFf*$@kU$?|`o@{+w=rrdLk)b2*5m@J65MW~bJoH`Gi|23wub_wY#8K+QwlKU7 z5?q(@TEG}(sE3JlGDCQY3ae|kYtN0RQp(AV9JIi&z*AfiSPUA2kP8|9siWwrHiwZH z)FShB0R(jlq0|%MnuxCc9Qw24zpd> zTsFrklkK$DOaC$lfTEQ%4`4@^X|nJwo6Oi0LUzb}X27aED583_P~io zG|lW^(lUW)m3he^JtbhXc&n*@ksW^%CLBw$UC+~G5QITc!*VK+Nb3`vRNz#?Zh)E^ zoK{-PYI9l_unw#o`9)}6UsDfNelR}7T<-}#{SwVuy#MVu``Yk%zswGUFxvK4Hzc)9 z(JhK@znjpOdZRnM&>~#>T{Wki_&ua)Q+2b1=s!Aom(@5hUkV@8YWCKHub{}MUOAz+ z=ds2P`!btUw{VG}8lu3@4q90SjXOQ5n7Y|F$$ZW{kcwt+cv_N04;9DlR+bw;KTSLn2w*#Hke+d{L0WMV65nc)$XBUR zdg|hWQniLGSDt@q%E#*0Z9W(-ilEU5`6Fa&K7P%l%% zB~uA`)frWjM?byGd=s#XX&5?j2+X{?s8LJ2i&0?M${tuA!nOAzQQ-vS%sx%sadE&7zWk&Y-Lz#Gpd|3Rrp`gE=-_f z+85}p559V4W%aalQiXSEL4CWHAt`pg3RDCUDMMSNlZ>Pke=8jRWp|VGC$k3tU+`;2 z)QyzM|DiOrjXEzSi`I(R&fn@9?j-QN<~;DAHw1jJYEir{?nTVE4*6E(Ub7JO=+yu) z&}A^fzu9ZK#>6>u)&+t+!wP_ONU+sHVu|(F_Ay?JT#6P%&?-5YcrtXfL8LgW&O?#N0Q+J0%!>LA(K_O4x>2t z38qrj2?rGmdM8w3PcZ%b%6iSF9s~LAAWbaehX=t-! zWqrJO%wJcQ^JQ;W2*6Tvf5o3ifE|}F^eO53JsQ!iw@o=YCj+;BcosS%n5~>Pf$JOJ zGihieq}I<0=`j;3cU7J$sOfVbO@{|KRDKMVt2z;$=!WT-pZxD~>K{=M))K#zzKib$ zJDZC9fTWELrl8Ajr<3}Th~yz3@BEs)={s;=V;2S-a16_WQxmT%e8$_}POFcuv~*os z6SD)F@DOJlLT+n!?)3Q#s`)3O5WW%y-{^A)iYNc7Q*DP?OwptZS+fL9#k!Rev}+S2 z-HY&D{e&%htZ1^y^?v=q8o)G1zHz0`gQvW2igy$Lz}y-95`3vfILA_RsyKZOTYNF7g z#Vt3^5=KgXSS;HW6REbuf_@GGRlQ!5xr;9-)D+_$qm?ciJ0@|UZc7%Fq6I6>YG_=} zlHo`Q6x)?|RdasxENo;gZl60LUG#*k#^JASTvQ8HP&4@id1%B?$w|4+BUh$*`E}4! zihe50z*m)a6JsZ6T#b}h&$dx7EB+lR(iOnC;k8q;tJvP*10^=@|l-6 zHoYuw|Di`9hUwXlfr;D7vc`-SN?kx3!@=$NVQ7BDIsRl4o8<3m$iLjiy+nVVHut>? zYg$1{Y$0}^@pj^y)NL8kD<6Q?`G?7~i$Yz?;0Gq*JisUz%THb54wjlkZMf2)ySfA= zPc~;Zwb--^RHRGv)(L>YON)cOo#Gsx4Vww>Tk%*}e5;#3aL?*JSs*$bvCS)iIE@{b zU;FZdBYwMp6#u+o^gz=wFov-*87$I`QxaE9u-iKg;SMMnIp94ueI4B?ExbRae9e_* zo+xab_~DG96M;~We{@#+^q{64a-*E17;t?JA<SWBYCW&>vx%^(5PwlFx48N8TN+00PHg!eFmA=umVz= zxRAm!+#}6kW1uR(NH@JyFFtvEVMR4)#de?&Ml}9ZivS%{QzVmEV_FEy?Cs-t%Pw^~ z=T=@oJ={?IVFUY)C{-CG4oNoR^z+OruSUsbaVL z@SKk1rEv~65}trK&s?ekn84o4w2*2#-O1nsSHA=i}>#o<5Ji=cRrii{$#{^l9#=T13fL`ZZ7$jB;@MEznS;Vbk33CRgW4=AR8N~P^G9Q8q7LCjR|4s<@>+<;Z`3l2rH*5a>X+9@4 zW~3P+ocP`@nr4&)6(hL#R&E2+Ii?yuIo_aSfbzSz3h9YJx<_sbcvr5cx?QxkdJEa?NtLexc?;&;9E43&x@W3~@})zpZ6oeE4|3%7HJ zd`a&~Sb>d&I)}^T6QyJblfIHyW1N4Yxx+e8vM9onL%p$yk`iuf^xHbC)E;91{PZw^ zlK7@sHn_~foZ`h{BI}psvN-g{i?~-<;*BTmfnEMo*Qaaru)I|+bZT6Cg4prw{jVHp zi<58s;V(wp(x?Blqc7j?`$glI2kj-qXb-Rtjcu0Nt|wu!N^Trv zPoXj?%9su0#m*xHsb(Cb$2V;_m#n_W@h*YgJLI~2Xe9OL_zHc#hoq^?iod`hCyBMC zdS0TX5S|>Itm%5kvM|mb!kwA4&Y>N&nvK+|I1Dqq5&AE5Z@1b;h$Sb&$8YYR@Q(rx zI}F(#3Z1LC8i9*c{myEY&!nw{tHF2fIG$eP)y;{4i~anQ;=jGEjeG<|wS2pfPWkF_ zckHSx3fHC>OH>ELzflXc@ub;qvl&g~$$n)ywiJp!{YsT{$~8Rx>7W)#|tu5o7{vnz44bG_D+W z6_jpzU`M)(=v8dE+&PDf`>^;v3i9NH*s7}Hdd%shzku~_YiN4I372PhK?6Os(>iv@ zApbcI%Fk}|u8wf&;C8^;`ZW`+UwDFZ-MS*WdGcgsyyY}pc5HTs9?Ve_o=rN;A$UN- z-S^~_XWfaH$T+>1mFjPK(~e!OMc*oESoaG7)B3mfPnppE`mT`XbJzEe>3i8jxH=9N zuDzi4CDHbaxHd2`Btc(Jljp4)wx_q0!28C@#pTY`iTd-&8QR9{0o;d^DqX^TB#W>8 zrYXt9qfu9|vwA|r_^-C3VBp$)uD)O_q>HIh<@g!9ZkOFK(@`b(T?c;Y6mgSC#;{iZ z*hGe@{2mo%DNz7pYXkw)a$*HzGSk4Y3%iWxQwH)VsM6+`#?fa-YtCRgGh^cOz2aWA zrQbz6vBe54z*(aOH8CMQt?``jj}YcMQNrNf06 zDRRH0cMialYaTqJU2K0i_^FPoe@VDE$BFOcI07Ec7UqMP0#SQ+G2G6j<7z{vFdIxR zr%fD0rhWg5Xm6*Y{lq4}t~c#s@xr92i5apw&n?98BHNs@l@ttUVP!E)y~FDuwd>S9 z)PO#bxc-4!Vt`!dq_?8PY1tCo#q65d`0=-Qt1^6SKjSN+ZL=$Nyf7OSII>eRa1C$| z-!yT zN7a3q=!^uv{m8JVl6jLp#!U3=Miv`&(gV(27>+m)ru>fnO8->Pl=!B=0`_9-^4DjD zYQ=KZwDe2gsV9`Mi(i1yZ*i!k`Tf0Z~jVn8g&xcT4OPSYT~Aw0F!` zfQOOv4Z>Hv5y?5Iu8QjWKPsv9XS;1=FA#E%aIa)XDDG$Kg)3%T8-()kE=86uUO&+K zL2HtcfDi}jXE&>fE|`w6V!kIz1^39<{6`|n0mJMu^yr_{VCsnLfH!$;P!#RO!E8C; z+l_k)?tIt`N=tO4Jr1=<3;sf3>kQVIxOg)K=4NpCDm{d(@B>zNKYdSOoI-NuAdN~8 z9W9+?vjyxd2uZp#Jc{n6C&=0YO<9 zj3=?`h`XXI*{ECW=n*XsV^{OO_Bo^FIpt<~AJRcZ@Empz^bQmPoGV+)w!AQE!Yh28 z=3U>RS1rhCI}_ZcG;a;wc=&a{?;F1H8{%}VN9cv={BYz51~%&0pn2k3or?;96a(t0 zr?+&K+^~;wAQgMdcPn<^8K`+23z{egK&p|!_cc!vhk9I(WPydnNo>WcrJh{Zi0i>1 z?2-pQ%6FAZzGP^^qaE2`{WW}n;s;0?3B``yEACNhk|qq}fDKdM*`7=+OCFXBISs=4 zvi`)kBVYi@px=-fU)tq!3&pwzm#%9gBnDJvG~)4}a}t(Gb3uJ+!|}5+44ysB{&F^n zOCqr6b~jmjxOZ_u^*^KBQ$LYkLTL$@=k5GAC0++M@+qZ(Ook)?(z_=p-1b-9j2#u9 zfU5{HW1j4YaT|mJ90f_5W3e;`oSR)__AA)oq~AYPEhAr6fWooLf)W}u$Oo#ZDNoyQ zu)Fi-HKk)L4gccB!p>@&b!x;AyQF|7ts9oC!+l)QUnUYL?d$;r^wY) zX-3fSZ9-Mya7R!`x0q)4R6^$veKIIi>nB-!dUDJxVoeV|a74;+?}iEwQBi!LIi_;& zDYP>NjHpV6^H+h~2H0v4md#pbTyAauugX%WE>T3ZTUD5{HHmUVo7m7{QCWis2S|Cz zO3xGY?@}wLC4`g=nfufvs3a)}0U*`Y<}AK!ncu|53E7?j8c@cwIGf4uTK&@c!>PxA zQbg`7B?tx0A{T-btd*A(k4B#LP;<4S+r)|S45p)lIz)-B6&zHc4Ul5Bs2Ha$l~WHm zjJGH~9N-~NOAv*{;zdUIPPfES#B+M!U<+0qFBHK;hd&S_CD={H-XeLcyJ&ojC?a~} zSPGfTA}7?y4H@VR5)Etd--*nUj&UM7t>1L@2b=4fUNdj0A2qM!LAggpu~4*3lsdY40p7Hyk(X;X`rGwQet^^iC;1$$0z;Jy zCg`uTb_7G{vo&r3#&pj-Hz9PKB1mR*{*Q`qJp^iry?PL9j27>iw-tH|@IY9VL1yDF zLSR)EvH;K_?}gx;j{wDQ$)IP6t7x`;SzzL@;arwwHRXDMFmNWY>q({y1IS|AXH;soDQ)`ET5ND2#t^*f+0VV%r@Er29}T~L(NViLvy!f6#~DhO{Tfcd|` z!2;|0GdI$>AsP0)|A^;&V=9MZ;X`Dik+vyHfdq zB1#FN9Qe#1NoBT<>CDu()<V%O-cuf6?GAN$AC`DCj%AiuT1ZUBn)0$9UDI98188-E{ zxWnLu`w&sKK1gN;dV&V{Y{gN}z0Ybr(YBqa3pD)iI&ec`X_=f}U4M1zH0SSbb1{!6 zozj2)Zv%wJbY6jz;-qnZw&Xi}7qx#$sloTYa=E42m({3Wa= zM^;U1QYI`c5n*Vnr}xg(1M-`NA5NTS7YbzY>HrfFAj+GVjC;K_8@PE{h zW+s4XShaJSCPA?CyYC@o1##eS`sq-4^Tc7wd05?ct>m9n3=@R-JxU6$@_Mb z=<=yO?&e|mfoTSBfc8|>GP8y=i7FmM8A?tU`aBW zG@u>#&26%5Ol2}otNUnnYwNoz=2=#EQO0B+3NbW7?a{~!E{1-`t;1#}iUF8PW6oEa z*YW=`c8`opWN_wrwX*-u&Kv=ehoXHGA%R z_Uu_}f39o2^1bU&7b<5S+8GvM2C9X!b`EQ%+nd&&%KGLZO`c!UQx67mYCZ=fRkyBI z+2wB758m*27HUz_UY(1He-G>B;8^<^b>Y_xU))!NN{88emnn3PrPx2wR`f?3zphV= zy!A5W#eM|O76lp=lvJeHx9h&+I;;J~&0-XK!-ukyr;*Q|4GMs8;n|pSH(QL$%I;v& zp1PndVls0&f1cI>`qwH>+k7>SqYp1#dO2DuJeau4)T}obLX-6#++Y#x4EqgKjt@Y&1QZPJ9Nb&uwY4qAdg8xNjl&nj7Cb1rsnLwz1@ z&xjj8ihinu9(XoQ3T6L&Wt$PA`fD#V)n|u*hQOzC%|CK0vlME0pdX)^<*c8!l6K}H zE$JbV)=Z07e+wVOG6UL4n{3@qlwk(YP|4as*%rRCOr7V63e67aXpOl2C8T<3J5(+$ zpjhTitgVR|vK!X{=T$e9LXMJFr(fs4CDkmkMj#v6N?taWleqg)K#rgGS@kflB_~L? zzDb(tVoW3$nwnVCWMvj&LKwmqEj-=E;ijYH5CiNa5zwBH z&y&SVc+PuDvVh3G!-wkZ?Z@An<&0z-W@7a&yrgQE;-iBiPL=B3d~$ZGYhpsW0D0JS zGKa&g~=Rsa;s*8m5uZVWlxzh4}L98Y1q}G zhPIPlQgn9^V-&nQ(uv_qs0hAVRS?W1Ri3v3YJv7vlVpGS?$aP#+&5tKrpL(a zI=7i$5zRUK7p1s42u>R zNI{5pRiq@A&J?WSdefqMjVPd(>hx4wcID;41&B_kCc^uf2{dZIb(YQbIP%7E@2MgZ z%QH!9tyrR{mZ@*?$5p7ISd2$INi^q26*p@e{hDx94`ob#K;W#=Tom!5BG{lGE!B4_ z(`@G_S~kufc&M?frSTrrfLt_-Ig{H@+Mo8Tkq26ZP|bDix27Tw*`st$KP#HU%ASoz z*a#|{#uz4In+F)Ls#yyY(y*R1NngSz`s{DM1=|p(_=7kKYow1S*&Dj63ALY_K+!)g z=M?LF`Csp`&p#fKFRPQp>~x!(ka$#XAuQ>W#`$xI>9K?P9=2pFG+|y@E@??iXwQjy zK7P*2pBLryD6~}Wkt&z^ml7BM^AB>w9|{|PX!#7rKJzV$+o(7!kx&)x@PyKG8e)YU ze{GLZEjfYVz>ss4+mNCQah<|2jj_9u)k8OSqYb}@_052i`WDDULW6;w4Kp4kU$1;G; zSxE}&Ac8XNQJgCJK^h!^8;Qi@3NDl)hI(Nxh9`wOo>k#uSJO_)fzg^EQAtdhp!ZM8 zW=c~jRnEHTCP$)5%>o(ZDE8JsLVyPP1~w<59XFhPp(fx9YR$FVH^ivm?$fm^;9H^B+>(&%+b zSd*S9z7N6+IQ@kLALy!uQfe=BJ(Q+hbIOGeUB0-_!8P*Qe*gLM=MH<@Zb4Gl`M>6a z-$q5|=~-BJ!M0lDUK#bYCc+B9PCC93zHUPX(>et%&xEhiPG~CWtYOz2Dg#c{i5yRSoYx|3@<$C+!$AZu6#C0%4M26megeYVrveo$w zoqUW0Bp~GMZ_1&PkliGhP4ralqM~8@bgB`X@mlK5OgxP4rn41szDYj>3f> z5ly7<@HvmWCEe_R{WONlTIOkW4~abfy2XC**+4}zFj#_FL?5jtW?aHNlvMr^L5K3y zV1CEmtetUdyK>%e6E=`6d$7Bm_@>+|fyB0^)zwph#hO9uD+u1L1 zcov@*8KK~C^;$ z_Me+LZM+TH_u51jKQ{S2-9Fph9iUk!X)h8_6!?fAjy1|x;rd@qm9_2bPedUou*xH# z`aC*KsUk_f%XI#Eb{_&x>1Ik-mvgUOua-MgMq`W!zSten8{y*d2lE=@D;X2_vst3? z4W1vGOt9K+P0hNAr1JR`oJ0n7KJhu{Zrn+5YvDv;&1D-i-i+I#w$PKfH1ivJS$ofe9uz(2GdEClzc4KKVHtgC29gVxoe zYf1;RgZM4)#5oxVDa1h!AqKl_>?X!a@5*A5QN<@;#u?pB0!6E8`i-@+h@ij@A@TeC zGZwth^rASW$XF^E1zht=nEiPGQ+VOL)0OadXnh&; z+OdcBM=><7E|nf>n#L$^8WF26$^Qk;9t?eYci)Xb4IaOu`d(3T9j2$2hj5&}CiDKb z6p@a5Ealm*cQYLd3rqDw{jOY9ycv=1Dm8mDE85--8QSFzvqz*4s4M&pEVi>!#w{vFyt(2j@Ra^# z+IDAt4r$4&f}0`r3pB0P%kUanbo!%K52AbDwq5~D0~SaydcmCMpN}K9$=dg_Qgj8A z$Y7=*ZC1kFAIq`71?eUFuse{U(K@^lN`wydc(7)}aAg9dV?jz};FPT|I($f2fkptvMqa%<&X8;vX>5 zUS5nGhCHb6`EUy; z&1$y`l`HQRDlC3$YcX4xN86G3mL9s7CwNayyoAOqt7}BugVn5K&;l;y-s6}&a5uEx zkNn=W3UvNCGYEJaqvLpE>mc9J?w5FDJ@Ubr5D4|zA`!|vk&TBB^H9ShR=EOzNY&^{ zjT#$Bxx{R5-?KwnPXs*q6#v~iFRFPf;0As1A@!TKPR{yz0$W;clr5WwIkvj=CB zYwz_E!{VMEO(E~&w}Jt^>c5jzX-;$g_`%U)>hVJ)QljcxXj&R;tYUn_yGj`9L2_oY zOy10uSKN7c+iSF)@OT85YdtN=d83kiqmtT286z+$+Sy?tG3=W28hSM}EuZu&H}L#N z+2Bk`uOi2PTaeiKNf-dR|E;b3DInUH|CZpF|4*5U4@#eHMU=ctkJ#UVELVC-xk*AI zhT~EKx|PGYoP5zIW9V&>8im$pAzccGgH_XNa0*EL>3?c-*fe(`ec}l&xvj|5#7Wkz zZ61AXJVweKKEh#1_%~NuT(w|tJ=d9qlg>ucP6fhfU=iPq{0O_Vjl~YFIvM^hsE>De z;Sa}n9(EzKpm-W{&&yv+qei^w-}TjkgcEt037837K=0>=4EJ6>j#O`Q`du}rKX~zW zZ0AT+pE6h$&n1w!%v+%VCISkWkOSp{`KXrCckED$m3Z#@zTBvfwQH=r!clz=yJZYT z*?g0nRDk=)K+lFsNFfKXE$sNe&!`=`10|P1wGElqss5kCEXgT4nG`U!8JMvOVP@Sx zZpM*&V!O{!msSySAiiRZ8Go@WtX`q#E41nE*N}k5W;?+#)^A-(2|S7A;$H$ejWfRm zFb|Bjehek-xZPmy+<6m)->xi3dfbf>dxFjv+MG3B_tpqj1x~x0sC^z-Zyt<11pq&S z`alnx&cuU5VEBN&RV8xpH)LEu6j`yIN3=JYX-&vIiMz#%29j#7=zx`fnK#TR*NLs| z=c*L}J-4b!;Ye(|k{2Ek0F2aFRekWbkhqtxoR8cAEGq(Y;w?EWY70S6oze3lX)pz| zf?6i@w$>(c@)zf=Dco4GAfI)BXAy37`QA+MFMp+2jpdAZyH4$AQ}WVsLT?k>*DhT* zB-B%h$qj^2r%Xk>>LhTJ(NwVx+zyjbYlh+24KFY#?mQ404|@AX8mieDC?Z`iq;qyz zZ0!|p1$PnAza9PY%(hr%cD6M@>`hR0=_BWS3*@m)0m-5P5S2hB28!Sy;ittvKD@xM z^l_O9%2SAsq%o9L9X=b;F-^tWo=e$2Gk*q+^f2gk2e99I}jUmZ}X#&UGuunr=IiVP+x01tn> zW=JRpD{cpssu?+ANqv)4E-ri@J_NzGs=FI+#h+Id4HVN8T=n4F=K8qvS?NjJkFrK4 z{+QQmpZH>kW|;RkJm9`^*{UE17u`cC!KGz7lp>L-kqVuJ$-3^Q>`+hWLXS-uocBb2u_A5-ORy(%VAK zNB2tq@?+*6NDrjvpD640lVVAp4PVV5h#&-fTiZpTm`PvcQ1E@4a4Ln8&3VBnt#Ztn z`dqCg@%x^3LkUw#_;S-yYU8;;LvT>d@B>~@QVgbSX+*u zJtn|p@j{TBxx2%5(-=v>z%0B{wa{`{8!oYn=j+ zN$R42-&KbIj09DuA;e6i>jn|qcus~k>BlccB_CTY*sazUD7|naga|kLz}%+wwCjZU z{1?#IfV%u8g|6&`=6l!|g%o1n9z`A|oW&?z_c|HK;g70AMwT@wp|qpA7Ki|z%n=pQG`vF2Lf*F~==Y58xViVv8Fw&G&IEMvIv6vc5fX5p zGuvJk;4>r1|7}pL99TR0LZ52?Xa(MK-@LUiDqpjQ6P5~3=m&_QenF_ptW1CebBieK zi6#*eKH|cD(Vx;GaM-vz1Zhlg3Zgx3;f$(^<7-1*=eY3BUQH!Xd^dJ9W2KWG$%A%8 zTrgdy2=F@1(z~n+2+S$h>2nnT`0}8=AM}4lL5LG*%Tz1!q$#^gzJ>gw2Pej}ur_QCnCgg0sf`sZj~*VDoimpz(DN5uVYFCvC&B z0?P&BVHK2HP(WmZV=(pbXZ2jd9}T`^K$llO-}bd`qWK&76tWkwHMREB4H+Fwr8=f# zLZPvbr;9;@@Ro_sK^Zja0co*vi_JG+szeB1arlE9^GKD&X#g)NoVDtBu_y|@GQyVl zeB4LDQ_)pbyTwm`0;^7^$2D)dll!@I6j0j}w7=FwI%o^q>r&MwdISKKf%}AWcb7+C z_?ks#tyOx97m$-lS(hIt%*kbe$IW8%%k;L2NWpsKJ;w}udBzY_BK$PId7SO5g+pfR zCV5GtF+J4|_|a&hosmNDCsw3JE6`7E>oaqKP-Qrikl(Nhnlu9Z#xgn0y2dleorN2X zb2fEYR6+nm{b4rLHlb+nT_l!>^=@2}Mst_oXZ%YtV%21#pOLOyw>VG#Uz->Ztipzd zQvF)c!e@*Qv*tmVfRA~C8#KU+lJH@eJ5r6r0jjn3q|XzO0!6NU#`K`QNi3uNJaUG; z+oZ8rGT?c0EbxA$(uqg&&JA!V3S`5!{Ztfn~gT4%fbs?3hv{Ow)ow4V+^G>Kau8Pe^;I{vPT46jTFp z!qjUZ;@QT+#3@HXU&1h-w4&SSK_EKvvW7df2n516j@!ZsH+$O_Gd5z%77MFVo8)sX>gpZy;ow_`co5 zcTV+}p2PqJ2vYEx-P>u?bWbAi= ziYj{t2lpND-5HaF9CX-ew=IMxs%xmZ^y)tyd}xXv31f1&S52=X?X`|KGH^X+n!fF` z{CMmf+WGkN*}<%RFx{`0OUDsPW4>T9vk8%tSN%Ia=Lx72Tk_oh_#pEj{fcFmKEo!k zmiapse=C?sX%7-$&nCQer0x34K2(tsHMmQ+`PN4iVr*k8K7iwglxYN)VR8KuhN%hb z6J0VZ6snD9@Gyq0bMJj5Y(=+nf?Hi_x}Xb@$0 z7nKgeDl0)Qnj*@O&lTAK+!Wc$NYEe#)g({SBZ5wxd`o>U~BkUw4a9ZE*gy$EwXDe%D(yQYRC~G;?W)0 zS~rQQG^zEQ+ELfEjD_5TsG@%-h_FH(!*MzaSL=DOsv)3B>xyBe!^%Tk@5b{Htg=aV zVtt32abj-ss2b-ZwGh_Z7&(QzXK`lTpCUn#UKj`Ja-(S;|M9Cvk#;TphdBJ3s3t_? zdg9rHmvQ&ZGQHOd331se$CR4ln!S+Mkl@1R-x+Gy&klyJ_FCLxQp81~ii}L36Z^GH z=v7$-Nydn=Qws_(xaBP!`Y_Ww37eP@=V#H3+Gb5==C4T+9asrZ2@Sf0@$=>ahKJ!a zrfRBLG$ic*mQKX6kJ69-)Ky;z3fzBJ!Tx`hF|EZS|Df?!lA73{Vc2MJPTrsd;sf_M z{Qbp+9CK{7<_(bu3D|?`oav$FQ2+qQ{(gnUG?oz>iY=E#UHvv0ArQL_Y*2goMl2ho zs1Lj#VFmOV!Dj9l9V5_h_lU`d8M4+(0>CVXcCgYj05eku-FV``3SaV(%=SMPz*N!n zqq>p}Fj?C7cq37PIBlKOA1?PE0mmHJf;PY+$Oiah#w7}(ItwBLfBCRhu?ASNbdHNq zCns-ZSd-A$lZ`!8=#CmG&={TtUM>(tUEB;ue(o2yiy=Gm#?cv=RIP8w zQ6(}36_MB?@qCf0s{XeF;8A>9Q~p3mLI)hLUznpHEe|nu9O7 zx{5zmy3gON+o%?4!1bZ+wLVK2qh4B#+`BIT)O#d=&}83} zXdo+h4#-1!9CMf3I8asySX`G(QC5r38ikgO6r(G!5!Qt`F!|gL z^J87zVt$+BM{muB;+$%50R-tFt&(}`xcNr7F7424UeZ9$JiB$i!-~9E_4b#;dw@tT zZ-XJky17=-xj$%fom)^OGC$a88le7Sy^+2q{X#WRAtlr z8eb{?P+Y_B53u+;6e0rJixHrnmj2gC_$Ev@ZV&At;Ajb)iGi;Vz=!Y}8hO8L zB6>gD@cusYWU?|A;Jy9^Odkvo0(o{{#{0@9HJk#RshhuN&iu0E0&wq^Ph~;~vQi#l zekSXpLhkaEKJ2!8q#DWQU|P15m#%Uro?&OpnK8Z1iZ#UzQNe-E3Lxm>rjCoG zi`5LBo!tno9$8sGhwD$X80(hvL64EgC*t?*bJEGpCuh3(N#@NtGiLN!-?B?rau`~J zq;T8#)94(BZeyTGsW;54^6uho&sbW0=_-BMWp%jGuar~P#23j|h%x-ELxE0=bqHEp zXjL({akGwp9v6Y_U)cc7y>xz4pe=gFc8j^u#q?hWKH&-g@AZLS|iy~u9! z4JKH_AZWvUB$?w)D36%YeoD!p2-b^<(P}+`JG8?-z?cT)3-w2lIUFYKMHzZb-OX+7 zD>eGA;ijKJ+!r4Uvnop}g<1zo!uCqXCk7-V!orv+UFZ2}+gK9t8xrR-)34gRmS;iK zv7)NqoiSNu!N--WT;Frga;Iba`Q?>3VK;#rza22&dxig|1C6tIOc*Sfp7iaA%Hblj zA~)K`CS6{BHO{~H#w5eXRX!D0yVT}xC;7l4y8Yq|lwXvUGjrC}9el!(zr5%D&P!fR z&3Ax%KB-7~sA#*YnG>4eETJV+)8aq4@&hBKBhb}+-!Xd$=!BZWxFs*bnRv%nxEw_~ z(sIx9#wPL-rJGQ(uc2fkJelBUxQ{X0mD{)R^nyUEkaM~Ete}9b3fLUn=C<4nx*J~l z5&9MSwhpI_x7Xmb5h1Ck_ttcu zJR~r-HdO%%&s`5i_D`KL4DL`&@{cr%$Sd!k5hq@8Ln1{UH)_<$e1AqAAN#kd$Bo*u zvazxYU9ovb2(iyA{8+r=+ehF{>jbvUoF(cs9(vl&&_Nr7S49F9)7e_VSsJ&OXGbqM z-Y+Y3uSY`OntKMYgdh4g?>yEMx5?-pDJlehoq168XR9i17P?-`;C5*uG^p28@IZ#d zuE3LP>|a7iNYHHzvvZ-DFNys61_9)=Eo9wUoD7@c7hhZ>n#E-f5UXBiksp^8V@Wv7 zG#Bj(%%Y}g29jT$Vw^Ps&Psr_i%F5@aL8bvR8v4dDDvty(`%Mfhn?v{)Iy_`rF<%A z+XDd5KjdXFI+FfC^AIxKDd7DLQI!t=;ppC7<|JUftg7*P0V27|y=lYUVe867F0%i} z0dd`ZBXNQ-0MEUbepp?hdd}IIWh`d8jyK84qV(W*w7ZESe}4ySW3GZc$APfAky+1XZDI49c=bA1@SQmLP#l`N1(M0&wx zyf#Wbt!OKY$YrzT^lHg3*vZHgh9AW44p}#LBIsqqtK|q&pRbmEntGMo9Hrz`x#l0Vf`(c_;yD9{*DAmP%3;Y zrQ~QA*P$LwV-`a$IXWCl(%)jo1ml7*VS0ZsrU#1fIpzoH+o59x)VAN9)LJ6#p^L06 z*n}&D-9ys90rSGcM#ed_Z)V<3Z%Fl6Wf?qOn|?{-`0ee>SR+(Du2vu?l$()odO#Gt zPf+ccldac|WI{_+RC@-TI7gN5nGo8kRi>pIj4nWdtD<)VUVh@`1SGUIE9eJweP#N% zmV9j@dB?1BGWWduZ~zUAxJK)Nbi8knGTucu5AL{3usvc=-7d;wx;^!qQIU=?@$J&U z-Y0cDgl_&e32XXvdJQF{a^;{<0%)U=1*yKm*7+A zY-hf3+jyp6L&eV540e%7FePelnY8PE+}6MPp`vz7u7zaI0P`qHXheHkPoF$C&`;an zxX)2VC#JvTxTsvF6i2=l&b`U;{l4nGl(^(UJt9~wWG{@^dq}DmA^#^WMXl>W7BS$! z0NI=mC^aAj+$@6IJJ1HsA28S76-^d;Xl3SbAQ)sk6vC>OGq{`pb! z{NIAGDKO0P3gL!;m7)`5KLU)v&1KC68}a(`L+W=OMPrLV{$#)cx!V+1aY5-hMP?zSZ?E+}R^^tSk?Hz~|zJxAP^QV^NZ)6iwLH35rKt=?UhutPB z#bq9c3S+P-AF$)EajSZ6j=?ryklTniJVN{ZM-GKqM<@9w%lCKiCa~N}W?7RY)hL$x zij#Z{LPQq!)wi3o*!*TV?ieQ(KGF)f8ivqx;eEL zLli(fg_;1ROliNVx?MfhPAY>dxs^+B97)lJrpJqYv$2B`e(ysZJJqxF^EF!(Od+dP z8L+fCD*~cikKJhvx5D-?qKCRgWOo#)t~vn`v%jY6seRt67rwtvh$_i%pjt{A_uCdu zWJ^{gL_-S;VLTwyhq_Q`dtc|7)}mF(BKjsnHFLWH!gAq=HLgl=D$;?)sjiESLDNot zAz7RFVb|wNU}&mJXA8n*OVGX?L8!Af`=l6&Jn!{Rh&-UjEWO=3in$H=&ADe6% z$Uy_e9xpsjw2B#nAzFqFl-p;?i8X0rZueU~X&3bE<>D)MdomBc9*3$ST5}yaMa4tB zjAA5E6=xRBnj7vy>BL&d^j?|~!qk7R0uu15-y^(6yAw-#@M(4>JI*;7oo8KU$d}~} zeraARz&kqS&Ft=XoTtfaJtDoCj~YVJUWj}nGJ2>ewo^$QJ+Z^>EN-7di=;VfmyYa* z7I>&To7-;GyrN1K&!liuR5>>XjI!WmIn$8Kzev#9soid$*7_BTon ziJ+B|`Qqhsj_U-6mfa<6NhSo|L+81*q{m1kk0vgzsV*;ZPy6X#rZiaEX*+@+e&-dS zt$qs(fmJsHR|z2n5A}TkG?#XbePj0_v;h)rErK@y?u?kloAabgQiLH~k z=Qti}&_O*RMr7hYO#Llcbro2t+WTy4tLfp~2L8H=oHb?(JM(k{U&|ZvQM7qh&OOAg zQ12Sf8;63EwDrZZLra}4%waw zp^~}-<2C@5R@mGk-Mr>X@z&VQr&9HbpmnCsyB1@qhAVKj3{Z|!j2+tR_I8I;@hl_8 z>D7l%9YcOhhi~xL=33b5bY^ObVwlblZe#xAV`Cs0Cn&O^0sX2}=oIExM`QMm7>H=f z#$yPzEmiSgLUY0}bF}=W^HM_Y{#RDyK~R~thZbJFw>!l|&(Syr+m-@EZyf$=?Ihp< zb5zx+$?dt;IH77j55On4lA3U926Dos)&_><3WmV4s)=A2l8+3w+YdaFOOT`W)ojJy42Xne3NzPI z;A4OM#zMwA!ESeeS3n;BWMr?gX<@7 zoPUHy5ZKdYs1B(J-nUI#;o>?#%7E!UQktY$?Y`sfr%|j^NAR9*CDXJ`EDA67g|-Z# zTQx=74R$k!`^*HA1BRRus{7^Lg9Y#U?+Niu;P9%r)Gw~`gj-65bg{%da7OcJc_M(PxF*Y{ zmTkw}{<+ZN=l9`uxnCy{*YE{KdE6>G$8O5Q%aq;!HqIqz4P9K5Gnq-Te zfH>X|YEs!BRe`@kcr$nhRdF<=z1}KG^W|#oVmF|+W>uWD>OvHwzayfrJ^4oXLc&FPVy-o5mri8(uT;J?JGEZBPyaZ2vG=fR_4@JSs}@CgJ>l7Xw^3>#$703C zY?w3fHbZNPq2rK~hdhTu7kzpBl$Os39zeNksk}4>hB=hWLb*P@AjGBPZXI+G(Sz*uk^1az(=V(Dg^tkn%|%4=tafTGd#ect6IFc zEh(5ANJpTEVMQ_C`fWLXhr5p%QJItMF5TI)ucL$St-PiE%Lg{fNkzSv<}{IQ`gzKg z|H&f;g1Y$z7Se&t>Go`iRM2pc@Ev2rrRp-R*t#&rwr2`*uDiI)qt-d)iKCO$=5A zm@)}M?-%n{lfy|MCh2(|#xw6_b2ex7pV_Wxd6mw!6otrIP9mselq%~kic5PZ5|)7X zB$GN;UtewK)_awyK)%esR>DwOTQN+IAEDe(O7H&ljJgSy7ZYCZ{0y z!vR;lp$V8B9m2!rENdsl#rL`)eTN|_a52NGNT`xMAzAR&$UY`ElmYK9i;7ZXDf^Rr zEG1)8voHl?!!MB*t197@oBktfIKKnrNb=zAxqka~VCE>n@^b$k_Oc8S8dh*g4--N2 zhe2}TOVFfS z$Ai(XN9i>mrWd{YW|x1RT%FkBYSk53;&{T8G>dMKhZ0KH5-ufrj5*SFAqN5+0DY*gH%E;aK&%g zngq$VR?1TU(ZcZz;P={o?aJ#?c1Igd?TJK76VQ!6>VstV#Ar@V(CH@FVdp(YN?S;t z6lx=pXn#KnINM2!Qdq(1=96kmGFn9pVgpaORut<%ogeO--F%#C>$zCexc*r%0P*bH zotV774}dDBg*=xHT;3%!o*N+j;5MUt_!y3_$TuNP5FK5KyGULlv<)*z2keW&pH4K^ z+)mBj%`+1d9p%b(&CUz9JjR5YZF@wuermJTCRN}1GCkUaAl`g~mp(99V6#ziITC|hUTFc}BUgWf>alSs zbBQVt`0)|g@WOUucb`|&ZuNGq)V|*@Sf?9)ONXf@_z}5m$kd1&yGg5rz><5%wWHsx zVeI@T7!=x?<%AZnlbJgVM$b9_W#U&0mPN)op(O3&X5Ro19yG*tt}Z$#t$Z;cHLtOw zYV+pl+(AwqG3lEmhfdHR|NE3NVo7`s)vO47U^y~BAo8ehP`iP%@NV_E-5T>zeG%LD znOue!1#?#*+l!eq6F1tF+8u2YIpa9=n&`fYuP6cJ%vsa3&7j8^QDGs-@aTjWc8}^M852HZC=aADlu9z9F7@nFRQ|wDQC?!0FaExq!xi5R-~nb`d7in3L?#a07SkG zJ@(8oNp>pKa0|*bL%WtQar?jTu0-8JKP2Cud4#4XA`NWqokVb{zJvx}Os`QpQ~1CA zOmIP|60>{0gm`{gsDftlVCz%;sX9|f_3mSqH9@qv0{RIHCCbg7&P{rXyu1LjhPu@R z!C3{hro8UTir>6$ND!!i^k_;JYEPR1pn-*w{Aq^V4E?=^3Y``;7y$shlT)EKk!k&+ zltjd$HFKfjruoXSbmFBIqZ&x$t2IuOf}DXyOHcS`^wgr7apgoXBPd+&S$jovp=&!+ z-Oq{+nG{mwrzhXN+A{W(tJ;#m?F8-zXnx(Dk0O;~7F%@k;S_bdz`#9&)TB>gNe$%P zfQWnyXKc;7La=Fxoj0_ZBpf+JluiTld?YFvdF4SbkRl1Sq=b{@Zq<}@iq`!R6maOl zObvyJ5>jf8zq68l)EFsb!=8Pie^H+vm>oms=4{qUcPg)elQ1nrK(>dFKy)nHKIpI` z!RA-+lpF$V)@_cG5U&+9R%jb>|93*jITm7BmsMTdB@)2g(p%COU|Vm)sKDsk5Fx<> z@5$?&q5!2}CA>){M{l`V4&j)4I!;hClTs`k68P`5D}~6nk&|XL)-#)45mUi$w67Xk z3MwocVsyN_{YTKlLH`2Z7te5s%1hO$)bAqfoNKK3@Xwa8g~;6{y$qn=|9Y&cejBGr zDL9v6lDP3z-Mv&eGQ-T$hIQOE5!D+DY?bTHk#vWO2sv^?4`kiwvLHD*>LbDR$7=gH z!7H|@Qy!R$Z-XnFEQ7pT#3 zpT?H&$*~LkRSwtXK0GF|1B^m29T(e05>9_Zexq7X)xSt@trqih2cpMw{SV0(cpFEw19G-ZX?rfNRYzydQ?IcMO^ z(Z2sNrANsJExk^`89tPzx=<|32q{Cr{~jsY%6hM-P{}D=#Y1XZnAUb4{OlNF$Gt;T zoAm;cP(ctwZT*@Y`rg1Y<4McskrmfMPX9hz>Xeq7(}S*uT|DLFSLB!)p9ME*fj_KY z0{$NhU^%VBAApQ^1{3h(RUUFH@qKc$X8@&0XCk@L(R6Ujwr;)V3m48>e^*gcYBjjo z@nvpB7~oCUO`6*EBS@*q(3Wx>nx?T@IQ%)6Q!&ikC&!-_1&-MX+W=?Yk6p5E34%;3 z#1j@aD`e5hG1tX^m5HZkd?Gi2EUVKnRXVqmbbW|?F4ygT99B%!aB6F&@Kv;?HOZ;_4be^gt3W=o7D_Bj zR{zfqU%QT{GO+|@axzb|_OLOzgE8ZgW3nF~82HheLkyhb7@o>;%DK&isRervR+q^S#b8_empcv2?Bt$NTi` zJ>@~;G$i&slm^YQ#;L?y?Db>GFs3*XJ4FWdV+l*I)Q#E$vM$t$>nh1>VTX3Ggtmjn zFfOeJKhz9<&SqjmJslu|v3Y(-f&5Mr-IGN@*KJ%|?lV(!2qA)k*(b>wQhB`}ofyA3 zu@&cwxJWfa^`c?Q?sy#wmMi;WL0v44`sRZpHNEe&wsri+)4&h!Gbj@q#?dilk+|X` za`D<$e6I1g>8~GUVlTh@we?Dxn3t-6ZxlLvGtM~I4G!~0Jmiy^)WyO=N09~8qZhr# z5|KKxWA4I~%$d6=CYK7CMdJHdgYqHH*~hxwxNi469Vp4!Pl)5`fgRBD^lQt-s&`D9 z3m1YKjad(A>st%R$&QcW11<6sPh;YW0i=t^qHlh6X2yA0s6Xitqo&Qgb=OWYK3c_^ zAa5O0IjwzjDCFaAo~3VlN>4is^N@1;SH4B4G$LM;W^!%$NPeS(f{TI(w~opnaiWB8 z3N^__n#iquQL*RdT`BO?w(|?$Q}093epTtLoSSd_IVgk++6~^SvUm@4^N_FWvi6v5 z$oo%idqe$#4G8;hF-bTIm;ARL^>@)3zl)Ziosfpws!q2HN><8Y} z)V49ARyJBo@Grr;x1o5jv12wmbuU%=Gb-p$q2h>zw8)}y1LAQiAMiKxeTpfQ4oJzO zB-Jm_>KJ;da;bX>rbI6ix;xc?mQYeVj}A~~aCl-Qn4+)Q1y=dKeDM7T9__sl5}|8G zyg*BJsndWV5g00za2C=np8sR*90Dtg)+HRHV_O~DX2-UjjypC_a$?)I)j`L$ZQHi< zGP%=t-{9@Rp6|)O_Nu??tIP5HMPizMSyZsF=V#jPBm&0Q4U&MUlJz9HxNAJ~po{Wyfq7hzgZ_Bd?-f6BvZ9p==90PN zN@=FQ!u<1FTi}1z9mpn{QB_pD#DiR?K&1|Dy{J=?7k&fZ+HL3j>^}#336h@WBCz%P zdU_Fng|#?YrOt4HPrL~;f;OMBTxvC-JH4 zk1Px3Tgf~-Do6P1JJ~mDDZzIHrSqJFZ7ZZ8bp8dwwpgq(Z-zfD2f#CFjiKcg5-30< z+5}F^l$uMQKER=u3&R7ZnCsY;zD7Y=I{k4*b}Z3tXlmw8rntNPLcKoc5Yz7 z3J~%qq42Lmm`4+>u}Zk9^3#`#jG^G`aC(cvF!wC2-W#l~)(E?2gPb*K5#{`GOL43( zWe~sNUq({J-W|c%7io{Fwa;>j29|4ZMs9xerduEgmYA#2?vJG`FTJvzwo3ik#!GQ8 z^OPNz`J{bNM@=Ck*vl<;8koZ%4vVHL7;i}FdHv@x?^X&KdB7&h50T$EqzT>@YwY9$ zZXdBe%X;8YPr6Z`?{pKWixrWR582i7o@ClVn8Ef{O!T|uJ=H++?nBxmcRBx)ki;lj zipLE#J?*ZjJ!0E5s;-er-uH%)q3x^MHo8Gcu|Eb|Y-JJv()@q}>)6xqp_;f8(4uL{3q2H6CgDDKmf- z)tBVZQeLf_0YV+M8F2N>ku_%I#GE|j$3$#?wo4!9oQWxo!P#m?tHkzRFy%L_87yu2 zj7>(ASMSdn)8JYymQyAjCPBR<=Z;qTrn^ov+nF1T4+7^H{!fD=5(8cpXhRm{0Zhs8 zbmuq`sa?G~Jzt8VFJ1G@CVrW7m;6&{W`nYG1M0U+KjNl(5GT4jt)*}|>S1@6OVX(? zc6%G_I{Q=k_REAtuiM9FYXI&sgpIQDndK0~8#anzW$C?fWjEWf3Cq8p&bVPuRDZe) z<3J(7msKqaaP@uVLMWV;B{q%oyLSy5nu1aIaF(?3Nme3BO) zcw=L}5)DZIoQa~|SgkkPBHd@7SQ!N9E5Ci$Q)Sofd5^qm@1cRoW}ZpQudIcd>aY(VX~sCH{!-su}7;2<{D zj1=Vh`NISe=B{|@6g-ZE9-bWn84JqX$6W1NEVlSB)Umgk1?e(>r2A9xRNcqi9Ng#G zXXuct4YOBZ&o+n9Z+rnl9`DzNp1Ucdl!R|{s~I*3@N>%lq(-E%mLUX1k>hwo)6iVV zOR&!pTG8APy{M8+$PA9nPOg;`&YW()#ZOYRj0t=Wg6zS}eEMtU_wIYa2Cw0p`pa<} z=3JYE;aDEPd^iLp9+fzR!z%Dfwlf?I#F+T7PD)%3{Lk7Mo{tO+pNcX^-2tD_b`X%vikz5 z`%*&uZU1b}Ir5?}kb*h47CaQ!ImW{)+biHE(W_#l=a+!|o$e7K_GiK`B2;aku~Z+h z^|nH5ndMJncjMbm9?fq4j4_J%BExgZsP7*jWC$$iFtt|q&8Ea9jbs1s+`9eB_KXSs zjBaCp*HvE9$ieG^Mo8lfUhM26KNMQ7HB6XiucJnRY9sS2)bgai{=b$JRU_WT0j z)hKyjJvibI6dYyC69`trDbxL){}$3&#edj>Zw>UJwv$MZnVrq&KZL!cVu{x z{^XVc`?l0~?#`oeA(|?n85yEWxr23d!ZZK&t^rPwk!18`8Srrk%1~x7MZc=y&-vKE z;6`>`0#&jX?4FWE${xIT{sUEOU?0&XBuj;2jLw;&_o8Q!oXAFBTRNMXlK<&ozQi8^QXKH6^ zKxbo6K`%W0l|}w~!M&Zb3|%0W%jsx$+dBEkgIx!V5R6j>-$RAoi-15udn=zJ0INoj zc-SGFTli8e8f(YEZh5ArE@NM`UOTRaer!q$rUyK9SVhzzOiY5gQ^vtMbw&7XHOL&< zuyw5WIdwucFz4l#(8WK~r3xH)(hx244wLZ+YJ(BdS#;^&We`jYfNm5_DL}B{r4T`Z z88!tzD$OH^y0Nqr=uCZsYmQ??g=z?pA)9|);)8ZKK-5#yjiqqFQUYCbsphXPUwlbb z`D5EJ2Dk?h$Drt-7~IDPx9GwU=^%{2DBqIC6HjKg@XJXRrmc+ibe)Bi9zClc9LlII zUze;MTiX}r@4huv5my-T!I38Ze?8xUA@;jXD317oh=-0wuO2>gNou$ zXPwa&@$b_?AQuS;+dXa*tbgoyS9{}ec!4PP9djVYyg4ObTvQKTaf0i!pQ+hiLA9TH zemf8bvS2UaGX-DGM#)n3O-#|Fx1UJ&`w|t>{rtl2Fj0i6DA7T>p>{9>+XcfzoOS#G zAhQK9jvTp@!o3JEp_G)U#Z&1~3g{*lT>ypM41c>5k<Hh&V z(wPg4WMKjL>~22i5Y6ftjMos|AD-b;GOY#bAhiaIA3g*)Al5<+U`$+)7f$?;Ieg+h zRm_cCp$>bdNb6Bj<=dHNa-A3M4GleoX6MQ~?%v6YBLWdp_fZc)eikoG=qxw0z%^#$eG3Xpxd%ns3o7gUQYA!-| zNVg4F@aY%ZYio;}tME9@K~1ol6eGhzBd)|c&E0}r$OHeQ?wA?D&p zPDWHP7h*v`EINe6M-Gbs&d1sKt(0HcHkq8dlnvwX-5?VTc2h6r;CDP*LZ+C*W2OZf z;)bvNxn}%!6tvrZ42VuneIGxqwhr$s--GPWG2h2QEEKV8_$)cXO*x6}J3|>QOd$40 z8MlX~w69E>UyFY;#jbPT;08LSJ=o-q-+19igyWT*V@aly;@=br%1jo6G@yZk02e`G zY&eEKc;RM}v7Z>!;7S_3O!;`=tZyC5Ak(YH8!WYfMl4DcV6hktBf;gY5N+V+3B58o zuw(19aO=l)oxGe-S6hNR+<6tYtlJlD;QC$M)w3mW_V3Hp2Y-pz7n4-;&AU7@c%bFc zm?FDVPZQ7W#55-@<*q=$h}8Bar8KlmyT$Aj57R|?C}PS3#z<1Rl7xBhGJ5p*Acwqlp>o4|+ZhW)L>| zf;ENgMJ#MQ;rgcBtleWrXMKj?)5sj4lx%SbVIw`_SHrIiYk&FQMsEIq+irwzCz0;v zSb#Z{yo$inEA_g6?iMh2cX4fN`1n4)x+M9;#>s(;_<1Y5+JEv@&=RLA{_)=px3MXD zK^~mU?_X7iNp%3N1_s^<^#&L8S(zy|H4pTz5noxC1WDf)-eS_!kg?209beQoOBDj5 z9*gwZ#uVc+nqGNBSBO>pTbZfu*gK@}d~ou+Vc2t2sVqanGg^(qsza%|QM;(oM*WNy zb3Y@rRCt^7*PgLHR$-?^ z)3oL6T1KypW#Rhj;^hZu@r&D$Ayre4R^M?tZ06-Q)AR*Jq!f<=a06xh_ea0Pff=jOp~?o#X=hIID|YU?j&n!In7X9( zmXxQh1pVWu3X}NMM|I8nGJ_|onizN-imsWQ&b4K0f~%}4`14QY#*;$#IltDMJ&;vJ z3K5h0$IBI1-F_l#NlrIVNpqlH!c18A7#`q4DrN0Sx@iNT@(j8twiR`DNp)xIBJ`|} ze4Js~BgHg3MF*F7TH*Ai!+9buKu!8Sk$sZhWxnw%8)Q`%F=ujw*KdP)^&%*5S^b?J z2G*MNug(aj0iU~99+^`nXqTCGA~~ASs?o&e@jI}em%`*;)~bXMRQ2i0ppWP(h{H{@ zmcEx4`7d(*Ton)ulERyGJu#Nixr;S{O4i*7RP(Sy#K>L1)9K-ur>o5r)>C40L1yfo ze4`h3y3IR5aPu;gfQQuX3h|XdtLsrwPBAFMeHy|e;ae8{9-+;kG(KHQc@At)ineh% z7tAMw@`+2#AEyX&2ND`f|3>Vh^u1pRz&$80eB=aYcOi%VOTrAJDW8YkPqlLTYyag|)p48$>X1s=Xr;cfgUK>mTLG?o0$&h!dVYzQxjSriRD+ zOnfHs-X4Rp@REr!0aon}Suu4VAB zN6}^usNLF+1b-^Vp)Zu`CFL1fLT3rjhY8e*!%#d5BP`HKQEN(Y2`qo1=270FCW0 z(>PiXweRT8QtntBB0MC^&InDpGW!OC1-h0v(4_$?JLtIFr~lOjA6~Q}`jOql1KwRG zcQqLtbp_OS2k=K1?whajMgfS*p$RRbQu-6776~I*0)pYDCLc^1!e76cxGV@By2bua?@3b}1I%)g4nN1{hRf$9GE;SRp$Mxaw~34?8**z%Z1eV$rl zOvsqn_4<@yu(b*)7kNxq%6f4)$m;uZNjLOWkagZrCXNI+CZjwi$y)a=RmO(Oi`JLC zGfGBTO}dC;4+pkMDjt-{yd@=Fb59X2pW{t?O|#f%FlQvtTThlP!1A|*pcE3hclwrz z9b6bIZcIUP=HSy;o!_x%>8PjK*Wj|iZ!<_<|43jR<^xdu%ED`eP)d?I$|F(EKc*!Yts8EXf7>k}(zT{Crs!TSzr1_^`%5Slbm`GpKgiE)V5lQ8 zuv=wSfBFHt%O){QRLXUjsZwiEcmD!wF&n1uhJ^)t$y;P0h4Cm$odeA_)M=(?+Px

*ddI?oHe{(PWg1>E7bz@fpaclLrLpc53|zy+ z)ekC8mh@Zcuk^Mij%kpK&D<0>Q?CAD(p*EP<-Ba6e;Mr4KNVG|wUl(MzDI89);+Bx zCz?ciC}Rk$?#6G_M*wW|mXlYTD#y!_mG@R92;|Rq*-=7&Gm=rZzFQ6-DafJzK(ONA z{Q1f^^@hLuK55}M@4>Mo{6RM%Hu?2O4BU!EX10sA`X;-QB#5Q6sM^yi#6kxn`~$Yz zT4wt3!4Tby;Hf4bp82^lyL^#xv_);D_FW8I6-UZQkgJAO3(b8P0j<0t$xV(qSUJa} z8ms=}N8(9E>=!MnT(21DI?bUz*tmvu?fivUC%rTwo7+?zf= zyxj7#L)K=4g?8}8yB(AeU97&*R@I zA0de0cT}XoCm+09instYxKIN-wl5VA9z@oT^LXpvlN>(a(2dP5xTQGAd)Xvdm`P+k z5l>07{jVbDA$+MN1ALv0-{RpU!c1wpO*br)eD_~M36O3s;o<@D*$gbz?P#xH(4PadVT^K-3p;Z&L$>8*Dn%l53$4|) zL+RLXMkR#WLc1@b=jI6WGFEjR)+A8Bs|u2zZRK}~hxuO*Xf_2O#8mO=OYFum-XO{O z7xCZUm%{k*4MGS3*KH?R`|cS~kvfM_h^L>1ZStH^xd6_c8=K2z(k{w-BF@eZko74D zPI;{rCJ46Cbxw#?4xy4~pCWnGpRetv!3-A=X=unyB~=_cHQY4V!e$n)n@~Je1V9Es zw$S4U9aQw9FPfES?zIDFlSj<^#3eZ>zs$QUX{764huowAz#Ph9DP~25eB9EB;Aw%M z3CpfmM`yFwxL zkXA44?$W0Dvt@%Ii-*?U)I?wUxjX_Jw6vyjPU*@-J%y7Fb})*!LkNkIj-2u(O&Vc2uP^wQY)=)vV-(2FqnGTrO zFQ!z~meCsE$DpBimUU^JTl-q4j`tm!G4A?%6;20uFbWG9Qf5Fi%5EZJis)vty8{)a zm)=whgWU`LMO5>;q|~(Do$LE53{Q%5wFW#y#m^rN3_(zik`XmZu_q_%ZH<4}in|kF z=5cb_@9c2MbOeW~1o#&|5d3($+ec4^FDV;zLd^EYSfUJ3;mGEqSKMd*pqT?FbG^uy zsT@lM(bic#B&@s7G8k1j7>>Gd+rRb*L-uTwHf`|W)n;bhT04gAIm5g&)cUwE@ z{~?0epiPTfosefSpR*z+wcrUR>lMRi;>T_NR9PJj7swyTN&Q!to!ojTokB0> z#GH{!)qBMA=YZjKxTBjN&Rz00OY@&i9B4Xpu15w|r$^@BE!}5tV*>o6TYElc?rhjoSUwDt-5tkwB8ZucdEf+6v($s4KAjd7et+N`cBTWx8T08J zcD+-NM8`|6wWThQP>R6uPgAidbVjNx0asR}qa+hrfLhC+yBB?uHhJA2_XRigs5!JV zk5ziC-+0xR)NFjFfqz$Ei~fz6%heZ&^T-zFhMW;>I@QqBczpB7;}jYi%(%mSrt}b? z_V}O&*Z7{n_`03q>&X4->tz{>@<_cf99}k^Ar6Te=W z3h1NW{QS_V34$;(R=OHH2!7OcnW(L8A8)II?P^TJrKZ%Qri98KT7R6b-^!Ib#IvDG zrv$$<%d+JJZg^5Qk2S$oE~9Enx+F3q7`nAMf#V4gj*FQa3q^---~cmmxTsEkcPA%` z_;gk`INSamCYbnFtJm&}#Uh|NeTAOZ=yUN?0TRM*6=V+{lpvso(x6Qk;qzfL_6tqTDcPdN5n;%T z_zSp*bKSZ<#vyHtKg^7T$t)1Y2X#aHgR6&+8Qm8!TSas#=LUg<4mZ~nH_=d*B{0A~ z2=0AK*%AY~*O;~T^TGTV*m?)!eauV2*725KnRotlyvkUs`3SN9gx2&2J8j-`=G_S} z(i>_Byu^#Rh=;kVBR5#MB~PV&5Vm?i{X&HnX%Jz~uB6c$)0NHP4dv2&s&Sb>*`VgN zrUh~|=M3%N@$_z?@K0cUnH9LHIe+E-5Nk;=d?vR>XIR_oJ+U45Ev^ISx#8LO1ooI^ z_!f{0h@XZCw!z`xl{!@bvmE4F(`r!Y;kSkTwz*%>@$GxGXG&{hTo52rX{Ab2T3Gh) zwRsap4>-FH#nKrGV zF!->gNL}AR46d4I3rSOic5vZ4(OlP!Yzi*oaXm4ggc3IX20(v2IM`&MkrgAf!rRE$ zNIw-ssg z8J5$B`aNVaK|(`Zm_dT1pzW^`&v{1c>d{j>CCCi@>>^Ost8~9TCVX*Un9)%eL~(nx z6&o3uM4iT&9-Q-Q-j2+=T@33WjOV_Eu~5k;y#h{)LqpKoTa%2?Y(&`qn%h4Mzx+pR zPz!PiZscvpP-g^F$6B^oR*StxKR)F0L8$-qIn`)Tq%fGf!QaiNdpex_p-t*En(FLH za@#J@mLAGiV^9t0Z<|BH1=y^-gWfRPe2T)OqfwyeqOh>qsEM*?VaUDdw8oZ(zw-omXn(WpE(eaDrwe@|V(if|K>OosJFA0F{ApCE?^MWVMzshLQZ zxB?>EfmpgVKT8xpCX-aJxME6>b%olw+upEHM_X?XTx5P2j1dps}p885eY1(`k`)|IlbD9ce# zs;$bDO;scac?Yd@OLQ?Oi>_)iefJ%U~K>!=ay0INmELis-$lj;azm+A34&Wrv2a zfmYj4`+%alkNVr?V%&%%_L)~&L7r3CX1Pmhrct|M3X$c_j1 zW-{F_HLDZ6F>KxUNEbsaU;9w^#3b$F^9RCJ0_Vytc$+ZNZ5!$vqHMk&!UgI(y_4!j zmjI%7xel^-l8niNOU+sM>>{pyo`0*6UG;;ekos;XKg1&3ejOCa)#paO?j=2;UB%xu zVV`p?PeU=*FNIy(;(Z*eA?l3wASHW)INO&!`EH5XUR_|izDcmiX#qFaN=R=Prit~t z!lx~w@p)>PWC0ZPv-oLzTxiGaSx6$_?lCZOD5A!$H8_GPvE~4FbH~UiLgS7(WvE;T zTFJavO<;mMU-6Q^IltG#!ukH}+RX&E=D*l^zG(gr>P*4^kH}M?_3;xd4zyD5DE>NS z_-74h=)H2vi*n%=GKh%Kd*Oo?OlAj9_jZtu>>SUB$LTfS<+bH{^(@jJ6zN(EPw%%= z#E3mL+vITbe$t( ztODz5NBx~Gm6}C)U(4sQwYJL3O^x=C67X^(zPG{a z=BE3hm*+yY`(wxK4c`0t-jl?ID!q`_lUBV!So+KQAUl>h0!7WPXUZ9+0bb(WJ9DYT*f;o*%T;PpZE}w=DFu?S34$8Yq1vf( zlyq@RdBRLQ;wG7@TJXwNN?;kM z{EXGkfzwdIywmxTv(!n8yCdH#MrNP448oXv+CJaHkm}4&?Ro6jgGjNca`80t^CSI3 zyPVJK=wZP}O_AjeFHy@n4qg|(6LU!Ll&szMAxvh33x83&95q(Sy@B9?+>{Iew?OO?#1n0E=VQ>F#*dzJ*~aCPk|58YH48?Xp?_# zD%>YZWw4xc8mdsUJJmT}QSFtca6UgqJ0n?EYtH9}PCHFHQ?DT}_&kq?We+>xAh=Od zifU7>BG$>hw)|H{t+yfYq$2#^O_r-jw z`o<}YNa)|c2vN0_s@_mu4>`pNz5r><2vv2K)zTPDZ4oB2l(!~0<2A)-#8+f7Rw+f= zra1F?sE6%Q+(6FT8H+)^0E;LMtj`GpB>=)~q94!3^sN|dmKv21vz%#kW#siPq0&q^ ziPlRrVtOLbXwOuVitD7tYc;FL0sR$sG_wNzpQdJGkX`Frv_dBE)3Xtdz^S_#A8XAxLhEXY*naUv9}}Unb<=aKe61PABTp zswQAH%&9n&(v?ZaiBny63)jbgqQi2Zr)@keYM!Sj5&nfV=G`UeRnAzb!3gCt;{7Rw z*H!zQH5Jx^a*naQ(eme_2P?M!$u#eqYrVq&S(ewyk0xtQ?^$^xU}Vw(eiYH0{> z_*+pc;zObb{-d+z_|ra$@bKzH1=&Ic(q^U^UQ$IwC1q`-zhdNPh0hu zjTXop*u%>NBoQ6n&#}LM1=&9-<)fq(l@E9{A}U? zym9gO(d8MOAl{_iKj(rIZ0b0=UWlMO-?qH0omswi@g4=Qt`(%933`;&e_PAMyB(Q< z!g!ueH;&m0XTb$usFL`JK^5vB!Q1sX;G(w#-PXWD2GO34)v!xT#V1gmbW0Z&lg~`il&|V~rV6a1e4`~Peb$-0>f{cc?v&zf1D@5<7uE*3;i;tf= zkAem}@%&|{;QC}gk{kLG1&AJPgiQ-*q9C&I6}3Ta7W@#8g^ojI1QZ13<#+2^1U zw`2eWB5jBR{#F6^ff_6c;%Ew;Ca=|RVy*r3PYLV#_2zaa4){0}({63jQ0jatjjB$J z<@fR6GiT3}omDN*{~^E$axCT0b-%K#0KK#Ef#G%NEeVmXH}xTy18MLiv2#zPbFcb0 z*%e^cA5YFrBikDZWhKSv7ju^p(+fsu@Y?&3vwT?6;~kXzJmPrsyfS21c4|O7DUZNj zwM)eBlXKp;7y>+R@TGw0O>5%*D8IsAJ0nDU_(2XaTu5*cjWJXb{+Wn<5vgqB{O+@8 z4L$+ExuIkau#J77x{RfzT&4XS=_AP-U~gW9(niT!4F*T2mc-bc$}|!I5q|BlYBFOE z-!YDOe=-Iz#6^E^uHl`?&QFGdzR9Zj1#h}BWLyQ1*F2i>pfx|WH9 zmhzkVjQY-wNUl6%->T-Wxs`%uk?M8nbL`#@d?IWmXm|}(rc1d`5=_#^d zWJ+$?3yJYYQ*G*_uJa8`E$d@3&`$#t2JQ~&W(TPY54j9RS6sS8`YN?u(WQhCkrZCh zMB)sx+c0aI@vMP%xlx2vf_lJ_JgA_`G($g!`E6`e4=Z&R)^ye{Xze|J0LcIfF@8BO zW~_G^C`UL~-1Qbo9hLF&C#&0`3se4= zP-FfHQ^AYU#*`sML?JTyjnTc<39dLJY{0gck08O?N1 z_phWFF)FdQM_(77?!yj@^;3uW z1!>UUPumI6UVORuiv+}PF{mSMwsrOAl3I7IWkM9O4(ux!grG^&whlkdXD-e~GSBBq zp&Z&Nk%t&LNjJ{{b$Jg~y@@d$L1r0LK5N++=DDDJKy0(KWFgtvksaoa@z2HCv^uRD za)8k@G2lx>*iY;z*mHs{>%h$yLsEZA`Jdl`v@*p`gV0Z{(sch{?@9F-Q6BNO$=EL3 zEX|POJT%b*AqgDCa^bmiA{ICE&a2Sukir60Z9raQvioT}Qj%lR4Olf~UDJ_fb@&X* z@saa;{Gb8vkLV;n2Xgj(`J#i4R~^4va|3A-wA+tSNKl77ytEnPST|PikZe3E4(($F z6YD+7fY@{vFm%Q`!@iW?^*iX%k>e89%LzDoX!J2d&^ydd!UI05r{3|p<(ge`mNEWH zWN4lY=N}D>GFSTT2f(0*cEf%89y@x&qb1=mfp&DvqZ}4kyho?jsoBsSnX@6VOI%C@ zPacQ7kiM(*n*#^c4srQnaPQ6HKpK3KTx(|if5T)C1|3I$4^9O z1ox;Xjd8m4Tb>LoEonxDScaj?puGLeznTIx5LGcA(x*z6Sg%MvyY~5r8r@D@DX6JP z6EsRdpUdO%JOIl&IQ$CvSLVn!=I+?eXd`0EGrR7+QF`1&xQGQSVJaio^kbo2@zGO@ z+evD}*ISh~Qu}?7_}4bFA%oS?qYlNBlBYH=x$o?7!Gk>~`ZsobY!l(>brAEjl+ zR?5E26tiHisLNOi`Ul>jxp#%``}uq+*CZ&AaX0ha$nwru&#}^VZuOl8$*g82Eh?Hn zWZkLTMT@B?7PhciP8AhV!Wn(wrNxtrcm(`1k5P%Vbtjucq`j#&t67JQ%nd}!1rrb2 zuIW;og7eF~-4;RN8vd~nIh>i*PL$ag!`N%5&dsJJ-P~*EonncM_J{03cHDbwe>L^W z2%rcUVUu^U$UaVJD%u_ulz+|o;68)Xtzj7UxFWkNGA|E~+vzD{WU{6q?!MX|lkg*) zW-%N~^;EODz~i(LtE9svD6=rcn5q~LOI%aY7E(D{`s0%FGA!0M7^dKUa?$PVI7)OP zw-n-`s%smH&M6}zF z*O%m-uS!0&0|I0*2{ihRgRKpR2U8_6$wq#@0Q}B;WH(Eqk=`qqy;aH_bG}0-f4bb; z>zovMJ);;z*JfQLWtOdg_?y%`-+>lfTS(fO8|u&0+_uCUiP62bKtZXaS))J!cmVCc z7STPler(M%^Z7jkb+xdPFNAH@7a0RJfuNX+H;qMpdWKa?b4Dy0>R0u&oxuTCxzTkF zt~1$Mw4JU!zYP{b$PcT$ouU9Ma)7cX$lUo<+C%%brM)7Zy>4SPI+hu=iJbMvTHTE9QTHdT6#2ouQi&+&(Q z%uLilgpxI3bF~xbj6x@zFMZN+CfP$+0DkP79 z1OZ8M5_5GhGumZ@)QNUElsv(7<`A{6kVmW{-*E>OS?-j=FU)s9_MUu}p_SMkENmB? zM;qA$V8Q=NubII`y*59F|8l5(W-jac-6tSSO3d7m4jGGq9pj zrVOV&=cvGdN1iS4ks+v_{yf3sawLfV5s%BLyu6fgpPr~Mot?fzb!7}Md-5b`j<{S~ zx9jFH;C#AmumSESLtxj+6RhXQq4wVa-G^|S_45Xbz>04WkyB^(tCpqjxx>^5zFMwb z&?f`Y+@pTo88(S7bknzq7v?fS<=rcwm>NQN+kwoZe&N?w>2M6U@9h#Hsn7o1#J{6c zx9n4{tDLv*3n-lB??do#8@dA-?~x0bpF2OgQ?ma=ZH)_mPV@?t!PhZs{eU_>06Ywk z+zzt%$_XXkI>w-N%@1Gip8MYMU{(`V*hso036#q=`x(YMy@vXhW&R=4#p|NK&a=u} zJz$B@EV7duUV(Ft={>0lmzi@;v;XJps*;FuukTNnqQ=0sWSdFTq0;IFKJ@baxerjN zI7%J6IRx))DU=OL(RTDin+8#)9X87!0lNv#!dWmSM6|k&6P@rcC#<+KeB?VrzQJdA z(zlX)C`#CFH;?|Ky^X;e6zyh^E#*v0K@rO|uq9xnna(t@vO*Qd_6kl|2eA!XNyHhcIS$&!7|)7MYOyoc!xb0C25-ia zkcs*ze=2)y&)x4Po;#Gz554Q>D|vOM9yg;(Iu*RG6`oAxrpVJdSfEjle+}+SU`qusm>INsA_4aGTNLPiEKa4=8kBuo~8rOBFu7~9^HwvOp4bq$kUw|grTpw zy;tteKs<+A^j|(D_*FgRC%9sUPIIIhM+nxO*%ttxgTGuo7YGao3WN@i5sKLX z0|GzxY^+ZbW}TBB-O&kTnp%P~_~0g7d5*ZVBxE>>Mv3tmaRlwl1}@K1d87l zJKXLCF|2PK6ijJcNbQZMDbgA&ZeyEE2K;OhJjD=2RtILQ!mFm{1m?l;a4rDIC#IH{ zG?>ctk}Iwp#{xVray$IHURWN{v*Phfd)ATU1)hUKIt*(@bWtC6I3dnF*z4Kf|<^c@2K#>+wS3 zysOpMro>v@Hr<~a8&d6Ml6@(3QTxr|&@WErrS-*5YpR$=jaK)b!^aQ1DT9hnp455{ z2;Mg%K@$DJ^Dt_)Ys7TLoUj&)I}~q6gJVNIx0`Ef&z}_1X*}DJe$0+dH=+oj9}!Wn zn`aP`T@jLRRK}3t+A55V`MZ2z7(ugE+S?iG#B#d8I2SitiB{v+e_K++Pg;#qkXdA{jMJFZL;BVXbohVHMY``_{E`YMuK-Q3Odf);VEJ0#G)1j(=JlC@> zR~X)>`gcSuNh(&5L1$4f zq9-L0{)-{UEcK0!X}|nxP6%s+Ku1P=Brm(DEmS#HvH~i*abGi-siO!ao?OHeE30IP z#N6GQ5n;J3@N`kpH>F9ZOX;*~EHda))xneLerUSXYiaI7C&DWSw>0Q61nRCaHuuRF zD!`c|GwSFtgq6O2aGGE3Sg>WBYY0B`CD92ffcfa+d^WDjX=9-38|aALo$^nz2opf$ipLc=`_ZyV?A9Yg zkz}}~eZJ=1;qMe={kCjZvCefjAT;XDp*c6{#0Ftgk{lz&j+08#CHFl5TDtlZu$FSW zv9h3EY+|K6gF161CHUgsURqPNEiVbyI3Y!V!b@7A=ezft*YD;sIr~vfE-=ym!nBR7 zrWQB}8YdC3C!!?EorsYr^Sl}@P%8&F^RnRXjlg{DEWRq8W9}T%wO2NQ@0Ysj0P_`# zEWM1?&kTte!V;-3Z?@LNMFG7wFnJIXNGTFS30ZhU+6zJ6ks^vjCpqERD4WUseKU>r z&WCz`H<1N>P>^wAKz^A~=V1W4Q7IuFy4oQ<~JBP4N7 z8(0=S&*pB?y;%;eDcZajDA%sBCuyg%vOh%1Cm?SD2RDLNt%0_0=HEL2R&XAmbh1W0K zi7aWFJM@GU|LPLQx5|JxhA&L#bOjLRI3kMtHdTMiNlPIS9wEn%KIFNqgSSb|2}H7P zViuX(3~w7~_Gk9OLXB4mQ{tk}*cw3ybD57Q#f>T2t&7CBCNCeiH-@*vuFqG3uZKOi zy{jQ#7rqZcdI6W$HA5?D%it6H_bbf+Dg40xJ&&GdP{krR|_3VGA8nQpaRy{Br8-aVFB0Mn8OcrU5{7iiG$7X`` z)|qena!t98J{|cRGV#Lb>yd}5=bpMdiVAxRw749`0`q04Oz;$oIYMfPa`Y}ovVqs- zoF;2L!^>+$J8gS8vw-<~M)|n^Ih1|*MZ4k&Nk2?c$6BiX3n?QRk0~nBF~{>4uS_}z zw}5C&W2$g!LV&2kthgcRF!DJg#FRL7&wVdobM|}hH=m8%g=6}$EJVW!*Au6c_)uV- zydzTw3Trv|gJF5U@vPRHgs}DRc@<8R9L$3czhN<-X8bP+3JBCm?P-Hq_s$?3^8SM!8Yjb$cF#<|gM|V=7#8_ms z6KA!>f6uvASuAo$otwF|JiGYM|1fq=VU>n$-_N#fyCxemlig%vnrvfbPPXmIO>Sk| zwpOlHlkxQ)-|_Cg&$DxHUB|t1?Of;i$Iq&gLMDPi2{m!2)SF|;(pgDn`R<>&)DKh? z0RYBFsk_~n%biUS{CsQJGKyElB*6;*Jfg0$ziEas^yWg_A2$QDPXW}C0j-~b{B(97 zaN-D{ehs9U@np@_##Fc0w&jncb<@pNX#c+dwJ@$+y~(^7g5S$mYlQhc zOjPluhajFKKnqc|2KG?T=`cw^>1NY>pDF#jB^(k$%QqRb2B)f9W5p*|296juqUgDQ zSg7o!L1R1V%rV2DSDa{OA(KV;W4|G~?y-vbpj#V=>1+riDMW*t3FFdAwOQ zohVCW#M1`j>~45%q*w+4F)?C$<=_y}z6iF(MBhZht1#nuwaY3dhEqlYVgkSKL_7rG zFme3t@4<$q`AfPp&>*(j^#?VLiNT=iDW7#-ioXe>qd& zg7y07ULvFg&>0s-&&1KFDsEd;!i!s!Ak>~rr*<4A&$HEiS~nf zz>!7p8{t>h9G*oun*}59%kN?tCg=KDrRuLK$1`N&3!2<^DY+dXGPW9CzfVZ}vbQGf zV8K^<;~laYM0D`*@*9Rlk}JQ{l@Sk7k-cOEJ$JFw@4t3XL4 zU`mE1(GIXMRGq0PG~=1S3c={%VXdX%D-`DlSRuh5^zW+=#Scz?FySu#-N`YAMq6+1 zWSusFF8ib{&Bb%W$KiK`Y%^fk5A7>ah^IUcJGH zD9$hV8pz4uyH@NVktn0cnK{@9|HiTWMUh+35|X?t8(P#d2QhYk_fJH_1bmt=?eRax z6@*fsV>2&x`9t|gWh26P72Y<0g+L95bpL2kfp7Z$H({oW6I$w0D6Um%i$(B8%d$dv z*qg{o+mJ{StTAF~sscF|>Ou-JDZ16Bok#2fC^pLHRI+Xchbgpr8r0UZqr9`$q`%MV zatuTf)Ilm;qUfLz{u)O7Rn2K?`04t#Va^;`SJ>&O2$SDHp3wG7KNs71!mf@$_XBf5 zhy(sbXszAOmp&+r%|6 zp$$&@r$rB2R>U-ge8Q2oab8p|$34dYKhyNC{Un+~OEE>&7WRj`_-}-)%Hp@=kdXN> zG3;SaU2=>RuUlflGb=3zB8Z;Fw8BKMBaAGMm0Y4UnDFv$Mr+sednH|tvPwolAxgkG z=qFk5`Zn9E>wmRB(|mM*wt?tFV*XS2pFh{5b#N5_&B4!q<)MTs+{g>`k7ryP!j_Q8 ze>cq?dyIl*54!cT{p!F{UF#@Y*gK`??a=6u{e`mSmGL+I!SbwWCRROMrf^%PEo=v5 zBjW-3W$$42!h=A7;lXmk<_sc6fXE1pj%u2$hRl}U&T~PH@U5?ix%=yEFmf9Zq6<-Apm8GxYVog1w_+8lK>`;*WsoqMwKalp%3gY5H(bPU#OzvTJv5IV`Pm8)*rglN6&T;=g#H zDK0iv=`smT%Py|OR)Ql~50spVz*i7=ha`Lv;44|& z6)kN2it7mOHXI!=Ed~=+Elm%WUVf~P*1fw1!|->caw9zZI3zPnyZ#Ds!{{OWQlY(X)UXwgk*pg@SG7MdUNk zBX{oQUM^qXkEYZw^i$Ov+M!;WhuXY8?jTO}n&d$+0jK(!k#%>vb8^&@HC$m%bl8rH4DrZ|waT@v&~c ztyRQz{p)H2aVK3MCNuFl8u<)%+uTf#M#t>LLPh=o5&yF3Wf{GLlDahNz&!uwMIPhU z$}sH~+IEU7GIeO^Cig%?vbCzSdQ>@mxTsgsQQ!KtEKzd?h~98>9vtM~7{VU&EwjB2 z4Q_QMdkWE5amFfa`zK}DfuyMRYC3zIwB!hWR9|G_KziHVM9`H?Mm7hbH0I0w0i$)b-?~8ij*y9D`4=*>X&d-Oh z9ROEQ1@Qw2VJZOc7c<_6Iak-T_8@8g)zsmSMfGJb|Ep%q%Icr(pSTq*=g1LSO_j38 z{Q&7GhhAKTFw-8-C>z^9i5WMag{PNPT#RW>v_8Cw3%(~^$cM;3eBBvhSl3cYk3zm_ z?}6h4y5G!4FL_iaG^ZZnOnWevRZudE7!h;t`zF3zJi592PT;KSm`s zE;QilH@A&p=Y-D--rL8g62Ez=9SG6Dch1ctj}u|KCZ{~mm=66bxq8ijn-c@4!{+A{ ze~}1(8bq?Eu3AMua%v#iBJU2A8J=|CB2*8&Lfz!7c*eL`2{zpFxqAu`qh*J3M)+*i zj@QKX&qEd}h1^s$|0#8ih--W4Pd$TkABJu=?dpT?R>}|@311CkAegJqfZxwhHAy~U zAX#LXJiBL%&7KGfI{)H(OSGl>3tUx~YX#rX22YcdB%jlsPmg<3bA3s*sNJBL>KP4X zc!RxO)80Tr_6cEg2RapVO1ytQccYr4zCTIFp>;dlgi9H=u+P&~NWNtXV>`?cl~4I$ zLT9F@4a#35r}#=Sc;+eBSRV{JDg6nFl&c~DGLKsH`yKk5^>*1>=BH%`C7*)QLprRCxZvIt(nhI8L2tt_ljK zBT5=pG$1-yqH1Zw9077JIKcRb07M9CZ~;i&Z%O@cz5^fW6p>nYj$hHse1-Q478N8M z?ScU=B2<4qZ9?Fc$yXl_wb$M~%&pO$qf1phOC7os8V{T-VqEnUTn9TW5n|GGiW+VX zJP88Muuj9JA(WXh7C!}?ZBfP?nq#8~Sn*cIVDe$`_NV;(oknEQ3~{KYi5S6#FUFSI zPxGF07#A&q>F+8u*c2OvRv&vemAdWIvx%D3o*Exv2QtFTJ!CejM z<(`Zxn+LIsM##@od&;42ZCCjLVsAp@yB|zgqw|wu0-0BWl~u)n>JtC;9W}_tf34K5 zWq(fVQvYRKMq&;eX=+{wiN~AgRcJZ-kwFw;8mZA%QrJasM$`*T`CDx~@#M$D+M#eH zHux#~qN3$6tGX)_R^=7RM`Z5XIG}KBrMR}T z%e$nqx477Mse##JyoXD|P5LEf>XDO>*X;R=qOKt=KAoqFtDWa5)o>d_b5L8aMU+kx=s>1Q(Y7^x9xmBEg-T&~P{wYNM(qTWoPkt$|*2brh$J8Tb z9ijD25&aAG<6I^>e}Z*~+Ljg-CCKiSrm?j1r%FVJIIC<8rC*fzfC5AXG2Iqy=^RY1Zaf0b5S3OW~ zl+m^3IH#wdh7b|(3YjTH7(8ED-SDzyc~`I*;M3Hqv416UPD*k_ULJgJ8T_(*`>Oe| zxAG1|jV(cZykeQ`KA&+&+S$lM|Fyk`CCCZ)+7=P+L@qPRDeNT*jUBwA7G9Zvp|L&y z`?-i4-^?JCqnNUKXd136emCo zJ8;e6h4V2hze;jOR+BGfhG;?$dow}>qHee5DYO21=m@aRb>^OQ+l zYOHm+*=}V+o1YQ)9|?_;O4ReW)usO#A*j3XfgCicO~>c!r=C!ts2Ltb~Y;pmsvBIa1d90h=qWih( zKQZsTFOClzD)Kw}wkP13H2EXHU9_=xyyQ+Q<_Q&Kf9opgmOICsrdv@`s|~E zh3w|Ji_C#4tnXx-u_s1(qbrbzl4gfOAjpRthp+j>5W9dB>udB27qqZmQ4@;-50 z+He@7Rpel;3GLoZdO7nsC~a)wWH(kj3v%CGbjH@eJ+M3mk(}yXtEOSfBS0veh*BUl zvk8SO6s3P9bIgHRbtmHP3c-p#OuGh!)-h1{!Q#*C^vc=V5Djx@9cuA=viUV?C_cS_ zlLi^DL=+Aym5P*7SA<*OUWTYfA$b}ht&m97K;*&~z+IWVstU=p@YaaA`yBEWa!g5`E3a?Yv>Voym?Z z?5k1_J{tW|Mp9DIKb}&23_@-x3!ApsQN7V#WhlvxvK4hM)#2G(-Dcl8KCGB9vf$f8 z#TSHIXaCMLb3I!Q9X+>dp1={}?FOBKAzT<$PQxJ{E>;>;RAhI*-uk@Ig(OB%R?>qfg?6Zc*z zZ+M6hOnMr6`0WcoH5;{gY_DJi>K8sVTB)F$mg5-oLePeW3jKY%4fa9y9fbt`fz$)W zTk|m5!~B=aG>_0&72!Qfzi|Gzh0&i~l|A-T?ah(Ty3P@}wVsx@{U{i(CS3<-2MB?R z(EdMWl`{8cjk{SU{~7Zsk>lFNMT2{79`589iV9krJmerp*hBVE5s(!Dg>$&585yc# z7(XJ3#hFw%AA>?RUmT$pXe9fd;6k31?v<`dk7Y7bg`)rga*`O5-hFn&N{b~^05_t- zb2zgB)mbU{={5;1Wn}uvd%Pc60vvZkJ9=>_tp>1#Mi*F+^8syKBZ`oawOK~*2zS*+jFgpFJ z;CN3VDQ^dzXFhyTC3wd0_@s|V1~F=Wk%kdh7jXX}p9Dj}-8`(DN67ZcDd%W|q%>3O zM@3lojkWmmg_FZA3ZSVkOnFRB`d;zv;r7?8JS4*V4H8ir;oL@b$UHQ5scB}m*n=Mj zSPqM|(omw^lp{jO`!zV$wGU85a8{A{)Ev`mPdiLb-AdbED?_GG?}}69yff!^-Rqd< zu7`UU1j%kUEkj4}@zY*BJ$Hv>rw{SYwHA2#Ghr-*VG?Fy$+!jys@~gGneD4kqReCj zdscC*9H*Xg*Z9lIW$1f+IN^g&+{@0*6}$=SMu2$ME%Al#EaaS+?Ji}W)B_y>sh#VP zMvU4v6WyT{7F7J)P5C@UGG6lXeZ|mQ6XDbQTb78{WJ1-MSGV%Aq#J$un|}OV;YhP& zrNFG(B8IB)paJWAT)rc2EOrcBnQxvfQ$K;adujC7vN6d`fPAZ~cl({8t|pTBwQT`+2G&G0EMan;rTj|9=+$>!>+5F z6=~_K=3n3W1^#j{Nu}S zoy`NtyAw81KNOy=P!|pwd@VRoZ@BN893(Dhp~(J8BbGIrIc5TCTRm850)?$vZMnao zJXT9=Ej(7~)7shNVDeSUmIj^@`R0vi`XIgvR`)&ah$unX{>5*X?(G%>INllze@d|_J5bB}=?DJQR;M)xpKHB2%HI7t9jbJCB+;Cg6XOZdaDlSTmlW#+U!guaZ zysmfVXBpZwuwYZm6CY?L*7WE>`kcJAwi~pUC^+vOUQ0~V#W@+|(@YH@hO;8hi|JZR zca+y}H$*GulyUx~AN9#f1OL!X#4%?3%+TUd1;?g0>A*f&<#*`{>I&H8Yq+oWv3wB# zNp5x{c7;Rjo6sr8{wd0rOdSi1fTq72i#2LkF@5NU;>vasjdc!33us<$W5Hf-^=x&p;gFpv zuHYF#x5^42!+qG*Z~5G)^o^?jIX6K0H92g_3)eEL!U2bg zdtSu`&hJ$^G1KA1%cqFL0Ob>LS*BVi7nNld{YuONmC9dpiZ+;g5RmkrJmZZ45%is1 zCsQ@>o+hd&SErtQ)|!wj+NtRURkNd(TJ_kcFp0D-No^Bx*LSy@ z9q?TRUx?@Qi{;JmiusOVaAedNnay@l(_UL6dWznuno)@N23zvNu2Y5V1kdeGdye05 zghv%BISYZstK=+|V{+{bN9k+95p=b&RQeKR>?Z}?1~a$2vF8a>PFAyg-!nu9EZILH zhDSP*2uSP#6cjwpu- z2T!QQCU75Ls^zLpzB~DUO3fkOq_x0XNj)=2ExY-6r_x zGrG32unoRY5|vWSiC7kgtWBn7Rold>vGw?Hy9v$%skh9dnB`Csier3Jw$nq0-we&p z3zMDp&)L;_;B zAHOb^m4z9JZm6t#B~A^Ov0fAuDywz1VVBRxpSeIVtI)s2wzXXFUgcTQ9DwA&3Q-}x z0@U_sZ7zmM>@(;B9*Mp&)>LhXZiLw2uAfi+f+Zbr02%NH|8=!QT*({NOy12#%M7{V zgqdKqRC$ZnyS))(`wx9a2S-N063fSi3Y*E5`5}e%_`y)Ot^HtnJO`ir-EE55Vk#E0 zY#=w`8FZyi@C^GI!!JC zC2I+$_)1}WqcO$JK|cboyk-&pym6;ptIq^VwG_J7;X94Qdv>SLp}blBCxJJsi7to? zM)4sH!+dgHptnS*=cJ;K#;e`HvM#1f7R)e?+nN)4p+ALpHH$}ZYFM0dT+>Mcers;R z?c-&nb9#GLNt~8HtPO%CY7B6xwP8LWTbO%QT&4h1R>H(FAp$BUenOF-DtnQ?sm}TV zhKi)n4dU(*4a?!YGh&CeUkirl1+E}BRGr?kIh)1l^!iK zsnG03LQLa{K>=o7{AM7ci&TR_G16UfdXhhm9{y56d6?k!6Yp2OP)%sR5SOWWSANYp zo|VZ?=lKx-w6#0GnU+^$_!AsAGB;W2PU*#C!8k3@wDXR(A>!K0lPCAgQt|@9S-o40 z^3!)t)W@%exa^Pi4ZYl;@4!iT1}s}4otmRuulM!4qJp?E`Nb2%C3-n2tWBU9Ed?rP!Tbe2jTp$yv2! zi-6OntL!$8jXYQfl5M0uI^W!TJ0m4`JjRnLN!j|xKaH62In9^vbuqmqucL@tPD{kJ zr#=Qiwlzx-p(vp(i4~HiUR`(c{fM-Qgfi2~K5Yh|ehpc0#1iTUs@J5O)n|nNMhu5c z-+HI7(N#oFU7b6D>6FS(f&3qt8{%6n(tQR~jh|dg)krG#Qemu$gP2#HIiDKqI$^f7 zPu!jC;Zi`JmIa)5iulYf*pDqGe@UDwEf#DpCVPH?!+J==$5N{$L4z;F`1Z=Y8~WLT z=cuYV`}$9LPC^tK=ji;9c*Ql&8`|*3&z^7Smdk*Z%6Lq5@TJFRuIucWmjx5gF0^#Yi7Y^OMh>j}8)oD8 zBQ;e5Uh-jU!xqtV5~|-04|Yx?LO0a#6j$UFpv+YiYegXj;Fpw#Am5ZMLGj$QW@JT` z9`v<6eYGQ{wJd2*bVg6{#CI0YI$n;;;a2?Ri`USwKZ@|wlkqgeYE$@ovCXC5j&kHX zji~+H=$YD_2qY`$z(g49k6BgKb4RTBTeMpQ#(B&kNe`V19bk z`AAO^h7)d-fz8-1o&b&mE4w;$tKvbxU7qHe5I%uIBd>7pB4pTz_w`Whs8h*bjCE_$L-j@C7y0CB+aAtuiDm(}W(Ssk4|HFw9k#rAJz}lXP|ERRt!IC&%qc-b zDx<>fp7fQ@wd&xbWcRl+Pv2MWpW4?%JQ;FmaPxVQjJnu>@_2RHa)n7YB7`ns%JTB% zaRx8`9^dEXwY}KC_xzRo*ynk9==fv*Q8W1ATO))}`&2F^jfZ4LAq`iNKmV2Sukkn& z4~2)8Ow#ncB`hWfUVX+O2gdHK6RnC)@z_g|Jk+mG)gz*@|6Pr}DXu5)_U&G}>)7=V zXC%bOb>05%X4t+}?893yGE{aRM(I!=FC{VVf&*&S75H*B20d&yq(|s1|H6d)Otfvp z(NJPDJ6t^t-uW&_CN#2DpC|X{vSly#=1@L;^y<`bwUSi@D6Yf}!}V$?W=RC;#RHX> z(^2oN_30?&P1NdEXXb(D;zbf7E)G(dnuY&uQPM!lGz60zL`-{};SvglQmkYuuDFG* z>Q;i7MxgDV#qi`j2~Yo&DbTfl9>~Kn)>0(+4;u$5U=rk}pe*F{^-5XupZYE2nyTYX zq!`;{hn7VtB?s+~w3yVE$gcpdLGze?QJn>GN}tK`$oyX_xpV$kq?dj`%V&oI5zSxR zj+K%>o^BoxgbMuC=RFX~{*o8>WaWAq#eW&M3vnSpskBn|EgM@f|4r&?MFpegewv|1u_ z;G_lGhjyXj4_<-L!M;-*>3bUWGs)>v8TM!75;(raIz;Y?xV_L;vMI9QI*mG){iM?6 zmOh|;N*gZ|Z`fx@F?2V6)HV7zykiO89NXnM8Ew#3_HC%95of!fok`~_muhcsv4a<<5hGGO?{xK+t2 z@y?Oo!bOo5)Vrsgr9(ROsDS>5x9_`;zF3|swd9BSjQRYp+8IRunIsJRIFy5!(>E zzQ}sALMjV8_8*@;zOTj!>i+5+)Y9Y&J?-)2sV1#u=2L_0Y}8%Nzd>@62(6l;{d^3E zWm$ifvenPvEQcTpLJpTX|88cKxJyt{>4(St>#L)l1U2O%+J=PVw|>DxFT$Wd>dNQF z)1>!tSkR$JZY-k-MpEe=6vLCcR~Y{J8GE!mi*+oc#xL`hhvC+Gn)+A_e+92|Bx0H4}+o0$zAUSgmvWLlA1JGP2O_Y9%KPzTT55@WP&%9MZv&%9^4DeO&K>1*(GTms* zHt#N~Wcc0^)~iH;pEDo7jN#JuI}urxSm=T|HJ_M_^a_v-Z+U$;h#6V!MZ8^I40i+R z9;(NNOluTooXQS)DB50YyCl!1!j0EJ#7sMLY7nXSB5UqC97s9&_CjC?%G11)T+Ny9 z4gDwuXv7x@72C4G)c__TcVL}8Rxp8_KSGp^5&!(_jSz$(f(|LHMw^D$$xgq#3GYQO znI9#D$tg$7&>1&^L=Jh8;FolMIZIrDA$8cP-glGW7njQ&GQ;UY-!3>9xi#16+{@M8 z9>+on{bm8!zb&cH)uYMz&r9`fZW>t!8a<*R->u1y?)V zz-?2&RJG}vz$4*Ms5X{hs?v%+*A%gyTK^E$i}nLlMX&NM;}pD!dsl zgX^wR@-&gAj>G?I97<6GBK)Qj>8)`GF!nHDbeH;2wmyNdAR_faVy~3W^Hlzr`ZP%y z^KDLj7+1ri?>=Amyk3Q@o@}@qxD;1;o+r48QTWi}xf3vv}JP+SL->qk^ zSI3m6@4xofJn*l?_tCiimvUp;p(KfMR{oMNiO3BFuq zr3e^)Be0~nXne4k65&s|d(HJ08={^#%l}<;qX8fa$cI)WUTfOrF6ojzTCwKThKB;2 z@3Em%|*@=9RJI%Y<4K=j^!;3sXW+N} zQ5%um&*A~A!^FaUSU-E!QP$AQ*_jJeIwqz-dPZK(B`xBTc4$SE`5L&7-cL6kKGE@s zEFLy# zOY=?dNebNGTo@ml`poMBk!zK`r~GNO9GJ}9EuQO|AsW|pd*R8hX%yTc=@YBx8Fvx13LvTl?7qlo49AnTh?>*%U*JO zp3a$IR6tcL=a{N7Hk-Kir3R%B0j+v5PJ_u7(t;N6(KdYu?xQh0O(b0=zn9w^CuJ9K zIQ^~+ZI7D~2}|-RV2yKlK>=tKk)^xp`|Pa1ty=0DBEGjGdvBPZ4>9m^8rtmlh^Gjg zqAbSr(g#I13#Ji^fUHiI>Ws^oV6$+Sbr52E0_oAFwzc9vqFtYOR8X|v@2riM!#hPP z_E2*=MrGvbc>8+ESYdz^rLX?vL6dN=bFiPBvXV8p?5q~}aQFhh5oQngpZ9_lp{G;E z&5`HMSC99X3ESHu6JvT>yLqU?^TW^>a9IjWF8HM0H?p%jq|g|pEUE zMshRie%4gzNi=)q2VAkX-xPNk8K7i>!qnY@niqeyqz5fzj-u>J5YnrlPC1Cp^n$5k zjqoB)ELTMb<$$GZ8UYg0#OAD#K5fNp2Ca3a6SXoVNez$objc9`{nhk3}Fp%wvBbUr~vTMBvk1CceiHnIhQCM_C7ae^b$ zL~(Xtxb~buL;QOa%WJ(XSZ%ATUC-v)*N^iqokmiDM7sMnYN{z`{KO2Mj30}OMPxAw z?6)6)a54+J(eDizr!}l?n};lz0UcxkD-dy6=6Iv0R{fSk3S3lZP~trv@cJqFBG6%? z_O$E}3GS`T+l&&4-QES#+K326x%MZ4#O<2G=en~r9{>!Y;ATW?T0& z@5FC|f2S{;-`nxE!wwtNYn{vt{Ns1i1L~4-W4@T_Ho5FT2i{vqMnhRR_qRUPl4E1g zj8VE=@?v2J8JWAX?PO7X7oxj7nsk<*F|evCI0oHLCTZ*zT>%ze5N@tkWf?hpixoUG z{lC!ZRo4(d6Qz`SXSENM1>xD*vdk|AkNb3kQ??!DZT`<@`)`8)jRlzh#9izr=7B8u zKkq&kXz6et+o{`yr zjXT1|v|VVK{UxH?3H1E(-fP)KT48zQk_L%f_p=9XFlnkjswLM;jH`*bdcOD4;@nn4 z!6;wr7+mcTQiR%!?}1Kn0y&pmXD>2!%Fe6Q4iaIwYTFSkM zgpBpax8ACrZwO&IT8<1xYX)g6G;QnQxSPNH{dV7;d3uy`^?IH;DS+yrPtKmexm16& z!oL*h53Xlc6UqI3L}=Be^VT0#RzB2jWV(1hw}_y&@5HM6S0$yfzPPRBWT2II$!bEB zi_z3hx(W_d*7R~k#P0f7LUgA&S#27*+O75XY$JBNBfslrTc>)IRp<7i{zn!I8*PTR zNMI-hY?o>!y!ISsmyC4u@i%HxRGoFv)bm8!3+qZ+(>+-Q9 zSY~~5dzV)$!#6Jkm}F+@f_~)QbUj`$cdrU!^v*@_@*PU;Sc7AB}N|wvo}z)@Jfmxy-|lO4Ni@b%?$!Ppt;P;xBai zuB$Y!<&Sz+uuK^(S94dzW0HTv z7`;+f zq+6i?hFOPB(UXz9s+Nr9#_iwFo5!GUAHSaGG9Fa0aI8nN*bBq#S@be zFx2np58Z>Jw?&TEXTCnP5j;n2n>NeNS24V;CpMZHp=2m3s9v(vGE1a256Ua~M6bqN zHQHO;NoJpq6mIXo7&Tac&+v-2yqBz>i7}^_Y`$kCgT4`pb7=UOHx&O`uUigXdI#a_ z^Cui?OQN`2a%E+b^uz>Z{*$(#cVscv{Q^U$1&-@u#@4wvOLfpK5L?n@&q{^y>fujL>-v5W1bi2Nr zHsWS=OWe#+!gD+7FLFytY(U)YwI%&+fpJ{c;DL|^vU&Gf(hTX6}b!4d&*YT}x^VW!OS;ce1|xP`3TQ7yS4R#XW=-?QgO5 z4dtwsd#-P={nLHZRvTk+Xwt5k{6lDV+0VQmgVaA=2*nR@vh z34N4j?nD_{M+sO3sMc@4ovP>@?%GL7Vcv^(=$aS5>_17t?{2J6!q93{%87Ehi=`}g zQ9m{Y8z#YEh?BnxwxZ|b?;HcV22;?!5l>=19)CO+w7%z(YyoXBpBI)Ep^tm7-;Jdn z)%49`>fd8g1Sj^7sryOW6u2qAh8w$gy>&s8cYii8M%{vbD+%z;FY+r{el1{?M!+~$ zL20M@)15=73mT_;Ro7TxI5YIre3TBo&%g#z-K;&n$@EG?ZPpU+!2Pnvxd1MN(a?@2 zHzhs}$Qr= zjX+U|t~~Z92ozBO)-NKJ{jp|J2O%mTT)Mo#*L}B4c5O+3?^5Sf5uE9Up1vh-&bYWf z`R=SrL>?`8ktG66y2t;LZyR&XNAg8bolJYz{qRN8?3w5q%gfFGX>|9sIk00ucIW%9 zuGTd=ZqG%aRAXt8BdjB3h`e4?^)%!&w_eq|gwxZN+6?B0IRB>G;6G-f>j%`>4~tF0 ze<8hpTSYI+Y!0AZuVEc132ToN(BX8>91bq*_NZaA@dV>;mq#W9RW?uZa?yvb}oNIJhtmloOY!{;5IE5F(#O9{bkbMP-8$3nF5 zl8!-y$a^vCL*IFa8Wxhwn$%fYodg>4P|R!vPnGNuO`*MiZA6&?ofxNmag}uWO4(RK z3rY$;pi+X=f3+otx^{qGaB8AVjeEy%YuSJ)BJF=`{+2Zg(FNn#M)iAtbxu8CH6vl0 z4EvF#Y{MB;WCqp~oEL>H0;W#V@~^>|kr?94%;S;Ql_|oBKXZ8j6ugTW+cSU}3GtV) z8X&#O05Qzh#+y%BxAc7`aQBjQrkYsn-E&a+v>yW^x`<&ILXBB7g?AeZR*!wk39 z8fTMT{!=Dyq`UD{oY#U5mtVi?b0YyY0+oJKfn0O|xbQ@2b`zODidf_HwxfFStO%9%}BSOOhS;VCI)m)@THtVqOergUm3$|4n63J27HgNlSp{I>0SDl>N^^j-$Sqm8xJA;ll%l*~Oa?QYoJ?QiwN zaUV~=?^{cww?C0y-JPPl58-aq^xJ!L=$<2oTq<-Azkz8J9~>XdEsMP8`mkZxj!zuQ zOGf|5-drkPeB7@$2J=Bsg*`X_0{S;~weCa$XTNVEjIw$v-mAmigv_LE7gz;`!74U$ zmODX7Lm}307tn+LhCVlJ_d|>f68Pl*x;^mbp+6G#e^FI_CCM4M3-mMjEqc*ctH|j^ z|CIlgmTu=~BnJWXlpe66dY28GxC}zC8I3p~R{t?)5!(3&XfR@iIlw-buieE_j3+ev z0;oj-eE4O*ES47N=;waDJmLQHE2+&%w`+}tH^dD0$ni&Fb$Gc+XM8{jYdMjcTv|8fyLq2kXxX{SQE@7rDm@|u8M&6 z1EEm^F4RDeFnuCy>OWWY4gv1=plhMQ&2Igk&FA_TEz8&IBSgCn`vXk)Y;@FTQR+3w z1P_{LN+s_gX0MA<({bB1C?;`!=r?Lbv4?7AI|>LBidH`-!eSUxEf~GSLIm>t4@d}9 ziH!I|192S*6i2=LEJ3|E1R*GaTwah>ty7#no{hNF4s`HC#z!q=W=`S7Zv|v1wgM@c z=shCc>=!h{rRahyy~o~fZ!Q9tDs;5IJSsmg5*hy23$PdCrOAcS-DX<)QZ+yzWgon^ z+!|mMuRLC+3wNP!RRtUK%Cl~a$leog=ei*@V{p>rUQ3dx$8-_yw0~Ac(`UCfz3%_r z1^BffSmEZVl@3AB+@)F-u3zrj35LWV<8_NB$16FnsFo?K3?%K}i{GQM_R97=&R>sZ zk6RNBh@#`=eFJ7YHhLD+yti13tM?6I)og;>-no{toiySnU_uTwCR7=S8VY)(r5&84 zG4UVDS>mZMqBh^_(d&nk5v5RxU=?$nHkj{dI5W{8VhbBQ)MNWeaW7PthDc1^-Szjq z7D`?*=t`95mIIhHia8uDFhUw7=a)}N_wVYYMmlnos2sx@;~zpU;rE5^Q9e?SH)kXY z;tD{fwZA<8z+UxI!ba@Z`#iComTn)0%v5wf&ySA{sYKJN%ASh2skI;72{3j*cMM$U z@lnU^0HbL?rxx*-sHndXYV+mx0Oy_ljDnk~weCnBcfZ_A>JQ+f%6{U!!7jmNd{g#Z zO~(yqmV{u<0t^3oHzJK!*7TLcQbd#!36pbENFRY-T_i2^Ut;O z{n`fFAlvyuf_teC9eUiXR&0Og@XyNRmP;ZBF4Z)=xdtMG726e9HTfAc{BweyfZA@Af7`Z9GF zMM#pr(KPlKQNb`S)!gTv^jnoD*!QW~j{C3ix(&unezwUa05b=^=GLoqI+fdDz{f@?PCw zeQ0|_P76oshBZQ!RR;BsKZr)=C$G1>tmaNji&ifBM(rc>aA&-$toaH5tQ!N8P<$8l@xk>oeA9f$w^H z#t*W$KeAb%6&%Cz+E7xTQ^3prx)3vf@EgPtRx&8hK)P=giF3!98^HA@^v=om;3x0RxRpb~nnALN^P9lpBRM?pCi3wC$dr)CD?BURbLWytf+B! z(y%Z@zqN9txF98Gp#Z74izgv<#92Lyjql2hdVaozfcP3WJW$61m@%wMGs;5L19sK1 zF-mh>hQ1@HY>0F5`oH@3!~r~ecKs(`KCA$J-5Yr~;cx8;alv~=dT~R9hzM=et_{>; z378EDzHz^#!jTIA>D@0KNA zdQ{oKEDbWfjIdjYojkchOV&1@KH(d-S!*h9v_3)sGaEFtl%84R^si`TJry3>pG0=H z1y9fZuyTlpp`w+Xb;1|#C{Z&u8ICkWb_aVfikqcv6YpwaCsp~R-+p-H(a+gzOc=w? zrifp>zCAVvz7#NmTK)Fx0oXH}=I&n87_7Kx1vvWp&$Oh$zhOeEe+?zWXw9eyVwxvE zY17;tDk94fBL+~wsoauKcgY9~I8{I}rVvY*QkN=+>-Jp88ORGmPX4j^r4pe|fvhco zJIL5YJw#zRmHBmFKduad62g|0GXEzPi4OSPCcrpW-ls=wOgPVU<`YA}-5|-E=1MUG zS>oVQmS4J|Q5GcAm=Qq%u_9nBAr?+v>-iRLlkofb)Uofu109t4SKpNV(aR%TeTrE< zae#ncz2E`{rsqz1uJvYA+wfhk=k}a^TaN6YDK&aoAPVw*q}|Ux9{@{kEvf7 zOwGmRrY=zc9>iW-p#J!1Dj24uRiXe7m^69{{vNleC4MJj6n&{L^b{zpZ2f4I%Hjkh zogV5~TL_4ULwmL1#d&zwF0gLO6N@kQS#%z@m^Dci17cEO$PAP^`&TKhX14paZ{{! zUA1?z>UW(NccLPtNF)=V!&)T@d!``G5JNdJ^datIntJTW{zz$Lre+;|sz9I%%wBjU zjVlXP7QsIbAd((=$aZ|yBHhD|`|&xhl0cX-tQq)3@mEmjwufe5NBf#qLIsZ>n2UtP z@O^OW5b5z6`$jxHm?~J9?d7!1Wf#GBoV>gNWV+zA=l5Bhout_X6|!HK9VPhXNd$AZ z!#SWtPVOU*uh5UxOVQOd{qlD>rLPdPD9nO_L?&Z6|mvqgj05aT( z7^j=zq0y$b%AbXdU5H&Ht-T*X1(8nLEU{(VGV0%2BeinItaNbZ!t2&E>4!{T16|F| zV>i)`{V|}8jWR`&6~mbZ+k&-cU*SPhz?LE+@tVg;WEC>N+0JF=xQD+Hgly$-#AgY6 zH}wahVFwlG2IgvvQ|4Bn<3nxc`TCcqa0_Ao2#h$i$tOsFitod@fL_&-JYw!Q$M>~T zD}fgTJ^yaraG&6`ne1Mky#$}!5$qpWT=@v-Ar}o5r*xMGm&B7xjeDNKHC=?^_fiBdtOz)OzoCYy=%XJIjYgZ9xqxMD4tdA^o=knEICE%dqmNT zu1{ta!R}j8fg}jZ3g&Z(cszXZj71~$X56dn&_sD3%e5~EfFinOTr=46hl!s}gKqO- zKBj>>NP&p7KH{50LBhrC@JYeLB8@E;bUh#9tEb@3gu_B1*o?eGq!}UYv4i#fV3TaQ z&i-l;S{db*$c@{DSEQl<@JcR|eV+DU}1?gb_zG<6(PQMmQe*Ku( z!5^mj_s?_#VX;g^n#gZSVmdh`tJ;)?aQS@FcN?NTCyU*?jG zBwu!^xc(`V)P6%J(nSE^gB4&_9<_LFGNI2FNHc86Sxe;6%|A&}3R};ms=Mtya!{$@JbaF8??4Qn z9n0Ea3*|8m@$Cwt^bB{@=A=f-4BKuGK}SpL=Ekoxt&PN;5YFw?HcSf!1uRoUyG7z& z%51(Y$^qtDU0rRsGr3>c4@|X}9Qc{tq8u=P6kaHf0V1V-WvBf$g12T{2&9qFFQ+g5 z)a_)T1|4Az;>2%riu#+-u`2aS-5lBqTov6y({2a07$BOE1h7P02`^1fWNknEmQMQB z7tTZ4p&p_Thupi>zk`}RWgfU5p5t+G4kLWXca?e5re_IkdPGr~$pu{DZ@zPUm|#^$ zels0}yI)4E`;x@Aee>_|xd=&h=Ox=l=LCGB(2Gv=`Oun2?9fCj{64%HbB04((ZdY7 z^1h#AQj~E`GwAkwy^`FyPof;0Zf+3Q%x+&>q`2Z)&Dc7AQ~E8XYL$~{DR z_1OJgYG#hB_(FW>bdt>7Js=y0bz#Hbf z<@`Xa$3yqKZTKm%BFK?&3ZpzDxT*TQ#?UCyW(C-q9cLOsZ}iXAo zj!BMqwhKxC80 z&aD7P3z&7$9I7>SamQ+sRlB9TiC5VB4gIkqp?>r#qrq3~9YoZp;l)(BnQE8$B-**p ze)EhiYxsB*-H0(mSWS;EELAY0a+4*{lMW>7*4paZh#_&ipu>@84C1G}z!7hyAWOY$ zMDe1i)ehB%_ZwzYF(P4C)q|Q6SeTf?WS7F9R_$g9s!gWedq;eWG*P;6?qS`}W$Z=P zgJC%3b=wW5kXl>aUl=T=i0uShpAq7qI?Y@?uHx@4M@)74*P;F1z1~8}A$j2zy(W~Q zyl^xb$%JrdYjW8|@S@UiYg&7AF}&;m^RN;z=~rW!HWhB0CuNs3R55z;wOyR6VRd^F^G@CROO*cjY4d2m#Z001d~fNcTmJ8@qgwA<4Dcf^}l zQddI@4Pt-k#rG~>x^rOHUV$wT2}oK{0%V~)c!xKBkS~&Phgmq?ydTa#E&reo30PhS z>cz6#gL+k@b61KGR#n8Ux=dTz6WiK-B%2jLi-^m9^wtuD{#4}?MgL8xJvnl%f@bRA%lLf_4#J&ZUoP zzGa`#aVW;xO;gH%2Kwp@olx#?@orDzXd7rI4M7c#(}OXN1j43V$(pPgtZ|eWo=vdce9c=A zt}>_8d+-FmeWl$;DAXx$on0phyd#wqgT;5ehnaLWxkVBZ2q_LVn1kQc;TP~-5G90v zs`0nJmvg$$fmu8LGa3LD7EbaM&rgN)$_pZk0r#79^&m%y&es3;LI}PH%(X0ErbvZKin7@_OeUx8p^pL&cF%Zb0%~TzqAAk2h7BO@MT&F|)bBc6wOd1>NygIbFh#eCWY`kLVQ3L|#y_wG8H74$h;oKoy$_ojatO%6;gE z3K$sVjTurk2?C?N-swN^43)2f2?<1-7r{mzh8#g_#yw|7@C2G=luSPhf5yI@Tx@Ni zwfK&7c>!Kr=zT>1pynU{{Lz9ucz%crY(lEM-gjnE->OC4!QsVj?wTzCvUj4LN98?u zgn&-5fb4}*gYeyeanjW*7dez~>ZG3LLGT#ac#0utHQeJWahe`+2eCE=0k%~S{_kK@ z?n#&K{>PcEg6BDwUXcl4-q(9UjP(?kvOv*ilJw63aoUg*SQZ-eNILqK8hP+d=L8Il z#Pay9+34eJxBC0?LuLJWr5`{DyP92|2(mJ8Qa#S%tqh1# z!dDmD$Ewn<-oGQaLI-9F`FJ^czA^P%o-ut9g#qAO8DP41XDsxTpI1L@y_qH$Juc)J z?rgkWL02u&)*b5(&c4InILP}`p2Hu|TzN<$&GVUV>Rv#-dP1%0NLj6bs*(5yx-PPJ zUhr!ZpBF4&-VE12Ej;J-x*d?Wy-ggNM&1dEqNtCExBJ6rqWqVn0ps#N_ z@x#m|`)99yRfz+~VxrK$=!yU8Cbgn{Ma-Ant*js1NYO_{>#Scl$mZUZwZMH!vM3V) zgnrX&Vnz?Ts1Fx3zuR&HcL|7!NbwagLb}37S$U%2Qvf91@l&>Mo4w+I^q*$M`p8{E zP&~h8P7oSwc7}?5d3P)VeFb-n{<(4*zj;Y9Dal;>6y1Bp_v#94`Q?Y1(lY%hrqoLUIYG%w#@FlW z|I|RSd2M6rJED*oK|tH;;`wsn#jT}5==N>Vyg&Y}u!4knUqw>X_^iW3ui}x1+z7Ba zeu+OJg#pkpyMRcc<&(pSxC9U|P^%=Eht+!6U;63YRbg5$aF_$poFhUU*hefnu_H1o zqsu7I4yLjmGtZOWk?$2Q-Z~@Q^WeG_V96&^)ZH zHZuTKqp`qJwPb;>Itqv1DgnPJcqp?hbBRg`hlpQ!6_;bGw`F=k&3gcw%}f^EPA_~i zC3qi>oyx(M%Bpr2*wZmPh!C5Ufm0r`$kJz z^pY67v5ucKrC;QqKQs^LKeB~OU5H%L;H)+>@-nWz?>x!hOKI~>t0u~anF>9Rub#mX z_+s)*exu^JdcM&DB&(ia)MhGU;tYT9U_FvAeA5z4&(uQLs~=#O{_e&%yWdh-3wiwo7MzoPMV=>fjf74(t~1)*;%b#3`lPii1v-gqv7NOH~4-Go`FXW zO;mnJdO)1OtuO)7mqQg5$n^XJLZm^R(Jxccq_@x0j$qSYW)US)>n4@ffBWEI@&g8u z&=3nJc$4g364x(7gV=LyeEgAr>f?92S@77_0qF+t2(5S%^4UxlI1TC~kng~Y@6s$sVfVSe7 z6@PZsKuuWlsK13?SzRmDg657<7HQ+0#eWS44zRgSpa~GX_d+K#M=d{B#R;eGoi{6S zJpQOLjnf)t_YeH^%l$RVIifDW;iiAvhSME#Hg*NC>qH0XBWbbqiDv(|@#mPo^|Icr z>{IgI-QjEx8m_^saq2Jq$^!_A1s;z!gY7UesR^QEe zC6Ax6)3xH=_E(Mn#LKXhBIv*CQA-}$Rk1M`{~K@i6=k0oP4q=jy;Nhhh(l5r)I}re zY%7b>O@~%S=qd7GzQa^S4QeeiESAKf0cN1zw6~Ox`pX)--cenbmP(2uL z_NtF34g=`*Da#uTGR)){>5|_MKnZ5|z>iwQ*O!;ntn(QF=)iMcUVk_m?D;oqszRkv z17lH^mx7Txr*UainoD43Fh?-w%G_pr4&o=Q?k1e?9) zruIm~)e+vU0w#nu?W5b)1!B0q4ROotH2mYT3E9r+2vIYtkA8t`L zVpJF0&t8!T0o`n99r03y{2Yt3t+B(k<{_@x#-r~Vhb1W1HLU8FEYh5UXJJz#| z5*u9s%eZhXHarx{Rd$7_;#J1GHkHDWcWQ{wle57FEac&5CR)prdq<4_7l)Hifdr{46%CQlafViQ^lS_*(keR|KQJ z%VE{(uX;JeeH-q34-vyb`^U$`EA+ztWnXzanM%7-GYfAjzRKNgAb-0`QW^VW*!NAS zE3*fIrdRQnG6vB&qpH*tk`Ndfi_aLAMGk;t{+>xm|KbxUm`tXiEc{oU`200}xi|F` z@!)T8cDPsN8GeHcM6ap==a^{!i5PmqV4QH26u|@K{d?7AnXo*{+5dR~(4jmzcH_m! zpl{l`ND&Umtnx20IV1?z-rapM@E21kVIw*wN)qJJ5)7gfbL4&=Yf%2Z;oSY~+K><} z)x|&Z?~pmropYrUwU-1jxfb6UBAMFGSV$qm$D}*a=Ehv?8)UNh8D2<;!3f%e) z%0V?0lb^;Tv{~RWE6ZMx4{lBq5Hu0W?eciI*hky<*zjXbC&eTr@mK1>z@F?iRKYU^=H)SDpXT7d!uMUUPz~f3t)WYh8M@5LZeT8KTJ!c8 z&cmI~-h$tjdkhyyKA}TMtqjsS(bg#*?7J>7z~#o8(fqo?zY|c5_ao?yTfY*(Mjp0lhr^|WpeVh0No&>ggWz8gP-G#+XNc*%{>0-P}KPFp26MNL> za3DB}jef%PW0`lukklE&qi$qA_y<^)rV717J8LI-_=>0N2KMQ9tVZ2vl)w7CBN@1( zA)h!g!zPhwXK8yN%ZQYiC_D$v54pishA|16@|=}HHKYHkYkXjxRYAJ$If*aFsxjax zf@>2KAV1Cd^r@Nv?QR;>L~KzMti44TDlZn5g%|r1)A?%%d~ZC%(i1-Ul#t`(Pj+?c zhlF3}y<3Kpo8P$H>khr4N1fB5U~aBr2er{ANh>mmgP^ z3s$~qMt*!f;2c%51s&u--&YLuJ_@8bZ-$yvf>PE;df5&84tVhi4Y1*jn-ZoaF#D04 zT@5LgM|mTkj=Q%YAC?o2c%@1vP>DcVt%Yq%?r|}KWI>-V^hF3rh)-VWYR5836oxu@ zaexZ$t*7@8<&ZAb7@w-$nMVG2sjCU@&;)N39hbQdq=l$sgf&YaT$lv5vbz#IHV z3#qYa(wlIOhe_qMp`X=B$-#o91e?7KG(x*Jjp!dTX3l}tc*X{iX$6$Xj_#GdRLM%lNI-pHC7gW zoa;^1y6Cpvf{5te00E36s-9ag;pCSN^htwSJ|3Urc)(9$4m_|@V}>qXmL|Yi*A`U> z)I(jmV*BvEY$lQNjO9+{<;3t&6#Yct;pcV0KTFBLe!^PC+!X3H55wmH+rU;$m?2}Y zGUw^@p1*{W$MntxLn#*~_0{)Z*Y^Ld-oxPeac1Cj-OdgKLZriw4P*COI#0ENcM8(X z7KV+!cTs%}*=|weSKjj6DI9Qm-?_-gFv#uZZ9(3DKw8m5QtU(Pw-&6rW1Qhri zdj}x>RPrCY2Q^)OlS6K<^DEwvrr9l~V73*y@o`1hf@zA&L3f3|v7D$oBM-}Q&36UZ zxJ{O;2?n4s)diz4ZR`#D5+M>efE7~gOfsX7{VaHOKJWMhY{}FW^j*aDMmsK_KvpM5rKU&=)f?2))lWD3DfUPOW*lPL%VNuAA#pReXU*Ll|54 zyusJZ5Lv;g(v86H1i_bFWrk>^5Tutql00y^Pfb2hu)1Wq?K9+Py%~NRbRXBV$87wd zOZpm}fnI@%zDnPwoApGZ6Fz*5x&Oz*o&Vgilk;NXvn&U|SEWHjE7+Q%&T}0df*uB~ z&qdRY8wCeLr89)m<>4qYA-B9nmVG%J;Lq50@$?YQGi=!qLo!XqvGFS$TA;3kQP=^IH=Ar>_CwRqx-kyZ}~M%)tQsIp|Ht! z<^wB*I@}(kv&p=`HX?R`NqO3$2 z(|VWyhHgJk4HS_yqTo5ET~(7F2gK=;;ijnDr6fKO$*DZm&(i$d&$D7%pl3K&vfoX+ z2ovaNr^U>TCw3;jg)&Cx})Sa`*io)gl&@a$?kp_-;V2PKok!0hi>0vfOnOdNFS!t57_k3y{ zJggKS@fDrHomLOfl00>DbZP=k%x~ji!J!F(j+BMfgYdyXeG#C5VC!$DIODVp-yxhn^&F%cGy>-@lHI z5G{B)*Ye;=)})J8&WLiJKr9_KHE1_?s9V+>XOUE z-7*{L0@M3M4P3+Z7%R==Z`%tUp>6(Egt zA%49d@|?+VdB7tdMp(Gi2Q-L|Bn84a?K}-`A}9W9U;Hc@&r~Fl(=y*0onkYGifrh6 zR7coGz@Ab!zl=Hc{rSyB{p z{JAdb z_|_%WhPFwhGr&R~KmZ@fx)s_Sspq?J_SLdxFW&3t>b72s!7fhaVbT-CHoq&I5m1< zP?;;zdLPm=5@|z0>AZ+x67CcdpLSa-4ZZJ+Z!8ipkKrr9@TW|M_Ll>nHIcmq*h3l@ z^AvHCoIZcdDd!-0feH1QSaNI>0>*cP6U^;rhPOqTmh8OGT%H80>N(l--5pVXqK*-p zf(LZsIvi1A<=0e3TCeVm$Y77GKHCfCv4 zZ@XMq=uE)C^j(l*ooGf3z`)rTclR%^9;t3fcw>#D;s=pF$-DkXuJ7z%niw#)8-J4M zltpLQqP)sd6eTifO6XO;Rq{Z~)*ax?HZ4E(XVIiJXV-By1}^oU$6p-oRYg2^8n{tV z_|?qDR2S`5jdn3+p}&vs$tKaGDL%-7lb=^N*12SHv?MZYUZi+n$ECXz)N7}p^D~<*p2HIRbU$knWsFBB@=(0Gh z3SGA$K%V_ZvL=Q6lY{>iz$M+2y~iP|1$Lluane-+ZIoVLgw}v!AAe4(QyqsFFcQUI%Z{mn^MdtPQo?dm$c~U+MB8isxU;3KBymcvrVhw ziMq9_yk!;+a%x>fp+pl{$2NZG?Y+10Gj3t*`(S5YnhBM$>L1vL3-%J$QwaR5D1POC zd4Quxexv#d+i13@Ky~6ZIQ91?##mH5wHvKSIhG%8#R99g-)Leb8-vi^n{yXfy~mX*&%!nEnOSp!WskBq8U zG-h|Fxd@ib*0VM@&=$Q#_?fva>K@+H$gz}6h)Qnjt?5F_sKG-qJS=Cq9y~*%QO_-R z$nUAt@86WtW!IHo*iTiMZ#L%OD%6p5!fuep{4x~lx~<+i3B4_D(#q{N;;trc);|Ap z+M&*wP^2-O`R0eHKpwS3o8hY$wMyg1e8166ZqWR}i-J%-hj-m5A)taZfLBo za#%c%F$f>(nNpwj6fQo6nIR$&;>fvdZ>;W{9T#IuaE3^Tq*gUuo@!uMkDW#yM7ek* zaIYCmuOrOVY2I8r+D8ci_!ENUoW+y; zsp07RPV$@sY%Lh4ZJ}1>i7Vq+eB}q?6|2$QgY~AmHsf&Nh!vx1aHuYJ_-rkq(1!w+HKIg}$euw|Z@rj!g zlnz!={ZCwa{H7)UPo7sp<7JJlEZR;yYMc36Z%RzMpDDA(ZzWlLKtSZX1?>lum94L> zQ1CtyPZ#))%fGso)@oWrtYY-byqY!N+e(@28s-6L$WaY5!&sjxBn%(~@L0sZ$;~r}bP_@zvPX8o90Tl_F*p4rnp%5+UEHnP7!w5YahQ`?E|Hc55D)4k$=qgDxFgo4R;fOc`qX1*%9JwyO|m^{yfq{Zg)52!<1@IqE68lk(1^oqrv( zIU67>%ENC)`*DH4xslq~{z3vVv^2q^X`#h&^D*(_u$oR_qsNbCiE*eO&uIMEQaKwXy)6|4Ij_mfBP-vmIND^n7AkbYys3NA zvXa8`PUM7733ffRlLkcO_z8^{>{hFUgzuBIH0w+s|7hem`O(eSab(1D@})i|;^n3y z|0>MyF@mU~kEnwKnv1CHaMO6ul&78#)6?K4l;Ts^q!tlNdI#ue*|4xj5E%~P%iD?x z^c7>UIju_1ZRgORw-;ZE_^$<^WJcoUBV6yG^!>09Y~Hfh(b=ttA{sXrOAd!*;mqAS zqc*+-x}&tQKP>?9qn+U3{oJpAs%5p>J+ZHs6WvG=T8mgO%>h^QN=QaarSb=xX;dow zTEQ|M&2!HsG%CZ`LW=lm%uDfH>&Q1t;&t9Z4bXit`Q6HHCxW>Wjvjj#yAl}6<|~)| zX|5Et+-uZKh$_k$hLa==YJT0fZm5O6&pHtWReL%lHjP#MCW7Hwno|X=`7-ccio)fw z9GIM}NF|F!gG0TH@ro>mYddXQ13#|pZPfU#?7!sO+Mqy>ImtGEhfJ4j;H?#%>ZC9S z-d+EE7z#Wa)A{N9)0*MDnNhUPtt|2AJInX^@A6J>KOVm&ksaZF@WmH84^GG}VdSND zsHz*T!_J;_ee=?Z6I6v|E$JeEB{bpM@eJpKVY(888bVR)iw{I%8Ux1n&1E_m-iufa z(rVj;3JD9eUo``ub_+hwM_PT3rl}XTj3gHzJd%#j zbs>gPQrFq{Z0y3a&vDd00Pdzt<#!c-1h~n!*ar8MMd3DRW&XFFAYt=a%LzDR1zD%r z0-O&c!WLvsCxr1-ctQnG+0l)0K3E74kNO7aiR$NSK={Q`L=LkT6bl!L5;zRitzc9f z+6@)aAYa)#i>taYJ|xakTX(#j6>Ix#y4-F&`bo(?IL7VIutzMXP2*+IM;(XJeB@9A z%1~9wqH{9Jg5%ty5jsV^PqDj8<2ECtJlsHz4+e8((#eL%+OPBZmb}ifpfsuKBQ7V#X55$I2897ynotI^x`_CeaHUZt-|_97kHq zt)1o|D5u1vY`F6*L@4%9+N2^tmRnqA!yw;KHaM>)5~rc^TZSQY>y)XJK6H^oNj3&t za@%!X77Er#th$*v@+b1laj&!_P<39ihyrLIi3q4TBZw6W%{&P7!`F35U>JKEGA0Re86AxscWEEmPz5>W=PZ&rM+#>| zEj9DAg}7~{Zq5`78}IPbkVWmu+v44+h$oQY3kOd$*51k~b(m}H zEc4Q(uT+;zm1~qbLjNBc|b{#qBMKylQU-+{L@xC0+waPzKWgu4ueP z#_ljD__p|x-Y_LDh0ZS22c1lr72cR5!)W-p!}91?LY!Y9MX|OBj@Th1C0OSVKNVM#T>q49dHp&33$*DzbTG=mlWQzg3`97jp5J&5cv1N8K+3S!-D) z?@~zOa-o=lpMp$~{t!eoP4q?PoACoQMqJg#c@SUd$$^A*eDXM5Gviu2WaTkahx;Xq zaZ1K%Z+7g;WMCJ=naJcJ^Al4JPicx-JL-0}9v&1+d@p{C29LtaC(L*Xz&@uYj8(vz zRzuBUI4^^uz{oQzepA;+70Fj|)S;q>~Rj+lA1H zd47hz3BmI`2RCFRfMq}gU&Xd?ev!M2!6pm=CX&G+f4e_rebhlJ@8*@X{4kDZL^xyf zP>)0DmXy{+N72sjt?zq}p=cFvP!}X2?09|i@1l)f(nyNQTI02s@H+bZ0RXALRM`K6HamIR9WsA^Xm-B@~;Ss8jdA^Z|Ai#kkQ#~y!f zD~XTV<1xwkZLYku9xQmVI2nmmcDUj&LSZ8)N8XQ#3J>v5o$w{+Y^KM?kP=^XYzbu& zb*2;FzLqBy^MPCA9MqXhf})G53-Efah|j_G96LDbY2jwBQBGn8vq9d>c$YV*V9DxY zzibnZ9#X2HpcQG>4S`Iujert6swl5AaE!M@)u9XssngTDR%G=U)~As~37PXmP6JCz z$s5{ZRhM0ti*v(JXpU7cisPHHptbFx0|`BD=26F~Lz&;|Q^eDwfj{$-{OE`RXQr7F zd1?wh0gD2VWA}Wj`?226?Y=Xoc6#+6J>SPz8HvNNNbDvi#Qu?yn6VZDMaFXfJkoyH z&@96*YR&}C5m$LH>=mqjc$+>CZ7SZCm|pc7QLi3sD}VR-m_b!|U`W4U?Rb#inw_ga zpbAXjyy{*Zg_5vr(EFTCx^OmP`WL!PkN0Q4EPDrbNV7SHlya|YUE*v@*IlhhM-(tw zjLrq*GAEX%3S1`Yr-0qON}cY`$-10bA)=u)L^Y2OO1$Q|FTj+xT=7q(=%8!yBiJn9 zrnL`=f3#`{JOZZK3g(9#Lnx_z#6xLwBw||vgYwlKm+t7(K4);s+>r>o^x7{0el!aG z9w!=dNzI~uA3@0uaYFcwmi1&h6b~Q7dLIoKAny;PPCVHtm^I8HScnVR;zJ%1v{C5s z=Jq9({)9cu!6_a08j~|Wy0y4d(~gITK!U#5N=hLgk71lyO;RP^3fZmge{_i2C;1~m zn)TK`sE3O2jgvv{LW+C(Z?h-iog?2XQ)0F@92kZ(#t>xX{^OsDd+#~b27}q%*Ic?t z+3O{%1NI}w9sCj(3&(HJ(PnA`AWOCbP@w`Z0#Syx1dr>H!=@%aG-l=(4V~FI0D>$x zVJD|s4JsaV?@^ey1f8F7=tqdeoOlk$w#ES87Y@l1^9%p3N&ULWE3NTZNXI{CL8y_Q zJsm_Rw(=OBINR&)_nb}--9%#Px{uUqQ2H;QRgQA+c1trIvv=e7cjKhJ3re}%#g~@j1I=%gG+t3KcL(HUtJNUvXSc!?94#p_^lStYC!moV` zD6!Ky?mA9?Jd`|2mpiB3Llo#9<~}9sR8c?rwGH0WdF-jOkg`(Z#H2TV-ZjRF1F8VxMig5Af%oZ991q z+_1Oc;OLXGVf9SqvNLuvY!xap` zjl(m7I#b$#J4@m}DfnsM#X1Cmc{;V-J7F4MzJW1l`(9d*9v%}eL(&740{p~Y1i!M% z*f;e9Ku9cRmW+G)sb9Yl$JYf_dSK&Y`Q5%;Qh*15!fTrNJ;kAe?EmKl&@`-`?Draz zi)#ELjExbG!zGNFnE-167a~VCR2g~qLx-541+c3@2NO}x$-KMyU1(z~YWVbe`P~sS z`aX}NppW`z_Q=SH$WNwDJ<`=VXv&kdqbS_CO@X_mA}77dxnrBu|Q6_U>&O z+2ti86gmPP^Hu0gB?j!Nv*NSdLkRBYAB6F+iwC*Q*(^(=I*&M_4?du|NFjjz``XT3 zgVOdROCNe(QwE(;Hmr^hqbxr^2z$KVHbgvfM-yB_AoMK%lgm9gR4^EsgqUzNl;U_ zOqic6X!BMX_INkurP`gpc&H#5FGPL0lVzEbK9-4QLlS(k68%u%IgcRtmNdN2%2XS- zPf*-mN_cC9EL$T`*aQ^<$yiNAj?H zv+f0|#@!U9Ga($@ege$lj!u6YTPB*6oN)&LkYFT6ef(>9_@}y~-~sUaApQok$z3Dx zSC_=8E%T7=FPnmpkf#1-VHze_$>`_T&ssKLnUdO>OID8K@vPlG!_LIgmO(qGtj6XBRpEVBAGFj*CSbirA)?3{(RMnw5`ZU zioLeph3XYfQrbw|Eg8a!d9`FzHE#iDW_b|VLjyFfA&bYqpet2^!T>tP9eD!~`hNBw zb)UKx2P&SVNys8R-2HA94O#%PN5}ME2CL)U}KDp zV*bSzG8fJZ*T=%>vdnApoXB5ssJ40OqFG@kdWr+%eZmtdPWCm=0%H&$NcCBujL@MJ zod07oej57O#mMgs*fxc^ndE~zm@FiZ4-!Bey6!l5-{IZjT;0r?xfF8b+sM_NAjW@V z=p%|0+&Ci{alomt0O#FK5~b~zF3y0#n1$|Liqktzq+5i=Uf(5T5vT0E{DZEcJj$vS z5kpGcs)*Duwu-!BmkXx=lRo}6K2ozyNjm!sr^e!Bm1bFZsKC?5w*;*qkFXrKD68>2 zJiI%T+Mg}^*47@SbBKL$m{+{OI4Spdk8(o?fuj?21CbRVHYtLq=J7ZdFkSU{zn`xlZl`iXqJrql%xZ1TyqMU6 z;h2CF$4};GWgb~hoS~>(&56puCbEi5|J>Ua%Hguxk=%ryj0tC7CAx0w8u(oe5zsO| z;=%0UgD8fB7M3pzdk&@TW5TH{1x7?mK9w^Ag--(NqXYxDf&AqcZhIqxsTB-I1!0jY zUqmoUN47=Ht9`76?ND^ik)wxSm`x9mS?)7TpEnZWD`&i`d8gHbP^;`EmQUde!o>kLA z#@*5+7s#5?YB4r_?IfTSyXfisqOr-Np!D*nJMos`k3-Qblp$M zULz57uKAxd9y+$=>`i?~3J?py%;U*J9Sv;JO!f^_{(MkmEa|+zAha_(oLDJ~`D>Ry ze7E)1hY7IB{*~lMAo0B2t1P-?^7jQ@?^WdEElkU_#{?G`2};yzyiG)2x{Y|inp3y;eyrd?dmq4 zA)BQyRZwm)h<-hBP`z>u_#$qo^N^p~jTD;KY>=y^*Y+9a);WX!$KRi>9!Zv6xzJ7n*6Wrb1wSnNlgS)#+a0$T)?(XjH!yL@%H*+x052#hER>{71?Pp&z>7SC+^CqNb zj_D4uXipO#!@QI$F}Ie_%kJtVBaYZ;(lB(({Oo9%MCkw6df+X>j>gXmB>C&Vf697? z`K&eBSh^_sn@cNS-}GP2B&sZg>*vMIFjg-lA58O!&vN2Cijsp|VuV--ALjhRo|RS^42f)>ecr0pVw zT37lm&GC}r9f;BE?2HXzxl83hiek?ln`_=S%RDs1Z(*wb%d_;6t7?Bulz4Mjb7%Eek`!vCb3eq_;dtwnO)TU@|ZG{qLG zo*G3-ori%OmY|U{d&u5liFVYMkTFN@rF5n7{6C7vcwGJ!kO<#8>wjKik0%BLAH0il z(zca}Jl#e~JuCZ#A(QwZeknoqbg<=Pz=7BJ*+2b+Feus3Lx%`(W(&r~q3JrvrYuDG zD-CiS?;AN!k9_!S5O9viLEm$Rw>bhrwE8OvlU3E7FjoM5c!YmR*T!xSC(aT=*=TzO zXW}9!2W(cD|3Zfq%@d{4TBKq%O_2bHXtmuHYw!m9p++U=A<$3F-RKkE3`HS+Edd2s zOV}O)eurS!OhdSZ0W|vTSCI(1L@t_70 z^X;%9OZAfGXnq4Z(|#*Hz0r0NXf35`gkUK!^Dm1ca`%!!9(d0n^xVW&Thg`k{-8de zE`k3r>#Pju$WT7`d9vDkTl|6VSQJ)#Pvjs)@vXyWdrZ>w>gPGa&5!1!s6R`0!T^7= zn)p{SSFj2JALni$*@K^lQ1rX2E0NiDxd?f#R$GY6k%8x94T_C19=Ys&aHp{37K#v?v zNNY>S8#EgBU@3ZhH_8Mh5n8U%1vSa2@j1S_`ieZDg(OC)At3v^Io#hCT>a=FCC;&Q z!`!gq(XNNhmaVG=u&I8%KGf1alkw2Lq+|sue_0EVUP0^g@kBvt^TE|-?x+(wwvIrr z^*cxW{d?&_sHG!!L3&sLl@?y#N=m97v#(}sClc1PnGe(gioorx$UqiPYX9lD{xjCr z2kFGX88xcuR;CC5&rTBC18@p)X3UXrY@n7$A%)_wqXB) zmD~@hJHbo{4jEYo+0T6(Zw%Q)mGLFrXNs6{<83&t9utd?V-3SHkD}G8PN^` z`(!|WZQW)VVxM0l8cZJ|NL?)){vWS=kkpKfWiXX=1qL_7HhidOxBp4Yo%%O_nTc}- z@z$dFOke>o&8^L257`&i&Zu|~_uFrOhRofb(F~Bj%CrWdcFIe)|CT3Kg&Zur>(u!f zUPAE#Smp)jRzTOTvouB3fsf}HoApP}I0^0Zx(;6JZ}Y9^m%4qH?L8=mp75k#3j`^> z4o4I3j**)@{IvrSckxUM5x6TRDsr1mn2cAuu|8=~Zc`&rYIG7>4&8^Fp@$)xoHPSn z6bD?lX|aBaA(`e@UlbR`y8vWmxrVHmiBp>qo5@jJimcbd zB_^E;Bh3j$tXEKW2fr-FidTMJkfp`?j2>Su()mN;i?+Z{OXj^8geV9e{;a>uUWosq zD7E8Mk+$<#_U>;c&w>wh^rSg+Ap(mR!Kt&zdtc-aXsT1<9OlBz?mx^y7ga64zFqa7 zj@IuK*@H8LJO5x~BxzIuRjQ5sRFbj#CIc|&QeZ=a387UsH@Vyp8C*=NWemp_Tn2C0 zsfX8PJaJ6ZpI>d3&1H^x$GtN^0)$-0J?Jq9=GM5w#=$4Q5#tFuew5wtY&=n>$L?mH;-)9TW5(qA3Da ztj@h}_Jq8D$*}2)o>?_UXaIouP*BdrMkOl3bW_qx=2_3Hr-so<^^Yy5zbw|CVqDyw zwm>muky|8`K#$KG+TVfs07akx0e^7UXl!u{>KbeDf5q;{-jHCYHI^>PqJDA&Eg0}D ziJ%(|Tq3d5uOPmdmRvxuFQ)oI%-cvdzhfH(eN_i!AEN>I67v1kif8ArEJ# zdIu=o6c`P=gddi`T+4KL?%nuZ9KVU_;Kgm+UZN|G0dlt0*|q=Wpoo9-&8CYITq1KR zE+3tn9X$^x;}3w-b-FUSeJEpdhjmDIt2@C2p*`*ye^LIa=u{fTVeqdkOOTc=|h zUK$y1jS-b@XwmBPD|)=Lu}O;z=#*Gq8=ig&hZ30XM{o*vvH;Emz5M$Y5hX1_M7;59 z5*#0;V7xND4%^#R$=%^Y+dGN}Lel8i`DR9kAZ1sEiLNDZ7z2+{a&o}d>5cV7FSaN@ zS-d0y5D9|K=Dwm1LMT1#N3NMX%UYGby!fV>RqjxCfCK{b~6q_sm;w+rAnH zF7Gm1|G|5*ec#~gCxo?v0Q^$O9}9k)g*IHG106DD=5aSiSEX!w2CK z;a#hzU193O{CbT)!Z}Oo9&O++1DYKxQXeq5g&ZhJjQH`5rmZ6V1Yym^WB8TVT58sM zO<;c%MV(O)LjA$!=WI$YLGh!imn1;P(-fRIY)Z?qZ{2lg5!K;kzp)$LW4q8f&>z;q zG<5MVcVKo)VwaIute!+og4fOZVwZ+s-?DOEFGb>gZ~j5Q;a=fk1kDtu0?Pk=Vt|pH zMvM)jPV&1qb18Its2qd0ZNOaC8*$dRQbk;%QSpR_ROL|+;4SxM=8eqgqO$9_a{AQbh}x zc{WfEr^V-&8G@bV;xL0d_YU7zsK$YI^=8WnXw13q@I7gC=F#atR?NYiY8H&% zUr8d89#LWX6kE8nGGUfFPemDryW$;lq5M5OqjJE&Z6YH7-2WzdW(;0?nlk0Yng|9w z;e=M9kU0#L5F0~4{@g2QGG`YLpLH&sdQKv!)i>LR>_WWa#Tekw#FP8lN|)&&BmH*lJSKm*;|3)i9%*aw6n(A|k8uCC&BPzeEo|{HM#38>|O-VD>R$9F{mk8k*y6%+b2epH^xjPRPm7arYAK zw=}Jr`bD-j1!)Vt=7z2xtd!3vcFXpAF7!R|$V5&mLvqH-2;%dI&X?4&p-T4hnMPAo zv+W7upLDv^xni*{WV+K=Uk^D*BK_*l^hynkp3h}T8@OVf8zJxk%(xfN_nfaD@RHd+ zn9Fg$cTO4QC>XJ1og~r3O>WKGL5Vlxc~)P$GhwQe4bexMa`v z&!e_CW5`Qo*Hy8WK(SGtTbPa0lpcS@0DD#qgPzv3*Gc+439hmnPL>|u-73~ zvbY%NAn75G)c>wH#Yh-Bp--7gmFt7X(&zS5$ct3k(p2DXtU)Y~fsd*~)AZ-FGfTJ= zXk8Px6X(12((_snr1*({UtX9eB;%Jl*X*uphf!l_&S|8*=<;stPQ3}SY4V9X5sKtv zfX`Oq8~MpDQgIhOX^dj}<4R@^t_L%P`}SIyiRT zZOb>G{|e=9S>&eN82j7Atxrx1yqEA6s+pr>Q7zRTm=7V(>F)ljT}ezrIb|m1QKm2y zes6ppPHT&oS&#nkJ^k8bWYiN8rJ^{#aseKM*e2vN>%PUbw=1jb7gAW zG`rcjlv!T8U!*4ysWem3Z(HA7Mi^?>1*L$$pYo`aT4$?w_ZVPoz$`)ET-Uf;UHuF8yB@yS3Q6CSav*S z`}NqJ*>YLLMA$*wubaAnqJ{qXIP6##Kb$#dZIudzmvZ6QS)xs=*Ns#vr1X-V_swT! zJH40SgQz;ui_6&Y*<*|~<(RSQ4Q}QQj?N$1%;u8A;F=&&(0T|x&g+cI^~xyAZ0WP9 zLmAdygLl=EsANll(yH&R)=M>-+RRVm(290{Z7NfI;y@HyE4TZ-jm}(5Ak7o z=0Yz+?^e1tmoI$7z8u9>j?#TqdJeq6m9l&rvTM0%M@iF6X%aE|F7(DT{i@mK(Z*{1 ztEaHI82|57LLojY^^RJhU%w=x^|QJ6@b z8Y1ynPU1S#%nVRU)6Wm+A}f3T@?S%4c6DozpkI1bqHc=i@3PuedQIiCXO&6w1vEI` zhLQB!4fo7gUzH-~@TwawhrPzA)hgY?K!m5)+*6xHnUU6I9~;4?IK7o#YLYkzomC%A zQxHr4{E0T91am*((@k2WMWMTBkRR%^ZG+U}NTEE676|!sD$}?up8(m7-U^E4zxqdI^+ z)7qIMgCln>Ce&s8+QAwfBB>2;HmJ>KlveqngrzFeIb26?X>QGrzcrH7)N+k#Yn`v~ z$e;lRFP)xVPv`|ZBR2KgOvliR4U(C`XKXVjbA!&sZ5?Qze@EwKxYk~Vyv-YMbl}M5` z`+ceQF`AAT>Y;Kg4a#vhk5wL#E3zQ+3{=w|Io@7V!uJ*{9pi()D%3D3!kHn-;a4Y> z!h!R+LN7;E!XCVB0u5gfZr>#XT1$?F5PSK%38hSUaW`)lg=tw`gJ3MFQy%3CwYwx! z-#cifkT}QT)p)kl7!fLOb;tm6r^J?PsLlP4JXs><2qpPL2faf|%*T=Sb#t-K)Twwh z5rxbaG-?(X8_!4*^VR0S)tK(WJM6)E!V8D;gVcU3xCW9x1P&fE*VYio96UPf2BdMC z@gK6Mut*}c44GJGe`^$S?8Dl-UL=ODFow|kV?+5p0^kqt#+73r=^Zx;8QrMB=|0Q9 z0775Bz?LYA>@fAs#=w1=9-=_$t=GR`oE*=l17{DWoO;^je%By`v#5NG@u89utBE#& zxv|S2g+S;k)2>&?TqbPhz^^wc1TXFsDNu52@3(a{R$}{NM*`K@&Y6*`@Q{Xf&5#>{ zH!IpK0YF{|qdBnS9&8)8Y8D3fF)3341^#uflg!I~{3bkpXD=|W<^r(?4IG(#3l1m4 z4fSA)aA&n8S-1+R__IL5-r;B1@MV$AtD{yqxJWHV_3diSv;-&ew``>Om32^@#^wF%G`MALb`U zB0oW1B}i}K0ZwKU2-!zz_LrbR0m3I5D#6?eL`9H4Y}Nb7!3xI9f4|~zQ(49(ZF&tA zg-s7NpCl%&8GTV#s2?H9V} zL;JKyJy0>@qO};W{XP%Q$6C$URk!_cv8jOJ!#EK4HFih)t(=4j+ZP{gP@SKO52$CNv^C`;L` z7!g%`&z@2iC75jz+cUa=&Evq-NM;&xKg0l28uV|n94G;8fNk$T7<}k^2jCWnR-#KH z2mU8wW!)4qiGJI=l>IbG3XcJ)!)?%gb;(@d2PF0_p*q?!85I0w)>H)1;T+U{YsxDI zYGlb6+T=o;y)Jk`Da%lm`Ks|>a+vRjY_f7~OHiZ2+xc{XKT-d+FKk&P8GLC{&LPua z8)AkCZ~Bf$r@oBPV7bS5AWb=BF~%>(>m)p`5L=M0%@Be@tmqUwBfF7WQ#@ace|4G^ z-LhtsW&1jbaj+BMEe?qGZY!fi`eqzpt1i8bpR8WX*yG?1eZE!oz4Qch5gz{(6&vE2 zX8VVAaFUGqyHy9enXAGdw&&JayKp;$?gAS0k~mfWm$BhIC1gV@NP}RFD3AuB3cL?K~ddcDw-wK$^dL2%=LYC64dC3?IB4bD&%JRI>PE^Bd zS6yKo%*B3}&+D|a_SIXKZ?FO~<{w1Bb+UG3e}5hw>Dx+(WvJ_6n*T-M8aJo@+y!&k z{@~|G0V_LnOTVU`tPhB_aEO+XT6rfQ;n*#&!RfWNOWaS|k^8OcWKpoAxF84{EyqIJ z_Z<;_RT8%3e#XZxsoo8;z+m{omEek&Zn674u&)Vf|Id2nSs~A^WRL$_^ z2=VD1Y%vM9isAjPbJhd&ENHdalt&+zf!M|s=SL`XqkGy+W5CG>ml>gV=_BL+s33&U zpGtc}92?+TGRu;%8wbdP|9jvQ6%rN|ui}O2kuT6UE|!V!CM$PTc<#1KKkE2mcYju9`epUPC_Wyb8|Ky z1Q}GnyII5LI7*`qjjX;AjCWU?Pasf0_k~Ho{=Q|z3dI=w2+Q#S6DjlO8iYF_2+aZj zG)dM;s@hR=not9xrM_5E;h4CE-&X1bk6Rl{IaHp=(xMk zGWzi^XsV9jJ2@2hPRVS)B9_cI6(+(oF;L7vQ*pFlvJ&KESX%|Za8)>Cg-ub|BIA^I zKC%fVL|eT2A)Ne^-dV}sigS6hUW8!C2z9GbK53K$ zQLBs-0!D)`dc>EXJ#sQD7F}QkAh83SV4sc^L!nGjdaTt|m~Cb?e648-5H7+LA_!1+ zbM^g#X6gJv!OA{4>N*M8L&l4lc!IP?uf4928)jkgYPgUu_cH|5CHF{>EMbYwz2L2} zzc_SGHdwsMQH#jf500t$=}{71C{u*~Qd%td^ zZNbsPrxCR$`>YBF^VESy^a(kz&-SXs{#@GhIC0<*G`JO`WY~}@NCi0=+4+QiMxLb0 zF(VfJtrnxC^Azu-@btuoka47SiwWF0=H4hRq99+JoK&%%BN%W$au(2l(Eub!wPWO5 zja>c&$8c{HWwOTKw8W?EfTjg0vaC8bU;F_tFb>79e2C2_Gczyb{4hxgds=KI8!=PY zV)FmIGXuJ%AxU-J0^kp0M2=;tmDr%`ILt*$ZtixMPONjZJHd#JY%i@bMDcGCf#Ts}&5iUzJ-SpW(EhhNn1_heA@3d$z@iV*uA zjd9hA&`^Q^1>7=Tyd+R1O6TzFu}Z<1t7N7PKmhboxF$+K6L9`}D_0CifTsfd`-=Rgtqb=9~R7oP?C<~SIqXXz&or_A~+V=Sy#oOse9)}s|d?2!5LAp_OU}J z<7_fC0GP1_L`0`8*H^-DL(SwVrzA{(Q7i#rZS|7hCzq3Aui^ z&s#94t1_5M-w7B4NfAcrZX=`8v=hM%X+v*EZ8H(}TDdy47)fPgVTU18+Eq*nO9Z5S z^C1sd%N9A0GMQ^joG5}VzN7}BaiZmsQAsAhOyzmQQ@}tqz&eUYoBfYs&yS=8^xsf0 zRe&Vx^VT|91c)FqAX@rPV;q_MZU1-3anY3`$-yY*G-8k3ieCuv1k=_&XR*i|LxWMd zJZt4Zi$TGntqi zq)Szg*(XTQw+nZr%FKlP$8yrtb)0lP`dhm z&U!?@AN_v{d;C8f21UOy41oDl4iWRKuC=Zt0AsK{v*4{c4A}B@!|`7>#SWinRrAw6 zE7R+Fb}tMKLdN|gwhMW;ZB?OwiS^2(_c6bipbenZp7~J^)x#gC@$)C*%Lj0n#YvDF zO9sUE-OICsVpbe$ zUswP;D4rz0)gBRU;Z-kO6qD@p&)vq(<8&)OR7yP`F6x;C8PdLRiRNipxb!4#Yvn8Zn_U`se*&_7 z7u8ml2iTy0UYk@`Z1X)*=0)UJnR4T58f5^-H_;IhuJ&9Gd>?X207;JWs}Q=01GTU? zD3-V4)h`wO{R)n!kkrQsv<*;ZCjSI;E^shzg-QWd#Q433t23t*SuL?mOggws8o_`- zk1je42%F-Z3kXwU{SLl;@w^Gs-ULrBqo?#?X-yI?1I# zuK`MLQ&{-(G9na~PO!uAQOD+CUd>0B^qgm& zvljzmCWW}GO_qu;D@EK&;;K}9bA}`5*MhEHeYUxf6>#wH)blwn>qDo0791YJwEvR9T_YuAl}tHkHb#Y_RCFCSN)P72iy=->g*02 z&~XZ4pkZoVd$SsLA-_lZ0kc)=r@6$Od4$tGrdcXyv_Ow>Vd`C>%5 zDmr;TiP_+iF#~Dox=B4JUg?VJZtqGFW(g5yf9O0@k8-CMizP(o_Q@I_bZWZW?`si# zxT`5Y-ups^SC#JY-`3}_BhRgmGBom?GOsRpgHJ=*v7}0S_@Iy)i)b3fh}|ZyQp`Dn zeBssP9DCElw|+cIpv6SwS1GyoPn+prKh#*d)o-1<@79@9{1d4n_p;3-0C$YvxqkY6 zf#`U(56vJ0Ok*OT*eX*TI&At8V|KvhHlM11#6xYT!*8sNbp)Q>^$1w#CX4kmqD+z9 zDGj%zGk&3Y`8ot!3>hw5Hi_);$MPNCR3pI$@A^^pS9^GKf%{N{eX=H)tm-W{<&7DK z_^%{CfarkWnQ$(`V#|{e<`$=4>9Q1`s|x_~L>7&IQ4;u+`d3{D76Z(25@8+ev-}`N zN;7B+r2ZN_8sI$pGIbzAlkBrVAm1oxav3V=Jqgpe#)#1^(rrqNw2BpmqJ7%Caj$de z&IZfobY*z%2bdU)WRB)}PS)l_(#y@F)ej7N^;zybMi3KMA9pH#zycOGm6LOTJH#U) zdjN^jMMBmEG>y)1*2!vK2WW{~oW?S>Fzm`jkmzHZkvKE%t^FfyxPI!>YBT=TGT*=z z4^1{?!5xA;K{eptbn5<*abK`}52B1;U#sscKf+Z*Lza=65+DL>0Q|-s3hjX}2!Y=E z`oqTY-@H2hB03m%zzxE_p>C+QW@!S7WV2;s#KV$eigqbztyJ7Zq~W%Hmfe&8u(!xY z1xO6}&)DyM$nJ0UVI&+%TlLy3(7}&t7sq(p&F{i!XyL9&^Ad~91^U{K|7q7&bHidd zT;?c-`0^vM(Cs_)(I+>dvt zyM6gIwe<^=h!TDhk%tcLGuA@_f`17t6=n-&2>|@@V8lBi0eIpv1Hd)=4L+-05aoG} zD&v^Gg(eVOi^qhoZ$~gdU}9<07G6mBd&Ki712YK>nj9>a2rV7_c;M0vg~+MP9K60vKn=%fPf&aL^SBuN@J9#6g(H5zS7d2hHzzoo z+&(xyUTGZqomfmTwiLOP!#Tc>`Q$4oqr=eC@IGqidVhXu=)PN-ZK@rUQa#`w2^;FI zeU=?REaw}S;a;iATeZZ)(>RUJY@`E|(eKfVAczP+n%^T!JHo%9t_jYAVMGt5@Yl&4 za(sWop8S8Sl^n9t4H|T=(omHTwFIx-IVfqa@!S;J>{A_z6StP{heiYMOB65~^C+=# zk8B6e9`#(yo{bRAc3Pp}2w%aoTsyyNSH4j2mqtv*<*=X=8IAy-4Ub+viob}_8~ur_OEt#cLxGLRXvU9i>+Qp-56!^*!8!O6NLk5s}=)2YCv3El&V2PvQ(3w zxJD+OCSI&wP4Cdeq!%UtnTel2%I`MKnyv$72@{&C2(v{g?!*!TLG~K>Hbwb}jXi}b z8V*s6GvbG#`X&24FcfkiQ)nvmuq|b>cQVup-6HCCM zcNn~}s5y%XU6Or}19)IPF#C?p7Erj>`=Fgq>^WE{ZnoNgNC1tPo~Wa_OWJu$VSqR- z_Z>dRmeze|m)O_JUu%*_>s}MLjG1!bU*kQfbp;N#HI^A+3j==1y8V&?)5LfP&HJuD z_ThfA9vZ(W8lr`To|m{S$w77|q04w!jEpYWWZCv+0o)nT!_4w{_*KvYKlJW>06%Bh zO!t?&(bxdjrU~~MH<)4wB4fJ^4}mnF5aH~2Hum!t3xD(e0wo7IB>eTHQG~hTp~~*X z8SOrRsTB4I7)Q3J6sRAMQTw2tVHd{#Sp2!1L%O_36~D7~mEewQS7Eu*1qwCmWWyPY&ek2K==8;Y#~(7F&L`R^@it~}36<72tOHG!;QS;o z8B<|Yys5O?pKp0C%sW29?hj>mbl9C13xA|sOyDO;$+wbg_++w;oT865U=a^SbMC!` z#z`EK0m2`$J2CL)c%rcOTx_&ERst-+6(r&V>{mSA-(=cy5mxtYBQxUpK`-(d7TRHu zh5QT|QseHU_rwPn?MSk5l8xT}RyDdW(scp`UUq(b(FA7C8FXM$kK7s9F`0FMBCP+B zA@jxK**?)jXZH_sCQ1r3&hYlniUxe&K-hxq5h~#7eSwV>->NwllxF?~qYud*voaJbxMM`TL+a_OZkyZHC!a`E6*JP9BMDlWl#OefIJQzKGJ{A@g@l(Q>}c8ckgN34{cWGMXk7ap@h0}}k#{isgul$T5niAI*Q z@OofKu*J@^TIZ+$&3A7vfboj`e-Jl@R~7q}U!nL9t;+4!1eJU7bt8~2VenY`m8NLH zUEz^0h4p@|++Dqyoux)yLK0Q>Pd`T$OG{WGQ{vVB{|sx&?>C zb4EhxPu`WEadBK_T3ni$ZSBbIRN8J&E)q*>Wz|2W5$6*opDDYstpuNOrb5no-zBE_ zF8E-`p6fMjFTerq8d9i~lZE?pPUl4{ZB`1zEj`)da{sYR#IMY`R*NVDuY=_t{hifG zj%JhU{iP8iBg8IMHmAHK$~!V{V)gs;+7Fxm0O0k4RJA2iG^Ip_`xt%Cv768TM(QhS zeM?J?lpcngA4QcO`t-vS82+%Q!K-MB*+&SYzPnSL@?ROFntRh-{rKeo4@v=V4|75G z>6u#j>jC!yk1lG)G+#K>DWrVO^v)TnVaJ=P7`wX&D|DxU>mU>!0-xqLQ_@~uNp+hb zidxeC3=^)7AFdW3gfg+8_nSC^}q$xm+SC&VlYxC18 z7UU$||9KI}`R4tE{``%3fxw%*Njwx#cav2yl=esU_}@`0LC~A;v6h*Vqr|hkBA>(2 zl>2AhuQK>s3i&?X%;Mj7Ydh51;FlmggeGRRs(Xe{g3?jX)?ed;T-h*9_fy>XEWZR! zlM1SvR3UiJ#J|`1^xKE3uT;vYk9TN}&<{wWevS#E8i)=x8D?61*Js$SW!=d)*^MXa z9K;=1^vrcnq2T3cXg7pLNr%_89=A)nR-7_^<0F?1cX;A_F!Da47T14D; zgxBE3qKdE#`nX0CnEOJHH&x)NUsZ?YkHJIq+qF3QLbYw6ih}_zJm^^dW>MjbeJgukFA*7Q?ll6oaX>GMgUGINl z2VQ}`2b_167Q9VgW!k@727;UPwGEbP=?-BV745EhLdWBoIc^ImW@|I#mAvq-_JmgJ zLp}4zMUQ^UEq6ALUuS69{A+eB^|F^!xsDr~7aK{YO#f%T5LHRFoVtW4&@h=wA&$(K zp#DWv7&8gW;`$c>WSYtT&^-hK01u^~o_%y!G!1s<%D(L+U|ajEd&V@_Tc+CM5ERp4 zDc==V8gJLm&E9pfwyGCz0syrEt6WtY)UAJ~ky~b@hc%bDX~1E*2tr-Cf2|U9eb9cO zX+aGm%?c+wTe6)7X1z`^x_snn`_!I)0lHa(fo@JmgPptw{-GdaHnz!c*E%+1k~Sru zwSDRIMmn3E!s7ibA4`UIh5L=;bBO=s^}pXPFnCUD#C##PtwOqO#JoDZW9;aeqD#7` zK6YiTq6x!=`w-3Nha%KCd^}1C!{`R#Zt29GAYsnFh5vDr%;e=e+6`Rr|HY&^msAuv z_@CE<-N8|1OLWXP>(EgG7Pn00QdxyqBJ9~P47TxOdt-@J@v8s$9?IS@GX)M3k9+Jl zW32|-ZZTBGa=bv5PJGWuT%>{`Gz_ll(ty##BYT@3IH5}8h1<9Rm9fttog)ged7fG; zsOZwIbo8*~>5-{S{arNPtsFWWn@pLd8PuY(IyK_;+ek=J*aIiPZmn@3-M|mLLUKGr zPLuv5_0t?ygwmi2iMTcrZ1r-0&|3xSWR9Pz_!W9vXH^ocqiFeVGh(X!G}S1J1P{+7 zuDi3lBLWKz@pUe(u1D_pN-D)^Kw!Ly5z8N#=*5EXlriavmGs{+%vN*0h#;`h9 z64x>_pk-$|^FzEU*)<`;ZI=#^K;7@7DyECaBpFs!=@ALir;u1rQK=McRTo?bU1L!Q z?77M$T5*2qL(dBdJ)inD`p&%IoBRbDliWZsvZXEa0uT>OgCm%c%M?+)&Ls zZ-6pltleyuavUoOT)oz^ccQ!q|1y@MQ}pH4dw3mXj$Hq+E=rNyDmAvW^(Z&?U*wKb zevwYi?e7O{vgsnO?V|NnII|9YF~)`i0y2HzPLsX6d&XL|mii8Wgsbj{^2oDO@_5V#mvBkdp9k4qR zVG;8(Rkke?kOtS~(+>TayL?eN4+M`}0Mod7D#_S-^18Xu`qn;b<3BJk^}m#BT;~RB zWcI?PId|_ONLDv);4~ixfcw*e{n1cDN|{OOitLKkku3f{(8I`DRQ=#uHdUAVsX46> zu+aMxIIGO{OV0&AoQPQ@ozn6+dd(a!E?59@tFn{j1qVYoRQ7Jj7(hZjsDR>t+AUD+ zB!voklg_o8EA%IWA?j#o4y2h#h1PEs(m*;3dl3ek5*CYZ|As_k+LatBzILQqMJ#kSeq4C1`q(%$f-PYBNPWf!Gxk}t9lqB)M5+*0?%t(I`_o( zfew}SgrsnnauqJDD`H#FbWZtbvbBp^R&itk>!mHFCko}OF?!O^7>&Eti|1(lLonxx zC2-J@y3z}@>{Cub&W2jirm^_>;7z1ow6VNZ>tAKY%Y5eXhz_=(*LoO5SV7DgFNmK` z4424pEYJ6RNeKb0`n!puAFjp3H`R6 z@A~16mgXrCSii4~16ds&UHgmQ>*qqV-iSSr?RI};O|x504zeuE06fY(O98))-XU7; zv#btRLwd_wJKZ!@r?+f4yYy_62D*&VNl$AJGj;N;i>A_dt>pO){}}mbGi{!&e)2D| z!PO3uRR){3P^2FRo*E};!y)s_eB6(&Wv*+Ukk>@-e$Z%cG!>hOYVgWkB=mz%{t~x* z?#^nqT%{||!bv0W;>Y>V;k{$Rfd3|s5DSSll}aMMRuirjz><*(h_7>Vulkwu4C8Yi z+=f2-f3g4x6rM;37nWEv44ro&TP8xvBi!SfaqFnFT8Y6s8qGwNnt*T37XipO6`f>2 z1G@vOT+}57Qz58;j8K!XL%1yWAx-(E zp1916@;{ZVdqH^Lk(|f^R?`N16VLKP6@Ku}`TkZd!upwlZyG22*qjuAGtxy_h$hF{ zFO-x2Ot`~a3_}% zjQ8g|ytg%V`kP8}(rfeFIw;5e{Y8Ya_B z9D2nokdgAJtI(1;cWZM4$>^2xhR47>Sc`Zp_-~#e{>jFF3vvRl#XD0&j&*2ufBU7o zK%mHD%@&l`Po$`fq0OhuG3lILL4E2^tBh|G8;<$x!~{IW5R1IHim&DMDb2d(G!SX=&(fT`vKTm*OF6rWh;RQRT!j8c2TfKj;Pl}Jl!q_nj-_ zKSj$ly|h8io0gEY8f$Lk6AmF(EKiBpK)fXxMfmKlu~_Y2zQGUNp^GR1sOWFun`gS2 zD`3kvS!YMQwCY=__Vab5WY1R_{4QhEmmLJKl-Y)PEkecZ9%!fF(?>sKpdD`xqw4lw ze&9zwVfyWF9L;aE;7#9GLT->p7=NfMdugWpysHxr;Wj=~hUvej%vAr8Cc(sv*d}C* z9>_<_d{4HO4fM`!x(E$!84{7ez`;yThyG+Sm^;qCbFGG8VaLApr!t9|Rji8Jpz5$t zY=leGN0w2j&C(w3oGj3byL&lM64+&2vy>wGu{Zm*R=_kH$o5YIg{jzm=Hk|>dtD-1>dQ3h7P?j;h~Q^FeL z@ya+?_oDzyk5QtNlgXnhSKo@H*hiH-;mCOTr_3F1&*bFuQW4BRb`k}YsB%7mn-$t9 zHH{Y)oa7J}UA=<^f;r>d@J-;V=n+RA3+@S7X5m>+s;BPbe?`yku~@{VD49;dj5)q2 zt)S!xuNP8gF#<8q>C5K2W$w96JV%N`;s$>`MR(gSQGzAVS^Ewpf?yszfF1m&%OC#p z`NsKC)sSHqe))eY?@5NZt3$D$`x1SecZ;be#{*3jmAAM*5AAx}y$(6n`NCr=RT~>z zmZn0pW#(FNPCVzE&X19GP_*|f0|oS~3F##UD}wbwdj!dNw)!G2UqR)^+NeKKFm(na<#NYTaO(9JHi`C8j1;c(A$AL*vVB)lsi^mz zZqhrXf7x)`p#hhAi$#O!7?m0#U)QM|Rfk9sYK$c^rQt>P6u=($diP;gu>YE{rsaqD zmdTN*j$e8XyfIao41p$r#M3Q?y3edb2@xN7?E&7$F^(+ijm_`ZiFoda4ww`cY1Vv^ z$fIjFt_>ngR4Lfn@v-sG7IX7d>$;7e$MTK7PYEKBi%Wg`hx7M&@!M7Zw{a{x#r;e> z!>1bAEw^7_DbGKld%E!n4cyG_yEE6wt)v0Ui{c-C?|ygkYk;i0=m=T4d;D;LMi+aC zL~!D0-?0{g0Zk(DW5=G?^))78gtn&PAlc9mY!Xpgy`9ZN8SB8WYAG4FsJmL?p<+vj zPxTT1v1a;1&M4602^U5ZO(mSN7eEa}&P)w+lY#5=_CI!887p{LPaT|I@V^0uEl94P zpIX;`M)@y40RN&YO$V6?QJgr6p}%z*tBLodslphXRDMj7)<-@!)c`WLiyGIBs zT=Tv9K7?SwU#X9r&@>#`v~=pI=3sMX)E%1vEg;TpFqACo=-mIZ2&I?+O;9_u!lmgg zxf`pOt?8mDzbC~2*>mU_bAu~xY_W+vqy6Yq|hTpm8*Yn!%`8jWnyWYZ;J*uyed5Te$5Z|<;NIw=KD|do`ubWV~@#v zJI#9GZscU(C8~N_z=n1za%-{fNN--&%qmxu==rIuY;zX8LpBb}7_Y~5K30jzi5fBi?+ZydBfdHs) z(s<-q+Y0F|9?0{)Di^drjW#-+)fA)pZ#aUvVe+y-1DQq7y|c?PXdrxA zBClrPH5o2uNN*r9=es6o(1Zw=NJDu4CPg_0ahbzZVHEt#35RMN8}v4ej0?zzJt2ru z`NN1vOk(IYgZ0x^RZnu~@`Q}2#~BUfGJVWw$F#kGlFigwF&c_cWn(SK+>|l#kV}R7 z5Z6t6MMb~uWaeb&>SPCL&}!#_lU8x`QRc6Ei^)kwu#n_LMWEiiSew=Buc~HVw`$Wl zdr@~PMDcM2Axo>x+Q`mg{}}4W#6IB;c({f06(#|QdvBs!Qns4XJQYG~y_+we@|8Bh zw%mQyLpJ!3pdYptw?M%&o!9e66?o96acazJwW~2{y2^UySb-|9>NK8c>Do)z2X1Hb z;F%Q|;~Jn=g#UZ&_TO|$!nR)ht+i$m zy1hxw)xQRcT+zgqhRSca_zHJIL{CLbaiaDEu1lkXS;$kqzk=f|Dy5~!`UbykfcMnD zCe`G0kW#??drnm&Wu@W@`xG&d!BM98107~dK8%or*iPj4oHaFsMUgI66FvJ#6{8R? zU{2g1{qCo{(OJeHY-q6soSVtKWT4GGw?O~TZhCxVaZGV-Kk*-P4E+dI5O|x_bEzPB zgbYF2lhoD~Ck~^@*97^p7lQ!HWa&h%5n8_~+nhgFmOSu3tCGaUr?MH+Dt&mzd+J1+ z-kDAx1?`^gN~@`2RaYZ%78~32Y?Wd&OpL28HK$~9TLn$Bp+)6j%U5QaFzHWTT7;xk ztW>mCD`KcGw2#;*_-bd$+<9w$KV7bjc8aoUmPUDSM3Wd_>qRwVgb9(DXhNC(j1T?w z8j~IMk*fbuN1}BlMFaAx`tUK~vk@WxNqb`dR^ITbL}x`>(Bz)oPB@wwbx{>jLRgiE z<+?EElO=RJnl1(uOiN}F_q-KFlE7CW{x8Pf@vYMDe;;n=CQr8B)iinH&X}ypwr$(C zYsbm9YiHZWWZSxX@_TxJzUvRT9<1v));ibuI)Na1Bihl!6D&z3K-Y>HXCz4$DP$Vq z^ZUP%v~n`UD*YU$x(~BYV#?d!v}!&^7|qg_I)U2>=c7L#X^N1$JusMneFskxq>v%6 zVeR}&j(7WvkX+~`NP~A{dW9VHp`^e;vj%XI7+T@-iCPZ4Sa!E)enmR&4QV9Z&!&9)RXCHC*Am2opLEkD?FP=RRN}J+ELH;eJY#rr&t(~2SoX8kykBJV%Hg@Yj z@jswu@^g^kTL+`qIOa<_CqNd^r7!&dxu2Kvje9H^mZicd(}u}Gb3n45y{cQhDOH~) z4-Dxjoc){%ZZ*-=PFfXcQ(uBf5S1wu@|{>+5hbe3wcrf#subbx$<3iyow;|Y%+TYGgw5V6Iv|W&takKkw)DC%68|f@C1i*% zUFuTelcF%x$^$mlGty(V&_y;{)U#R)fSc7&ES#=jqlwl~J>^0)4yE4|OpgthFZuT8vgaTaSF23BYO4@x8@j+E z<$Li<2d{4NY^H1jFN(TtUeh$)so zGG&2HoYY|D-siH{Q2Py#U+h@|tU@uKit>BK?{oS39g)}>)CuH!iy`76=BpYNer zX~Hs{rTsmvcu4su-oo++>2oksug>1V`0*6CZAVncYkpd_*)A^4pBGvc1FcY}{fvxef*hqj8SpN?P;E50U7w>{zcmH95$qhZQ)+L4$C`EE8XVE2gRqdEqGlytIxaO(E< zx$N0YCE>8obL9vTpIUZukq*QmwwKV%C}?IoulEW3cjJqL-QM3@NMb07Zvwp+V|~=;b?sBMBw7H+k~IvPFBcPut079gnPl z#{Msv#7SXP%r(yt55H1FNCC*%@v(JNSf(OSu?{&lmtq#9m*Q&UUiVouurU*(smD{Z zu~lu{p+*@4NZmmhc4SG33R}ZXweG{c6El_R;DSOEB$a)_g`}YLv_5Dzjlsz4A)Ug! zOS2Z5oO4NZBu=W&60#Q5XFnKiw$>W7!PKKJVTc!YmhznRos6n_;v3cYOrVI)eSeVo zLzw)dX9jQ4bG}xQcvwCA_`frzETROnObmTu1c_B)q<(uTG5i01(=I(AU71PW|Krx9 z;IDp2Mpw$V%6)=AkvU~2tYPs&99Lhe+NVOsZn&Xa0vgBJe0ALOuB>@qSELJj48=jz5K*h*MIujKdCC~Dz4c1%s&^+UbCh19HY$FU$HZ- zEzQmZ`vM=L3OQE{w@c9#HMX`d+MRIj!aHT|9XPuzuWstg=l#el5+T}G!Gh3)w$xs? z<#5i{AjrwNIIKTLZ3x^U7;PBEXRd$vs2IB9u=zE>ns&K?svZH{XzMXMu4|}=a5gB& zw<%!9QR6ZlNX~>5sc2jZ6Rxhno+@P_yiMyT3(GJF!7Coy#sB=&gfagmf0bZ&zT&6~9$K%_3 zFm({P$#f>qjk}NOuJfw#Mydvo53cF=+M+z3tnT*g$_-@>5dTZRaZM0jQH#yXr~UEZ zNA9u@bE&kp7pbHFwApg=jr9!epTGN9liZb^`U5=qt2&TH>@-Kod z^?OatuKEx!A-XOW%FtOC?_w_2alu;5pO_zuIwaZ`r7qz{4#Ihitxdb|m}kzBCsHLo z<~IXi()ONY)zQ~hdW@XzMdYu}?6n@E*tQ}q(vnGFcq5cX12PGI;r zvqkq(p#A*E3wQ4oQP0Lvl@)wbSHJ)T{VtJlw`Rn18{GmsQc>1f(+rv{V$aQqD=U25 z^FJm>I28*pcRi>7~FB@6p3xOW1iDD^Ar)N_ZD1WQ72yE1vB)l#5KFqsk(R z$B^wDs%vH4GDFwn45B9mWbD2YwS$HZN`vx0Snh_i^84>91Vv}%l3MiJw0E`>&RRzT zYz*1%6D_q!o~oe5UuG8OR+_`GL^D19Hh~UhZ4^D1c~Ke;L07Qilt=z0KWqjKJUFS4 zTtPU}s>{Ba+YfCYsnA%!y$3nz*`JCPwdOu%5GjfAW(0aCgiJwaZt8s)M>cSegSq9J zLY(>D465ba_YT6%nr&7ya>mZ3A0}5u4fRL%Dbg(pT`5=-r2YmF>Rh-SNQ~yJ$}jas zAd$>)|1^OVmUZB?5A`?XAiXhg*`=iECPWaypxxeTqscAsNnUq(gHlAX8rI>ND6|sv z-=tylvrbiI^U9*Sl+E$$1O)V@Kq#->{H6n!#}fq&?^N*Fe+^O7)==kCDS(W23A?_5 zXHk@uJpBe|`lGhO!%Fj1Q&`#PS{8GNRG2^IUhm^40yRei-=xzpuF~rIWap`2-6lRe zW*Fj*_gMkEDc6MrdLNji?;szDUT)DA8YfHuT8}&L@=x66Cj0L49N(i0!VvI=zH5Ef zU(ijjp0=736x!x@5Sr?5zcpr1VG);+X|)k=EDGT|WeXYSHrhPToh|&UFHX&;<+b!w z%lkl7yKQr1=f1_WS8HujT~+07H9QU1T22jJm<{^WN~w0%bE+PM{pUYZH01v#QOpB# zZu`Z{gB7y%S4j!iA|;C^bgk=?FGdVUd#vkDfUC0HIJ|6fxht7*hIQEOpW94Ew(sm^QjpHIYc8(kdzJFa^-f&|% zedj;A8mPC~_e89XNHm`odq|oc9}l$qt3O{Ty51*T{3F8b*K=wgU(yfVyWNRXL~_hg zIAih5nrcgRfh~-$4seUhYD7U270?ZEH$SGKQJ5n0${Yu7ADMI7}b;^GIcS;-<*4hSr|?= z|H_*J*RM566Hw$hlX+T?pXtTW6m6`^diGywraBj)9WO-QDvM=Y?Yuqx^77qMJkbwA z47ax50cZda?6lQ%C)vM=HOrwbJ0mE85QJ+hFg$S#8lMSfxEyss3-f*vDyDA3YwF=L$GS1YQrnpW58)#reis6lE95g6WeNUB zAESB0rt^@V^5`A`vQW0ETa;xy06cfVD|@#$#ZxZS16Z8%LsBlG?>wx%+0-qkS|)L5 zWg6#T#{bRl+DD4Ek6VR($dc?&uW!dI!llo>rnB{@YWJn@EwZeLZTcnN99(5!oEVA< zh6}M6Z0ulw%e#&}n@da`-S=E?h;v@Mz*BaU@tjsL!}B3z5=K>Se2C`8=PKurcSgb@?tKOn}eNMd);AaL5XVtouiG zyT*Pl4y8(ou}R{E$#B3CDI}T=z!whMu+w5A`JfjyqNX+qVfkKW9wzhtU8Ix+X29aH zyGV=f&CY_>`Ct;b{k_oe-d;v&+?u@oVKc@4Hwtd{&VmJ}W%?~gn5j3t42t0ygTtCMG(dc z;`4r{s&ElkE8P$TM}9{A?bwf4qzY_l<>~IW>yV1=MXl7EvsEqMs;D=h-JeN)*wsiM z6av1H#*B*gza8~bSHi2zX47wI{dRCdYC!rdWmI*X6|jU|K!3}XT&>TNf0@0Nzy85U z%}f=+h;Y38I>29VC8_8KRbcv3Z9xRcB=wh*+2> z;dXNTi;yh8Y#WO(&^g1}mX0Q7$ut{it(r`>&65qW&ox-Jv-T52Cont{WDINRTFOX4 z>-rwD(^QH!!bnzJ+yyL9znIc)ssd}K?iGVp@9SAN;455(*PK2TzP9CQ(hyCEDF#9o z$9oXj4=jknry1yQ<4l^X&6d|;2 zbmc5;JEh;kpa3MQzPOYD%pLrIr(q7%DqW#*MN(_#kpJ*3x(Zv5!a@{zqCs+S>ZvS& zVn#%@DKb`Yqzx{RY)6vETjM~qp>>)0D6P>q8C{x}-<=M@s+00?5CDOw=hzc=OX353 z0DSZu*6_2cE@vfYSJu_W7EgChv(C2MW7ORo%C1}15GRSfBga3tc>*Tlk6+8ht;p&e zRmDfs^kiPUXq#4B?w=vo2bp4Cj~9Q<{CB$TLTWe-yD@oNo}OiI{f4gnlKOjl_UwEJ z(GIQQ6rm3i#aK5z`K;f?%ts@IzPsBaXylZ$>YcbR4@aah))szhA;)#beeB1n%x(G@ zOg7r64-YRI0{loQhVA~@Nt05TNvd`jkTh+2PWR~R;x~iSuEu;n!yMOPN&EM%`!4-k zr5(5+KSH)`Sy9=*rqKCA&Vm}%FmQwoyuUe6J{J4N6a%zsLy_1(#(qe`aN|iIloV-P zsi(-uMHRSsOmffS6N=w%F3jDbO!SAQ`E<3-60v){CJ*!cWG zjEdcG=exj3n0_Z#vqUX0iOf+mw3b>r5`q z_A^qn|B{T&KuwnCm!+xWPY1Lbcu`ao|$Mi6fPW+K=W+YbaJxFrxh=kv?)s} z^%ssN=Nh+=*wPZ53vhnb8D`&#D(yi)b1)gK%9b6UF~t(o#Xuv8 zWrDk4d6<1Veft?VKMJbe`_?XNd?SPTaJ%2&>2Y{R8C)#SC$?w&vJs7UG>+TIa$sq_ z^Xx>L!hl*!UhFS_EO|{B9zu+{r;rqiz2Uj@VdYuR9cUr)(9MdBhOx5tO$DdB8>4AV z^y6da*GEp`k3Rw#;VAVG6^Ov^K=z)fdwf1wYbp(}2k->IkwKEuVN74dRQCc|?E zi;rEHx|f8l|3fn6TaR|lKOdG$S+ZUb?Io7#UP(9{`&297F;$Q!2w_NH3H`yfFKmrzchI^S zkwp9V)7cf+G}oPH=>}(1UDND)5L=hhkmzL@V4bpTtPwns(5KDLyuZPs^6{r)r0Z;3 z{<+l8VZFh}#A15Nq2j_qmDA+N(8a=?Wg!3yEA+f}jxr!?yo5b~JcaAS1ZB`;N|9;R zdy#j|My(?W1*Kt$hUJa;%716wr3N0D;3Pvk$(?z@yZ<*}UuzoBTa6f4&HTqKR28Q3 zvaPH}&^>%nt7KnfQB6$YCOnQ9>ABww#Pr9REuHfJX#rfS7R0`-)OLX>g*n-cq%f_M zv$$Sb%)5rs7dWfNBKJR|ffLDxTJbn?jn?l~&G^)$S}q89k1f_!eNRgR4nui#w6dafMMpDq^T602N?KFGlKK>t3Q8r@59&t*>R4C8m&W% zj!GXoC-%2tZdy{-b(w@7OF>6FAubQ^2Nl!-DTY&yFnD}!`br7^-aF%)dhK~qnjCmcK(ycdKW3} z-PTNY@iSC;n_V!D%H=x3kt+?Z1}GKVUzD4P;?W)9XVws%ZB%=+)grrmQ?IvE%FHF!bO>qf~c z+PwOnASY}N1E~02kz31L1*}(fWsy7Pmlp83#_KGVV#3W5EePc91TlT-&$N0gbI{&h z2sG}Xc+>-a<39x@f#Nez#aUL`(smHHha+_U{pRF{&wTEEM?^?Zo!}O1gaSU2YHK(C^J|y1Pw` zRZrGTr=#axHKGtHX7c`n4X%5#6OxU0#C9A5jAv~6MIxzXm}PBh#&$Km@Zxo`h{~R~ zK2&quj5Nz)Y0IM3Ix%5)Wu(ZB$gia^C;N6aJYrU@42b%c9Jwxhc1Kp2Axt+h=C0sS z?h#;I`3A7~L!ABCSv*E)VzFX2QLqGpNGHc4uyIKKUL=e?AXUVvaW zX3w-GU;X)#FdZvtC>V6c@GK(J(^u}q`>c&Wgs7W2H+m7zm$(SsBBZ8j41c^OlQr71 zy|K?4&vp_H*SMUT$h2pUyN`*OjJ@3RFoJif=-yJt47|NL3@bl0Sd$UTwm-ooWgxi# zidNKTxm0#TL!78Z4a#qMNs9A}2oUOzlOP-iG9L->Vf(NNr5~R@v^J)tm*p}gH8%EH z+dHURcY~%TD8$G{=?QK}ETai3yp)zO1rda@-zEmel$BLaMoqlPzOO`+9qQHJl#^Ug zb$Ghk8@(@_d%iKc`ugKc#<;d4fPpcb@S+~eyxZrr#d^a-vT%B~AUqAMrHDm)gJe-8 zLD|80+N6l>QpeOkF>}lyWC|wm(vZ$TcN(0Tp~m<%5BUDtB2uwEPrQjxjv$n+kB_{p z!TMLL(cZoGqvw0OGm>5;wYocYW!e2aySl6yY+zhyr`<_2Pm~uH{+j5zKiUPMxODwH z(eA?gDL+4VBh7eJ+G>z{LmJc%fw2e$n?n8)F-dwRSrzC}%*+NIDd{x6Jsv9pOd_`# z3_`S)tQZQBSvu!NziW$IpSwqP!NHEHZ5y_TuJuzvBC)V%Hk?WCDXUBj*WT*6xfoWvlWo zVIaR=pBIZgTfk)S;(1fU8KGfwP7SwNXH*IFcz6@)5c;Gh?T9Y%9-$dLY3UU6x49CM zglX0v1c>wQRjYR*mhZ8{llO;2N1PD9mPjC=xj(&xQiR7ch;iTo^w-jwB<`*{*XP@WNATSAI zXl`8M>64@;Y4k_+A+PzTA%BifaQtnp`J}uCfBfV982kL#x^{cB#DK_pK#K%OfLNAE_+yYe6^I|+Gs4de+;;NZ8yKa?FAksic0>>TNRELXeo+OJE&7mocJZ7C3($+A3UA|xfC-t|@0S0=zW6$3+lVY6;uk5}Hwxg7TW zPpGYbeWBc-LAo4VqZ>w(-e*?5Z08)g9LR&%mm;TCpF~!u+d!S)ZN5lPsn-Nvz8wpw zHdnXi4`~OH9IT?D?hhJBltQ3JI>SE_^oGL`KknT1Ju4&Du3Q|D56yPpsEg0PldiE( z)*16`!&21D0`$eNB6SmQnOj1#g_RT(!*94kB$lyhz84MI0XKn=b7BF*qH(9}kb$>- zcj#BD?+M@OGlv?Zh8RP^Kps7}M_z-rt)$CM&bQqiZk`xr71lNdw^~VcGz71R?#`a+ zsQ?Mawn3NfrzECNG{MIVv5EeNnN@>4QwfPeBbdw~6-Ge}o%4eOr^7Q{V~UozDFjYRXBOtb zrEeONQZM1wP|?L*RWGm*S9)*vA5rgF(zQ@ttGgdff?dyN)(E8TM|awMLL zS56=_`ZDf#2SrxSI7{*XkSb1qYANId9u)aAhs9Gmizq>k96z)&0K{XgE z6Qhhs7c&Rp4edmc?b*8bqRbJJ78>3lOrAQU9$J08;OjvYC)wE+Kyw%WLsVOtOmk2C z23PXH-0c9O7Hx~&j_r+2zc0#s;83BIj7G$!Mo0m3W)MKzd46K=T*d=4q=9jG6Te>ce;(;~xwihjb zLRzkO#9)0TCH=!t!bp&*wZjWac@8WdHG!fU5@*S~qkn3$BM;BetPwI7-z#54;H^Q( zD*ZC_&0T#EygmMJ+9Aqo#OdNj1Spg^m88F>?3(>J6u_6LEH;-6t3%aWZ$Y0|6C_Mw z8=JO7SEv4VNr?A5K|PwZXu4=3c}+JrHeF&_a!Uu1Z^T^<^n+0pfm-X6+P2e75ZV4u zdV7|63ps4RFV-njtNuwNr5C#jO8rp3Gj!U)Pg&zPmD(dOfzA+u)fB4}&OXF`hyIKF z^IN(ge*;C!#waiLXnyp6IYfpn!K1p3{E(sTctd^cvpLVK+{5ue50Y$#W6to`6dnl`D~?C`)mlAKOr8&7 zHka1NaQejt?=S?d);sRnAA%(zg6_S6+<*3Md`v9mmQ!KS_XiYda|#?aO-Hc~JK2IW zcv2Tg6cmR%-1kWIWF|tB^>u{m?{(vKAx6zP6N%_L zFfo2;0)a>ZOjZFnu%v13!>OKEtVBS_2S5Xd*?N1jJ=o&_BvUSe96ikKkKbOJ>0XoR zu~}xb2eQ=YGE4@mxKk9D=ASwRr|_q`SYj!s`VCTt#B-wq!`Bvi(O;x%Zn z_( zZS_>a0hs>}0N5E53~xtrur+`jPU3l{dQSnStng2j9Rihf#|>DPHU31Lw{w`=P>$;AqsFs zkoSU8by97emW+;;s0P3?{o3uhGLHo{<&!5TS{6LXEx_V9dK+9BLid{hWf3^1)}p;c zplL`nrMq!^7DLTPBdmeCnzYt>*MfWimj;kWbC1KQAIMETe$Iz+wJKJ*t?uXtC%3?4 zUy*$1_u=~cu@#S>XNZy3RAra&7k1{JGt8BRqEgi&I#L!h7ccH03jzPdW0_CsG3q-c zuSUwk|3#Oy9|8VX=TlBJ@&D|6TKT_xrskt(eA^zHpXVfFe9CeL*xmkC-N8@kXUq)6 zd|)X>0G;v()qUpg2!S4Mdf-Vq=09YslP2V}7d1;>&!bXja2%;HEV9lR$$PP+?xXg?5SFet5 zm_7*ym|vRXiR2L+RNPQ07UcV1DCy?=#TC)VyHBj{x$>MY3NxS>{cR*S=l;sFaQG6zZ;JS?Cvc%-z@>|xBZ>bWvacv{{}F4ouI5AZ9-W?xd6PQz zFYlDZ2m6=3orE01UjTp~BcL-~6nG#JDC_^=FYp|%nJbDvJ`iVws)5GN)TOSNIFGtiuZ3E?;Mu=httkr?}Cfb<%+as8`Vk-VS) zj*5?~KrHmwUNf7Ivj5Vw05yOw%r6THc|VwtX^P>L67m+1MgmH(-{lsZ1N{BQ_d;8Ajgeo*_7-1{j) z{5WoMhvhu+X$Nc{p%t&E+(JtW5VF1hnZetC<>}g>nAD}QXy65dItWGE z2Mg+~5L?VGk@q4982rJE=7i+L^M;yD?i}V zsp+i0aEqQ;{-mT_>4JG54RCtwdj3w=G8;l@`IEKPA`_CvJ#MW2yui#=?1}>dMxP(1 zmj@Pfd5eh7{BM#B37e$3oi`d#f#lB^Nm4}gaXhC9D*if9!QO2Ha*u#p;p2bOoae9w z4etUVKhE#}O8D1zNf54I;j^3fkCX0~3V9$Q0;kqoDN)B`gBmd2E=Rutu3sCf#<8Qd zpjK{cQW!h!ldB_qmK=mthM!fq(v7=c(xcgj0ekK{ovGL-P)c*@$cyg%0)+mo$L`6Z zlOD0Sj4>+*etL#H)Z2vqj%`ll7VZD(wwIyd-dBGp;Yj~%?QI9MejN94JiTsx5?xHW zX5MUpeFHDS;GRB1`IuIeFPoDxl~mLgi`q#m1gFD?$~~JY>BRC8Ap|y&*eSo)dt$|1 zt_4LJdxLRVvV-aMY(5-4m}bgcxq8xhjPEg|D`-4)Y07Gq9r*>{5>b+u=8HXgX&Gf3@g*Jax?fLU_Ig~Lgz9Rj z-h(QqxFWOi4FP)5$6Bm=r6v(qlgKf8KA+yut8)j8j)~!~IGufSVU(Mjk80MJ7(>6zsb@vcxvwebmRJ7` zk%`~xb@VXk&K{N+IaK@~y)7r%siq7#^M_}+nGNmT{aKNGVf%}Z!^A)*_;UGyu+Mq)$SCRh`_a| z%??7A`P&$GspUyt9-I@>*I7#%wb(1C{p1lNv~b3;`fd3@_g9wV9>PV4K(C-M^b^H4 z>L7)y-`ef3{}>>AhRUoDaT#iUA%)}Wr)~$P*!h6zUpYyb_`Qljl;H><9<`3QYFqGt z>(<#d?Z!DHtSk)yF)Fopdp+vvca3?VtklvSN8AL& zDa``(S^&Khg9L;$Kbb19)x` zTo5~CK3JvzKSFp8u}(h=)g~NC%~7Rfdis5RWZ{^7c6_fc*ex0nDW3Y#Z;>(CO8@p) z1_*VGvhVpCw5?W>P6@)|PM2)j9l)SD5&d`y9f@WMlFWhh4gs3e7qYn^lBRuz|B!~l zc1Vq2m|fcOUi*wM#_NZ8%+r}5!>IMTw%FtOs0zT+;`|ZMhwx7D-DGr(X@=DIh;7hsOE&CQAhzr_EB8jAam0q|ZUfI;3Q?cjkkdAS zt=$)cv9sNKOyfN~0tCVs4UC6IByUJPOPU;nSqEI0+HG!xp{Y96iaYkh%; zYH5C~C}}A9s+cbV3jhzDHr_}Xsu0-)O+jgd-*}gw?pLqFwC$-%=sd`qnJ>EKb}yE1 zY%BhLjsMj38hag-eu=q)__K&ezNHY6Mo1%uzx{jhdFTE6jqGPJ^%Mwa{N#_@D0{-4*q;v!-S21S z+LkaeK(me76U7u_oEmLTWM~dt$CX21fm=E4o9+ao#=+98an50sf+BC9J1;8Uvu24O z)@0-?B7s!*m#!1R`x^u&Iukwy1D061Q`2BlAnIf}>NxV@u~YzRic9XZ)fl&HWpuUQ zmbXXb=Ps&mAjw7Z%dJ3$A+;fLeu zY$Xyt#GTgTFptuNbHJMUduYj1Mvx4Iz|{R8NGwd$#zQXoYZ-O>L%yC?sWqgwNnw$- zq4zM`O`qQDns>BtghO|=W5J+XPQ8o)Ug03nS}8&Z-P>N-1~ z7|HwM%NC*nAw&m&my>a8Th93+rnvFTWp#0V@gJYSms@(6H~YF5sGR%|rF2maqaGp( zzhK039MBeE9d!iuJt-i_u)*sJ-P>tM9>Y^fP3E0O0sa3vET8VN!GZENRwf!wHTMCE zq^**1<&xmOBEnTM0VSu(bI-KuPUx)>M6=h%eN4&dN4m~ zEJeiOV<3HrcS}9foz{)YLW&~`c;_9=Us88@UdS~zjNxV;(u~Z^_7j{#bvJ6OIScn2 zz!4bevKyqDJQd7Eez)ngkJf{m&fEN~bMG0Cl-|i-DisJkL1dbTiD?3kF^}aIR;I_v zRzQZ{3g{wStdMu8Tg07G3Awf{49fG#btD-KTzc>f)7aQQ!mcdtJea!G3<#6M?0)8=Oi+xr&CG?p3L;Z%>7gB1=p+pdjs z7=h4XO_HM(r^={`)ak{tVpGyn6s8eogQZDnB zOBbFhI7mR1SCix==DLF`sUz^fVczrI4V3{OpHxxBh4qr|#%vr`N1IinJ^iBatUOE8 zH2j`9@F!^PWMJayXLt5e>2xSki@p_>WPmvyIG3E?FaR! zrRI7X*3uI^1!~;CxhQKi4eP&TbmNb$H`4BMQY02K2bSDl!-$lMlD3Rvx>{%Yr*oV9 z0sFkDj*7(6;Hi`nY~fC5*G7=b;+r`hQ#gC3GSGfS*@~ttSikJ}mMsgRvi0YfuWYP_ zlhIojm12d-&)7O#ow4PnRrcyy-X+VukBpB>ZBz(p?&DP!oag$5L#xbz=}Jkva`%L= zAErmgNZspM^$phN4&=Dhq}@EqmbIBxE0+1zehlw4-Yjyg+Y>UW|CXA9mT80%k$5Zq&L0=t_0A{3V1VY<1?>UAdC4c{5()5eq! z<$vj?hrZ+iuZ$^ad2D5KG*UI&!IpISQEgc-|Oc#4TmIPvMsQ_SOjU@OO1|P2>#mL(woOA(V5HVd2)6Of@IWG@H^ux&W{d_V1?2!4PvA#!1fRZLCsgSF(*hta z+$<8KkLB17Q+7Ya6#i6ycxgVQ2rqJ2x{D@WoQm?s4$gyg)HAn;T0Tqnt^B9Sl-V*n}f&Z zuVZLll>Wm(LHARj_H-gx)aFQ!J+1bgeF4TW&FozC?3>o1crt%Hj`!~kl4y2#^-HEb zIuK8PrTz2QIbjbgKRbl$2fZs~j@^(MYgZjH=FGhQ{CE-W!^H^iX)5I{P5L>GwMQmfT zaH^3kEz1(G(*>=%t~Pm==kTbA(ilDKOK()d*Z4(ZVyWsTP-`r5I2!a{$2<0tIrwks0H(IWy}$d>k~cS!^3D>4(jLk6>F6a|yqn$K6%0Y7w94ntN{ zECSEyZ!L&H=qUNvN2{nU%e-kcvA@2e8#w#ru9RCT$)T=^#SwKK*RY+edx}yjcIQ$= zisX8-xoJ+Fv$2i032LGHJlbkwMF+CHLy5M z57{1(i6&>TJTM%F@g%;b@~K(xx_cN#epqa>OEqY=4yz(F>}uamsk@_;ervM^qMLjC zmFD;HrMcw}**Xn!(;vdMA=g5?jiWh4#s&r^LQ#PP2_Jr9p3#^Z@Zj1d4x`XoTrP+wj2)@wm8kHWP#uh^YpKm@Vg zT123w5#>{c;!6&A72)hNegfS(wsz&fo}nZpU$T&oPzu=`$l2D_=JYDl>kZER%XrZZ z_F{4jOk`kprBN!io}Gs*nsMjG^n2;vPV%4q`{vnq{lgOKq_^ck*YEd?F2POKYCpYB z#}tfDT_63#Yh66dh0bU~5FxLhdz3pzXn=NIyFC;_Nr z;CTeG?YQ%eAEHNo{M5_Xi)&=eTTCO01jHO0|Mm$7l=?JI;(s&a&h6Elu=1JBwNLea@|$ky8U0%xQJNw!F?Lw((gtGu6%!<3#-{Ki#hC5h>+ zE6%pChSA*){R97u11h)RAYm$p@>Yjtu}O_Szh)HlK9w*Z5xnR~J}RqbuXqgi>o&Bf zKN)yLw8RH05{(9eV^tjk9JI$oBvTmm-?fy}j3*uFvE1|C#z60?Av~21qRC=@)H(;l zH)}~FAq?WJ=SC}U9maw|bj=b>SYk?VQMx0()}+ikySvCfpL1VaO(-fy8b7nb_0X-` zz>vv^s$BOZ)N5sz0I2$Uv{e2(d1`uW z0x)u?w|1D3QQi)YvTWSS_|<5ekapssL~|H)&UMkYabnn%ZT{`6_(NC}JW^}znPS;w zLv^bBVRWS=(CI3L<%^OOvZkl`2jzHCfDNZBlI$z~a^>ZciKOe`^q{D96s; zLY{dI-{&K16-v4=ao0wG)OsKWL=q|9$w_&`o=nAGW3`-0j=m#sdK^ilaSQKosIdM8 zzxDv@t!GBq@Nk144D^wb`Z%>~6QgMq2Aoqr-5?-9^<&|;*`o|+5DFz(w zCIGh-dESW{E??hXMCA5$OGFDdMP!P-T1yDthk{uEl-gbwmC)WMs?ofLdB`QGcH?iAhWjrxA}-6lC*#z8r`Si9qvqJkDI5I(ozDzU zC}u*B4c6LdfYn2qx*D_0t;otO+ad}(H`QOeyOo918hiPOb*c%51cX}QvJz>w0Blu z5w+t{QAPjoodd@Os}p_uL7=5IDHw`k{Xe$<`uGfdS$ZOa{gMa|R>%gjMA4w#(*W=cXuU)|=OW&aA>5nOGf(kM8>iRVQ%GHM;<5h%Xm|7O_=VaWS9%n( zlU=yr4c=uHRE_GQJ!J(l%-hSnn)tqD$R-`nbaD}Sd--RK#M zPZ7ZVqL5TcDNE(-H^)oI8WWDG&wBpHt4u<3>{%sj?+s1fX{XU=x7$Rk`W zeN_o8p6!|*Y!Nf*WZRbgO<1{j5v%dL&~wC4#i<&Ad(vUs0i{8m5oFhJ94&+}isr-z z9^tE1Z_!RixIK%H@QuLu($+I&-NEgKXfnzg&GJvJiBQDs6OF@={-xVmScahV;*;_- zlp3;b{A_dk{J{RaS<~Io=dm8W1XD}LCgFHNknS-j>Db5oKtvJU?Sb;tEV2EU5y$6t4E)Ne!~;bg}D2@LVb)X?Ut!9 z1T1%VJ{y;o@&8fxRY7rtZI^=wclY4IgF7U+OA>-Z@W3Dg4DRmk?g_4g6WrZxaCdiE z{@U8R|J%LUz1XX+>gsB%xBGq1dCqeVn!~@zso11e%f!l)_MXMnWXH8jHQ1le)$*Me zKGDNM*fE}*1gXUAU&lf~k6p5%=gDGgo0MgOUZ6G`ybVczyd z@cZlzr%b5A?wZWX+y3Z?;@Y>0eX%lvNk8D-B_}6e(Lq|WCEXiXkBu!cs9&|MfZ?=L zR>A5)nbohntUaW=d?6b3azOtSGapu#GplRxI^gCorp<>M z(JcX7e|(?yx>~Ypn#Tt3H|Y|3&yk9u|?TOME1 z8<1fK;noO#rps8HtHidtjafh`;-Uw|eyYck6TI9T z!ngLqn|s`qmFk&LGK_Vqf4;{Dy!&(qnFvt}anI~R-P9$Wesb266QYY;9Ua-RW-)u| zT&)ZA*c`qRi18gW74g2g&2gbB@i?#Xm}HxZHC^`S>D@dBdAYq;I_eK1c*%w^9H8%< zSqM8!L4D{a|FT!Qxv0HE7EO;VU*a6Wc^E2^&p1E9Q`(}RaYuUlRc_2(eadl{l*js3 z9{fTkH#|t}+*T@f`?>b?u9*9sUTONO*u3g?8>!(47!+99IzJ6zpTszK4MO<f&EIM8(+Lp3+@nb;lt|Lb^j&JHm>% zdkD(*A24L31>tn(Z;~=4q#4Knww%|}#YgqMj$S1nz1mmU9S*$XoY&>-;HP9m_D*`J z4QBEJizmKc4LBmZ2r-7iUgoK6Sk0h`uX}`zDD#d93@j|I99|8Yy;CABbn2oA6N0h+ zCqQK;dt^u58(NslBhcc`V66vZO=kYxBUR*eD2zEk#b2 zcEtOPGm4=3LGbh8v-P(wCWnI8mx#cV%1|Pau|1eQ`zN(MrkzM_W{T-cH16O?5{P0G zBtiTl9@Ac3c33r$wg-%?#sc)}eiTb3H2^fd2tm*F<<_wi_L>NJK6^6aWWrO7qH8;+3m z316Sii7nwvQAy?rLk?I)HIvj2;v5IQ$Cu59>?itW+dgUa>0OuMxic-in33i-{S7bB zCTi5QV!!iS5_X}cNVnKg0CH3noQl->k9aRp)Vhc4rdFdw??EJIpHu{mjxJ*R1o(I^azZzOln`&`}n9hjF>NMOCVBl zxt?U`g)O%G%x2{|z;pVKp1JG>>j2Yi;miw&JC91%Q(oA5^O)ci?M55m8S)-g&*p(h z-S(Pv{(n-RT>W3-NhVSUbmYF3wc`J1N7*~x#)}ePJ@OEf%%R?+(-K_QeKmF-Qy!Wg zQp=i(JBsmD!dNoTO)brT?j8T5Fl?X$kBOpRY^a>!a5lHQ`(ec4Rr5O1c<9XH=1J>8 zl1NsrSTGb`aCF@${XUi~MigNL2^vS^cZc!q(y2HTu6n%bSo2(z`j|+6`-UFSDdkcb zkG#X~{dZg;>+Ic!M>1sfuWsj)k)LyA#(>xRYMxG|ro9(6uK1@TvaSVCiM=B69ypsl zYP&69xT6WST>eo?d6V|Q!hG><(46sTsD!6KD|RO6%UEe~vxw9=_ujJ*z$L7MA6Cu7 z`y&;x@F4cPE$tQ>vZ%}XaT2wo@2Idr#Wpml=_nM`gz2W(8htJbJd|J3a)y4Q{dMCS zx*tdC%*37kqKUvG<|9lwL*_a-tO{IlGu$n%C*e8N%ZGtWg@?zKMdJ#$luy0WiPRk= zy)m&3k*_EX8i8D%OCibs-KK}HGCp4{^)M7LVEHy?2VxX}L^ib>2avO8=kJ!xKO{I{ z{QL}3hKOPUGI6I!+N~bm0|J+YV<70*i5X=-*8XIsABXS$tL-q{%~*4sW*S;^H~{Fa z%H?wMvU=I9s0{iR)<^+*KV(JR(j*r2MV`tET*IccZiDP+ZN}WoiVy`9E+AtS^6~fu7EQXZ^9SRAfX(iOLgaIL|S4ho{7fN%CLTC1uqPRR)?C zm@z*&=Ir7CAmPl^eH}*qUDBM!F+Dp2pLw@q#qkNk|^a6xt{O_MaV$ z^%1aTA$s0dVbVtDcUG4&LvEpudSo@qv{$@10Q#y#%(x7o81PbjD{r`7GHH8nR{D2! z9?wB=9O@4+dji>xJmE0+w$!5%D56S*=r)-!Oeom(TpkfO@j=+i3$cpAR;440O`wly zudWUhG_SiU$F1%#t-TCyp+xEw#yb=AW9)n$aa`QPq~{5UwAr(cyq+@rcX#{Si%Cpy zYX0iUhXe6PkscQ{zzWRJv;>BoPzP~yC@IM}nt-<_Fq`pC#Vh+6dK~(1yBIQ*O!#x> z67TBMXaG0%CgZ6}1oz?X-MO7i7MZyN)+Z;m{A9M6(c8@7j}j5yVFCO?l3#-(wvu=^-_5{uoKmf35hdajaf+Blo-(fQ)=pc>i6&L{ z4bSYGtRdL2a?SV4+!f(5ave>1`nQJ)6AHE?kvuYc9mPcDZw%Kh+rdACzAf1h>UlN& z6BXyhCT(`jYyg#b^pCoL?UgF%iMB-E||AGh6V|&4SSb{`n5QU)c^u)a2l~U8O zmz{Do7aX>4FV9^#{_IDRzXPk*EzP|hFgYGLKID~L&*%UhFpNi?t8txF z%PzKo zHUMH<7{>zr6F^T>p&s(cX#(_YNE93WW-u>teQUQ4G$Pv^dw%8;rMSa z*LQ~Er!ol@DtfoQsZ!aTpN@ksH(k|Es>=ItRlY>b#P$t>!HdApf&$Q%YP+W4MWYFu zv(3->4*?W10v}|f5*>2H?c}1VgUL73tB8VhGg78twvhVlBJ7NwP9=RX0p}{I zC)eZ1h$~x7#u0l?rBx-<&5?8tjuIUI&sAyjF@#Ie>3I+^+7XSa+T!3A0OfCl-g@o% z+L;89iWGOpVBK0CG&%_UlyS;jKof6#{v6R#R~VhZ$le%c)OJfu8egFOlKiR2Mm55I zxZ@ecF_BOpuE_!o2Q@0vHruIl`~bn%b*>eE;3ZAFW`Sa)Jl|AG=AC0j=XELlAYKJ~ z&*;*)gzETYK40e`#-8?=seg_3{wi7%o^r8$RMBE- zO|-%=?7=DhKv%MGxI$j?aJEmT45~x83D21@Y2;Ljeq5_tVi+~&zDBE*>oi+FLRbcpnB;%k7-3Y@DeeC|ZrmPt9 zPhA&w$bDR=lw?>D=59;;G?oC1i80v*q~~0C>at-Z!$yVk;FGU|oKem+7!8E_Jy#f4 z+cm~cf!nyd0%k%E4!I+k2ZqFCE;$MvIQ7BHu3tVAkjnNy>OC@fal>K7>1E}OivFYB z4CQ=@;qYR&mbK0v?GXqWOu@C8Si=Q;#9biniC#9!#;5*G)He4ZjLIBj>ACo+jGm@-YdS}dnbsBEF}W@ zi7y$E77D@M)~y#PmAyo~&kf25rUt@d4NxO}NZ<7@Y)HNgics*dPjR3v&=Ts+G%lcK zdQ%JQxZdZ?bTZ!z<;d1-eoJs7;hATk60vZj#`KYGQNaOqbRA5o3Uc0?psk|&wla58 zm(uT+Inyc7 z*aqV9IOFu!A3RM2u@6j@Ncy~i4~N>&0cvK4YPfQMQ}!hfzS5|vXo5SA6~dPGUVBih ze8;n>(Q_uJ9h_;VXKX$|U`l~p=!*+nK|c4ckE6n;D(ne2N_56+nlvKc`;a^#Nw~@pSYNyP3;Bo$ZBp= zkc8ag9_EnCYC_^Q(=+fgUuds}g67Hjq{Z9F4xYm6>^%8RSo`DVITuY^a_eF$w zp!%?DQ=@7r=A&30-;iiv`8_*I_zri4P&cH_x&zc42sjQV3#bZ$+n@7~+DWa~Dt&mT zENHjPw+AaBs0HN?vTX3>*!d?Gbr}jBL%D6gTXvprDYjXa!aK%}$nBYc&Q{~t!ZOpy zBUGMm3aV>g>pHP>YB3ajXbMzdtdG}&7z{PR46}zqQNaeBce8zUk zcjMsj-H2FZPS>jS-v&GI@Hs#qm|-GzZ|__HJby!>mg~o^W?KSnZtB*w-_%Ze?2Ad9 z4Cxj8bauL&;vYR{jQ&Pr^Psku6c`a zF7yMHevs^tjWbZuy3E?zAW_{1RH2ABD$+@$533TZ$IB+;7?9N}Adz03F*BJ|MrC*7 z&etuk2!hD7dof7B|V7vEV(iJbkj=s6~pFV`Zs9 z5=UbIJI5fcR6+mhZTwfQlRz=_-Ib$s-%M*o*BcQC=Sbps{mVb9`aP73&#$pEKYU-en{DB_AJ#i{}ACyJFq&^a&v^&l0$28PI00b?EuW`QUk>;OW{)V*AG znMOJ&!I=}kE%i6RPlDk!$5a-ow;#BL+w;L)`X}oj!R&Q^3~@%jKRCOs?owI$9mva4 z3ep;4>v^Q{GttSoSSX*DVE&gDAfken1;c>eM8?9(IhY6GpV>Lg1cx|6c7>RZbTje3 z=6<({^$!MXE$GaPPR%bUINsadK1I8Dvx;}sYWb$=#+iFpJd^Zt@|$hVTKsgFtr|}| z0(l@#02SN@Y&T_9E+N%$#zst)kS;7%7h4Cyk7BVH=Fd8(=YKi{2+$QRNf$^B5g$RH zP|q)Ck#D;qtNm{aVLlkpVO3=LoKuMq0G4#BXG77X!ko{`MLPh+8K7`kp<}8fseZP;-Nyl`=U*gRVTNCozshJ&IZg-|Z&#sV z6Q5?|cm$5f6hSk|lwP#3wTl=!0MM1h*gc4~KS?O2+fxRz&EAF-VX#BdG-}Zsl%w_d z2@tfQpbN)cAGlnoxO5C4%!ruaXobxYQOiRdXO9rRY%jdCGnzRQex@e}806k$(|OF? zazcf%2Jttp6E;rhS>?msNyALa&j>`C#BmG?AWVS!qN^8r27sinYlwlQ&Y{ud3ZUhV zqGg{p>xVN^v4X&dbQ~d}tS4)Ievv9n@qI7nTX`~%R&OMOzJpxJV$!uKPKKj$6>G^e z4&evtX@Y+@&w1+I3ts?+Fqqj>u{Us@yKS*g^UHq0%SeuEEY=Qp>9dS+Z7fr{#Lu&* zECBZ}C=Eiy`__(T8{_e-TrZKW?L&(PnCO`I^)e2r?ZYFJ2&t*B`T*p}cs&ZF1$WGx z&(>9;*hhr4)E~Z_$kFA!=BM9#3e$Plwl)Qly zD7kve1m{3Qe=7t%%H{Z{%;f_zY5nb8zV2%V3as!naDH6mr#$yYs=;VP%wslm8+|UX zIp+B>e9M*ah)gRDa_G=KH&Kg7EP%ro+Sq_gv<9$(^Un_PVY2Nwfc&%$y66+f|d|0ao z|7wk+WmEa-ZKeMhg4Du@hZ6WDSM|T!+$V=|^D0CT5e^kTZ8G)_b&Rl%$l+yv1I*F{ z{~|uN3y)HzZzRoW;*{GiVn!EE(LKk2h9Y;%y4_m*vP1%do^9>C8_~HMuAu(oxy#&8 z&NW37`=8lWTv*~Q(|Y`0QX>PLp%o1-^ORQ}q!Re(5I&A-Ne!VXOYUDK!iygrzE zIU34Qf(1MRFCnyPCKUgYR5a&rjw#;|4uAjC7z8(UZpDzn<#1!zpB_wcuXCZVa)F-X zpG7}fhlG;ASBbGLUE6E1_8s3w496=>zD$j2M<-bZl6ilAqblsa*Eeo9p+ z<)~Tdk+u;x@w8BU-;&pR#mv?{8|2i!khTZY~zOup|cqbtjW#l z18I-jmAnr)0>x9_Un@cVg3xiPT%GA!J>r=EI$`p@%ggb|pR zB&WFeLtmXE^{y*M6ds4+DHl{Y#C=ukR#AQJ&35fy=b91J8U+z%Z=I zoog{3`-|H?JRBE+{#Rv?+~~nPh;#=N8TD1LRIugkW?mTo0}sllFePf-+B~EHjRn`m zg;Zzczae45<l9)9SmQ7#mrIhOiCcMiTRQ{n$Hs9X~xoX5To)ytM>I5`3rv0 z<$w*1eyoXctMNDy|1FVG$Nc1rOjaK)<%H={(?8@TG*@~0FOLH7%h2m9`(C@4BQ^Q05De?k(remEJ}n=Dh+erjfbBUi!&iSSF@m(|6@w zCn0q0xer5%O0xA45gOVb4fZO%@v zajY<1tKf$x6s^8;0h4=|r5$n?ldNM_su2i7Tww2QL@A zT#Za?uf(h9!YI!6<}yq~iY+bw0?PRiMn0Bb|a_vL^-bdPNI&!;NW zcx@7M4U1ZaNHe2Z@9lm*sdh=A6JLHkWCxZ9|4v6sA0iQxV~*s2Sams<^KhZQ55*r{ z@9E{^v0llc%)9Z)b?@eI$7k&s-bo@h%PF}PRODWYSk$cNeHKdyjTEI(#zPy<7xA!- zX*pRkyOPKYG6=_(CBY>c;fEu)*)`hyiYn6{m8Oe18QhG+)NiC)Y70S1rCa`T$be%o z9c1~FeOL-G^k(X#^1Lwwa-vbDS?-&f0F2_zaXMCJMT>`<`R0>a;5wva8sO9Ejwq9F zUnN0k(K{KyK+)<6x0K(j)gp(&9pk^ySlc7Oki0_X+lPzk~j-NN!Mq?vaV8e1E!dlf@Gm%oT)*hCh;j9x{v+YC=kqq z&S9>|g(7Z5FnB!Er8rexGtFjK-13dZ7ZiJ`#%ZY$zwl`{pBJivvu?ap4L!NV=Mh?_ zu%|?#I-XcUs@8+@=Ts28w^$GgTTFJRWW5^S=S32S!hMNE(9OJjeC=G%rg)C6XzRB9 zc?x-cxeM!SAO+0DLiNA|sN{4@fcA^f=Z|}=&XTR{Fq$8=a8EP_CYbg5gQ_WtT5sY| zHu|O{l@;YMoJxXt$mz^W!hb@H6>OU45sM1P`@#RJd9Ke~NrjSP z_PZIPK$dQqojM5trMJ6M%7$X`mwSPfnQTXU|6;u;q}F681HC-Y!dujL zGJwGo?OS7|$TNZ6%5(GW*S2-xv*)oYBhqW)qwi})1N*!@DP#1%2>-#?!DtGmgJ$S|OtgIdvz@;vzM;1Qrow9d)8oP%8VKl)LK3kCkEv#R<2cy0*&T<}|_2|v)BwmO$lL8s@-U&{( zfYdpDy|J%G=E9w!IY=ih{6uJNYV(h!uVeIqK1UzE1;-4zkx*kose09CqH5;RS=g7% zcFjL7$8CA2bop3cmfFt*zD#6gRsN!g+>2G4Ubr-NT=CrR2EfIaWd0!~ve^&>%gXud z)S<3bUoDNGBt)Zr8xPV|SN7Q-+A?@o`%iZyASfo%*1*f7CX7VHgOb!8e#;LC zS!Wj`phX#0ij2_DemE@x{HU;PNKfu?I+7*gb~menCRJViX}w;sX84oxoWSsB0-iA9 zCPj&lakE!T!&rUhPoAN_T=myZ`mkn|6mUZuR!2O`zHGSfubZx}y!s~q{Ja(>StOqy zJ)wi`bivgvPQOApq2HFyh$Rb)j|=w!SLWB>Vyi)wH1lF$5W;<8pp~D7=p23;5C(Vp zekI4o`pXvNQv6_XuuLcI^jkE+cP(R4C~YU=96ugJ&ckL5E|Piub^O^b)-wSKh%h~adA}BG;?!U!PUy`QtHw4J=yO{D@5S)3nk(9qv{0k_7D}OS z1x8c?u76x|=2`dCKHAP|u=tWN+_5tQW>=J@eyj%5<1) z>no-l%6F&%h1$G$fxH{32cK%*J;~f#yi`#yyeAMjW7u|RY|+ZDT4lBhGX1YFD=adj za1^?BKaMBjmTzBGI7<8Nd)=<*tnS447XTJYDD==}1^d=4ZFc1Df8>|i zNZxC@J_DlAZP$x4*KG$m3i!sGGgi8_D}9?UmFn( zN6HZ%4@7?VDCRt8QM;eRCYiPfy>;(3{xGe7ULgJ zj5FC2YSCgw3~(Eb%7p7zkh9Jbo*<*qR$e_5e~2AxE7;_#5L^|#K$!dsz_QM)8DLUCqT2`s{q0B;*RbC4DY z_)r~#z5L%h&|x-aZIICSiD$} z-bn$R0eo4Mn^mU~sQtUX#&iWR@Bc8qcW=Q0x}#8t5`A=zO76X+!AmePUZEj{nue$U z2T1>4I3EG{BS zE!*uyb#{qTxV=gXC>HdHY(u@rRvq|e*&31~_7Ly4h38d$M#4^T2BqfE(KhC`HLu>P z;`r=I?c&wMozG=U)eDDZ+~;Z0;kIeVx?0Ng+lJ7q00BT`aAmL)={uM6a&4!Rvv}&w zS18rSygpJDmB&(rde!XoCmoh8S>uelb7unkiUM`5D}^>&#Xx^SG`c8PcS6^IoK8>3 z?_cV2bl1Y3!&dCyj8R|dEv0#DJ__qBj`-d8RDkyBciTuo5i9V6q$lnq$XJLZdOL`k zLnu;}r;<448eEyX!5XLHQFC3F z_s$;d!3IB8A7vX$1s651#o=6YRugV@Ua*%x1J+49=D{jkk-@g=Bn=ej2>CVckc2ps zqS2@`>wY2fo1`73IP19KTo2~7M3-OIdQI+PpE0X%o!oQZS=e!yj&lgeS#1U;xJ4HH z;jPtt$^Sij_7|tKgA8G)7VS8nVzTjsGbDk@MMP*oiu~VHUSj_R-4NySu%1{7SD#^V zHSB>BHhr7@+a!8J?+1`M60$jq(X9)X1mVzTLDc@70;a#?EwqzMXn!riq5PZ zD52&)kPNx>rPb&mmcrudi^Ezt&@mjW2v2fgiuaOaB{IO^|M*p` z_k!~2$3x6n81@?P(>?iihn}7{&05zhfh3y&#jucEFS4*#3O(A>_y#L%ro+imDKd#k z%-F^mDGRIY&@WmH;ycRVknOvu>yuYd2j(kD$Mu_gj^>%cAsw8bh3R$5XWWFR<1UNE zTMoY`!^At@ix;nsrSkr79b?8yU|o;`eM2y%Ew20d_Ln^EpA8$7M4_uGp^=b^dzz^j zerd|oC^|h#W3gWs!d<94YyLu~jZtJ;cdXf{%(6eZzq$;b2s~|2NIz2VK)yN8Nw?nZ z9y2FC3yL;ft$Q}u_=h}grEvp%zaCq(pbHBITd%-kT9GIYfoGdID6%tkH^L80)upZq z#B13$pjG5+?FO4~o;UEeYbw^^UT2h@l_;G3#L+87Oykavdv+DRPP{cQP`-;9Uvvn;x+ z|7LH#Rk&H3KU1(8Yz5$1C>$ybbawb{_hK>i)-GJ{@@A35&r*DaI4q-+Fk9s*=5kH; zc6fp2lEC}4YKX2%ApRYF7#(1>EM}D2qfGXuN$_XLWJHx@As#jboXA6AGuu)5OB&9u z4PkEiI$bb&4vv6l`RP{ZOl0nhzq_V{x=pJJfxs;$!VYvOm~$kT<=x5o*ANclup`+p zteN`lwQYvgQ!IR!OHPGvP`+uq7{CXL;ocyj={zIq4D^WY`Sc03)bM zdS;)mtxFi9DQa~o(jU}!omvLmhs8P+l?GQ*B99X7Z8Y#q)Ya4#>P)|3Y?PbsG*PF; z(zp9(XE22QcuN5?P)0LBZ~hdyGcH_`eyf7E7yLpPp|-}KlFnL1I+fpm zXz|G~eh#{Vx1fv9L9R5bV0gC*iMjyHmUZohO7W0hS_oKjh%Fj5lT9`AU@%OR3a9Da zm?8*=@yB3vq(7qZMVJ0CLt2;>uVtAS$w!KSDT2IAx1*WasIoMk%?h4s?7ev^=3)B& zxPo^>egncc*VG;Me-kN!>k*61oT!m4vAPA~wql6hOJ}ks)cLvW@op(p@?eR^ytk<* z+?EG=dZTkl@Q#{=owzL_AYLtq;^jbzAOna~a9PK;xRLq@5}j z>w1S{;J`pm3J8(c7NSoktl5{_02uk{q1F#Uu$18zt@3ahBvdFLq+wE~j-PCs*DgE- ze(tu2VF@paWq4u@xyCJHL+k2JjrgDXeLRB@oTKl6EksQx>4>X5#N%4u#${Eq?=ZX? z0(H1R8)mTXP=M1@h6pF48N!I;&**9j$i9j3wV=>NRqO#;9n3D|TEt)(r7BTn>(rWA zo9rvKuGTUGT83wfldoAg?dj6l1R`;7ohskCQv3q)D&PGYW%E$0Xw6PMaOBHzVwwNsIE z`JZt*4&x`W{bC)sQF>r-CHgZP`b;%~A%o#f43h{80+oxQvtEwb_SagQH(HPSn~o(I z`<&Y%-?h2(^IcYd&}cJQwe zaARLxyQIyKdP7a_o6>1`b@otx{mw7uH|p zcMhVT&20ROY6CZ)NT-t`t5x8y?(}#2*N~dzPEI}V{4$luMIl?5XR`Z1V(=9Kp&Xru ziZQV})ScgUp$&AQZ3gyEL!dh7xX-k>3Bu&_5jcM_&ayqb6OVK>R)R@Ed3p#qdn6x^ z4*ZRr70=|C=}NiIc*U6M8Vxi$N?gK8eCLr8N1B7L7>5ucM1uN?8__s-&VDk??9N@< zdi%kDwJD9i@Ffb2A*qxAN4Qq6gvDzzcHq!bXJ`_U#rN{fvM~AZX~#_}0vpkxrXvXj zr`V3kGvu#^ydW|!cJornv(Xt>?laJOpVx6CISf5u!XCM!dbC5wmAT+RDX#jY*2 z`lOwm$k;Fpw&>SF31g7FS;1LTf5D0OXI>4sC%H*P>Kupt*3u0W8`3aKauLpxDOk@4 zet<;SkYBP>paT{h)+R)Y8qi6U)i+#&J`{okQirWA(W8P9d^96yBbguaUkJ^H*O#2{ zdP+xJ;62#<`aNgyT>*mP|5y@`TFl+vQeo%7b>dwq_P4qdkGHvAtD-6cS^)C_(#a5y zpQT(8d?OfMUs{EXR&^zVe|$-6>F+@C^J&JAQA{7;mkS8sk3q74!}_9KWj3Jsq`i$m z(bsqpX|)5~gTEVdGGS(UC8IgodU8;n0Ym8Z6)d1>ya3<60!E($_#zXQ_Js*L>m%Ct zt~U?p0YC-AY@E~}(%)Gp1t`4CbuNTdtNgUAn{4r8-*RY#m3L37#g3TQ6~=lFf9M^i zq|I79BZ{I7d{Xr9pJo=ufW_Jc`%6{J4a^@4>t~AeLPD;)5Es}`4Ex~i6&10301Hh! za9Hpu8IzvbF(&jJ1=OS$8uzWV;e|PYSTDD8DU;eQJq{9IrPB_4Hg;%~;gKupPK3Kw zfoanH@KNplr#Ev3mYMI?Mk?&0^L}%r9=n3q zB8|w)f2)L6FnL(1_r>dCE`%;3QOzJSp6DkBQ7w`hFk2s$MZ=-8Gy~v4jZ*()I(~Ly zcwspfH`_rb*Lm5m((!zl;91e8B^9RsmlmL+|0dWjO7GsLlBY(5?+2zFL?6pTfN|}3 zeO}4^5FIeWdW^^Tu?aYwv>MJ2nQ+1T?k*BkeL~d7;85^&Z+ZRNH@P1@z_V z(#&`re1O+~(mY-Eu{huMd6ihqq7LRa;mX;DRW}=f+mX&{2wZ(+Fnh}7H?k0A>~U5^ z0MLM9iWsxbb8Y4%TcQae4R)WP&eL=v0kKG~t=H_AVX^GGGeuVF&{L-E9={`O7siRM zTi0M7@BPsnR-X#mV-D!l-LZHJZAp`A(!LjsQN{No1@1HgNzb*Za7hy>ydCe0oKNix$F;xi&vFc_O!xYK;(%g*{zBN$5DbVk02f3WUH*?p=7)}|hK$d7Rs zwY*|Ij5)>h>{L1=MXb8}O9z7*gektRXlPQLvXw5pskb4tDA@OpEn2sQu817h=bY0I zoz}#Jk=Z82M%%yV_M})k&I6B-9 zl<`+kQQ#Kj0pb)=EK_*af-c=8F6|Y6MryB7c2PA~2$3~b#bZO}g#?Kh{VB!wF)eRgmSY4hy<2gqI?YZ-G|6to^3=4^J0JsN>b}J$iKF$j!^=yHl^hg zPj~XHw!Ute2Gl#bXt+Us^r1(E=MGY1pFE#xDYxoRJ|!j;hljT9R?9oU-s4z}9}aaDyU&=3EWaoRL2HA2m1QNDP- z=A1r!>aHChJMZ^?6?(Tzjo%NGbNz+J9>~b5iq9d1$Mub5p%9@+FEBFrAJ|Tlt=zcH z>P?bz+up2a`H%`;PUj(U#oBu}PGkiAi?($;Z+dI@*CHN8t@Z8r4b;%(HzlO7CZ7voU558dfnzK`E zdB2IhX+D>(J$krw=FGC^>edYms8;B@{Jj&0)?H#j8Eiq~ds^-wB-P8Jg z3D1~}2>$HR`iG1@oFu+C2C3|VKU06p+6%w6q_1aYa3b?N!@bEPaz(?mgsa0r^@CIN zqwrxVr+8?a*Jqzh(uLl8{xO56&f@#)W0UKbhEBqNuVinpZx6=L+bZ77O=bg0sHh-b zS#_2b%KZ2Srfe6N&`N${R*1|da8P-)UZ64^qis3?UvY3jyB5Vv^u%&$1nsy6@DW@^ zr#gaejsIQG<(o$EFF`V9I7}TEJky?9QJ{fP!Cw}~v7EoGy10pFJ|~qV)@vHR!T(me zycY^ym{ASYi`I&2IJlM%H;lTCP~Ow)%~5EDv%77*9$?KGuDbbF;o9%($Is8+wz4-F z-j;1C+qEY6ivH1ybc<3YAe{r!igpT#R=eHxZ6j-UOj7bpcA5lIyR%r_-22&B!uko! zK3g|d`;-gEF`+6U^Q--SVZ251_|fKo=^6~Pc3k26*hg!;HRf!w3iPcH&vI_fGz1Pm zP5)k7o$5+ZM3pPH^Q`j|R_OgC=A^Xyht=zd&&#LRBTm0j#^Zr>{G9UjOsr$)Vf5S& zxaayJ!wTSH_W1+>0yNToNK2k$i2K*sj&&pL6iF)hPd1WHx7}6faA2gk`G0(rp5h_Y zE19=*devhPUgLb9 z=}xj6Py1km`ebCi63-iQY-yKY4c?Y1bKML@A2Zk9s9!7J?rp0V(e}csit05j1o>(? zhCfzo8Nx6hG9PDLSEE4qvpd24R>k=&<>saNMZ$@eZx&B3%u`*dHneDvZW z)pZ?piqHB*996|&eoca+xOY)ogUow&3M=g@a|CYGeNt3q_x#^AG;tk>gJn0#{9}f0 zj(J*9J=0oRp zd*v5)PSd6L$_)s=m80(PIi+;ghPxp+n0B93?WiHbz6pk9zNyDIoGhxDusiA&q;T_f zf{GdKk%1=0^7CDHu4d0qh;9-;knh|(f`vDzE-`h25r+B^XXCHGjwA`ODDyE2F3)vz zr_9(`{tiz!*EoiJ6{*b_JKvcePYGHPE0GKJehG%HB*+|3;;81h`gjwb0v4rt!p&Q2 zFLY8aX2?1F=vyi@_l8quv{!AmRH3&hyY|@E4eVTI~pTkBDKw389_}kU3?llu1jnP9iMmvNBxWM*hYO&;60`eeHvGx-z51Hp?_L)cT5?Dvoze3;{sE3dLF}cz zoA5KD)~B!(&eD~`v0d8Y|-sKP8&kd<_6Y?uUh*gF|@0g>p zW5PL7jvyNlQm27O5HE-9-t%h`_+O_klAey3fw`M4SV#tuKHPa4Qhgp>ubdpXQx_kp1D%d#-Lw+}hozPthzn#qBae!G02icovAJ zET9((A$pl92`z$@Z##c})-2~$kXrNAbF4-6?eH3NLB{_nUV}BgL~@vW`u(ip&a7uz zF!AKfa=;`RW%zW=*s!B3qa&`|&+j;$ z0{P_cBCDU8)`Cxw#IkMwb=vukxjX18Dvh;mq&`U&3u(UEwdej;|Ml5(0T2L%^nsa` z_K8Gj7xyuJpW-YVaueaYV=FbQLQ{Eb}xEvx7>;UABB;s&u@q%J~{t+owzyn zf2g4ZAyWP43QTSz7dJrSzt?2`*EM@Hb74OG=bK|ZMf-odM*aW!(GxZ>_sAg2tdQlC zb$Vm8l9Dgqzx#vEJk@jWD8`z$(;P6AraJ_ZS16MmZq%Eu$5yzUeK`^Ph^mEK`=H5R zE5t5bR*JlvZhPhnMCHe|hx;q+Zg%_FgX+OE{O_Nql$xPvHUqau_JU1AV{>ztTbpu4 z;LGQ}92SKH)6^A)n{by;?R^)^K+8=mn{I_Eu8p5q1-9Awp`6cK8OEklxxDfruA==6 z>JJO%AP?7(pOHJv2W@lOiuAa#XJ@!hdRvc=BrQ-jOAW0g#;{+ieK(~QR@_S6htyF7 zw5ywTEN!yfZfF>j3L`Qrp8c1ik@(cRrC1FI<3!ryiF+1qXwe|S|3TW920|Ua?V^RU zCZQ}t_Ohgev2TSiL}XV+B>RkgFGN|!7P2c_3fcF48T*=jnHWs=eHjMl@jvhR_MZ2A zIG-e=e)G(8-}iN0_jNx{a#!d#n(mhEve9BJ3(Ca%++<;kea%(U*v#y^b)r0U@QBgG z$!HStvj){9YzNg_YR3qnd7vgOJ~k0%8!?-kdH357_8BF2wCdazy%K}HDWorNdA?tI z*lIS-%*~I&Yvmn|yUyIIl87i{ha24My@4oo?l}13i?Tk{za#UspEXZ5ZWn4Qx#VSN z^PKL91F4heC$`S)Vt(PT>Z~uQ2T#z`B{TL0K4mlZHzgwrSl};N9@QT<8KFO5(-do) zzl8HOgj02G?03AILc;dY^M-HQRc)B}^qsddr0 ztYUuURR!y0s2`*bSuwTW&vO5}{ZFHf>wV?oqk55(JiSb)Hpav%%`}B+aH3mItMc^j z5TmNZ$-=^AD=RB%aIM?O^_MSScAoIWTwB`3zw*w628mcr*;nMQO7LOUU2|8D)2Hix zvha?0#ap%arJ&}1YDLg+CRS489oM7;55rq_m<2HH+?1yj7GrJLX9v&Ktws%#lav4M z?ZxJw*RxH$dh$Fhnw&N&_@v0EcHg0O5OEI6E7`srZq(keov_LG@K#;N3r9vN< zVvDD|(fYo_wNh7m-_LK~|4b6vMzV{SI@vgBwk&y#4_T`e{=1~pS2b%ID(@N6h$li; z3i!?3g1_Z{nQAkoKe6M(X4Mi@%$ajv+>DOxFlOb`>XQ459qWD^QaxwbDTU&JK5<=D zRg)OTJK$xZDHkPSt)zczIVX*q@^jII?QhefY6(*E#5qg62?AG+R~L}pv>*xBHTHFN{fIfv z$25mB2t`+Kk{6maw40spn_<(=meZ~-j!w!qeE!xL!=t&?$&<$EqH;QEU-65?Ch@A6 zm{`D$VyKxg;v*dc88Ye93vU5>M3D|}t%F2L@g8@XRn3ffo#~-n4rY6NkfcfYqg{^> zCuuvs-cr|(f=HgswytEjooEsl0Up+5@$hymj!q&tCgvvLFR5%}XXiDqQ!KfnO0eL3=*y}R#~s&ty%tMFDY{PmN5;dSb3G|4RjK;Mu>{7dmj}O)SoKd z0zRSN`uyXfGdv+?^A5g9WB@fp=2e;D{$Wa58V`~Q$1Er$1h!Dr9}U;pge#M976j-DZ1Syu#M zvb~lirhPc(X>GsURL0?DI?Yt6<$W!KIB{v|Hy-m#OO|W_WNF?z*XobvLrF&zT}}0dwq|J3TqPWrE0n0+-Q&z`D8!(vAD} zd>b!m^@7d`zTYpxp&rl8=XY`-U|R1zvCG(t;!KKEjM!|yYWZvterX*fr0n74x54EW zIFGceimDRP1#KP6{t10t5aJ1AZKxG82x(#1vp|18^XwwuEDz`W%4hr_O4W*(@Ivi- z_6mxeZ9~q5&j|hJ$tj963}eos@n~xfL13FmxcuoU7K65>5P!P#j46vd=9*>6#PcSB48JxnRIg>r zila5V6Mx4TyWQ4&`{xCv=`@h>lX{P$Kihh1 zW#oRXH~wMO!QQftl-I!;8zibA1Z`e3Gmn!!_qYoI`5Zhwsju@V6lWFhaw~jP5BYcP z!99*U8D%Q4)R<({YR9sXp<9+Hq+8i7Qgyy!!(z+f<1KkH$U0GH)0Jmz!;(-v>$3;l*uq^SP~YKZSaN!lFb zYz}f&OjkGPVr5vx7qU=_R2AdDLHMJ)!#? z{#Gk_7!>`OFE)X<;2FF7P$WueUIc8ndS_6^iTGjfb>3I&Y@=Y-+Jk{|MIB2 zfzU1Q@tp1w>1%_yqY<-HUBW+Q*=H;1zHRFb_4Vy-ZBG=0Kyc!4xKk1p*g)j2pDm{W ze=C<~_qJ{yxK(pDL7f}?ubs3q{Po) z!6A^`zBpvg2<52?8V1qHRol7!t90w8%*}cHF3z2Bw5?1oceL7YW<$Wro?+9yB~s=u z0$Ao`t)xD@WFjoQ_CN9HcZTzW9sMN`m_g}*z0Cla>927FD#D~R9Ix_CQqJ{(Dmj}H z$6PaYMI(z)NZ4}!$jB{0LBV62s=wiIZWp-|0jrV;w#eW|oLr|$F!nyDTTDNc07A38&)VDF) z2_hN+hntv^&>nzm7#J9QB)M=3eYY8f#&32Aa=p-PlbFo%=PWjZODxoD3W~>1y;rq^ z(y6ONxZ0bmx}Y~tw^4p!XcWXRmgusz)d3z4t;a7hc^}TW5gi~C#)-AY9-B7!_DZmT zoXwO@$AM$)DD&!RMlED^Uy)Lif)Q@PBK!OL^rc$|MV8I_*nNC`W&Uy)zCfXaCc%+( z3m;?@kAeC1ni48mnrAtuq@?71Pt@DfAk@Oq0=A z;hvxyJN*thCF@U<_0y78!t4#0V}q$7Tf=E*bQs^0^>ptt!~X=tmf88LpTrA`pn^ z@rh~Ur$e{UE8hOHDIrXf)-hyPCR*3e2)q4r$t}1vKdSV71E16Vu}%eZld&Tl*fD{E z*BZ`G8qS}S(A1x7ND?Z}4=|1(s(H`BFB#N`US%-WI67V}+!h0w*A|aCKgAqIs7nON zOX%Leioagzz%-1p`=Em$XJrrPk5@}hP5m5-pC+Nf*&zG&5r!+u?u8Z{YM#8=c6_h& z5_wczS$ktbNI~*>S7v@15#4)Ez$3l!i}9Vt_s?XKdarKI*1<0c_xJbTJmw;FrV%;= zuCiU=f}_xeqfpMqf7EAxskP$XT%`RrfORetZUEBcdpw-R?R!0aG0l&F_G3PBtO`m4 zxe-)R*J-5u!=i{7+g5njatb@k&@{B&yr}WJGHN`XPPH$XDVJAV%#@edLL!z1#kbzE zFe$LjFVNh2`W2SrzW48WzbpuHh>W+&+i5STzurnez*DKxUZWMedwX+^Yzp|$}=Yb8! zKO3GEw8@`Fn;8$?h}OJ^8^f-M>qP_~qZtDh5uL{@nT_JsF`BlRDC%uSNVtez)md1O zh#BfMX6R{)qU+_c{xre@&ym~t24)TfCXs(=D0!{NF84JN0Ir&n#2jc(cfs=V(}$wy z{kL`&)h-sYv&`(I%nU9@)t(-sfi2R{*E>?F8m_0D8Ed_v7@7`#qG_g$i%OYlf9eR}wBkmDkON{0hz z$(ZJIVDRmJL1E$c$_PM*U&xQVj`#RdW&LJRVpm#QSAT;={W)^)2Nu+P_v5|gd=eU& zK4|v;ARU}N`F}O20+3o@SB;G5MssKItJV6Pl=pun?ZBG}0VL<)@s)Yl(Z!{0sVfUB z)C`~fah6&1rjvCF6N<5ZjG_Ca40JW5Uo4i9W@l) zjCD?qbQaO}=7b3b|A|AdZ{Or<08>Y)jLET*>|)#4oJNWqsg=`GW+|NJ>z zURk?cS!O6<_$2gOqkRP&sb*g>C0}nu!lK#DLaBne{Hg{Vt4eX|Aq5%|o*)B(%1bnBcLlkv6)C#C7jd2S0_2%`?R?fzarO1(kVo(y|GqF`RePD0idZpS1@Av) zv0|nY^Ae*C+o!Mbfc;o|N~C0r*Tmna!MIHtJ zOPcgkp;uLIdv=IMA33?Gq3bX06j>M9@pL{}PVrAR5*U???M_u|lB<3kh>Va}NVdXvAc{n{1J&Z%pAxdG0*n;Qp^7O^f z@*zwP|HlhZ?sx=KML+L*cjrFelgonw@m+EfJ6h4t;T|u#te?Se#NjL=WAB7}iS-U! zQvg&5piV2tJ-#wzTm`S$ zWQslbRI&_0jnvwq^2H-(TXDDAqg`D8gq!wtt@-CWNF>5Y;+YAF+upt%qDgH>JX5h# zcBziRrzd)YLg&FkL}1^(RoJPfcUSmw2FFR2GXktw9m{>Zefuu~$5r}_h6HCBv=v}V zs`DsuDAZ#sHn*KoJx510Tn^}D4qW()f-d8I6q)Ih@q(U~GRT*ENOqcFBym^9Dk;dW zwwG`+kj(gZ?037|(93C`=zK1AG1j?6nhMb`Mh;z_TUyyFzP>+XXT3z%B?b!E>pXU| zbMC_@V{@HYz>_>^=iL3SDT815o{6}8uoI!CSUO`*DjK|Z>RQ7x+u)a$na}QbIbLCH zXD52`dy#LIA~Hz$5V2dhb*8vG%Pg(t$~?%7QwuvK3?-{4lCln`!P|wDjAgU>DNkd8 zdZSv?c`!ekkyVBg7vRpy2;Uz-R5541V*}N6b}}dBGFvOTRHF%?CilA`M7 zR?lhD}5$ikxKoxr>cqyj}A&2Gh8kxSS8Cpji1hUv-k z^a2}EB6h+7XMZM}v0x=TkIn`YfVHwG6a8C&)X3vK>)PLyt+0HEeF;qkvj$NlG~6+r zykDWBueNFCrCKeL+Uz=d?{ngAbPhSvb}!mxdT2{=)A|ux6Ol|DX={bkc}rT(1*bwJ zXE`0_h1n+`pOx#}O^d%e#uf|GBN_uS(UH+uUO9Ws#HIcvD z=Iq>Jcf2Z5vujNopfg}8!&18Tb)q?-r*!=c<~4#(?PqTW*v5$yy&qPbt_?a0_`Wz^ zA?#|e$YvmA`CMfvh*kyTNGt_d-*-gI@DjbCR`Aq6M<1W??(Xhcyn540a(=Nszdmjf zO(B>5YFv?+EV}ne#J>yG&ILs&M~1nnU`TW~?5phJ9=@nr)9@eD>TY_F?uJh^VQI1v z`U8nPuiP+h$f{~s@VkcFr3>lX{(=^hAd%`x_=E-x457M3J z?#15_rb?Cc>W-I>l6uF3AaDwq)4k!$h&J>0!^6XwvnN;avF2JtB;j90;*AQ&-1k>> zi{~Piv}h^AO~e=7xvVh6iY9TxX3#qlrH-CS8b(lvbj5GJY`I=*N8i_{o!Nw6)pSwF8z=<2Ie5#T-p3v&o`6dIF;8mpU&P= z>Rgu#!P|%?%}5Z*>pb}XX&(uTlLkfT;}BA2rl#}jQxzwqLD+ZzBf%SumdKUrgDWXt z|A;tUNS5htOuW#i#tyH|IP&#LB zXFXAQGrc`Gr0;}oXBjTv3Nha>>~NUg?w6Bvb>_4VF<$u)Od^)O9p#@~Pr|k&c{eet zUhT-}o8%8;iHA^`?ARTbXC5|L*kjHV#x4bkgG9AUCHnlWbQIH!+8YL*4#Oh0g6a~i zn+eIGPO~Q%+ggnU&-1$1Kv48! zZ5Bp*wv#m|69~f9Z)|J+rGQHqP>h!wC#_$fR30ouNHsXviZa!D9SU~lt0X55DkCDGv=X*rK1}Z}xs^(E>hhToDX%)M&<@EL38?RK3SJ2S z$0_voYWPjxuM1VX+15+>Ln{6Qd%c)j?aFvH^fuQ7>1%2B5Z8H`K|*8~pI9y@rkPFy z1UVSI)cbiW>Ek~jU0y_28udN^pnzC(vcN>GBK+E!k%B%aML+1tV!PN%u?P|L7gdR< z2=i>4T|9I5Vzfq6<05T*`{yB_aMhF8;go0!l8+*SS+`=A3^}RIkALO8b9^C%w~tUQ zoUgN57wGz`W|vis-89c{%SrS74DbNwj}yRPlsjinz&m=Kry;Q-Q=V}_duH4)|4FVX z7jzcYo&)`xL71H@tE7k=o(qFc9z-&;ax`Rm7$=kLXiZgOT~Hd5PPyT&m!@l)4^)3} zWbSFa{w#cFm^rOIQv1=sjjh)2pu=_n^06AjA^4Rlk-S67o!hPJ#pN1mD(G?092v~v z?TiPBSLTZrnZ!Fu?}(Bzgorb*#z2NAVmUBV7_}L18<*^7qdpTHkHh;mOkYrC`MY)=HGrU%lkxM{d^&mZ0z;>I1~`F#viwgH+%#r&8tBWca!!&UoG}YAJy>*T>ke*%dcR<6nFJ&|cHFFq#sb zKVoEa(?tHqB-GLQA?RPcAm7C&@4L*tv2%Gr^Z`i)TpM4)Nab&xtaI?SrwhxdD%zBUS3S3hb!mt4JLGgwm;ce zT5^ff!+G&mjItpo$&r*;)s+{pM#mV2cWz;*TmGP5NW1t9)|lWYo}<;L|Ait1w3rl7 z-Rzgr-F#L1))W`D)88*NX4t?l=Y!k(uCNU}a;h0yeO$AJ>@j~>c1nY2(u983GxTS& zaaO~KQ!HJV_sAyO#T$z}%^9}7+t7d_3S^}7r%{L&(w6bCZl+xYHl~=c3}%5=VzQV{ z&gIZUQ)hZL=VubU#z%7`l%Q#asIs`Ukm)w+BAxI`0(TXL_z>%tnmSj1X_?29o59~v z{S^t$JMt)rqOfRZz)-T|&9jE8Ya&ou^He+|F`1mqrrp{4o^u`whxDw_kwvBPsf4+WUV_G~qH>HF?3(i`Y$pLQL~3@Pbl zUjDoV?w%Fn2^3%8AY*wv^sRvtw^D6+X|4nI%_`RpzHiZ&o$1f=4hJ+Spd_tEF4{T? zqQv)w%Qq3uQkJY8bpdP>UJIOIt85Lb)BSmQzl{Y+``++biFeBPO>_u!TolHUpD$1E zzSh+R`qT}k(vzcYxF`<+kS$qoE}qir+(*)Aa=FGrvwLdK`j?bMJ4*3D&?*$@m9BylGO8Lo;Jz&T>0JfH!R^yXV=6mkm@|QIuUV{{ok8F$*l! zTZvnBfC0BjR~49}jQ^IQ{V!~_Dr=zcGd30mcv$5!Y6CaPQc$5qq+m;W>&bfn^0-5v z4KJ7C>ViKU+R;FAIFgZ|KUX&$J?aj`-te^3HLFgk&m>mx`b-=6(qXhL%3X7(A)?5D z^Q?1Fi!6F%h#P7@_hQE`a-ETsO+{vUTH*JfxCbg4*TuhhvqaBwp2R#zffecVM+f=Y z2w0Zfu5omA^CHT&z^1WESi_wq5qy_&QC5*k2ZsGT{R*M6vF5xeh!Tw#?K%;%iA% zu3d6?#}$|g`8nF3JRw{R{&90*DO_7}rFvtmhs@Z~sCJa5e7zj$uN1vN7M}FC4HA)j zb-J!9sCqz^yhAb^1>a!URvzgW?~297P_gB1{cMLK#;6CAGUu$Dt}+Axs^QxEp!U4#pl4uBbsL z?S`zKqGG*f_Fx#Z^!*g^yBZxb^g=U1?Wiopf`XG`19K0lr)U-<-`pAWknctvb%sO4 z$gM*z9J2c9H=ld)OPA60V5EB6t!FBjd(5pY1L^@Ai}-rP!hu8;L69zL<-aq*oO@%>IcT$S0JzO)Fxw1-Qwm3;O4Lclu+_@38axiO!+lKEY zIonapeB48qaa8={nDP5%T2FqiBEfqofbO_f05O){mV_Sj_+E1>L#&Io|L&9WTspaW zSl7NMR__Wa{wpe~!Edv9Pcf_9@y(DV7i;7(l8MDR%sz^3d)&lb>=34k3Jkrs5E5rG zP!u|H_-WeQt#TmB=H|=Pr1Q4^g}vWO4sLBip_nC6@i@_q=AB^gaBA3?ucRtjsKct5QQt7sdChGpWQ)1&<~m>8QWJKXKVLD3&6P!{)pKJW#` z9P-Rpl;3=ojXoB?oE*P9;RFfwn+Hz^$A^?)5ls+uDTkG;<6--lz1nKq*(q}c%3!02<{%1az~b7h};U@wn_|N?VCGEd&2iWIMmWu|NmTAPj54*;F*D} zVsCFxrB?|Y9TT=xOFo>f9?uYXPTrRgQa-n6VarIhCwUw%VO72JI}bFUKBog0Z@l?R zVeKdIR9Ba``=N&eXbM^-BW;;#4{hrjk7}9GOF&h7{0VuaQso8iB*GBc)#t9ePMsIz zT~F%$*vryccUX_mSd^>!XnrT1VDh>u){i%P>^Iehub|bB*s*ObDtErk7e|6b*QnL{ zhaVS63$rXDE-&pIIqpF!l)p_FdkBhU3uiYxtwL5hjEaPhZwhySTIv<#hbEiq=)8Fk zbPZwcE_J3QRaB7c%+e~g0@7x5PagVmey`l5ji9bmyTkEmgHyV7nN4u>g~`}mNcfz| zirKVGw3@Mu5g!_ui7uTgHE`iu2fw#68DscfzV(K5MjrVXpJ~9=qj`E617_@j>nL0d zowGO7JlzDX>gl9`aeMPSK0GWxmVKJsB7~MDawuGMRw0Bby`)7*aMp7B=%@-^Dwblq z&9oFi>7uOfCfJ`HxOFzQ@EY45dBh_qc{RF^^ugbXZ@j-}?4O*?&HAKyD5BY{!~z@M z$7WM6zFJr?{B_vj8v9SJ_#7$%Y#Z^a_zhJt7Pz9eQLc36eRCuIdt$(4)@?D{u^%(p zxEu&ylUlI}ga0$>dZg)jcMT=ts!i2zY@`6D!7hv(YjprJw>V2^w0p^<$yQ2NfYJ`k zE5G!9%Hu)r82B=P8G(ohyz-lA&mfbV>;yC;?5jGrt-XQj5~5t;NS(JoOM-Le>+r3) zzN-<*^f3_BHfdW&Csj9CQ$Y*<;?XrmAZB)K0G30SH#t z8ca+~_7B^~ZAC9NJUfEDlKluZ5?c@>>6C@Fx4N=UoDNN^erSciX0q*fMjIPnjtN36-Hx2cSN_lIgSSmY66zNyFb=AerM^c`UIaoOn`dG~mL5^AOm zvy70pFKDkj8JHIIF3h}X?j=;8R?^gbl3&K#OQDYNpxzxT&RDd@X7NK zq{Xr?%nxUwN71LO=<-r`M0OW+l#)|Y=GNB2>`28JdV7hRZTg_U##RH*6w+o6uMA~4 zP5FJjeQut!Pr}c98_dNUeBoY%-Q_je(EZ zI_d$gW2s)}NUY+o@@6cv&9s8eIQ=oKNchIA+gsXJzO(_d7;d!}=fYI()v$EoIf_b< zE?_S*8`)tQYIbq;@tIrV%Ae>&o{zcg%<^ca{&tbN{I-}&Ks(SbhGLP~&xxvJT)!I{ z3RnKa-fG9`Ip>_QV9|R8DATgZtoOQ$#YW8+!cxK3HT$`GC#Eydg~+j;b>C?I{CBbi z6Rviic`0)YTQt8%5510tnP!2hIRJ(Bz@3i)>#p6fzGcbQ^@7#o@0Zz_5wB=DWjdkn zIB`~$TF+`d!vX>)n6-10;0MZQtVR~KkL?VAmYtSQ`xoK&Ty#)uxVQFVwP zc<}l2ls}?^UaqRHvTD9Y#YTFA_+P*mtiGuZr82}~N$t6+u_7Hpqbvun>wcM3CO z2WoY$CsL(Jww|LqrnXZ0pvk~EMvmGefbBOcnbyCJg`DfJ4f|a5rIH-#n?Sq&>SE1| z{cqLRU~iHeH~PYEDIT+O)+lJ^z<~R4{%T&0i#Hx=5jLp z~s$AcqU^&CSzsQn$v&}d^cbfrQSK8TLPN!r8kOc-q zO{4RZOQf;*{8G8r3B@YcRuRq#evyVnZxLpe_WFE9;y26)nMf_%uv?f550ReR$MvO2 z+7XgOnnziK}P zx5%5x>Mf%c)B$!AV^cN?YL4K(1y62yaUk3{NCbv5LhpZEsLhd44P9gpN1o=mAzak< zZk5Y=n-P36%Lhw9U$4Kly? zm*sD|^o5)-lIQr>zM>iKNw~uLgD`NH$I*SzkH69tL3J-02lbT7OyiVRdV^le%tCxq z{b8?ascIJoY~5>vWx_Buggt8uE}DW0!#BuBOboZ+(3sj#$oH_;Ptc5cwk#^j_7!bQ^OOB%wMM|Ge3ClOuA(%Z`l~fn?#vJ0`#6c5 zO?`a;^)k{sDGvVK6L+{Y->d95oIot`cW`yR5*hRBE2M+KcVgQX8~Alv{4+4_*?T&F zSPDpYILd4obCFhw8^U=xP?}u2<5fbiYq*#9Nm?{Yp#kAfkX|A+Wa^%hjs3m6&QLNn zSUc#DT3ZUYIM(sFFJ>Bi6uRA&u+bA9_yDT5WF;J;8Tjpi1-ph}W-eL!DSfgHl zh>GCKTCU$*4o%mYXOKV{8}68k<@#xezno|=EqqgFN=+5>g=&24i*(A@_JHTnc{nrU zo5#&XL6f%C1;+i&xa%W_a>gzmEC|EG4)|qUKkD!Q`Pn zOB0_9%GNIN@YmPCcXSyx?Y0loy!*CsT zeMW%ZZ*G6vFEZ@?RbXe>&^21A0Pp!4Q@;FY|NOa6 zE8d&RBYX4Y=jd-pi`Vk!>DBh*Hw{_kA!sYel|t89n-fofl_>19u;DWo=Ajbxr4?zif2qtV(T^ajq3U1M zboK@kq=Rh*U(`5@CYk)Zf_hr(^a#>ZK+5DcRbGtQBt0-57J>9BPs&DfEhqk%>3)~+ zuwKFGdVbT725TS9r`Wf$=oQl(AAWlBcMe7id-=#WSUt8Hl98k2Udw>v;V!F=v&3&D z`jFXrwt6d>(2fd^dv(9dEPZL2DrR$h#56cgPS5763sx8Kcmq}lgw$txX2wK=+Q9d@ zhz3%)J|~CA!^0!vab;A>=XcfFzpI-!1b#xh+kXKm=NX+#wLW2WLfks{|{8CVwnf3)fiLuF;Qf?jH=7SdH%v zSv~a0aw)Ylv40wD=w*bqTOKkEU7#Hn5KVpfBsj~*%k@XZ6PqZbJ8Av6Vq?KKpr{?o zFjG0EP8Jq?S`q8Exu={@cq-h8lI!B&bFE2{l95Rrn_pbKGFsp;b)bt?KUA>3(kb@h zQY!wzyZf1h;X~=t67-sb$ZV{c)E%p`RhKZmt0^!ZzV03MOR0ScE1~x^9vKbyIX&ZV zJP1F~dT&mAM@aFI?g_iDuE}2bXu+xkl$mO0X9qD@P_|Kc#gdwZiWI-I*!|TZH8s_u zVv6!8x4?!`r)U50N#GF0cV)}&g;cW;3M|)hrjjp5Q z?UxZOV)SOOeWRsMUX^ps6ANwFo=Bv?hRWCFmKdI}YYbC3Lw4UIAE?O5b?I8TtMd{@Z(w~C8(SQ3i0`j^xLuF}6Tcm}N9`}I{-c*i#_N6O)ufAp~*jv!@731uPu)dUaeC&St zu9b84d;Tf3Z$q$+kHENG?+a{H{+AJU_0&g(gEC#knWTE~;G{z05--GoX`z*O5LKSE zI&`bIF0CwwRPw;%;DP@Y?)DF^w)~=hKdx0)7rbe}P#=RBsk(FCgG0U*)AtA*Rd21} zcp>`WWO5S6JJ3zI{zW?1;U_k-?#KJDe6G1?*?XC;A&W>89TCVM!JS^;;m3m>Mw9!_ zIbyS=kP+4LG!aMpDc$S|yt9c|WUzX{?-mYvW7Wc!X;kasS4;R=Sy>C3m3apcQmjH$ zN)t_}A)0U3HeY4tNd3qW$FxVdzKdNeS2?1PouPFeJU3;8C#w6?p!dwJ9Kq? zPTe35A2(zYun1&v(;LIR*~vfc7&GLrqP+<8Xf9fOFb(mBgPOVn}y^ z*aDvQDzRNuA=2t3X+@;0cWqWrm&?t~t=P0sXcC3~URzt+SY|VIFkf~2@LKduvea-( zyc+eD^~&zz*nLmwzfZoX@{W#*^j=B%CLR-knh1FET+SnPC%g;tboK4VJC5;s-LtHE zkx**ubNa5d@=eg3De=C6@4D#+Y{6HHU5oTPgc=BU|MQ*Cd5bJT(RIGfCIc}x>4e5U zPfbhfU#&M5Tyzwtc#B_LeByh${}R7ycJ4ViTb@ri-SmTOC3TD`X6^kZn;^SxsmS3w zjLRr*)64H_X>7p0R)Z>t?5MxZOYR1lD1EhSN_9bI-@&ZI6t)ch?ym zvM&+=u)Pi)^~;{~pKnp0Klo>~aGx^c$Y3&i=ZcA&ICJ_h1K}ey?S%tb37mD1)1l9izRj@x*g0?nBwnTFc-- zYkvDO!%hI`!vNFlT3=s(CF7}YZ(VDhh@?fC;<%33J<{v>KgZ{g;#V|(?>=(v2wP}H zRK@mMBFo{r4Br!6heaN!`nRc#t(Hw=FllK&i!%yVo5s)14jZW7ZY?c6^*zJm@^Q&PkpI9RL>90-(9D#(UU3m>WFR`;a0(S7u4L{ z*O_p5+auBUjn|@Nq65$iV=p9<1MG%K6bj__`H+`48(FWh z+RzApM52Y4x4>y{c*d#|w&9=wr=(`q77FLx06_~SRRs0owE)l$>c?L_3O6T|dN zf3mHwVs%=Yhfw#nP=Omv-Pd8({#OQS6=#b$FV}q>WXD42-4*%|kNVX_7$2<($WEN( zbkLdD%s9C6uJ-aUgh6WgD}Ipr^7A&51m&`9Q-8Q;f6`N3PNW6gvOxeJEa_~lEiEE1`jOEPr3G&ojSD#Y3>iW>=$L}^hPprC9j|l(-IYY*KUEsq4pwk9EN=nc3sAqSk{t>ggynSS9T)YJo+DupVMu~ zzo%T{sDI_~cEh#i=T=lsn%!MmBO}+2;DZTn)jSq!JJmS3+J|D<`b}hV4=!yWu{0LZ_F!Dz3A z@EbH;3Tz-O3PJ8{sx-~|&#b#%{ACK>i2Ac_bCmB4aVPN-X`Z^;O&S`r*f$j893iP?)D|_lW|DEOD_rv7ZBn)v3BNDo zrihFKl)uH|oMWYmI^f|^5I@3=i1m#P*ckyQOMP5dSLdTc;3BOSbuHA)iD9M+-ktpC z&EG4k!GS`dc1|`M%t|Zl?t?LaEiKjc7pwP+^@WCRsidxYYd@Ij-;2pn{6(;GVvHNl zDYZrC7PE!7eXro#7o!W%PNU0z{p4X8RYHco;feKvwmoUIowNksxqb; zwJ16|Uc9reX7@6driWJbMTNng3ev2^z|Zb9KGuqFm=djYbuUu*D8urP>Vn1PE*zbgk37|f&0|J2`R0S>S#~PQ+80Ctdeu*DteMX&h>s<@`Iq?Mfzc)~N zw}B$}aq) z{#!iU_QRL*601C^VT=|ns?V-ss;Q_>kJ`s}#rl6>HRnP!*U0{RM)V)vGaIHN_kZO~ za%@|c6y!f^FX^WkjoKID&#yskzHPnhgn5|4Af7DmAV05t9qrg_7ke|Edmy@^Sg82e zq(HYM>h&*I-fGbbX$GC6`)(AbJ}^D8@mZ`1E__jXE3WKJ#ba>%R_F!4dAZJ*m@*o^QK$ zO+$;UaKFOG&RCtrbzhGAq4zX49wB|b1QLEFDs)%DS+Qxx>4~MkT%~^&NgquAaK#)p zCkXslXEm$)f-!)k8uye{t?mDU{0SDDO|HjWs@mN>>M)fZq1v~|%zwPPJxC|%ur>j$ z%uYMKBjH(S6){LK8ru>mil~r^4}bHy&QiFXyK1*{@$u$Y9T)c17ObX?*WI_Lc7J>Y z+#mO%&{z+C!*0>B4YiYg7R8Nm#LDlSRoNi3>_6^S#Un9Q9oZg2nB&Q94V#vK=SFu1 zF{V=uV-@A>sZ}3+(EpyGlXf(x$}jmkOwo@vjaGN9ebqt7E7%1UNenMzR4ifERz8}y zD|o22>l5!n+S|=fJp08NSC~3UOEs%}P|Gr?!ukro*qy)#tIyP1qdw-&3-~OD@IjB$ zg`tcbtBbk$-d}~%qlZRYvpzY;!OJ9;HR@STOE&3NzSL*0SL6GP#)v1JmK)%wuut9U zW!UU4eNF1{@Hgr&A9xVxWjuw9`d1~D&$Bz`IG##&%$8t_#yD8lt6_=RRc{@pM%OVd zPe?x4XX|EH^IA(@@A(u0xEeGC7Rkn_115x#=}*racpdF8Pl;IOx|q26a&zcWR|U#) zmkv4^a4;{S63_UVSN|n!P45H{**Gw;LV5X`fQPdSXzq5Mv@gkBc$)S~oTv*zXXJybadaOw*?*}&Ns}d8Sln@9~jEYm` zR>wN^<|5&fIhSQ4^M4hS?f1GHTAOUXKFRbBISLA&n#@1uUm|-{L$>|Apnqv1Befy2 zfF0|DLUk20|62p}7IY?yCu{`^o)DVf28K^veNY?lqF?On?VgViIKjjJ$up)roqRj< zOVfOa0Lh-Kg9kr?NAF;?K++4a>nYgs{{07{P|g!_j%>1ep2T1Qy^lr^;lf};I}k<{h7_N`u+allXC#bbwCd)9d*7fdxjo~ruqCW za^xM?>b~cLdW_$>iK(fnl2T@Y4fv;{TIL*`QYHi5)`qqz==~f?ud|za#1iVg`$PaG z7_VkfIL3g01+LQjWJj1SB!SB^ouY=}!Nqau`H-#N}rPu^JFiF+FQEpib7WejbnA9kPcto!I(^uI{^ z?s%&Izwd0aQbM){DYD5p=NL(4C6rB$eVmk)Ju79Gz4y-Mh#Zu!WA9By*^Xl#M;zmR z`~I%`zw5g0KkmPbhX?0#yvOVHTrYqUexFf>78N^egL+Y9Oy`iU)bvh_ZsBI7WTYL> zp=COxY?pow(5oVjC*T>t9}D(`DJY~OlkiEV<4R^I$t-Azsr-@vw!IEXi~JrH&~@`> zKd~txBm|TvxC5euQ=Y}%u#5EFu(;<#*toe3sJ=eMQa$U93SUuJd?(VT8mu_r$6cu` zq(e#PgUs3Ar>B03JQ@O^uA@z4c_+_j8kU8b!-H)?7)PZ zyt~N8aGe55I*gxs*3W;SF5sBBMWRGb^+LDs`a#e??q%$HHVnQ;;YChHo{!pp<2YRS zYrv7m71JRT*cEh%E?pvhH=os@k6!C~cto#!A*urNjr&+sHH4JZ4($q+CH4gsj8m$+ zRt6>u9^9Rn$|I3Mzj7cY75|Cc)?fR%{%v9B(UnWijJGG1BG>ie0|G3rTvC8qS`ag_ zX@s`b$ibg_nXMY`Pg@8RL)7x*R??m4hnmU=IJ@0U8H294bB)$}BZCr7I0i40%HOn- z(+L(QymkS9L7rF38vPc;QH|zXNmoRapqgL?sqQ!xnYs;9#0HJ10!x2!(C&@!HYfvip5>vH)S|F1wcW0JY4~a zVQj$m_V#PDVHEPb8~>{r93`X^e~UFAk&OzfWySLjMQX;#O|a+rIe6Vp3R)9G}da39a!|BruHzSJsAqD zb<4=eSOPsSmRC&aL})Aex~W920RA<_EhOlbyKy+-RNbxxGw0gK;Yf~K{2zVPC7-N_ zNs+t+;NxmXmt7oV&m7>#yWprXY5U|hxgjf;X)1NaN7kD9`p(|o@|mB(nQ9P*mx<3T zYb^86X@#R1*4$$sxe9L_5W`eVYvGgAxSnOToqGtiiog2$`YSi9nb+(1((BwA)D@q4 z!6gH~s0@qs*;I!Gk1&^vhVp}Fq>14ks@=bQX(AAk^JXM+lc)NvVb53lGVt^ArZn9SrTy*-Aei5; z1E>yFbu^wRRw!gv{tzTYu$F*uqF;4gey$%{j%Q3}3h)UWYMx$R>^GU0ERWs>|1abN zIo)*{RPjpHab{)JjMF*X;fvSK?vMl{KVa_om;GKhv2 zHGOM7&M?pW`?{Dd8p*y%NB12;{SzVXBcCw?F2|9&lbVafp1G0BbSR&oF;~@nXNC~6 zW1la6@$G%>er0Crd7{?>SD#{8Cg;{0;=xVoi!E>+C@64EcZY_T4@?Z$LMH|E_9aa1 z{2foas)SzBP!j6zZn^Zk&rPfdpHWv-NvR$Q%A7PZ-?a`}jr85*^u0GoB)>vzlv`NC zUn$(!%jND}OAhbVg(+d63oE|RUgf1nN3yQkj9ImWC(OCZq0XY3l(Smn!PY=b}{Ia!Q<1HU~DYO^1rU2x_2W;x;I zKGXS{EQ$QXpI@dQ)8SJmk>{0xg)$7lhu#$YDzllxwu5*T{^~4 zw`{x9A7pzVvv46ML(6W(!ZW6#AYs-QSio3?|M*#=DXpH_?E}&7XXX^ z&p7XMzy)DaDpdE;+;ZgT>epED>VCAua4aU){qu&JJ7*5XKiJ~Ei3#TgKElRe%#~t! z9U98qlu@YOc{gG4_+o$h&|k=c`{Dhd>*LRo-wA{??%c+!(jHx@Fl&Y9Au(KK%j9&8ncr9+ zJxb%yE752tjFFQQoxHd%hI%VXt_9L;MNv){#FlFnlvBlRv~UaZhq)CHDO^R z53ZF_M8$A>A}EOAh$Bc-ar^IkikkMnx7A*FV5D3~kz5lvckGy+=I>F(I-EwlxZ#PK zy5csS)$_U``H$*kuQbwgZb~zy2Ur|-ja8{FRBx|}qSdTXZdHZ@kF69)_)1F&Iu<_J zksQiZbi z?(&~aOqDdDXsGRe88wge>5%h;+qIas=b*H;gmrN#6c1g3W#LWiL%#MckGE8vgF2(~ z?Ez=@;{i8^9sGx|4V9?`$#1YfvrX+=DHRNqg<}|HofVP7DA-2~w&6olQXZcO2}viJ z$fW{>5=7=g6(YMa*r8UunY6S-t=iGlC8!nd9pu3>b53u}&UT%gpratH6#rKX@X;sj z02mDxL1Ncy+}zpe+e2Vwpp-oM54<(f$6c*IBlt-CDY~ zi_=v*v}x;P5t{E7czw>eayQ*FP*H2nlLC)7ZxAH*}ST#JlxeWf$#~K@3osc9+)3<5=FJMP?^w?V0fu|}VoTUEZT?UG;%T$>{oZmiEh+ z8WWl2?vIik)ugrkN>q5-RCQo*0!it;=P+5Y{fBwgD~_+>gV0NPoIqRcl}pjTE?w)Q z%D<~1&rtd~-9KM49}#YM;gXsDm`qnyxYZmImU z8k&lVh@Xq33u-Lt7Ay5@lL4$EO4~m6@;uUvdFBWzPX(C|w}1T4#e?E}??>`?|5Zu+ zcORS{-sJtCR2AUoJtY1gwTVuyf2x)MKyZc*PUe3C*1KT%(pe{gu3^>fnKw?m~zh+ap(Hb0fbW>{5rRpw&MZLYo=b<9kT)3 zXf*F^PIM`VrDgKo#(DHP;j^Z*UG$4r{MD^4)SvxYOl2oaXBAIYL}OiV?^ zPf*jPpic`UocM`Y8>VL%#xETo5lsA=mQZV`6dEf+eF4qOX=Hrt4-y{uW~! z!s^$(uAi|5Por4RS#?gb94762f98!nSMz6b@I8QU1ln~C0Y!m(^KJ-Q z?eGzxalnyjD4PIyb;b51La*yZvW3bjA(6$p-RRMn;_}&xHwBVRo*s5i4f`cBr1!5p zV{V(5@#P-wMn&{4O&x!MPOB8}C2bsRT8|gtJMBy!*nQtk!I@9H!SL+fX);a^$>Pmo z^My>s*fV-{Vj<*`1A?s4?yE zX5{zvF2PgI1s<&N`q8A+z{!rIFl{$$2lxJRsdIYoaF@$sbs^4teBYu6AQxWfCc77B zfE5mtW|m=#X=nNPLcz#}kj6^;)OZgx?w}}#YR?@+%Z&QfdY7N%@8Jm)zmvT{c4!gS zh(J8CptEm$umX}^!p967`#0}S3vlr`s9{IkW&)xvWq4N#;s99&l#%(n+ADF&C-jH{ zzQe6H@y|Z`r#yQQNTK-`go`i>ZBg;MLdL(yi?Y0H-E`-xI*uCbKD;TuOH&#pc)XuJ z0I97^%)WhZ!)3WSYEWQLm^F+7t(GMj=uwR{wtIWv%V>RXon!E7*tNS6#*lY*s%s?s zXkd-=dgMzTx8krh2^oYc%qmL`qj0L;a|f?+Ps7dsSy|F!ENZOvMQl)(mUJ1gd{=7X zU!U#*>t=>++#C3{9-EHu;_;Gyd(-m@H31J??L&isqt_m9YYfjV}8C7pG#cs&o<+`zl#i##UjVZw%Wdt6n z`s86#PCr3F z#E7*><07n=Voa9`$_Y7qSdtNUq$Y>Tx3~M%6Q&z^sB#Cv7PXXK3RwKWS74owG=X+< z9k$Piq#KDe#@(WgAZwx&B_To9n2MqT;6Lu7vO2!0Zj zoQHy+(!s*<~gm&vQmA+}>j7vR!!1{Zp-(?60x|J?Y1SkFo&Bl$c|HFzy*s;S*a zIIOajKP4c5p&vpeYkLoVdP%)W6*b|7j>oxs$6v$lv+qvtc;u3Z$3FdlL0*AhW&dbP zL;X<;+t9TA+n~jiF*!-o^5s(M6uqt$PK~PUsw|Clk-63HK|cA$3TW_Dggf0Mm?srY zyoeAi&$oiCLo6+Y5+k{TAw-zPuM*7wVmm!O9Y!d_f`}9|PHIp&tiRynl4JRX@)KTw z<-mUv91GbcgZgnZT#&nJLPs}6oBE2>@rg4Pq8GhcvCS_*$9|LDT+ zIjJT`r<30Ll3o3XsmVXR9BKb$^0bG?@=YSB@LA@n_OzyT*&nX3h5}&`P=(n&i@9$w z^vSIJsCOvmXlwScH_>;cP0=7+$1VHc%Q45__{1UPl!Zm&a$iC&oOm&Zv36pYlZgrxT3d=-e#LyWA@t9!*d1} zM^XwRUk=7n+h05}AEO@Ttr=pX^@>8{x(Mw}FWbHZ8_cCMC2o?@N*4|%cMCk)jJTFv z9>>T-gP@BjT`~s2;s$j%q51U4cFOto&GEVXRU68vd|@GfQNN@+Dd zo$sTAFZ4h5yNlC)(*nC3&H~MLB99W7&AyAluOKj~)z8DZuQ5)vq)(aGf9jQ8;KsHN zt5DxL!+e3@Wu&3nER}wa(+7B8=S=tmNik_cr7!!!`-5F;XEDr+qI4xMRWf%WJ6qqZ z;Wf!^ZH!%NgnURj20syN@V<86Fgj&F3u`;xWhNi@u#7%UW{-6U%ZAiQ3yFK2PJd$7 z)Whr{O=EQBgNgsgTlo=#rAXUHhuB(dD<*+kZ;h2{AWJ-K)YGM|%DouoCcGGaCiNJf zZvOc$D+Cgo!YSFdob>0eXiCU_7K(jHMGzT&sA;#sZJvk4vv_rns;pkyc%M_`E=QXE z9&rhUs z;qoCt-;szpT$A*{nl4T&$;9-^R*CNa*g%huXzC*41$}OckC=B9*fgZ>Z>?qi+KD(c zg5%(*n{qcQ&As(9a}Q#nx)rQ@6DETSjjYs-|0w0A4Bw}ge>+5OgqX8ercgJia@ohU zI4+FOBg=&;{};sX(f?j^Q~f`*%nRAP?@A@Iw%1>Xd+aN2NFbYa9jx9HcD;ux$)rPdTN8~+BafT zNOPXsYH0TTvxJ~p@7=ylW23sk$dplSORU41r*sM^i7Wcj$9zjm!!+^|T;%NZX^eQt=2JE>UP`<&Jh7K(bTf`t5nrg}Q$Gmp{K* z(wSU#wIoYEr8gJb&?!Zt+os7dvnb)%?_0AE@eF;!x-XrF~? z#1r`8{g!(m(&4p9fkbOHigQoeT@4%jfz7d zsR)0Wq4lU&mQoQqrN2xv1kfQbzcyu;mD>s|k39F$EPYH~nv-}W1a~*SSM#cNw)$T! z?vI8jaJue3yO$;gwSRJAbid2m{2kCHh_S!Ec`-JLr9SvXU!Ew~qn^iGBpf z(aNJN4cJnTts~tXo@j13-ttg&OATDf?k%t<2$U&yC0|M@p*s&006%`|W2T`BM^9E3 zaGwe?66t_tUV*<>)dex`Ft^IRB*j7Y(s|pPsB%Z7)TFwm*Y3ih|C*C5DzUEa>%;pC zA_$&}368LFPrTiU0B)L)b#fi5OyDd=_OE^(yn+}ej2u`saIHnvF!JBkMSpesCM=yo zU$e)?V+e~sG@LVr74_7(7z?q0o3kG=g({WQB(q+P_1eA2+@F+vC2<+UxsPLSs-N$!~+|Qj#FLshni2wrdPWSKVZ(4|v zX-{l*bfXR=e_{MYxhA?#BCY=bg?sR!Dx^)d(M@}yMz&wsg1}eZJ5;TY=Gp&^qs=LZ zEl8plxV|FBYyRQzG0Mqx8M$zcAj8$17BzZs`?7nCUrmPOhNY)VZqIHd}kr2sT3|N72r)z^^q$yudk#p=9cqEIz|Q8P1(Mgk$NwZfK&*e(ezOR5j->7un4G=Bt5b7~|Hg(KPDmPi@3as3HClR(4 zicgMnX3hf#?^rjIEk(t-+6Xc;<&%yN(*$ig5G^CK@LU_4Pr2^14TshC2LA|5eo+3HHYslWsE>j@O+TgbcWKPpjZBL+Bm-bnUhv zfkAoK6F;!QDr;-K?&IX+#0rLKlmfuAxXpx7Iu>F`A$J$I3e}6sXD~G#681?8f6d@1!;F{xPtaaycy{ ziA!*I62`4@Vi;7AJhCn?wHgZUK2^NORX{JfMCsW0##pwriR??(s;K5WY*ukG0L+#Z z`et4U07*CR@XB62*a%2lC;uV$ef5o6pf53uAAzd+8c*w;=+J5wS{z{rr6`qk9xqhG zN{RnXy}IoA$U2@ix3y+L=PP9sS!@VaCOPSpN4UwZ+gb0{teL)sTyg@!yYDj$LrmF$ zOOejqUsu#rS+(%`eg}Y08=@wEy3-H%A-)5W$^%t~-II{Ar)aa&+stfA=)P5R zWxe5p=i{!G0i;Kj!vfCHy(P%Cp z3iSRF7MgE=Z}B~A6n^<+&~BO_H2u`O!F~2+cdYCLyO`!4`zejKr7)sjnw^OG^xwY+QIi?EBo=1H)S?ugzjfKBvur+S=UjP}L6v z@hb5&pB~*^q=hIxn@#Os8NlfAbay3#%G=}G;*Eggmq_iEMXm`6^T=B|2J9BQ5nLKZ zGl{6_n>WTn)<6EbA34+%X?!J{i4g{aookUTwBLSDI~QuR{rLU*euin$R=XuvIELx0 zqFRF1M%#XlT3^2t=ps$D3PQRD0e)*3q%LutUvgrP{P!g?~x_|C8b2 zD>eR?=Da%>#wni|bw=!axmb9IO*P&pGt%|8S>Iu*;$Z_0(Dzz;rXQ`Mr+D3+Qu04H zlodHXz0Fwqyd(^Pr(;x^_tf3b zn#Y6n`Pf|4)D&mv!Z53_5_C;#ePenjE11XTYs9rTaH>y^ zWQ`WHmX!fX5%uPZ7JVO~A_Chzi4Q2GvneR8pWwQUlX7r%F(4k)U@L2Klflf^18|OzGQyd`YryU!16mY^RNM;Q5+{ z`yA&KpD`p>LC*P5zFupUhsKVZXEen0hKOR{SR@y@!9pZgk9VN5h+TBpICtN=#02Xl zNu3X}NpQ-l$RFy8mcA>T&x*++=#&V{hsJ3!Tb;%lZ?R7Gf$aGRHs5>(813?s!rP5H zvB~ZYz9^^;(Te!J=FZAHG{gNR(txM!e^&GRHVMdF>c?@bod>U zdw@lI$KQ{)eu{qwW|QjS3qGNG%~Q7dB%0G(iCgyVo=D!wJK`F*Ira<{#x$cu?JzZoxDKWcp4w*+?A61-bs(*s6(2efQZ_$Ugha ziuv_xxLWKBz73<5qwlldV5IE+a3_~MKMHx*m#9SBm3&}&o=6Rn7Vr5bf?j!a= zQ0xg##`H>BMnoWx(@egq+ihip(H(hsdcI+tbkkrrSE8Bucv^NyLC)Wf`ynV7{)|X6 z7+U8fOI+(rH8JfN8&@w>RBRAE3DpJdpNLtc<}@oU`Uc)fx4`C{rVeYd$IBSGc)Mt_e&!2c2fCsE@mu* zV{$^V3&avk`ZyV3v8SopR%>F0p|AEX_lszhDR z5>+~y<)7mPEA;((hCf4ljTg?6muSKf&np_D;2!FwY~`4QvGvM@%Gyl)S-}YLrPQCf zoOC{8SSeTTN#&G?QH)ewdL|(b<-Om_c5?Dr^kIlD#_4dSR`PUAYR`c=qBD4Wu$Wc9xUr<0?fo1^Rab{K_3~do~G6gp{slm^xnDt zNsX0mj0Iy8jg*X$YnZz5&YY{=tb2z(&mxWlz2$0OS-ldrtyL20UH|p;M8c*#)MSiP zpIga|z!KJ$E7wKcBTXptr_CQrO@9XaGTD z$WO86AxB9x{0Y9WLfJwPk~8L5gESHtEUO=TTqE_OmZ42Ip+G%V8*0=^?>djTh8ulWsEgEqn2g-&PLpu=Ddu>*ZrUgg%RcqI4HzCz< zo#Ua%Lt*jlQVXo*l1pT`V)N3(Rqj&JnZU7#wm%Ax_l_~=9=2p&&%&ChYa91j`q=tEzw4N zJEw)vhI!w3e?kvhW{^W@ET2DTx0 z$;ZCwtOE~I22r^BaxoPkn5|NZ47B|xYv)`G3G|*+ur-AtB1A=eMU;v{*JZQ+jZjK{ z;FBt(F?hHEPdE`y_VEt0p@n^y50qWV07rxU6>x1~{NQycTmILaw-)dH;Np}!+CcpG z_b)YBjo=L6fUFG}!V^IOKsMI(!fgA_3CFGBRnBY9sfCrb@K0*86-tk%4-S@joHpS< zM48NguW!K*5ZA-rv$82ZOm#!Kq({tOQ?akojMPa8l4Tqdz1RH=WPWb=1JOe`cbd$f z8{eCSI$sI#M(=Utkj;n?=`@ooa0SC_oR0>ZlTt0jLx_`Rdanx4f0C%iacLJzDa<=;X_^u^;YlRuZDK z9eOzT{JAGK%O{TeTlM1lzb@O|Y||J=N6Y>-{Jw>C^Ju7+L+; zT{q}Yx|!zE*HhRRf#gKdW%WC*o6-!H?FHT)0K`^u%gW=3o0DUVpb+y)J?csIz4|)@ zmClItWNxc$^k_?TN;PXYgIb6u?>q!%LSW%~^&O3lo1Qkl4|Q!RmrT2YuyRLrF)n80 z?1M>4$@#LwT65>7Ub=RW*9h#mKWwY!{qHzQu>^g23zk`9*v9O^hsbWIxu@~?ms@Yv zoOEMuZ8RpDJQxr4sWmp>6yXZPJjB)BVKr2KRAy!^O`BZ@gn~OeZ!$wb8w0l39=8Xg zwEw}bLA%orhEKw5rS`i4wfk=Ly0R$XQ&|k?cwy84d^9!KiKjm^RR1M^$gQcWxXPKL zbie zSlOhqtsRe8Fc78{s>hhGh&}tPSV^wh#dEt;8f|ltr|1MmNvIO_T6;oNb^pc8t!e)J zQP!vQC#_!Y!K-1nyu74UyUyUJ98Y`(_iio<Nkg4y`Qmh~`VPUffyvqb5yNiaM$WYvP?cEZCD(GoVoe>jl z3o28IWVoUrRFNp25&0cB|1jQ9K9W%QDZm*6#Y!(;Ljy19>TywpRS?UMJ7HoA``*_O zvr45>nJ)BF)6J@2lRwoU=eeJ!OkcYa{)4Qcojcpxx2pBVO*+*NS`8P?7ELn0TGK0M zHkFdBP+(ma)2MJV2LS?TTe==m?wsF<0MKfE%e&^qomPE8w~swyAJ++E4zCWx7WG>b zv%z-xN1fL*iu~P@GtHXL98@!_A))ioHT6h{<#rFnG^>p^FPU$p!K1kY(fO3!W?StF zNE0UTQViph1G9m@daJC1pAs4$YglWdtI_jtKe#Z=x##)NERUTyJNzTGy@p{5Y8jE#B0+16UD zpv7q?vwZBK`1w9>dK___0%Y-Ai}(^JL03lCUOlQTDR6a(wzvM~C4y01Za;RJfVyUW z@}=}7?S2WvF#?D5JvF}k3`W|sTtQXfxCwW^7ZeA9ODD+?Dw_(pqt}f*B-2knF!bV$ z$VGk&?7smc4>YO})6WS+2;FOOxvFD{_|=fHt2^%_m6k#x18-SsK5kMGyTXFE4ctcv z@MgZr+~3Au3bGZ+bAH_;^5D3Q!Ch#}-h^@gM+<@W7H`F0mK5zHj7@0v?en(%_`v;p z91wAQD?=I!h6YW|$?jRv$UmXg7|Y4@NDj!P@mft%)oD4bs5D5);KFBUnFH0vY1(Bn zAK|Za@z?W6xV+17PFp-gII7bEgMM@iC22~2U3Py%Opi&2f zH@ASg+>;E%4@dhNm{8MF=S_~cz42X)wA;w)F36XfrWgwXQNaY4g+6wnbTDv2O5;W)6HAw5Us!flY zaL=E9=KJ;N+M(r!I_K*9XrR4})V(ZTQXC{A0Q@*%3GT588-JJg>H(+Xar?W;y)3gK za&oTz->+Xcn}srHl`ruKa%G-W`B4z%KAUx0CIKMCXBE7IxmW*jnVpF4jWCm|0GgB) zI~-=?HS<{=4fU#Ao?Cpt{GkPW!1G2@*X2t>QGF|a5w=f;<3HF`C;gh8{b{>?w9XFR z5f#%CxQ8~hA)WQ=|LjDYZx(vZ-cB_Sk=S>hn^1B}*Yb6_Ez><FndC>$O{t=$MV7HEVvV4ap-<`VaD!r4sU*kgTDd^{2NZ? zs+;!}PLqztlF}Gc=JcS|Cs7d#rEDp4JWRUPB?TQOIM{)3Dxy1^GnunhuRdCyfgn9N zQm5i7WakJMAH8l1{pwVn272?4zdX@ub12_pZjSF%wGzqS_#0)`YSOF?3&uS=3|kMz zRO&qv`XPWp>&mJtL-Cy8JUqJprd@Fzd~D61JTV zKcx=u_0$m2tX+6Y9BC?0*n{9N?E=7cYpJ{9&0O&dR+~9}jJhJr$q#7)(>yeB4fF1VY=?pJ2`8y8zhr zW@BhluMIv-^@y_4lFjf~QP;Vaf60Up@zTf-T zYTa-wRtz!ss6T(D`AL-|Gg|4rtF!&f$moWXap1Yxx;vivIwbUSzD;p4~vC zgBX7G$`nv}S#DH6e#9&G-r{Ps-+DKpJY#1YN)m-Z!b&?uM?HMCMUOOKPC!}tt3N+W zJJ}UMqgamuVWKC;FO{e%hL`U#7%8lTf` z(T#iEu#&!s59iy8Nd>ZDX`8JpsMVzSzFLB4_T!VUW7g%`7j%BtslmMc;25*fsON7uq5ZX_sfuWz9|uAdI=s-_c%1L%c$eiv32>Hv zG3q#l%Y8nS)+MxN3y$sy!};&PDu&EU&cjZ5Rwaa}qRwnDCE- z(bTG31Ym~N0Zx$+lIC-OW9tB~yCa*SR9^f9B(%Zk%Z4v2jqx}nKLkcI3qjHn`6Ngo z?$KtJ8!$sMgtWGitb;dj=@R%fb7qgRRI`uar7F3f@*%r>`j{~a1h7_?RgXbY;+Q>a z=MCEv?_&A{tbCY-Z<$YqL{kmdt!;xs4dskNn~3oIPb zC_RQLvb!vBm8PlQ-iTu`#4gyt;$Htrem(A{Fu6PCoDQG z^f;_asQg)LIK&P@ITft}__dtsOe*g|vtDXjv@% zYIo(SQn?h3#`L)ZHOIb}?>(2CH@5j91BM;W^|^U;L%UP|L5(LM>=KGiQx3I3w;J@h zrzFT-p>2y%Q@pD^lEMYKh<~1V832(Xpn5vhFbdRJl7?$;85#>$;_ywg33z! zIUy20fy9-;eO79p%&PYa$3ko}N1*;zhdnT%oI7IbXUSP^4Us8jSVAr{y4 zt*T~pha0)0eOcrjA!%CYeH~>J`&}Wnmn$Dy=xk1e$1gnW-yTc3#hclj^y2{Xh4I1h z12O5bRB0R;p9~2=KFx;S#ntO_a(zA~I|BR-qnKMb;dI}N9>K~T)gCr4q7F#bzPSGI z&5i2(iTh??%1qsOHe%xU=K~Xtd8^vgW|_aQE1&;fC=?PLnFe96cy_H{`VD;PtgNRQjL_W1%P&xsL(ox!yAu*FmlqW>sBj@e0vDG>K+wygR_XAocED2u6D8wi z4(re1L`9Bg6PzFafg# zJD{%ieI}9;AqN`LMS;ukiwFJ)&EBgbl<+GUr(0K^ z9lTptjaP^r`m!R!D|(blx|K(vJ(lfqo4jA`VPWyQh6=F70uEsbxFBDr9mPE|%Q;+y zt{Q-3l~UFIKR(HYonJC>U0 z!*B8Cj(dg>d-9c$J#}>hiInnN-4SoZp~`-@_r~{Mn_lq*9`r+v_Mlt5cGvF=Yd^6C z<~|p45fUZq%B34Al0QA#_VQx+aa+mnauDF|0DXMSXyUP=$Z)R9=)N`3Zu7sS(Utvs zs?+q}DVF~$@8GQe{}t)>|A*E-{Co=1YZg5ep3EIsP7|A&?Z%t63x?;7J`AssmupW? zvNhUrN2vkj^JX=UQy7%J;3%4U<)6~OBA(H2U1^YdHg+luj%Ywh%AxR}yGSMeD;Laj zHGTUA2%(?FFJ+o$e9GL@ZkNsIr$PjcDQ}H?4}2RYf^f4FFw|u>#EvQummm{=5VT7( z6;+14huJb6M+q-p$#cQ~!h3Bs;LWEG4CFal0i|4q z?34SX(N)zqVmuFTTyIJ}oxRT;#p=`gchyzy{72z^aeK4ud>%elZmFXMYZ6S)Ok>R$I41O6TNV0On_l zqdmD5kC(TUD%6i0T(>pnzEks>gL5}~>OR8)4O5c{ykGMykaq9)Fyqv zE=eoM>-<;q%isz^nd1Q|`)`Oz?`oM)H!TlPwgGzkX}efbuxr9PCqlm3H}wxsw)a=u zm&k}iAv?&1MEiLG4m`8SX@(6f3fb=$X}NyiP585r=GxqP9^NyZTNx*PI=@2`RA8(Z zQux)vuOASgOU|J7S}A{{uv%N5z)6oWS?zLQOyIO#Z2> zdp6l=_p5r#*>iGOmAZZ>|KP&V!PKiWn@Wj(fA6qaIiS)9*6nM{>kjUvbr{Fy=u|Zj z9OWAdsBJI=h<$q;z&Pi|dQeR`zfw6xqh9Ds{Vl~d1oD)*DAn|ik#|D069Dl$%Oj%I z8Q{o!?t%yZ?9}lw%(tP#r6UI(8hPn`Z8yyk2DO^-P1}=f@5XP7J09=6Vfsyr7&_!e zZ=?VivH?0?%JI_YcORXxPg{y9j~<$FIszBf$;nA(6nH{V`n)a$KA;K#g~NdKBCnxM zG-k8b36&4J=Z3NzDD2M`AdD(0*}Ii@IsgIz==j&Lu)Ss(1zClM3+bCL<$e-ckG5Uu zhRxkY@P-|caLL#%dewgoBfxi0jCAx{aw7Kp*C|WoZUSPWfpIjxwTJ)G;X2$GK$rs{ zE(-*N>G+Rft{8CAL%@M%c%G&8?O@E``pv~!Po#X9{FIoNt-x)q@Z%tm;@Mf$Z`sfM zRmid_yiR0o%d0nbBBg-nXwGh~IIcNpE$vry9C}n({N&u-`|4i<`Ci7E!hk7qy6aV) z{J{x$0jSR#iPNa}HN`99g^*evh3{y4c93n5<;&a5GWp_Tdg8AsoIC!jNAq09O2gdN z?^>{U|3ME`qT{0|Oa6|5*rP?xKHwO!2)tm!mfdFAN3L5;XwlnJgID}C&7y*BM2n}% z$SLact3G(oNy!y;mAYe+(}mrc^cDOeZ?X)n_#!uDl_C}P0Fs439JKECBkWRTd!#Sn z_HhyN?Vp~s2V!uy2p%8mPhpog)+=&|GAR)t%U)*%g)|1~15e-N{KF0WDo-$SAm~9I zsK1L!wbhyi--{BVPcz@4bB7+0u}LFUOy$57Ne)@_Z$k6d8nk(5!=SM7|FhXZ=8 zox|Gh3_@>6l@7^dkJo0a$lrlocdmyp)7J;d5t*iBH|(EsMkp~Re`Trzl|b`ctFIy) zZ*^(-h6ZEa-ber~DY2LK*$TPMq#HL5%{t=I_gK-Q3U<)Khg5rfi`q<-Pkt^jrrGYeq;^jvcl^ff zhyn%dBvn1hO`@?EeZ!_y$mK11`W|p4-p;3-Lwn{ni@^}&7kB^eP zA8iT3%YX;#7(cAdiUWGQ;^J)S7sVo=qxr!Ju~ULSKrOAg${mziJf`ComPnyJRG~Jj zGSbRMo%SAW+il+fIaVk>VtY`hNPJILO~%xU5FouZB|L4(-qZEi47SwL-wUI=atUui zI%x!YrAuItY63`9p+w9appS7*{v3@L0+&02&_dTp55KoB4CWb*M7G%Z+~JZ)QpnpX zqT<=2-{KwoBSk|^eFr-{FTER5fr+Sm~oVQFTO~ndC+aKV<>0Ve^ zXv=zb^yMiy>^04~&rQ|8azY~A(M(TCqdV%z$w4Y7)pI$R`%}5)z1)F!_!^P;?M4ta zDtBx|Lk)MnA18eK@Bz`HilWxoJN{78>^KM)g7fa7tUN)ajtvchN5Z+^1<4jGMAoqP zhytT?!PvPcmEkfq5K|w6f#TnNPLB;AG!2r=tpHi_0A`~>3&dPfeiC}3A|2R%y_P}< zd};Ru(a>&Yl8UB|yDI}c9~yKocgE^CQ?=e7mD@E7(NEu8uiW#~>SLJ!1~MecWFqU8qQdmi*=-wO!oODAi`o&B5{ zOdTuYO%sOea0rK|lite{O2sl|CX1X8bH^v8nLVrnrQ)sjSVBC(P4b5j-Fnay_`r9f zX<}{`Jx5!Qg)N<$$nA~&%^AC`R?rmx-28^i0K3NE`>m@U%07#=&8)N8Ay6ZkC_dYa zf_3(-bQ81$p{I^==E1D3FOzU}T_GC!%*&I}x3y(4u54|jNmsUG)3?`bY073xiHe89 ziWOZORpi_J;RV!7bNCcuq~?9=>B&g`|_-!x@|yzkUgzmR?>Si%2x2&Q1Y@>gZV;1ExzfO1Fe z$y|_R6Ub6(W~nC}j!dNZ4fbA_30$t-X^4tlaXfS0QbnOP30|5ef1(1!&f+^CI0?_) zVI7<>o0d`OllWZrxI8I4W8j+mn!PtA45B||WVK{JV*so6vWaFW0EA;*lJ zct`FDS3VsJG3)=+DG1TpPc!`D0BmKSM4o6n`lWN-zr~PFyTs%j1$j3*r_+;ut9)^j zagVn4Y%Ahm*ZZk)na|;kuPO{rQ@`|b4c6>_KAAF^J76`Buod~{b$rYD#K33M&5Z83 z8z&Jdq;<&DxW6+;#_+%C9k~DhDrk)AkKTVP9^lMkGnqIzQ9YqPNg2IWh5Pp&58fAZ z-@zJ=gTF53>l6jQ+ghJAlj$hJw)nUpxP!wxvJX zY|sJ*igK9}T}y;~{y=?|JI>qTL?}&L3!)$mEq7-kMvTrVEAHz!uj@8n4fl`DA3j+n z&dy|r8EH*_FO%OY=t~>*+HvSw8u56k;DmtW^@Fm#29;bESQcV>rL_Ko0~v?}0$t&7 zfb`eY)dnqq0Oi^zhhbyO*>KhDkTsL2_8YN}jY7K1K9x~Sg|u0|(fL2DeRnw3ef+)= z8Chiu5m8R|D0?Qm5*>S-tdL}ngOt6B$jC}4*)uY;Hz~(f_Lj}DelLBm@4wIYpPxUT z>$$p~hn&yn^Zwkg`@UcIT@w7u8H^3RU3n5MGcWU#nZ-WTM12QD1v!k~&LGIo=5Yh8h|9w6``FCYg~Xi z^JT^lI6}BFv@Y{v8~) z3h5&#J4w56Pq@`LXDAJrvP^!|)_4vZla*ce;PqcE%gKQq8uFEIu(k=RnwO4^471o5 z<{&%H7BP0DkI*;b?r+>ANS+@ZQ37868!DPNjgEbPR#>qbsZo3;FZB9iuS+g?(2QmI z!tljZQs5eD#X(ob1MOZq(+;U096_<=xhp^~olz8JT1tv%R@||%_ltivHZ~-+BpjOP zmg)pf?)F2*`lQ2mukYwK7X~bL7YSp8f(p}jly*$)3bj@VLZu#&cq0Mo#@k-%u_RpDFB=Qxj@o#k1f#>J&N8j zXVG@fX?ygIExE3PRZUFkejB&~(~iLu2(Cn~gT?Gr-Vt!~rTU)e`5dlRI2k~!+i(^p zCtoAo=}wWNgzvQ^YVD=mY{@K94b3CXh9i9*+ttYh{V>}_HpPtch~_k5V{xTNSJXFX zYT^@5){buq)|TI$jI+27AY>E}Nw^Il@ausFahXT^(@|&ktM{YuhAm@gqdux5FmVK^?zGCDSd#TOR z%*R~Q?(Sh*ghY752)DT9Xi%$6TSY?eyp{OH196!zQPj&j`e%;AtyADdfEc8p^Jd?S z^<`mY?M0W_^FYVWQ7&~#?#<4N`8or_bk8rh%SkmVn3lhdHG87P<{Pp>At9q3K8(G- zJ}13(HO8Mz_v$;>Z4Mp=$x+7X-n5D1}KMP7d{vAE-M&N&nAP7 zSHGSR96#S_FEctAnkev*^0d^8JDZl*VFdO*DcTpD;v5eWIMi&lFBlNY{wy&5{#HPT z*JDhrE(O^|N^qz^i%&mOf}^mAABu*Q6dUqP=?{bJb%+<0tdwgtJv1XGb-fHQ45B3A zRZo_0aef!VY{liijccAwJ}lWcBDbFjqIvO1jTc9MI3Yg*(&Q)~sb( z8a-{l_&#r$rp~X5*j6|x?RLYO5;^+3G#(nLLjrfxE53^I4kFFd)wg_Ca&yNVR17D}N z)g@IaFY>Yst0(M4iBSYGA(%b|#&9%bTw5!vK=5rYwiJS(g8jS_1CAf$ZV3tl5WVu1K0Hs&lqbENjAF? zHNREZ#PU;lZAh}FPCt*=92b5XzR}gq9h}(a6uqfMh;;Veg>1GM-@^*umq(3*o9I?E$CG3EJYVZ`pQ@9 z124TP$?ta*)=-GK#t>DgP&@V!FIJEHq~r0MRZPo=AJRX3X&Bv#Yr7#0021|zaLR=G zj{Z5WeGX>d$+5ySa>@;X%%^T=gec!gYD&r(;js7=Ql-z5E9l)!y(i1_U$kcc9-m@TKcx&jNGdn6+L%JYm1qJw*l62nc8pF|P2O zJUN;FTS)WI*DLal=ii#9Tj^U*O4cMcl8Q2DZN!zNlRD_o1rWzOzgBPaAg`nA(+mi< zTG1eOA4z*7a;@)HOG|572O$;0=@q#4g=gNX{NTX-8MH@mu9sT_qZmNG6hu`l%_Jq% zDzFKUg>3QG22l#bHmiN1z{&m0qnd-5!I#?Nm0k6PH~c4L=mH#Qp-%t zMn*{%vpJ z9Ug)dmSWrufn>jwgpw?jq{OT(9|_ZfEG~{nIRb2IlKcHqcUvO_KY_goOU!(0&x6=7k!m>Rt%CnuVPc=6fCECA}el2pG51*CV4IFRXSGJcp z6n#DNge!iMUYdKQ78rhYayD{eLxTl&atx?w~s?)64jDG)CQ^Qme2o&-+r3@I{i4m z?>pu!Hl{8tEu%z_RDB&`{MkMe#}DDa#_hM5)3>mpnmYE1Rg1;bm3R}giVGo~KgEy$ zx`)bqGJh^*)~@r_-uZC&r$#+&q(5;XY4me%>PeEhy7DZ?m9#R{;Vs&E1px!mx$BN6 zdxT+}!EJu?HSg}}O|r*}Wi2pWTdqEs$*qgLim_BVr2E518QeBZC(kF&Z*t8ZbGlbc z)H?DevZOubLP|m8ng#Y6#%jZkMoq@fPJ2=C{6MMmf5ac-$o}^p<^Ppk;&@+u%NeV$ z{mq8a-BI7cJXiNx4*tw9Yn9P5+KWp}zjRS9*>-vM1uQeRONh)e1#m1YG3QW&3G~U^ zVDCIRX!c9fQ~_ctZdR#V`(dN8t&zs(RWASKRVbKB>^|cdsm+^bd z6~NPNp)k*LSx9ZIb{=K*t^KT$y^Z>dHEqj#+5LoYS?JAs$~R&9JNgPkgBr|VCc9gb zPegSUNc!2ne2(k5@y1~%q|c`aTbL5AaVS?dw=K>wTA&xS27LZ#`2&c_xL`k;vNs0# zE2c+Nzsj|iQ#JDP7V>KHVy*VDW$5{(@6bR2(!6J6=PWo+|D~jciQDG9MAW5;Iv}tH z;y#%+!mPSiA0&k5#n!deV9esqYlnxI?sZ=)0N6enVGL_fn zp}yzcRZ;^h?Pc#QtW%Cu>)f&NmeSr3qfhQ+(MbG+Wb5OwCD&zCPF>?s={g9$?|T__0} zPI`A{En<_C!7lt&MAEO1I=(m?emgXF-6lYJ&wGwukL%2Yg!>ok!!F6tpKwMvl>^e9 zMlVsMJC=Ahety5VpgP}T_oYZ2Q!*UBMl*1TSbNf%e&m~1HBxCRKv%ZvJg!4Hy8MvW zYvUrR?)3Y`R|3qpMP+EWyluNJ4F-%GoSXlVSrWlzz^=pUSPWo_khVuP&Y%a>HyE`OJp=B$P)iCiK=m>pGyqwv zX9E3rPOP+t$HtJpl4fMzaM`1NigU%2Ktfs7*XpQqw+N&KY1;N|-%RZpI^)j3fqAyk z$<6Q{(v5Fo#&a^mwvsYDV%H+PFZYrwi^iwe>NBZMKVVEUFHdZHt_ZY4+Je%AT7H!*&PJY2Y+~nPrznpgbXQNbVRC%AsrxLjXWQ4{*8*HN)#xv2Q zT5{&!&Y#P7_SU|f{25)c!N%R6gLgl$C=g>Onh|RLFV*dZrcq8QwpNCV6Iqx>YfhOQ zB~q+siX#w3_ZaN2gUc?o0#U^B&NVfW47>$Y6YIDl-1qSS9JfnR_SZ@&b6PzuAkIRb zn8}AT*rHlg8S5?1%Un;*1TpOaM&yEGf$oI(U#4S4Nz^p;O@h*XRP)9r_O3!6q(nm{(f0OCgj~V> zPdE)Xeh_h%3+L4}SMLZ7OZsuBEC|JL2*l(whD*O`GV`>qG4A~JD;DGPFUC5Rz`7W* z)k0?6-&^X=SXa4Bn%${de&Mz#mSrzNmraXXws9oyN@`{+JuCVxOU`m4?cYMYSD(oj zkVxF_*DU6y)8sUnuP%<{8l5MLua&!!j_53bI1i3aL8p|bY{4`L;(mc?3&ZsZD^6T_ z&n`0SudBR#230M|SEn!SnUEsguGOWdI!|h^oMP|nY8%%eX_TR%#2xx<0Nn^h6cpEPXWC8M-1wKj!0n z4;d9jfT!rKuQl)xo>PcP8d#5`s2E)ZiNVX30Ns{yyL@Q$gAh;pc3k1U{6NcwyDw#Ngo|Nq%eU(kr zjW)P(Xj5`;t{tyY8zsDudVq$VTiUKC$g18C4!U<4KV%lk4e!ark**WVB_u+2Rj!p^ zG=Ivt*Ur(^$Otos6-xMm*6PHNY>%A9OaM9C;MO^ZpxKNI+|%*`pz!0eBiZjYua%{{_>~V;_V@@+k{jY!cRWk z);i@l3$Rw439{eXS$+hE&lYwc!f+uwHS*ep;l#^Pt(P3k$iJp^N9D!pn9fej8%xY) za)#ZJeYby;I?8k}Xy(|!pT;cgXh^~B=r@(^xL#5-9eXttHI?={$Cjn)r|9iAK1?9+ zQ84)zY48@#HV=#s5cAS#?98y^zbYqV@_d`blCch;gusv938D*T&!O&kZjp~_RP?1u z#%lWYlNF=^Beo&hEl#F$fsbPnIq50Q+AJeGAY97-s(FqJMLzLiJm{O$=4X@Q%$d3@0NYY%_do{+W%Z$!9R;TwB)yo zH7mnSWXNq%;K6+r`}~M$H4fPrS)Ww+JEK}H^M>P#kgBSRJ?>@*!`k8r^1c9RM)msM zd8hWRqo0vYZ*+7zawg>?OC{FSUdE$xeDu;TVDwBS!>l3&s*38ueWgi=p6KYzM#ypb zAR%0(;D*Z~InA}Nz6RAI)YX>gZ^u{KsZ=G49ZTw|NG$Iz(ueU+=ZPAHD`aqz1hVsa9HBcnq>)I3L{(wT)?3#PnqCqv;r`9|(0&{3``rK*6EXJ{ikj4@f7A=aD zPuweZ{`8A)gaKjT)0RRab?H!OkhXLtq)qL?;7wUmSHK59tricZkwY1zl!{;TEv4!4 zf)&d3?oQ|(5_}7%xq>7pVO&|pVJ{E2P;zCf5e$I8@m)WC;)l7u+-A3b?O|-Ky4~8| z6|FgXNR_VXHt^xKGU^-aH|xLd7UvDZdq#_|bmcNKPq*Qnf4otzvIRDd1Clj^5&y4TfIpmOhRdt zKxKW{-FKVE%G7T{hfEs!l&0b$5Z||`wC8LWH`P);A2Qzf!4PVLoPOW!Q~kTe+8Zn= zmL&ppe)Zc?Nx4cdZY&=zV+u-daer*wsUDhmHKkOKWDRRBy?IjP?wU)%JcWtce);>5 zob9bb8J5Mfd@adHs4O|}3#Uv1Szvr3udM9*?whjkA-o-Y0 zD_>6o`O88ZJqHqMi0x}W+te_#h@bZ5=@#`Al}O)Qjdb`lu5Vj?yLG~oXchlUBCCOl z*h90{h2Eu?H4(c)e{^R8YuU|?S+K%GnZGu*3+g^@-rpiln^eb%Dy(pj|J9`{l6k00 zcmtEYndQ<$aaeu$R-`P4#D&uAalp0mQI(5m?NvnS~9nBmXwdl1y8OP@^ zEHj7+A2Rr>9Vt_0cOCsIdDp46K04h!YcAs+E2_afZGASQmXP*z0a<3jWjIwZ?XiYo zLoi8F^HJ0k6|{<38uGU6KT|My(_cUO5gYMCSVOBiz$b!^v$pkbGh(~%qx?AwZXRcNu+K=mG>&KeDco&Z z{bk+P8}|nmk0Q**pm^@4xwFDv|i!Jc&@5x6hLfG=DKDjnkK` z?`wXuW$E?j_=~5k`0GT3ySKT@+qGpvF6q;cvj`6Inu*fU$|38sZy^h9!M!H^xe|%^ z$W5{yQ?3%-_UjjoR9(}>ySI`s7DLBA>#L-ZlBTIUr9Di)aBD%2>J<&x=(;TIHc_>n zlT)qr+Xh)m`GKlN7s24So9ZzUMKdJV$K}jCk|$C)_<*b4#CBzIxs^U%p+P6lyQ5e# z+3E&+w${o*$uwRacZ+wYH>?T!hplqs6$lFt_-h+o)`T`b7Ze3X z^O`=NN8OHK+^^1Fo6e9KD$$2t;`o@4(&EnlxkY=!G43h-JnLd$jK3_&t-N1|RBb)N52eo*+4 zp@r^-=n0XjcbDa$GXJX?kKpst&!ty9;_^+8%!l1CASK4nd!N&A1IrKqo611(yWfWG zBwMWxfWEHn3od!7xi}>jTC$I<83T=iT_wYqJ)$iV>_nLg;L3n=Ry$!jpO}OO zA#HwmLgjp3LX$N!bBAYtF)z|E;X_8&Inf>Qz>A@S_jS0V`?)(G0KxQ`&-(*iDw_+m zb-S&Ho92p0@LE=kdaT|hS`-y!y&RM_I$ACjCS=N*x8=z|d3T^zFJ&IYOD*O2E1Fc| zVlKHgAHr5BbKgfxV%zFPoXdE{`*Ah*V|9;umJZ7Zh|&-9w2q@f_ShP}OOJP&+wXTP z#aTRviy(YBp-`)wa^1EkX+OuZ21*aw(!>KVaKy?G_`A!*jt#Wd@v=#%Sg*{Vl zS&}~Im^l@cqV>#*^L1cw^Hh7aqWnGW30SmI*x^TDY=gm0y9wuSV*2Yc`eNPLrl@qhlpX(Q_zOF_Q z4VQ~QwdL$acvu~LL@pNO^iVn3-n^S=1=p+Hd64Br#~5j^wU3@ulyWZfeT( zhVIZR0h2j$NaiXdaUwgTq#N}3ob$JdJqWnl?17moz5sGBH^Z=eXi2WXQr9i zrgm@4LNRXpd_##m{+Dr8Y+-%kA)hIykKznV;i3vi|9{K9xen+ZjT4W{VF1HMMT~IiFS(`9cVf}vi z8T-j?XI&Z}FdiNq*`@rkq7kE3`a|>A+Jh!~)^4ou%b1nFXe+ghxiq3OCF?UpfDL%c zx)qi+9%SkkWm`0Ui<~vM#xlv+$EW|Oq~4${r3_CL)ykiVCPDZV&3Lp~T1=z7NRuMa zD$p8aQ+l=Q;%yhBPDs>uL+j`mZxS8zpClH)OCx9*SUXBTuh;j(Gp0J{M*G(L+F!;x zzf@@TlnB{bSsy#S_)b)V8JVws<%@G|-B6slcsf3H_N22VBej);GG4=iW;eL{T$x-3v z%7FP5%Ts3~henCOaEAoYNqR7cTOT3*kW0>_6=0nDHX}i0RUTwb{eY)Ywo!_`0L^G(r zW!ihx_Krb*w~x{{Xr#5rtc~@3PKL|(WZWu+W$J3X9D9%bu%Q89VLei`naD+h)!R)X-`&{R+`8r7=n05%eIz@zckS0p37+aJj&%F#dh>G<&&J{`3f# z9-yuYYGnAVFlQ<4?(S(PY+)~g)k}7U-)GnUT%WS9C1#@f&#w&`#v&Xx_W%5v`V~w- z^q=2_imD*c*YtdYK}w9^Zg{U+PaIR#Nwmj>WUrjwmnoi+77JZ8dv+;BRwWmXEqCmb zNgsD}IoFnW5&noT$rxH6l)@$!S-G67Y`x09Qp&obzvpQ?+4B3xR-nQWmAK67eztEt zj4!3t1{p8)XqsDTMcy9mBN*9GKgv6-o$?;R(XBIOSz32tulsFvTOjR_Va@qHF zO{tW))2ZcoGphw}Y*#>(-?k!!jVJrj4T5zQy;<)z_2_V_ zu!CFwWUVT4BFamlh}^YicRZ_agWA+i{V9iv`AAN|&h5$3C>Hs<>rZa;U(3H$?m#+d ztho_mOseLizL8}5Zc!T6GOF@3^KAcmc3_Ju*)4jdh?8$}p%ghqr6l;rM z5W6iU0bs+I7hLD7=*iUag86A_hhWjH7FqefB$S9hnGvBy@YxI-BoA%h7ou{ zE$AvkQb0V2l%xHd$#XfkvfN%G#21;A`FlV(RYoQ4E;b!^#(fJ z;7kLC6SEF9x7RT&ox@w5i2{#^9)4e-n?mMZl-qM^Xs<&P8#FJ!0kAJsau%VERScs~ zB1eMLXzKtf32&aK?D)xSVuTTX#`54=RWbqBO~#_jjj7!d^e@$7*z~O$hVDu5xBOW<5}cohDaAkG`{tH zVT`K{&}3Fv9)z``1rgY?v8s-&OR$swmL;M_SSJ!6V@1%2@Sw(v5m2|RzLx%{ywa1a zQxG!ke_rG1{1G$H&JG@?{QUgtT?kW#9g3fiqB$PU`A;D0s}O2WS^>xk9|j|!7b2?Ri=Na{ zMINh5Cr(YPFQT}I)=xx#>5?ALtr2*$XawoSsQ~Z9@*K@V2i0MK) z#^7HT<8A45&zEQ^M$9fPg?4;_?73RA=aifHTR(T-kan(-53}&DUL8z#sb$GN8I4YU z`c0=Pa$eKMmjZcmdxp5h|6>!q%*5(+jd#Mm@YaB`xHOvJRxx`_F2 z-U91!T==nPJ9~6nAU#3Y&Gl6l@}L1Bs%guOU}25fxw)2%j8#{)0_Z=8wir&3c@ck( zsqvwg{%DtOZcOtX#U?~<8A)R9QIi+V;|pNL8)-?tXvHv+(;fZ@RfJY3z`@n_dn2-)h&Tq&mzs*rcdKZKB}R z^a^LTYgUzS#z*X4sKvFPKGh2ct>)n5_!|b=kn1{qPv(6+eJ+}xdpfa*G4YK(v*KG} z%(Ng%qPiAB4L{l}MKD#e_3@jx>GC$~Yu~y0KYM>#*fWE`m!rV! zoYvOX&SqBWfdHL0)UexAX^$I{op|jx>EgCfW})e~2UUn0%+-(W#B4s{Hp&Z8MoWwo z`pGs6-OOfFx%fFJ^x6s})V{S)Nf;Cv94QyU_gA`qj{tOFiy?6Hyl3XAv}HJR`$B7& zh^krjvZCClDP5U?5rsV2+@>g+1)}~|19NWrg%hSFg{zOxE#aN}A};vxlY9s{o$k&D zi@z_)MNV^ddB6e8#n?Ov6V0-L;)3zItHcPvRJ~`=MAr_B(XABFEzezr;D4Ov-S+(8h4)KcbIdgXeSt@Hz&*k!`wBzv`%b8*--w4Xd?B|i_>Ttedr)(#SOBm9Y& zfB!@`vJ8kvbH4103U;@(=VV13ATc6jPbzz5nVk4rXc-rZ7B)(>&lLhCO@7*o zXQt2~u+92}g5ZO~s&499m3(c<%!MtU-wym9&`dqEw6xR|11|&cnbyDt5184cZI=%x z)Qx4uOvm8#1i!A>+P})u0gksietxp}eihe*dtuG4IL`?B)aV{)lhB*jn#`Jb-wOpQ1z>#zcfm}rS4io6N4h? z5@)!ybe@mink5+q@X^(3cjhCKJB`?ct%I?!N5MyTaiAtez{?A)ZqF+vN0rZ2iXeYn zL>C?dFo4eiuET+FU{21bUUSaJ^2LL*CQWiJP5jaq(-d0h*!fT;-WvNMs3{a6s+f|& zc!fR!BJJpslHrvmgDRteudxrIZ~>|q>9i)(a2_72=o&^x@O26v932Rim8GPnekON} zDF?~F<)Y#WGN_HzS1^saIB4-%rzqqfK9;HKE3e^Q=yy8OBOp=`kaJ^UtJ6Z=Rj#Jh zwpS$^a$He5pXKW;N#H1O2duf8peKv9z@R_6IvCUYTdzWP$K-U!IUP& zE!&_vyxY)#>lLb9;^>RrZnyP?Kdrg@2ahlD>NWd*<`eRog#ru&9kqe|@wt9X-SMi! zro-v3!#@+G6$Zw4@F*JN;u#|tr|0Wke^mp+27_(;w9?SGcc$1c4*$p8Kt=NZXZ*N> zko|87A=q8y!Cn+B)$>6*ZT6`j40ejl0{^loMhDU$wsvoX0mfGh-^k6c z)6je}_q7B8?z2C6a`&kp#AU+4Qa10wYlB4*!>bi+3*baG5=-rce6ag-PIZH*lHt3f zPda|o?DcA{Hzts{_Xuu`>VhcLq2PsF_`fF)#YAt!mJz0xfj4|^ zBn=%*Cy%n)t3p9AOf*M`SS|c|fIs3aCXUk#{t_4d%R*1Kb_TN!tS=xD)s8PLMc{UX zMM{t9{AK-|9P$3vot?7a;0iu~$smExH2iDc=01I>1GUcBpKkxEvL$^!Ehl#1cPVet zv}ClJ^+ytH_l_9(EFPv92Z0i2VZR;#h}kC5Q~2uCmcYPuc6kfNHC7(dtR6bs+;ykf z^tLFp=D^!Ex0Lyme5wPsUMPR5*!y>)b*qShS5&ALFPh`cKhw4s+V^lbV)NZ#$k#_v z1?ygwwY9r*_$j7`eZmoN(tT)vk1XGIU4KD&oaILa>=Rf?*8Jne9agW{x=1`ux3K+M zJXqDUY67$0-c6j_d9x!M?%U37@gBw_(n;Ow#)U22&L)Xj@Ofy~y-*fr&a&|=#s~v1 z6+5qV|88PdcG=S58BTK>Kilqy?b|b({RpH>Ly>gHBLH=PVl}5B(h<<4l!wT_l^Csw zUoOn07KSN)l2*@?hE-oDh5H&Z!iCcdpA_MzJyvfst{9(6R=wSYA%j-Nzg2K^0tCab-EnAZB;MPA71pJI8 zKJqVvM+b}#$_9W@HqSs0==ZLJz=8pXeLeKM7u`oTXB_$(xnJ`>3z7X0jRp#%GksN z+%UgBukP;Zo>>nfaC?82l8m>S+yC__BLAx=3`}ut;%uks51nBX~mG95A+{7OgnAypwRbUPSkT zvuM)&$qUsXjs}iwRGL-@*8`TqspCQoBi81r7|QkVeySCRak}LsxzUw4G76dah~!~~ zzcN=^OAr|X_Ec|x27)ciO{}}O_gl!D=Gos=qVq9`zHloIi@;F_$S>j)4sh7%E;YgM7P${i)kOs=sX?Ir zgYHLbKoJbCk341i(%CBcXq0B~*a*{K1NND46F-<&=H~7|NvL;KWIOr|tM@k4rF)=H z!3X}_*LS^nc~ep*;}3_*%-Wi!&*|}A$ueY|0a)xX0Zaq`8zQLjPcHh~c#3&0`}0jV zC)>mf%bRjQ{Y( zOW7Uw?Kv(L`Im$?i5+mUh~#IK>)+E{TfjSaj&OS)k?o_3i-)zsHMFD;swbfw+Lzzn zqbj`kjeRPw^X>O@RGNo?XVs}pQxpQXk>P(>>3ei>@koFCParr~B5!9jqwPIo-Kp)h zwH^b9TMS4TT;Vo%&@g>%L*NdZX5bA;WA>XOl)NM-(MQ3Nm=;kUSy_pfG|%o(UN{P` z)0_Hv<1)U9HDvsk;JvEKw|Tt}+xI8?(-a50t4U&(3+EyrKp|QcXo$$0Foi6SBvI@u zciODHkhsI46F&{sIJ58-y7aV{qd~u< z%i2td#QVTI+rlfo`o_)kyAx9!Y)ewxq9P`i4yY% zeF{(Uc6y11S`ZU|@+k&m7Y)MVT4}E=Sk(}s4$Ci&=*10&=lfT zf3iMD```P{QY0po-S|hA^lMVqZ8iTZ*P0fn_@u4twHUSi3Smas-5vba({VGc&mhWx zE6Fsfgzh|&ZAqE>ik}t1Jv+2GFE#biC*U@gVzDH8!m0JF32#>EJBncaYPx1lF?((Y6`GtHX6&{qcS zH$<^N&|%fNG$a-xr`u?)>4mtuPlv7h$TvJ;jnflRrKRbTU}Qt)0v^8ql8KecB=Kl#Zya+ATvh>!U#z9{T}N(bMAW$ms$73=T_?PnyNh7 z!@kx&*YN4ZZ_MkfHU!Ueiz@5%R`dH&oCbmKH3zd|-m~GGElotZe9bPeSHPZGSRvurX8&zEby zF?cVaBbrW|l(dD=GW%8|8w)YPTWLJnWV3=X#T=T;X6+_}L8H)d&2Z z{tbBg1X6<17ykrsux0nJlIjepE3?~Vu2i3x#Wq5(u=yZ=VTIk~+3JjL63MULW&~L`S*YF!8D)$bWp|P2vdd;hIB?MF zQE~g<$&YBmV+Ja-MNj+{XG;+a3V$HpmfLZ9*PfuNr8ckeZ$GY|npyugQooLazrdy0 zfa6U9Yt!~U?hVui)dJ>bTRFC`S%{ra?r{s0s{P5uxxOvhNi7qyXwap#7j>AxLNaWa zKf&x77TvG)X-Lh4>ATnR<>iDpNvrm5we4S&4z*?8jt87Gqw2r3uwp!ZPZ!yE7Q$y< zj8d%Jk|L)@E&G&4I%B>YQ7njeQk2>mcTPUrd0ob`-~Ih{YR0KA;-t&7^M?YeAa!KV zAXka|k1(g@C;V@(=W~aWI0x_fJVC(S@vjBhyM7xkn)`y`DSL8e7*6C*HNZ3@mL+X~les%LD9rAvt1bM`3$v(%E*C&;)eE&*de;r-A zVO(S$?8%odCbMZ#S>d<4H6hL`c+K^h3a|YN{Y{y{(8)#_IWvEYg5c`vw2oTYZewd$ z+P3lz!oy8&Qa{9LZz7U*OVup{CRSVVNoR7ysnjw#k?Vc#skV z-LLf!ktN5rk0_uT+@JAMOK4r|6l~ubW0L6UuJ_=0>UEzw+x7iqQ_uR)`rbr>G&|pX z_o5f*gCDpxrnSm;9jU?SsU6G+VRK%J0lamgv7=8=eyLSt$hqv(|yKjpREPE z=pNhlxYtqNx~h~aaaC~bGRqq}pZMo@qP$unr6mRk2Jh`z9v$z}{eZ)zx?sklUG4JWp&FXX|W37u*Xzg+154-*&)WW_BC(4Xm zO~?CFvg*x~&Ut7qB6_z5eD|5G4wg0sT{JAT&k|o~&~vWeq@+r?Nq|#-tGp$-my+=B zC3!aAP6FEjAh4ffE_-$m2FY^!nwpiv6X(b;wJf5qyl%#Lt@uzG)GazyD+rq>>m3cw ze-l7%&qn@vfGpQtz!niDYb>Ya1v&}tFa%&Pd(wq-{Z)5M9Vy@G!P0mX{V8QW8@U%3 zLsH%$<1*oeob1CBDi51*QlrjA$iA{0q2H&w&&I>$5)X5q@QHY4I&s^c%=;^4nOqG) zD<=Y?@y!%$$J_Vk9fEoat;7|ter)}F7%x!GId*`Y-`BV52YF}fazinq*PFak=A5sT zlvHvVEcwHf37PW?J7g(@lQ0AVz?rssFW0+GxpEIJ6~m@mHJ-T>O^Qi5D3RTYQj5~Y61DT?Hgg`KcF24hZWTFrj#*c1U)tgs zsvOkO@$d@W(oE=mIcfA*?+m;Gu=agoP=Ils0DbycIH?=*0X$)|$OS64J|6>@Js|wB z_xpVR7B2IG>-*K5UQUbMFBX#xQD)Nd!nV6&=cdr~kcPA8p!G*P*gi;a6jD%6oYW1JZ>{kL`$>^%21QiB^f~a1g zKVTRUGX8_5xpiKzF|;$l`fE@83ir9-GolkIG^%C zUd82+-6Cwcd*{^sYwNl1fqHpB9k3T(jDQ4skF&jbmmj$CtScg9O-qQX{=UlB<@Q=0 zNII41yGEFwwT*^)`Cqw7Kw(rgHpl7WYd{KvuzA3CGqrHnjt@p$IuqbnI%wX!6KN8n zGAQ&`kH9p2lGN&d;2i!s;Q`TgYM#CYL8Z3qmj$2RY$g28qjFJ5HbSv>q7R6G<()*@ zD}ML?+TD2zV;>C43oQmOvf(p1=rlQD2eEAqcQ$<;cu?m$h(A)IFv56*e5%T?ar}zQ zOU5JDXl-_*U*G?skOjA_)HTNgmOk8D?KU89z`3>lB1-m)IMul;Y2DVFFo}YoQtf)KtKk%O zG5#5+ykE%UcTWd3HaJJaEkUj1Xc;b$jDOy!fM%Osh_WmXH=)ZqfS|LePMy$}kwNus zBpG!rXRd$Y^x@gq%+Qcu&uavWfnVBT z^CYaVIG=hol88QGKrMby3;jIqdM;=JPu$vcQS?*#_y6?*u<_g%2igg7rfV8c{*TP4 zvR+?=adJq!1NV0gjtfl85F$HS=evg;BsTiXRif}`x)R!Y;V$?7IKM_~wOo5xyEh1p zCj+|A<|#bQgqd#`QxM!YlzKe;R@*){$}f^x787`pSC>@*bG4RVWS?1;!%zBko7qt# ziOQcwp*ndk=X=h1izKDJ(fn|5Idv4PpN)hd-`*~R#5NU0NMQp#9T2zi1MW`2fBeOr zdiS=#OCIS8b4mPqL*;ppv{3R&2PEry8-l6aSD$uM<*O-+*QH5xe+-c!QR?Y9Tl8p{ zkmXyMlXj9KIg5uF9)F<0pmxWA_<%&F*%gPlpO8@x44o8uYk!}6vKAd9bF$ya6t-J; z0z7-{2pY};P%k8<+qMkP{2E)iWC07-J&A_#ihC<9KNJcx_1@%Y-Y8Q18v7p2 zQ)fz~yW#7vyx+BeR@6UHi%1;rUe{uaV2G+STl?YyPge&hc1z)KOh}!F;hVOra~1bn#|bRMua1A1fzEi`<>(c;?SN zjn9Ppf&wXhB}pc)iM<-&-x7PheSG3_awHR9ne@#4nOgww#Q4+s=AC=LQO)ldOfu5& zR`ufAHx}r6osFz$iS>4wA4f)x^D{rvi9I{hj9FM%K2^KJ_kd{r4+>4cb`q;tiA`;v z6Ib(HL6X0-O!?e$BfsK(Mp3{8HhzLB!4L~cFt&|v2Y$ad(BtQ`MSZ+{z;+*s83*+t zj}=C8VO9>eJTX+BpM=w(fMxil7q(>dj@miAt%M&GUSwT=F?^kT$4i`UO-TMIBSORW zJsW|5a77=zeBfhidqaG|hsR7)JUn_cwUyoeu0+pl8ewfJ4GjUX!b|yPMwsl=ZF>2h zB%SVg@k{Y9*MPlmFAmpzXb>4n9;ZP(_1nkN+H5lWZ!aIYHmSIt~aoaE5NJuv#5)O@^bczxJA~)hje!iwJ+}Xc)#ua?8gt@hlkz_F4wx&KhE=a8e%$@bP#{tQ4AOtD-2+3YMN}zphP}hLNr?}7R}alBUJXkGmGZy4fhG?5ias^H zg295&3oPbgC{?at)Fwh%St2u&hNaXATND7 zH$Y1cz3`PGLo@D734u+R#IC2#Q~bLF*7eKtG)&MtCDe3f_F6Q1Z*NlQ!-8@czcOSgVP3HD`>om;DsVV?Fo}KeZe-?}hT6< z&kyy1H8YO==z^RsU;S=UC2U~gYU5p5nlvb-zgc)QRgqow!Lf2}WHcFyuhyVZe3t@( zWH5T^yC>p?imUof5aSdo_+UTSFYAa|Rjj&*$SqHNyEv7fxp`%H08P}Clp_&1>6Q#O zE6H$*u1{_Nu;E|2Ft0HTcEfP(E;QC4aPhTMi9)wRk6F=JSYMs!vUdy%!RKa}qA#9B ze(WbTSKZqAa{VYz$Z-F0)(zlUWnxlA$*ahPmf9GY8ni`Zpq1Ir1Rd2cfSR-F@kM%h zhZ-nC@0upQUuHVY&W?M~|O+eK=1j>%%<%zCcFpxA3l!Rgh-5ojr?mM2sKpiMY<8Hyyoa^R!6n zFjHh$VvaaTHtpU4%Vuo*epy5NP3aHJhJy65;7)2O9ohrIIYPTG+trtK@DPdrQB`*O&E!*lsXW$Sda1Bt}o z{QyRio0~f4Nm&w)y4d+a@UFpcuZ*?~?xH#|N&JbT8 zfkmoJ8LAZ>!pM6#-KD;nKckhI#;JLn^aN$7m`6$KN{+_i6+G&k<X8p!CV5@0hr_`s4MmZvHCu?~Fm#dEvCDmdoTK(h&^gu37V5COxz6Vtqd z{^>UTW~tNGWm{TxjgL^dFhjqU)Gt{$^AL<(|DsgzL?elPvT`MJ%zA4|!nQQ0`FIrx zxh`&SHS2V#&;ApNqHgmfPJ&|w!q@TO+u$uKUYRgmKC4wWtA!LXzPR%~p#FIm3ifQ( zE@bv8y`ART3A^D<|K7^qN72PjSQ1rz~9Cpn(mIv_$%%3W$ z5fu@adtcpaXC^2}w$unceGL2Yo!mFeTc&=)Fib2jt>BLW^PfL^9f^x}KJPe4QZQBY zaSE}FtO!%^w(Te&x?=vKtmn^eQZXxNGgczLl-D1(uq||iJCk-yI-3Xssh5Xsv?@k^ zUSOL6%0o1dNo2b+IHrbcHHM$*>ShZqY%_MBmRbIzJO6a8Skp4;lbgzJ$Z0tT|IIQa z))76+vX>A^od(|kjAY}ft^Qk^x{iC*}2;bl)7F0>}jw{L~B#_r1*0_UAYcaf#!E)t%3 z-$UR`x%7Phi5XG&E{6C70YM3#*t72Y!9s9j7?rkDaFak{? zeZN5og=zf|#`b2z@t`WmTd4mi@ViL7azC^pROSG=@KyF=?4Mi=-J(`Q>yW6)h7q@(){bOJT_%4%CK?I@dsu(OtW_qDI@YMkt33{DJ6M1Nb# z5Ge{HNR1lZ_55@Iv^7Lkzq?tF$XkgT#Aq!zbGpS3Z#l<-L(fl?IA)J|PR4GxrWQHlN(78sXRY^PTwWO+#bYx}XDEs!tL|EP%mJ(OxNwR?K2@<+0)w!OIy zbhLp3CDyINV}AiKv9sQ+?Q;*LdC&g%8qu&@@1?L>TyH-W&$4Sqo%;rw%0!B*gQNo9 zA}Mx>3+^V?l4$KATr0g_-#ab7YaU5EUT6hzQMndjy&YE@H-+8JB#_ZhO?6BC7!c?d z_pw4TpW}tn($TqR-s1LlJ_s1{mUsNg)fsI72u=G(TE=6u`t3CHk|oupLJ{wh9=aOQ zef_r6Si^eitwtN<=TE~bbR8P$F(zzDrb#HF`P_(XogGy`{EtphT;mp_b34>IHR!Gd zy9uB)VTqEJkr`^iIch%f0xPX#w;Ql|1iGN3qXF-FndHXpbdbwjU7gmDkgKThk@caB z#W|y%edmVHCxL9cC4&e)$+xd5?m6aZgao&tlhD7y1xIM=_3Z{YnD6wNGz2VZ(OEP5M* zClNg9{qNaQSpAqN>D7HdZ7Nq8fL?R8nmau*dS}F_`s>aF**q6KUW|wr`jXI@S*;HX zJz`9nwVlpC2gS zu6Y?+0RTK<8+TsH-5n=*S)}IZ=lzdTU_n;tG*`C?oyA`){bafedTixK?2>)n`qU~4 zYd)^(*#&mz=;Mc1mJPXTM$jkE^O58t*QGRUA(x~S`>wHgXPb{)iajaJE|9JS-I+Bi zf;9m@!C%I|LmH*J^kKItqX<5+kD11?u4L~&0N;-q{Qk|Qe1xVN25m0nDLE2lTO00=?;4dpQZ5%qDwHLE#1HlVw zUpG*U{?F9kFx?3&bqUat?uwLff8f#a&yw)rsp$-vU1=OH@rwQr$|7$yxgvd2Il4n% zjZ%!DaJ>a2pIp(GN<~8a6{e`_JFp6{o~)kMQgy@(a+~=)WQE9iD3>q5))ZjVC)Ia2 zBzKP(p7AmUH%I}O05&^~!n-DyBi8%e;oUb-&KkuojUyom-Uw4nPC}ud8xj;^60;R? z3G}F?BZae4r+wsN>@^_LWnfYl#<1u<<^g6cz+E&ZK3iAO7YXwX5&veS_^uf0`F_(= z>Lttp$Pv8oIA%sQ(|%W$f8XlnFp!N(ixsLn(;j#)@!M%%(vG-St&p_#hL4CG`i1+b zofN#zq6OCOV2V17x5k>Sni+ai>vqli;It!XzM1!VPtQLbdyv1GctA)LoJF-Kcy0xk zZfT*LB-@X9R1vep+KsXzeD?4eE!OaM52DesAu^?GmT;fq@arB5J1IN97|9`UPig3V z7cKd;OR%!vnFdhHEk4=99?tE#F4&wr+=LjmB>K!93LKeT!-!PV?8a*h+8^@!hb&cn zn?IY7f8u~`*h$}gQi*U{ry(xnkt<4R4Vu0uyH)~G6PSN+FZ=L`5ZG(JbGH@)ZPyF= zN+CI|9u0z9fgH#j`nUcKhy_4@UG~lbs7$t>waw>0!imjiqaEHp6K)wW*=T`Ct5oa) za)F`Jr434Pp44NO=1Oy!SbA5>!t0a&$6}x*(6c4y6?N;MbT9so6#MfUk9BVNERIBmRtJ6Sbt^gAw?u@}ppui04yN6lA0fa7WKyYfDHq#Lo5C%y_MfSr5bRhoN0 z?K`U|-8ByT$RnhD~MS}#9?flGKagm)x%4ZB#}+wcvE6Yx>X;Y2kZMz*J=L@J-^%7UzQj>S4|^^k=*? zC)-pYl>x7QhE?L_fpPCOx?(r?E0u#za!B>|kV!a5Zu=~Bo|JY^K6g$?00|Xv02~=` z<4VXKGH)^H{j_K=7Nm`E9B_ooV~V!!s5n0BJ_6FHYNM2tC;^D@MH6}`?%P)d=jcsV z85tRGZ*C18Ad9A9gI;DXelJ@8;po5lgb1FJ>9Y+D>8p1^IwZG#IImtM!A4)2pL$En{*+!$cQAaD7@876 zCxIN4p2M@z(qFwV47~`iHmi3QBbF2pD=VNu{5+(Q2=0*(P_5LI_PO8?Jeh#?S&$?f zcTO4^6!)DMuW`G&kNt3|A4JBLaw*!Bl-lLHgyo-C+1&YeGokOP(-+%W`vIfJK zV4Z#&hTwsTSXlpd^^$u3Y14q$7gzxZjodX~z&%` zkV*QR$kD;GsPZUdwav&2wPTQvTw<5+9vQPwy=HpaYu1Yd_9_VVlqMW%GJ?{g?a@s?5EeOwk5IBqo4fxe|JrpRtoJE4@mJr} zuIgVii@=avhz zlG2`E=rDy!y6dSi9IJdcauxt}fpx`s(aT$kPNa{+X)3+|-)w#J{&T!#x;42Npw|Xj z57s~D4pI?akX~cX zao9XsO4^u%FlvGiAMW_~?iZ}Wb9m!5@-BqcfoQvqR>3)4Xpzn!W9&%iz7JxrG4p~? zpXp$X-amAq!`qh~z6quoh;BuRr1ILuvV}XgK2g#*Go6-dU`u6VSeJWz_i~k|I7#gv zH5*uOS?Lc&%zUV%A&+SJ*-+uI{(G`Q+OR`QYmVXjx4L(v7m)7z-6bN}!~pE22lS%O zU=Jl-<>9hy9UPyC*J{QOUMoe_SiE1no3eZJH zjsw5;4D!EY0&L8(D}ZqP@VnK-gd1Iw)%+VwNlrOTXf(TsUjAm@uT~%I!!ZR+O!2XQ z)(T{eLds@@KLO7XFqo*&K-5@Mz(wB@j~(nYy*ceao{j_p!#v$P`HTi|DclFj5Em##7L(pvmA7 zXYCHZ_#Dn6!ogaSSD@^&AV)PP=iuxTjEKs??e^u?s;pMH`+s6&Nl|w=BhRcXhJj5aP*Fh-4K0n7+Kl4A9m7-jwKieQU`R`AwX#1%=SCIJp~h0b5c{ zdC+kWf`pUBDDlsx_sdv}6FZU{XpLZ;=Owosm#s{I^ePR!xaq|+e?vdY$(f*+hz!LF z%&94!_O~<#QrQPm{f8o9%q7Z&%%6%MX^gpPT(zd{S2f90;o{ob_`V)12hB$pkm_hU zfKK6dO&f*1h`MO9Op|o{j$(fZoZcJkGz4X~nCOp#6Dn)$S*#Nh(B{I=ELLS$i7v$C z<3{=Ov?<-cE>wp{m{j7eM&>#We@;U3pzQrFg-&X+AC}sDWn@cv0C?(FSmz76b8uhE zoAxqiOx?LIC5oGFaqyUi1%n8w1UuvjWsMa#jn#SiUM8R9T1Eh^VOdlle9#&9VQfEn z38oRV<9UA14&w%RNK+?_z~xE2g9|GA<1@83%^zYK9H8u(YMpVkq4^cEMdOhIw&Pl6Xb9_=Q@Gk%C*XzB4YCD$6SayU!B$nZ9l83arffp??L&fQw-QOA8{&j z7n@xt1_&vit9!Jdm^j zjWsIz$|Du16QyKj|5IaYT%X=t&!w=w21|ESQy<^d`yVfXii)e2YCjxI{f`}h^#~aK zQeNQ1z*2$cQ&fZFmS-)|#;?zW+gK|0`n3XAF%DS---oj+KJ)ekwpBS(_C~*r$H+F? z0mt)1RH7ZLJQ5=SL}a-r0AD01^;hu&{igkZOB1vk-irbJthM|GeIXXV<9!9XUv`xo z+17z30~k2oq=5bHkSF&8Zz&dF;d5dY)p)JT39gT5bc?+@g(OYkYN3~|>1q7O;lE9j zZ>l>G7VGc3Swpty71g*g1_O4RP~qo&>bv^Rg0Zaon0mHN2gQ>t>car=pez`j_vYZ; zW1t8Zbzkhme-BdOy~oygqP!zZMILfCyoMlqy$>(8s7ZfSi^c>;yRk~QOEjeRrW?X1U0IRcLjfyn9r*1DnD7 zfvestAJzBPMDVbnr;#+*B)9~LEY5t2eTm>s>rUA-?&Z?a)ASjKO39$QGidV zwP2&3CdVDfurPCqcLJDjmc^MmO7@9Glm>ciO{yWnB->%N?s*uP6*F;II0K*Wgl^jX zb1jkyB_e+pvs~4*Q$h6HR3~8mLD%s(9n@lqs4Q%&N@zRnKDxhRQ7}{sGbqUuMu5AN zufVc>`5}l)QHHW~*cCHKStLIBht)(bI2maF{gO3-jjaW_R3_to*ACbNu6vy+zs77~ ziUX|}vXXb|MI8%I25NR%i3FoZHR)1y*-mGRKsJz2{yj{b?!5h&;#~z_i+bI=CEL>g zX!|KZ6KqRYtN(_%z9YDfV*xfcQT>Qwp^G=*G&l!`=u_Yuv<(WY-zQ4WL`DT+lyQie zQ4g~!E4G`c;$+Y zK77MbFp_KI&mrV2g9gTg?+ybM3y_n11s>@lx<9%BO`q?71UvVA?UdDn_2Fz0(?2=9 z;D$3{)%!{JTzM8dt+4_F2HNOZZ`gc*M* zkv!zu9G4*P7aI=ES77}-7z1n95qBS-hrl^jdkS*rz|mqk1n34}YuL{kRN#sPE;&BR zGxTxpW$MkLzm(7RcT>Mupy3rr0RoWw&nbc7gXTZQJCF?|-QNYikaTWatWmxnKYOiT zWrv6B9|eR|ehX-ofj*b3Jd>Zh5g{grux{rge#4dR93Wnd-gcAaa5J5CyZx8E-Gu*S zX^VD^Zisx-&8gYcd7cpfD%lC}$$)MAemjW91003yN4Jw`AV5z<2HYT;7WnV23J9_} zcTwgkYY)gw7bbF7~-^9LH#(cPV{ShVz{>1Y^QQ%pG*pC5URY^q_sY(2Ug z;j#H0o_7y3_PYg}MlLWCm+{O@GZK-`0)*fPN@(zmBdxEt1{HkV5$xu>(Z8STI;c~%XI&fQZMW|SM>f3fkvvJbSs-svhQQb+Y* zaJaG2wV44?>n!O>ItACMrT}QwI(Rm|PCnm>;VG$vwNKtTa1nbO&z;7x z7Lmcu@Zq*{S+)&1IbG9pr*h9^s$iwIHMg7s)CKbaw7-7$;%kp$8XIFujMQNm6t6fadBu}%vT0W(wi65DmC|kB*`-gkF?#idgC-DL3=de%TsD2o zOw*jUkW~KMI3CkeSv5yWfjP)#u}gy+qrqWHO#%UaX3(T z6`;}JpO2g9Kk3P>fFDf0Djxuug-E;y{g3+S6QR>aK$VljuPSRn zk&78UBYOj_5Morc?de$wm~D0{awyv}h0uVHQCS2&jW73IXV^FQ8P7Uv^bUd1=_M8J zawX6QqHi;fXB_|bDdaWd?l6CnHLHu9RXCw7-8YL_lsW1?nGSM;cbuRc;#nBF{hcuF zc7PwChc&T(6_n&imCwsMD{0$xS#SQxQVnVL+>rLhOvLOo@&i!C);*(K_#u#yIBf%2 zmK}&LmG*O9T|6O8wlYTg3KEY?R+4p-S&DYr>q!kSgUymV;x)g*zHY?RvV049r24eX zEF-8I{hw}T51dU*lI-97@FYHBT+AJS0(V+W+Br@ILn-hI9odR&=m7oDd*J;=AuiD% zaSe>7z5%w^BuJFbbeNK#BJu4);cWM0mDqOyA={_jWiS3z8Tc2V|0~?RrBa@Uze@_3 z5d8cBEzym_GA+3VmVt=Cl4-()4>e8^*|U`4!Nuhx0n@Pa47K@!@8x3g_4u`xku&(` zO>4XwIx+rvo=UhhZW=bQ*y$N z>L_+$&OJN@wPnu8t+UGNePv?>;5I>Hs2GNsig1vVqY8Z zf6taGZsO$WXzEr^-b>xJ3%2<&nzLjB;u-mPKw& z(gxwhWdKDbV#_OL{q^m$PPTt5%X)(wCSi&dj|5(1_axbLSbZf{A_^^RFw#tzm$ZZ3 zKh!K0%Ze)t#E=;y%!|NweCr!41_U$;Zi|OlRBTmt?UdOBV#4~LnsP!-TD9H}t6~{| zXR8Mr;!y3k0+^7?|=@(k~E-p4J3ARr$ZG8~PlGjdQ>LK}{O? zo>2taMaUS_GxF*Ik3M7qChe~-v^n4;fr-WF_$)gzumay4y99W6mXdFeu@Q zZJI!-cperjjZ&pOznLn)h#B^Huc+Y8DpY(?3ya?h^3O2G4RoDLyBAKrTO_2o3brp9hQXw4qax1dfW6c7DJd38M)ZFim*Ku7u|8cF>wX&GJ5Zqq=F3tC zSU5|i15PQcHkUYHiXkCGWg}uLw`rP-VGgFf=c4>{0vTE@$*af5k9r^7;<98QhJ@}l zo3sYF9PH9}dBxmsDo%zNrc~O?*u{U?TZ$qsb-TY4PW+v8Bste0VV5;T`YKkBF27%& zP~Cf7=GVgHwl%Sl)GiN1{h${+S2XxetNd>w@?M1|FC{;fV$X{ul}oZ}E?RDk$_0fy zxsl#ha~9a?v_qwdFv?FaoL2t@@HsN*2JB5@a7>N|efWXgXeF|Rj@d;zXCW(Ubtkv- z>%fAF1{>Owe^G&$zqURW2^pv{E!my?m6$kBj|Qz(*EDiy+{etmiMjE^SzC?Yn#5@} zYBF*;SFM14lB-*=xhm`NBBU9{`64W6LeYW!eE#|(o?v?y+Q6X5b(1Wli%{23Rhu7r z7XBdAGLiaO<(D6MF~$9s!tA0l#E~9hXQ9UaJczEozuVu}`eK&yh1`v73rJ*jV%}aS zC_L0Tv&dn#1gzZCwWnJUR=!wHsh8eg&Mv+#04L^MpuS6ugLb=Amq<(5)e z)N=d*8$58y*et`iCvzPRD0o-$b7lqTAU9=)_H3ju|{*62>y^Q)AtP` z3YOo*6Ye@o&bIcBK7V3(uF+JcN0jtWlxY1Qko5K+r_FWY(b;V_AXw^Lufi_fNvV)g zaIs-cB*#rjSY~19nb{xsv;KysE9z0l>c^Qk>cy4hi0Jiv%XXixKkQQ<%S9Mfresiu zu}eiJuAce%fXRE|3h`6zfv=si)BEs5mHrrp`s{KD>7~Gr9*3c<^Xi*D`N~-H$huim z8E#6B`hQ&PGiF?AVU}H}UpDS=+>b#Ftz|kF7gt;xww?Ro0V9HI@3>5M+lf+E=XSAJ zy7I8jcGchFz|X9OF1b2_C}c50@YT`dM-N1BciUCIFC1sS{hy616gP|in;QIoVSxF) z1G2Wkz!f;QJ^qcC8ouj`lo0^c=6cNwV5Haq(N&<{E!ST)Dk`0R2mf+^76c2V*@zh& zuGREiNV{6U_;Nq{PRc>~Lg8ya{UhjV0X?Y2onDyK6tAlJ?iA zs_D?Z#`r(sf7Y4ndd|$iM)hs^!Q`V`YFAnfNZQqut$weF{T|ou!+xmfx5Q_d** z$Vi)f=S73lx~Ey)fSChMr2J9PKmaIh-9M0fk-W|_{>R%GRQzQQo4sL!kb*HAQG?B> zM^=}u_Iw%~_x_cao`nT=*8i>B)4t?5NY72U91^vksHOoBQ4WWx#Df=8m<%ZW0Tgs# z=iqyJ^k-)8*}d$%hM9WM>Kri*Lb?HA;MTx%;a#6qLeM~t*uHLLQ3Qem&>x)())H(k zb#(&mGg!m9AVrWVQGbpfd3GH*AoA9K_&`~=YGUR&HX+u0*@{Bg5&jU_=Sx2e_+$tt zqS&XPo9uYoyVXT2I%DM{Zg2*lxl^vB-rH0ZFoe{eg?tJ^u->}l;on!EjM9QT*Lds| znNW?Dw=K}e*cG#=&kD(g?Z+&W>HAWb=pHfYZ>>^Z>`9xgzdMVayhCuDHh3zXspBAG zctI<1I(GG1w)72yw^%_0K*xgMVo*}qfq@|yBYRix`T+No&7vWMX0{5rhQUQX2Xu{2 zpum|NtdyJsgSV@{6%JOwUjvVPV(Lc#puPYQSKu&p@;lWSbcOxVWtPLAjUCJFyzKU4 zN0C0*#X1$N{Jr|35zvisy1xXKWb_K}dxKDa&ytcodR^}$dMt2yY%F1b0|3hHNitx( z9|m&n+qTGgRaE1zFTzP3sqYtUC*pBCDEAi2>L5#?{Nz*Y3;-_L*IFH`R<14f))l6D zTPn!hSz;Q}wey;a2;zuB1+hF6{GL&Uu+V7ZO*^-SkH^|nxaEI8rapYQR=v^61j7PMc+1-!x5n z&@d9pBUypma4)tPhaxEklH6(5j)cq(2)(2caYK?Hyb1jb2or=7sf6IVh}QXLdq!0WYD4F=*sN8BUrOGO zcVXmJC&0bys^#8s?$(StuQ%Jrv1I~fT2){|Lhw3KB>+QWijvaVfjaHz-o5O$NSdDn ze#Q4mNFG_2RUP8z3vndlwkrE^i>-(T>nEEG=C0Z z3t*E9o>fsh5k!Yk(7g`|T@nAbI)_b%?efRifarFns<@YCbr#$REg>oTB&rmG7g!`v z#dW_{L7r_>TwDvl900y^!O z(&rC(81kF%Bb}bTs3KT@%nVJm*m|UKxbxv1M2PJ`p&QEBGpG9506?A7)lcz|Dr{#m|>94?1}B&T#t$ zL%fOfZG=zxYc`I9)|hw1NmCV>68`{DYs=KbzNbI2*N>{B8ci5zCyfL) zC}qm;RBVCt(!f~LXAP)z zq^;YrpcHSo|5|qPxW~L$VS9>1m=6l6MgEEr>MRny^525LiCKL1C37=9`mu0!Znh7e zWUBkk4VfWiKyp}@p8eyODpn#*E8zwk*VjticK9a&3VKz~vRU10V=ExQtdt>>juSHD z=rLS*ASA@q&-GZ!YVol1rSVwQ(o>#BB*|#^vvB#dhWg#VTaS(UCx6Ipxut*7{|k-# zbmjlx-mGrPRf-5UnLtJ~l4I0iWBJLMz}9Ccx==<&hy-nm8V=31FQRWSWmwJ{Xtf+h zcDuWYkApvNwU~&NOEnnrcLPt@x93hyPRsr`yEoEr{r&v-fp3X*2KzkRMnSyvaicU@ zQMl!g%#R(8PSPDmVjoMiU)4S1MEOy_?azyIvbfmyFQto-_4tJN)dw9Bq5qMu*R?Cv zc82>gWvgzY%cyN7p~sm2`$%+aH;GO$XPajoA7Oog2|^`32iKMnCjW)+>)oW@Pz1^8 zh4eCKq06iEpf6*wOsCuB&iIn?J`PnB?SJKkGiNCG!m%EeKee^{jJsVPX2S>1Fio9q z5`G54%G}~F4S!)=sA5iif2O4@PvxYgdc_n+ZIMT|GF#g@FA>eUnuj!9>nSy}4AP(CC#vkQe(Jz} zynTJgavRfJbVnuKdfNb*X-P7fCqj2TxL{imxy|C~)wlLAUGgL=xsi74ud_vbF`1Z-ftS8*mYz#(BRDQHjH-7$eb|X06%|u9zDs_10*&|RkF^6HjM6HN zGiGf>h|NZ~8ok|4p<$++aAEzI>a%Rtd#rOryI!IqKXG){d!3JZTypq!SNj4@p>$1= zdF<2*X0smULGn7`;) z{?89@#3-+>Wfra%i5P-K6EMlSq9e#TViwoW^qsGyiqK)G5*6H11-bveoM% z7HWPby+3do7(6j~1uS#>e@3IO6ZE3F4RIY*#YVdfP^Z#jH#YYUhJRe&Kn!zH(J3`! zitTb)m%39d6CRI_2;r@>g0Ce;5Bdd34#-n`DI5l+_#ASv%WZv6Oizq%q+(F+{$>)( z_^6YMi8B(}jHhJKvbGD|JdPm>lN;_D8_~W?Z&`OKY;?$RH>Jry-&xnBbJdH9caUNg zW-9OG^d&_q#k_J%Dzc0i8g2&dOP$5AOZAZsYuZf9b!xiR}4}Qh)d@uubNpP*U$27gT@l z>{SYKcv!~^4re}&(u|*XV7u^gAk#af+TL(UbvM2=+>tv%#B>EI%0jWFa>X*TIVF8~ zH&<*d%{iuGtpp|^`93IjP(W8Q`o5ux+uGBj@1qmBh#YmVt>gD=`=`T3j1yly;aw@h!u+_*twW8<7JFEtF7Dr=$dSUPbwtViR1&1*+~ z%#sk=LXv(4?X&s_wOiVq}CUJlfZFM%i@f6SQdM?Zz>z3;VId+0^A-lrk-2xfq(93Xf&mNN*VB|hrki|=PP^lznTnS+JFtxOsVeYK>kn5p&cvC4b*C+p78lR7dDe z;|`aT4-d!Rp->E=`>T02r4z?@ztVVq4gAJ;SRogu-77;+^aOfXVOPe*H&)ptf9#IT zIOFn;cnViWVwH7(B$=C~EB4U8Zr0m08~Ja>gBzGr@vVTOQzUP@9}z8HHL)rUY>ewh z#rS6q^(JbQAk1$0>Iyz0o+N9JzbV^n{pTB>j#JpUIA1#4KDPWCP$HIH(qrb?&u~qw zCn@FJrOJhZc?2a>jWcF{Mxc)yL=I0!R*TdIy~FF5TQ4bn-4lSr?6M1(7&fUzCW6Of z7M#e|9$c&#DHW>Iyr_3rT%_7?;1NS`r_B31om1+KtiG1pr;uTeaL?1|UY$;G2$1o8 zo@~3Ve-YP%t%V#r>;d-@*fwT(Dvr4=zpsv5l1j0=_^7I0^fLT=w=yd0^!nq$Vwm}7 zr=*7Z`lvJFOnykr)AEXm?2I&jxKBhQ#lD3@UcRo0Y*0*`-;vXkr%vke!WFyrH!OS2 z_4&C4wPBTz^ujk@^ZJjRqJrY-pBIvv{qEaApNkzryHR=Sr_B9PknEAXQNBm^{&ZW5r}m)!6ISB(+-C<&E>`M#sp?s z_+Vi9SOuI){FPhvrHLI-=sO%VZ|rG~T1QioLk)9>U*A;^4@p&^QYyot;Cbe@cZf!- z?gGpJz%I`)UB(N$L&D6fSe88h;NZ}i>BS0RW}IM%y@~H8Mzv$NV;XJRQPsoZ{3h4eAcm2{G(v)O!Nb`@eq1hM?Ha6 zPpNqDbZv?VImzPT)J^!tIU|G4RQGs;^~+iBgeBpG01X$?x!S0p*?rE0h>X8LFPHJd z*eQIyCb|o%E1Q^4P2BbuBP=LK{DfLdl*9%ZtvHB5f)+Tx>VTyfYL!w{S*`N2Grk!<|kQpyxcb<)KeQn>Pm=NKMSvZIMbt|11 z2>t^8CRg|8`oY6fK}<}vkdPUPy+Y72;lq}iZ97(>QjtkorOCiqH)ojA*SAfYwkqZ&P*!eDm2QKSsF7TX{@m0R(y`6NTZ%Gq-M`_0PNW~5_ma03qZ z*?1xQMjmRzk?FupAS0llq%foEv$5ScZI^gKl+gI!+hu^6ItrLQ zVQ%L!H8HWxKR2hdJqXlv4A^=ZrUF4xFcX~%cW(U3r*eGFL%#{%1?jY&N~9NmJsXV~ zGl^9PGm~GXckFxCO~{t>dp;;#eDyvV2@E~|y$eC(X#o88D&8LD2HzTX-)ws)Jr*Hp zOzl@fBMa@u+{W(X%vDP70mSV=dl(QKMA*stU4BL*yLjE-5qV{usZ5xQJy$-Lk0r~P zzX}fb_#t~qaE&R)xD^RFAMvZJtBiB{^*@{JOSpxi2V<{jfviqcTc49HPFO}!D|01V z^@F-*p8f9s)dGOZW$W@-5LyBSRRqomHqhQ zrG1InUw+eXq4ud##$qa}A)u*5W}f6i{MwG}X5jR-qyrzL!4&e8UQN1Kbso?aEX z*(i{y&M`=@9_lkhZkb7|$`yUY1%!QuqoROTrqQzfvT#M$q_}1hAA(nI&$3AT0E9}A ziF4A^GnkS{g-0b`8>$*>XO;RFD{$V!I-KnvjA$z=@nzXh>#+BxAGx{T1fyp^VvjRg zW!heeDs$+-6n(ml=%{7_JtkP79Q;F#^EPD1716u+P9(+R*YkVlHj|dj#E&5;uc))- zhg*bJzblx2<*=#p96ROsQolX2w;K>L@UUBYvH#4K4rw+fTq90YGurU6Z`O=CG!Qi# zjlzyjViq6%uokxNyBuziY^wURs^dtgvmY7xRZxpGL&(he-bDyq$ zteX+PH2Z3!=o2c@c6&bR@FQ5r3oZ16#KsR}$+7l&q6|?}1?8%?HTWs0xCV={$rBZM z&{sb$YdzI@uQZ`-f0bbTdx^jg7QV#n2c~3J!1e8l)lku~K*~$eS4crgemOnyTFL%~ zm%!dFT!a7EMaSK+&D33LU{i7VGO`B8~r4$yZ9N91oA7G-=KNcCs?tN zS4!A+`dOYbLRhlk11rlivGTqjr2CeBG*X?bAQzoqzRra=8&ur43^LskiDORNQpEMYq7wM? zxGTd9HbxVkYmuDQFuU1op`x>><>#e_6;!F6F2KgkV&#fhP@)(Y;i#RNx+da9VKS

JSu9g)_3^i(S&WHhVd*!7hIb7WF4^I?UX!eF$} zxAaZ8(xW@trtSSRDA1`FHC$C)R!M7>&Z1sxU!+g!)|+p|sTFod^pgZEa);hDEe2%L-qcpie*L1G83%%>HKP83L((DZ4_-_TY-8C> z)KPbAs^Bj?>#8zN;k1~_Sd!4~oCQ;ttY^%kuF~)ItBcB~Pr1*tEje64NXvd&V_%Hs zI#;cpPI->q+oVYwbWK}@z|`rwE5mv^58Unok8Bh*5qZ*G`H+#rVDsf;vI}%~z8fK{ z_G{uFIWr7{AzyS5%Q%5yNs-K%W6W_4Wj#8m9IHHh2qZY7jXA7{$efzEycCY%iR*+xwEAeD-X&~ZAU!)C{lgSjS7jt-H^o^#>q1Nl z+rM(-;Tqcw<5~9s#qev@>*9T^21kxH(6Vox(e(;Wq@xVarQvhKlV!6NM{Z14Ro`Tn z{#iZTI_PlJaw&{m)Dh0h^gFh}^o#y}yw{%f7C$3@bms^tRgB9Y%Ho`kUm>PPE~U~F zk@Lwh;}sP7o`%F@r7|Pq`l<2$_gK{iAE(exc%6yo2<$FmSE-awHQcMc={G}S#?I(= z?YdSP&cXb=HB3N&Qq`Tn!SnhuoNx0fBDv?t@m0w!2qSLJuPKM~kA54ChWW&d;hEzJ)cI zwwG$FBPz%C5*lxE(-suRZE9({9_(H;B%X}Yy|ovXwU%`}QQxJVs221F-?;!;x|i~* zNxAFhGDeeyb43hK0-&HKSxmY^{A9Kuv4bxyC3EI3jo$iZrV{?l_O!2@0uDxDt`pu~$uma!snHKVvn=%HW`ulsI4e_jGg-}T zs*xOp9>-p(~odB}tvV4-4M{=S!nrSG3LnnnS2syX-rCqZXUH`N+y2jA20% zuzgVFv>-Gkd@dMtlfPL5CWTLXTJLC$TJV_rNwIWKO)*Lv6(f>~XjCH04DxR!ORhip zK0j_kWXH+WUW5Lvjp{LEZ_)bch9C)$wyh87w|sbM^K{0d*jC~d|8o4lUvY1#&xVKZ zN>87u12QZ4fG#jLUlSJqs-O7u@3{*Aa9gR}-wO!LYq<8yq>JN-7~iRu)< z%(z)kGy5(Q%c+NsSDEoaexE6^uWa`4^9Rs4;S>*^MN5Vzd_3Sq3%yu(1y6b6gZqD< zcwsa8?4<47EPpqB`eOMtX36;Q-O24b4wbK%m+d6HOkEQV^i;bo?1z`NU~YYnOj2&U zrT|=g?KxGG9JiMT34^dPH({?12Gw7N{@dW|0`c}iqr}oF49KZQPQtecM=KK>or3w& zwwNsS(rewEnxamMkrxMrn)7uPvtb{AIeb6_QMan(>)UvE4$J2&??1<2&U zz9$;Rcp|wdZpXUdgqX@6{>Z}Hy#KO7aJZGF>&{D=w$~VkX0EVvJiE>n#!fuWu{xc? zpPG9S`1YcWFTm*+N&`~ofsTr!{tk;pph>1v8rL2pN+bUxYvtQh7ewP*V^HNvFCAS! zO!1OpaXJA3n#1#Clwm)ZBO0XYjEY_M7Gd7HxWZ|{zVkK90mToh4z&R^DmU*0R#KMc z`s9uf{j1C7;ZP!euoVK2k~DWh$?gE{!kqy%47C-!IOBhJ1v7&0gg$%VZ79ba$F1~! zstZ~DdU!6SDr4Ihd*?zo=O7!T+?qG}9(+v#_H(S=uTcbqSLL4#8zeSkGU7pN z34$G0*oKoX<=EXQNJ7Wnm)fhulGvJ?*O#b!n1Q^NLb9LfV}%84YjGZRia_SUEOlXzlRm!I?G zDb|bjRpT^ogl&@R6~y&$H;43hTcfwMMl#I6pG;DsEtrffPSA=R>_ToSL|kS zQPJ4u@|f#kGohr7DVt_Lku2>4N%Z+3_kW{Zn_}A^F@-Lqcn!K9QSCpw%Qk^OMqa3GQ77i=bi->Hd?M6HQ(uh&tBO&PK26h`mG7b4b%@V zlgCjX@36KXOp3*|l6Zf!_!0Sh;nm-1+h@3-m>v}AkNgM^H<4t{<&je1=6o{C;s~X< zZUrrp_lEC{aj;5f=8%*tXc|Y)@j5NaI%NpG-|zVS@+_F7XqhvLIYV6;yT~$WIb(rx6^jd%_{BYVn1QhkALVQa8|tXNyLA3w=j`eMBWAk}@Tqkb{roSI@DwQ^5 zBzrjR+k5Gvehd_~Ol9j~Utjtf-l~vPUgI4zGa}RYtXcQV6%mus+z9p~P;&B^SgUY; zKL|Ph0asd7f}J;FM(XxVoq$#u*4IJ(=<-;ZR(qaoX7iFo`olO3p`C0 z&bHSzOu>Sw&D$$5QzHG5c)F8y;N!-K22Wn%s`H-aUxJOuxOtB5BgE;{g1uv6O;q0f zn!K08)L|y?x5*iFIl|>p-dbqFIfJG1|F8z0B>Daop18{DJ-`OnYS` zdsm^By!o^rZ!_dzEo|r&*=5P)*dq>`yM04tZx~<7qT94E8Y5fY8CpYepScVh-Lln> z%j)W!w%BQq?YD!nqip<6zCIgC#!E0n!uStJVlN30{&{^H_LkUbYL3cW6eM`4ch8`U z?BwBpk}seSzc)2C#m%(Bh*oF#saC7!%&S*rVy`sUCLedx=Qf{+#4f8d zfzt$BmHPYQcMD~;jJ}YvKRtsdyow2C{<8YcW;;hHN!x|vg+FTc@wTrBQq}L?v3zh} zUBLn_-dfUjU$?hI3g_*w`~Mc||D)cYwW{*p_^+gV@DVsM3DTSYP2UkEF7)<`Yjp|U zt-R1s1M_GSzR6ok-sy_UZAn2$mAD4xNM9(^%6FA2!9z+t;l=+#+y~Q(v+NHvPgo{; z-eGUfa38D?>+SWCVfpC;*tAmmk9oB&+lp7YL*9P39z2q4$M(V(Yj=uee@VHNd_=Dp z8c5b02Anknp^ZXRPxllhArk+dFrcu}3x$7qJ}R`_eF+^LD-JEj$6HS65vCR*rAj7_ zM?9?-RF}(8mFs~8QF$RsmRbz6z!g(G7`Cw0dX@%b8LzO_Qq1Z`S-i|FRkP^77Pne0 z6LZaV>&s7mC=xlmFwV-vq+R7#p0T8bWQe=Hbtcd_jm6|*N9JWH4T;zh-`CLKG_y=Q zU14f@YZQSOV%K^smAUlt@hkoBg-MEA{)TGzMjc(R8!=SxhG#*$oqLwiCJpO1S9<)% zw^By6w*vb=eraQi6!r) zFhOlMY)!6n-E6Dgj7!H}2mf@iNAZ<9wV-ADzmh|Rkt4O4?dn%tU22;sDM;+-Q0c-D zyC>pQ-jP?Rx$m!?`#=ew>R`7U;T^t#q*ZIg?n|Yay{t&;($&X`Fzo%$qv5e#d7!{R zd%kZ(%7(^tLmgrjmv`+e7Mb}fnd7xlHdrFB!o(F2RI7$+6KM&9IWfJ`*^y3mHxBBp z*eBel>-h37b&nSMe5>s8Zg{3W`m5QhOjj%dzmVSrOC4Ool~^+PX2wiCUM|Z$yzt?d z-IVw`3zV}vjXn?{Kt^%^p33yU|Gq-o{PV0AAl7t zpmFahM$Y{VjV zLBO=2d%BinTXQ!~FYW_*K3)g2*^u6n*CD2=nA0raPouI|I$?^VDLzh?cxGh34~Ed^ zmApf3Bv`#1z)L+5oEs&7<62tij7Nj`#j+IJqEth;+vN_Z>S-6ywKz@ST%|8fHWbXmRSJ{N?twun*0ce3YlVR@p+Pl!x zY3(9?Q-o2z)Pw9HFD?1P$&Mi+$iv!<8tQbD76#?osLGVDOagnwVYE+l;HuZRChR5i z(IH>y4DegG1XxxvLxG%3h8FmoQ!VH5S=&cGbRbN2(^{IF`+`k<3MTSq;{Mi)S{7E? zG3|j+J3pEA9HYv>v-aAAo@JL{6DYricF|R>8OLWyvVUxAmcgPoKq0xJ^Ej75^(o<> zw-r6Mp>p_<8uxMIM+I7d8!-hfje4Pgnlx0Z% zaC_=s>d<*sG&a#)9ZgRxN6=aw-i!4k4ghBoMs8iC+#JlJz<~^GmfoD*zj=z}Xwa?v8U7#@CZnwLx*Ndu zAQi`i;{NgRx2Bes1b;?Z&8{e@oA8d!yI{8=mYCM3sgu>=<*Yhp-UoBa;ucFw-^fmLA=c#QSgiuL)MUdbXr>J~Ux z`lGp>YE1)zf;f;JQMNmKjG^V(+a3+V=hd#?XESc@S@4J&gf6kSPUUDjE}&kjwLD{T z){&0IXv|eIj?l!07yo_fqy~m8LWF8h6JazW`z+D<^b z3m}(!qz}d6eM)KR*&&6pxavMW8jG@))0=dE80>i-|0KJ2;ftVhKb3vbhnXv^Bu(VG zbac#Br=Z_3JDkQi=%dAIzN*aw$+wNJvAvCFAq4&K12p7{Jq3H+pt7RdCS}e za)AnewzwXE;^e#GKW|7~9P*#zm?4x0Z(H*w{Iq+0x%P6e1+?=~(fF+at@hiB?Vk<^ zlHg9yk6f5eUnJ?>yX!5hK7!4pc_JQ_>-&!;i{6~@_Mg3MC-nuhBi#p8`NgI4nDiCyiY7yd?~Ycl_w}>$nsW$soZk=Oxvq_(kqo>0SUOcy{R-ypjB1gBMpKd zUNY~2O9r-g5FXue3TrWy`&emB=^GX!oe@UTI71ecxAm|fd+TsBhw0*l#yOAis3qQ^ zu|L|(Df{(3ZqkjTQPgCkZD_PG@>`Ux0FY9!gR8x66*H{u%@{f`C*OIu zz+>*Ho}%3)$kr;)lg8BY4rT<-{m^ePT@oF?`-wxY_8psi(yRNts%-}!JwXIK=v|+W z1LEVV7QLQdkl^DP2`-_QxX9%6NN&nx9~1StSTWt}57d=xM1LQr@EF83B=LN_tG@V@ z8B)lx@xo8wu$baC#?Sn0FQqjulrRN5o%+xEz$qjSta#D|ZH0jC7O1>C@7D>#emv^x zK0iM|s934>-Rp0|`EL{}%dJk`eAeX?LzIh=3s!k07V@QgF?V&NXAuAR^SCl!qCeqT zuN=|{&;tBe|K=}CAEn<-MD&(ac6xpL;zM&B?+ex&=A$3bbx4_ZlYRd|xH)aCQ8dgM zI$t$mLPk~_Zu;49!)t4VX%0+;UJ8G!v}^3E)TyhmqmmL=Ubx0V8!1b)N3XABt1E?B zdA@s`3CfCRp+n-H3q5KF!}hJt>Hj5Hqq5Y>_y4KIKU}=<-<0~0I8CMh`m^)w+TOu% z1Bn`xa5YwyJ=gB0IDR`>-UHL@x3&TuV!th9=sFH%7$)DY{c@^BF96%&s;AsraP5G= z$YQY4F%E39J3dsDcdj|h?6ACmfL;b$ezO1; zFr1SVRvd40!G_*|_lVr0ka`cSY}ak|7GKL(ry0HXez#iORSU_P8=DZLJ1^so$cF3= zqR^=6LhNQOiGssaUedyvu||*;3(9Y}k#d;>sSV`I&7Yv60jq&0v@-?^&wq}S)RQ0k zKn%_Vwm;T*Z~=P(VJGCV#JxoB%M3Z9g(*AbEFth?6Fi#Gavk0?g1ej2zdoZEx)u-W zGpTH#B!ge5i~RI$#Urpf@l*fGlT{@vREYk)l7nG18l6nfb!jKLfVtpmUbDSCX{fR_ zD7%4uam2#8))dHvdTKS*N^2%TdD}tXk7As8*&QXCDN8+v6cHh6vYq`xj`^xKUc=k% zVsv^82qR%ZhH3w%(1_~>ffuGsfTAkeuw2*%)+CYcP>eCJ?Wb)P>3OV`yHy+qTh-6H zpR+ZDssG55`N;jC*ybJd10d`H)Ta8{FocdA+0`_!d#}y^2NBrKFdqgdHiPV}lpLT! z+*j+rZI4-lqp&3FP4nj37rd(ZrB>n7x;c;5-&sJATTvwLEA}g%?ZPws%Eea;f-`=m z2);qzEXZII6`12hXvJIqa)45-z_fR(-sD~EiV_izpYdB63%@q)=>`Mk=?39UD3V7} zERln5{`?*WdlGaNzPRL~L4uMp&AGY= z^1sMA8-fX_X(2YXlBk&DAd_^#l~-&BSgdq90VFeshesbhj0}reNFM!n71?=ZB2=pv zA*gaD#lc;H+=WO{@inAo?xDg&m!7`_>M;!%{=EQ}fyEcByTB7B2&$Ky zGYf~cs%k+(!Y+KxbYQR&*e1VVXTW23dYU;}5uY-PR$#UMv=_Clz+9xleHkv6$=Z&O zD)nTs7g#w8kc2UNU4(u$xuXt3YasHIV~W>mX1a}UlqsYRmK|(3M;?V3zj!|=yJCMwO$)XY2WLwu{a>oP9u)K#Zn`H6(hMybDP0y%-LVZ*mIHooei#;c) zSIf6<@s|Z#L!LQQ+E@D{;eOw3EBXE}3n1@D=k{C3uP=C^vJBLz9RnL&T=O z1MudP78|V8WYosL{uM9p=9-Sh{h)bD&k3BNK13g(@ER)OF5Jpf6IJ+23`3mivyg)@ zQ&%o3_$EyHW*!)y23I+AMJwQ>k?_7%``rtxQ#F#uW^q7MBo%s{5b~t%V&CNi=^oK? zFZ}lk4lSbxYBu0b%Xw|8Ql9m0Wc3olMIp7C%GEgM!_Jtr^uo610q0oRvlx`NmADQ*0v|Y=hK3Ln5XOSI4f|Z1i)ae z6&xSQrS?IaBk|s8)^KMFr0tXY$B1spn^cj$MS6X4#V5qMID#}047v2?4N}q!vwV(( zJpzF+Setsa;BPn3z*hGI0AjRxv(SXiAYv4}R%BPXva*sYrro3u{!o+B!59+pcVGf( z=IY@5)_qabeQYF=E6s|aSD!|n$w)cLc`(=MB-D?h?vUEHF2K7-jzYj%*1a$_N})TK zgdloPADvUplwY|hx8+OQNJ8}qg=DD7Trg>uc`AcF1KZKBG8U5Mu=FffKjjL!x5IH* zhPzFpGnKGiTX7UU`D-71OK$Xa!fL2J+S=H{?%pd+XLL5f_vn;?6RXcoRmSS>qiYfi zPXC#S$ZVRUE;sf1oV$RN$!Oww+hHp2MuRm-Q!~Dy4JV)h$L;p%TrkG zqPN?#;UInN^S@K26xrtr>{>pMJHg8wmIOjN&W6@y3Wh{@h(;T^W{NCl_8K{=@!FK# z5Hcx6N9so@WgWrXMLPB#7t5=$V5I~F7;!#Px__O1%307FAi#@K<=HgoIw~tGdD9g#pPdT`#-%=@ac2f(3|p5z-500paDl9+j4&#r7vmZR|5Z=8{$j|37!d5L1%QKl^Cp^D+=;*N zhx${P%~hVASMKtAywr*!ZC~YsHJQa-0i9Ss&cBg#W$bHUS`;6%glybWxJYlMOJ%Y% zvMvrPf_c_;{BKcswqa9wn%%FY*u|0+0xX>Dny`jE|J>A6;kQ}3e7cSeO4 z9T;kq&%$Sk(4O*NBa9r5p^2Qau-?gphkQXLl9wqbW%8?m&?3Vfe}$2!XTIKEeEN|f zuj+%Amh30dYEdgvA+@dUv&|1NMr+MX2mv#R$54WeefNU;;@mQ8-Il!;cm3d~b=}&? z;=FO>E(0y2s=6U2LsrM|WQT2M`MGcTOKr4wa8T^SE}R-=vtnOu-;?;&>ugzBFxE^J zHh4^hNxdEI0*qg4BIoh1hB%GGb~4HlGgXYf^-}e+&DWlQD(bgKw=Rs!d&j_CR~LKS zdN^}cZ%>CpeJCsThu&%;P=siPwA@Ov8F-uXj&I#3zrm#CVh8qr&o71{*K>_#JU1E) z6(;}G>iGOJg4*2!Tx^hYi1x{Oh%??*Y<7M9~f=R|Sjast?_ zg$}ak)W`MV`V>-UmY;l5#lWbhecw4i1&=mv6JH@t$X)HOXD?0(Dp85E;dL9)wQhYw z!`d-#4dv@6vSM92XS|W2W8?dft9@%bm_8Ww>3D?*zQXj?%I(MEpfVFwsb^`F-i$;} z-QxefEHlx0HID#1942Az@Dt-V(K4rLF?%prVaxHI2QrSlQ@?{MPu&-fj)* z{YQ{mO71zeIzf;?W`-oNqVBddOBL?AsDzds_UAXdST_EwbXeARR}8`w4sYHLp)~U~ ziq|T@|L`p*8p&Cr@JL*A>xp-(<9}NOQ+l+7g$)%}4+Y|fPK#wY^0bx5Lp{_S!*J>L z`u1#ZXNMZJ9G@4vUGWpeV@>hpLjsZSLtH7d6_KdC&B3wBAxzblx3psN2uu66IW#T& zLU~qcAB*7;>~PKRdxbDKOGROX*#*_siBLT!A<0zC$01px5Mi_PGgpH~TH_TEu>fph zBuzN57sPAXoJdm+b)1DxQbWk!O0^fgF}e6Qs4ss!nBK%OaB0kDOL9vV(I%azU zQmQRnqJ6ETg%}sDE~0`8mqNwpdol+WH?ZxXBnTT4$p!ZhFKQ&WyR5ZI9N*M8Yf1RC z!7oHEd1xfWQOo`6K=tv#YDCo9M$2~puK)GJT*xuld%W&^JUz=$N)d^_hsjq@3%(_c zEL?y$4d!6kCEjiL915yPb(`U;>sl1Z14ZPUxPblG-?(u48OHUZ#80V|>#ZzRJ?k_ur~*tS908A!Hk&OSykkWr*|C((=VG3^gJ|WR7$ofj`yBvf!g1n^xF$5midZs z&ug(TkGZ=|5`ZCK`8+Pqx*SU^^Qxz*oY*_w#Ew~COWrYf2?Evl>=9?OtIA9I#PX)d zqIiMHFF5LDR;84_AlYHqE53PdTWAW4RY65kgDfiPs=0)ONY%ONG0e) zIy`ol_4gQ0Ouf0vP81xS!L;i4pjti!#dtNA0jqAz`P)`9?R_PpI`hYdmeD!N5pXxmkUpUbr%FJW~4($+FyN9GHokY_18RvF9a_Xjcqv1jjvfG>vCbt z5qo-67bt|#J^VXiu%^WD-!2L|;J$_$E>T`*H=6aVMg6}2xlbq3qHIN&f7U=ml=-up zmTDk{5{G(;YE*=NjTProQr=ZY154XmpG_ipHyioFmgC9zh{F}@$|K(=vUSNG{iU1O zoG@E+*$j;1&=F&b}ZE{ST-PwnDEwJkorZ( z5$kJbPWIEN#~8@LwX>r>qq`wu0H0DuRh0akOzd1gH#B=-rfxF-p zv0F7(c>KGi6u=++WoEl=wLCqPtmZX zIfQF1j8crj59b*fk9|xE%amoUSRuukx)BX{l$hF(_Mh`a3YJ~3yf=u`LftLU?2!%! zDXCW(%`oyX?OU};bfD`tu)>7_t!MO6?4{l-0Zj1%a&XF7MUE=9kS2TSMlEUOyzkr$ zSF}ysgATTJ8xwZ8P04-$E_fE>=L28+w$7I-Fpt31Q|XJle|oQ6&^+3ql@m$zWrK9DyHNrM*Z<*>X|(@RXv?cFx@YJv^-=DfHZ2u_%J=eQ;H zEEZ6=xorI_%UK7JS$m)*ta&G&ggEb{e#xEeyEVobm#XOf^d2H2&qD8Q|BR|7Fn2Mz z-^pK1JNt7M3|Ro|25e#POH4A)aoAxv1%(k+-yY+Vp4B7|WGIpEL$HKYw!mr|ZXFQi z_jGHhWXwo8hNw1b@1<48Le$wj8R->I6yl!ptVKLzy90r8b++M+(%MB-85_By>93-` zhD_GT;+|8=DLIC{WO8f@z>$-!y#JFvgH*NtBshUox2fZ*`%QlT5=gF+!Q6jcMGBQ- zVIFuLQEb}pQX$eUC%2;;l}e-AmKIJqXy})$_ftxuFli&bT?#6-g2PpZCFI-eG8NJn z7Is^xU%&7A-~x_Dplfi(&`aIne(|^3mnu;zrIwU7C)X^J5-XqH+d1-YE_1*J=Lj@2kxguPp+w6 z)c&Bj5xE3hl-8LPQO;E_7sY^9>Q1@R3;qUqWDqR5|~diE6$aJtLg)6-@p zl~q*~uRpyW2=a}6llTD=)oQ2x*M>y&0>`> zCd|B!t!5q;vdy-=fI_>#xs8YQ|Y$I48}TuYBh?m87u#yan=LqYa9`w|!74j(sD ze8T`A`>WX2c9-;#(Ij}Moofqs*Zv<=389t7HRR=mw@6!OCX$aLRdA@)S3r|M{yFyi zel&!ruKpBS7_1O02rKUvh0o-Nrd=|djY_P}D%_6O)kHz`k0hH9qEo_M!zg6XLld2W zBB}JYgc!8z^UP!UFm8MIIFU_q_c$jW?q?_kSBUgYNqk^|I+dM`HPM(*fV=KosA&{< zT5^RuUkXwEH2AZNs~h0kJmmhZd0YQC$TD&Jf2e21(P)+g3YYUUl)cH_bbX7=(ET;C93n`5^If(>HYoJ8SoU7&q_&_vds?YuM^;JOrlX+1 z_mj=^cp$T#};heQc7OHc>-qMwky4CFR-Bd-bN zlDbt!#+su=evPe#=mdHAWwzkHHG zH&D9NbMWu$qRJ=6b)BL`OC>DoleP#~J7(5Kc50~c(7~>kU-M||r=w6R8{_F+anx(y z!=Ov)I-zeH7?SCJ)S{+c|7sxU>q68*0ti(`44QNHQ;apjF>+M|HhH3eDP^OH!p9NC zgT!QSUCsBX@G5V46RjY=SW|gBVDk!Xy&~0;H#)RKJG*IgqnTVX#dG+FC; zWvk45(bj#m@#ByNyz+dHv3$i}TfqVVZ_!6}d{KOD(zH#EjY}-K+-z=co!KSMF@o1a zd}X^t_eAlD0L|pDHWrdcx@<3{QfdAOE!tC-%2w&o7u%U=f9-pa72%cO7NoKx64ir+ z5bj8~uICs~BLC3ki~8cOvsKbqp#<2Kc-|3DFOxP@p!=-BeCNYhd~3D#bnR)V;->P& z4v^IuX@{grlz4C0mOfXBH&(rVeN>QLsp{ugvM)Vb>Ic*h27T&meVrfRsnH{M2G9DS zlQM&d!rU`KiMKyrI8tBX(s4aAW7avQ0TYh@Bi(q;TpsRDeWdx(LB?~7p|=o_Odf#Nea5TX215%Cf4hgAtORn zQIL%yts`P-z_#5J@?y{@m*$b5<*SBjqgXH@v9hu{pF*kH%W}bu704`mBP>2#F59~4 z^jRVus96VT7xs=@6o!P9rxW1FGT(-M3K7W+P0C;~h&1;s7oXw;RSOf7r*H;}+iKc* z1{*!Zb7mW|%*E|v?`;q@0Iyo!ss-YFKxk;o^C*ufdN9WTHC~(x$wMAh4w|giyqq&J zx;jtCSIWjSHt(1Ae>UjbmmoI`ZIn3IfhrCj*$SBO9M|CO(RW6wf{;BZwMv~w&y{1> z_ac1^<%dx7D~tfyP(H~`NlDo|JL9s7l5&+%C z3!|03uOV;uoeoxui%EGX%{Ffx1dsPz%O`^ZsqP>|dzmh-^2X8Dys$a6uSGxn9`_6T z118FTZp!k@8m~drugv*SvI1y&8R(qsq``tKYfW6GyNYfZNU8i5W+r$LN7s*8p}v0| z?bnudecyxeiie$?l_+VSU;8vlQX%s(gr7rZNm+l7$4riL9fH+dNMUc-yJV=h;2en{ z0Qd#?GG(oH$YO6-5f;nD(hNBERXAc(z&6LD-fhZ!YI%LWvhhBtu1Kr5GcRY!xn|)7 z%weelG7k2t;A}`1{J>d6@0`C+qaoKJrZZDJWe$3!;rmO@%Dt|g zSIgaYdkYJa$}IMv^A3@Wm!*9jd3rg^y!Aj*Tut&YJds>#K;wfYaUbggPzaa^xp5lZ+< z*DWD$Nm&(QT*vDf5~_~ohvdYj86`Er!yhEXO1#HQdDkiS5Q+Bv2@^0p1pGVwvm-(X zm`NE^{v^|2=|kBDuRM2*VHv;qCNO`1$SHW0S-|kbeim4Q`$MI{V5y z{TvGV?H|*31vS}Hk@D?ynUlAQ;3T9n+)pAS?WYVV=dZ<5h7eYLWRp>Gt%6Is!jYu+ zCxmte=pIUYBxCv=3Kyn~*rWfDKfiy&F2P~p$hK;vgX_g7iD!OQA!QU4jtBl{dZcwL zUQZd4AHt+er_`_UtP>^abzbJI98;sC*VKAH>wC3Ka@mClP_y+iws=y6x|5L|P;ywu z4ld=cGk!0Twz2FpNl^9l5FV!z2Qeq>vGlH&L@;U>i|*t)2|fJ6Pa3{UUjbtpZ)a%v z6=`Gs_iIB!3JSm+aGKXOHjK63c+QN!u5ks$=jlK0$ns2bGenCsKiL5jfcMeOZ^{!H zP8LQ2%i2%|!z4s*V7zrmQro!6o#fPhvrz8O{y2r!^mc*fZ3iJ0sQpw(AH2*Rn9TW8 zDXbi&gJQRTKU&tu+Pcd}kXAFRE@Q1{|4kWh2tQsHdYHh;Bo=ht+ZKB0qR{!5?mz;^ zWxc$I7fM9*F_cUwUmg^Y6Ro*f)NQkEY|~mo;w!?+J-45%fP9OjE_T(jfr^1_STe;%WqJ6OLb<>AkjcHao_lB@_t1Gk%QPc;F z`7$T}W-;t`A!bW~A3~guZznzlkYI?IZ&jDSf2rrN%BAVA6ULP-WNz6_p6{laXM+y& zQu7`&Q$wqR#;2s@wbY!!j;rxb)qf8%fEYLGS%-cT+5L&)H4EOL>6^vf4$&K$nV0Ii zWeq+@9U`{AcG#$R2?lQN64cPn-LyF!q-r9d|= z*F>o#>npj^-4(wo+LqmdH)$_e)t8FiP?7KzdP=!mewYyk4<=niYdc>3uLtZW4Ql^0 zl=h`Q318{p>g;YqDQ0BUO5KtZTb$rz;M_a8q~nWZ(&11>yhD(8Z(h)vV0ky`Pzn!1 z7afNf9I6=(zAv7e`m2j`LG%Xg{0#JFakGSYYa3#?d@bEWW+r9pFAvq46}GJ2tT;MS z^Ic*k7Msb_h(IfFoelYSFE?5(W~JMfaua3B$je*3l>M|Oo?tQD zT?Qd;hCMT5_sf=xU5!yt*B(7@q5*dn-0ZK~m)T&9h+$EE@~bq&s5&%^q{A#QSa|nH}P;TU)aoPk=Ky*DrJk)Zxo;)&`Q(34i4JbNbEEA5G^_(|) zo?M{syLW;c|IJn6EuR!>TQA=D4AFer>_m5YoL$mXHe=A^V0fH$x^{7`7(26DKl4e~ zS}LRtmpPIiD3CqcZ)DhUrShyJF4Mau^+OuUAtfpSl~-W7ItO~!RO zv+igvP_L_O++XFbX))#Q%QCJT74lAoFJmmbB0rp#b|;*<4!bgFT1NV*rquJ}hDh?6 z3;Gq&0bKghae3kCki3QbHM3?v_}$_U?E@8MoY@iFG91bdw*wZg9GNJD!mSkxQg%4( z*pXiNkrv%A!X^W6=B)dA?0G&6>Y?=)G-g}iE^$)9KJe4tgIR^$XtP=IrEBo94TEPz zSCi3T>x*6wvfEpoZI&PYH$|81hu60|=)=GR8?jy{9_5dM{!VlygSu~xMR;$Jyprcq zYXvf)Y%2g`nE|fU`W&9BLK*cU+xn{f7|kt5f23G6CoSFzcznV1JwFJ*8&aSz0RI^I zHXWKO5#9Y30*PU_-xe0j9@3cdJ$C|w9QA+Sod9oB5%1;a`bNrs4UFz8B46x78Cvvy zly_GhO_BCJZ#xNLgnete{B-nX?deopK2w%FBPLRU#f<Z>|cw{e%}3^%H(OzB_g{#B*pWsXr3 zTt@D?>xZ2*8XIdNr z3q>>ks?DM96)x6ka|uDNSc_xkDrF`_P(a1jr%$*@vQ@ohV?as?WgC>!he)1&sW?<} zGuZWrS11ZzR_kQC!BJ$V@&3U)f467cZGh~0?@ayRwuctD=pZh|+SZ=FhHYiPYc8(- zm~__FtT|cy<*9Io4I0qdn~mFq(IbTwQ|5)z!&=dl*tlx}_^MOQnC9E{@%uWC}gyojNklzhz@r9 zWhbQT>{`D^jRnkwHICNTy^C+`(I1!x7*=qbdN-enB3B6E7?O70IvTp+= zJvHTkIZD^g%nG7Pvla<4{>786wX$UP!19$#MBsG0f-#cQ={fNVl4cC`&LY_R0Br)H zKNh~ictdfCg8roJzo(Tfjr6DU92%^AH`*@j?>xGpx1&BX?(omfKB*f2fdVW#r7Hzs z^qXrJEW|I)6fvcG{Yk#MGBxAensh}@SIGa8b0_=UKtT9N$D}&jh8x$&_i>?{bq!%7 zC}VOcdWuR_^fj4_4x6hGtLaspcVyo#TTifJM@ah&lw#xO_Br%bFJD4Zj3m9xzrvWO zoRUt#HT($O9&f!J4NFxn$Bt}=EF9gt3z&w}4S&;bt3GH@SK2 zj1Bxz*}wg%+5pXXWj11t9Qr_@<0j3xYWOC*0K{NNLcN#2JbB5o{wRyz0N}BoubCev z)11s*tvjW&(Hyv7d56WAy^Gb5`@?TtQrEI5Gy41LBi2e`ck1hAd9LmLHajkGd2}ep zOqXqTHAqWKZfv)&gqqXeZ2jC%YMy?lcQtplXp+y1rYIs{B$%sLe^_}wOPM3$B5PT; z=!~I+RAUcywOixky0;M2Ft(ju2UVN*dMn7Go5>YBL9KUkIDFHs8G2P{{JsrutzV(y zLpf|(90Oqcf7?Hl*vfY|K6?#}QDmM%{y!&8_=E(AlUVMD$6Wg1NOtRaBCU-mGqG6Z zvhaRhhk1RWZjRB0E4)~t=3Ub^>U-f<7*joG?Y2p)?oJ?$x++7*jjM33}JB#%;D}NpK{^ z-=OANY?;3bsVg?4sDXVp3kgFi6eZT4WIbA~n&uxHdLnNi(f5n?<-<=mSi0uNNu#Or zg>g+=X+qU~M^{lnar{ccx)OA&jLnpNcKVwlP`F@og-g>L`l1tS7$UHwbLQ2D<_3_W z;A4tz4PnyNoF63#)>8F6>fDB2%`j<_8&$lc+cfb?7fVIBqDISfiLOH|(N;=2tt+V< ziC61VH~9PyY>Ws9t5&mDHjlMlx@u)0Z+%=lLR(`^ihIo!&8Nv%q1jc*!$p|{yUvHG zo4zknKW9+hfi38kNgl`xmei1R`+cXIWpG4s3cFaTMh6n{5?Ry*Woo#b7yBBFWuJAu z4&j0C@s98RTglHpI?eizDeC_nlt6TU|3Bj^|33*0_Ronx`2v^axiiHZ9P0TTpc5R6 z1o$Pu*UlkI#rhD|x1iru2RnJwQu^N{L?KCQQEvC>Cjnd1@{I-4Ar{x&43ZB4KXT4z zvYmxaysgHCVkE_j089@+B#_0MPXN7BCftnSAX0pAZU5XOvtMOzg)nkFXE?==K>C57 zoQ$7H2E!zYj!zDNrqU}~si%j=Htq%1bBdlFLg_8;UQ>^9`;}up{DC;j@`p-&lACVv@!PfnTwFW(Ppn=L@aI~W&rJDs6Bdwhd3OyaBb&qJ}1LYEU=@n?LyGBL7o1( z$XfA~J-JiU<4ecCf2fsu`YJ?j8t-z}Ql>rwU(B)D3hw_Blm)<+Q)38h0vq4|6#__g zxJ6^cD;y*4GK3C(JM`x?DA!>K)G?;90CNQq{o@TE1{}Y)W3To)6)ZpWJp0DVyBgVi z9Cz52ZW0u|+mUqL$lf;9tWnUUkrA+hK5-z22z-SlkWFBC?iERRIP!=VlO(Z9>x&qb z@vCfM2a<=6rSbQQ#^*=%iWQFaUblj#uiunR+p2DpQm?PUf;AiV=5`piR@*Hu^&?yB zG_4=qmp5W((B_yib}s$;s?qG>*0PDsLe5ZNl#&Mf7TrIb)lCVqeQ`T8BA#-oe2)l6 zvcc`{xPW}|-6ec(J25MU$c{CD_q?G@ix*vvN-@d7h*YWJ*PY#4## zYh5!OR8^*aJO6jXE;J&ebdy1$b*ARM%DxE&wa zr?8{4@YLI}*)uSp69cpKc^H^Ql<)3x)GtFnJw#l*-KbQxM*-obdpyR0P%|Y=WIWh_ zalC!F={9?9mF1ZE&LrFJd-!dMX;wIlzuP5znyZ_$3jqXa)|=~BhF@@c>H_iin5cMnBt_=i~A7tK_wRBJ;SihT`RHh3{#^}e2fKR5WkE!X^IGuH!{ zyEl*IWv?C9?V#}WlMBvhhU~E8PB%}3&#fyKG-%SS*Op7il+qen^4vRKq*KUgGYHr7 z$_D#zg~BDQ$Zqfu5wT~``lw;$P48c#$iq>c=Q4gK#OnEy#~s zNS(TVG7@!v0bX+?K`C8(eRtXAsS-{dcO!x(uQaTUNuE>4N|%b3cIyw`ET6iyp{^F~ zN{EiQb%!(@tY6Z*y)^VbjPXGs*T~JdB{_L=V(GE!iDAY%MM%d?zA_C9g>2?Cftv05oI^y^+$4K!XoxDlLNO=f@+4SmoY8DWIup^tZ1y{`R|zRc4+;!Ku%G& zMFw52kH7ni8LWFYX!AV}t_=HHf@h64jcjdbKRJqF)T~$uJ03W_FizT>_d)IUjjGpf z6ilb`C;k9FPg)bwDRaq{b}@=s)#dvrKMu@GoGU$SltiQl+ zyO`9pPm(Q0{KV;XgGI;NA913b9p~Jmz^vVN3J`_JE-3UlpBdEm23_dBcUM0r7Nu#d zA|HF}1@=)`NC3sfAvf#PlM<~wg1~f|j^Hu{h3^ZROaqRwgtm1pM9^RKG`7U#=B!M; zw$QHvdhz7uLbvPOYw#<*X7o^0EO(4(GVIIWa9F^TuA9ks1RPIBvppNCGfI?=7O>7F zi4@{JfPn$taJ8Td4;HQ{?!AjV`kXB!maYpOT9Ou`Dp<`AW~BOEY1aZF4d+uU@phpc z=EjPv-!M4uLj$ErxQm>c4ZRH9$s%NXboO?5t6$$~fB#>b9F{tMQoR0eu6XY5!B<*4 zC3Hr@{jdbGY&V_k3SFD*iJj~cU8KzPX?Fa~PzFwWy?7{COQEc=#Ry&G$b)0&-P{+z z86@C4^)YMXCIN1n}jC2j9vjwQU0gWaGfdaOn9ldKiY0bccbN17xuf(tDAs;bh-5`yupL(*PYj zUKBlzEI*(qTfiH(-Tq}FnA5WD>92+$$G!xK}V`4BM~9x__dm8B0|JN~&z z2LuVG$w(}TNMLKk!;PAfA${22t4$x|_hofAOr6NXw@ofmnJ-ApY)7{yeXjG?la>C# z3sGbb!KWvG(XVNB^vJ>*mc04d5^K}rGPOYFy?+9%U=DLm+u1^jjG^D6@bY&*Quf^i zMWjL}q^xhX0mOFtH75I(r)h1R{xw=K>~-WXGbmR+eg(fv*@*)?0s!Mzc4A?aSeAs7 ztj=;8$CqhO*LX3~l*6W{w#*95gX3<+)QSNODB(1O=4kkhrDrD#+gxrr9M*jvLW=RL zI{;DwTUXY&b6v8$13G%B#~f0Voz$R{P3!D^>{jLVg!N;AT+##G?AKT*;|Al9qHcM^ z;m3`F@!8?hxU@v-dFfc!xw4w;Kr7YA`#j|AYG0Zt-dBMRM_(X_Hr5x+RkSD38`P0BJBEABnFxOt#Y@Gjlb56lP5N!# zp*ewly? z@c3r&3A~7CTI{&fo;lDbm_gq@vGO+s+j>j5(o2JI6FNb*&XBs#6;L*QH zT&`>~8k6t*vku$o*GAw4mPQP_Ryo}00kQeG&*T%8m2&XF&!NBPza5@xQr=hmXw>{U z)og9%)>I`KR)bH{H0^(}_f}z1#c#X+&>)RUr$|Y6w}?m!0@8v4(%r+*pa?@Z3=Psq z*HF@pAPqxzHw>_szyGz*-uK-H|AT$9kGO_wV$E8!zHvYI{duUE@L9d0fmE|0giSQT^1(4|qcj;&q7V%TdmY5Q%?qpN>g1LF#Z zIU6)lO{$*lpqMhg3u6CtGc4%`gur)-*8%!dQOhmHzor**BfynL7 z?-+h{q&((r7M(|bAD={@0J2-EJ!~6LwD*bFy+}8q%bzp&&9LERmf8|Dzp>2II9d$q ztXsE`^q%W@xEviPU(&eTIUmj*P-0ilxq^w?R)9$bQG$Qm{ zbq9{zm;SM->VZt)zx1_;DOn8x9JqIXx_JKSlymj(UCp4U z{jE|ub@~FZKI3xHK466`7Pw>HB7r`OOSAHo`ikAFohR)+(|_kcKM_`#lst>d}y7W68cz?aH%)uxFPojGO^M!0*k%L0R zIJvJud@>@ay%r470g0s6i?JR<6y;7VF&4>@deS!d(obQ$1>vFkR`nN6(8G&(;AW>< ziwlo3h-a2pZufeJS#@WF_Syuc6wSr#K+oFhGS_uF&`Kha_C=Wet0H4YsKH%kXMB0` z1VinpsZaURlcE((1TFa3GJd=)Ip%L!=BBX6?>ISji%wQ`xolMH(i0bk zHVk+lKsRcFpy=hp1YMvRhRxFVN{A*v^fmIHI7-Wq;8jGyJ6 zsfU+i(GMm_JmQJYJ+bJmMX%Kk#6wl5qkwQa6kDp^FbfKhcGKj1F4xbz=MXO!!X&Ac zeiE~|D96wFD`8yjHQN4zJ|z6!=nrJrMS8yHVvpA?l5Spd^yJ_NG^f6Bwv99S$wc)@ z)t(gP*)_KHb;Fd-1D?UQJIqk!@J;a6%b9?m+cKj87yzdh}A z-xTi>YtP-G!zOnseIl2q5eXeqE6oK*q`ntR^`$%7(po~Rtxi-Gdj|U_imiC)D*c0O zke`B~ZiLo$i#~tLbRHqhbZjXG;!C8<)z7cac?DtN?$&Dsf_uZaa4hIef&2gDzWV!r zSStOWxG{X`L6KSxCVK0fnLt7*y0tcD~rWMLcS1^{^&&)~La=HRi~Epq*qQIlT^IarRyeOudJ`{QpJGRji`5F5FFs2OY! z|LwX$1LJ4l!_6*sawI={5ALnLr3Fd}%uOd}M@{7bSA3QZax*77Ern=I_ zL3g)Bz;XZva$8l)M{EbaLeIcA`Yzv>Klq$Wj7rCFe7E{pH&VFD|Digr-$mVIyv5)P zFBL5I1M!R}u%!kF2GeZ-1^ge$08%%T>1kYMYh6Z&+bAX&dUm7Y6?rnLn^PdPuMKV` zmBz8Fa{%ZqUH}yLRy|QF#|f}B+(p@v%}bwmC|cjl!KG1|$dLL;r(x;GqlUmcN&^AV zpAM~MBqwQd!xu63K!4Kwy(Ud*6;eNpczZxA(xt>u<)zy3mHHzUUvY3j^ssCq-d&CN z!|xdkV2+G&U4Uq2rDkfi%*#{MZH8oKAxrA1|IAxWz|^4#mJyyh%wLAF8H9}UAD*m* zE`Oay0H&JHOF+=kRZLUTRf3jIUpg5D8BiNU{mWgJEfvcVx;sC5p3{h-%XA((ZfW zRB~0J)-?b8&*x=M@0dnYB=gpTewic?1Q=gFWb4O~!m%7s2RD8JQrx%*pvv{G#hhL; zf*A;pwiNCFW3{4r2toOYY<3&6R)pn~@AHgaPq_9p&qpBuz%oBS|Jj!3JA)j2x@Txc zpIu+eYGqbu{!b4*CjhJg)Tviml@)$Q351}Oq0GJc>JLF)mA)^_SY|lJ(g4OJW>_PFN=?DET|D{+Hh@%N@>a0b z!lIW#=;Vs*H`oxeJ(sPNkJ|R;ehu`%kek8Ult|XBu{c~*7 zdr8iA(X%rR4FX)WOWZwtV~aOXzR)o!mVp-2<0L##7)eWyz}3I_CJFkh9r=;s`a$F4 z4&Ri=GuOINATJJxIO9Ro3MDc2RlfWR&9BIdJ*Njw08-p1n)OzbX~@GF?9}my`1r06 zl^du^*718jbS%S&4QuMM?ashKf8!0!PZ#!BHUvBw7we`6&iZB}0|Qk^J&gX*B5Q#@ z34rg6-}_CO{nfpCB+9`qg5?)6XJnCoZEP#B68$7A{KmtdMt*%p;k?h5cT?k)xJ;yK zKbP`a9nhv`|LRVYPOGj>l{L~;!48Ce;9mCPV>z|M2Fs0`9MPb(dG+jn1Wl#HK_-0f zD*AVMmMPr1hbMR2V30H&Dfwp?q%G_6^byPE(N~EaushE;_`am3|J;KCS{s=)Bcl6@}`AzN0vDtzregViUN z=%2OU43PEJtL&su9ZY~Re8O$f>YiaO!GYukquo|0SBwG)1db^wa_{ z#xHMNdbgHK&G;XFc8`Z1u!^I@*{d0H<>gD3fug4BI;R;rXupCfRQcutlAR-d32W2ub2iv?_L61Kum-Rh9LmpP94gDrOT&S z)!_h!a=R(vR}cF9m~PUyrrut_g*b5cvD3QMrNJ(_&ZiSD*W|u=?ewlT)L6K_1rc)1 z6j3pghv#O6N2SFi&MUfU^4=e+@3Vce{n?gqjOdccrt34yAAVx+?eZk09CQ7QN3DdX z6s)4%SHdyr~cVj`^hw}PTOpqK0G{D*Jkvi z>2irpD?Ad(B7_N$Yan*b)AIWtwW>lXY0$w$J0gTL;D<&lMUzS`303tnnl!?F?;kX` zBhco(rc)$RVzt6y89rX!M){+LN$c6Zh86|RtLtluj;Nm?wK6Ru8=g6v1apF(AIV~r zX;1iO+_59|zkJ!solD{E+q|ME$`4_ETX=Z4ORvu!&uF*9m}>d5$Yz`W$%CStXeyMB zs@VjCZ<1=Lf%afLZA6d&-{#6Dr~JdaSMT1Y<}?FKGkkv^AhA8;Se5}zHK|#G2I@oJ zK&(q^@7C`sR>uDZeQ+3h-J?9oZSeFs28H^+UU z6#U)eU>SfK`=`B=xt^5`df($*#dPBQPS^9{t1KtY8{eNq7|r{Xz6D5g-wJ|vFXptv z8l;FLcGNe{-`qWo?1ggP+6{O`5OC+LS18gVCrigCJ@wb~y%V2c^1i+dp{vh9OE}J2 zZzLR(hqD{JUSYI(eq;Tk;A2|7GRk8ApiS~F>GmzZiY5R;=TLuv)F!QRa}?d$Jd4O>)?CwcAPYxNhA za>7sIGf$2saHS)d=qtGy5t%Ujg85kna$8tpR$kb<)JWv4KAq_Ikk{uU`;7pviC=w8 zU2&;mI;-ivRyFRZz960Wf+1 zJIuj<1gd|vIbd8`m=u$ug#vp`sM!8p=HFf*>GbcxZV<3E0z9mhgb|3>a<2=l)J3^1f#TwD}@ zfq4Q*4U`21&&6hW;eOzLVzasB3os~vL;9;s8!G!(y~nNeA+}=0rq_J0zN!_-YyuTC zEwR`5tU5t|>vAt6D@?wnx|TX9umjY9e-~^ENC^Nhr!J$}U8qdeoIj`o47!@j``)2e zsx~%>Y?RR5?^CA*#T%t_j}KRE(9iR_pMW|5(9L~$I}PBA)dSw)GtmO?md9H zI34$EYg=LLame2WYqqDF8Fl1xx0{mn{Y>RTwyUT=B3 zEla+GZpoBtr0JxE)`g~l4af9M*b`0gJD^tRoXCqGhqTok)?EMF=)?M74fbKZ?+LsNmfGJ$slfFS^^ zn6jx-&zeN6|EvU~c4sfVB`09Xgnta+Iv#nJvrd&8F{KV%80o{RR12UO1$1E|wa!`jtV>{(yeCUHLg zqZvFrs7({NZk_mFBNx(bD z=m*>f0FgX$nT?7shnJhI(AJLdd4)VR3IM+l_7%kVJt>g^+%BgF^Y#C53C8o<=_D7G z_xuSQuQn2Oh#{sAmp~E_AnVLYDfm8L`|RC6Vzh%UwD}+A&f(BmqDY!>@!umTvFYj-0WvtQPdpmV4qdFA3*7(2LO&o(Gfu80Rj*&VMUj3?O8vfLB3BdEdicp zuSy{PXSH+*c*@kil&-R04+)Kon&n65`q=`<>-+eSF>+Q7_}m6ffZxe!+r#uD<^3f< z`GbS++-b-zRlAE)AbCg$I>rx9{o5R}*@@*q`W$E%cnj3T3APW3vs6-+U8MJVNi;vt zl)yg_P4I)CjeUsH6M)SLrsy9f?%lh^td$Uu0sVi)gaC4e?!*1^V=K_&vCR6%6|jN) z*X1cD7f|}%^!$9H!u}eIKGS4!F0f$6VZh(KLy+)TZZM#(aHohc!SHuaSfk#9CV&dR zgY36{tY8w2Wxk}?IowKb{vBJjt}}Q(S(A78)%1-w@k?yfJg=$8=akzhdBT!P#czPH z+RxOV>BS=hr9Xaba9O&rs1m*eGeol3e_o(MtJz006Ls|vQz|SIn8<6gL6Pv#oP6J` zCfa%wI7i*ay^tUc>X^Ac9prX$ayl_RP?|Zq^1Q!wlU0o6)4wAXycOGsPFx=g<64;F zp_|rn$qh|i6H6G~*_8KuWLtN2DPAmGx5khC<*uu6D(^TgG&Fd43VykiW-@qkzN6)P zvynt-eQjuDv~qXUMz+Ipq-z%idsT691t;}h3e$4?`}wWi$*MdWU;eMTvK4nxbnO}7m?ZuTaz5i3&7&kg@&Tl#-;Yw8OC5;4R z%LvW==IhJwRD1?+R1{UWz6n9TSJMjcs?ZKm+%rx z7zw}w)EN%IjfbadAsa2Gr+YL{119&Ge?DB@pq_ew`^+|eI>cd_O$E|hpX~!f&~M#TJrcN4Bf zT^f0dg@mm~PPIpkdhWoNnUnCFwln9iyy~4{b75a?wZMgent637pUlUm0U%12>-nO` z@=6$;A1kS`^P|l#;?uf3KP6mYLErF0lP>k~(Zj$R4Sn3y^s7g(^T!EQ>oXU>$Gi0@ z^>MGQquVhX!B&9_OWG{svoqM-GhG9#%&W6_KaI0{$VoTZ^=?VUZ>dGBbeHSc{@s(u1YepPvd(bD$N?uSPzbYqS9c z2J1skWzJJ!+uF@X)@YM~OExXVdtxoVH}4lpU6w@@6yM8K{xwx+ZKH4c2E*Lgcdl%Rkp_*8-M(Z2!X(Sn%=xr*}9R9|NKPckd2-B;Ege z`G0rv|8Ji5vYim=2%<+j4&n3$P! zhZN)zi2HAEmWW^bGyK38M%R0?A$nS+Y-P55R?I19RK3-Gl-k1x$;Z0h4uJbsH1hBy zRo_epOMB7yfsiN&+aj)!zt>aK+$XF3`3r?U?P(>P@S8PuO0aUZt+c@PRA@WiCMITUQx8*#`VF6uy=X|apwnTM;&?-?`|`sr4w<_ z@^w5?!+tIdoXdku_s+X$zxZHc(perj;fa{QMircVb(&y&`d{(KX5VUk%rK_3L8q)@ zYSly=Yk5pyDEm9?M7zG6394pDp3)YceOux6+!!$q$}~=2gF!Ax)VW52F&DX)THxId zerGhskDgk_c_$U1Am@GJfxL%~-@II#=KXO!Hwp5oE)kbFi2cXH&(W^m{P zvmXtu6_$CXN$~Bo;53l3qR(xj2em9=qf|lktE6IM@{}F670zT2N)~;R3cJAYplc^> zwsC;^v5LJWngChwW)9Lyb#Kg-0Kh=NV3J*1WZX`F?FTRy`5(>;*^!&|%WJpZNk-q! z*0_BA*Bf8gafMBo%OKAm;%Vty`R_bh+H#t4E(VZC!S{lx&tjrdWfU7*vN0=-CKu1< z*q!^XVicK#cwR5X*LR~CCdkL)$)*>&h@yK{#*HNIQ9k=(r)ENJ2YYRTKK9*IO!mm8 z%X8g)!>1jmZm0-ry+ub(LHhQ#`zdmFi@VAgCm5`LeK{|DJ?zldYwuxb{8oUMu9}kb zgUX*O6OV*$Q4*7~l*vNZO0R&txZyn*<9OKmi^`hgp5#Q+zkzVltu&rRR3q$j$qDt& zm@l^!^Q`eo=EK;hc3kqWkOZnVM=!;d0=N35Q9-0URA|+&90XN!I!eEzAudtxujwm9 zZQM~%hf+2BZI#*!p@qYMvdEWL^XE5P4BUB8usis#$lY(zjJdOo{h*MIZw z^ej8oU`|rJ?RT&Vu-H((`TcV@odWIfZ5;KxI!h?Yw=3LeBv~$OX!ME1XMD%po2rlG zo?7E-JpA0HSJrHDBW68UIXa#-um%2dI40GkWwXQ`TPksq`sp_J7O^0eceOpRr-H4J znMlRmxj@M=!seKh(c)sNdA**`#m_l=5ot{_HQL#GgFm9FQIwc}27p zEr69OIA+_hO-LM3mwV+;hrQp4aXBtEut9`1XC}KLwS(1fFWzWzpPf9dRSi*ZDXEiE z&0XT3()@G91U3Ucxx}R9w=Op<-4-4k($FHhv`XiPyt=-ld+@taV?GB5eM+{FnI_n7 zGCv8ZFey7eyaPt@{Fj%Kh$}pZVO=IoyD)7_bJwc(aK~?IveRnZZ!uAUY3kyQ3SYP> zhrJZ3&`S3kh}7|AsBq`r4p{MkB6MkUP~wE|wgV1`lG#Cc1T%y(h?`hM^Wzp-`18WFJYEFTgb-mjJ9=3{I;I zfWlwJpHRH>am{x9Nq#B}D%_kPf|0U@l|j36R3&@3>ZP$q=B79*+gSH|{` zlJV*Q>Z29n%ktcW*-EBZpeTQq8(aABlfjUi^8xc`L==m6G(i=MpMRedh~P1VTaHT` zKZy4t0z)*;d(rikhDG;epknmGS(0XB8ka37m3%U~1Pvem#6t2y(((Ftw8j$F+SNlh zF!=nz7N1}$M>XuTmFMz?zC&~OThe#b&=FzSOAxRYEkAC1ba*6uSXl-e7!Q$==riI@ zg?7rB2^|&TPoNA}96y%d~ zD`k`TEfg4E`1_(j5K}zyAFjhbp=~E|hN%}}ryp7DrM-X%FArs}xTGPso zFzHy@-igju|2bb96}_xchaHb_4#Q-guv4Lz_x$WzXoFGP8MsXs0V~P(mew->*?2huiMOkq=iDWE-D} z$a1T(PMzM4kSR&Ip;znnqDGvFNV- zgnoW~e)D>ho>5swS4?pRt>uh?h*T5H$CgZX5@(oVEZu2Egvwp!ksyC~h;>6}SSg-b zjpCsha>0GP5y3)8>3`h(c>d&Z&*YJ^;+M?CH$Mw=wpqG!DS@ufrfrqjmxcq@X zDloKkP#egud^k{xN!_%m8?>FCO^EH@xmj!9+9nK0reC&~(?J(|K)l@!g{9|BpSN>W zmWESl*zj|X3D&EIKQG!O3Ge&1-c+CHNxN4XZHgZUuUH|%7F<+CmOxzx+K1(m>3NKV zEU3QzzIJR2Nf<#ooIgHmZCK&d2svk6P&41|ysU%4os1U-{RR-#DYL1({*}iRJx3pA zB0&$skjJF!ZrxE@0niGd#nGKOJRU56Y940(iQ?G<{h9|WMMW(l5ec2kISVx%{mKyb zn;t^=kpN}fPi#XgZ8y=%W%4QdjkZzEuvIlF{X&LMX{Kj#0rKyX=GRWq&K2)dlV4b& zHlfYWH|Jv%Tfd^@G-LQMx2mlYwzAvOf;tMpOMSPC)&@hpvpUqLPwrs$6lpN?%> z6dsBSQIgyFl%XgToDJsTO83~os%p0|$eA>9BM6iJ{NBIq{zCXVt?j1ybd}te{4V{x z$rpQQLQznXZUfpLu}_hmGMmmO(wMB0>wIukn`e*Jh2z%V(&@oAjx!w&b zT{5)4&@evGC!TGn5IO_LK)^%K4>%>Q|H``py7OPld=j2=79;y|*g`Dr9a1FMo*%db zEmj~|PsKKi(71P*G{U+!8_^-A*Nb^2T2z7BOf*`*vSE_&_DAIM!v+hE%r=yu?V%0c zv5dS}P9$?N`Q(fmFV9e+z$_i~vR({rsAr^%9P2i1+oX?j%Rv%Z`?3Z@+H`lY zR4abJ{Ygd9537yMd{|_xiPDq(VsPg&$8AXU$J;eDBJb(7 zg9lD{>%-b9pov+KM4ztaBi1QHU;r2o7dz@Uyn(DC9WHE|A~rN z3R=Ewj|ApXk8O+W;9-i~W}+)iAkMjINq8*7-wdlP%ei0Wd*j|_6ZsS2tLqbQPjsdy;C{E@Jfc4H2_?fbhpZu% zo5tTFx^r1Q5{gOj?jAGHHV%yaSO5UN4;;jy*IBHU!{9I zrfj<(zS`*a&2+a|?Qp4KBY$<*Wamim4C!f@rH;whb+9I4iQQwLe-g_dS(S`M?P1!F z8zm>YTK^o4i0GEm>*q(b;iqU?=%>FOxG*xb-Cs1&m^Y;S5O2FU)-6vriQ$fJpwiWe z^*qM)Uat{JyILd~BiA_0;zO?~$P)+Yr67J#LC|WlUp#@)gu$PUkR)c{$rvs)2jM8Q zdU&B;uXZ!;)9Mi%EYeEbLfYvZ5>X_2!9n#EqgBoL!ADq#<0u~6!H07P$xx42{@AWS zBfqZ_wQNhmm?4|b9j7#KaL+rl?uzPLvG69*i1cxH^BTG9E zeQ@$|X$Pt>z$v$54#Vpd$>){)(jM@ZTxB-F+^q%mmWsY?0q~`G ztPS!~m^Cw{Da;vl;ZaNQxVU4{d_)M^pxN%b^1Thj@4#u4>WJ#7_glrqtb~0OP*oJBTKuZ>RIWfhmpDUDnwMl3f(`}V9R39e!iX>HOZknWXQTlFRyUFUKFl4zP~z3 zB*V*5Dg2W1Qs?Z?4-$RD2>oa_D4<@n1@VT z{jvNZA#Rg1L~@G1<;2lpP`QyS# zHNsW2psS55^^PW`9+xME919$ua>G9>KbEus{Q{wJM(T*+Gy`PV<1x#^5*G^_6t{r? z_Uo(D0-+@FS3wCVGiMFN?RizQ_wgN#9O@gsa-pA>P4EKIc5$Tz8!>(q>c6akzBQHs zuUDQB2pLFN&{>67vriF$~6;84b@Yh_&j&_Ew8xU_Ic`?;afVB zOoeNh=;tT^Dl3$kL+}&1nxhWo2S{>z*ELv(Py0>6#T*aKKvqj=hf*864InJTsd)E-;;7`GSIOk7UWB0 z$Ydbm5Yf3JyJTA>VQ22gaA)T~6;&w~&uu{Goql8PggQEwMh{tVrfpwX)3uG`@;oWA{T8|ib8R5ofuIc}4=4!V*yI3U~!A z8Ca`}atp%52~gg9WN{~|O{#2khW3lYN=;WOqbqm3T+T&;xY24O2~n_T84urz*mExM z8ajp{OvvqnMO`*lmT_*4RJpcpwIsg8pZZPTiaL192zvZ)FTms7(pNV0=VVfm1Gv~( z%GG)%l*C}+Z_FjPujf2djGAX@9l-|WUzRWk>ELDmrHuTaf3CtL1VFO?wa)zS3EhhF zXhi?L(yZYtK$^l&x#qZZcrttI?evtNM*u(c(>uLC0%&vgtj-^(r!j^1E>?}{^UPoT zZV7M^i4slf4Nm06%8d^0yo*-PdwV;=fYlm5*rVECFLy}Gz4esTIUAMS<$zSwh7zqE z1-#8ti=K>WSWt|jkBZwk>v`1C{A{~Pk-c}3wbrs$!8l)kUI}02-R^Xez`~st!g?~ zfEP{W2iZxhj`UD}Cf~aZkC-9=nSML@+}c}xQQk0Zj~6N*)K#fsE#Hd?R(72A$PvN6 zNhYa96S;k1Lhf(4}rJy8@X-d?>ZJv*m z+MMCs?hTW0_?ZFDgTd3Qe{nZPEJIE<0R<`70cW3D&dQsU*QB=0LqTRT+k|mA zUO0b_p5EB31g8h`N-zFaHmBnZz(SK=YmNLQu=ne<;LC9_hl!EM%qG`t#37EH+L(s% z3gPP6Mr*t?zOtK0dm#$cD-qW#p?u1jAGQ1Cri6z(Qd*gBq`y(8_Y_Htiol_Ms#=vB zt;?6z^jWSsU%+uF0SUCSPQ0bxj7^)1u2)AI4t*Knc=3#;=9%;KW+TNnxs>=Tm1yAV)ZYYjEvA`VSn~B z#V!LP36WvOx?>s{uoUyB%xA8hcuP0*E~m=PC@n{Y@XOgFuf_Kdi<%El?gcHF#m#-7 z_##Km`8@7kH;9hA?4htZBGdP$dLVR9hm~liS+oLVZ6osesYQW(=h<&9nvmsMAL;A{ zV%ZpnO|5K(0=_V?sUiDQ$9(KDmn!(bF5}L-FHk>4-a#G3aYu!KF1XCGN~F zVWJx$4Ylt)q#VS4<}#$Y52KO@sP}LqoLm+|?k~Ojwhru@sLd5t2!eC{U#D zOZXPObm&X=?O=P=0JT>f)vP0KsszaQ>DAO z=6oNFpm{stL5GU&WvI1;h*8UlGRS5eUo!O%hITrsC_ZGk!b-pMN*}ZNu!fBaGz@_E z8KK;+T(6}}enO04g_^CeOz7iXE**@yCQp`xd|7jlY`zZd=ffDpEW^ZV0>7*8UfoRo z#DNTWpxPE?aqoiun8g~zZ);fB8wx9(U1Y}WALSUGrO%%%Tl-l1h0QHQp7YOfOo{4M zvzw)?yyTcezE&2`lx%M#5#CdOSkl_?z*Jx6u%W@0Yc4s}kvYZP zc-uIIL96U8)vI)g({1fSLjana@~@6S`J6OLGh^29wfE#p@3Eq6#RYcLfsxmQWUlph z;*gV+$HaB*SZUFlDNoMMmNahO%GZo1A7gDZs_ea@NxPrlbVq$L5E?#89a6Rp35Xkt z+{7QI%-kc*snYu@pD^2Z<+4HfAtQtYLgwo#QweU)$EPn=WmyLa;x&_UIZoRBk>Eu? z#Ax-;ZB0IbC|UYyOuCxOYt|P4Qsc7uuv!!DYRmHr+J3C`y_M?upmx|`_IK{W9C0=8 zksW3%z8jo(fv-*CZ;Y0753q2`_2@<))DvD=`^CF{EcUR6e2fKa?T9~d(^9~~ZJI4T zL_y@fv}8Yj|L5_@U%^F89C5Sxq|Nsnd};O_mspE&Hd=%Q$?14+g=Sfep^X~qfqqzx zg$cqUq|WgOM{!p(WDRlQ&7vn8qvc3+DPoVLba4!i2-W+7-tS+^c4y7GJr;_g1hV2B z^FV;h^U)^Bvz{lPEd_X#`(8PL>+KLcT6Enmr);K&fojTr6};@ngG1Qz`^?@*GS zxif$|_I28uIQOLX{MW3VD`#dL`W@@ES#5@}qd<%tBi@0qVH)Y*ch#GzY+ z!UioR=Pp>Hg#xoD$f1g9oKkJRRDN;2qr&3I+1WZz>x>s#*m~PdUtk1ij`K;l*->40 z!60-oea(++aD0M{+15raJQ;zv8WWrCh#)kAL3bDVW2~o3RG+Az7rDP6f5im;J|C$a zB*PLYN$uUrl*R7Js)H92;omAp7oLbFTJNvhjU; zG#Q*YQvK^nZ;05tT>n7+7ouXR8ew#Ng>CpFHYXX+*P{MND8m*}w4D-FXe-5Eh{*z# zC+>vf$-}=OOI2(+Jwy7KX;jute1IKar15u#Cq2#P2XW>r9TGVjmsE+3DUjghZyGD^igp)f~?6Ar9Lqji*N^qE++ z6TZaMZU9ExxR!PEb!o4=(4xC{Eedk6vJn`2=b0@>ZxWAo#3wn9t!A{)1h(3Dzj~Qe zpIH6H8wfAg5eD0X$JDSp7kS~7nj}Vr9mec)wCR$gZ>?F+^0=s3(NZOEYpX;N zE3ue!pJ92#lWh~bHJnhuHs2Wwhxvqvj?@+@^$z;)XOn!Up68k!spK2|{L56uy}<_G z3RlCzB8_?MTR*(e!+$=z1}1^1$7@Tg{c;o(87(ZnV@_gDa-&2kFTJ>4CP6ES(n|bU zXgy1XL8f+7#+*P_RrHO)tBQGyl*siGUi4DSaXR82G2e%M{D&J@8{6&!^2R_A}JL+s|C?ZJ+11L6~u5qbAdT$-zmQt{6NBx*w#OfAUbN85)3iC%T}@%EJ(YRKd{ zd1a2+RX=;3QF12uc+}6WzwO6Dd#y*a>@|xurXzk*3s7RN|_*->`Kx?Umg$LzRmcp=eTP|_z@xl)}!vxAE+iY|Rc}Xl^Sf9d*;E5rNEZJR69by34`uiw{! z9d%@=p}n8Cp*8DZE|lhp^G~1ma91mkyG0F!7Xne8u>TQ9F<#=hLnaRLs+TQ;vjjEP zL?U4sgBmXD^x4gi+Kw_h5`KSvLAgMy2?T6+yG6Ybiy$QQdp2BM-_%k4Itx3<3k8~UCc#DeYK~77p&hKK2g_=hQMH zcXw>OIF*+*Prtl=V+O2H#|HFwbij^m(NT?XaOFNJ z?%t94%_wf!3sqcCN}zW(JYxwLsoaY3Lx8a*`qeRcIzY?}yUBzcSo-@$dU$CV^v5gY z*NRKhKZnh;Vm0b{vkFqkPY~^4*^bYu&lpTuD}q3@lp2g2ju<(~PbiJCGl-3ec*0TF zw%-_wEfP8&k)4}!|Of#^039%;+Z4-so)|hqgzBqs>~;WNb=_?d6KU&&g5S_ zx4~3?|L*?WfRDUOz2jIy(1`Cw&cF1vFlJ3%mK$x^W#+9VJry-tW6KF%^vZ;&*>!Li z8$W4qqrhUsFItAbNARj&l2QgH=3f%MsRKS)dM~tN9)$|p8&NE})i$@+AEAr-202=* zj6m;LU2^`!XP^;)85}yPlf2l)XXg{nRyCnUZ_D91UNUMYVsX-4VryNtrvo zmd)&Ln$?)xL&vCN$a;P)z#vwDvBr8p`Npx~gL?n1cFyLr9Awr$I@+$>aX@Q22K^BA z2~M?V3Mw26S=G|hBCsxca6a?_GRknBMMBT=0+O^QQxTY}>pFvmd(+IZ_0@wp5FWtD z0A09DT!}&#OFZwEuViq(&Xh-ZQ^wKe#0-P?)enNXI#AvtCP%WrFM(E`5rG0QEl{xC z(Q1-9?Pzj8-gF8JE+o1<0ZrgM50^DfUt;QGnCER`@$XmLvl_XHOZWE=l_Oed@x-4| zP9<$--On2)o0{!a;8db(!q0iJ+&YY=9uODq@=m0RCF59e)(}UGX|U<-p};%7BY7lF z;y}o{wv++h8d?|KJIN>-)n=QmMGEpmf3qO0yUG%hYE`7~`q*X5tP)p*d)8R5epcXi z-uE@5YfYk_yViG_$rW$Lnx7uA4p=%7fBev4uY!UtbSvX*$;6*&xU@=U()w!G@AMk; z^DD7F@S0?lWh%GlBx=3Qt@DS9k0ZS90vYZ+kd|L@w=aJ++1TNVYlL_(iz|6^XB(#9 z6QyCX3`nC-?D%*rBn-6o!JbS88ozJD&0xQ^*sMW_qT_9TFpzU$9xD%P@lS_-GOG?u z&rdYX0|ggQ7y4ky6X;nO51fnmC z&-XMfW42jLf-9zm`R-t$A5T}F9L2RKT)~fSkO{R4E=mt?;3*KF@3)W%*qeL$3h~<- z7aB~EP8tds^vdejQ_nEYj^t{k3RT=9pZ+Cw;eGIXs-4NuGzAd#?x|vIm*BdX+LXuh zi@nZEl5I&t)*ypCkb?}tM9Oqb5c!X*)M#%n4DOQ+8U8ZPiCFIv!YY4U6;v+xShv4Bm89p#)Ac3{t z94xpmV!|>{WIDoXT;xb?Hj<>R*5dRN6(|w`eS6N-A@{fA7YMyAqRA3|DH{$yDJAHy zcUF|B!ToQ%ivQ7&9tkVMr(J9-sl-~u(>d*5@CXePvx|qk=8@C3rM;F39j^hzA_}P$ zO0+w(Ere%L>mBWD9x5D}(J1mTW zPf5_sQ}3ukUub-`=GliWH*nJaS*ZQPqjwx+a1=?kS6~M z=B`4-nhttV$x|E|Qb_)>l|!94i&0&ywnTB&$Q&(TH5^39acb`Md(HREyU|ZT>qiq; zIl2C8Et0V1i7Kb5pm(o&9hfGPH!t<*wF7sfFnEXiziDY5;ss#-ro>q#`0^{jBqHYK zwdqfxOqwL6@RqWc(Hj4c+2Njb>=K?cme=pJ(Pw(jyb$I-SPq>^I^_#G+p-vh;RzgW z#odDX#|mD$<_k)vPvQ4+(6mQ!2t-wwLG;Q!yFOB@wU{^)`LV|9ehwb zXgAiQXc7o!bj^N&Ui_I6dQxb(QHY6B6xH!**|hnf$CVWa4i!(a{OK=ejS?`9508CO zL=uxZFP+KGMt=Pp2b<3*?Af!Yk;D{PxqL?j4A-pz?apRm1RX-kJD3ysxoC93aRiuj z=Y?`%6616Tweh=2lx@|1`5xY9w5g*sxD7Tz4`q&WOOyz=euuEdZ@DZk;&rh;X&^mi zg@+X$UAn|56|@=tK%=Iom2k%f-G#rY_U4N9tG%^OrgCd3mKc?SEAuLi}5x<0ux2Lx?ApwT^{{ zK%lk0q{b4JG!$DYuSDZLiMn#FU?%*@g0T9%FaH^1YMj^6k#U)k2+7%Dgp;8Ae(HwS z>^sPUL;cCy$IX@jv^#kB6jxe1hybjc@{-X1b#d&He+q51XN7j}HwVU3Lprr|>blQydO{GoWuS)-6 zr8BOsVAo3<W%i)ggp1U+LoU!Bk9;ZrE|IwA`Z?$9NG8IymQzKDsQqkO4BBuaSQ zO6=%x6VFBgeAkX2hLP=k+xfk4YP04TZ-6sVktCTkaCNyIiTfxc&buRs9JWW>RO^ts z^SXPIVCr?^cOiYCUUGyjRXxFbQl5Ds%lpAni2Nn(LZupFOD;(5%X^0IwXBF7ROp^; z^ZE3tCk?##*qF{`B4jo`%D?xn!}w6L+Ig9wASsALWt~?L^crSi z|9;D!(r|qZi&LDC^>&8Zx<>WnrCU%s#t%x&2{sc{)W=-3xM#81Rc~MP-CMV&`w%w`MKm zQ;W=^o>-qhc>K(r@-k}U=-$#ipd7DS?UN6=rixd`?!yeNHo8fweEwCYtHyDG)Z{<3 zE1UV}=u8H^2L(Q;+O@i*J042b#c;Cx*y1nr0W+fv_lM=P!0 zaqJJp2eG0A`8kr6~K!gS!+X=#$bw5zC5 zmf7IdElHEe(I`BvAzZK+d=|fFW{RXk!xqXBMkPcg>}~F-9Own;uj$ z+_n4onZP_eFGy@_Oetdc_$+=(rCRZ) zia?dgcaVP`Lux=by*R7kv(JXlVNavqm;h_#h>1AI*v{P z3CbT5=TZT#8o`+8{~j0dc!%UHt=UHVx8@piBJ1q@D(gACP`SP)je5{20%O;y{dx0o;ylV1E*bHh ztm}L^^{RO;?F^gTMA6~ndc$8c+p?-7A1T@Ap>3=jJCNN82dQ~Y(0=b$%1I9*wt71C&ah#Ax*v-nkA{}YG02UHO6d!sMw@np<{|NW zFTGW-tAq)^{w18d^bXmJb)w(9VL{wt-wD!(8>0zaG(F*iST><4f>(>P_A1>6*!2a< zs!(g`rwmytsVWuq*BDsf8|58nX$qEygn;a%hV=H&U6A0!H&_}?CU8uZild)fJkp8q z+J~|b;H}8G;B?Jg2$B~KZB37z!v8ERGQc=Re?QUR_Xj3spwMN=+(Uwyc0Yl3&uJkm zUm;KC*|1ULWx=k5KtnV7JQWty_?vE4m2{a_>=Jqlnc(xCpLM79c9@Ro16Qvws43LN z!fP;<_y#2E_$@snP!tG=$$mwN$hm@^yJcaSjmtt-|vM%JXw94^BDrBvM2F5hKhUNmM#(8au%@ z(WHPrs_5R45@!z5cRy_R$-d+U9n4bX@K=o5&KO@6PR*t6Bl(V3diK)jQPHLIkeF}- zasnd@A{BoqVUp^?`+dQ_en+HK#%HQk#%G-um03QN2rQqadI=ePeFc_)d3v2HLZlUE z(9>8JUl*Y*9eDvd>25!mfOMJK*3KyV&d{6SiPF6%SD>xIqphQtvfO~#o)b8}ETW(O z8C9JE0W-*FJ;_#>cW+>*G19?ao7*(NPXOLXWy&EC?11hr_Z8xQtqYb@B=ZW&VWo6{^N z?z!Gyp1#>oU>++-)FkQC6gpiOLY+ArBI;UAA;8d-31=k#-o!_Ol%Fh?*v<}M1Hm%^ zM10dLi+3MEJIB6_Y}PQ32ifmap+kvHVkT`Sr?w6b`a2}8)Sa?M8X%=ljIdir(6izR z*&Eb3xXY}dL!*)q%Y691T7df>VANYXX)!e3&vEX;=M)0|d_rtO)Mc^Tvx(6>nu-D@ zd;CLONdl96r8IA^agck6?8%d}Z8Obr;jpJwuJHaa0KtlZ?w7zF&rw9<7hb9QyLLlb z>B;zfjxxs2Jd)CAU@S7gkVDaKC{AMjpOvZO2CCuyV*Rh2eHlrX$=J#;HFCSUm)Z1K zRvmUDDHg`88QKx*q3oi>1oU_6r@_~ufz*k0X@K+S?bbkw5qp~*w-kc?OnA38W_z~0 zY8V96WB0ZMBr-I9&crpHW8JWmO4dUMi--+T!~V<&dy@MppID~IU;l=1&U(^g=rall zJhXJEer@>XpB`UaLuKwD9<-zB{4)mAw1g2gBU>V&5mcz0csugDAFk;K{~iYiR9=~; zm{NX?E%Y{;>Y#=&B{WHAaqC#{Z~%-x*y}C>GqXA*p{&G*J64Ye@S7?akIVog->I#g zWR1JNiZyruh=PeLn`NnwW1%*kwp7fsl_$msL%}z!lc;>ubX_o5cW2q@tM5u&2F;Gs zgw6~@n?=FI57Z)tFDToa`@QmlNHB_XBn!@rYE0g|Gt^yeU%GXVbGJ**OIu7E%ug+z zM8<%?>^+o+GK(u>rlZnONCD#aXmK~uNtvpkIKq~pREQrH8Z_TlG6rpwMu+($vP_7f zSiVoCrSNoMGCLtNk?lYTnblI581{I1z$vlO9Bao-!UX2s4x3+Z^28b-#Xrf$CSc#- z!+nn-bNjkqsNbLx)*{@qVnNN8gM1ft9x^52A5J05bS4Ri2&Uu*<@MQ?PNq*Sa+8k% zgU%rW4rHCSLQ^p@Zl4G`gZ9IRfuub@;Mzfl<`bPKfMc^ljWx2)W#7e9>daGh)b<3^ zrXl!`p#-xa6B%*7!IM7+*KMt-3ZKP*!kbPi3yGthX-!%e<)w@ut;SVjx7e z>9m_ZmS7cY&&6O#o58jGK9H#U^%GwTu$3W&xv_Y+pJ+X8j%AsbnN2reL$2#gK(>)h zgb9JFbJ`_$x%F@*V|a=J2Oeua21(dYi}kuu9vK+b97tCZJA zNdiA6hRkSGL7KM8W6BoPKQRJ@S0rNtGR`n^ETy#SZKE1bJG5lpd^{J48+Sh(_Cr)C z#m-VdqeE14hjcupq^DSN#qZs(FFqw2iK$vzbd%=kS)a%yh}jR1oc)Qt!{G=R2RpX~ z?U^Tn>|}n+3%<&|d^u2Fx}&Z0#^%RHjXdj%D?n%~2d9%AyxC^B|nxlqKtJVnSI+VrNec5BR&DVA-^F$GYsq0 zIcwY(olZ6t+`CpwCE;m+@++Tpo-J_6f~1t;4nsa>hJIW4BNwa%=w40ME_ACohK>Wr z;RH7DxDn%bixw`Z0Y>kHD-KsNz&$%&b#RK3xo4?Mm5i*PQOx=OmTvo$PTPyBKYelU zWT?*m51G=FYA6!be_3iREC7N3cL*yYMmmA;581{iVwMCCMPmBPr!eY{sFBO&&{kd! z2BViw;Vk=McbIsQ>4mH(s;ckR>$;GYEy%yOq2Ni`-C{bZAOOet=Kb!)1EituTaJWlQFemyB)^ENPAc6`?hQA7ALNg?2p3+MLxD zw+x8Gd(*8Fot6k;1NEZ^VLP>U=o};;uYfu^$2o>*c_(Deu1U;4K`TU+8UJ>}1Z73dAUe+sU4*YrQ_}Ia%AE zEezE897QNsi!VDnRN)5N_nNq|NAmq@6iG9aJ%<@N}-srEH-fhVuWDK z-dow|~iz~&nN1ke^3mc5oJhm=I z9XTU&-AWj0Ge0R%5zCfe?*0USDLk*Jkg7~OqC~Y_kLU7^llBPmW(B`IGOm_!(jVtp z-4*Q;@84|(J%R@$|4_mk4x;*n$+-@TBM=2iFwixVy7OD2X8g{&y8pGPzw-=lAmvMe zGqG=e+kVUnD7=OW)g!`ZWJ@r7GsXLLR4~i?Lu?kj<$U(3z&na3eOlm837r6K)Q#*_ zmVOu$)s4t_VHGJtEaC^)AvT0wm&uUYUb0$qcx@2Ycc6yN7jKtwYCx1VWHx+suG>&& zl|}2#@YorKn!&fT$LjJb-=sV-ijL|j8vQcbx{Acfr2sQ?)%fm#sD@oPIbtpl%=8)C zF#>LsT<60*GW8uMi7NdoZxis0+CiQ$^_4!btRG(QXo_1xhpFT=r|NuO@$b~P zZ-uY}$@h8})B4IysUeR9w~v}^$=pPb@j{_eSt2+hv9b)gc5ySxPaTS4MGZQa3{ub5 zPnlAM2YZQj=?w#_lLji8_xoFnPfX#>N(S>M$la64iu33NPyIYP=<)5So_;HQRwhZG z{W!nAY&(TwU2m;WQ0&CBcQCU!FU7dLuSHk!Jn_SG4r00t8@N~JRwnc29C61<_@F>= zg1a5_P4xct>SgF!6~>189QT9-UcD8gOO6nbS75Nv8;v7dl7HSfMb-i9@o`~^tJYj&l$?YN7hLc(w6a#Ve?#loqc8o zm#jdyoy&{5kps=*7Kuksx~uA@0=Y%^jAST@hWOZyySsLI2WLYI-Q$N}>wG9I-&o#D z&+z|k-nyiB+CPTa?J{2-vwt~2BfBNgsNic{%3v9G7sH9x0Jx>%43iNUOZU;f7`%^P z!4_fT%ZE@hIJEK#jE@-6`g;XN+G@$JZ?J2F#xyakA<~tXR*_%E0rTU(haja6nV9G$ zRPe+?#1;L4gW2cT{q>QpAKjN?PHx}Sm)fQ$pjzty-j)iQNr8aozZjTz&wq|t9InA) zV;wJ{l`RK`EjzYZ83tQNBhW_86T%&3KI?Qo;pISxM4HSEk_^mhkjD$MM)CObpBQe zI*vBUJaP}%uqf=ytIFhGSw28~?%H5C?FDYMw)7DmF}aw@1y86$HBm8w!#eNtXkLyD z+C%*>pL2cA3C^Mk8&CKEfcG(1a}?%!a?rE2jLnnfD+xzep?(KMhb)oUbg*T(FnkBG z{84~4Qin+=%DnWyt0B$H3(>FCrL*XR!cdaznk}-;ppZR++VQ_&;Q3l-#fab&_T~FG zCrN`};#VJsPFsVYC~xL=jq40ta=E9z$M1l^y6k$Ehe6TnsLR`Y$6<5=zEgANlJuvKJ=pc#v}bAGYEMNt&^7} zy}Ku#FazQ@!QaZLv$PHn206Q=&(y5<1IC;vqOD5<+mX)T7(lPI4Aa8$u6wBQ45{_l z=xm%wrk~F_;l-78KK<5S2?v|RJL=?U9Fk_+4jdhe3}QeG6_wdipN)}fIvK!JoY_r< zwbtOHdNK_Ku=P7)312jI>!daHONte~Y|%@v_g|n$q6u$WcCKV!gfEiWilSX`R6r%p zGytrBvyx?JI87}~tkol+K#tl!XqIp}86*(L(#${-*?q@FAXM_iCf_8PK?sf<)Pg;_K1R z5Cr@g!CHMJFG&ulL()uB$#ACd=>um8L(z_7-us)>!1Ki^?YUL}v~fSwWTk+7MDr{M zHdx;2;Q~VQ`c5MZIn~Y@t)&Xre7ngZTRI!(W?FtVhv$cVbd@M)28$GI>d?l~V=hcX z!=TKOrs_kazieJ9M)#jres%eMhe+1ek%d6!x|OK3pvD;M7FgS{&KwZhMQt4Wemq^q zJI2QP6fu5w`aLR4jBOt|>v7;(Qmp_|huKd2jA!j<&LvaI?I@``o-{FULT@Cw$cSJn z9p`3qf*opfjN_+2s+Gdi0#~R`Xx6>k z(>$9^0JaSBaai?Po=L;|iM^u56eiMk_i|h!sppTSZk@((_}?~hiz0o9I^QU%?>pY1 zds>x3A&$9`%4>e;qJ;>DjgdPLbj|s&ChSGM@VTa0jM4d`_K=*jXZ=~05m?d1_gY;OFyt7(Es~#P=oKH=w2R0iXJx1dSbs7xnv=b7bp#xYUrL_cM~XN+-({V=TE6+N7?hkL}lUW5Fh z$LB9fEr$d1_&x9~KDOEc&-wPN$Mrsw6vcUbdX2AyEsZX=5S*XxQ(qdSo< z6q~$t>}VmKlp{N;MjCukT`01cUc82|R8|JodEgo{aU#t<1EQM8Wva>aoK#CqcY zW>dMV=^c4cXex!{haC~zo*ukvAO^n;sjh)-gvMz-`IBM4{ZP2Iyl0K?A4=+?E!AQN zKsS+`i&UyGo6P}eBtT|c7z(K6{4M~PVcFr0@&CR)X!% zl3h_Ggcsm2MK7zS1&~R6(E+R=`;KitU&MtXI0HF8@Z7Nd&Dyy-MX+}z+m>ayf5-I(A9>hD_(KL`}1|E^2=@-I^B)W`f^QxWVWYpHvftM^(IMBWL-mnn zF@v@~F`-vDHr8^2oiw|k5x1}~1Wd>>-1AMf4;T%+QM(nk*+(7&xgwB(;=ei2asq_j zAzfjQAm(g831VZj@V!LW$T>+lIxMN1|G~P(ebV)d&`u(A+Y+LFN6C%gVYJ5U_?5A3 zB-nFQrA0M7|C_$`s0~LXgnwR(d<}W8eb9Q_BWnfN85$TQbR<-UvfEAY4*3k_lc9yvy;%RTbLt==yzYE0vV5{Xb5^X}?(7oXxa`L*%GI_xbI z=EC{uKroy|5`!(PwdYDk;}dzu>$CH9htNRmMdsFj&+}OP(MD zeeicmAaTEiEe33^n^!q!p^A(Q>4(2FwDSf~CXd*gwam#52m1OL4?N$H=rklrki=Y} z7zP9P0@~Rg{G7!33tUa@4{=n*a z`8^Q@QCi>?2Dqz2?!G?qp2sdIT~ZJs;SKPrb*_c!MB3tTI2aQMgY{5tnnPBASlmxa z4u8pQK~f?~PLa{X>j?zWfS&Wla6(fRy=^kDCNVFzj2ikGWg8t2@Vw4u zzK$;lVL2}0q9Fc5_0)tt2a9tzZ&=iymQuP;~0`^WCI-Dq2;)n z1Vl;Y(fNkFNFiHz{V_mNQG}syw6nouNvz_x@n8l=W+vsjvQ9g$wa!CWNhd$ne8<38 zfNiAF3JXlO19&0!zg4ohAeM@olQ#s0<{P-gQqKm0efu634v+KQwIhNU4WEgNye1rk zHtr%E2j?@&=ULi2yna3}k^s&dSO0zYj+99qKOkE0M*YXRVNpj?*>pT*dez~-+*uBi z)D1S35l2FgXDFHdC9|q{r+%F5tfbvbdGrE)*mU&!)RIe?TT?v?Tj2Q65GMTY(TI71 z{DSfPgT2AK6xJo%+?ae`gI(#!WZ-dl5ayq;ZL9bw&nS_QPq057T);56@7wGU6I2Jw zkysQ|(~wa+fc@z9H<1Ud)(oLOmL8(8awe1!?bi*jm2m2Foa35y(%@g4AJR?`a~``5 zZ#a|Z(5iL!a{;-_CC7soANT!5qdQ<^1iP4vME4&kuW;3^P{H7X71trr;X~N~!uYc9 zvbS1wNc)A+UQ$AWSuLV>g-);7&MvjPwilfaQb=I$ba&@6_wSPAH+<*(>m9 z+~21CS4?At!aT$4^?ol)F~DPinD6ryL53r0Zgzp0%FfN$hrGuZ##b2rFW1YthlFYF z?3ljQ#?xU=8G}3lb)QJT`z~(vL7^TGH9HZTTV`P$jZYW`w(??<=pBAH&MST$-5e+f z?R_sYst>2W(;Qb$7+t44El=!e?yOLwf4=vOL0ciXFD%xCa3CYW#GfWqxGt1NQ>YLu zP>%x?vVO6^+wRs`w!yY|+j&cM4rD;4(gb#Uc^&M>6Yg6&1c;6_gl=?>`Wf%;{J_Wz z(k1YicCcmNzC`a#vyDu9_Qa0OIE!XLP2qyy6Sg!wuR}iLT3b$H&=UpWP>xqcI8$BD z?{XO3{1Q(<>|C7B6M|K0u{Uv0q}9-Sj75H zv8np*%SS&}Hwm=ZQWfah_NcJREIg5j!MB3mn-{KAe6xs}E zc$H<7whOnyg`ednv0IXZl|79l+Nz$!Z$Xm@oMC+}R4G13Inn$6Qqyb>`WD3lYoVM` zTqtb zes%Nf%o6hnW3+Q7YJa^z&un)m673zkIak7}fDgA>CIE22JG$xt8U^_RQ>gS0kG=wa zV9oI&Q2iL;k^`W?;RH^(DLxndPJX}vIAP4fAj+z;ZOBUG4tujv2!fmr+0Aj|;=*bZ zw70R7K^1+_}z0jku`tNhbgtX zHPAn@YeL$1ONpcjf@dtiC|9p$XoGw4e7Ol$%W|`clCSgOju4U;l9%;Y2P^d$KK|@0 zz`*B@((;`u%lf#bpVB?4`qyJfC(PG{qzs(N?j#tt{mSG4F|}H-on|nAhZebap16X{sfC8S=VEWb;5 zg#&cbdiZ+vGx?V<-JRaR?TJyahn+lnMNrJFV}d@yl!hhZ@ySB~iZ^6KWN;z_;AR2| zmM!CUgMZW9#tXx(-+$Kq91TL$I{HZ*%kvtYUD|RH1TVw5I{6P>d^)S22x2)m!3f?Z zPMPbD#O744CtH#nz2pr7Lt6Q^>I>#%gcqv`xC=svmivmQu zRJC7tbx^UNhK$^9GWm6N1mKRaUoInY9k?G=pRZt@cbx_&CHaas1S`705(l|<6m!>i zb4zB1%By!`Pqqloc@P->t15|Ge)vK$SnxwIg;jN(8!i7o2k) zfW1kry$ekF;qbDkW{bHl(CeuY=%){g|2bzZ0x&WgbtcKKltc~_$|psjZcQU!8^2k3 zc53Sh8}LpqEKB$GJLbqB-i-g=7i;Q8ryB8>(-Z{x>s@3$N;MfJDg}s8Tc(B2Ve!|e zm%8lmo?w0*(SpvprJH||0c%toh}6K71KT=ooShEXiqcFFJk51%eyt^8cPF*eE$)Dgif=F2#TS98o7WR|fZ^Yup<66n(AhE`z4<5u$>4lGa=fz)~NiG8&yMf zSSt_%eNM#3>wP*uH4ijo=|M+k@M^qZelIqI-3AMVjT( zQ~^i@ni5e#k8UF|3SJGPTgtrU$5M-`6E2$3>+^_=IUvR^-%zC$$b>Bo)1Vp ziTj2=GK~o3v$iHlb-t_jJ^E1^>v^KXyN{Imha4yM?-QojX19^x`q7z_Sk# z0qouo3~jlg=b6=Luunwn9_ee+6@q8^9^Mv0Q*^z}+C^d9l}=_&O|6AXC)V`uRc>)C zN%cXzfIVWTF`yGTk@!+mY~vpEv;rk~c{{~?=%j3|I08=Z%#zK1NhZd8#MxZEr||cE z@}0Xaoe|0P(GrX&qBc^hKO!*!=+V%UT5`f06%3mL2KcLcn0gp&|If{Ea>B#ay^Co2 zfe6FhK~G~D6Ty&RFq=RZZ$prQRM+HP?9I);!kO?sHqFOALJ=7l9fG0AOSBa+0vLnB zkv7(1H=@@azfErNr8rk1lD2JWGK_sJ*0E$qHvEA6<2}M&wE>p_L$lrt5rZMS57I2% z>R08wyg&W~^u)9sTstv?&o%wHSty$(2tF)Z@f68yE&xiatQ^H)Px{e>X*r>XOC4Fn zPBI*^nSB(O8&tO3K?e#4odhKNQ`Wn)j#tErGuE`DXv7K(ICnh}bN_zQr^WRroU;Pp znlHcMZ=MbUi`j9j|J4F)kk}tt9k?fP{6=PTvUK&us84^_XRm>|+S(5=bKly+h}Fkp zd7Q^Bps_pi^ECTcqxQiXrQ>aO?)3d1JY)H%O%buN=WwML%i81(( zl*!U7GC-idaEDnK4rpS8D;}>n&6xq$Ue3Fu4uc+#z4o4k;lBa033bQO-s>s^e6kl3wD}?Ur+z~?YW!y;ia=)@Vci= zyc~Y%Mll5b#8|Oi#=tdd=d9M0CPTSU8JNRDxbO`0`RkkQltI;FdXB^=-fhU%{X%7!@IH8)jk=$YmZQTrs?pDl}WDzwPki%5> zLlShNTNcGn({ZMUp1yV9CJP{i*n*ZNPF_JVLv$hwn@d!gehX~9Czh8Z=@{rq+%(mn&gnRqjb#{5(??xIR> zVG$0NQ>Q_cp7Dxu@UrAjoz#hRc-cAM#Di~b6|or!K}JMu0o9z*#N0#?+mpaAD2U*H z0=_IdfZ_f{t8!RiAdxn$k17ZM%pixhi&&{_$L~2!Ah6$oi`hi+QbK5zb|$(iY3L9Y zaOmSzsI~ql9^#-Pmw>SWECEv>q+|r~D}=gq{>)!T;5aCp48(W>)Aq%APQZ0EyP{?9 z<+uUZ^9_@ds8e@~Ip?oP&Ymt)^*zts1xEn;ewZuIHIQFDa_^~;O6L7iKv!IlbT;|` zz#jIaHbd%<^QWYb41+fvzB>rPjla^GoWldKBo5utFvyAATgeA#gXO%Q{=}mJHcoah z&M40ui5u24D9QV|X!I|=iTjj}nXNL5Td0oIv@sn3BcI#!;fv~8bFmKVzS;07h^ie$ ziz8(u>?Ow9&?TORGhCyMmTvxZb|TO~S>&M0(q2#izt@Jx0!+8mn^Kz#$qC@9#(xMp z{U(veFe!=r(OM1RQqhflZ0~+j&`u+;req|Q@RvX$b~rM8IgfHw0DFeDjCrF9x#{DI zAt3Xkz>+IA>=^EzvXV$TRohFAq&4Om}KIOJ>y_!zIRZ% zVpbhRaTe^X+0taat!!}BQxVMV)l4hp0C3sfq`5vOog7zBIU*Y;9f;d!|aP!bstdX-##%>{^sO zJCe2r*C=CstE4ZzMij~jR1~h~>Y!wIjF}Fo@Xlr7xM`39f)Ot+)_#ho&rpW&_*=3& z!_$nIJ#Mvk=0ykD`c{h#U)j`GDf2s>motMGl%AXc)g(RhJ$4bd6jp7_nC$q2Uun^LIVPqYg(K?@NAGpBedxgq2|HL)yrc##=| zCJeU@7%$Vc$Y6yF^GspvO{?|an~tZ1!_VW`PMPs*nafdxI)r|wF)2P7$M`j(8e=H9 z4inkA-J|eLplq_)I0!7+`>8IvZ6j-4xKmd3r8S%}K&y65Bp*PrBlVsb!N@GQG2b0K zjD|y>Y5ki@$1%E9MKeUBkgI=X{%WerwQ#9`R<5=(8DfYq@*P8m)OY|!KZ2Bd7`eJm zE7nsIvzFTKA%OF51MQLe%H`yJdfc7oftwTw%ye=P4^oVAE;~v}#jV$LEW`{|fDhb+ zCRr-Ufk+g=>vPrVHFoMYiMbt?OL%asTn;?(w^`)71MSmYDqTc7aYpeU`=pVx%bFFIZ~&+hi1XS`4mxOKPAAdb*H zN=K2EwX3I19?_S!9&V!cy?E1R=~0(_6Tv{daD$36Iymu>KnXD+-XtVyhW2g3F@yu6 zIO_)#5tC+TS9pmZl>6nQjQ81huixVnzwr_Y?z#qQIx!*%!F35xxiP}I5$kFknbIAs z%7Z^#+1`1Zo;1|*mN1u*LQ~ikkw>B0lzZNtZB6&4gA7`dDkJ?Vz=O1-r1qzLDhL|Q zKh?6JIA=z#<;6e?Y^1L6AUtLU zWohOCCf3nEkmZGDo&kaM=2am1es*M1HD4zDDEQULlI9WBJszBN(}{-Wo38-?^JDiT z8_+ckP}31tk|?DI@aKzBUCcWmN+l>@4SI(9{0*At{P}}Y{aHQhk+nmT<*EkVB1F$U zy~l|zJ2}zx-Jk6|a~g3Dkm+B(T@>tXvMyy;G;R#hz9a?z4-DOm4fyB~DWqaaz`p7I zuoybNS|nEPJHH5aqF}$iSXx2dejuySV`x|$Hj>0Qwr|o^==J}kbYgxOp4~E^shDe+ z2{k@^T5M{&7J$c#(i^?kKjK8#&D=ST)n0P)ac({kZ6W`ZbBs4L;W8xG@u8p9F01Yu z9WeFcaf>&aTgl?fo&KK9HfB*l`+Ue!Wfy{BiOk0oB4uoh@XMc@Kx`m7&%sp>A)HI? z%q){wa(|LBluz2A?5N^R9%R3*8aTs-UFJtw$+z{3&PSN%2ae0hC(6|xO3;PW7hJJkbx>ee2!B2hj zoc^GH5#46FhANvPLQuKsfrHh*kL{r#rt0!*`ZAx&aCFKfLT54FI2o?cPWSYfF?&lp z^7!fJ3p@32QkR>a?A8mOpGKhY+zt6!v&llCX;2z9jW?`qn<%z+rd&IL<3wF=-c63a zGEval95Ys=(tAtSSHo>Z8--y0COI3urOnZ#!d|Fjk=FRTXYPK0l7jP0dDqA2Ofe6?+*X1+*vdl>cPRd+5<2|yut_ejZawWZf959m9Sg;X$_MMyk zO%0Sgii5r+y(HV9Ns0|#nZ+R2MeousI^5S1{@@kU?YAA1QxYwbC0XtzbBsTxH&OZ& zi>qlxdTdSASKcsThQl9mt~GE?HdU3a3UsBCawIa&c;Z&VxatI1$>@^NAqoxO<)(1A z>Xyc9ny$C^xt%EBaV7JYG1c#29h$R3WtSz{<6{y;vY~0QfT|>XmHGK$Hfmkd*xbi- z(=Rg<7;SH?#E`w=->H0mFJF~h%7!*5!Dj1((BE~u-z=&prW#@(T%ZOGgx&YEK;m0E zd4+jee|Ss5>m56yaoHC@r&#yRKTAq1K0j4QRFZl z)P6-2!Ym|Czu749XCiLOrnM?p=3S5jFC?G8L}DcCJ$_d@8M%}Zl2kgn(4s$RC>&Y3e;+;r`ZaA0 zkpRS3WM)m00<2}0KP0MueY`idiNE{yMEJ>+l;l6>8i4RQ z(fGWyef`}pHR{UQT~?1S5cpGiIc}_3HQyzwJY75k7)>5)?elK~%z#8*{2;Q9y)xvn zEgM^9CoCw9hQYaW$gWRSRXRY9=zx%V*v$FuF#71o7c(8Bltf*qM#JjE!4eBXXECg< z_5_TqeR%ja+4^!{J0*W!oBfay&Q1F#gP|IeW;hnZx91j7p;rI5mW4TMuIO~D^a9K9$`ba_4F}?AkmK^6(INH^CP6AjSJA7+pcQ$P7j;c;!$}0} zd_f~K+hU3Jht;H|kkSWR;}v(EIX6PFgOV4Es1CKugn(3)6Ml61Y=h=l(*+A|a?sVU>?F#6jjCH`T>pGTHpKiNFvP?} z?8+ymHa!ImL2rmG6k{(&ByjFETw4QJ-5&bzor_M-A`VeDtE~A~2C!K~-*^(S!io?6 zhg%3-zInW?*V~;(vfPsjQd@pkUp@p}0j}614^o`N;2ZEqVpDb+tG-#h4-T-m(me0< zkiFTOhlPNMkNi~2=RPJW9r{f74D*~hXFQe=9%Sq<1;qA zqzU+D+fD@Hm_5>kr{W@LQ;*$UUY+}V71!zex%v3Q^)M5jPoPu_lLksN<}4NX^?jzA z?-&QCp8(|r%za($^XugZaQsXd>3gIiWq?DRPFXu6RCKmZ=rcvuCectW*ENKbmDX2D zg2i6tSx$bvtb*o7lKCOmmR$Ohb*kgv@+<@C4|H#fih?o_gJ|<)T##aW`GhQdL=Ju5 z_Z6NF$Y3Z^c$^hj$5{w*u(GTM#dr`|yw#4d1tCE9-xx10t>_G~m%#v4ObLa+qb}}3 z=@G4iK3Ge%4?C6%3pvO=$t%a8Ztb8Mc#{w6##?NNfLvdm3fBCncacQ(g0*4fSiKdw>&5Ci{4*v+Ir`)iwhY92F~yYT(nkt9OQ+_YBXw;N3+&(jF3 ztgmo?qQ`UZ-}*2W_JY!KjUj(x7-xD$boR+iob2erA=$-PFDR1?i=3c|8Er#8yjh(K zH?(W(K(b5Lc>c)HBgH)H@61qS{t6^f+&xx2TRcIXX|Dbe7y)rHT@J`hz|fg0_~UmJxY}o5y}*CJ>Fqke!VgcrGL~ha zEy%f_nP5N)Fq01cR#(d?AHhTmz zyk8pimb9kQ@@y1H`ABaa4;q36U1+EW2!?OAr`zwPO1z_7DI!k_=2-#34he;{*(2XD zbr6W?4b=t7Vtuej>zdC5?&~6t!_h`<7SiKwm~3ZIsGJd`t%cFt_#VUMN}6xLIHea- zzkH=cmPO0iP)u0p+}f)%Qm4(w+_@&^+KK$bJ@|Dm^g3=}94PwtaLC#$+|;^z6ykk! z{fjh6oLdSb>s~}5>q@0{Sh-CU_DALInJ;dpP+MB9vnrP%sn_NZet0-7F)f%k(m&c* z%Nx&FuN64_EX^gXfI+1W4POROFF}?i`F`CCjv0J`N8W2VElu51#>|4$<6}6)s9xym zH=yaj=osNtGpq<6$cdeO%;^4p@|Bjn7y+T*;l{&nMZ19z=ZO+3_Rqk-U0~YJ)4TUE z3j;KaBJ3Oc2Vy1NDLdS6!*AGYG=^7fGV@hZM*dx%o%bHy+tW_~{*zWXJQ|lpWv~i| z+hM)x;~`vTK#LAMJUQrTDae2+j1>4nP25f5IIKj|cFPvLh;595hW6vDd?7a$_M|I3 zF$zdwod<)W@yH%t+>k3OcDDp)BQe8b{;>(R5k{)IhZ`UWSK3ERH{#YKo`FO5Gl$G# z%Yo1=IPx3D4~A>dCAv>VdZE8Z(3QW&>_Zdvpm^EI4nJ^jaqHPd*A57Xdq8}4Y9C;u z)ZgT^%^$tOHKFiuieRW4*DvphcaiOgtqjg^UNA>q^j=)gB??m|b5D(1# zn|qvA1(2M!#EkOFlco$%VOkCLP z@2$=;Lk|aMmnK_9)nBX6!XUM$3Xt1!krmEg@p9V0h05cb3n?yVzb&BjCRu0M=izPy zWz!&LP7k&o?eVOvac8%DCgd08_=0~1u;O_1|%wo3h&0W^A z7Imw>I`^C;dYBP%Y0RbvWNYzMEKuhVJ%rQHgLXXkD#zS^SbuiU{S^}Zdb#=%*w(r{ zX@wbRVKRJw&kkgXChN?z6*KAM!>1m8r;H06gtH?A^8?Tk?G1j~4U0;xOvxBZN2T^i z(qpNX)rUa86(SY@M50D=2fD-Ee>)wZy&zXk&gro7`ru70TZmycxWFN5%Qh|yMD>t9 zB*0wIG(PlF<4|h>T}qXj0igx;T8pAIxE>jSDZ_;CmTxC8f`c5<-OrN^4ilt8L6|0v z<^+O@yj;cgOu3Vbu;oEcdYn=65nM0l=8#lm8%*6q1;@i069~ zo+`WRpWKKNBH8PP<^F??bb*|pm+E`!%aUt+4$z{^?b@EQQP4w}CnCjUs(zPy$GTyV zaK2BFA5bFLV18ERSBc~2S+S=hdgYS*&mmnv5BML!ufb5th&F~F_N`ZU6tDNpFAsLk zh-25Nop&viUoseWi7rS9JYqKBb-4TP5}$ehVdqvT?nzXX0R2L3c5kC}MOQ$YDxJ?D z>{jz}!$oXYY{;r(?QhX<^5Tk3|4H85mT#Xe1$-{ri(U^ZlYi_hcho@ z$`iAAPR4YjBIt_SnaIuE(KX}E`VKnzVaJX8$@5}B|M#ap__c&g{IQ^|9sEHlqCP9J zSDu4^Ie3?YGT%FHvM1B@VT`oLCq^1oOI; zKbtluOg|QYTz-7(Sb=ar=tj@s=KL&v_NI%9-x2xTapdR54%wLyEl<2mwME$Es(xu* zFfi%qpt~29YCPP7YWwde1y=c4G_q8){n(|6Du8Z2yCAz35LJLXtjI6}4RAXo#N<3k z1<6_Khp!H66+BKnNwr$bI8JXzva0Uq&74k*xoetW`QAdJ50AYhot%%0IF zmP)}KWR{FB^xj)n9djux6S3Yzmg{D_=_3tQQ1T; zwn+TDyJE%L1;+)a)5-%7|SH(DJ@=F$y+%|vc zzC}JDEG0XPCoL+Ex;{2z?M2JlUEF_9EwXD_;5`sjhkqxS_j^oq?}8lTx5ew%-3Xd+ zeSUc`{HvEEkmM2GpzSj0K3U4Vl{0q!DRYTtM&hq`PY992T~ z&S|HgkaJ4GE4BL3ES$X~r=xog?vx-idsEfKvaq3-G1-a54}dn&S%Qg^Wy?dis-h%B4k;b7W5Qvk?}E zL$_D;4ZBZH>^oe@#^p)q#8$q-eLrBH|80I01pSj4(}^C6{Vz7q`WH(!d7(vSGT}v2_B5aH88=43gk!~2R@y$ntKM$Rhx_dg-74I= zJ+3=nAF-L`WM4Tz(?eNJ%!9Q-+m!kn+LRPgN{9goh4acEH4tJQM0%@4EKozFOC4&n z60FxWLGS(ejycN8r+V*bFnerG{~rsG55e$vtaC(d2xzCMkL&|9Agy6t=LV8XMKd;= zKtxzoHv*v|LPu^Hxv|=SSY_vgGmvM>7S()E#SxKu`wng8(c<(2J`9nM+61gfouyDH z67SXW6&44?T#$F)b)^$(+lk7|emqR~jqmj_4)+K6tqAanceo#&o$HuW=x3sDrr@Yv z{AiHoUnm(jSy<2c=W{>JV2$?yLmKfLkwVrL3w{S0ow+Dok2t`A+naf8wCziW?nphE zAHR0yq8x2Bpv(p?bpA2@7l?|Mcn+K~^iaQrhxhBdKJGEskE|hmIQNbPU%T4L zDf~#n(<4L1BV#4BUFbafMCIx~c(U=xzVA5}ALGhrN@T-8YwQm=Zg9c!!6?CKL7@y! zxbUoB$vy)mTx{DdRsp-c)8H51qUI{YNUr*k;{K@_Exo-7#JJtVS1V*1CvR;ls$Zzqj(u;r#=bK?p-i zQ%tZ~+jZ3l6KtYTpRKszS$@ICE%86NKpobh0W^m}{!mM8aj57KWl945eXZiv+=fhK zAdv7+wfi^tx(F|^j0Y>qsni;8XJe;vtZlw~4n9%ioUm2PVcZXW-faV(B1dfgs>UOg zsi%d>(;-g%&VqR})1|g=6G?@LAkQ||o3QOwLk@*78NHS4QUhPiL>h9*n_L-3^TplL zROzZ<+Q%nL-yQ*W6z@*7$!k_Q3Gw*5qRH1df!1@4-FK+Mn_KmM^+;osVKdXi)VvbC z!9VRjyOV<9tf<3I54O!1o%G|V?UECxOcc{64~pFLD-7=vUm0GPsI@eInO`qwP&Cd< zeF3oa1RFI@-{o(jNmb*NA&cb4ix>Y=<0YcW_Z3fk-J&|8H9exe!T-&Xa+qXw3{%>l-I{xxdv6?7vv@+6o5_0I93{$u zmjK6&It7yNU--DpA0-c?JVD=H)eT1G&^~9<Oq$0nrP`kcA3p<0`LeZHIjDvw z3~|e7b~MVrOU&{!HtnvMAuk7gm+(9+>M#2y;hAO%JyMSSmq}sx$Ys8z9Q-1hbi3!W zoEav0*_IY)J^fX*VPv&{TCzGbEIod^T3$pOcf5qJhdZ%8NIH;m^hG{hg>s;vNKkCL zh_*@J@3kJLFZMsKuGioysel-??ieOR*O4+oaibekL`2As z^U7PY;TcDpf69iVnjd`@G-Cej9jAL&D&r>^%gkIyUCNU-U6+ZeR&bKtqE?mv~KnNz;u0henD^UXzuiqu20NH*_+|#Ojhl@A)W} z>%YO3Q_#J=UX*C=D5ljKxm4cL>^8#|9}c;*RVgl=a!RSZH!#>or*KYLup8qTHkpQ< zU&i{PK{^ymoSeplQzb|g$d?Bw;RAJy zibk=v@8+C3qCoil>x2gX^AZx>`dLrWc%?lugxN32qlZsO*eL%(i{Ok|gz>J7qlhc{ z!r||I%64Jy!OYgQZ2EzeN+zT-BB8!{gviT$KPNr@SLd1y^|fNC2!F2=u};D^x57Q| zTRa%&8-8(SUmz0BNm7?Kn%Lf%Nqi8mzNbzm=}x70{Zz`OVr^4`%81Q)Vl<<1+g0zlCoLtDGwUqLn7j)*(<7O8e<8+tU(rT&< z6|lB!O88UiAYcCRaFPAWT0$2EeZFVEraCJ9-K;j){OC34Cqx7twCzf7C0Te4KhY?c zS>Q9yoj9Esz#98L)>x{30HQ!Yp|=mVSuB@%#_&K@&V>~Jmw+a3F*iS%hlBu<2Aj_r zpr%9~zfd!P7x=SB&u;{qA^x8XrV^aRtybh};l0#QSqnkc5QZT=bvZuJ}EHC)kW38PhTm*v9K66U9xfo_Ynx{(|B8lDEhR6%iZ>~U~gYj zj6KQ*OaZJR`dRaUI6wHc0I!WbIGkZIP@Yg+wRosuly71q4GJ# z#r_r2iR%%S6`t%8iz=Ve7q0E=f6lNys|An|d6#coy$6iIS4QF}rNu{7PMcrXx?DF6 zvsY{EOKx??e8I!f%I@_J(J0vI6XLcqe(|Bc;h|`(pVGe8RKod_n})Ou8+Arru(GFY zuvPG7aJi7nCk^@YA`$nIvV7gZ1Dlm?6*`$jcQFvaQW$ABT-6;_syDP&%s z4}t1*c*c?An7?ce8P-=k2h7tgcKB`wG3cM*-}qNx%zqt~44jgT$NB+lwz8ZV)k6>Z z)-H`DB_br%nHo34Ug{1?=W;bQPuAN#0Zx!1!7p0S0M@BWLNR$m_w!bpZi)x`)DL5r zI}oj`Vnggq866vWI6kbJFNLch_T)TJMTb=Gk3&-xRF%ug_KT7&6iHBZ<@V z(m_lAkPw&VzLRV|l7Ft-M@)VXDJ&Zyg0#FuF#_*|&yadLT-u-f|5aygKF48}P1Wg% zmow_{Q#yjT3lB0UM57_yEtB;OTVz(>$Lulp`O zTPd90uZxm@Ab!&;CuF4KKSOLc7b6WKCN_yxh<+M+CGQrOIGHqiw{|TSsL#+)tWvPG zBJBudUK$7LOrDRC$bvyhICT;%6~7Y_``N7KX{PdOBfj*2N`$mludrrjooQdp?`!Gu z@l1=WiQ|9S@SH!bgepN)eQ$xx<$n_YG* zVKZ&Jse5&zl*LKL7fz$zTy|>@E+VKr%{Z~YxA)wE>@4o9S;gZ4zdRCvPyc11Qpb(b z|7%UZz>9OAklu3;QXSwItdzORS=C1t`D2r~srH*umzR$-UoM5 z;UQN!22z~;?yx2y+x75NXC?30?v{?dz!VuFJzx)yGrVmnml4X(be`v!oj}JuHQ;%W zy83&L6%moIp0C#NKL3#06ka4lm*c$J?V#ihv1UXxK5O{Z_>QtW#G0!62x$SZS%WF5e z-oYYg5~IU`jFXLOK_N;-?>0m9_;HrVz7+T&4~(ha_R-=eWsy^%svNK!k)JD)9(uef znwA^4@5)v1!Vi?*W8TGO{Vky&27Mcs|C-xF0s7Vt@2y!6xiEg+&nvc{Je-q?ptn!q(I@vD`nIDu}KR& zjJb&@QvBO}LraqBAvn8)zWqV)T_Zckave=b&(h7q6yMtPGA{6h@Tq<6(S~F?&*STh zs$d4M(sny4w4I@-p!u{PPBt~@$L+vhSC0{Bv}!*k>s9b$g}FUvF9RL2cSJlAY{Pt> zH{2X)Ov?qI;%d=KVAn|+)uEXf$rOH!uh>( zaXqA7%)9&gu@5ZpJZ-FGs^04=(vantYZ$iwuL)&A2BRV6swY4Dog_y?QnY3xPn1-) zWZgy^O(wy28|T1g=c{W++ExdZr(UAMD*n!7qc3DiBogtlJU3D9t8%kH=gJ&{VcT#V zky=YI&6Mso;A=$w3X-etN9!z>b18398Xb(ENt=Xp7+c@WfMT?BjMH2*OpUiGI1&aP ztc1ShNOOpVMQretZSupWp$;O!7E|v=BXOL&TBP(+amHlR8fu9Wal=?Q3t zCG!Ao3tbi~@8|yZ7VU>kJ%ndQ?G-er`+O9LZ>e8)2eIH zBxK&;;NyUI#37lROYRGMZCel@hPkij$ndIS^xn|E!wUGGr z#I+{gP$NLs1%>{#^pxgdGos64P}uw~Kp*iT?Zk9f`g*z|1`3R23j4C>ct5|sdrEP3 z1-E>Xj)xFbxacTE?79k?>GF`2a9_6*c($-DTmK6bsDuN72@nyZas&|Q3Dc?^tzesph7KiEGxMLf}qw12)y zp<>IQpbAVV>nVf~Q$w+JX1=`x+*aoBc%$>8@?T|j)zLtXrY3rW6Gpe+Mb)1UI6y&J zoGU}Dn}RRf_s(yFa$(xDL`W(@fme`A0-6rLMKh}!3xc6a=tKL6 zPh~90jkNs4MJDp-S3PDdR3XK(%*nwMHE;CpMdnpHp_Ofejt>&KVP5p+xh?D~6NdrskSj0nU^0Gcy3+K* z7eiAM9RYe2C3GULEawkTPnx6|yEH<@{9Ees*ET}K+6Z9OVByyb@YAD0TM7C7i7*!L z>qj)rT{H@sjXuC0a-h;q9d#U&u&k=g!YI{0i67yjNr#8MuC&E3PXkD|*WsIQrE(;V z`@fs48B=B7JX;eNS>=43X)kd{2%r z@T+=i4SJDRHM{%?`U|~%K?1YE{zH5$_EObso^xXmD+*%a8^G^+t)7m0{cNM>Eq^z0 zGz1Qr=JyE+99r6ZuCe(mi(0WVhaFvUeyLEAG%50K%ntpM2D)pr$?@IbIGUawUENCf zFiIaDwxZv|NDX|mHt}heoY_gVS1FuRN9GLC0qVvg`&-pzK9_e$nr?Dsh9E9EJ9kn7 zeoAA}(FIF~#zsI?lovE8nb~p5oi6F%?SLjNOctyCqjuy5wE`7n> z;e$b7Uwla4&xAD7%ni#XFSA=pRZW<}_cs)k5N+z7!V}b~3Y3@@_`7GDD7ybkdk9aX zg-Pq>ceS#%-`g*SgC1NErIxcr*kzu{9>Rj3Ed!+#nyQP$f?O_oi46Ej+UEO#GKym! z@TVi8n=z{En$lnKw{rSc!{}H<4A2v?D657o7P?%NW2!%9%&>_=>p$sDe>x;xwNw?3(~7E+G5ogg>-%OWz>$X0>+nQKi-+N^C_KkB_1 zekRQ~y=>dAz$q`^l4DzVZ08{KGwXn%?vM>~(#wGauAAOWK0$6b;lveQY>r4p_@_B4 zn{?|yIe^=~E6zCodKiN#*6okJzs#$QDc-Za8YOlz_7f_=`a>mv(4rNDj;_}#{rt1z z)#3s`kn9ahxKfQ(OpH#kvmjB6{j*eBUtjOU0{&uq-8H}S9OXEhJ0qNY7@AFM?ysh3s5t5~c|dvRGxCfP*smQq1s_OLd2L`2yW zc^@516p|iugaC+5ck$rGvu?d0qEg1NAB{c;*THsKM+$^v8hll{OKsJ;q7p=rVEFY1 z{tM|$H~lAyfs|XxgP?L#xqdAp%8!g&j-r3R2`|6Z?U_gKk`qE4!{rBD5q&=~y5k`M zKbK>ghq|pJBj;h`()bs1QANeFl;QR5gy??WTF5so!*-Bu(oKNE5@@~sQ*0G3QU&Lt z!*ZY~Vr^+o%hn?x>B=Gk!QZ`IYvNMO9GS zrbJT%PH*8_J}Xm1(;&pB;5_x$BNA0fmU;0bO#rC)Drv8}HBTXp5t57hGrSAR{k5_S zzL4UvGD2j*V1Z$>XtEXC^?eGbQDsa8HBA?E<}I?ii;jjl_k9r^wjeQcT!C{J%BWY_ zY3~AaCEta+eFPc!pkzyjBv6K^8_&^8i$oT)|Ku~R;>BYM3Y~+$`r9LAD6LK6ucJJf^m~N)3;_id{}u{x5T!S)-sGz9W_?v_M9KRe-LS zZuT`2>vDMCWZ;6d%N7;kBx;S~p!K{;&r=_x8*A(DR<2&o<$~F;V?WX`V!<7J2t?^7 zw(kLtzB|mr0(ifklb`zX8}SzWM<9d}SOAzPh#A(@v!JNny0+Vc4J_6i$keR9j>vOB zeErgYRVZ3hkyYL@GzLdsgX`s|Bt!GzTc#Zyd21mjw_Bp+LakD?L&Sd;2NPq^9!;tR z)K#-Uk^h~>f8c)K-h5_|0^sLwpZ9|K|Lw&y7lm6@C&J&rwy17=VA)PQ-2zc!_yOZM zaC?L$7s=8)wXc&Ci8N?_owROnfDkDVYF=vvNhR~SyTcG}elGXexi{~)HrJeQfg59- z?2V}QMAhD9u2wPY^8LrjgR|kHOK>zTuWxPX?O~l?;;c~UYSBVJ?sqYe>wIbENRx*= zRE;7Iiyc(BF5_?;kDK=4%m3>8k3NLmMnxmKukl$~(&gddJ;U@mX^9Cy8=yhmSD- z0iTat5FPwhN4sSQI~W3@xmryM=r1De6B>zj|@ zVME5DpgyQQJMPxb(Wkir+Qi!5JjPm9G}2_K2$VfHb+aj(i~PpY94l1PVTU(E5!|6|8(2_io{~a(lPhI)f7)^w&ZA--9y0mi&j+ zo5(o1ECm^)NjNdcMX_&&@aI0-i3bu|x9ZYj#^fMwMj+(Xl zQ!m0z>eFoxyU0K(u9K@}y-l@r#T-_(;|aM{mxG6RVviwn>(!2YZ{4M_y}n6qsC~(V z&Y+k2bxcmKmD;k2=1WfbTy0#a%K;nl;biH=Q!VA2SYj$6sdd=67^fTuDTS^Gd0ro> z`7+}x?~Gwd>!uF)4TyH%!TP}Z-E72Jlx-EHY}uA8(x^itKNHK~oHbB*E7`c}am=#4 zE%Tx0Vu3hQbFO~cemMvI-)plDPey&~3%Y^4wfc;p4|Q!G+Ut z|Mm6x;RH;w*y`g(U6&}Km$YICMU|;BYLdZSRb8RC*0NJ24GXuU`ETI>0wY}-yZcDz#%5*TNB9Ys ziH_`(L%_G$ACE^WWKGEjCTd<+bF;={VymTP9Iu&84Fs*{ot%Shij+-SBI~`J%yevm6zXM z0*hU~z$_K}$YFN)(lU!yU3!iMqXv39e1QKD_?4}?# zgv$i>9paSBHJ};C{+^oWBi`e4qv1kg4A30P@!Su0^B-smW12F^eJFe2@sMkyt#C2P zb=QrwXnZppO*sFHncIl+kw3X1aeR|_f4}W-)^{!{6#F>F+@`(H#BwO`uo9}IYx^uo z6+%OKKz)`%-&IVdEZqJ6V&@%EZq;T1j2Pc{@Vkz zFBHV9UQ#gh!1YjeoTu z_3Sww^}1$N==fiOb~8Rt6Sf~47Wv#zqPzh6udrlQn;myE*#HT`Ly6CAA6}|T0Sk^1 z29sVVKOY$DaTlgEY^(ke$b6ox8>9DTOLZ}IC$?#ZE>8}QsS{B8YdL)trxiSo{NtK^exGU?kvuehVqNF7v~f1^%H!G4{M0Z z#lK+&W?64JIJyx>x%mp(lnX1M!dc0Bcbm@dF}lyW8#Yjvqm_@Y7QYUEv|CP-Fq#() zOLt)yN|_`8{hN3KYAhJ?lP5kZGdpaaZvm#M$tF!b3m*LAu*@HXHih+M0>#xmAJXYc zazs8O=%h-dAPmR8sNNnQ0I|$+W4&TUzq9b=YF(w0jK;7zw{EN+S*xA(tj+tdM%7zY z?~V7$B%z7ZZFb2LqC{WjRis9BhA_4rxjCRAQT-A${N|yaAna_ei2rON2-jVv0Gq_` zm&7Wlj0Jqoave`u5zhjCWEyVY|QN)k@s`5&aaI>hL<5pZdqvKgamBhWj& za1xGoew|GRiG)?>i5SjcZR=?k;k3;vYWpZ>qy)?dMKglST?5n3mwFUxC&5g8gbr%c zEuwyYIE~z}DLVjzyn{kk1~j0_?uR3xhIFyPAtAj1fO8eC9C@=?-h|5RiwYRgm!RKE zyG9BAMeWvww~Yu5brP(j&nk-KTp z@Rt*P)CD5oP9rWW67F}uA%m;OQtR2iAG_ihP$g?=iUp>A6_hf|Q4l}r{XZ5!3l(J< zoF!w^h??bz1hI?%wgWw($_5i7z~cD~Y14pi-6PO_zxg?=FVsP#@D`SxU*PYO6N?$f za_IX7Tw2kj!R+s%=CXO>5ItdE`QZQ2Pxw_0v4FCyhjP<|=!awB*no7A~(fOgd- z24j``Pf?<3l2Xrw$Y)^}lnWLmWWNv%GW>qxwRL;>)@BgaaMTrDX00Hh_R#YqW)ec| ztV{{s!>~fIWDEicMS%Ue_;GysRMFCRp#Vd9(#+~7kRNAD zQQdviy3cOAtJW{`mEU_YWNQ@2%icc2nEj{*91vohTtN5^^Pi6Q!kqmGUX*7R5*^E> z4o8HmHQS%wb=F1oOWyunG#6EhFZo<(#Jc#h*XQx?K#Lu9kqHDV_}WJd9u*M6d8*fJ zLtN8GZ{SS)4Y*8T(?8%AM?3kci}Gj$1j(9rUd0sC2BAqq@)hF;1snNG_bO=#_oKq+ zgMuZS)Z`MZS6LAV-(9TqC(Mf9>Fj z;scthrtVv5#m*oN_ly~__ukv5@>q~DkqWrbEwn9s??hz?CmHoea%pV_o-f9;tH^DT zWs99bAXs`d{`y)G2&T-q=0)(g#&ahyhmlhhyiHB2-8ALv7HBoDEm1L%nsczn`rr+A$c`$JQEU zLv$9)V&ga}k(X!}SW^ce$ozccik=y`x|1DlJK_xO_2bwe{+UpUo}F~7CTi(pl}!PU zwT{*QJN-V9q}*1fbyY6mmQ!GW>Fw_=fU5MwuDn^uvw~0r|WCm;_Oy*+@HVAJf=ydv{4HLTT6p6%zo+ zI55(SQ@|EYv)cCHHZ^Pkp7lKY+m&D;Npp2rt+7TtY$rif(+Lk6rJE z+Fr|>UY-KFu7h8LTX=M1H-F5E3!_pymi&jGcQVVz$!*4Y`pR+pu6$%(P}@}|Tatj0 zlLqnZ5lMvUB+8`fyINZ0IwxajXov_U;0^;7j>BSMeNWsmh5&P-sjf4|;Lm(PRsk|~ z>1brPOWh{FRdPJ#ySU6}_2 zQSH6VHw$#63p|kssy{L88~$4zai(CYtYUn?8z;M3(@z14Ropo|$y!8r&A`NR*6`GF z1!28QS1qbr1V{qi2||8Xr>S=K75C}Fd`INJAgRaAGC*8?UdshhaJ?o8dQR7NoU+lC-JHae@EygSZ?x}9ynY4w>&+?l-6Lx!A;A8A z#`wv(h`}d>VQmqu`ui#4;rAdx*`Ejk{b?4=4;{b6dpRa`{>;kGhF4~+k%J+2*8*3r zniWaPqj@fc4$ec2P;u8~Bu#2W<2`ob8o4C&r-c%sTtd8OYect*RwR*?g+sX&G;2Wn zZphtX%@q%gjZ#9rBe}L_z03_$%M8*|+lTp8g}tbvYBAxpm$Qi0MU3qsr|7m`o{*Xk z(0y{k(X&ObPe7mQ~wb8b1^3xqHF40vwXYkIy4d$*ycnA&{e#(*I9GBRdX6|euoD26c#3-`Q9 z5wr%VGU(4gv$II4QI#oL>tT$yBDn+!`COfO4wIZ?72rf;XFBlOyc_-Mt`jZTSyQ(8 zVjH~tLV+i4DQ?w@-f|sDvSE;~eK*~%jnr!d5YeJK z!=jDn;zV?K9=*=~OqI!NNRN>4i}a?hONu2P2+MwNN=8G2lKeOHMYDj?o>E5$(%_>v zD6P^cPFg9hU?&1K2M+N;WqV2-QNaL1g)F2Zp^}Fm=oaPp`MTMzvLI_ZetMN1!&8yR zD^$P<8pKtkt@c?YYJ!Zqspa>Q_>Zln{Er*`_9bYRCuq}E`4m5u^a9QWvzl^5zL?LF zn&*@*9WwStktV^ip>%B<8fi59>6Q{a)m04-K3G5Szr?bGb!#U0n~l5GweAc*%f|Jw z*$Q{FZ_XJ8`$+077+%~R7U21Kzy6pxf5J%~)ryHuLTkkk`Y$)IB%KO5PO`|U4heM0 z#id8}dHeUc=x`L5=%-$7FCw!*20Mitk$QY4Y7! z*f`lBlx<~c1u#*pR&XIh!^+ zb2j=d))%xWe`K={R2WV_j;v4mH!U8XYPCJ?V1?ld(8Ds=5lgB`Q+FpwuPmm?4COIc zuJ^cpmzJ9I;S=H47zwj-FKZ1a^>|7LdFk0-fT~@0?6qVwMpJ#3$j|uiNM8U~5*dfo z*xfNAlYDHSQb#b zJ<3m)8%$b|UW@V^p%5`ad4Db#ANTyXGdY?Rx=)lfGg|-eo5jL&?hwPVUX1tG{N>*G z>i|fT_;g(;Ql(Q?j^WP?w37~o404dXqa9b>65lcG%U|W5D2WU*^hBgEZh^!bEQrR{ z-^PVLG+%?O&T~>RElG7ygh7??E+BAJPbC@^k*r3Sm=%-!a!GHFgov=K8IPhJm(-F4 zpRmbp>nI{VGN@{*|FZ%X02?#*P*pRSwvk?(d``h{CwXeM2%y)osK7VE%Jd&)xgbrqZ`1lYr!oH0${ELemYCn4kiX!j&qh2k56|o;` z&c~4{WVH8nbfJ2AYk&29I?@f<9zC(6q)Wf`oO>`@G-Wo?nC#u{C7I9re{4^}ZOw0R z{IOy}bQ?;Cx*67!y3DX~#e4|3>l8tn4yUlC8 z#KEBG(gRT+!A%V7K7kyZIcU^e@47=hELV!?X68L+BGsSf<7_1A8e%(2L zQWtF7C_wYkI@y&ewO*;*FTV3)Y9nx|`4AD6`U3#%OC~Vf0*5bE5y(G&e7$s!8w!vU zPR#T}+u0xgV^v)^95tSPwASyoFDv}cmE~S8H-g^Lf?1)Z1sIlKQ><_OraguEXU%T@ zJnw1WuMO=+C40)jnRog$LD6X~lM(gl>Fy3Ecv;QQ+k<~?s*h$g08NDVKn`j3gLsxM zYLjrG%;hgHKXVS8P7h<#A8-Mm$7^zhsji!s* zPXNToyRuF*AJ+i>!c~I=fc(cvX<7pWobCJUfI-HzL%Sy%+*OHUmg_ zhkb-Wn1zt`-jV6{iA(grSPQ5$R(Ht?|J=S71Px#hUNlE6c1zuUoh1fJ4N-loro#F` zxv)Z~&6$S!_c`$I)VqSe%w%#MITVQb4P~1U!tv|ZWZ%|KssH8FI}(>(ew*fZ}%K296O_5MkQ~ zaZRnQ=a0ZXznj(z_cm3ncWWks84BW8M5LG*tCVBA+zcp|!5}-S?t$=vJqj?O>+69> zKBFN&Ui+eXC!o7%Iw?&7`Obz6AN}Y{`Us|MZ*cEbdXulzYs9#*&VDqJZBh6eu5b#l zn?9D}N{d;sz-mSPrHXwF_;<)pjewu^&8iS-&og+D4GQ}urfUSv{uQVA9kZ4%W2bE4 z84IefdI0++xh#=_vL)j#11h=riaKbwnbGKn8CW=EoF@PTx}7kR`|$!hofmB#p_f?V z4?TvE5IiCq>IST}C6EBZNtQc?XRur7+C*{)-hq=~VjAo)x4Ykji~y~jaHKd?CwmvO z4RnXMUscolg(pdDd)Wv4I-vcW7|grlTRJgO@?S}$da#1;;`*~MDff2EDbV+o^Tp>D z06^cApYuM}eTd`b9iKS7z@XK@ zx5XLN?DvDS4tHFpej_cruT_=>c=)%`+<|kvh0Y~H8$f~NmpUQfXaGts6A9To0%2Xk zPZI+|KSi{i`=EQ_d$52c2PAvj?gI)iC!?U`i@94;ug+}Dqvi zx2*JvHyo8?_p#Wf{>^yUQV-h^C(I=4q)!z<9M0Vj^y3ArXP2B52w-2h^}#ZdwniRH zhawi=3m_(E^R)qU)+lUc6r9*q-FWuT2Ui0q4_J&DC-R!My-$Ze?o=-QuYiPJKi zXAC9hq$zm&?0>X14dZE?=@?NS(T}7%yCXN?ajg8c_9ZsfW4`t9N}hTq`A2v5OZG-) z$1_`h0qKrZq`2*pcl?60x{e0H-~vlF^@o_8@I&Gm;H{7IY1@5tL{~}*Rnf($@isck z=)Gdn_MhLku-s#%6OQFXDxF1L+?Ea}8tC50O#>MF)~qVwuSC{g^Sfmim=S;%n7w@% zGTs~?n}Mrd0r}gVmLScA<0f5qo&S`&m7U5Gb#?oRh)FTcn#%|ApHQ5Qx=dZ)E?N*> zc8xHqq{k0Z0%2ehcfSj=fycLvKE(C=k9!4KG;4cPtHj=QyH38?nPfswyX0M!rV#On z=M!k_ob=q|E5Ff$_0>MK6ugD_nUcS2bo;A0v$y@JC^!J-RqQ%@9dI1C$v)LZ`5}N;An-9)Mpa1;{rXzbnai^uh>dJrj!pHs7zb) zdx`X+ze3K&58q&pmg`^QTy<7gFMJ!sp7JV8{VfY-4fD?_}b4 z8;<}h{D?S|5N%q0_*#`}m!D~IfeigwAxP(+C-TPDqMq?Z`@+aY@a~}V@}74#)wSrj zI2KcN{#kvat&GI>y~ZfEZqmz9S7db+q=VSRJZ!Ft&642DLYh5in_6A zAF;Sk88jB0xXwOa-i}7Q8)W6iNsF&rh5zR|Xg2JlCKkgv7YjJjd5CkCL|%C~O{^FQ z3eBZKeCVkc_0~e&mv`wqOE#&uyoveRR(VAwu_Is)ZkJm82v`N5VUua>xq5xJKW!KD zu?T4g9{6~cRD@N??Gt0_NDP1C7*i&Y|E=AVR$b;YUUPVZyoxkkU`{Q-(nWq$|FFyE zCg8hbjPK*)>)LJ4j=BHI;1Rz7oj7o_iRsBMP*)E=t&g-wq~5x?p{U^nQh^)gZ=)$w z+UwP*BA|6Pj>3Jl!$KiV9{tp=?Ud9n04;p6*G>r3+qG4nZFf*z^Nz zvfTn{FkERxE4n`G%3K~`Aw`btJ}jf^aSS40xDR%D<$DhXN;?*?=Du*C0Jq~jSG80(R~^L?L_z%&aLNx;o`Mh3jiH=@xaxbRccJD#kjf2`1tIXuIY)?qo=; zY_#g{)d2n<{c(OxWxToP{vb&O&>|WHd~(7NO5W{8iASUhj|k^ulOJ3V8YrOe4-9Gl zl(PW;&{Rp@km7EA%IwE8yHro0D{Zg)yD^(W%gg>08ketmD>DCF=q}d)xMQY%X?@80 zr$aBQsN{SV)cm4n-|ttRty5Pt9;j-2jw8ZqM&R}jg%XhOuMo9E`OCR%=t&1Z{W2|?61vA%05qIBqF=YQL}>tZP-A)tMF zYZ1w<xsZqPTJzsGUtP`iialQWd1v+KmXBzi7Z9Ok0<@JpMHD-PyldmB~ag{EwC)~?50+i z_htY@s521JG~?I1+f3sFY|W8)Z^|E;*49c2?JIfjp090K-id$DagU=*YWvi*B(yI8 z8OYBoMTr>0%6w_qY5g2jL1X+%9=sH1A z3J)4nE6ry%7~9He*1mc%$Gly0o0T&KX+km6Dv+Y3h=Ty zBxZQ6(ByslY=B-@!OyL5Yv1#@kDRc?5qhJu(gCwsI?Y+uv&Shu4`nsioLLkfmh&QCk+xI-CAJ)zyDvp57+KodXIKkcB-5S?G@Zb)?-QC@T zYjB6)?(P=cp>g*{fBwZRXTDiXuWHd%i>f+x&U@eI-W!G^N#Z@@10-ZQ%WBG=|3~+B zC2L1P<=^=rS6#mHdiVRF?%xH`TF*QpSNYJv=FuI$E)jbps=USR^ai^B_9a60j#Fmj zG*FdLY*ARB#Igbc-Ybtgkc#>;DemVLH=fb1qK8N_8I&VH#U1e&TlE!FZ9@R=GnCBV0-O%WyJDA-l9%~N+}fi7r_>ST>ptib z=b;W0jF1ZtL-^WxW7u#rmV9TGB$3T=+Jpy&yFqhX@CIkg;m<{FxgY^zXyHZj7d1GA z#Z0z6t>CWO^a3|Q1Ea(?Cm6r)+9%i{1(^1TdLsbAPGKb|a5@sTy}o<~1bSVhPBG^Q z@SwGQ0b21crjNwDZyA)yy7-V;Rp9$`PC_r=8n!dL^%p56r})L+$>pLpKHkR~w3=sb zV;g^TPTuesyJ)m-*{zvdy2NoS3|)JEIR4h6Cc%LK5;%#s9Ut|(QvWbZD@Wedsm9v# z!^0H3j`6rp2EjC(<2NSpq;@yNa9?`RzHPKkJ&W$bXpI~7&#WvO>ubCIr0lK9uZzOa zxlf*~C|{nLk0Jub5L?H`@ODBWbFHw?xov6*bleLhs{D}@u8|OpF8n!6vf9(b0bT)* zp}}MHq!?FDFctu%Q+U;qc(0kg(FbIso}(QeA!B(MUJ0?@OpL zeJ?wZ-)UX61qN{`dlY9XZ!cE{-8LsEd*)XmB|lWY^nhMe0iq86kw)N-Qf(~l$IXnH z6l+>Eoxy3eq_YmnoBIf4?oIG_LrteOE|xC6q3Oxyt_m)qy06W5jhAKP8v~JCdVqakv4Hte z4N8)|D85PIB;VSjw0|&c4(+p2oUTHCO=|a%u_FZYYHQ_6cP`4mn^GFDYzih~WQ$H8 z_I*{H`Zs=Mnj%huZhW}n4rM(~l&z}8CSBB;%1()1wwXENrG+S`QA5MIHmrc)L~D6EWxR-thb$9#H^VQFd2+XDO*N*y=fYN@WHJ3bIn`4)O-6f zzJ%xDCRVe-e3Qj%Q(kMr**|j^8E9;CFHzlhwF8nKV|P{1Bwur9zE zt_`g`r26#Tnyxh5Iks<5oN$$xyOPnbGESLp>KP~?0`rCpH+^`$hO^S-Z8x=%1DM5R;K4ZoA;)JKyE`p z{rO%|GmX{_2lhsMhdRJ_`w~h8qijii*8%)KR}5|_c}1^n!i-ndPCn3b3gxCG>fg}Mn~XNmYhIbHBZ5~ z(u!mU(lIH~_FbY65X3ek{NY62 zF`%!lKvA)6`c4KJ)FY}GbB0;~CH1FUGGpnw`&&(8YUzIt?VKxdZ7Pe0W=6z z^iw&iU1oVVmQ&>{aEx!)gjbJ^J-@y~@wU!Ie_ij;O`J8<6lXDTf1fzM>b2i}4AQ73m15=l|O*5{}rkIkb3pU7*B z%V<&$f76did1KCM$@keCfy#F`lN%k#o*Z>3nFzlz@kn`~`JoAnQij`&@?}70E|~S4 za6JGRc21(4dJwvW>!Q(zN_$AeF!B2l+Kr-i2G89&JmG6s;!8bU*ubOOA)yH64+=<~ z9Mohfu176K9NZlY^4R=X(WW~6Iw96m5wvZ&N@R^u&DLJ}8EiOMecbEHm(YU`lCJ@j zDz!Q_e=?#R?iu20O?6mI;OjbApTG=GH|(@zFsD-`tB(G_LKFgc0T=Dm0bxpY6N zUAoa-`mQNum`$C4F#oS2E5LzbV0N)p`f7qwqimL8@nOO7yHM?%m7J1+3U2PZC;Lqb@b{8#oicpBEuZ1#xRbY=bupXjOgO56mF7MsII@WB1zaere6aExhjk)qe#)jHZ9od^fg%XWmhy9v>C9*yGzJ;TDBTJu2>9?oV zZ6L@UX@Nn1J4GDhh}zdsm#y?Cc@DXvk~*H1xNI$@o?Lvq=7)QQ%$_YhIpS`LVM}L_ zaQuUa%P2Ls?!X=tYS48R7=H=mJALIPwipc*;FoBJNA?ccMdUyu80XDa>7W0=E8p3F_a|tY&m@h2X*&3rE{8f)xbKX99`1<{XqC=_ z9l6!<%ub*1SkGpBD5u;^_fZ`iS2WUlM?K)bpG(&qv;2H;h#ymTLuZFt1+^Zqtx%!O zFUsK)Bx7EGcl$nagq)mOa}gJSO3nC`E%onm*A*bwhBEp}>&OEVi__AB;6A(5euoQK zB}gZ;pM~n(49HgG?On1vgI~swEkD=HEt^o`#I{|z*g|d4JB$ZebrQHb{n~Sm$F@oh z-qk3W+%;EnO1J)yJNHpfFKG}hJ`3IL#sKNww9g7@94ikN`#B!K?IsHr2us?uOOPla zvsRut)-7d@SY#4NH=JL}Tz~1}8?dMvZXLM#4#z|HF0eois4?-HXe(3;BR94QK%GXL zhnrM{CChRn)X6>hQqb>C)#!^0Yw$b~F3L0*aIbavI8fDEayGo`1DiYcHkGKTf;;pN z3R&hc@m_Idn&PEk2!mD;i2j(dB?Z9kh^$kfUo!PfJ=-)ckLCkR>4|~TMt>yklIC~E zT^TVBw1!tBUI|T>T%Xv#R}J(23XFhA%em*@gYLm+N+%3J332^w1ry-yWJ{BOz&LX~DN$u_Jij%uO!R~$qKP~9pZ2G*nvh&K%g3x_) z52tR$$voJ!gv&QWl6o6_-uLz!H^RF{N-M7vUTGfC_~|6VF(a2iL!l1(LGw>14a5f^ z6<_P+kZ=0bQ^aYlvJ>Nv99yaF8$!Mlz!#t;pjD5`*dY9Cv_Fg=FGNR$xLFku>{oU* zhVHXeOER!JG$oT8=7d;&{N!XP!d!7rV}YIDLVZ!rh<-AMqHPOgPL=u!|Jh>Ry9F;1 z?bO&hWK?F@OqG=9-+oo{;yz^6nXdxnX>HVucjZ}EZ)vvI@Z_4l(An(lI@2wE5u`03 zpU-KGH((vrw&5U(OY-sJ1dtlk+v^wQ#sa+{C0KXJf|x`1pa8`HBziJ8UL2{1GB^Lr z28><|`>SI`|A9bma-ZCMxZD^HkUiA8-j*UVj{x-9MXHGJd!yKs8U|jn=LhaxQg1>M z`+ofa$_^wbzL{`=WjGE#LSNR$SbgDF>)(Qq?wSN}hOb4LSjRFNP30Xh%$gNH%8%1r zJR0cyoau_p&BLHp;D zKgqDWfVN7n40G-wA#y+S(jc7@xs{1`IrJwa4l|6Y@oSxsWcLdzG?CNC8+6l{j~;vU zy!y+W3}$q=;b^jrY?~X?)SZnBHg?!qd~~W?bCNm|%1r<*40f8)TkYe{`@4R+a z&8S#ED=&mBa0O2Q631}WuqJX<728#M*NL+xAi&@#xQMKesy5w|jnG2XVIj~dKF6I? zKPj7oUzcj{t@(!&TcVZPOR3Z;B85V+Vc*^6LOn3*cpDf;)UfsNY5qLd;2VJsRz%y;?DmI)#Si%P zN^lxGU>7pM{(VjKwfec#3W5#7tX6Axx&b~))_;UyZ4$`y%bdtjA9APSxpd&bBMPHZT7=g&YETIt2WF!21AgxCjZXwR*0xw1Vbf^_UQJ|Nij6r%)ni z?pQfdu?gi01yMjM6oG z#ARBLj)tqmoKka~Q`fX|P#IL4o_-n)Tv@Pk*p77en)y)!vIXlw-l=Ol$I>|aPPF)V z;sMX7PzqZt?IaYt?5}aD**@;`*)RmNv)o+-EjLq61#O`p5i0v(grS;g!?NEEl=xM$mC2Q=+cI0h7lqa?SS zm!a@cIcT@9M2vo2*Fq%6u7oRGmw1D@7RQN8@my?Ua=n?)Jm-W*o5ozdve~j4qbRb1 zd&CGt?^>Ap;ign$A%3B&)Q~_Jy2{h)Rv%fP@osuPZ`<6uAn)s~&b*Dr2am$<5R0~2 zb3*zz{`^(mcA6I%nTK=@D}*><#AL6w{L6-pIJpS(F6oFnmUdnFgz|!@QvN#&0+G`e z{bLNNG>g-cHP64s>W3Oz+DIMi{xT5GW*`Qj3iC#1n{5i9iXNF~^Tq;Oj`AR5SC*(v z^g2{ue{4a4));V2Y@ONNDWOf0hq(wV@egbjb}sIIIZkiTqdhbaX8z zGw8Hfz(}?uC#m{LHQV49Lo{b#$O(Uj8-JOGLX#tRO@NGqcvmEy4b2h*3w4F(#wMOh zRH&p90R)w@@Z=YjZ)b~vG#>q$qFGrfuo!o6*59ThcZ^&=5bs7VBbjMcDao$nhISFh zDq`EU2p5r)$6m9>yTye$GoB?4s8s$|U6Ytue=T^elo3|orye7y!-wjn&L_;{pf{-_ z8@p`yz4}GCET&WGv#~~Z{m@ggd222X7cs@6WK38O%JjAJZ}vx$gB)r75BFk6_Z#(| z)Nx7b1oj-bo(Yc}+ZxvEhioJjP2(%0A7x|oW9CZGx87umw_8n<);W?;0L{$V@D$E8Lb0QP)^6m`Zw1D8( z7YmNS6*v#V@COU(Rt~pCG(%D4_)$~#^htg9U4YMb#sDdENNHFLb_?TRqrHdor19-pK@Y`46d&Rhydo zYHIqWON`8uPXE$`wxF%R9OIg^q44$;SXXASkH5>!_|0_Mfn=aqgP8PpgN*9yAMG%khgd{Vtc_(@fk36rc4e-)a-WqK{FpeWca=pnOp7s zt*$J-+(^`KwywSBx0}7H8q(&Y#Oic(K@>ZsO3rpNU?`ypH{NvE(k(V`9Q?%fsukQvJyJ&2O>xz@8R+2$wPH(32`GDo0Ijkhj3`K^1f<2MTS!3#}pG|TC^DWCd;V-l>6 z*51(o)nRqq5eh_mN4f_dp|^P!PvT)|846am@`It?5<~B1mST^(cdjie;4oGD6qtG4 z%IYxwnt=6F$gt2ZdOp8qh~%y<+C2guTe){>NBOt}ds|%^_&slW)s0v-`&$&}p z(2U>iytJ2VtbCDEa!MP3Xfv(>EuztwgrDYQnY8+?Nj7t7c=ul{Mi;~qyLZhCW$16k zmVJ483%vYa(kp08an9s{>0bQ06Rlp3`sf6xv=XScc&WdlO~g4M?q{6S0<0`Gq;Tmp za}GN_i^hG>7aKGYZQyw7(lehM-3rSemEIpXi5p^FA(i*7LC#30xJ<*fRb>35V}t@r zDhR{gGQ?;p#-!ZSDv>!Hr=`&vyl)1dsdO@M)nfNF0Esc`@Edx}~Z~SP7dcM5XDb5J%~#EK`rzbRE5uV(EOSS_$Uft>c>zRZPh;cP z;lyRoLxg2k@a1T0Y!znNAnR7CQM<~~l zyo+u)qw&J~a4fv#f_iK3G5BCoACs96K)m{@qeQ;#pD1tVxn5`-UnKtMP zwg0ee664mlIorNQLY~8{#vE?%(E1oBu}6IkbI&07%u4r6L^c%fR*Kc#SfHDclSWr# zRMoNqrsY@tPp~JpcM&^Yne>YX2An_KbzAc zDd7HX`*UQj4?y8%%p*mt;Kv}8?^JCfkI9^E0Jg^3fPIB`OTrXe{Fc#Sq2TT788HL< znR74fS*M}6&&G9R(z`OLQhD``D8&uF7_h^LO%7)X4c(nqD!mr&3Q2l&8wPo3DXeIw zN{u=C&Qe~eLgc^T7Asq9zGx^jbmD)<-H zd(~U!W0|{fs=o8qkFw9HU6#99)$_KJ`OP-{aW4>;7rFM{%X71TGOz4;_I|6dcxNHE zhY&hYd@E){^+bZY5~M+D#y*9SjfpjcXDe=41!>Rr)a~re46*FiBl7bycH8%C+i%8Yn4Vm(X@f8a zmje4mGVs(Nr(vE6w6!qlF!iTf`{K}BC&ehO2syo^BL(FgKM=R6pRd{K7>5DT_P~d8 zI^Iw#c;7D*Qpqd7NEtt?*{qV3Hh06_$zGGx~}HB#;x;{{`%2%qejqSX%2 zS6C?$J5f!w;hN*anU|L&mVA;~_u&CZ~|0^UPOiOu&u4(5;YW^1AU;WopP$`|V-Ykqtw^&ai;V;o8hQTg~K z6+uTX$O&(+&_DzR$iEB3xBi;X0rTL8gX_PJaB|eT_siT0pHgvKt5$Q1n~!t$FCKi} zEZ&a3*&EXfd_+DoIz~hj%}wcE^C=p`hFl06dWvXHVS&IzgVi{ zTB;|#!X*!S@u$u{UNTO!6o&mFY&#Lf8pa6L1|yA^ zjRrJ2<*9Zt(Ob_c&k{O+4hA?SbqAzW84RBq?^}vxMg-|{s|$Z0`e5qarTwg$lQd$L z@-X$MGKTw>?OSsSxRDzx-61!8K5H;$u19YCg`X4@W&%hAy&{obe_KH+zjL{qe=*6C z8mBrRm(4HrJOoOWe7k<|Lw0`=hCAC*%~EeYpI;%>d%($Y*w}lKYdO}NMg)A1mXbrPPtwPx8tHJ9wa=!wXDB}9AeX@s%MzuwKp6AG5s93>8_ z_-w)NJtJa9WfV|`ua(Tf^wBc+HoYFCTSzQgr@~B(iHU=Uo?cA1(ELD!lxbrI+e(;( zZ!6}8oxi>ol6a2$X^5rMH@^mh)QoSk%joLHeytg721HL{ z5zxX+U_6TQB^Y5ZtyIF+j%yrp~Us|})?zZ!gh-erpK1xWl< zQ+Bm;&Psrwd|{^(QCmnrhQIs$YA4EF{~Rk2%|Y3d`NICbl>3foM=WeNCX532x^_+7 zA-q*WrB7HqEv4hjP2j1|Pidrw(|s_NLFS(3-}}q`3Tx}@M94fvlKOi-0YRau_H1gS zegwpM0bGxYe7P9{5MJ}LDRl05G(8YYZ+7^{q9*jR1G2mP(!sqv!Y;>WT6Ed$Juv5# zo>!FV<&%~M5sAUAz52zB^mwX}1K1s{jSM2Sbjg>69)wbp%d$Zt9Q%LPC_R(B58s`K zrtSRtGn)^;gR_aR_THn1nIza>vx%;bufw~Ax;EB_A+~4r=JMD5=o&ki-`Yos{f z6Hnh!>q6j`C1~G4_lxKcL_XeagU>Qx3_ZSaG6yZ-25z$30|LAgQTO*QTqyD5yRht^ zYBzvvfpvWHn+sY<4Cd%ih%U=8*l@IJg?rjzllY&I{7BGx=WKM;B&sS?BMzl8FU{gg z?p=kI$w|-*8C5WI0Oo>RvVJT6JxdO&2J_7r?l@|@uT3tQR(C3^Ry;Xet+@4%w))@76eI<>G{KecwpT)+{)`m%`&6`1j9qYr*_pt!9xWAN& z{tZ8H8V#X(qNU}}3vD)ea}{jk17IobdnPalY0rJjxV-NbqbS%qX*x-7NuA)XUUSs~ zip&@CedUN{@g`ddn%ha_jG>Lrv$N8~Y!b|F1)JsrA$r1XSlkMHtyoStI#QVREv0N^ zdARQW>{BtdlFdU}=^$mce$7$@vi!DF1afp}?Jm$Ed!Q{i&bV$mvnWaBWnYWv@TV?P&oftOAqvzQ<_T z3fuVMaUp30!6Y%Nv^Fgs!nAPmzxefg1qsA5{u zyl}0X+a&=Kg4yN^Jxu`wU(;s$qk>vm2%t@~k#~^<A2Fe!~a zDm2!#qwsVh@^rO#j@vBrIu8>qoIaNo3`p%C;vk3G#in6PM*CNIprMU4IW79A+sQlr z_%9YGU`HgUj-M69%mYo-G0*VW)Ab7Dx`7h=Z}MUEPsO-80DAUh9`^3 zK_!4VlHXjW_-m{KPfQC2zoHmPR*lzFGI4ARI`n|%KV@nswXP)p@7wrJLJ+;1uD{0q zfcoz)iPnTl8Hkh=?H`dTAo*SG0$zk;ma~H=-l27*B-31QVDB@8{S(|qHT$ODqc0)H zo<(B(DhYK$JIcmL3LRB!XneW;(3kIw--)j8hj}{4*`4Xyl1Ofh4%6A@HvcMM@P>r4f-N&U{2@_Q`-Ql57Uvj04_=A>)T@i2zV zk~JIpN2-hJw;xNF`(gRAwkHhP=FJFzH51P?IrcA{bR7Ou@ z#>oN9uR9$M_zyCE3?2xd!M(bFp!s>eHqd_X5L~lv?#xj_je5adK5i+XXo7$8nBY&} z)UeDI>qOK!tn+}Y5AwKhQmqCM}`U-cVg7D>X z-fE+NHo}MZ%wO%BzwUcnLA|dF?}ZWg_dxAju$24H@|f~*9ZJo?EVQZYAkw!7e&rni zE%3}Ml=rk&y{Yp4%{4DJUamOezOt48W^e$bYz?pRS35AFL z&%ckg|0By(sO*B)%}?twAjvQvC^fkx`o?c$1VL$(Ut%YOmRoGBNOf|}Xt7sr!zqV~ zzWJ-&N4I5ex^_%c^K@BY^s8!@IeYW*1x~FnOtPE_9^p_g`9W5igS|?zkG5FAV|L^oovG)k z!#gh7%g)z)25j`i>1YSVeXGjYidV+Bqmrt2M2Cj}?X*dxrzno|2ywqIiUEajs-xzl zS3Gvv+LE}0APqLDB+zBU!Y^S>G*gLm9C`|K=yA#kdgQAF> z*@3}Bde4y)_lq~;U6`sCY{`cp}_=Cg(tL6mER={HF2t*0)6K!^utt;gilMt9O9tk(Ele8{!UHpH9?bEZkpNPv?8IcU%)_$$Z z_j@KfijPUz3Jf4`%RdtE-e;HQf9|SYARb?;c4u4t#kljxzXLZV;`ex)@seNdvAS$# z&qAqf#$puz(v8*uZ}8}rDzjqPgtrIiK4<{7P)1S)o(CWf$^)_)KXCkE~yESpN-wx5qz+LgT?EYtj=Bo+iHYnQ~webmur(o zqQIv&VPor&W!KMOU=QZq^5J@k)6`Hp_c2%A2!caQ`e#6q-keAZsEBuOg%W=@!yGwp zv&C#BdJ9kUn|2df-hW2UN>uKf zL~||9eKnK#hOj!F^75inp|s3mf-m;E!Po-zm(=U`8Uhc8Hc8q29&SCiwhllYZH!4@}p z4qk>C1bx!=C;`-k9eXL$W4#Xr9S4iqqL+;V6>?*m+T7*Gtxg+~ooErR9xer-wNfzu zn2O{E#Yn8xd)P?RTV|$lK;(t?b|fP$(eyiqrh);1B6(Iz4?vV;pccv7AZ!GdJci{Q zq#4s_U4PGm3JmB?*)9>aYr6RpD*A2V0R9K)-@qu`s{~8p1?g}UdJTt4Bnl`09zNL` znQW{HnBx&fG7)xX zEzC=o7YT35QN<)PMHwBs&WE!eQzE?>h&w8EvTVob6=qv!a*@sQcc1OD`2yWlX??2v zuElnga;Axe-9)iQd+B8Xex5t)=1!&-n?gM~mBnujrSKA6XgID{6w@JzZ&iRzT|<|x zZ#mJv<(F(W<_vAu9Vj!-3Z5kP84&a9r7X;PNG%(FxiB~(B?w@_0X2JjBagpQ045B` zrF>4l$`N7oNE&BpS3{+{<}adIJ@Y_d8sia1jL4X3-`d%Y4C!?5CM1arZ(&GmN@Eg# zpB0X}lplREq4|4fm#o+Xuc#`f$*p9}W4fY$eJhtsK>mVOa?eM0c8OSNfvj0l>wPw; zFs9~YQD2nF6S!sg@E6OOu;5k+3=)udO2*yfmFz}bCT@bppzd2(iK>Va8Z9TV>M|JF zEP{lU3L>d^jZgAX+gFL!%$*sdSlUO0w?<+aOgnO9ZL-d+EbrO0e6q3rK6Yl1iY#L0 zUk&}#_|JbIx|Sek$Y|$Aq{*@E&7f%y8*=TEqkJO;yAPHH#()EMlVD<9T*_Y~7| z`MFkyxuLz+Df%Gh-J+$R8u?vVUv3iwq7vCuGNzHXEor_3jTR+yi#)B{c6;cla*n5s zyfK21desR4YDJ#!*)RplL;xfV7QCcbQ|rZ*vk;kyd2i7vYFM`8PpPK2FarvSVs6axPs*YDJP1dPQXUXeitB;A%?i^= z5th(vF1FzW6gYhuMf;_w4Tpq2Ih+dX;gEwOs=4+Zx9vQp159 zp9j)&pM<#3V}-vnTsx=nH#jn2fRx_Nuyq=#kp4^7V2P!ZnI41IlHu))eWS;LGi=|# z()J_8hG&~_K|SVQRm99+lKzr(G-Ri`W+Kw8R4^WoV3}F@lx~}HhGiCrALjcskk4ep zJ>++gf97tub@T8Qn;X1Z(+?d<{F?6GHiuH_=4eColQ zyEiF=t|$VR#k{o&a!%X)oJ{`3P@MwnOtf6qqGeApKrIHoNOUS0Aw5Yn4j;&WzCOni z{&<4$10U}duPY7YD&$^mHxBxpNjbOsr^VPe7jQJ2u#Z(B{mpnvTo6pyKk?k0LfrTU zHTMj_08UXV?mh%@-LpZt=k!Q!?QoO4r&3L(AAn#Kd;UN@9B2DZFMmw%yjPz3zN3Uq zD?;aVZKJ;CgiCuS{0>?BV0c~98DYIES8g^Om_n2&x+L&FYHHH3kTPv?_}XJy=kk2d z4idBkthm;t@FDH}_6+3bHAp?6JHI&%$=Z)MO)6b&4-XqQ?|AWO_x}R0d(6GA74A3f z0}Ib9ws=2dkRkZkLhmNii&R24v#&bd^jN65H$sz^Lp0U1ugTz1&iFQ8k>wZ4opIcj zWJ8^AP}P0~6ff@`yY;CZ8_A@kULuk2+>EC4A>0?9GXO4*x<1G(4GhA2Nbn>%;HaQX z=~PW5!XscQzjThuZGw*0liB}$d8V6Ur+wjB8`iK=vnX?XkHvcv5AyARaxH}&8FZMv zF0C^-YY*R`HTbBtdE7e={CK~@e}Cz>%e}je zVHF0CZ3iiGDZSeg!P>K6J{~3Np!zf(k59tL`bO;jaDaC7%3G=vTv?3r>GW0!zFd@V%>d z&aJJw6ujlv$}WUT#V>~+(Lgv%IpWYb(l;MdDrQczEp*xy z*=(}O&0k$FWPJSE2wqnsy9T|H#uXTL4(jNa31YqA_5Shu&?ufoJGE7a$G{O ztVJw7<3X+=dP!Vnw)Y(z%Ku(9_@|4AoV&}FCh99Ca&0&Y^HO~U8AKdyQNQ%sjtaC7zIh7Q6X51;^j=Alwt{(pA!mssO2oiopM#`0*M7)7s6!D5yu-DO?kdK<|GFpo4`|($}Q;{p#`*nZ&W3B?&v_Zai=OpeXeU8hFocc&KuNl2G z0>d64}Pz46W;}h$*P>Nif%+8?6s7LZv}%Fx0;G&Lm^wPZl!nWdnD8=!ueFvxjt6 zcu{c$lI!B6pTpqmiM^_g7a%AB_TEUJ^o;7M#N}q}(~@z|bi0k0&m=GxkAS|F4TBPnI%VB@hhGc zD|qXp331LO40v0)u-L@tgvm6VR{_d)_n2D~I6OZTmO90?#P)`NRif+9?Us*|pqckP zaHn=_Ptio+3Rcs)mbYVmw_JxLK@8Q3qpx+ zPxjS#wocD1>qBczEdNmEFrsgkkj(`md4Mp{Rf7Za{&c!Oe9)nNago4>QCRt9rWmkc zaon;OYQJY*HYJq=)`gyVsTm8vlyQS#45u?JQTt#!`?y4Nt2}2rnfn4+3J6XQ=Vq23 z!mT1qivOZs7DTU5&fHMD?rW7S&&1%3;5e5$n4M8jyT~M!X$NN@Ii`j7=M#LxbZ|F@ zCK1rNewZ|O$L+l3-Nk$CsTGfl$)%U?uHO@MzXVG4qX`dDpgQg)CDo!w7&C>M_Ae;6 zMb$UW^rT^7m$^j;v+y?l@I>6BhTCMG%c$F_@D^t6*5Er=pUS?B;DAF4DeB(^&?LOU zie)F)VJqIA@uV}Byk@5i5a9|)Fe*lpU&viXXB|X-QQgK|HV$oZ;@WNqa;>UlGdKON zdVb@Xipc`7=ZSW2d5NxG>uNrQ47`PBolNC{?7G|@FhYEZ-2DO&Cs{EgL3o}jk$|8O zF`84Hh}P1oGW|1hVg>pO*fl^Y;#JMr32&I#+x6GfpNT4P8tl!xT;dZc>{*q_|2Z22 z`;Q5WTrz>ij_{wRW^)!5dyE!n(QCXJv+L)6@x35tNq^Pl&bghHVWhG85yLFEXf_VJ zaPtFhs)UxzH?WTnK$5a z=Xf1E%M%o;?Gf^vjI5RUwi_gP{k`C*o;6Sk67=`rCO1RKWU617M%=2SMyK9HW2fl! zg#op0esVQgvPVsL7^6hu;#I+otc9=_;jr(5Y4`d9S6J{f*+g96&YYlwDsNNjDR#$c zJMT14VMaOz^+P{Zo1bMoD>-)1@(Q9K)7fOiw9i$EkUB~+BcgFJqy^_zcQ&a|w-BrTT5rp3g7KQ|-}VZoZj-LTDD*j~8X z@bnY-$xuZ|GVZaT&^Kya)S`QBO-z4L4e453@c5REmf6I#JyMRO>Ha(-0hg^pwaAo! z9Y}dKc6c75zQsFMf*8SF*U#ciS8dRNUK}OXQrxyX0@fW0TM9I1Y~SW5J(v9q>dngd zOIs^%4>z;Cu)1$)04NR^tBdhPN!jUfWN1PYd=2B z^kX3NSp zbf?{{=6nE*Ntm<|A(RtzLGe~QY0d-I9L1qdp}t!P)DbLdW6Y+iJAaAPek*GV$~4Yr zJWjpU9q5(FdVL^;EGP-F$w6~y&YdB4X&*)bcKli`jNQqDnlzH;5NTJ%CO_CXlFXHd zNNccGZ^sJ5JUh5Bdr&-zZ2R^yNpd`J3mavIj(SIl1Qv=AC}@W$jx{A^Un4P2(rWiXUs6y znR0cEve#!An-JoHS4x<>V|H!ul<-5=hlF-{-}Sn)pgvH&N-Y0=&cKirgo^=EZwCGn!9a2y!fU1tgURM z=UkMJ$;l}=urDLP|HWz<2Qbt>mZ16#xjt01ei*{c^NER{}_ zHo4UH-OoI{JB7^bkAh2@>LUCS6TpoYlLnRALtlS^SWaS)Biqimxv&C`%vS3auffnw zIq6&=#kO1)+aJ>h^O%?_M>VhgeCy4dP=AewV+r|P&zArDgQpLO2SD(D_|yMCpLmGK zzxID|y?z$9id$1K!9)kTigMy~@JJic;FNiLGSIo+=JesXQ-Ix%11OTQIuIi}Ioq3fS^lZ1tHyEbi+U$RajvALkV zHvVAaoL_yLBd=Smp194*Yz3aW3?}3LR^gj_)3-jkchh>SBMlBxf3%y~;(6q@dLQ6F zq^=?ud0cfX@%D61a)uViWOc;gi-_>8qcBq75M*!C5T9>AH)hhV!R!)vyptr}H)bg8 zoj(4eY+DUFXPcX*ikgfX^7yeX{I6b`x6rlx&swK;vNwu#Q}3@nv+8Dk7h^xK*`mkQ z+7&l9M~d$*HdhiGG`Y;>88-5%E-rRc*rxA91sk_tCI6Bxb%i%>{wXjzYQi%gi%&ST z+1E&&wk%wB)TRhAGuugLOaAU{vj5#RvFGn{V)GUh*@GKaU2lBy{CVb{;Xchv{*cYc zd)d5WTg&ZcO(1I=YvFpVMOM8VuLznbDbD&bgLXHDrcV8kiRVXZ-IDj_yI3o5{BJI3 z{_yS|yBxenf7o`YIxOisDx=K5o%|SB#keFtl#|J+m)eMmtNyW|4}>DN?iXu zSgM_VUnl{yHf^`U+bUF2s1qTvVa$%Sd7@jG$i{3$iN?%#>M=z-b;>CGsv4%@rEtRY z8TgxN3EIo)V(%tdfinY95`rR!TrVUefHTU6NO?i%w+lHC@N9n52W||xVD*k$r&?AN zVeR2}vP^whLixdM@<Xvt>(;J%gwJ=AiJh*0584}KMoB9sC^8neJYwPU zLZOtp9@uC#(h4Yh{+LY>Oum({lUv51c-^Mpe8ncmjBg&Hm&Zd&h^w$OL`E8Q70c9Z z89q27+~8NU*z?Px;ojHtgBAuAm}%oX7`8VB@LVc;+`RgR#~Q^-K}xpV_5pbyFZ17n zI{Esos5b6&sl}9tOYB^n<{>pHEiG=USz{S!iOk^#O3nvFmsA<%jQ6bx&dWsm$z#ed z13z7p3;oQzSZuEZhiGlCsLFnqM@SzqE?S(mPR1Oa|5@3;-wKGON@N)(Kcv<6){X)5 z{xh6#XfzoK#S4o}z#wG!pl6vI%l97VuC-XO(;s`WnCHSAB;o#J|IM?u%@;J@%>>vo&VIiaUCKV9bt?39CQoMptrlp)&A} z{qam&ti{l7e*->Py6L{0Eb}^rgEg6}FL~cg6xQ}^mcAKw4{BEntO)RAxPr`?vpa-o z`~@N+e*Lzb5!Y(d%IRj_Is79Wi7(?m-1K^VS`&-upY9W+G$@78ZtM@E78iKW1jD2# zY0aekG}ecnZHz?jFwa_nVs=hkUkOIH5{ogjLs0l`2v6N+)cv=@*9p4T{^mp0aS~(j z$r$#`ZXsO8RiG+Uqtz?E-EtYx|6}c}y5fqqZH)x?;0^(T1$T$w?hrf#2o~I-DBRth z!d()Aq;PlF;93+C+zUJ0+wOkd?LM4;uv%Md%{fLNee|zQ{RNJ486H)rtlqejp5?kH z-+5r-6WIeP#0bH>Z<}Ajf|gxxX<+`k!fbTS#4#EwrRR_EB9VuzC&K8Tas$MOM znS50%0BYg3pK&X;Q7>^+KuIe&>5tJJGk;C3W;{T?iL&AZ@UsGFGib0`r}uv4|+RlcmXbmr&ZWi}B+~y9}P0)z636zcTR!-gt%D zdxO&ru5p}?17*L)GxMuc=c?m}K&?eb)TUw=bK8h%MlIzZr{&eD-}_;pcnk4knyX6m zU~D6OGZStrA)3#O(7|R2NcmcoiAYL^Sx8?^l4Ot6Sz=X-)LVquO!BDbgJkF8jKiu=xps@V13DZi3<)J@D#03fGY@BpZAV@4e>(I0h!y|vLy+#{gXN4q zwbOHXWqgr@ZXrf9U%-f0>vO^aHKoG%z# z>k@~PP)7k41lV;eFF|;Pds%2T@eOk(bhoQNaA4p6YaD9s$NpW4(~H>klb|BH9MC6S z9V7p-6vHn32Yh147S(#qkS@+!r})Ry9~3}fDtP_~S!gvzNT@4z%#Ueh1zmS;&BplC z{qfw!q$<>$p)zVF7tVbrwTd1eA$y1fd%1dKkZYtKp7=~CRYBx1!z+=?^*w11jyZOD zBydCwUU6T&fg$=WwOC4fwD-6^+7yeDndIzIFEZP`jNQUJUlS*j#Ns_sI0srsc*&fB zM?{=Yt_b-v@@q6Xa)3YyHBaDIDKmVt#$hf)2kjEutuGmOE#eb-Q8Fl~U~H+KfEOur zn6Q}4%M&c>^<=>;#(HDk+EjN*NaL}-eyaWX3Ms%q;OVk$cXwbeZ|O=6C34EJio+!} zZEV#(q0wUm|B)&#h1}WTfobXYg{EY9*e5T9JZ0{fc60{gl0*!D*8aQTJ>QD>_!QZs z`+lS7R%pN_#^wkSH?*SWCdC$SwE$GYxSpi`P>L(>YcOw4E7yp#+8o<-&!`pOBrCEZ zrEBHMuOYOTCT~ja*`7j=SZ23+oibJf<2=9j-rx4{eqGv%&zb=Tv| z;ge+hgteFv9}4tk-ONU=Cy!O3T8xoivXm_7=EaV43Llm~uTSu+HRo>!;3i|63ppoj z%*TDh*@oz8ws)WF@JrbZv}oNQXMenG_TQe0xU0S_z}7t2`Fx9|B$(lm6C-M|%B#hm zsBnof-mXB{iamkm-YT?IO>@!yn`6)v{@r}P`G33sE*P+e9|veS@_R#C&0Q~JX`t6J z`J-J}aro9@xbJQCHFa3|>k;^A-DY$47}Ru@Ll-OFWSoG(b?7xl)5AvHq$#@eivg5g zpX2^bIpOz{(CCC&h8fxCqKtTMCrA;7U zy-<9XoSY{8yG+E^YEZ;dM$zec=l%en4H11w$Vao5!r)4{;upG|WdC_GY7%7LFKU$h zi*VuzQ{@BYqcweepKsujlhP%Al2I+pbR{QsAP24V^!a{*>}fv;gx}&#rYE?~r<7fs z7pqz#;TYcb^A1f&R%33&HPEnv+=rg>xJF3Wu0@i8?};|)u=~^cjAKp&Nc?RVKX-ci z8YSR4*VbkTM06i|_bg?J>v%m85oSyTscj4W$*Kz$d{Pu@XL~#agrEKxlk*+rOJP4W zSK&AKyQN!YgNn<>STrHBfTs0eWa3h@yYcy{VOV7EBJ%Od!lm|QX6_{gw50ou;IlJ? zw@uKu5;aSlz24rYYl-&U_lj}v3(`e02}FsV?QC^Ro^}QDHYzJP221qBHQRD6L2iFn z>CdnmDX(9SH4#$eXgO7`O-yyx2-{pf*JG|F2O#J;l!#&fiH$Fba@Wb-HAI%d3Unrg zo=4Egpi$%;A9cdZ`=NSE-z8Y9+9&x4=t=gC&k+VmBRX*#2x2NwOe-@#M!KY`hiOmT z_7KW8Hxwm5q0Xjq&pdl~zd{<%RfkD*vKMA#uR~a`nS>TgYag@j+u`0ZrO_|+57$;e z*g#h@l8a5109TeDGC*JwkCh>(iEy3UHct=O!D1+8TP2ap)l$b7@BudiFG}z{O-q+y zSBOs^_ybh&+$xseZ9tx_shPapJ=7{y!giz(ukv^`fG&BCT}w3R8B2~CzSlplUqg?l z*G}S*^BJk_lve9U2$@%Abg2&WfyYC6QK$O~SF98+X_Cz=CBhpZz-#9XVjQZuWwguB zc5W1tVl**@h}*4KCV-i(Dt}85CSj5tyJu{kyYij=GKw^?ptoI_oiKKS9|0E|hq69^ ziS4;1f#c~f@Dl>AP8ig=fP8hiC4ZmfO}WuD-gV9j(YGkdtA%@afg$_%uLmbT0@loz zRA(DvJg2xm7;30bu`Y14gaE46R#7=21V+Q0YT!QLH~3z!xH>_E)41fS24rQ5;&&C% zydgq=s$@A8`pcHT$9r)F5naDGrQ{?|Pt69JbOX$0b&Mj80im!sH?L*qI|?NbpawxYk?TMFIHCW0qFCVonb;3}yA^W4?u zw=qw6GN~00YjBE22hmYW*3LnJuw0ca+-HhV!BmHwV7}-w{|vZyJ(OWbF6(s%Y4=Hc zvB)HY!~1?1qM#U2n9x#(9#%iql&#j6$l3;jornS4gv_?b-K#9P z);bqLo;}1KSkW*~@Y8;!lwWcof#NSmmavyJkZCY+YYWO|I47_;Jg{w91)F1p`E%`z zGTpa(4>@)}#(%<{oL!x1OyTU}oiXbCE6lbPr;5e23;SYR2gOl|02y&e2bo_erl$=k}U6BS`V@_nGhecEgq=%#y_2mbFC?70&AF{$DRbZa)d~w1z$|=u{)xr+K3NNe@^AK$v zn;FHCavo6n47hD(^<%#WxT(N8N}+qK-?mDqS1-j0YQUp$#MB?W5p3N$_a=}tb5|1f+=q*6=!A%lvGh_%QrSyS${3M_JT z#b^VF?{{RncRKHFVsWrIL1@Qpk!@Gn`Xz_Gj3PX+peQlCy@DlwE)aOD1c*9N=GS*? zTTj|I;qRE2{z34D1x~K-_qHb9Zb(!&ofc+8CE!$p*H-0Eu*ES!{&Q{L6N6>6sg&3HsRKrm92tHhBNdewt~ua0le4{Io*NrP zmrGr8Zg!5l;yQ-!6mT(WipZ~I|lYvmjCPK)_^E{mZ)KDJm|B5o`AoY&&>4(Lk zC~+*;9rnnR&k+F?%bJ83LCaErmfEXSH#4ga9SOXvl0uM_!Fij%VPaulY>xUkTxbj13rPJp zNZb(#)*Zb!T-O@Q2$qR|7OI8)p?~&pR z4BjE&x@(s0s=qwxlpVX`o!2qtZzzr*PqHG%35z@FB53i-nxn?F4)IrC03ZdG+9DYq z%~ZC=%i2_t1085Uh-9g>odWD*YldVYC5&B1mrC zpait+NI?YIVTVG2bc((yWKk+@Ms_z*={+U9R)|EPNDZhSTWS3ri$tnN%=`H*=AwB= zI7MPRv)$^z>ZOz05E|1SYX|&9^cay3wemPO-vA%3ClBz0Dk|!1$#qM}RkG=P^<-$j z&F#xrG`u)RCEN6)vc@p2)E;Y9qjBJMARjcG9roQ7g3vJdU0G9jUkBNBc}M80P42So zX7cd~l*LI2v0NtZ7-dv>)6KMK`kRcK_7V}E6M?SY8NkayjL5E;nQNmf@vO2Ku7l1v z-URZ7Zx>vB2Gc!wuB7Er*KQqBxdnt88M@lwex7~tMEZKRjc=d3ng2YMCVNl*GEFOW z8tGgYIv|X*CyU!5*=Q@m8DN%1d^T<>K-gi{p#0!Lj@weVd;W1NXX<${0COj;3MpWG zh5BnGUPt^Hj*IrkAMZ8TccH8Dw2eomzHGLL-2vVH~F+>w>nV#jG<`u zl(37Ueqz~rgVnMCbYRi6ptpa{?q`fXjq}e~@Fys!SrpM+H})G5YKagGqzcv&uF!3r zgi?V6WHTy)GI7iT>QvgL1-KJ}@P?x{-{~bewm(Z$59VSZW7d252$A?*5_9jM%s5cL z=1`M+9d3$)79b(^b)>4o+cazFr(|S>F1zKE*?22{TwBs)21lM{WFhFT8{;5(bL2C7 zT!kUzyb5|QJxGirW&(NWkRbB#>MVDAUYn1B&0oh7`Pb^;Xx#X$hMt#L{s0;cop(;x zCIkKCZCfmTFb{AYZ?NGHYcpTtTq27*QxXuP#fM5>6W#w+V3i4NGP_JC%W#CByrj|A zZf)o(v^ZwW2iwa(gOX4r#&`*4~z-R}A4yZ_k*m$RLS+KrX2=|j+6p=@1!gF2q+w*jGz!Ge0x zp(QchmlNxu^Szn&*B!wGb_m5%LCYDjRJ$~*^b0JmgS~h%qf5KLc1X%1*#g{-K>zN* zWZALs=SiR?&$Y7200TI6jF$007Hx|B^3X4;s6xQRVIgt^#P@PC*g(7F7DN)oA!p_u zz28i=2D7PJWi%}TcZyBCCd*0@Pj3{=I4Vd~zx)o(O@$3#OVO5bjZq&e3;kF)Yu5s$ z9yQh#iy>vRXpOb5Z!k;nP3d5O&tDdT0(`D4F3QepuJwmiU#+h6*{*^qSgs3I1MFp_ zarAekKl(C@t0%L69bt08AoCbTW>dm?(MexIDXl~%>msUw*6lx>5mHN(dETkVpBk^I z!fBz|{Y0u1u-shgmthp@(l+@U9xJ{zt1nAG!8gX}wXjFdyfI=JUQq(deE91AAbI_UMS*luMusS+;O9PfI0?5pU%kAY(B016qS@4}x`a8V9GVVu#W&V(@NUY7x1 zt#W!Y?=m^L;_lGx*Ks*2bjrCWy z!Zeo)9>23jnpTP!+wF2xJrX1zbDlL9$3n>XXL2`J}buaX-td-`145MA9JQK~auThX^y>+6&&UprHO}0f^xJH3{jJ4d* z#cwi>tcK`qM+dn)`@Y)CYR0sR7mDHz7t;pSOq!JQI*pfbp>?j9*0kXb_yeS))%3#L z5rt~7?hh~B`+nLI2IyH$OndYO{^g}jzr>twsucK#U1FKZ>cA;M{p50B26iFqBLS<9 z35%`mAu15_U^z7k;L71}_<;bRVcqV2Kp6GLx~t)fzw)sEHLK$+0Q1-Sj1l|`)uwp6 zhvpLivLK{poZb+4B=NbAJ9rhYu4kyr2_RUsGhMdZ&D zR;!mmAHwcV!ps(K!`8uJX>nd7_^;SES9G#Tk#*FqjjD2+JU0y=`h;Gt+F883x{ymU zsd%k-H23_jzN=UFW7#CDRlA0Mz~eE(MEiEv3v7YT#~SS19d4gpqY6_rRXNTJZg$xI z$G;`&H7tsorsM0Ap6pI!8!pCco-uHt8`6^!-Sd$B%fd!`zJ7vt;_LvM6p9@?nchRb z?3mIEh{%B(O2lL3;Ni*@)aV>1nEdA0Tkl?g1fB8D#)$+&R5;XfH77n>Hp2nwLXAIR z0mY?naO4*)hHm#lG5}?4HLrl>Yb~oOA<^!h7{x}vQQ}X1y!O$v>pw@de%2eZFAUQ!h<%kTA-B(}*i zP_Ifw>OSpkyW!G|_`8*l)87Gx4437%QPepJZp&RAK%;lF@W#cnuWEQ2(ToqGm*O=@ zLW{%4Nr|6j*om);xzf3c77?bAL9E`XHpwTDygzysrfK>|7A3X5*g#dkvwC^)m!|EO zuF`@Y@32!JY3dpQBEO?EXVfzp38H$lc-iB`Ar`hZ4m<+(!7{{!lQ>czIL9}=MTyO{ zX!T_Y0N;MQ`{A>m*YVbuG@x~z>7=?>x@q~4GBDt=$4qKeNBoJGT$ zC@zaCj%}^hbWlVaiC^f?qFX^`0#7$@+b4OyQF3mr^<|3Q1EkBDs|%0|CfoGeNV zUW>V8{`s}>0SdR^%B8^1e-*~l-!<49Fz1svxcOvE%+QI$Ea;Ag@`i#vzZY|!qV6zO z;U`Wf_Sk#!U7>*qNfl@k+Y{=EG;~SJv~6sR^E7$%?kO|fUmgVTt*xxsqPLn7CO={N z+9x}u4Q^FVaJ}j4fTl$U*;MG4IjrMfZ^j(+TZxM93wH>c61c|XJq+lgu-YwsxSP}|&jBt*Sd~Y?kdR#5Tn=P_F^7cow-IE1jp{W$5PyqDqBl18 zCPS>#7l`+uTul2TH$EY~iJ7kc?g#aLi9VZ4g|h_zdEzRBZfbJGX3f2tnkahsC*B`1 z82q@b1ESm4dltB!zXb0TPLez^PmN4S{1+a=gM9EG-OW}q?H&wPhlVel-@fBI|B1N> zP~`H5LOb8`cwtE4;r;dk%7$po8>GjE3Sr1>v@@Ex(2voLk_W+-(q< zAw{+yj{CX-oa0ox83q21u_LOr5QgYU4(sNS>yVNCf zb^2G+;OBk=K1+>@{6w1OJ?8T3XUq_@&BR4*XR?6;dF&T=&8qK|$xY^+ep)naLlB*r z`N>lAhN|6sZR_f;-}#3_TRxKq7$z^FaEU3VKQ#bAH+wf9lO{xdvqM<0u|-w+J@}!242EL z7&pJ>aR}2!E2M5FY33+}1|Mq!u0!MHxFU;ZuvBT8gf+gI z`<3-h{y3;ECwPI|)%^rDGFndL%Pgi`?(xeY$&FY&Y?@n3qvmc6ly-vu-kTC1#ep3r{9JVb&87&8P?v6h+ z{+?txtgMwRqlPxD5>9U~s!^Z&&L7<)B7 zak_zRNWDJUvJ+iP%Sn9roxmKyNgU$tb@*)7M22}Y!F1B--$Dc4B znTfY?m8VEFmCzvt`+hcNwP8Me;y)KhE+Q*$OxWRV>H1oU1G%lTVkGqq`Fbb+lH4wp zI+f|~yCl%s6H8S8lwY(j5(+x~FV3j{h)vc*)}X+GpQ9bA!OG*g?%B=Qe`#≷v0U3wgQm^Ue7Z;`Qzho_srr8vDeEYVw;gZ-)2K=u$P_PoYmLDW<_Ov9}Oq4}cO9IJJ9|17)2n##8hSF9Y7yUGynnFU7+-f}z z|J(o=of()XdU$c{&*OGhZ!iGGTV)kZeED_q-mFl$#D|qdcDXYpjfZ%6)G!8URi!UKYj?O^BZB_lwR;W!Y->%E$yW zUQu%H8-Jjr-H#m}fxP`cWb8L?KuaPe;YC;BZ}uw==2Y9^9c^Ea$v<{VTx4F5Fu5__ z;f?`n0<)}VC54ZiL*(PyNZp20cj(LKMj2MJzx+|Tfx7y%+nnc>o%jHF<8?z8>U@@# zjB^lOerD;$YrR@Qt9HZ9VWDJO`7SS}pB(S=mXVaS`vWZ?@F;>l0FDZH@UWeMF~KZC zHp9H+Hn7>ojhAm8OXOro}IF7pmsYIB;n${t5Y8vYXXr zDA&=(#NJ%^*Pq!{S@x$Lxy5R%{&#IffKnv`X%x&t_{A_<=UuOxS9eG1$qO!Z1(DLk zoO977;!tc?DA8m@c<0m#;qE~#QAvK-s^d8$hOL95+NP21DXvy!< zJ;U~H=m(B@j)?HSX3H!O(C%(cr^QV}H*88WyGn&a(46GzU|&~wYnwlC!D8=RP=oTf zr_T9>FTJQ$+guT@2<<-e-**)T%VyH&I=YfP(uIyw_C3c#)O1z+w8aL*Fy=VqUo-Z6pluV^yw`Xj zwKD5jYuewn{vR(uLeN}aT3=tQfB9}$8QH$Ogd0A?Gd?loZRkWD0Mp>zuB<-{a3a0b z`MB$~e=SQ>%H*9(D7$A7*O}_m4vxzRtE(eeuuV!x)3qzp9A~F*b|uE;Yy*Mo_GsSXSe$$Y1}9CLn%K;J+~)g>fJ# zPQFz0LD^GsgwZ~M0#nTK(ga%Lnyjz)n{}2aP)F&}ZtKE9Xy{nFAOR>Y_WiThji|>^ zks~yiXOG|h`1Nlyz0y}Bg-W%{6h!1zm6z{- z8{Ax}*TPNqvEyM)Tc-76x?$d>Du`mJ+ab8=H$o_r3MssYhD6P3GM){|H(L76ytDO` z)g>X24EKMpy)9!bx@k^nw;o&D<*wNGMC?mM8Hc;j@@S|RpLE8mVsY1Zio4@qJg+r;!%6RE`K3|p_5mMojvt)I11M#a* z;OCQAg3=AT2qN3xt+I(_{7{f-+CBUDbFB%9c9W&BbNRu5!j#z4?jc1Sq4aK@rnv!^ z?E2R?QcM1EBKfZAdc76<-~>e(`Q)fNA8_F52gE3w1@dD&Ov6Jxa@~|!*Hw@j_@!m_ zad?||noQ`Q1U8#G^@~obx;#v6jP+S#+t53)3E%sGqA$h*6>?`2`n8sM0bA%3Nj-}z zR%wd$C`TJa^i3oZchr>Y<8I^V=Z#|PFlS2m6jah*gLzQfuA@!fSsd^cX>6O1>{MBP zOUwMF-B%#@xhQLE+Qq!vkY?REb#l=DMNKZg!zKhNNk#%kPA#Wcy_Zp2snisO=3cKd zUdi9EtGJ4=9rv3M^M(o416wCM?9IG<=i+JePISVhVAQqV%y4VOFj=(@%aJ;=d$X%lO(@^z@`RGwb@BK zE#QK^o#lJP_C*yV-#dY4)8;?2MjTorzXhnXSWNEQx~R0o#r{ldajbS+ye1^<{kq>j z_jR09Qg#py9E+Xpa$zoHnjSD(AHd-v>e23RM8W1lCjRb_|=K(1auRop+fv?EwU#TZs9kQuE%F*Dz2wcX*zf7 zgsIrVLaz!ul^Z_1{Is!vnB3Q67(|$<)wL)tJOP}1g@dYLAjooBI{epgYZ=|!-LXl5 zF@nrzp_h5e4cYbF^NT~balsXi^F7ZW7tGBkZ%Dv{dY7B;7m;rq(C~ogr53>b&s#OS z(3d=J0MqL8eMa|jz$uiMq8@wd2_o?<2jP}Kbz*Ei<_PVB`R&La1jO_kC*;WVUW(vQ zQ60H%>(I5QLgq*^v0EU$jV!(=crlv}c^pw@97k%-H1b|!=7MFyT$F`Ns2Lh{9pPsc zs{=ENNl>PLX@Y;2w?GJZqewL_ngio_u~{5kY~gIV4AFUA-spq;H(-&?)T^GjH=jwT zdztV*Bz6S=pb*q*SV1*L(|bgF=qo;#LEzn*?|nM9R{GpjbXK*@eC{oLb?&@>uoPNI z*`8|%%e+96lMh_rSZ*2aDQ;qg$$rLymhGj{{*4z{xY@~pla{5${i@^r$)L=$JB~bW zz1W1sBUzbf(=E=SYjnohCcx?s`jcWs-ST7kJOX%^XQ&_g>2cNX9i70xgUl?*WC;op zFd~xkM+thXvLr^%rt~TSJYZzm_U~TRbkIQeUei!lD-so-6N;Ks9dCK88o@>$wU3u6 zN^h8{U_iy;lmWI$ImPBRh3WdfjW*7_u36;%{+BsXmTW$MxbSo>Yy+S%E*t zf!`aP7Ei{JbS;vGW*M>hM4KU^QPBW3pcbP>27eXHh}w}7RrR{{{3Dq0fp>zEmkBYUfljyk|0df@P{HTDrW zslZSzh;nNQ@Q*Kz=lAY@hZ+!<&TO3l6Kg!)+u} znSCrap5Wdgz~k8Udq~xs*d=@I^dr@it5PHceBnWjU}bar8pbY zyWEZR_@Da(nl7O#U)pnVo=)nWynUE&1Q~^$Y$^a-0ngmPAJIsh%y_hwX4&9c6%DladkWbg8T5OJkNVQ;17zY5UC4`)$0-Gk7}Zx;GQw1 zC~b_bF_&v{dwes(VpUK8M{LiY0Oh!t@EW=Pd6c*AjyApNZ=7Sg>%Iw)7fy;<`TZJ} zkmv&yrr3`~JVpu@K~kyWp*XluNyEL#!=boq9$;7f5EjDE0aK>mcb)V@dj7tdu!59I<~mtz)SN!a!fVprZK0fb{?MnZ&lQ@LQbMMbsp9hLoF z=13%N(rI8@Dz{0!{wj!b#K~Y3R7H_t8#G^3tv2125#%BbK|KjR!@}zb*IKHlyv*M5 zd-G~xb}=*~d@F-{XRsmPGqoO4{GeC?G?b`=5C5Hd>>nb%Db(95j;A{>B)ydE@C=)5 zowB3A;k*2DspoS(a+Y$ugg8wKv}j3}UeNTp_t`oz8x<;GY0n+=0zTzH54-f;r?P5L zN7OkVai61T|@L!*xT^XDHFG(3tA|WVDqXDCLew+)JeKR!3YuF;h zJsd#hyXVX1erXg938T2QqRE{n6s1VgUSvdQv`QqD6lGn(8OJ{tE`WAkk1^Y_@qn<+ z_~6X#e!T3k5k$$)vv);UJ>Pj&y%r;Hx}G;*evQRz_}*Eg==13avLB0!TYvwffuT(@ zE;nwv5=u6TyS18EDVms>QqNt?#8NjaM0`?ZYlN|;HneVQK^cG1cBMeuL^@mU31TCr zpuY7kv#ggBI#zTPvMRrGVy1sJ9aj9tY}5HOe!|t@;Zx=s;8D)Z@WeCt zi-@hjf!!s?1f(~UT+lCVOyWG8))!WI{mBoZsqN&OhSua9U@7lzW^x4U3s{48CdPXo zsL8?qycWZ`Y#2BOJ-xmQpE1PjBT`kpvGF|9s}m{&9PaZsIR$EJvbvh6Qj2-qh!wUB zpfppHsM}>Bd%C`mw>Tn6u&si0^Ga@m6&N@E*j?uFW8AXGyL?$>v?iH4ZYFVK*IG*d zSXXUb#R4>Nlxr$~zqU77^}agDOf=q81eakmsn!Vjwedh(@T%-Vz%y_zhbx;FS*n=i zLO!@->-DAp?^`(}SZZ4LXPC-!M^o{Ga?+I4+_tB@M6M@jf8eKQT|Bnz2xau=oz?H_ zcAjnC&Z^NR$Q6dA4k*|sD_mmN@g!lVt$OFY-8V?B+`x#VQt0$%tG=vFc7C&|Nby_u zQ?=0RQY)!oANZ#}VdEm2R@9hsiX`;iccc6V?%d+aR>ZE_hp(PgS%9e|&uNJCLtF^Xtny&z z)S=&^!RX_dFn_1LmV6vi%R*(?dsUxm3##chAHkNNsnQ!i{mQ|N$yJLdN8}xs3L{C<|>v99Hvib_MH4<7ogvk8RsafT&YSG)r?qP zDA)bP)EP~`A3}|q|7HADAP0Up-oSd~)Ga>#h#vJy$VkVOmN382s?9*Fb6xxa?E&i@P^~FcNMhz z80}&=FrQAC?NfLp??%2>Iz^!RWokWgj8|;C-I14VH{~p|s&aoK5#FUF%pjn_d-h2J zV};iv@d4zqekHmwjhAtwa^v`b9NYbA?vxT_5TA0jWiO55;`#X5-MBR!stjBkFqE%* zlB90$pn}rrQaXXx_(p*g;Or`6;)ZQnqBB}V?iz<2v|W3E4j3#T^d zdESnMi)VJueWJB%kdFqE?HWrUlAKuEMdPLLQCL7d8m$*S?t0uh`HeY_Cjgz%{VP1N@VRrp<6Ig%O@@|1zkIE0 z4`pbM{nGzg&eL7~(v+WNYu-yHu%_bXDqKLQazlQOh3IuhMpKHCS{y}GR!I#ZIrM!s zL;mt9x=W<_$BS_S&$Z@7a5WML<^G+sm`z?BvGB@jiz{I=b)!vqsw)z|$DhxgN&C9n zDHcU^(q=Ku>eyc{oGxrn)p`V!uk)zYIfnN%&PdtgX+=sUBe>w)|IFBU;T`>(mywt? zSWV5rsQS1?=1fZtvYRz$w8EQvQHA|chW|I<#fb8l?%!EPCygx>u~xf!aE`jtLqJin zUNM&?E-@Rbls`QW2g`6Y7Qmn@wYA{T8lA1$<6dbZVJjHth?YPJS>IYL)b91B< zm)s;mhTEEYhUxdDG7i5qyYd`mA~HFdp1gW@R;o*B1BodcGL%QXYApObM!T99BIM$I z^18+pzGgu)60&VZtNdcZKg~AUtc_A0yt6}Tn&~p#2O6~aj!W~F{gMB5(2w!`1bJ0fdivS0H5F20_0kSbZC@(oU*;v>+58H< z-~ukmVF}TZ!Xg~muc*!){t2;Qag5eT-?1g*MyHS^cJC~>71j&GcrS0gR*HkGqKu{<1G_CKz@#Nvllw+Pk;Q) z?lAMwCS6($dD=dd*$FaCKEH#b-MJT_{$rS!GSpkQSLm4%C6d??oXGfYI&j3y-8N&7 zBMzfXsJU=h)vw;E#yEcL(uzvzxN}ANcsmh-N02Djt-ukPqALMLKGH4`w$i0W?2J~p zl_Cp0{YTpBnr{LUTaOv{-Qe<_RPDoEN-@+Gq!P}p5h=%)f1Tzu<_=K^^CorstOoj` zxxxU4f)YVCf%2P}9X4|tX;Mm4aYQ5D0KxmsF zZOiDcco~6 zjpZrqCvIsu>I@+|R5zWC5@#2E#`_|DUT}00JfnyQR~qAlVkp;S(=${A6xVnYN4O{} z7&Fsjs_SR=7DqX`)P6mDdn_?27a5hf;~|1Cu9jgFvNeO!$Hk84tImb1>__z8 zp^E5bT(O+XzaWVo|Ee&SODwZqeNT73xGtl5H~;K+*gW?I%|!jtqUjR)f|N_vCVN5u zRRxr-`X<=%!K^Iz8vmnN)tj!V?3M_dKy%54hS%81qJ@Bea&UL9P3EMvU ze^ z0bFS}NkzUnWlK3scLF`@{(W*80dX!g@x?pNTVZBpJmDDmnzbM1&~6xPa@s652z4^> zTV3D#?IRiqX9a5y|1(;y5~!!1rS}+=pK7-rD;pj1X!R1ZKCOY*9EH_-aJmFLb%V5g zJOZntyv>dbP28`o^=sg3`u6*VKIYy8MZXS?SWCsQ z!s_VtNyyB(n=G%Rh_BR!#BH&j>uwaZ%faowA3yqVRqv9k_{_?G5}R~7M2L!*?89|8 zE&j5kx|3sOC$QNAMWQ+QTLHO8k=qBYi-`Pl{kC)xmg9$g(oRVf>Jl`LtLBW)ua->L z#xH6^jy`7W<(RspAr?p-*KsQ))N$kuXtz|wWzWbi#~CU*8WS0M5HQ0nvo8?l5=pD# zpB6l4U_5~CsG^P zEIzZP(bV!F;<|J06O_n?L3%s+?zWmqGR*ucoUq%R!UTmMTXTIB3@ft3nb)}5i$3;F zg^+w?gp~hFiYhb;7OZ;yM#>1@I~zZ8Mc60@F;F*VB+#03u`0RKIFWN73 z5GtTF!&lZkSj95K4eS+Wx$v61k`X=$UZjKB8LPLNNX1E|C#oB^hb*Qn+}O>ccGhd- zo-23m?Py?4E1YjjjP#*TeRP}}$d+85W^NdOl+Iua4CzJ2=R_E5i>Wz9F~CZ9`pQEr zfc4EUIMA)bKJqc+;x}&LrbhSYP;;FMq#dCm>QR?=)6{LneWWlnsC*VNdl%uFRK@F_ zE$n7&SJ{$;!W>MKN{)xGbMhb*8iy1zv&?YJ-4+x~YV%d7(A*fe7Ah%MS&C_A`4p?h zoUz*7@&4)fGAqK2{ppZHeWUNVl~G61^4!QfdFLMLymgDTB8 z6%=tm3dB45{+y&s?(sQoDcXWZ#N-u-S7SWKf>*I{TqXL!#!`1~7%=B%$%xq~Z;< zBQXV9CcbgJhgvg&@SBvSAYn}Qky2aPaT8$WCr+GZJSl+3TpFYBuYa3|%YYyY*HH*} zm+P>!huc@dUz8GWZHg~Dr5ntpkLWde8on0;lLH(Qwa^=B`Ui=2&v~+WNx*D0+w=_$ zzlOV9Fo7kQG3a)5RHh^W{!~@&GM0ZAEP{5b(fRv%I#rRH#eYG zP@>kBM^wJ`gzCu<-)V;brU5%!K9}-r?0!3daD1Y<7Q0#pBK-sk;{UX zCe`RiQfwk3yb1+d4l6gqq&zf!vY~3p#tlb{zc&0P*BK}j?jS{2d=$aA z>IjH^U*pu~#o12W>-HAF)-c658z-qtJGk=RKOr|K+3Oe?gzuGd#R+rf_qIEkK%zPM z0CN&cc48ryGh1TnazD4_;&94FbO`%8%ye=(UR@uic-sm9qMgo^7ASQ~{GYmKQlP{b z3D0a4O2eEuzoY1uICMY0C(j;?$#=o7+?DcGzS`0=T?Ibs;f_yI6^zFg%MaFUl923( zL=${FIG^u-{W-gwJ#Xpiq_u3=x%Aq8eq}a(%_o)NZg#o00+YRnIC*n@d`NH-KObA& zyvR~-74F)8<|zLL&zrjq6Cf$$)6XF48^A=iQCZd8MEi9{d$&$T-pXr(CyAkml9KYP z}L~cbvnVkglRQZ;X{y6X29oHQDhtP z9EFni?yP^ra3p{JcoBpJMw`b(T@VEIl=xPy3Mw8ah2R1B*lG4Xs^d?_h+IpR#K&%- zI;T|%k9Gx>O3?1JuKfEGGpb1Gk95F@i~zje|6%N`g5qeSt&O_{cXxMp2rdBSKxN8#J9fG^NLy*B;hhg|R7w7i-&${mFs_v?;-h1t5uU8rWmtIKFMUns|TombLCHNVKElBq{;lcX(Ey_M0N&2zYa&EhLIT`VrQ1 zcZJ8%`)!Qhco$SlHt_C8*E6xK@`2)+K9XS8+D$`3sA_)j*A)-i>LB7SeRjmnvU@SWPSMI)d{24Lj88>s>4+tu2B}rDg*2nC znC2q#z-#91OJl*_*;p=zD75L#Q}=OEwIO+*v#&k#^pp7f_r0~YAiWt<+54l;&G_^1NU3$vh2^;@yu|a>m^4m{g4m$Ia#jgyw$>F7^y-1zT^lz z*uRxL*!Od~A%M8M#B7TMrgHlS2r@pauohU+YQxd;HhlLP06hNs$W-!r$%I(oOszYt zQE#|F2XFQbK~rRK{kM>|d1n5YqKG)P(eG2qt%E)&X|HNRP|7#Md={haZ**@>N;_N} z;2&Z8=7|dBi(}p}(!;4{3Qg8bPj_lDC-djD(~fBMNQ_XLlKsp7w%r}1;cs{4Kn6`k z^g`S`py)j8l5`9xy7;+2*eXU9%(fv*F<-hTQhUjdaIhNkM5(h6F75+5p2zB4xcm9b z6+4jpFi1kQ3uJ2st8Kqm981TliNVk0Rk~-2sto*#|MM#ib;strwZJ*vAK`hzxiU5C zpMyTDIlhIC=29HOoL5$?>-Y|V7y!_`-2uy**+DsJhZo8WR&b8%FO5{1>FfoZx1+jT z=|-M^!?5mO>eM6&DcuisF(_Uh87LP+gRuVC_lY5mAq!qbcIdo10Oo{LhZMak|wxFnqmvP&CQu&6A#v7w-7sZ_f= z9|Z?Pq$!(I4MEW>CE6M?Qma+ zQiSOF4`MN}YB$xIP-2XNC&lx<__B96ANt-$wsZKD6Igr#B@h*cJ<})G9iM*rS(wkC z`M;}E^PET#pSASpvt?PwN5Jj+LJ@s}`J&+bPkND}0)FS_DA_gAa@JkNZv+cakEfVM_j!kXYf_Rdl~i=PubVtN)bkOu`M zpMH#7GAC}gCbqbZ(z}WZhL^PU%6LhDS+Jv>r&641j;Am^CGAM>90t-Uuky5JbjJ(r z>5_)p=(0;SJ6+CCENRDAwtrr?8Dk;d^9t57=Dnkf`K z(B|=mn;N?aO=C48?(*9Ph|=; z%f2;f&UH@uS3FR+WcvK1SH8VY$OCgh+W=tX>@1t=X5s-ef1e{^4=BCsH6_GJU40F9 ziH9V;4mq{@d2YGL0iZZ?_%5_OJg5rf-&eI zHl@d~-wLjJgttO_pC{@|j502M;aYzC;}!eUtkam7y8Rtq5V4d#pT6=2a7bGrYZ&*r zG@8@Jt4&~C&1kLfPeS zuxHqix`a4$T}eZ$*x3|%k3bYa7|7DqRb`vd9;dtWu(@*}LMiH?!wVQHH}>$0Cy6r> z(_!B7sqRCiI?S&u-RrXaQ82U^6Ib2~M}qeSZp(>3LLppOIK#>KOps#jGZ z)e_D@(FMwkol5j~w&bvUCK+UidL*NndtchNN5Nr=EG{E|a6P|LER3)ZC81}k*|yvi zsaEhBj;7RC@Nf3*rpl5(!R*ZyCAwKx`X)ZU2|-hZ2m2Y6j5*d9;cO}*W%nl9{#=^2 z47`SD)ET<%(V+H7eT(K=otG1>MCjnxzaoZFC{X!g+P{5ko8b;ub1-|a(2Mn&+2Z~j z`i$_eviLvsFUWHdEgB4mC{MN$A?qY{sm77L!fBo2Ycv3)696 zUBYEYn{mH*A=lGo+0SO|nvoUBUd~IY$2iwbR5*7x+>YQJ^c7_SBj1;XhZ`ef)!0pf z$Tv-#Wi)ZN5}SEaBSUakD=QB#^1`2`?4sbU|0W#!gBiANVs|| zMGfEGC>F9giakYl_X)4KVY{gmF~Ng~K>p=BhT+7**%5)JU0L*lArIlT-L+{|^)XwG z0Gh38JGuLpMZDA57p(Vr>qjy{zh(JQoXDagilaBet|3I6hxWCzY~2aolU5{~f!yIY z-h#s?j^aXV6;UfW2^xygS%s=R!(UvLbe|nlq*B=_>(R5zh&YbzcfMobofo;00e^Ey zYdDS%PUCyjfS>>QTM*pZu4R}p=>YUKXceU1 z%d2?SBDivGth9qtZ~cF>u1-pF+T4m$!>|`>y|~aIp*Ei?A3e5)$_bT5lVY>fvp-uH z#l5FF3~x<`Yq(je(gh zdrX<`UdkmI=tdjfYNSfQQ}%3f>k7lOnT_Zelv010glPx4tG7b!-^(Auc5a6Z#`1J2 z1ZxG@we$|?avE)}#tbObS0LeyD#mq|;)q%sOjCqR8zt5xU10H*W)D>ooAqEto3C;I zx(*i^_|BsuAton@cT%{x-<54RMiA=TG^f1a%whRy8)~_ddlvMS+)Pkb`o1~bhgK!Q zcayqOOk;0@|hD^TKSO&eryWtvnrxDcUY$kyc@# zRfPu@XBq=?TBs&`r{4*_H1LHb!7p}U8Kh~gAc@zM%+4fM(!{a_7SkLy_k@4t&@H7Y z?#b(!!F6XosZ4Jy&^s?(z(4;hNt!x%u0e4j`C#k3G_s%i&J`X@?i|n?vI}oqXb43E ztqO98CwrsJ=+T%bF)@gx%d@*@pf#skF8s|A654AcwIU=@`?2c%ckV zw+fY+`~qoVQIN6SNB9sj3vsm+ksc~xhPO&9G(~<*{9I#fVmvnkHSju%spfLGT*WCD zh0KMRV1bAjKAA1;$o3b{3{uA-o+{so1It+k(0V@X+#OXU?1V_nh^;Eeg3(X-L)9=N(9!?(93Z zbwQmN0+TPH9i!u`9E67}O;j)}IdicJ!KqXC2*^~-p727YFs`ce)?qxB(!nf9@B*it zCmq?Nr=)+)g_1{D(BO^yzw6c-WA%mjX>9I;h4u=MKlZPs&gHNE880jN1pIj#azh#0 z92@09L1_3yyTk%jhZ`ZeED*n+<2i%Wz?bPU{j0;P|1_X4x}k-13neISW~%#U-aPkE_MOCT-upWi@>Z$) zzc1iiunS$H^|rCS1-d;{g}$L;N%A8skGX76kEmujoitC*wbQ&3Z(H-5h&mQSsouLb z!-RFN*2~SRhPk&>&O>mfuWFIVa04F0M}*!+*G*awvYv+z&Q&hTu}qL|47F5l+a)Ew zrx>D|*Bx6iu1On)Rc$nqv6IAZt|`c`BxaL3M#BQDgJ(Ux4qhoRSLsnSHW1d2iv9Aq z;J{iY&ulK#y=c!nMo7J6w_ZZkvm>#FF3+ilCk6bOvhv`Q$B-c3r{pcWnw_^(C!ZJ7 z2%fETZ^GSsRJ0Y(f}&A@)wT9U@BUb6i38-*I4#b*Emn)q=v1I$O_k{eclPe+sW{IR z3@lJ+5G5n%pNX+p-iiHNw0Y2zzTCB zxqt@3Ttn&(S!WOQs_e~`CjQZJtCq?3Af{fZbG5q8k4fPb;`Y1qXo@=g^K;sU=s@4~ z^Gd?Ner`c*ocV^~`prA_D*uzUZ@s;vZ-;Cvx6Htv)s*x2%MhzBrR;Y8II$!@y8TLf zmovu2>!y>t5s&YSlPO!@^JGh5>~DC7Mxpd++1~Y1L@JGyDQ=TtAl`kX+22RyeO7sF z!zU=noB_BXtT1fI@#uc{iBr_BY0K)uF71Xcs3C>HGb21+^FCwbm0-A>E7_>rsujQS zrzj`qhc9MTilgw{}`0CdTbfkALvrNC+24kzTCc<{kf>ctgYd363bdAxi%*QFR)UGl* zut=iCTfzg^;~V^f{y{ojE>JVIg)rQ@k$3Oy2?LRz!x=!B4B(vtq*vOp^7_#`6uqIS zjy&h*p3k1`4G;U{vjGLQ15;MJM^X9oR8v|kZHf32bib9*+^r%0bnB4Va% zkY9JsY#Ht`nB}SfmD`CUT@yA1E-Ro01v_9t<(9#=lFrvn!noTP;lB~?P6=hP~8 zbaEn?Tx`El+4qQZr4k!!3bbek?dSEZk^g4;4n_gq!iZm$f}E?#BD(n}?fd#j;E|1G|IxHNh0FS}tVM z6gF)_gD~==R2&3Be_qnS=^X~}(kF=PXvC|b{4725Q!w1|6{}T_W~&+T5N^XjsR`mB zPQ+6S{K=WjS11%@Bw>g^#Hl|4N@vJY;_N1aAr_}9x#WY40qS>@?*>6aBTHShTb_P& zzs#^BX)9g-K1@&}EYb3j4s$TMpQnOG1r-}fsfZP~GtfcvIwh#aNIyGUoegI#vy~G` zn0Rs&M{zG#$|bY$v*YIz(CYQL=+R31zX^5|V)Pzi7(JZ@zYbXwK?jzM-q`gFnRt@1 z6p@-nY#~6bvB`r+1*aFFjS2|d0 z9wsiFyqx#Ek*Ovv|LGgoWV>uxjL7SK@wI3ZrqcM$qv$;B8Dq%hR;cRC+jZ~L68}lv ze9Na@xS5wFQE?p$y=fzz{>7E{9?PiNrn6jsYxDp~bGge`?p#<#t2_R%2!_tUP5 zIBMiOI-d^l zHWWjr!)WOM8g~~w`G?zPlW7|je|l2 z^p-pKiV1u90`z8Fe*n4sH>s66 z{gjz3zNkiXU8ob8Flbqq&PE63KqzywUAB+_rxOSuY>OVFB5*Trly1ZrHikyUGaSAJ z-z{UpQ!HHJW7&-O?v+#{2+nkIPE)KJe$W6L3ry&)>?S8q)^I88ee+#w*T``>&Q^Rq zI_S>?sZ(@QJnR8eVrJdsZM{KdC;vJlDZSY?chl-HpDSdSd%XJ>paYb8g0ZOX$?sf= zQXvEAuRuKdwTMA`*c}gb|JIyVs_t9hD}|3@1@IRdMcerx^k|H-nIh;mp6OP^;X>5( z-e0-6BEtq6e?=O+TDnX7g)A(Rz_Pbg4jVUt-RnroM>UX5g<`stKQmq`$+kj;IR(C5T;Ubzz*WyFsUocrUsdpx%dE04RZ9K-nd>8VNs+rKRaHNX`VY9z9&`Y`Z5 zWt^=%BUE}_&0!+2*X{*3bV({Q?Ye@ASyC_|dD-%;i z_}vIn#J;i(nrmKgUBjqwt4sw4=Uw7ox>KHys=U(vf9eBwE?UPG`4)$sVG2X@&p;u!^gGQlq9OZu=*Me@ z05Z~X<~UrEK+ncUc;u{At}Cm|a-1Ts5MT!&SA-hWmCQ8JM$OaK%5eu0c=d?{fdkw9 zrAPx^SleLeeG4L4FDGe7ld7UaGVPNBi^SqC@V#{Oek_3VpU50m&UJHWuX*VcT$rkO zA8v@vcNguC1bB1)9)0{8FTHzq5C?W$H+%#$33=6qY5mV{D2z=djQ8!>j*g3Bq34{N za>YHblMof&66qU5pgNk(-L5!)(`*viTeEvo4IaEM_7=+$)sHbqEu&X;<~|jG2(QIj zKjDNo;!BI_G2&97CLk0GT4CI1eKWyz4Ru*?#i9u05;YkT}_F&s4;c1&hyeX z9i-oe;=!GeI&)!iTx@<;EeWLnM$p{M`vE#1{iy>^jksf`sS^8)846|f*g1SBM$?95 zYb;=uIMG46eFFnrloafI9ln5-%3WKFN$zoZySHwFjF?EvZ+9IdLgbslfZ6P6vV^gw z=JNWDMB=tHn(TpbFUtj3@Zz`d<&mV8_<+7O)t#`I!oS>_V3?Qj6gFj@A@X_esUyiB z7~QcpI3gp75FY{rxFhgKU~2QL3L)R|TsPkVng3gmpy2<52daUC_20K)hH%=!NPqrM z4N=JPyy69GNg8j0{}ejkaz0ORQBa0gNulq%EOo^fzPLaoKeyh$ZnhagZslh0$<46< zg=EGHNb`EfC_V)7gYI$n_1a0=NmhaVO)<8(^%>@u7T0g!M^45|t8@ z;fW#KA2iTAo0k6cA^Ah|R?1NX-vPpXD@}S%EN}f0+&sFN{;6)?*f$7JI8nd^=&Mpq zKebqixxif*hA_?+5O)z9lGu3pM~UL@<`yzjdSSkkF%tD3FS9#>7K%o z9Q>28#C68ZR_5B9D75gBSq{#$;|z-D8#EJD48e*y7o<%dE3#?hXh1)XDx&oGF5gaow)Q6 zgc|EAVBDXI@nMZH1$dapy3;X0OE0om0Mn$9v*6r`dfp>4cYZVyhGXC~ zTY7c*c?}aQSFF|H>SJsMNq~HFMkm^uh;ho`7aNCFy+_S04l929)u{s7q-yqo@pZQ` z*7X**@D1u>*qc*!XY4Q5tQ>Snb$3LC)v=?tS!_jhP=>X?dpW%n6WH;~R_z+O+}(4Z z*t6y7ygV_TTBv1t?45r7R{;Nn&3@+SIUh1wCcr@^+Tnt3d=1tgF@`|MY9|RwQQ!cx zvQ7_1ocgAB3zp<+Mnc_#PXz+l@7zE8KUt~@NU(|*hK2PRUK%IqxTCuprfKPLiWI$U zn`z(e_k~HI2&-HPoM!WXnv4UTe&^1%4XVpheH|*2-4ZRMsI?}BDeiVhan9Y4A?5{< z#<*);-I}lKS+q(!{0WOcvsx5zFD^)_G5ctr zRaTOkKRafJb~E!xMA#W5ekQ4LNZ#1YPceja)y9OX{Ru06bv}Zf?$bc&n1C8cEv}I6 z%x|dqlYO>nbO#7aXkg8AGkk0%#0k*T($9-;QRP;jA3r2gTu>I4^ut+w^UfO0d8K*E z(Xmf`*1{0*7uAvQ8>Ye4g;}?G> z8=)W$Ro$$C%?*q&y(f!-%1cvSoESxj^l)V61=4>olp-{^S%qf*d!Lgi1z7kNz%t+PE0B_)m|tD8bCITOMUeYf{1NUX(I!lY@l z3?M_}S!1GraOz`=IGcMSS0(>4#)^P}J2%MW1t@q8t}097Z&liqpS%r?##5!sG`7Uh zfxz@V@{gVeRd)T!dMf)B&XY7{7f&uO1Rs^~f{<(7gy>@?J&`|kEwUqfc*0@ltSN&t zmZ>8n5(LroRnGUK`AjtIE$-A@bB1c`nQ z$4(^D{klWUEKN46G$yEhOS3p5roN>%H{Iq9ax!)&C&zF}*aNw_Cct11Az_=UhIPS? z2ZP@?(^$EmRoU%Bt*!pT5s+;$S(r`3`#o3E*jO)CeYfFG{I!Bv+_;l$RbD2GgXP75LQ(K%JY-1#K!`b9OoC>0!~Gg-UcLLN0IyvxPeUmrpN(3Q~qN zMTmqkhFT^HVxjhSj(~$B`vKi<%N9{@3?HHE9)e(^*Yo%1K(K)Kus(yE6?2(2{YUzO zaf4&B0~K^pa%OnaV<#Q+N(qdKV_|0^!hDr25B(yp(QBI%5e90Opw4j%Y^N8)I(s|{ z%2suSqC1}#uK&&~#ogZ@9}Z7SqL*-0ywp0qPHwJjV&&LILPAdEermAF2s>l0L7+d% zG42s!`#;Nm0oBPDd$dD1I0Ve7%0gYFISp;sQw~$AYno`S_fy&Sc(dC-3CQGQZ36W4 zYwr8Gkz6KUIMWw3ocj~NHH92)eX|AMC)0wRo7%$qu2M}7#px-JZ5_KR?cBjVKZ7}Y z)O$BRK?0)efgn{sk}sl$(v5w|bO%G$a)vheUyw9au%S#+7k*sABP7zwC8>=ezOA^$Z z7S0c>;z{N;urkI;R>>VjIFZK_ZeB!u_w^c6a&J;_VMK5X)E1jPBu${Z+s(d{W{Qw8 zK=9)E`iUfA#K%hc{V4>p52cQrM`}nqPzD!XSujv(MlOf=4=<3fl{5!$D{xzGL6Cm~ z=j!Tc`x0UzBuqw!p4|IP!0L=cH39sns5`4plrDph!`kFOqFCCLN6Wi{aZ3cImhc#I7a9o-9zC*=@;d4 z)On?={G*+f9-%ZHOiu^DuuZ~7YNZJCt4&ILXfdy*%`5;jwH`0#dGj_V2pW?hK zht0(Ob2POts}EW*(%8G7%w|WjeKu4{bbC?lN6u)(kO$nv8UM&`@kb%u`_6R%*dK!uxHi2qEBY#bxWZgt5oU6|zx;Ym zgJqQe$z!k-95hJ?(%!-T_VqsnR{y_{N?bb?pGPj%=Px{C^rPbR56d@pRP+PrMk?5R z@4mOEtk|UANfa!3eqXqXv#o5kt(2mvPjEJkrC}Ya?ovga!dGc{m2ZsZJHPn4ZwL>B z&senXi`U2c*}{4IecO;jMc-@qX^AGBAW@%zPyRbn&T~fhG_y&kexE<$K5-nE}EN^Z&##DbM(oiSyBJCRXZ8iSpQz|6fI+$RMO8;RcQ4xUe&JG&AI4W za#5O~aZuaH+Nf7E&u;npXG1K{&g^2ry;Em{X?d9V4y$$G8^g0jj(t$5^Zjv89o>>G zC0amBSrQcY1KBl4jNfs?dhBL!5W{oRbW5lM>=yq{7&9rFjP;B@iXCE6YE@T*$*ksY z0@(TQi-#%-+NztwcCw8)+9DZ0gX$|K|5`kl=C!(zDvK;XPPPF2+z|CygnHl8f7=na zx~TwYZD&U-MsAWMwO3yLL`SgI6t!j8bU=O{I^YnTp>m{o61D~i55&1LRj=6xtHOR< zz@@o)q@W$DH<8tIPMqyAIv%Cs)zOcy@|NlhuD%u?YpH}RQ}#@4@GC7aIS5n`gw1Xt zZFTxrixhgf+6GZNa%DQ~S($7dfQJ+h3WzYtT3@=!uWZ%keH!VPchoi(4m*%x?ObCN_P;&y1&v}Pd%U@=;X2=tP(4ca;bRj=wKW>>it!Vs zE;&vxmno~KfCF**(+T>MCtqjywgT+a_~?H#AySfM^+0o;!#~+okn{Kl?{Uaz%j*@W z9|uYrni}_G#h5d0hj|_A#!!-yLi!BHWmQ+uo!1qNsLc$9J%1htpg*&%R?frkeZH9~ zBMx+_{Ab@)Oxr$6Z7onen&8R~`L)-3k)m7A4i%41tw zVotGqz5ax-{K4Wge(Nr8-r#!KSWAz9MD8=kJLvD@TNh7-*1*79QEX*_ckcGe2bJnLx}^IjCq- z1&&ehl@L|A-$0sE%y~bObsZ_0Uaa_)8d2SIx^`X{vU?$5G4AnSm=aEF?`DK49b=bL z$bM1zM*!(pXpbIAiJPt3H+G2m%ry{t{lz;cEEHhVa%b&HBGrQ$J_QcQO*}*{#}+-s z6C1oZ;E4-NQt3XEH_G_a74p(jCuQz%Kn28njKX`Y;9p4Gc{>?Ze?LR)7<9VrxO#rb z5P7V1@%!e1{f1y04FlcCwI(WkfU{EtCqsFgVZQ+$eP`Iv8Z7KPvYVF0QQmmRZ#h^x zd3K*@a+0=fblP~h*&Nc# zKqNFugHYW_iNW_%aWumR7i`!E?#%Zd1qhOp7;Oq~F;cG%g3%AA%d zlc8$|_X}H$8?X5no#F2}!KsluMjV!($;n$q#g9-gPcrb|i(N=w0HklXEg)O5pHk*i zuW%f_9^i|eE1vfUyZzPeJe&0wVzN-n=96}TdiQVOxPFCEv*$|Cc!k- z`!N;%-+V5yr|y1s-^N4W|B+szG;I#KT4^C8;7Kt(Z`V+8`DN_@^ub}eDQ-B45(O*D zME?MS@s{wKuQrPGTrc$Qfe!VUDfgz~WVYgLKTT;J$%5z>GF0en`)b@kdRu;uy=Qtm zGb@f8-d)Y2dDPv4PTm1}F5aUPRA{v_O#}-KxKbsg>JwkeMWvkH@M!+@{`6IABWyk8xad!)of&VJ?IbLIsvG#SfjRNg8k*yY9SQtWV zUSivhCH7gQn)Irp2g}|0*p$2!O-(Ss#^)tbI#Ul%OV<+f;pE2m9^V=RcZ4* z+yWEa4<)CuZ!*5@J}`S5ZQtLfS0#PBIOWx0vI8x=%Oq_|DaALOTGnQ4Mk(_h-&da|nr}`5y`SXx$HX-g5HkNjYH1D*BGZ)l8 zHV9cB$uB}WNxdR_QxQv(kCN)6c=YDJb_q*byd%PWPo2cp{{RkU=uM!&MME{`LeGU^ zgTm#ixVbHy`xoX{x9ARHB} zd#dUT{S#l3_+mh=7Y+{}W2bY*mF|HcXP>RU)V-#bHq&jXg%9UjvQ_Pc@|i@&t)r`g zMm&_V3*qtr$#_k*vr!c4EfH2g%mM5zr zNX_AcWt<5M-2Zf#T&sEF-?E*Ep68VF#`J)aO9Qxd*`e@d#Bp?FS8SvA>Q;EP5|&vB z=?5FMGSl~TF1ZWr`Db1gPpIXv`bfdQ>e0lW>vt|~1jRNQ^SJuNm?{wIMCtB5?!!~% zW%|^VeCB%Or^r*n=R@#{>Pb^OwlCP1NhqYHy;->d$Ty~TwcMCi@nm^AWk2!m z?UI(NA=LA711!j*64&R_VK1Lv25h`uj!lJ7nj5+);pH&^WLY`2O6x{Jc|4iXw)V7_%|+ zN{@X8mlJxLYja9rT=l1PVOr-+S~o&>#tLun zX$y>ByyCR(9L9L556o~}P4`Mbx(@e^-6F2;TZ4mKofVcRZnPdRK0jG}Vf5F%2j9i) zy>DBI59C~_fv;<8tFT{~U~(L0JP+;$>i3>4gz{W>{$8Wid{y6;T~~SuH!-o9oqMOm z*UiaH3y8nF9R=!r5Ba9nXk}jKm65&f`xR_HinBL8qu~9G3i~|}rB11P&@LlCpeT&m>TslwLv*DcFdve6aIZP5 z5iV4VQCJI|^7nF{`F8jd3K&>v`tO0M+$-N`C_XSMrRI?D{n&0EQ~Cb3)4miYUI0O_ zxh}uf)D~`y*1d@mbxMhI!@zhW5cqtl&aoLJvC{0jat-b{eBi4w_2TUUckjK_3X#1O zAojcE-z{)rfD;AFXgve;6lFmlI8361xNC1L(JDpT z;dR5mLbn$pgyW!v;vHqy!_47vY5@ZeZNt*W~Cz`YyNlKOCys{kOBi8FnEfrLUUCi+qH#Cx(KOSp#1xYUAA zWnbW|(kQopNjlT87Aut|Me;X-oV;?)V6uek>l&JQez--n`O#@?k?{DD-3SO$Bv&_P%$rfY$}p&E zkd#R2dghCp%<5#iBNwu+qn}}|@EUUKb({L>a{}CXkE&l>sjOfA>~s6OWk;8%Aa;jF zW`2JktbFR8Nh*li8J$}@cG-UI#^pO!+$Go6V~T-3nbJ9Zy}vWqD*9^%XPdr2r^TYY z%qUI96_SF?ey>?h!*tb=LTq{R;zr}dN{_NHHeW=W@at|x>?8r@^LEqqs1sEb{dW$! zdP9nZJBc0gAs>>JYl@e_fat)3Y$qeB5f8CT@j_H%VFI$Gg0Qm(Y({!j+aJD~=?cQ9 z0!(aY-u93A$};7|>i9N1HFpQMOuAk}m9mTpwqIdCV4Qkpo4>!zQlWXUIpt;?y2+pn zS5J2J$0@z_wR88AP>0`vr{7kh($6b)=7t#@74F-2<{sDZnRf`+#&}z~FNf34g?B69 zHV%$>6>jm%Z`4lK0BPpY-JiOKd(!NAV2?WTWb^Ym*lrSLq?lP^R=%VO3^S{qouqIq zz3$dK{7ryl?#cz$HQ~e1;XR%0S4Cw^8+uT8Nl6$>C*a@5wAKXh^f~^k(4tWCZB9S2 z05w#kAyqJYJIw$VUo&%m-i+4O#ct_0bV&kEd1)v-ZnEf03ZgwV{lc;w1giTEH=iP2 zSWf~D5l{pYXUKXRIwBo@Iv(m)r*hzlB--9fJ81*OlPd#<4520(t|TakU#blP1GzfX zRvz^c4w@5En{LVj1KBGt&LA$l)3_K(SB;ErQ`ms0y>E{%?|Shu9(~0HWwD8!R|n<2s?nT z)t{$tw@f9jT*_KvbxlSEwQ^J^=&o z-%lq(zc422{pj1Um)~-U+DxmVq?DWS{2}l$CG6p6Uk|=f8B>Wla5$iDME{&sD3t*O zfN$HIP|4zR57XBLj(a2ncNX0_YGlOKTS4n@tO>8)talelW1!J~)I5VE9TnHuxIFv98ROSf&7X<3=aX^t`0Geg*F}mE0)w!U7ZUuU@>;?5ZyoiwfvkAkH<9npf_&aoa9YpK zGMvS{`%(Xv5eAQ36}oyHYPEEit=}9$Y?d1qaZ}~@KLb_;MD(7kv(H*mdonybc_9VS zFcZK2KY9-Mg^Yyv-wGn+gD(2dZOP()m?dKgX?CU=r+;z*gR~5B(R?EfAe#N=f+{?! zL-AY@=|IPNtCGoA_KAmvQfS*d>Mv7rC!QfzBE4fxF%ARm3F-9+jbHq{e+PCD!Y&^L zw0e?`RCWlZJgK6s%GEnSq$`*HT5SO_x0;{z`#N6oK6EohtE0xkFc`{h=b{x^#FrAB*EQ6aM!>9!5v;8I0Sch8zfk8cb7nr;O_1k zWN??kebCG1-+s5&-TUryo~pumEK-UHI{&$ORq}%Rd^8&)1oEWQMc-le;>Geo!5uvMl?7{J>rr; zD`YcW+dfA9t6F=?D64?D)S8p8vM_dA*`pKOC~zSa^oM zRAZK88ZJ};yFS`-o!=k*+xAv3%6<5u^>&`zs|Hd=E5(7D=oc3Fm+`7j%Wpix zcZdm}p_7R$k|>#F?K?}S5Z;SV%$0>3=~$@HUOh7Tvzq6N=tp!`WlSv!rlnjHb5#C_ z+V=xpe8mWB*M8fbiG>xYie6PXDYSEAG?Dc%{PJc(EXITW9}Cbd)W<#^i|n8RH@ACk zk|C37F~e-OKu>L%7~238BgveLho{PWABQL3L?lZJ2HLMX)Nw5N^qeF>gEy7M({|&~ zywz^LTejhwCeJn7Dx|0SiT(a^?59LPO!>gnI?b<%-mpDOoONlWy{HDpVI8~HlddST zP2R)AIpX~@#Csfq-+^+_no(yi)KgVBnbPYXY31y1v?%Vw1mvr7Vmp+Vkg0AUCoj$; z3D7A^8`NSRmfFr}v-d_nRm^M2ZZab&)((sE@9+0FgcccNR^fBgnP?pPDe1ypWK8`< zndP=zjPZ*RS5Ss6k>!$zJUfp;jbBwhO0b8{>DbNP|Y^_2NaKe{GR1Y zY-NhXvDs^;z;iXCu>QMubJY0|yABZX@`Y8DMf6Aco~NR;$=8SH)?WNmONNgR0w_J{ z*L5$HA>_~OU0-gZ9=$l}S;1`3QmbgGe>k_`B9tBNj3l|L@(;(9Xw+~ftfy%UMq17b z=aYm$yJ62_AQ3c+e#k9J`IMW0*y=MGbg8YE_3LY=y@S~Khm*NS1^h6KlDS=2v9 zcsuho6hC|tKg0ZWJB2p0dUriW+(h6iO2Pb< z@mL&J%}%I_r&RW-*1!nQBg$>ZKZWlpz%lY z(lcc)o?;eObfgHCn+bl1yrv`RIkUa#8_(d?avK=3!CY>Quc4rWBv;kDcM2DvS5byN zCu6*?uA5Djg2fGI&%^!S`5EIIjd3CNr(6{Lr}%$~IgeTeiq%}X0M{<(pY%gsk|dN}+Lwj&od2RC8qiyyk`GKiap3a$G{FD1_W*!jf4pH-QHjlXQ2j zfeV7;{NaOyza+>Ans@&(-)@D4`Dd@23ekDBF}5bDy^~_g|&O{Z70& z+0&dTiGjF8?$Y2)BmJCV@rc=jmRQe13|ZV#wN*j;H<3iFz{Q8ut1K%&0=J-_0$=VX zcCQzRi?~!9_4tgpH*A>+4#yh<|FNXMxiwsKR}PK(o`zDA-jTg9vbJyj+%f69Na8!Y zpK(aPCJvaftA1h$G8obm2R(twogXi&dyg0?Dv~*xbu*(2QBD@57fw;Zg%12D?pcj3 zZ*pYX!pH!jg;M1edqi#B$s8n`f>?%P3b-T2!y{rZg&yQ^9#yUE2|qFaBmNCUu2cv9??{pN-e^Qbid9dFx zJwcZTc@NULT~Df>PDphli!rUMn^7;ujTe1+mdcIqZgu_#E~?y_u)Xf})ZWAJ5;o6y zO}j%LVumDmvUZa$>}9}F=mm0h;b6zj zT{V4{bo&I>pE#Hy3-NdOg;a>bg&^~kCLHf(Tz$AM%`kL(X%bk{`6-FB8tYq+5My_u zOR;HxC}5r7CP6l|Xb^|vFNZvcJ>DZ#MOb*|hx5|XXDjK0nD6+BDmsa4SP24ZQwOY< z*-+Nmik^xchqf3o*JWTsdR|~GN zJS4G^kL=-rQEQrn%#ayUTI~e*Win(>=-dQODH8m`e*h zkv;t~GTo{C!H*&_C^YqGfJ)fQmugB`^V4!n%no#?NpVK(O){T&BY?1W=Xg!w>@cB% zy`-X!+1<~XU73R=)Q6%{LN9`)R z$2}|hsgo-t|7Qs44I_?!Vi5kVUCwXskGtpLF~29C*D^i+zKZT?o%*; zl0Rbe?yQiKJ#JrxjE^`a(uolj*>JR-?gmqS7rpr%>c> z!yj;Raa}8!kq+ zOWAlif^!6F1@Ut&FRInnpgEV3%);?VB!{ao zyz%hEG%DI;vfFEd$kkizy}4q-j!ed8DO#L+v$UzX#x2J+d&f2Z(_6q)RmI7ftB0GW z+2GchxfFaWHrlkz&)J>f@WYQpzG|u(N;G2c?W<^?!LsloN)~al^Evx)br;k->1K;t zne{BM#eeL40g2~?Pih=ll4N2UA_Lo- zy!BGZ;{0lT1YW@Id3s0qG`3^zDrZZ7MyxMW>7qhn)dC#}6=G6@@~D<1Faf;Yz)$+l zEh0Fz?6bDETyQEu<$&&p?jf+FJ%gq_UHHu5jazj6;^KyZGpo|ByKlljEitLPz5gEV zh{UJA4Qz?6$ccG^8N`O(L}$dj#+nB zLz*%aAP?)2F&0l4fFTrb{1gkz&y!a2pJY#MY_Mlg`U{Po)mOMFP#HHiV3$WB_Y{-E zgCcJaHr=-#QvO|bt1Im4{;K-+4X?99Q7c_d(90%I;N)9K4{dMGq}DTx?c7PwE=vpt zjc^@>{8jcT!D91BDs8>VS3GiO83_mkdZT27{2k1qQbv^z(H#~18_1St8)dmc^h)aV z;DGR8X}XQi-hp4l{*!E3WbmL|;W1`pI?xwV!QvA>rrkt7~u%3WQ_)VQ<1G%1oGI z2Uj_O_`;b7m=p-hHgebd>8jGv1QQtov=arI5KS>#Kk+oy?gSu4b_v4|xeL3Rhcw+| ze&x)k#mOM41KTTYx=L&MQ6#yYA%fHSP}4XqHjkGgH5RQCiuzL}f)X%z9UznrCTq1L z%QI_4(G>Vag6x%x4tR^tC^R(RkkScb*mqK-gbkbQ4is>Jne7n>C*xaMn|7?Y~SsU<+)Y6ZL|-3H7)jxR^H)$WIQ=#a@YKbhI=X?Y=&7Acx82 zW~I_B^;+pZH6P@?`j#(5`Cr#oLo&8-Vl#U>5Ek^&O+Wo04D=i(Bt5v@*PtWn@uL&) zV|J^k1C|eDj~W|6C3E^CHsa6g4%v)ULIHLialsA zkE#?&$VV%0;lpPaIhaNyD2j2- zINQ$IvIyz);j(b@QYUv#Vkks?)2#jMzc<*hSk9wQan#1pTdbdRRRT4p$4_Sqd)_I5WQe)Tu3t#w4U14+ zi{OUwsVw@YxBxgy+EDa~4?n|Y^l(|h=F>VUI_@FbIdpCWua6|>h|5%vP+4F;E((LV zFL&hSdl=0>IBHq$yaPpd;9)n*R9Ra`CqqgI`VOg1ZEo@E9cubR2I*xKWd&qqP4dfk zCE%t1q>zvc*I(xT?}tN^cJunBJ+hiRaA$)3Dwgfs*#_Ju8)q^JV@fI>R4`>|MSr

%V_6!Do$-s*8s_|owFK!ih^w2Hrdbg0ULUEPi%H!4-iAPS&485vL_ z-#s@}gSv{rxP^m<#1+vL5m)lWh?$^@C%@9j(dSp{*}8V$Z$Nz@M=m#MucDGd=57cw zQA>L+O_{T)Z>!((Y&c@|C=zTT=`zY!%@qC^S+RU6Sw*(i0*tNTk~xmiR2JRf`SJC| z%P`PBOwpb-=|j^%#z!Yv&$`lO)uaM8V*My4Q7$`+59A+5H(>bBA13&wdefY{lbW!O z7?Dv3ZQOc~J;prIlx)lKB=~H)TH!}u zwExr8ZfUPq1UFwFUw-G`*&w0db?

mNOo{uB4N|`1EJ?OdkRi@3b$t#9e;gtia#S2E&i;LDX>Zy;pFsz*$+oK z2?sn}NlFbc-ZKiYTWfu!>_(RIBcj!% zkE@kiW5(aMrWWfpsVhHjwQY%L%oJ1sA%7%I$rNaW3N!KC%8dG2%a0TL0&8Br$reSB z<04+lYY0t7;`v}$)U`67aOXeMXs;jriC}E=7do)Hw(lLf|9^nw&0JFxw>pe2(HvVO z&BytJ`@+lH1^hMJw-j}UuU(f)h9}S<%abAcB??adUGqe2G4>7ks;Oge9BrDxw-*~E z7=35#)kiWVQ#T!l$u`-aut++TR;gAFwI75Y@Zsj9+fj4BBb=@S$3ijNu+SwSG`Ppdu4YCa>Xt#mZmcl8G22<4UNxt; zh23vTo5l0VmtSwjWKr~?>`k?v%2@yIy*byW8*;?=m#x3wh1eU&W-w<&Rs0Une8gKw ztk?H*_$=I0e8fwo>zDTj^K8#7r5Xp9zaSqj?-7rzixjL4Z!dd#DxTU?WN)%yZ<>UIy|I}p{ zz#Cp%`hRMOLP{BQ_`mhgx1?G6*)588nVRjXfp87&ORg$*lU3IO9g^Hv{L*QKNgam* zFMSqs2=5;rrcnolwuUd(FMTDN^oy-RCF{zSLu%a$#jnP?1mV=H#CIQv@ODbhgaDN` zWW60{a+S)KHe9T?oiAcAI*qdVmCnVn@&j+Igg~s{ux-NEuWz#ApnU=Vu>hiDu%(yh&(Coq zK~5145NK%X`y4J|eY_bGr`viZ$LUnYG_Wp&U`a~iFDU`UbSm>Gbla9aFps`^bblwK z^`Uq_se(tdLS!}r?aHVsxelhW#^77byXTiCab>0~t(S{!%7V?HI`BA< z1<<%wAb&$Bd&F!?Ljb(9p1FFCn^H>#8bcJj`9M~ZWju?WPy8-Jo-zp5;l&=`i_=>GFhB98KL z9v-m%%4Zj#O5x|7kE4@-A@??h|Bu%i`cnI`p7KM-$gBi&gXYkw2TJhCjjkW6 z29^`$9;N}oF_h#H_f1gcuyjFit$LAZfPk_jph>;ON(_`C9y^lBBHth~cJ(w?Iu zK&ySQ0in9h7FEFd=iyDD$t{6TsZ~mD4{tgex6J6@sa4$p@qwOSSDti9mZla5;MCJO z6;J=t&_|+-3F2>jnWWUK@(A_viD~XAH4i_My~VLX7-KnwB=s*X!8jQ@Hr$^EWeBVX zxg>i}Kk>aFfW5GARF~CqV0XD*i*;I=UFEZU_sVpC!wsm?r`?Y-lz)@N3&Mkozi&ST{Tr*8Md>bw~%|c~F9JiAH&WH?#i}|^Tha&}!J-xvBwN&St z$yCiD{PTAjg|{eT>r(=zr%G2F;(%bzDgQx#b1}*n|9`rXINMSIm7R)wNPKY4c1P0m zEprN12m(TP3BMI;cg*3bATo3SN>ap~%=#s1M!XW>Zsw`pQRd!8PQZgt@1f28SbHnn z=*BN)W6Uo$h9`n7t=c3TDkAL$@)}sbRF%TrpZ$31k4I$UHBU}1*|hvh#pPEdE2!$9 z1SiydKjj!Y+>TR-L6O%8R6GdEwV~7Rr0QnL_^|kd-!H>%Cq%&Z(3f-`dbQMVkQvN! z(cU>jkL_Jyz?PF4_9wC`RAp0f^9SBlt;v8)FgwGhIraA(&i)wO=Z5d-H`Ga{&IOiU z48OktBJOzxP?Vi3vaZGe{rC{0ezD}gI48)-1}r)Ff8SX@_(%{li@SXxgZU@x(R1sw>0Hz*^7NxE`8R5tK3hu^Xw^^f)~>MO^GikC8^s*%D&9BnLb^f^JQc!^GXO5jGpFsnlEDq1Ah+%%faR?h zA{CBeQfz!ZaUFcrXJ&he8`M$=^O zHprSj3(*&NXuNXwz`J#7$m)4LrMs0%KNz-y%S~Rt4AkSI>Zo_-ZKuNMa@_eA5xYA% z)HH+@fVvX(tAqd0UQNeoUqG~e%I9UtZ>!wS#xf*tqZLSV_yNZsExImAnlg(UY>7J* z!ry2kIu(>|$}zkhh&x$X7`zYg@JNZ@&+yS|q^jLmon)%I-v~u4=YOU(2aVxOVnnF^nI6r>p_ro*_sf z#FntI9pzyW?gySPz|zR6_-&T|Sd_-0myx>DI3%}mCq}yGA&p(6{)UGXZ+q0An4A-f zQ7kGEOUvj=VLXefiKtmn_6q_+*i{@mdo=G5D4y`jCn(J{x^(#AzR7{(dCkdHM$dKH z6@j%2xrjkJ*9UhT7^nShuIq&M)mL67pG;nqC*R8KdaQ~DQnNS8W&ZfX@L$pdaA;XAD1rzJs)BQQ#Qq=U@#wWeyjX0NZN>450X#E5gJDtGf+u zggyZYehurDlsHs83`Ouybp25ujpG9&&8ulf43Y7;Q6p3Zr10A*Ckw?G!-xSlJDAeU z%In_X2bUP1;-ntrpZf7KW4_!ri_aa7eYr>G zn^2uw;1=FwBpLL~oJX#K&-R66-M)m5UVW4jZ_OAFrw`z}+J&R~7 zKO6c?o6&zn-t zU`T@=rE{<_UXXz`ylp$?YGrOqgcn2QtIrA|8(@@%DwtzJ_m!<6FrL5Sma3OZfcuR+ zP0D^Z(Ozvd?xxjQ3`OW2s>bfVK#G1PnyQr(Z>9-$%tqebHcBrAphj)Y`xA(CuVI7> zNaQ58F#;8SvEgcj@{9oBSLylesjT#P`5}#o>}sseGH9_i<nG8bOnWJ^mYG?!-2gfphx6N&wl@eU!|^*N7G?g7Ge;uI zo&Sc*wumd+h&}ECKpK4beV(Lu!zZ2E{z4`*`*>8`-EC6Fs{XoIn z;KJvK*pQuET?iTj<=*crqnAmA2Qm-_tNi9C#eeL>b`CG{3=KaT0M@e+9ksN3L^HmD4B?Yv zY$*WXt3j;zl?uUheUkrpsdbS)f4=!g?=~zfVb9b;20whJ1_vOnUpB8y7{n}Tv{Pi( znb_a}3^m$)8A(ccGh;7dgeR~N7BuQ$E6WYZwh#9E^gx#%X*O47XY}Wc<#*;Ri9iz3 z;!1eg_y{-R?n!^83}|Ks`~AhJN|Cyk?DAQ5U(%v;SCbqdsYxpx!16|F!2SG<{}nxO za9g?g&|Dl!F?^1AMQ#VLR>k(}Ovr}gipz(^w*i{x?js8>qDoj4JVc?F{ydU1M`hum zbvLU1$J2~}4Ot^JvtmrFTa0*zWZLGJ0Un|;&bPvoJy~wY9TYTDYDdDAfltl+t7AVR z@=tzq$AkoOOZ*$TnP)C_uR%@vo$~$rwC%zm&M*kgG67g*>e9+_HDJj?uwM~1uX?;| z_Qz;m#3Vf01PESl(j12>!0)v#B70=HV!)$*OAtHKsj+JQstgan>$nF?= z1S#fUC|2lN$h>yG)+ zTUniDF)YmTk~)Usl>svM@uVNT;ef~1?NnqAXE2OF$h+wzS8}&Z-`oekH$$iKBr-BW zZ+Y0{FBah=MyG?F9CJ989O&C&UQpT060m^uYJ!fr7t%fhIK~bch7!V+L7VUBNQ%2b zyx$MrySgH=W7T=BwHgB59gZd|Rv(7>;Dq@{ZY$K#n#N#=l(~3gk^}Ydq*%m1d}H9C zqLSG4mqW%bkp0RF@G_lt0%nE~j1bk=p+^qlx(cVPkpRe$r}On4guDN7L;%NIX3oEX zae$nwT@w6w+a%WTrOxVo;^PsYe?P`q;2^WsYmfvU>mtEusJg=6qKP^&|GH=V3rWmA z@!o*7;>SIc|8C7v9Q?D$WLR+*$>iW}nKymFdRn=0TWka$+Fa3w7~gbbm{?bdPyhEy zs_;o2=K|0#vBH2Agmay;nA;AATjcZ z3)bw*Z?KV2Kw)}}G#PZX_i$H`7m+4e)m75h4Mru@PQ(GM6A%JSLxs_e@S^R{ z;n!chLCxMPS!b=F9N=8tVHpyVRVdUnGk5pbd|`DE;MO&6Voy%p=5Yi|pG|NXE5LDs zvCVqrQ@zQxQGm;Uo~OB=+n2{knkmM5ULH1vPmT9sxbJoCjT6@D+!5>)L`OJr(l&p8 z%}P8+g|FwuI1@uKF)y3=>aK(KhrJR0NzOr`WO{snl+gdW})X(Q7t=y;`Vqy^U zAHnSMe&yd3^(VoN3U=uPEHX%aiKvGm?aJF9N;}txWtk$t;u$WD4m5~HJ-+x&6+I7B z=#Qwm69`t0FK?u6&8{){eliSlyRJ+6#(&_3Yn1qRMA}H$jFbXGd9dfzy>~?ZE#Ni! z;%bpMUV0t%YKX{_!%jhcCR*4h@UK9`WeS*pq3o8?=n+I&=)%E~lZz!2Div{)G@PGx z7-#WytB0N)4lKOW`KSJfLT8Sv@S%ScfzifsOcu0>fb*75x1RfY6!~^%7%-q5%Qo@! z`uIxF&IEVtI%7)ifc#}Z^BgfU;8M4;>?`ezI(}uB-21OoY^V2 z9l5Ye#K0`_8PQ`*HcHtN`!?-5Qk!0Ou{da`Ryyl-fE_R9rk*=6VXNsEtwc(q?2NQO z5_{{oL{Au2u(%vM_0!yrnMw>{&z&nc91_Q5015=twE0?g;J5uyin1anUgMy9w{4m1 zF$CSC&>=p=Y#0m+RGYz1Wpq)2qW@{k5@)sUgTJ66W%^JPL(qRRk|ned!H zr2-~ycWv3G{P9G4I1=bR=9RVi1TqN=i-0ZbI-;hg0Bob7A>Q_Mr`NHN8r#QWK)WxF zX`NIppv>M8(teHnhzG7DH3+s$j4R`9soRQ8a?mCIemJ(u=C<=Mva_6gtufyzbkG6> zM9ILHDx&AD>VgfkI#e=rX?K-^*-NJnWs^UD;*(^B&ehd*&X7NRZ9Y|pN+AN`ozaxj z&$yY+Eq6bP`N5PFeyQM@5fd{#N@NGO9D{R2RQXnkJUc&H{+NA8ZS&{-3ilv096hD7 zqisjNzqlg40lRi{{hxZS2IqjM|K~(><}z#sA4l+i>y@2Xk_xD!{Ox^KS%PIz)-pH$ znFWz;wVd3bB-}mHxw%2hkdeRfI*|q2z+qAw+VtgIlf(=(w`eVU8ROsa))HB&X%k6-buQX-l#jAQjuEpMa`yZA8YloU>1I(x6`=kD@cSltFWKKO^YxLZ z+3&GH%ce-}>8+#DV;BD)1iVgM!ef_u#9;$62PJ^A1pi)@3FwWO)6VeJO2M0cGF4|v zg^wG`zWsizE~jnrA^-MMhhPJIX{Yu}zMa-D!>aw7W2D9u&pnnH2#A)FD?$N?MMPDy z_l~1UW;3-lZfqeZ%uw|Fc_fAqA4QWRTUH8aiLT}+KAyHiq38c;w^g2_bS)SA7?hc) zw6(8x#xDprG|)$gNr1=g{CFb87G3>9S0Fz3{wGkUAJFrjnJxE&q$G>)u=Kxgn2rZ; zV}ci!X{b2L=b-@|^%Bs=`cx^dmqQ}Okz zZ&t*qZJiMyj59nhIRG3sAb#_%a!G&cc->nlPl%{*?8wFw-=gyl$br+7g#OhT-yWNv z?>yI)h|HNkl=G=wDVPoQU^3PUfJ}dkhtyzhu%aaowcSA){k9642nF*GS0wtYc~}M- zSs!sU-sGOVF9+4FhVpZtx~;pG|M`?tA9cDkZLB@jq=xy#Soi*z;mL^qAt87gs|WAdiPH{IjAN)}xn`%e|DxMkv#}cO z&1Ef;%y$LA9C1) z$(*}-Pz*i>h$4R=496vG6hxQRq$%R%#rP8DzE?fBrx52`n!3Lx-I9h%3yaxn9nghp<9(Eve1 zBJF0t1NR?Vvw<#J7j^DrQnET*}xuA=rp#Ckx>*!B7lEw1zFQQh#3}|KF zmB_;EdFwE~-cNr%H1#@?+Ix7HfKi-9j!lwzPQ^~VTNWz#bc^BL3jIQM9Iozl@rp^h zHUl7zvuWjrKK&F?0v#Ls2}d&Y+gGW-sw7e5-x1!ROgFuh|o=9f#4_NGVN#%zt9cNZC!f^ibXawt8ppPImx&+{qx|o1 z7DL(oJ02;q>1DQ#%er1FQ8!D&JtD|}l!5lI4I8!b6Pda_nMMQl-0JLs-D}bGlX)7~ zg)73ke&eDfm~rhu1}Jl+anPOGlP`dr@U;@vZ0&UVM#_H{i=~iXhpco#rqw`k`X|;u z%g=t9U>M?X9Y;(R$RBTWKwDYe-wzAw-~wO8x8(KSPWVPnHJA@Vu&SUH+%cvU8TP}n z@AkDGVyFXX4aI#p;SWR&hjS(5+lkw)IKtr;uwuWV2qeS{Wp}8Sa1>mNi}W4kGJf>~ zVovfgP%2mAYnVSDK;)yzn_M=?UrZU`5LNd0Npx0SM%m$Vt{H)bcRv&2h|nd-xcRN! zKE>1uk&lFMH=U1LL)TQZa20EHXs4;*Eu;sdG5q-(7qJl>NzYvzQOYg6v2^n3^A#c` z7ilx#z639Lt6|m?UC89QSd#I;b!YjK$$hiZe^b$C67cP#f1Dp1uRQCp_lfT4pUy}# z3b-o)mC zmS=j0USru7@YYerl%=nYG2h!VG4!!P5OSRp4&m$@x)5lMjz&wb?8|kg7aV>HQ5X#>a;4kOK z@IPEVX<%@ta$~t$$i*_7$Vf3O4#eadO%X$<2;=aM&}JkwCQOf3IfYKvDPR;Xf5S~5 zb)3_;;A9pc$ZAM-6Bkd>z7Ex)sCI;2+=mUV(8$yFd@MEu7MNK?uZOpr;^z~7{z%CI z?rSz#!MS){7%mV1wqF1^xtX-*k=2F-5MYcFRh700sk_kerkkCcX66hT?sS2Sy2~;F zZ_d9D^TIyLC8!sNbC0OM&p6pR1IuK7527GjhV`_^J$6{@D)n*$0$jwbbYYDSM%Q0F zx!Q3_-_UvXA;Roc=g72BjCS~|&L#8-8!wZ4R0%i1;0qc4SMBbDQ~59xDPc76B?E?8 zn_I!aBrVShHgtA@jTU-5hy~v0>Uuz25@nNSsVp1UKK7|^z=LOZm*`6rcDvtx6Aae{ zBfNChfqtBU`!$KUJ1NzjpL68Cv@lB}w*e|lhl#Qb4AI}vc2UjUSaIBaZ+wT3v0h1Y z`_HYfBl-&zY66^GUHa%tA5zHezr&6a;+w075Ad+1%6l9wTf^bN+8mOO+wn0Nqxu1# z9TSa({6UvVrjQ1&kk;_&P9^!zZNM_>_7yIQ!^(jRebK#LYVtZKd-bb15|&il9)?0s zgV$^_`^!2#ZAU-&zAM);Tf@9dSh|Q*=jrcX1HPJrk85|CRAySD16hr{8M_5S53go? zARVi}aBFV-0BW`ER4Kk?E*R9qCL_iC`XeG3yYf6j+R3k(I)k73ulLW#+vbPAh@&en zK%HClN5>+8cyPD{$0R9ze2w)a6$Pft{}lA;<0s3EQ;^Dm`IA%?(JQbXG> zt*+TCWjEc2*8e5)W$>tpYq%)SE2ki@z0wY^3;MY8&WIWI%HyC6j zR0#fTi^rU9FiX@@M!sMZg~JYY&>%5~86y3xxs^r=#gQQW$U7C{_2X~D&at=NqrPdf ziMJZF@DM1pH|)d$53cIEqcR(_D2E=)D8JHN;yWx^Gb{g5wDLTox2cpS5lq?oK(_ZE znbmzPEfrw9eR0R}*4sK+NIT2yXS*}f>!8UE*2Yph_H#1JqqAh+I_d9>IyQ&V5->n$o zGJqFHnQUE)P{HTJ;#w;{S!MbWRoI%j$>qVrY{$Q0wd`c@sJ&>${SpJ903Uv){}9L= zWg0bW?drhRcq1*=EiL6~dGN*MKjdx(jPL%yZIT7R8Jh8YUNj*cd!l7QU@ADS5fz0} zoRF;3iDgk(O?DuEUXM=}?ruH^(#SU)spY*BpXu84Zvs8RyHiz-NGVAnsS=h(wAz|zAVULGDk-AE*MFMU=sClDqZy{@=X z74)1GI7UEES<$|kfVayTXq)$e=x8l}grrcl8-d3a+48Ta=XV%oHBdygP91d-qh%eZaXLwC>Gzt3ulbepT;qGsz>)JYqE(Bj!7|OEWIZfcO22nKDqfB zVPtqfDX%rq0}bsj)KRy}!Tr<8v^pvp56UjGvkiQ29(oj#BC!=l2H@=jIVk&IRqoo! z12gAuj!tCw7+iK|86WS9Y|8wovSTM{*0!+;Kc5&LxP-ViS%X?x5J+Hei1>~M6yt)& z9QO;KbgDL4g1TJDYjpPtuMb=9t_4b&|L?^|5HrttI8j+0!qMJ|;JmO|_V3^eo8b+g z4xKbff8O&US3Xv7J>k5he3+SQ(EjZ4&=qE-zc#)K^ckDZ(>iF|l{$nk>N0f!PB;tE z$?_=od$+Ih=LsU>0B6&Do8SR}KR=wPkZ(^_qB>x*M!$_gO=N30X5tq#uskC0Ksyszo9WqxrVQh)Q>)kE}?CO^hme3^DT@nXY_EDZnZpjC$;2|Zp2!d`?Q8N%7AesMd? z)H1j28U%+Q7ZxUh*+oH#JOzt)s}KpZX!RPNpQx^+y!EY=a1Ya?rC#LhhJCYxep!GY z2A*-Wmu}We*R6Ll|LU`APUv`)7Q?AMxg65RwIQs4&JsUpzNab9Udze@6a0i z`#%!=9S>)F=gvF)9aH6dnPdIKMw`;#3H++joxOmexMcOc+*Wy|JPq-V`^y^b+@t5U zy!hjE=he;-?%UlnSB&w~Z0t2EBN7H3W9oMtrBzx=nNLLwlq4?X0Mp)khQchj7ZQQb zBTJk)mI}0&>_{+bi6k*4U z>!XzeX0_I#OUqfI+bd}E7cNOaU{ns5qnQsLcxU<%FVKw3=-NQ7)nPXgK;1s`RfEo< zOaA@3-P0s2A+DocVhRgum0oEVL+_;s`c845PiN)0MZld0h!`{HI(t(qg8p`X6I)LE zL41c7(}}F6`E?fL)}|q@IaxJ9Pb_w`mq1eu$P=(DJ=vuf+WZQ^PwJ0X<|04?ia77+ z7K$}y?xtv|2~_qD_lk?U85$cnpxGLX<}E!Ib<Wve0UMM~I3$%)Mr_9uAt_C2ta=0uR=F zJ$4N*-mh@^Z?9y%HK*DpR(!VcKIVd@q4s2iabKoa*he}dNnH`^)X5e=NkdtBw_3XA z`EQmK+dC@4!_`443KscEfY+@XuF^OcpRLr1*{%CdskCM;KL7gYU&+*db9?urU3=ln zdqB@e;DwDM+;{7p1<{H3F#yEdj&o|G3mDv4M&?kQcpKlr@iRfmdLh-c6o2c^rC zQ8tUBdcBmGGx&s@v5^Pcl{+dmKeI6*HiU(PeKK+|sD0w^jq7 zj@&!{2bv*g+%nr*=g(5b`NkSSf!PhZvDship{!Zp2SA*FW*l;*Mic4Nr_Cn)SU2ZU zA>XsKi0`rZe7-@0D1w|zq!WWCM@=rwj->e8R2zn0xvp3!mG}9Z87h@iCp=2@tS8sp zV`y~APGxrTY&vjHabbwyEde&F?Zr1(_*gxi0UQ+_U#R^pknnZPd_ke#W9 zs;6VZPOTK148l4sbbaOju0so*{|Iv$qHG^IAs9b|fiFtz`kB@m>N`HW0J7y^h<~sq zLRQp4jm4#MEYiAT^^Gke@SGEplaCS}4{(giwO5R(g}%^u*IUoV#^ryw^%L0LSvQ_S zbGXzjB%0@m*)+ChIr5Borw%apl`^8oQz`+85|UbJ>GAtI-t;6kNZ}F6o~OQr)4UqN zgnZ3c;_u*&$G$y1!zRpe)F05UZ>QJ2iG(^7Yov%W(kxE1OX5Whga?@t2*65@R?^J( zVU!i?t>i>2KK*bmH9LR3h4y^j-gny;Tz}@BWdTk%=M!3UF`a1j*at*g8UZM7rEtbU zEYKSt6zWcQ;OyIWr7|<<=T3a%@UsG>Ewo1d*55y}XsposDWSVToS+^rvEO{I zHmRyfSN56zrfwBVhJHMMgEY^Et7S3G%4rp*G@f2#9lXD=jvQ(4zIgsXiZcnwoGW?v z81ce^;+XHR(4hAjCdG3K{sZlS-3||v5~)ap!*KJYj2l7Z@P{W!KO#efn_hufpQX{8 zVj`nmaVV!c?fPh_gg-p$Q85IyGlbu2pnw_6Vvtv@hL|i8Jr*9^ko>1k^*DH6sYl>1 zk0pNrQe|U5HKzGe{PXBZ0;e+VE@v6%%4>(Z$+l+G?B2_1o{bm|M5b0vC9kcDue|Bg z)UrJt9bO|462 zE)FihuX)nLb9V*+`Ldrzazr>9IgX-e9{d)hZ@Y&Z@0>tCP8}^>;o*nLCQ_|EO>=ld z>`HqiKt#M~{kiX}Pk;5>(mJ>T#@c3!4fL!pwiyjOakXhVVXESSHk@8{y?3S7J&R((zo+Q6NxS)U;x{h4@N zrAoUgr&QmNI;_SvsqimSbPY^Q(*f4Vf-cgfz38NP<0EB6 z2FE|yAS#y=iRuNiv7Po|G}7XN?ERgtlifUaN0HN4ZEEBoVHh_Y?7n5jgdQ+81YYrZ z5n4lOiUskuOPf;~B0BT<{Svx)#r%J)o#T64VY|gAnQ73*b|$v%iOr_58Z@@e294F& zPGj4)tp<&4pL}`0p7(q>^B3&7p1rTV?{%;BTO=r<#+%p%CWD3-z!=r)|9Al!-hAx6 z7WK&?VNP!+hX1w(%YI)WH4tLxuf6hJhM^G8o7PHj7f%*lT7HS?vVJ5I4l7q}hdx6+ z10?tmBS)s^0H#7+EbZo%kM5BWJRI##3oME>^HaLMLR@Yq=ie2zO4H>_1PsCHLkuAi z$U*E?=c}peuL{i%egt?fUf~A8I({#fqh&UdTfI!MeU6XMVe<;L^039}4K=(oK0KG_ zfRz1(BtY57YEs88!lex4^ilRs#*At4wAE0QNp;lH-6;V*pC(q#sUgufdNShTVCg*1 zEOaE4bp&K=BXggdu%?k@FvKO2y3+6y{${Fz4-J~<W!}q+j~mj{ntBGGhoH5U*XsFTi|onr$=1k!cfCPhi+GxFruu4KlC`SOfHhRVom( z>bz5<`|A0+;d0ve*;Y~7*{XPZZA}^iwz7CsroN>; z)mr)^q))I|kz<8hcAU}eLs)u~_sjPAm6Wu6TJyc(Mzwo@yHX0!2cHX7ppY_=vK!~M zWeijbl@VNWBPh7=l-#cYgwFDA?D+_MI{MfuCZh< zCaukblsT#3<(H!d(Q11KQjU{VD2(?wKLcWHBAf~+m#L@#sM&$9QP5-Mz4nJwGQ}mL zzLO;g`hPE!2)`bKG6nF~96gE}f>(Wc1?RKcyIM>kj6#_GyL4^geY7D~8FLhm2B#6% zN6vA){cF5hrXRwU)$v?)FM!DkK)s_t*+4wi))QzK+q4|ySGb@zq3-WxTGTB7)&1qgDiQ|3CoFflcM)Y(a=I3n zrnOTQOLNO*JABHc6cuXibuxoY__JT#WTimxc z)W@pl%y^S3w}&riUH1stc=~j+vhno15EF57n>W|1hn5sjVS1GwEviJgWGM4IjDNfv zM94em6LbDD0i6c#9oSfNAvy}Ftx?-ZT|A$hc7jUp88H(8m2_nDCpN*aoVHU*5J}V5yfV11hq~3 z4fq5`_%I}fiOh}L6c6Ihoi1qgCJOomJ6@=z1gs6-G$P)Orhhh!Pe}r1eoLzBF?=(S z-YS%b?ujxwB@*7$Q*^I4|Nherfb{(kIfMNIeWLJ7Ud6Ku(C{a{$i)IEbPE};-$yrlahz!*Ah(vEBR@Xgf)#FoI=3-pgP^6J1GtT(wW z0r?!cf={R%<+ph|_E>?6nLbi!*_$ep3xZ6!VKDNi-<)?}tAb8=ppx(}YMk|CIcvTv zn*OQx)3rT_Qc+0=9>=q9kGuE856W1%tBF(V6`*@YH_3cn7s+~-hpwdKku3apH$m5u!X7ra z!jCb4BI`D{;lxdxYlLRKRZtKqKEJQ)7mFploTcTB>jISL8JFr-yiEu~2NO8Y3e7&K zi^T>V1*t47W`L^;R$1?y0&EQZV{}TLYfg5!GB8qVOAv6~NJ9t35_V)ueN@oKuSpRhBbx+*Wy2P2DkAQ~G;rmv*6==Y) zFj=L@s_aBl52K$PVt>^BMCe$1E<{NHbrSlv-wu2FJf7oaLEz8;P!Zvc#!n)CDqZaHS?e@% zuI~>3vcwhZxNK#5*yF>B3ZRGk(f$LbhXu?l{DX%zE?%to&8BxJOxKtH6BCrb473P7 zcRLZO;0r$~MyC;@r(7Dh<}$c>BLUR4S@*IImL=5*MDa_<)+D*lpj*W%?YM7-hx>G_ zK|38qU??AC`QU<9;7u2j?Dri+c=q8Ihq{#K%knC&``(g~AgFao6TV!yvyk1{n4^{K z59>cJUQjI98Z6lKG;}-34?pv9aMc+wb`~EYY;)47#F#XWvg>ymXOWr}i_5h)P9c~v z+mgS>tdm`~haD`%lx&s!f#VkdKNvG!80%+-lo(18h1CXefN=o* zJ(N48l!zy>)U)9x?v_5bS!;nktvBn}&&FVRkhu>a8Gg4gX{s=TA9d#2bLZi`j-G8% z0u=loo^{UlR~Y~GXX*sO$<<*}R5&=P5^o7(J_Ykd8~_SxP_eEr!OQIvgD@x;aN**O zR$H;&+q4$Ka-`+5V)x9G#E~%8#44=PQi)mkTaXrs%nT>>&OBlz%K%FbT(H-|DFGdo zf9&$=Rs6nk9?NFbB2GSgo(^|S0M>ja&8_>f_&qc6?!?)<(ob@q7s|lzXxjt;y*sy& zLf6AQ(%BY`%Q?w`g6_MdPU2fOJ)_QaRps6EE@s30llN4)4@ zq`)O@-?rYe4xkt)uC~H5oStq4%hv}$7}!hv`_f$$6=D$x4cUFWZwPEX&!-JvFc>hM z)Fq!<+8E6PM?iD3O9*!<|5l_VBgrhtndS#P`o}O$a0!V`ZK0^Z{Y*OGJG27?L*dBn z7y%ITS)JDRp|+^ErYfBOt(a;Kph`ep-s$l`|Aj)y;~z?lp$gU^Celo{cLlP&VGI+uVGg;44^A8>IU!`khUX-IkA2@+BCjapQ2T^g< zS`tq#aIT)Ec!dAWji}S|3a6MF!We>b6UAjbNuG#2CLd5EAN7y_f7M7hy>P!0Z& zvbs2BmJ7}!S={0SG3=AvkFnO=XG%17{k#ubta}5njlqg$PLe1jihM?_r@PYU^<^}= zu1krKL*s^D`pujL&yfgQOGi6W2xDs%KY5Pvh8wJ{eg7VlLSzK9uxY$zyJq=(+2Q*C zQCsqX3Q7XmBt-!drUay=v&+$BBdwf{B6Bjxqy-F$i`vF9?zGI*SGgZDP)%Vh*F2WR z6T+^XRPD9)2i6lodJc&Rdwt|6X3rZ@9tdG(2XD`?4T=~p5B&n=rxlGWvuK`mnzf$d z$u=5Nr4*zVIkcuQ8A28sil!J9KgIg6J!{cSaZL`smRL}+S z{Hq;__2*^4ZZ#y?jYCmTk3VGX=)vkRzhTd*_nTzNl2m;27|2+n;XLTb1mAhB`mY}; zar^B+{xvS*xY~EkM}ui5>Uu)#SZ{BA<19vtuPQ5M$(X89?g*24CFh`FT-M2$52)8m z1Wf2ikJ+;v2_#)yuGnS9qNCmQ6C>*c>ltYlfja}VLCgJ5Lja+f7Qsl~WrBhk(Fnl@zc1U%laG~ceTydS4Y>D8Z<`f+I=egbPC0s1|K}m32Jk`r{2}>Nm!kYazr_1MS|5 zV6xyVKO5o@ef#N$NNPBn?N8m+3ASO-R`;bO0f4uTm(&Dewx^ga@E88|w`aqGiG?>5 zMvPIg>N5l|T%JKA4W4YibtZ3Ozbz-BA#1HEqLuyAdB0mO`PGvZpZe+I6?Yr(E2lv8 z$8D|Fvf4|K@ha5}_munmgvJf`v-dCEPQG*r{Y4I~)*88Jt{Zfc7c{_eydc^`^=$zO z`mULoONhEMhOw(A%8w5!U0oLHg%uY-u3|Dn@k0e?5YR{8b>A}uCtgP)cI9`7pL@cC zlU!a4kh^XyA*C<5HL@Q#I_PF@!F!s=t1C~41#CMcc;Y9$f)4s|&HY(lH35^brY9XQ zF9AE2i4lYaV`n*Dbi$dI_gPEvmrv&$_EtEnTW<;PnvBq7b0X}DEjWFuxB(+ExGY0V zbuXTC0<B6Ypo`E6CNM;Z3$N^My79@0+)=6vF-St*(mzDnxV+=k%!t z&?Fx-JUz%Jn#r2)GZN+}CXfF}deqsG?5d}Np7f$)rHWM=b(}>so(*@y3@DmEl?Fr) zugAUB5|&DAQwe8t`$Y}jC0(OB3DzlCM??G!*D45X$owZG9+vI`k#lRthq#7=9#?oD zb(W90KU{C-gf^qeE*)vs#7IV%P&1#T7_EA|~Ul(S#J#1CypG`d>&3a+>Nv)S#(Hxb)FfO1~(3Sw+kl z+H8QT8>=;fD*z&sopP=qNZTX83(sE^h?nU?6bwLEqjlB1@vgW2K7|jBD@pQ+!-ap} zej;Mk#0;y&SR~UOo?Zr(`L1@)ebc=ksyr8l-oKb5`Ys{^BrjNnbZnx-r_fS=mGaMF zoHrYu*O&7{%jn$euRbbeGvz?~0|6+RL=`6<@FZ=P?dMTH9oyr5diSXWpsgUI`aqy3 zTaanE;AJKvEBTo2B8Y5HQk5IDOmim+ne5mtrsm;4yARvj09!H-=Qi-8jzVkMCEDa6 zV9IYXa&fvX(1&3xn*^piy$7SK>GQGr|AG_-<3i1N?LQ_qG6K0QSa3wZ0q%=3=Lm_U zF!$#r>8&re@P>qQOn{1ro9&?-8mNWGbDo$VP#f|nD|lRoqJCbX$w+Eu;WIo;z9N)R zHm7*1djGi5H$L7x9Y|bwqz`|gUS`uyk^MOit?75rrg`jksXv93Ky|SL9V`!Qq`m%J zk0IdY5`!`8{B0o_OUOn$`8$nJmy=LlGY!4M8T#F_f~$P9mbN1%)%HpIJZDSa`6Ob< z-=8Qi0ZmlDc_&+09&UTF3Yp@jD48L*+~-e>(c`(BO&{x4r}1b+LW=>nFvv}oA$Mq5zT_5Nbq5+4qA6s@kw1^R0&A&1+$lxYs8V{L+Kb7r z*rT|h2cXzJJ}Y@Q3)6e(!5_>FW%mkHo0@xos*Eb7NXZAWmoJ(Tgf8OQSyD4>Jfj%0 zr*3$W)U19lXzRRb)P`d`~+PUt8OFqD#ty8oJWkg4H0e%M%& z9%t_K?XUo$1~CPq3w+fQ#d6RGg=+9SFAiW&+XVNl_&mFzK!A-yIuaaj*21!6zqGQ+5O2z$VQj69Sho9RoE7-^*~Kc1y%nC{ zMrHC|L?Px7rg^<#QP!~gN>|Tbfo`0qlchwCW6HVZM+>h|Brz{2QCJVcSEJba^%8ZV zVIrS(i2Udhh(ZkN4U~o$(7?lW)HI&C$duvZ;N8h}4NIFzg9s+GDc#{@!s*g}LO(0q z!@;dIk9@Qix)=r1{fzZ@GYfNaGw9QYGknURCVT&_orPB=jSw6PY?$LoQ8pW% zl;%(Q`69+x<+u{RV0pE*8Z8Wk#ZcZk!mw$*HL#UmE=?SIfgbu!Gt=cLpmKPHmE5|b zd`>T0d4QAFlx`g`L)RWV>ao(1r!+CEYg510STC%MdtCkUaUHHBFp0;#15sVW z6{Y!gVYy`E8W$xd#(zL$2r`JBOR5ZC{ONJ6EoMgmA;L`aI~|qg01Ji?k@G>Q0;&g|IN~xOm=Lf}bx` zPkgd3x|b%T*YlejKd98YzK7>s9AZ;S8=CQ&<*6Q{G0`Qr&H9~!c2CYrvn=sP@s|G% z{5AI?sX~@IZT7wphF31GmdOV#pj_g_Z77lfk?HiS8mFN(IG36_n%8kg@A%G^G1(zI z&5?RqZ#sb#jb8qe1ulf-7r?Z zp9wpGGke}sgmJ219PsDX5!8nE3A@`Z6tmR#v41uYAMM5!hTmrwKjQrJ4zDnCwNPs} zu|3F)BVXzxym#w*eZp1>IK9vO>Rq%sdb|dO+h2C3#T*43&OILc>_v@kgWy+?cPw;x zyJyVSCg}R=4P=M$R_-XqBL{(LMXO^@m@y%N&Qa(Rt_dj-J?-{b1rt8V){Dav6$lly zo4F&hY;9->tF?I!Hf%(Ww9C04J%cB3DFXO%`fb;GE1!wc?&*Qwd|X{l=ui0;joT9h z#WyGTT-`CN9yv!Rcvsyv90#V6tg%{j=t#4UibREk*w3zcT1oYq#UG1i|7PeS8Lq@D z-sIR1y!oEAFURe+#4$7wfN^6}I8F|oR_AYu-`}ZIj9X^D-EXv(vXV)4-2(i`3C_ks zOGo$zSE|M=;E=#@4+yZ{iybY!=L^+jtheZ=2t`NS)`MTcEzU7K+eht{k zMRYFuy8?4lNxApv>fVTpSa#L35)A*m`y>OZ5^ep5-S52jz_>I8iOIeF#0*oyyZPb% z=B7eNspDLTFmLzOs`{hcVxk9vLtRmKTIz4BA~CW0lO*Q>o-ujwJOZO9-2T=3D53SL z!uS+ubs|s^RkE5w+zU+b~wr=k=h`+_%X~Rjux|b zAKNcf7pXYk#GrVz>9N1?M~*OLT+s2VP?rlJzU4^yzW8YB{mH$AEat~H3Iw=2c)tKT zf8A4d*J}w?0ioRQ#^V&emq z(3eyNMzDRx_G%eEmul()w%SKlzM^29NLg1W;5!`=W5r0mdi20K$>8A^+mR6E1ti+y zVDndz5K?X3W6Of*Pi_KGwpm_lHzvMSw?+*eD7%YmM+(-j>LGKEZ&$y}@^0=il@%k> zW3nk=Bsrv`uwgpwK63Nq%}QP}nXzc8djYPOKkE=h2YPxGLk5JN#j_m7q3ApJrEI@( z<~CfCta9Gx)+`tI)vq#IAus0yUE8=bi@NHt!kb^h(V<3}J=31&;Jd|$>3Q215eU|B z*jo8Ue&@W};>@c~-T#M_QCTI%++Qv<;AgiCN4c6@Zrv}04%;#q&`&iZG4UjWnWH7A z{g^OLMAZ9=51&MvYRDWj*^6?=pg3SwrUjem#x zMD;{1&&F%Jpp(b>-IpQAzck_Z8mLhO4G3<6+!u%S%B3HlGp>6=lhzfSvUcoQDVq*D zR$C7<>&X@_pWS5VMbD&=Pows6Y<8}FCm~YL!-sYCKI`K(@(C3ej1mR|Y%zO5644W( zsJ}G=RtcH!)JowI3g}+et(?l9e?`-b2c?TyRPZGn`=y6|MILGRS6W_<=Jq#{a;f&o z9!igU)iw88s4A&j<@Ueq{Rz49sKEbgEXB#`h55gWO~`qSXeV$t2Y&?{`}5Z%Vejka zvqG`K9d#U5ODx>9;!b%$L?VKt1{z+!qH={WvZ+T9znr}3p*=`|dn$Vl>X%jqE+9{~ zKH6WEZ@iHs-%nMYT_<~i2Sj&Ha}-zREKsJ^VSy-?_b>c1ofweMhsNvXcRs#0ikzr(@ zp6rcj?i|!_XLs1Ffn%K`BcPK@cI`~oCy$JaPmS0a)klTANfvk1&Z%1ocd$uONoaBV zs*N%Wu~bQ;uzHD-9?*34PTbHeCvGf@_LfJjiM;X)t@u`*l{_A*vS~mR)7KYef$jQ8 ziudW=K&mNlxECrjsz#o@rsxN|Dtv~DX8~)*xkNBp&F&i(kLM&_;XNt#?G8>td@dz^ zxo_AgT#J{0L9X|DQ+<^7Dvai*ow1%}scV&AiKuaMG2~ltHh{Ha_S47;>?c$EGSq`x z&u=*V7sUtKKQ5wvAMiuR10^)Ss1^;f65#PjNM<*UQ%FK5JVlj|99W~%6r2^eZ{&W8 zf^6xeG#?R!;*`ycV%8+$oW4S40)=Vxu+GYg9tgA1zdv|)U7U+3@j**u?efO0_hCcp zbL{l}smsz!UQHdI@W10-;4#3%(@p*%!gM5oOq7hVz6aL^xa?`(l)BEFqX9;JoVPRR zXL&!%wBhwx*|Et+d*ahndpV}{bo!00rPo!Qld9)eZvjbf{-z}n2RW~r5O)lbP`393 z9xx!@)}06d1ItTuF5p&$@Bb(H8K+wv`uB}U9|AoQ+{hQ+qE+Tuv&FKvWiTwBG-F{3X@42NX3Gagdi;ST?lE-T702O-0)p0~3%2=Y%#%{FN!+ z%7nCU3mhUUssYDB?E#lyVJ+Jj0-t=NfiEWimxGf8VpKznuN!Mb^f!^W1AszCflJXk zn7>$cUsAy{ig!0QJP^a5ecN4HBq+IM0wddUm9SBNL&f~S1MNsx_rMFRW&K_n{T{D; zWFVW#;NwN~C0B<`Q*XZ(v2ch8&pS@`s%g@zdS6~X>GCW(D1z*FLlLiw6uK%gE;V}* zdoG?9L+;;Nfc9FYU~*dHoX(jndTsI3@7qv3!yF0qvg&($RXSL2e#0RTU4;Tk0b9Cp z>PSyfBrE~)=lvjC$P{K%!OiBE)K2}XB2!Y7W*4h;p!?>z5uV<`*rY@aKauFY#s7E#EEi49nNPT@iNtpRsdb-H#zYE~TBf5=>pOnJSdSO;e{HYq<8;~Q$xS4NjV^%e!quJe5-!(WcpRFkw@WY*5bwsb z<{M%0AhAq=!t46{_;=Tm$b?*5p+SF1GQPX9bsDquY)b5+6B*~N(a}2*Sg7xRID40H zyxDcD$S&dV5|0A670&D?(8WUe>6^c>{R(u4SauQmLEwc1U}})$H5ML@f|~Ltys}o) z$9zXb6H_X8b%hWV{-aws4~8=+?1I4v=*;8TcAF_n=-Uz5(^JMnk*7MCg{@BI(?ocr-)4o{Y?m6OuAdH zUR^d1=#BH&2Y2E4z<-Nqg(U(TMqg_mlO;gEY=1=Xz#lI)c$c0-BIPS^Zx<^4h1ZuI z>MSr2Jq%r3b8K_v5iDspvTcmk**;W`4K*;Y>d-TrE-@XMyb@Mjyb(6s2 znGlP77UQ1&3@d?9&VmGlX|3lV4^0G<$Vk#l4QQi?N&Z z1IU-}BbAqi8)~zI+J)e7iROP?pJ7CLQ5z=}d;*u$4}nhB$=jS^L)1%0R)hCJdohi^ ze)s9w30a9ULg9Aib!GvK>PKV`ojxQ1>7L>kd6>bQ-K}*>x&vdVQaSeEXT?;0Vn=)x z^@yMg=svV1C&=rQ%?3!y5ESR5dJDmLo zfJ?a`#2soo{P%jyp!7&VY!|ZLcY2uIO(!6#nbUAdtUR)m_iy<&w~NMVc`JAX9jt5u zQy5KQfF$jEGjcRd(=$?bcW(yqR;J+G2MTa%Uvlc}m9iN*!n@%2hx&g>xfU9lQlX|I z0DtkS%uH_|7n@POE&h688_Dbt`e=#@mdJMUG}h?;i8P%WWn&TZw{k}EiG2Dp+A1*} zB(pSO`tfoU_%9USCBw}LKcPnj5L)7^eXvssGPtOGVO09XcEx93Mbdy-t0z4P5oP4$ zFbZv?d&&kE*KLo|vBKeB<1}Letwt{G+h`7M$+ExudAbF8dX*~jXQI9D%EPduu2rI^ z%R#8GONMsbMtq_Y2xUQ&X>vK!P{>B;G1AfmdiNaV-+7SD(M9cdyxxqa=%qj2MO(j} zK~YNRC}nTu;mj6B+eNW{2KBmLMDbcK{(rcS-xB(h?1ke@R3fT@6Gk=ae)%DkM%9x? zODEmfKP8|8|C!{`MQw@Kj^bb#&4gT~u#%iGphCNKkm@lx6GIFdS9z4MJd8I(A+z}~ zo#uF7bBlv+;zP&Azc}HoxB=NNY5?luni$$FjeA4_!HOW>dF$tp8w+JhcvK^Q$pm5h zPv0qn{#f>YMtFc-T!{fS`KzwR5vaEj{Q&D}Z(k!HnpekagIaj!iDkT3mK|eNTS>%V zx$1dGGN>a`K&G6bYnBff2$ANO$F{A^m5S^1!=T?-Qn zyi~5Tts51pn}?7wl>PZ41hW$9oWClXF3N)S#Uh-J&(&>SJ(zLUYOD#RC()@@G2GVN zn&}t6@QRnz2vI$E0b;a{S5(cgoSqbbD8zVBT8ICEwc#_bu@BAQD0Ft)#4iehJ|`c% zUqnq5P~E2Q`Y4~=E2)(C^9eX`T`p)AY8o`w8_6KEvYCFhidPP&#B``|6 zuzLwuTxuJxIFS9XZuZ%_0+0xBOtwfWSDuuRHdCqj4QmEznOy@}Ob%G$<)pXwKW&LB8MT&fS;j8@Dd z!R2toJ&t5oR^a0NYZINAF?xRIPlrT*SZ?xUeRp%$dd&YSj0XVC))QeJtAAn7EPg_u z*gQ$+Ynfohh(NG7EF(U9XkG-MhF|~dNw}2*fAUMzZ83*(a$TpPqu}{R7D(tHM7lEs z9`sw|Kq42lUdG#}2q*)A$~Si&{^>)&G6SmU={N*tSLPv9F>ViKRA6R9v~&k3WyiNh zs&fLu5x!^)lLSQ5xE&={`@Ktl2o-GVj6I%1Rh1@&;FB8!`RFB=ZOW8riE3a)lX#ngV7QFpX$!~ z?^Cm#BT1-b{k|e;(%yCWCAfT|g2kE|1NH^$<&Gmf5*so~6Gi;H5{yqLAi80gUF*Be z=gW{Qo%`XhkfTd8gzHYEuB8!Vycn0QAwEvGyh^XnGd6s~1*ii8793#S;Rny1U|GH5`{e`A$uW=f~M8r^;bsh9L zKodSitEQ+3V~7zR7Kz4Pp790H6}k`%R8a{i+?S$1P;v+u-%5i1S_Y3lrbW%O_FeS1 z588e4@OJ=9Z$@I5mYCL7+Yo+C2S&Z*E<01rYx>FbP2~wF1>-IDoHswiM!u8EZ^CR> z_y!4*upwTvJOpJU3yG2bLq~8}cM75@ zkt}T6CAv=kx@a`ijSF3AE*P-GbdY?6%;+fGpOf={`j_fz?V9U~m2YahQp*}}(^{fp z)iLR7@=2DjN$MSmkI$S_Dwmwtv{EV2Z5K$k_Lg^;pZ6~Rqa9{NAQzl-nqG!NwkE}& zL~yWH3f+g(a#7B>rK1|zM(wW)rG-r7BytPkPWT6-vg5scMRTJJcs}@>**6d{lxE8W zf$FL+u+IdBx=70hj_N0)L^Q}&spJq8y>Rq%knmN$HdKoSJbmjXMYaibPvwWM>*i@g zBZ~=%5L_zs_0jL$)wSjplsXXnm|3(|q7z>JRU3O6JgbCmv@a|awLMT~weAiNzx1%c zPJDW|(<33n{l+xuVRX0rg!)yaq3SDcLR_>9de=%4QVqi&O8EqFb$IhX+#`G&TC4O7 zSTt>4DhxS~84O*yBazO;#s^@y3h(e+cH_RjJc0VM^+%;Tnk@%DU!W&cPO%Klhr!=K zgD5hkjI>m!ezQlWdu2adFFk3*Vby~`KUCr~hsbO-VjLI?g(y%zC`qHb35S@@M2I72 z)3@C!fVzO_6o2=H*D}|O5QF}`g;@&0lLqok0hp}L6|x%~67N{``fjB`n=*|FiX%R+ zlvzZXu{cWgek576D!hrX#!(t)He}$!BHGzqr^{*5W~l;Ap*;SNxn6eG-=U<9tCl+- z&urhz&$5Br8&zL{z^T5O5qrFhOg{){9!#BvDzh1$*_=qcL8s=LydJuqJw0NH=>Q$m z0#!xMAca60tlL+JhCc;QHmM!o6j|ri68+Ic)m_Xv+!maO}lI5K6M`t9$Mv8ro^1-Y>R@502`}Wm_d#4tbQaFwq*tolQc%<9 zpYd|qj7S%@N~d=!>ih)C?H z)JZX9&};A)`wgN5fDT&S+qnf!$b%kk+jV4Uc^On{#paC~w+yHfn+WPn za`O~8ZEJnt3Ok3FJz3T;r=BN{V`**S)t2krAyieQcu5iMYAAro?D#$y$m=AvqsxqQ z4PACCbc_xftMFE?4<^R1Ptw@Ow8g;n`m$?iL2oI6=3lzVS2}qob1GV!3|@Ti%tOIo z3nUFp6VWO;`|*v|He2F3j;ghS6x|RUlkS*ww5XC2wz8(J2RBY2oHj>V^H+IK$$*PvVNBCq=xZ{D_9hK>M|>$ypM~taNXmd};G#f*LQ9za8xFHKhC`PB z;}Ns|iielI*mhE3FmarY)-f7(t0KEnl=+V8NwY-AB5P8tRe~Gl3nw54i|`onGVZ8t z6D0mELF*PzIv%Jo?Q1{LFsGHr+(?4AukipmZ~Yu%VWsY=(5!!*fhW}H7jtYp^Atbo zyIW9D*r>9Y)=tVU!!Wr01?9${Za+b5`vV7O`)F=gVnZROtA4-rSBQ5iG*Q;C{TkVC!rY0WfUkNb_g>GOnnoe^2 z@fZCTum9%<1{!8|J9MC)lKQ>imt*6OsDjssjF*WK*#0KQ*X2&EnyId3SYj;nBU{wp zktau%@^=Ud!RC0A^f@ZE>gxA}w`6fO?@#Vf$VP$I9az7)I>SOt zm_&xI%w=!=dGLW@S%tx>3wa-YXoe9Uc_b(uHkVr%sRjA>U`vb6lVmG8fwt!a$$Xa3 z9MkbDZ?uD-R!ExWx#CPoPiEDNTY%4*no!A5J12G7=DpqpQ8J}LDWP(%p}Gm7fX9@% z)zQH0hkDC16^Mfm+a%c~MBQ-7`&(0;83oh37ol%D8y;72oj21fFoK(^wJg?mxuJu~ zYIdNGV!Cso>yiieoGp!0L`{;VXGRUF@u0yN!r@|xE>6X%fD?zroA^NMMC72UPV>f? z*t2z29SE#l_3}$L$-RIN<(ZC8XwO?TIiCcfn&F_mv+pZK0ug~`c=2UR`kWq9y>Mt= zpGIy+VD|`vHWLlYei66|9v+~iJ)1jp6_3Sl(M3UYFsAnbEo1{#GvCXi33WHKms~3a ze?>nInyn;U9)IGFx&A4+@+_;<+MEc-{t}s=8f+FQu;!ra3ox8pIiYmqq7|DODN>aHpajhk zH~E>&Y@*Aj%n<1Zp>mnmN%?27`^rw@w9}T?_e^P@a<l(bm3QI>X0C#%w-{v>~Qj{>pDE2=qQ+5r+N1u*Z z`3?6%B>Z%r$Kb#^aN%eV5fd`yVlbVyqg`+(WeDOAs&3H83C2$q9mz4u-db|BQ_{Ir;UvRBr7%`KG0! z_FG$3&acdbtxs_Jxa4R|YT8=xU4yb?-M0~b3!IPz_i)n7UmG)GMf?>9FHVG1gW{$5 z^28O^(^%|AwO9tz^( zFA={pn7%LRm~>}i%;TA=vda;9Y^zpZM}X^L;y#EMXy&UExYp<@QyyDKF_d*G4i0oq zO>(&h$nLP2y4GyZW>k8X$r5}hkMWQlz>^(}w?|nNvM&PnYb8;y?cw7N&Grs46Sr?M zyk!bu$D8v&lF+35s=8$8;sSAQY!|THNP^6t2tyDa)B#cSahMt$_=;3l=y>^)+kRaK zbM(-7-U@`06ga)czk9EMEx)Fw-K0|#p#Kkc7a}DoC)+KNy?(o#J|os2sI}z`&*-`` ztTcieA6w9$vUI~>u;fC2^U$zl>4QXA`)fQRKd+))mQa^;huv~8ElX*9h$kK=ap9T} z>cA$<168x%NU|XFK#^LqgaZD}XBARi+0o0Cswz=}L~sIDi11bY&d)!V?!x%kOum{f zOAH1bbP*1dm*<}c@fvjZ;?TAfKt*LKgLEjEuXU6Y(n-W1e#H6h<`rw`17&FyD2O7c zh(2OqKlEasF_xd1*^{CKEt?~=%JROKrk`m84K&pY|8`Avt8=ST1jQXK-_yXy)1*jt zK#u0gzeNP6mqL{yg{>D?Ib-F}?6I}n7`7JW7Y{4lIZQI#OSp{?WP0Fb*qyyj>A%0F zg&4w5mudU7ylKgGw(YgR#?VK1GwvJ+{8*J-S2g6MCTBtviOz(FG$vRYnmI1qpdMPn zqnZB~bK;vo~yW@=Xiif5G=nwOZYbE0R3f-uec~LCv3kFMO zW2`;!&_BOxHA`S*G#MVQ?v3lyx|5`%uQ?RoI?3NqWBzjl55`vW1V%G!_5D8sk;i48 zwx}=9n{9+tY8BlIlxu&uqXQ7Gs)#l}w1GUcB6>Wt^P*3gvcFR?$JSg2Sf`9Ei=m_j zH~69a{aAROJ*UF9hzNsgwxl91(RXf|PZf3GMjd5C?Y9#yX<0$dC%+iOtAY|}if{^V zw*0BGu+Hv=pmc{t$9dxum3s2&e99vobm%A2H1!M4Ddp?DxBV=*zA!;lu^f_>M?N{O~RhT({|F(;T4~tgYY-m0OO)MqOU^?_1-%bEo;|Ch6&90Qdckp8% zgkgeegA>lkh_gl&WY~)N?Pph~y<(?oS_kiD(lO=+YkQefM8?~MhAYUoD$E$xA2m~ z?EhkOPOWG;}5464^@}{86d4D&v=-8^_-BAK$y(K!?(hC)TXiF z2e{LC%yb>JmH3DLnro8wo$v72VnLm`mP|yL7(9tlsNXfo>Jz(V+wRUo%^DJvN z5QKX-K^NAxwc0m}sO>ib-4uUajG(7PkbNI43oqk@1`nqQ4Bmv1d(SlU=4TOnZ=~~i zZe*HwCP7(y2kRKN`r&o_c#CoHm27m;gzY(x3+iWRg=6swwz~Q0Dl>Soi#P zjg5y=UBlsKJ15j~M*{Qowwl&VE`Dy&G=D{^`L5o%-|j+(iT=2* z#XqpGLPWK;k5qc_*PC-goSD~NSiHml54&gjQe6eDrs3ljfWU$DT9YkL8OO9$6)vF!P7Ot{)F6VVUSQjtuwbT}Y zS3WyB+K!cZo91v@BqSPiKO8vW0ELO;3p)^f%Z5*3y2unUsy`gE zNrpg!+O}M-zb&~^#Y66!Q&*kOq}DEd@}#%MJuk%Ym|a(2B$_1N$_lpsXK}K?i8ZIc zydn@s1iO{PPe*k!(t!d&2Hj7625~{1tz9WUh=fUuEDk^e7mEi8*?kYbTXfQ1#0!gM z&%&S0hUER35!#1xBUoVyog0GVkqMaUeEcmLTzeVsXQy_@apP)B|}tW8dQeWta{ne&vs?qcX#Y3B7l z=FsxW3O*hzKVI~qHJ^cz6KsxEKr)Go``KQ}_uwH}*8qR|d%+i4u37v1;c=Ope)1Ym z>QSWIMdh_}1NPbGTiNMD;nb_*GdWiSvujL1f<0>?0Yq;!&n=luD&cB|a_qt_V+WxZ10he9$0hOV$D5 zP4DxovsjtQ_2p_ZzB9=c1|`g-T>Z0=F2Mywu6jrAXyZw59VV7%C71I?cAEk_ZEtpr z@&@!R{roLr)XHnwgb~x2B}$0hBVKqXJx{yPWroCRthc?lR2MWUBUW87Jv^=m~EVyq+rbT0#vayhy3>>W@o6>K zS2gCNr`}Hm<)xd}gYZ?I!IzW&n9zhq+)kq_D7JQ=liqQ}y3!=*Yz(jAAMul za^0S@?#8n_IUG(mg6$&kaU)f#%euSm_HH^@S+~_c%38HH&uwP_Jv&(FA_UF24K+`F z;(vb=q^Ws=(eF14g78Kr`RdPxRJPRKf4y-*UcGB7Xx)tWm(yk+A1!65>!_g09yEq8 z_u<7kCPvCzJ39BZUA@0KCu+VR(y;z_LmW?4$5Bp}+GeCfo}uiMNpvpTV_Pp@bMkHH z!&kZQ>z7QMl<&1b@k#KdUP+TRm$_*B4&vr0kX!d45WV>b=WYF!AeF1x~n;B`RYTiETL zi|$8ET45?fv)Zl}_iURt>DW>F2}!D+=Ud3vDUd0hB$AA=fpU7mUqV41na6m=ZO3MI zw6&&rax&QZAA2sq1eVdtH7}K4M~Z%YGPjtMzrJy)JmnYUcF9rs+7_{(Xg(StaQLt5>MD$#%E0FYjh_6(HQH9uFho%+P3z82^_cL` zy#%8SR4fXkEn=wbvkyrFw9drM`abA;b1-8gf3t+5*_AODq+F< z$4CbHM@!ekTbojlM|L6)PLNL|%vM8k#UpLeIW`YHp>=LKztUks|2(tv@cxV`8#HX@ z#0&#W>=C+7-QRnjucf5EwwPS3ykFz42M&HFhF z5lRuD9d(vnl0=T?aYM<>XPWx31Ba)shDzs;{5}E>AilnA0jM6(t+AkFW-(KCk@iIB z#)Yd#z_qPElFTk@FFlIqSYiB-fRuXh*0KF59_;_lcxa1o1@WM)Y-U9Bx2S zullUpB*FK64kC*jd-K|6@dO;ytPWJR8Y>*DSN&JY(-8INTHOvX1F^4h|5IbK*{;y; z>ii>h27RgFoOk7fRsSsOo)p9bJry_=nW@A%R?Gy1q!a0qveSgFZFO%{uwPC9CH3Wq zrU`Xqu7*zuV3f9DtK!HZOpmP%P(+aGx4?ZE)o0Q zf3?8$HKe5Q*YC?uv!a-T8U-jt=uvE-Pjgxwj*4(z`jszo;Hu8$CZPtU^ZV7FaPQu# z2aR4Da9%3PE=69uQ-vG4xpa|+Yjj*abrFrE)YJnAq+W&;M`BYGYABDfVRCB_fb{_+ z7?#dB5g!F)3C*IeC7BJqROGcrebc?SR^r|6H+_P|m%0J^Jxx&^G@F5)$}P<&AmN!A zDFi1Znlf8>gC%91Y0|Fw$|NgerFQlFNT(+0!W+`8qURs^A~-SsoNzxJEFxGdYOCZT z>_uR#?R*bbxx$E9&#fEJS8<>tT?m1=#Yx)^HHbDd_QxvxuFWCHQVlcnshE8ifUR8X}lEy?DK zd;?r;_S=8^YD(PF;SH0$tbZ7*pDf9gwt!;VaheoK)c@{u_TTvTIHzgS3h=xX&AKty z9fQVypGf?rFz=hItI|Jh^f5HL_|8Z&k_?s^aUQkDJ$#EA6MnXTn_0eueJMw0PpfT4~=VkKX{X6X`WAHB6BzL z_Tlt~s&fGheUsc;1RWd?@+)Ue5Sw#Z;h-~RAp{|H9~ffigkh@pH$tqv3Seu(TS^CY zxAU=$lai>#(ID%hm*x)AWFU6!1gsKl?rf&3jB90vR}TR9S!H%v%VPcCbeigH_2yUd z9>iwL+c3p-+B~P7dBbc7pSsHMziS4xOzO`nSx)d$2X%xsfCO|&&LYrt6|!{Ry-*QDccFv7j#Cb%>tIp zujSheOJhE>qJ>PsCNUn;od1}!mf5VmcOr&ijX>05p14MOQLXE}b{>C8(7d}Fp%Z24xqo@;|e2-j|xJbC9Th0O( zKHSihhe}BvAVBRH_c4lysCMUf>`K1MY()2x9vj+#t)$Lrv~doy6KWZdZ!EJFkd^!4 zU;9qyEEUna{tDs2CxO+SLM%WX_ryF87fHXZSNM>RrNF0TfbL#>r1Qg=`ztzb6U%PT z!A3C)lu;_x*mRV1RX{Uen5E_hu3A*;^w!^*bI$o&{Tf3Xh{t*OP(4}T*v!gD0&~P^ z980mp+Ah%@M09URk1zg;_YaTuui^s+sq;E&OHp-I=?**!ev`$UTHS%C{4zp4RVCWM zq${j5fuo#4EdS^0=;gXonO6rqok6VgE{VRqn>q>yiC%|aslcz~MV4Kb>5f1+PS{Sh zkb1QcbNF_t)%rg`_#S$C0X`ep5B4vybyXXeaVY-?;@PodLkqs*XiOYd=5{jq-Kq7H zI-Q$N;Jf#r;??j_NqQ&Fd;8qYSCf;oT#X~iic=<@C{D-)+Q+BA--LOgH!du=IX?*; zr=L)3%ag!id*KBig57=q{W2~eyqR3~&BKNXv~kdr2@K!l!t;LmwsH`z*!|hqd7ld2 zazF(@vd|7)bCQkg8M$-zf!<09k#i|{3eOe0X!Y^*;G0pQ#^81jvw*)zptV9!>d&%K zoIoksH-{i?0lxMEnglu}r|8^$J!o+gA*jvH&;6D@yuwzZfL5KywJgM*4~vDa`#^Nm zN61pRe(~4XF^Urav!_UAE7OBszhD){mB6E_3@fU!igcWO7RmdB+;isVZ~6?L(&>ti zc!9*u@&hu$40kDYC#w{P_hMm%kn&=_l(m_yUB+_Ll2Uin{NJh!rXxPzol`LUXXJU6V~{RVkKWpXu=gQu{FEbVj&wsia5RNZjy6 zWXN?f*>aD??EN`;o=DaH)3S(~PUP6QZPDxn$;}S^9}-f~&S-E&?ELR6?QCnY!}~Q1 zy-^vK#e`h?5RI&*tWWjkNc}9Rnn;LCFYV^g(3OY%@LIXU3Q$ck@JbPUKb(0zAs2|K zR9(frrT+>h^P8r5ARLPZ@*ko|(fLKX$SdcUg)%RhC5H-y_rQ{({40##(`B;_M_pIu zLKw%yNpl?mZfJ;UB4(2KzQz{~qf*<}A9gV*@?h`-EonI|*=9C|AhiQm;IXVs$3KXejiworhEXCY>H>lIu+sCmJZbOR{A>fq~n(gb8 z2G!nk9|#@5iW+~2i^?{Cnh?Ckqw3u;DR~Rn6_F$PvIKK|JLK>O0}O!X4a1s<;Rc{* zp2dY*+A*xhL!=Kws3!)YjJ-dk;+Nt(d?(l|>+vZORJLIxm>&Sm8!(_T4l{U-{I111 zA4XiDyjRJW{C*gqa2{(fahk{hV+56);v;)lKb6&3;AjLYULxJy@0y%Trp{PHW|e7f z423sKyD<0$g^3L1yZLgR9HI0pg`k*VG4aGXu=b^NLvybAe0@@ z@4Rd;r8o`u8Js2mT2KQ6AD!#WiQLiKhY2MKIrFzpk%S+YJ^N=%*ysu2t{VeTm7Ggt z13J9L6!*pjuy2p#wpH{z%_WfOCm7gVe@iumQFr z=0}Bnr>osM7&J(33CvO+l=6~b!}&o2`)RIY&Z~#2Huam47?QRxjS@B*(d*stVXXk@ygHP@U=F^j#wt& z_7Yui51dMsDPj<;N-&niO?9SvyWdfOpH6~_$5&67YZnDUB`81nIimTH(B zh;v>7+TZ9NZ>rIR2(T=!Uq;Ip&!?8VX~^8^Hx?%!5O2@OL*&7Lc9lzS)Nakxa#^Dp#>jITK3!+iQm@h zRw!aR5HLIo-g1u2C%@zdZX&;9Qgav~)onJzf_LRKvzLpux#PsBNdjlz5UNkfbB`(I zd7z&(IjnN@2$pq7bK|aU1-nD=J|OSyt>)AA^{(}IvEB*^GNMtkMJv$LVRbLFdYM07 zdBxM`vWL^%E|=}&HX?>+^my~(OF_SzjsIGE7kgp9_VT^sJG|Li zru#klbcJE0>^;mobcYIU#V^I61QJjntGVC)t*g5K^#;#F%*1aDwZ*vd1jAKD#NSzw zL8y;8>5p<_pjfupR5o;FD_=HC#JYDaU@OAjZdZald^j_y^Q7A4gWokSk88H<@} z5+hRHErm~LMB^s4{bf8Wu#E|j=Vk*4%G6SyFh1t*W7-P%nXl6d(W9l}$1puneF@UP z9tXY4`(jp^K--?}(H)aJPN=)lU8rA1JBQw)Y7#fmT}>U7O1( zIG@LDGmYNlQafxqQtU-r4HJwDQ39_Y2HMG5!QbTNGR;D*csEnSXqd_6(^|3)m+F7l zId61uhjEi2$@o3y^^z6FGG5Bc_ga_IK97$2*Q=p?^E6*N)PVo&n2{ekf6G#bhD3{h zU3BrekFL(|K7yB}zK*q}wz6|gnWLpN+h z4^BtOKgFo?Vt9NxJteIM+fM#t=aoLLnti?XA5wG8-Xt}yeelA_c|~5V!L!%w+r zA=Tzb9(yMvHaPf;bY-bBaDc@*1yF7_Bc%@0!u0#{tO3849Ld8Wz=M1U32~bBSHMlc z@}Ne{;s(BLKU{!WRLd8&0>^a#_h#;4@GyK%VoFCeW9kb;WiU2j8>la5K4p*|5M2Y5 z;UJ6YX7yZ=MfujcB=&sOk{g$S&+vI3xuqra4J_6u45 zdOQXTZ6&-`FXy450!3oFyz$fnxG%tN$&gbvAd`(P;>MLR(jS<`KW7icAARxufch@- zu1Zdh^u~*E&*&Z!crg;rI%MdF*7>K@!T{#tR-1JV>X8>pUSAjZ;roTT@UVKm=K_Fj ze?UVQi#F_CoTH6I+(;H;W2))Xk1c$xn+*FLCq74lEc~qjuqu|zi4w_G1TL>%=sUCO z**9rvMR;sY_6J;SYPS;*?!*>AL3;~NYA}U;!t}1B@$GR=Tx=JvQ0<|oS}8;xqvc2h#U}qtFy85k7$5RWycN5LkLl`9@qf+Q_4MQ6v~5U3=NpOA*zM` z8d(FQp)Xr(i8}BA`jov2yDkN;fVkL2nus0PatOZ5U_0mOSC%U2DdF9Arej2HCzw&u znH{A3y7L%pT;FB4BYBb;=v@$VZ4TKNZq|#gE}?p{%2VH7G|J0|^bk_0ky3hEZv<8TdT*((=y}X{NQq;yv`}iGu<`)k0Vflh5 zvXFL!NC~t4W2eKEd=MDV;%jXDsGBXGz+ffP>_*W1VU+od&o>X<*_w&qYVF+MxR=RS zO+BJiv`{bB#X*ZaJU!-*@HraYP(;qwlT2rb;vQSPf;x`p6>WN}pD_=WGGm+~-Gu@w zFW@tR;aBLO9#To@?k#o$vb~RXU0l!_^AbptCejJtUjNrVCTY9G0Tj&15In4 zdP||6gf%x<2ktG3bS183-WZbYu8~`DKUs7u*4qA=#QiNG6T3s+jdZp%@;RWhn~|~Q zh*z7=h$ee#i{Tt8FR}I$jz(KakpD+URK)vX{o~aUmlt3r;JXFdr80T;xKbtarDYhZgHXWJKf`uwyQ-6 zgK&~RF@Ha#OtA36@oe6Dty@%I_Wgu}b(GrbOwA+!^pk|p?jP$lOpho0AY3rw2rDq9 zV_CEFh1cQLIl*8=jsk(Nwqo-)eV|pfoP<86m5YB>f*o4eCoq-$h~7x64Xuer^nvdM zM#!a_0Nt_6pk*WUrKvyVNMEJ)#f-0!l9!mkJk1hUJx%dLl$pCXO&jaFxvIrim|ecm z6*d>A^BTr*gG2MPZU?hWeH72SBEKhN{%W0w;1XENFje6k(nrkb=D za#*Qvxl?^pUoso>ONG>=>%#AmGji z`PZQ7+70mg9bCujWg$NhKkWU@-yhOo{|pN&^)O`z(Z%^QqX}4A5Rup;r`5~v_3|_m z-PQ|I;-yvEvo`x`472MMLG@0XmBgL%`b+|fDB`wugNn z?pjaGn$yoQ1}0X0zCVHcRfQBh?5H?@_Fl&SdG9Af^m~aGCQ<%72nkWtkDPmB5jc;3 zvPe5*6NP}#>1eHz#6tq--;Y8hKI-B%N#!Aolqr)=qk(Mi7|=GpKhBNHr!F0f}k3 zm5uA}eqqwV_^t3VDiFv_<~c0%Y`*HS>egmQljME(8^F|93GCP}VcD{l%5;yYyH z&14YVpe3gq^+oz3seichhjoc_9pAJ;a@l`P=cQthilwou(o(mEApIFFqqNp`aD>5c z-T8geH(AJ}^(PT-%dO{x?Wb8Fl^;Teq<6pu((v6Ur?SN~r0-#D`xS}1$3!+~wdVcs z+z_{I<}4HF+)4*MJ30r2;7p^xoe!g@msRDH z(I8%BT*m0H=>9ew7(>u%hxz+nZc!bWyzV7m@dW=4t+L8FEv(ERkW?|?xN!r=Ija2c z^U6}i=NcE3_|p05Wz%<$**Y}4%h>?tjA&;$l9F+!e1_?(gbU>5g)Qc!Mu(*G z2bsE4Fg(#Pcg(tAnElTsj66a6uj8@G{16l&9Nk}1f80uHpV8f(YOm?XfE@?=YnRZ?TCSf!nbOO8wU-&y>3&C2QWSIFIg!&=3>Ke$RhqH$4T6;%|6pI{_VQm!p z_VaN*Aon);(&=#jgm-M5(ViUIW4Mu^=B{&IgVh$orRoKQ$d^wa2JitKE$z)q@WC(} zvQ9ST5mF=ue1Kr_uz}qb{7{J2z80RfkvdYo*$7tjx&7d{Iir_dT1^oIJs5^Z7-P4A z<_isR3di5f=_j%zx71tWmh@7`#3SoZ=aRy&TK*Uj_jN^NOOAyyhFfl^Y3h$H-N(lA zg^)xKO5Uy2saXq(MlkHV{HrK&;H8G)L#9DUpeHPTp}H?>$b-VsLk%@WZNDXP=j6UH z-^4aRus&4n@FYO>kT-5j`WuAnei{n#WADD@N5Kr+UK?UQ1Sh3KuKbr1g6d#nY22pI z+NX&{#QTo*suJS}$i1A$lNH$^X}b7Bb5v(Gk9K>9oX*H3CszA$HT!ga#&G$&)D#g~ z3R*esbK10Ia=`Rao1*X{l70AY=*4XZ_~F`LVb;-1JPJKd?Y)O~QYT+6_Q?L9Q(T-! ze{6J;9nu7AluCaT%W~<&!&8PRZdW8nOfnf^)KYiUx zjf0p>9E@yWMH{Rm!_F3g6;gAM&c<&9qF~;pMJRQTQH&{GZgb2>#%-r5X|$%I;@kta z70vMVN*@)Ib6^1*Zioa2Zn0m0Kfaf0-M$sP@SMuZy+!RfL$3g`##F|k#s^TTKa(JG z#U5GzeTqhMq^MlycHt@-a!Jb-?C9h9Z8AU590w4^DHNG%Cx&t_QqPg3(7)D&7Nx0# z@v!uk4(u#-@$oI!L9{f)C(!MXUB?a^;?&CqVV z@*1~r?P;k-(vp|*Ju4P3_fDy{#m?py4=@oN>|FpU&nwMIclw7CDBUnBp-`_Rfuhiv z6sYCt7z$oT?*q+|qI@$>^ci^K=Vkj)VIN&AwPO?>u5N#W-d^rQhW!D~cd8$rJOb#* z)V?KJOQsrN@WQPwSAm}C#0b{eKOOIWQvBs_`36WmVfwGXAs>QlhaZopln+;Hr=W}$(7%$N|4xVZ*k+o_^GGeEwq4|S*MIB118>)O08E7zED%tE& z`)B0?^sl!faHoUSuBL7P9}b^fU`(r>>W=4I+2E<@VEf#f>_gCOL>rJ_J4fY2BOTGj z>XrvCK-%U5|CgPGodM0(Jf}f|w|v2}LB_^_k?ylqvQicX)_8dvMgjVl8EgpZT|Qni zjZN3_zm4F$Q43SG)+&aXQ~0dzfg@K79?(AhYOeLL@L&JY3$NMB`O%9r_tjGJ(N@oV zP)?r5`n-bc3>dIkCDcAd@z)3>Plv1b z>(mN*yrETmKe>1fH#?v!^~RT1_bi2Qe>3oM^BNALWA2ybg;lt!rw`5D(7QxP=SyK;Vr z_R36g6YcLXbv-6>tshp4^ct$2 z-IsP?cyioKJf)DqFrOEc$)GjA!-B2W7O=;cHyCMi2(rx;d27c zvHHTiCQuYef;%GV(3cBz&4_%_$^-|{3Y;7AI?w*YzUkC$9ZEp8(2wSC)u%K9mUIA4 zVV^)Tv!)g@2Q(top>LoDbhJIJl3Y%CP!$XWan8Y6LS6mJR55`Spx`$x{o!SnP+JL4dTjo8EIui~A#YaI-+BV^ zK^gt+-Ya$mG4rj9&sPa&m>uCpPat(zA>3b0U|$&LAC0I7c;rJPhX{;s*zU`Xo9op7rNWd&`U|MbNk65=&4xZ|w?>HX0k z83hEE*V@^JLqrixFbz3?_SFN-oGng5>)cqee6?s*duj_Cz8XQ!wR93-lhJzE%&XuG z)Uu{DGXP8^ng-cCL-)3cv|@A)S~uBdM4lGV1+5&AkzUTml0Cd`ViEdLDs-Gb^y6g4 z(_q3-;%4~x`^cgcs5(1ccQF03NnB-$^th@@@b(t4JB784bQ0*5N$oK6Mh&XH&%|=fcUgz!MI4}pstP-VU9qK#|Yxg?Arjx4J_)s-+29BNH z{ue~&;5U>54lh?X79znC{vHwI!Ecrs&T42}dZ`}6_cRAs;z>FSkT@dH8ND;4kCGW( z>5EG;L0F2p5ERrG#)mQ*JdG}#AiH6;E#>cFggnD#k-twsaE=A9xOdUr7GEAOP9{y1vZFBm{Y3DO$d00-UOPkkP7jJvx$QiH>EpXD^plTPBTj~`h zp0gdB`YR3KjD^$iel^QzR2$XpTkNaiQ{+>wemCo>+Axjh& z{G!-R^n(Y79nn+%9t&{BLw9O*^UU$j;!=^qBq`VM<-AABOI5s0=Bu}W*kRl+U(HvY z=59-`JD=|l(#I5a_26uqJ9P(3>0IwvBt%sI7{V)lWmHuEyhL3ZQJ6zPm3SsxV5oa; zya_Mn2Xmw|ZUTEW)bMDx!R%hDQ)TL)gZ zc%z?d;|og^dP)K%=en~=?*Knb52kg@?foa-q<3xS@fTkd!DkRljKcLGpyv*@9##|0 z8=qIC3pN3LP)%Dj5sWHxQ}@LGu>xHFG%jJ@tV1Ae08@9BOC$AE>?Fuy!Dreh zIS)t3l4}iTrvHpQ@RlhxZA!VNj)1%HP*ST1Xzi9q5L7}ID!)ImO$k*KZ?##j^9!=+ z5bj)r{PP{BQ9mnSpUsxx`SPepA0*I#quw4%Z!2_#%KMch90LH?X_Swp9Sbdwy`JCX2iGT2&wqcn6(a z5m`l7SkW1U{RYVJPow7Ioox6u4MDe8k?J}%ir_0Y9uhwgGF${&c~XwURX<5j5X z&Y|7DSam&8(%1gc@vIn2Rg&0kCFbQ-e3 zkW6PBNQKWNYS87+f;F{D8R6ThAdS-3Mc?4_UYYCK+T zTC}j}CfbGyuIT+zRDoh?fF_ZrM$}XJqt_lvT;F9bh^$o~n&SM(p1}1LQDHyeT4Izi zKf{sOJkw{?AciOyJWI^q^de{(qS-F{IF*YW5oJ+2h3-KMNG4LH^);;?6J{7?kqdxc>034o&oR=o6qZb?1E)C1cC|3$X}`&Kr^u*A>9;ch4E=9+@|o)Q4xUZ&XjE_F_< z{>4fY(b)Aq!4!!7>#}oa7Pu$NR${*rr6H@GjXYa`voBCYXY%>QQ{yBpRe{8Dxn3m4 zG6#sga|eI==AjQRIV`RGqxCd8st9#wql=T2apjThx@2EuGq`-IB<;!?O9ac>nB?a}(ke@LIZLaJ_5re0l z(NOp8=o+T4Q$e>Z8%MRaI?$i_wr6tqBki}Eq9APF;r!U<+*^|q$N6v$uqLw>R}`Zp zdD-kf3uS@ua%3gVC1|bX%@eUOGL*o52;TW3>v019(Kj^nwMb)8+g1=l_AK#W%+zbZ6S!2swFl7E8V23!%^zQAf$;e9xLcr%(Oqi6d{tpXF2!NS|fZFq+w(t@P>oXb>*hras^Ie4TgUV$iUFoh6C+*jR$ zFmUgQz5gngfU_J8IRxp}mX+Fg?PNS5>d^dP&4MLOn4)+&w9cRTVP^kgtdkd5F7j&< zH>+$J;xcjUrQ{apna!-#QBS?t^F*$&_y=5F5eqaP=Gp<|kQO1OHDr?KNGj}8a=4hM zav~3!8GAAoRYle8!Y%e5s;@VY49SW_HehDj4qa$8N~K*czLh?C=zbFcO|QC}t^xh` zn;8}dz+=*1-s6By2)S#7sa^h@S*t|1H9~}q$s+p;u_wR!6e+MXl~tt4>B~+ zP4l_yMcHF%fa8`?Kd`3loCF;0BD1cyk9s5#_(R~VqYmCeFx_cI>l{_v+-TUP?F5=Z zo$!#-fHRMyxP|sAX550nxbrK?iC_bZSko}m%UXX5rjJq3Ps+L zqvm)ci;dHf)t&!@lt(D{QRhs9E81TARPLq?GL2gJrPYdmf-BhdARd4+@;*kN?P-r^ zHi|J7>?NL`;7i#{dvs7sH{5-#FA3_X%**cNW1($9*uXs54)0=sV~1>(%(K8+G0(Rt z_(!WMXX*zo8dj%cqPe6`qu;WM*?90!`NJxHQ3C_C2p0^U6;SW$+t|RtV6MeX2eNrw zys#A9Ultal0R;>)kC6Ev&~;)eGe-Z2WnZaBntasrkS+3oIURARL=(u)J z_*Pd}&)NM1$^{rqaj}2qEOrZI&r<#VmFlJipul)xIXsXM@3|%+!4}VNY8O*$%}?FD zTCCUzFZgPXW<}bcjFP_dwBP6yMTQ-zKZtTV4nOd+F%Dk5CE06nVObskko@2y<=~+xPDnUo548QX?-7c!BlJnr zc&-N@U2>L1p#jQlf&+@n|3dV1irXgZ`@MSONr|LGCnd9WHdLd?p|Ab4!uq<+}Ex!O+SBk zmvLz8Z)e=cEod7)D3Tp_*c8Hx-a8#-KR20!v4ltL*!#!v9hScKR&}BPgWoX{Z}Cdh z9?T4A`9Pcl5G^cI&l~d&pZD|3pOhkLj<*2@0vni^Y$*@fFa*pLu!AoU=%OQ-NyoZ> zA0g6sdmUl`h0Ry*oCh{-)vN;xP1cosAPW|o1b^F%sOv+|KwpnRON3b*Oz~DK>c&XMNOT{Wcdq|CX+&tV{8v@4>fyz>-gBe5rfT z&%B2*Mr}Q!)_@o{LGu=e=5au!pG>^m8Pf6n(=XpHsf)s>+fvl)ve;5mUL*btJ1=PH zr=8!9B77bX`50Jva6YGL1s)iry8AVE;~Z&*=MfrB5H>=3X4Tf9gm;uq=7$9m;@hBL|+7KVUC?@;+58On1lE_z<4XW*4ZLqIaH~w~)CkB^o;1x4j zD&rHMnZG<*?rLDfv6zxqhzhXZl<{x$wisjT1Tq&c{g{j|(-R>K4t+H(4z)`b*+#}0 z{JAdy!k$wedgmrxG+cAASdHQwzbl@)Y1DbBbdDRreUB@QPW3XF61lyepQKNK40 zDOzeW%ie}nLLC1tZ$7%qAo(voxVXu?YHI0|YXj|iThpVock|}?Uf(A-6kTKf5n>oN zlvMV_*F`KN8|Q>w_5cES#Bo%7>EJnSF3>Tq#jZ2}$ekSgKWdACuI4je&I-xPb)zha zQrTQ&-Gq!0KF_g?85D5*1!>L*cq_D?I9dp$cju!$7Mq?3HPf~EP~DJh%ERn9(~%Un zGl36Bpv_DT$5RRIPg_1iSZk$LIVB0^*;Pm8n7@kLI740GP(cf0M@6(JsayBqa>xX;P%A%{3`B1gK7KhOoCUy2?LJFvb$wc6!D zK+Tk1zxRJ$%GDE%nRlh0{cOL{`|WD~j9fLTNtilR?Hvcix6NwiJOyT<%`ZDjlycd% zC_{`NWfbJXk93wV<$v@~>L6KGRsB^eH2*2YzVpwq-toa+*AJlp331Nl7wxC>>e!fF z{Q(QIO#ibo2A47BFfliodl(ya6?dHF0@T6ZJ9KTlDhY-RNf<%gPos5Y+uu5Zz2jLG zRqz;VG{s4A20^+pj#q*K>F3cUf=jgTkfA?FR1b~Wrw1d*N-7KGsR0`v+Z%^#8)JlR zn}u_zkcU47PiQppAhhP4 zU=VDqxAPFJGaEy5gspcc??E-%wmf&tAgJ@QtSJ?u3_ILA+!dOdBelDt>*J}*)VNP^yMA+)Ws7jJqPk$SAT?Yl+c^%%$a-z1i~cF_^myUuHsmVE%oOC=TyEzzI*xO0rwqi0z*)HDrqE zA5sY{Gi?u_9f7A`bO_yi>W{E1v^pZHe964l5P4KgGn5he1>rC}D_N;)y*C_ejWD`a zzA-9J@H-haJ13TsR&d|<{RXiIQ(o#fn*aK+bG-9inhq2tE}{G1@dw^|6TThNu@_RF z3q`>wP>dUS8iez3ZE1!TSGZR3=ujwYwsD>1X^yoGsu87r=cT9t{E`puLn&GhHTV6( z+iIIVv^(*BiQdhRysI4D4IPPXhKB?$4Afet{H&qt!JGri>>w2QQfOPLJFA)eH{axA z^h`hwzuVaKCW41;2ki6L0d2Z#5IQKyCb8+MmAW{q$N^;MPQp4q9dL%e#Ph=gku>Ub z2gvpSF3aT}KI4{FNrKXk(erH>;|hMhRr6;9lrqUWZK+K2Pw&U#lcDX)#wqs*3a<6| z?A!JPk&(J$50qJ4z>o_J@=da9JlYlt)I)@Dp#Fy#m@I!OO#8BZmXy?HS@0Zn&$(&}oru|7itXM9%e zkPbyy^$$%({&8Ou%f&(8eU#@r;ZECXd^Wd|eSYad9zS{J# zkJ0S{0(4BoqAY!9hc0})b5uvl%#Bm)O2OOd!J?`_Pl_%g+``V5(_vM!0-U%ngWZ;A<4 zBe^c;eY6qO2!)LjYsRzAu`#=Q$t?YO?nAlCZG+z==Oe6p>L&d!sj9k|;kA#?ZuPK( z(}gusV7N)CV<8xCsn7L49l+prx&SrjPow0| zzbGI*xWeD*&BpH+D-H>~ygc!;&CL%2*_mThFi*f-XjhcCZb^lSC_4;C2ko|RB!JrDplK9;QqnL}HC0!D!a zmyTCr4_7dzLe5?T+=OIZhJiO_Y_NL9!c4N0go>wiHd-l^bNQS;f)H4g2ch6GnT7Xc#*9E1Zs}j!$IHzDkVCcrQ*Px)d$wLn54fPqh zQvSw1RZ7p1FWX~gTy;zP*{;m*J3Cz7@(j7Sv^Q7b7;3*YE#5QrFr*Luj}HgyOmYcW zI%QJlq_q9VgB9O$c1F!Zv@Jp!P|$iLTu{J=EYOa?!>`hw?=8(_|Na$w2Zmtz5-9zI zrjvKQ8dkw1qhts_^>W(^(k*-qSm3RK9*0?7-W{2bXwFxBIcTs?+di{cS;-WJYvi3n zf+DM{6Ki9MZ}_>4%~mFX)8@K5gFm)>#`Niu+L*|c{g??Py{x(wNp#bd&Dz^(cyb~-N5fByK12gb);ieNe}tn!?y8*isa1%Eot$RhA_QkFgy*@@0H zc^~%dwoS1CUhg)O5@(J3s-yI0e*6VIU^%-*#wCT0{Y0%O8D{Wthf~4?!XakdT<9_2 z`^8;A8t$U@7ghJ|XM2&<`g|XlQy^oADDd z+h5T|lUPPSXnPa-g#0a9c$o_VdXc2nbV&_gh}JHWu~&-$X`|s|jAuw)Lnv{}3}nJc z*!Lh(45GaFiPWJ#z8$Iy#v+HM8h3)&MYb@xn;jA77y-*<9VC_nhU20fG!9Kp;7jv^ zzqVdHvn&(7@p7r>JAQ*ielmp4D-Wn*+cc7k2KXY;Lsv;E=tT-IHroF(!=AQ4LVS1c ziMfN9fc%w8ge*1L|w9devRdpv82B-sLexT9`ibOQ2YQQ^^`fL>N57aC>Qhz9R=OHSqIlsU#%(J8Kx{KS1VGvO+-}bK5{o%$< z+|(ox;&RPzB_HelVG~ahZhIljz5OvJdE-rb+VnR4q|YZTy5oKpj>h4_7$E1<=Ue?1 zmO!Q3vHUQdJ)cvTUhHaoD@5L!|2!Tf-t&zPq!Slo$fh9IiX>bEx(N)l7kGrk3lJ2z zqrRrsj%y)S4$VJ8#4E2GWc)(p zw4g_ceomLYQkKa>>oZqG+4lN&fokS9z8C_0(=o;_HH@eyL!G71n&L>g8wss|zoaKu z7{gMm@G2=F?|$f?0@znbtPR^y>O2ltK;=Nd?#`zJjPJA8>;L09=84FurQq& zyyh069+7%L98q1giAexbNVEs}i^yN{kvf-5YquKlYKiS}Xn8^&)O;S)1!}}iD0?V^ z(v}LL=R@yl@@>2Z+tRRWIuIS?Mvx7*`~T7Q)=^P~(b~AQASIwQh>}W!Gz3SUP4Naa6Xv21_ig82+hnB-#oHatKgHp zlY%hoi|EwhrI#qmWEDpDFeBbk=jc7CHG|ji{Sc-a(sit5xC=-!V7`6lGg#uj8;5Xx zP@MgSN=kq}dEBz-+l9KYT17|42}$d*u*n?<_8rE%3`yJ#vW0rH(Zc+a0;2JmaB#)( zEqbE2&}9QI%=Fm$#;C(8*45A4$mEM1(E#QSSiKh0F8L^qi!Q2=?4Y7#bqn$d`RxP$$O%JOGBT)ae_ai_dg|IpKAOX)i z={Y63&_i=<9|k3-TPbe+cJAX-uyLb!#va7`tr1knq{uInX}`N&O*qFM~w#~R6O82J7x9#d>W=ynkIhxl{Vq1DZ* zpqZ*o8LS+4tC{vUOFOacq6Z;P4%R+%dP=kp$q3;D?I$Er=!t99O0d1|@KA1<%T<9lBHT-uSZB?(Y%|i|8)C>w*;gLph<$lMAAe~R1x{?@o>%KM zC~rfcg_-n$qOnKFXB4Kb&x<69l}S{?Ddw^R>|Vo%`W#;NydM`Ze>jMGgvuk)A8qz9A>9Y;xarvU)WF=eun%v~&f1+w+yAmoj<(k+X!M$D%5| za5XKkRiwwaT{;Np8LbMZp{E~)b5Me9`Vfo&^;l01DhwG4j=j7}x-rJrtS>rkXBy#= zd6z%Zw))j*5#P%~BDm{K8zrur{kVYgIm1H3iCquoJgW<5w8T5FF>jK;VY|Vgdes^@ zt}hccJ_#O4`A`U6BM;>$yqMxcVc%QnETndUtr>{ujd^LzH$kb9kzVhwb3(oo&)*qe zb;Is-W~jG%af?rnQ@Pd|(-YHJb;>cuI&u?FoNtg8tSO^1tr$)bG<6gibU?cNo6tB6<$=#In}~!%q>S=pmx@|8v~nCZx-k~%F8oxsMzwBdEYmE zO-<%&;>3oD#2I;pW$>UmzmQhh71>jJ?;N^zz^U=CH>q(nILp4s0>vcygpOe^iy0%85Ly zNMDNzM~e8fls7B!*N{Y1&Ns()pJiwBKF zHN2Da&XLD&3H!1uZ)J3#H>@kBtPwjHLU9OTqeM)y6CqB@sVdFJb$a^@ZiK*&P~Drk zYVg&k{pK3MGV9!Nku0d+3-M%ojRZWm8l`>i0bs=wqTze}< zuByuE5Uz$CEQ&*46}x;ezQD!~9{qB93h(sQX&qBVDkAi7n(Cyay^S3k| zHCdqS1&kd^ngSy$MhPO=gAU&|$9$%bz+t7hB8JuXm3bwvbs|k^bybU95N1 z7Z=LjE@y9aX)h+k z(E4}a8l9gx^WfgU=N$m~&xp6vODKQp@QAapRNqHz>r}V53Qgm@gUmOof)HMEQEP-@ zp9S3+@LRkuAwQ3Af4_0hl&0g!y_<&xgK0pBCO6-MMy?hSMvR7~J| z5FD%hx7_+aPWJdaTVV$M_vHKE1ySBIG7+*NtNN!ZadT|G5s-WJ%#dKxX*%eoledvZpbBGNg0lx z`>0rwS6F_2TzQmcOlG=z{44DaY&jY<)FW2I?ZTZe9aptc>~GO2tk_hTnz|`~sv2E= z=W#0jckLwcU;r8V zkv(OBu#}x=Ki#3LI344+_6bf;6Kic6=t3JGVHaHWRjtWUdrN#hTV@g<6BK zx0$`}j~Nx^&4ws-69kN&Z9fr1CyA0B9WvoZ6yLlUmz}JQ;OpWMhPNvX2u;Uc3RNa% z91j=%aV>sds#g!cO5@BPF;m-|!|H`i<82I@tCA?LS8pO8hm&vSemTr2k`hnLKV{F7 zyGyW5L(=b8Mf@_qv5LjbS~4p&>xWc#CwUjnx03s6QC%`!J(04{u>CT!?0(c1Qd#eR zq&MurP$T$lP?@HP`JOdQWw;nmtgS|fwst{=hIcvY}yM-ON5|EQ^snH@%FgKp5Vln7P?!mnJ*2s zGtMNo5??p5t2R*|HEw%~upKRlLjF!+EPbV`i#{b86nzE1t#38kR}@mZaHpc@Fi+sC{$)4Ivjl!px^K#wRqwZZUfl zmnUIx9QwvKa8jxUd?p>S$=Z-bovL=(FPh`PSsQM{E?zA+98JiGA2%5GhEYRE<%ti8 zQ8tA0*>x(LoqS^1zr|xNhbj z3<^i1Ow5hqTnG)ZhG>{-+jobI(!pwPU)OcKn14}Ynb+1J^>8tW_bKo9Kn`UcgJpIq zqF7pbW!mS74>ghlXi=GY%MWx&;^W<5J@Zp2p{)&?DMwV`7%{}?y|F5+T#sRXJ#S+m z*5BFInsez9^Y+Z1?@Jd(8eCo+qn8#HGBg{>T=K6>%B^e|Bj9K%Nw;@P5xUpE6DE#T zB__$FjT`R+_Qa-$sY^wrB7s-(@J{ou45;ekUxxX%k;n~D%SFy ztEj?p<}1fMrDSP;)s1uVPVe@K0Hpj{jJ$6QQ~NUgl8r!C6+8qSW3ZFz^N(19o39-ujdqRpy->@v0?fWKTa5~5 zvh${pr*r{Mek?j$p0DxWOH|^gN<`B#KEU$dq3f}+useV$XFa+*j;O2#|o@-Dlyji4-r;ZYs`MGj6dc9L=I&%8}C^S5sK zGplEw96jAvcMX!|_XF)LLVRLgCalACH`;%O=%FpPCnp^e*~ujvyO3Oo0yg!c6EUH~ zVP8ubCwt+R-;6a_De^I=nVAfqUmIQad$fP~diyRiE^~kVRf^0TewCYnUW-9|@5JB= z+zo{F`y6dr3QFsi9)Y+u&Do2U-yK_dVO)r*GdcXlPtTaPY})DD`@oZ+kPl}gR6cTr z655XpPa0VZ>!cJVAD1jFIoU36C6S&v2Do{jsQHdZ_h|T$GodYKBG{Bq9JLLo3^KSr+^1*ld_4ZG=7RJU;6XwcWN_u9DaHeZGmBOp4B>Uvp2;J>NOE|{v@KHiI7gP%} zFH)wk;IgZaa=0Xw$%(3Q()s5vgy8NF`0qr}1Hb*?#nxyRaINH&a2_5jYjV8?+SCRh)a705A($jbdXcdXF4>!A zczKd!v%-p(eff0cP#B)NE5Oo<#UPTE4bWvBrN|srz1YfpFe$8ZW8-;jrl^b5Cp%kk zyhp$eKL=c(*g7zd(-G03QdQTyxlPd9yt816F+EW+QiEG6cyKt~f(|y_K$=Z4(U@5q z|HNcRU1a zujHgrQriAKE`Fmpq7O@jqyw2_cS ztb99d6;H?aC`Xw{pzibr-ig(Df(yzBART*(gI)g&8dyJ>wHMPzz8WN{kos4brwnrA zZPTfI@rO(ilO&mF%|+DBfT&R=SJ{c(m5`60AGMh81#^aVX}}+ml_4*+0R-IlD>lM%4+Po^u`cys^h*l{fBX?b4}ZBs1w$%^G5t z?y8*zO*l~u*=PZY1@YAvgfuKoB3!Nz*kMK$xKD>adT#5szb<|~oBU#i^N4Hdto2dI zGhW$-+@uFj-9|#OhITSzYKnQ2-+-+@v{3P!9h{Ovqf69QJ3na6{lT+EGap4@Yc&V1 z6my!Ag82nTvS(rh9!ZVn7J1Q5}ji&9Ar?7^2eUWnpLgFH?b9P(YRMWdVy_a zr6J_@?AnzP#`@?&M?sp@D*PEseGJ(xOU5^sV-7LzPab}WiGCSi>T8S05yQoUwP4k> zJXsO{wNJjrFKk?XrImX&?(%YA3F+$wOB08#1;q$S@a)8`zNpPwB!n>h(0~7HKvy|S ze~w}KqH~CPz2C8r5w(1QoVY>uem;uqZCzV6z8HVt2FNGYh+qfqGRjv~_FU zKSOF)*`_G`vVihYK~4*K-=^^8HACj$AM7dF2FZ;x?Gf5~pz|;8YeCAn45ufKAFFHL zG^J*XGn;g_b3for^HOe-wltO0e1H^Rv@fslqLTs5O&Z+;6*!Tsy_h{e(U%WvX%MFm z9q{U}s00pc$}v{GzV-k4%ojUFaHpY+6@1TmAwy@9VKJfvz8@(6BDN>f7D#hVu+T0T zfDgAOye~=O=F9T8C0FqL3wZSW90cjxRt}SUPN~QB&dZn-x(PU99k|p}>5ReCwl^Z-}d+$cr;o}itR$PO0p z;X$-g_$jhDzNLA3Wg>d&$Irc4%Qg}D-B)QyzWi#u9KWs$nCSgw@pAZmuUJQhLmbx` zzH+Lbi35BMPy1$ZYJVyFZZ|X6?w*nO+7_?c6i#K=-(jeM6dKGbNfu%&B=lGKDdgizsSB9rO*}sU@T+ol{m9T|qp#6MYj?`QRs} z#bY8TYopINJEF%&w3hpr+8`uqo~QL)!-mz$x?AWr67u&{JAQvrThJAUQKeQAWr&#> zRP-lXYWeexj2f zj|s4nHgN#ujeyt9XK>mjQ-3#{GVGd5sJ1rb_Aih^|4!%2hJ1FXcdk+v7*g_h%4436hXH z1A`U++mgk0Z%0X5L*C6cH++g;E@bly?mkZj1Kk;{#*g+^Zm%Q{)Ag1az=0@3&w3o!`mK0p1HJ^bOD&R=K`S63#`62{?VztT;|z7J8` z;dl4EAq=wYRy<14Ztn<}YMo*)$h6-`Ye_leqgQ^yyK# zh?Pb-##>`Z{cYGVgA7XiJ#T(;9=GS-SrD=oG{kr{l>FtL5f!klIj^PsbME1QmA7Lu z12D06@x(qOwMu68Ux+q5iWZ;ftjjf?*3dcwJ$_*cy4Hgu>bp9Uw%Gft^(i=|#OU5( zovHonc1AIA?!espG&%fVO544MGaT{F-{rkrY!j=EW3NDA%=xINeM1XMcFf3rhA=fB zEH~o$j;`GxDItbdrB!NT0gs8*lXeTc+S=`PBQrx zSY`7$N9sSVEPLUz8@<0gbHxb?!|S{@^aupqE&7u)`Z;Bum29nYjwGVT3cQLLK}uUS z;o=W#R8B`)g%J{jzYqks6lihAQ)6 zd3B_r@BSkZUG5MJNkYHdsfEt_3lOONbkNNwSCBXQ1rZf8u1(<*Q5WR*)0@7>I0!cU zw(?6o+Np8mT+kz`4#MswNl|0}RJy`!=QUQ!;u41YhEHCu)#9}b{=J!rAn_(nuSLqv zr_T;)9p|(iG)C5eTM94S@TYOe^Es~WSGeom!Z2>2Dq~ubciUR65kJi+{=Qgh^I6ls ziMvN(=`HSzMd#LY2~^gs*r$q=%3GZ?46>Hn>Nz$sS0=BJL1Tsq*(>E`RkwZDU`k2t zG1n`h+R0yNC@6&{W(v>!O~34mix1;?{iwPfU!aZ7pUeJhNz!&K%|2W}^#j!}M-lKv zJ7)*ij3B38ke!PBr^GS)@EFdopHHLBv1}1j#7$&P=db==#|HR3s-_JVIt!P$xL^sm zKZ`Mx(Ujz7^u4v+N8MlTw}sy3_D%}01cWM{koIPU`2Wc^v6?&eTYl!PSB7wwQXh*b zpL`tSo@us~F!+3vO;r`)%Mst*8n}@1r3iw9L<&5<_n6vd(!unvMvcL#b#wNkxirKF zgcavZ5s^0?Rb1rUe8xzUR{PxQNpJKFZvuO6K|edT7d|rbj%hc2O0@%w`-{mUK6{sn zQj@`pZQ|dAM>XM1VEN0PAG_31@1pn!!ACFd(~?zA@++E2>^aNpU9_c?LU(LD+b?H` z6aHhIj%`xKrB<)BaMynup?`>= z&l62dY#b!gg^S~MGVy3Ei0moJl}wZv+B-TJgTj1fOaI0trcqV#qj3i0Y?#x7uIOJQ zy)Lj~!G=?#p!84K>0=MRwyBpA^#MY(MrnuD;^Z#f+&1oA3dAV1BQl!tN$S%dQJ>UO z^mmZIKXyFd-PLQU={i0aDwjJCxXtbKYm?rFCud~#>>070;{V@TfGN(|+xnXopHQBb z>!|%>e5(C8fzfK>j9ZMR+rVN`15-7)79rz}yH>>cLeVIBP6wD)7)D~6=dV^foTS(l ziB5r>pll&diw|P3qnX*cw_FulmFbm+jLbeH<4jsAaZ=8yBD-=*b?5fZruT8=*uy-#%+EifD_ouPvmzbI#Q_BNjNgD+p16i;Po ztDa9Dwvb*1s^GpT?^yYvSGgQ=UA5LOcSpu)T)=m$#9Rd zzxEBzK+>m&E$4ffb`_i?u#7kOjnP5jY4I!Uk(no3k05l+0{K(fc*rm?}9Iu{@PMde$Z9_`zv znI&I6cVgUhky*%Lw1$l4BdQFkcB*!oIFbG#ajYpC4>dPWHDNtQoNo}n*7lxD)Y0g! zMI3SvGdv$DK68DP3nJWQ@c-FI4ds2EueilDE-n_t$+GQ)LU*!DuP3rh@ zO;<7^M{#CF>0f;js=24-q2i4-C2x>aA_#o5bw5)t$!cXDDbi*<2M70QyEMt%dX2C8 zQ^}96*vR{jeUEZZe&`8@brzpX6zoK1b8PBoI2dKwiN#t&hJ!g5zh5o9@D1FkSOMYQ zM3a5At4kHA78PqWlZ<-CF(evXTOsc&n{ylR17BAgR@UgzY1-wzv~CeTXaPFJE&RH! z`gfi@-Ia>vm@RWPew^uCv2w`d`Qd1^2>IIH5_!mtz_Hx+@*1RcmzS|CSII67Iv|Bp zF|cx#n)^7wurJSr{bxRd^Fq6Lut-mzczX@&7l16 zN%(){9qv#5msn5`02wcBMq$2%4P z82%gesn-q;4&^g;stX$}mi;k&yzuh1Nu4tty`hPQSIy`7t?;(*Qr-5-9H7@{#r7JE zn>4q(Fr_UqboU)N{tA&yDc6yr1X1wCF9Z9wK3Wk?y5by^)6}f5uWxs5@QJ^3n%+OJ zZ)oUnYifbel9hb$^x;B;LwJ+JoU5OYUeM7%uaZ&Zr4j{AY1#E>MJZ~bH7RS1ri6W! zX6T>RG=eGuH*Q0bH(ez%rNa=o>Tb9;=hOPe#!iz8(tS_%opbMI&tu%{+q({=R1akZ zLwa7B>I6DVJQW1lUC*LjNt#>VLikYJc~7ASJ2=Em`|4x(*rVRsy$FL4+ap<<&q6j*iqXt?H1=gBijnRbS9vN?lvdTo`{ljUnL2UN z>ZPw|v^Oq7tDxUx)s9!yQQgySYG_o(($Z49Y>K`AV?AoQ9JzaNb!wXs$AAUPPC8Z* zQ8-rHMQ6#aK_!Ld5o=~BJ<0CT;!lpMNWQ(5E^vgkhB)uKl(9=ZQr!2+}+&5j*pM!zyHd}pq*P-kkaOa@**5sq7C^p z5sLN$F?fph=#>Nwrru-G6StQOl-Ezl_5`Lx=QRBnlFv$Nv`apVfIw~Iw;D?=h||;8 z4vvnAwsB8Phm2!mJ?xZ6mE_bTS_QPY1Fc}uYznU5-S(=8A!~0qGgNz4&`C^fB z_nDmiWSW{R-5*m}QuNs9fxj-=`6UQK?5a_|6O&E~%jCA}b6Csy zkL~nK8M1Q0!a{2&5jt(m>}|sCsGtqbu!5xp-*f$&4#pdd*0Y+jL9ac!o9(u{S9dEs zcbNX??*8s*Az);me`!`S^skYj(db^drkzhV*`!{>DitE$YECD*zh4P3A7wuaWG$zC z_p_|EptSHV3|DPR=C>9tAeT&ZOjfv~Bsp+h;945Qt=qKYbZ0%lKGj|?l z%k~LUle#p!Xqk5adwXYm9oFeTvQxe6hOi&zm^t}e_8Y<(?++P)p2c_k;tS#3YW`Om zKIct~J!*bOFK>yEhBn zOxfZS$)PtF>%wi3pqnmGw^r-X6YD?c@V1-&wx#REdnv!Os%)02m4Yadz0tov%=)APnCWR9h?{rqNs|_Xs;j6AHiPiS(u&1>@>a+6e}5AHdi4WZ=mJ#>x>&;U zxkfI+oAz79eaqdu|2++#eeXrnOZGjaK3O2-NCI|0VUv8Iq#Cz-?!DtCo+2-Er4N`= z*_0wuQxot+{P=b>rthjBKPS#pIK!Fo<+BHDesN#!mSWb^{7dBx4*=F{?T|3e7c&%f zE!v#rdfenlEok_VsGU$ofbaEL5cg=*@0{A^}bgJQ;zEY`1ys5Qo3wZ7BPQiN~B^;9j_ zb`@z1#K%>H?%h?Si~Jl(-f;01$DY7QFEO{MvQAmC^Yfxd5TX4fS6lyApqi(E9q-H;>g&hY zC9gRH)3d6;UI$XT4~^59I#mc)ILa@zr6UdxIXk@rtsZ^dFrFSdx z_+3=h`^s=TE{CC%{xz#sD+ke;m%VllT~R);gKvN<-+{l?)U<=~TaxtnK`EvZPslez z>K9eUjjCn{?Gp_c|6(LI=LmlFN9Ffk7UP2TEiLq;_0{JudXE20Ws$WduE(DBn#5;G_JFF{D2`hSQrX`PA3l+H zgb4ZYaC0BTIQn2MUciN+-V8LZ`X~hGj_+=n@s6p%4Ga$K@9#H`W&TnguLDMSdzW<{~cNXu@3LM{Qjso)u9pg^@qwSDxw zgYa`94s9PlzafH=Ib0bl!X9PvGtF68GTrK~+rNS5E;h}_KH*gvH(RVv4FUgQrkIPv z88E46|D{z1_4D4ZK<;YeoUaf5i=tlIakqYPyKWg@6X24X&oJ88*47jf$TJnc(x84B z-oE_jZzX|cl>ZSE?zY?D?rqoe;&ou)u|-Emhxku!zXon5>wtvg+qB0LU8;zJay(%o z6ZTTH%O132ae*>+1ydqCvsHl&cez6Btqi>s-&JD|%K=z3=Oz|#NB z@&e(1BVT(z_fDR$SfUQUy@kF{l>6fc+ZF@V*49f;2Te@?2{2AZ5?*tts!uy|U@#HN zYH5Z7lRbo0;k;+9di2kX5iq3xbiqWi{y+4bWA~0NTB{S}XcwxbCUu&pWWx&gfhG{# z=#zLe^!(i1($!V^{0NcjA`treQ+db@^h!Q^Y?sviyW!P402=UJauW(Fx_JO`+@TKN z9xy~C5^0wBpuOEtkbxkm$E6Ois>Wa2G{9i-Gr`;MP|?W30AsuB_qL0IM1X&i+?db{ z3T4({X&`L_OCK58v`{U&NWIZFckm@(@-?XOHZ8ch0XOF9We7?2p)b7`o z{X1JkSIKMU?aCKL)$WYlHy_@IokC1UlWUWOr>w<>_8i+7T7onM26gYsL55fN~_+8sK9}kIlIrbJN`B-gk zTUIZVZ;@J;x;N1aWvGn72M3AnZWr%;%l#ix6cKuAy!3yA z$+eTnQq`~&tf->=1PA%a<2Wd_SV(UfY?fRS3RfA%0$czd*_^zTV4nn09kvwhE~|DE8-xqz){z`;xypl3|Nr^AU-xyT)#49{anBa{wnBl*x<5IRV~s zR^}t}#QEi*;<(^W7H?|3%Ad=hxq9sV&L_^29XhX$5|Wgu*ubj>wM!>24<8FN99=*B zh*`2))OLS&eX*t0=2e6pg1ElR`+xEFMd|;Kg2DeC_kBlANoD$h0!Md-O5kRp*KtMv=mI4J<4Cueg@05EtNeVwAKM9dfSNi!4(sk!&qXgcH> zFwK7cG(p};$g{`{+;OiN4apJQ?I^b~y=w@Dhm8MPiJGxttAd-i#HL2DpI_9ZGX3J2krvNnVw%x;;LU&`O_ZR>(kQ)`7gE=+MKxa@@@V6>Iv*oLH0<|@LRv(GoGY|0@DT|;6AcFU0p)~n`b-! zXU#xx3vOkeo!xa)T-<6@?c2<{^~+8IQ1j0D^_$5lSIH}tB{R}w;7i`7#?l729%U!s zUV$k5A7KPmS65fx+RD(EUf5BT?blb^qQ{*mI&UWg&{D;nCs4U%5f;D1ogeYU4CJtz zl~t^wY>aRI&Teu88I!YS#9#S-{EVvE2ly4hdyeL`&q%qHjsmxZ*@OdP%M4n5L^pIR zCrlU$ES<&39v~@K@YAabt*8Cavku6Vni}Rys$eU(SXF?EdYtXd95nrWnG)Vx7>7P} z5;1C9WV?OwMS4vztk{`B!9EUwYnk|<7{(80KBn&XB|faFwFfXnm?%dSCP2c^a`-Gp z%=yv_sb`i$e*Sz{>C&KQ0vrIV*h)4R-KeBm@OEo?8jbTby5~=JyxoUNzLmpInmuD; zo3=J_>k;|lL&Ap((Y5}ZY`=b**wc@hAErfwiTVq#2lkjGOb54*W-VC-+9GwtPZGCA zk4*sc`uWq({7i3;ny#%o{(@x5oO`qCfI)Ex?8co8*{;^(R!>>u-G`^Wc?Us7Wh)&< za5y)y6V&<_sMVh``-|`O1D3UE4As=rZ)6BEt6*MS@q&Goq9e9KrhEqvg*~5t3z0ht z)J>hR3H?Xbg6AC&M`~97N@D!gQ>GHh^zyffJEEn-u$}a68S+JS-Bq;n8LT@Wx=S|v zYNij|W}5x=LkbIU$FIgs7h|`ag;>yaN@qC2svN|%0D1KF&D29W)cq#Lzm^$(?n@JF zl}Sr7bw4fqV!n5ipjRt#G9h0w3JqUc#cS_B2!A&&2na^M)#wm~&OV)o$=J5LR(59O zO3vb00(ri%@H!+{EugDh@9Yq6pNi#10@E0n6O-?f%(RqI{cF$?CAVkjDuuHT3hvNF z{6Dq$Ghi4olUR|I!l8I&rpbr7(CA0%8GrFq4cAN@p*&ruT-7|CM*zB$J5*x{d-=F5}T;)mS4VFyW!=yV+*Y67rAtc3R`je;eWzINiGU(Z1gnJUV!5%2_4FX zPXSjEjO!Iv&E{fL@@Ic_w(#gbL(&FyZQoK?eW72Rj8ERdh zeP%#%85zy;@qYbJ*mP-3_LH+OmFD%+1g9)XivUGDd~#%7;OnOPbkvVpGS#l8zLY{E z(d1-Va=EGi`2VTyj8Zh}nnT~x-rGSBpdna~KeHRD*+ZQ>Me8=j%$=Dn-|{D!g!SQD z@?(oC;3}~PG@si^r&2JXf2<~1(g`kIy}_1pML}mDZia+R!dw$zYiVDs^Ph32!hQeY z^wDA30_>3J=ts>ymt@1)AjV`w5KEmXM1)Qj$G+rAs74yIv^kS=ByV_E;Jj>+U)Vbm zwj{=v7=Z%(imYJOx|0EsgHM21V*Rcc@9f^0YI!eyI?1j@0v(PT5$K6s~c62 zV0y4GhO3+Wg^1XUYI{|qm1eV*BQ`c0rSDzANJW`_MC^JXV3cz|U_F-&Vth#EP! zZucd{G&Wm zKId2(oX0Z1r)--~Cv`76DO-78IwGGk`rjN{(X&6JD#IFm(@cDQ%aAenPOo3YC^^4_ z!<>YOTRo_+As|C=U*jUKeUu*o63qxDQ~O@qDWz14uOHWej_!IXL;XyBNb>dePNzS z_(P&8h2KR8!sl?YDb?bIXuc1s#9E?=xOK?6W1Yd^4u^L2=N#xVIKBjOSE%BgS)ATO z=dO1KqVbFc27CKQSkUt0b2>KNB34GFt0-uksG$l$6r%N8lGU@zhVF4X$8KlY_hW#2 z0cMTL1I>Z!qi?vmoH9ky>U+rc3X0Md^5<^#W{GBQKvbsT|P=1PrN6 z3{H)i)K*2`u*OPp;D=U)ub4&s`t?dEOCyDaRxRGd{y`f<19r#-%}g0IQ`R;|0FZ zpIpvU=+IrIJK1JFwLdKZ6hj^Qi4>4(+CFk?$0)K=69xQ-6^yc`D4%M*fl$<=+5S8~ zAc``ttidT$xB%Y0mrwcSM;l;Z$lcFAhk?=eptVOtV~zjh9wNCbv6R5;TLWe3rAgK~ z4VHLGis57DhHkGGRWnluL)O|y%vU*;qGvW%?n<>Z`lt)eB1h4dfq4+i8F|pkUkx%+ zkqqki#N3r>+}jkBFqqoQ9zxSgc^|&l7|T+8qHgk^2^0{tAV}z|DRpjAHX;SGdT2)i z`Rd2}f?Bl+Npl~Cj=yw?A%yIFiVi5&Iw_4wRT}ToU5=mt_+awz<~|+9q36STm2Z$p z1BHi5Gmg2^$=E8|=+fJaS60lqPmXsum{>)I$!rU^jRLErGR)y&f)dfvswV*gN@V ztgsDcCTg@Q`wZ(}m_!kMt4d(;f}y2DMI_Qn-(ggG=}5nv(JpG;UKTx4FS#jsS*Rp6Gp+t*+0*AK}|>%?ga!^`}%KL0lvy#Fc_>$yKkyHWAlgb|izxnyM| z;ZRxxuJeP?7Ng-`fOQgBMT=grt4SxV_LKix3xF9uXQ?gv!OiC4@(qW$V&5K=->$wc ztKjQIgQa)(w~z3H?4~?hJ}df$nmADZL@gIUX@!&|WXA>7p!S2lQg*7fY(+ydIJ#ioVm_tiVnWHtTX-lT%?+#<%XxN z3JA_ws(m-ra*nu+m%{07`9^$@ZA>(LgbyIfciV~Hv{|!J{olVfT?m|QpQcNKRIh&i z>FMb~uRKgFmf#%hv8kc)bmb@{`2rt5mr@rXAtiLHZ)-H7AoWBVXodQ65TER9w94 zpFAe8v>~y6q5S&luPHm*e^Gi8MSnP&Bs^lxcyIT;s)1Aw?IS4hlFQXx9YI8yiPTq6 zv{Lr{suai#2=#s|>2?gy=G;Tpq1S8y2)RRE(psWSmZ(PLjk$ zo1-qgrAy$H~E zx&{Gew$8C5v%|{_}I8*z(g>x@(*m%C1 z`kN>q3Q5%z5t$!FH{b3lyY!YlyN?#1HLF9$%(D8@$cVwiV{wvNwQ08NMa9VC7k7xw zU(zQ$MGl$`BaXOl=FUyuUX7XA>8`-*uz*D5a$JslHUKcBTV$0=CXQWCAg*_V?E#`9+Qt4u-V7au9 z!?CtUp}N1nxU_O;7~WH|Ww_>twpf;!?>Ze775a=BMy-w1tL@&tw^zC&h><+6+1F^) zKT>k8uKexHjYYbVzQFwk3akl zVV2h*Sb9&t8o@=$+4uO6qD#w0hV1Ld@(glTJyQ0%VrC9IFS^$ZQ!>=nWeHP~rCj=;!(Mb*OldL}r7D$S8V zZV}M7o~>H>il*lX%%jlntJO>ia7w!oP4f=Z*hFv8t(mho0&t@i12)>{4FS(^xL1Ip zcShW<1|uwvIZtA@$tTHKE@?PE~&GFS@u>pJ0zRF^l7JQrB_0<$OVD zHhxIP`|hS8P5I<+8ridWAwodI2J(yZs}e0hngtM|h}HnuIj#ok$q;sg)~c~w!1#as zuK9heP|Z%w2@6!f#|r^8^QkgJwphv2KvaHlpdSqu<(~woCo?@I+e_|LB_LVS`>YZLBy8=Q=2xz+yqt}8k^-sOW)z(h1qKQRcf&)>?3`;S=ay(< zGBaprm$1cVe8Av@jbHT!J}N7}MB15IN6xVvUCVi-xJnhNc zj9;~)!m-L#s(609IHkICY{1`y0i3trWq#BH+JUMWKQn~jf3sd&$(+3*Srz)L8n~Xdef&xHUh?kRxM z0%C*n+{1HaYmIpE4Coam-5M54;!s6N!JU&Et)<4tc<c}%kYQ#?28Ngu zK*;miR5I+VWn4Ksd%EELxfYOSm~j#$U{%Ja6!V zI>Z_SemV3Er=TlmCz_H+J3EvN=*z^46zm2l|D{g%3vf$XILcNnv>2QKD}}Ba4lxj| z@y)bAJU-3(sVi!A+sf6xpiD(sg_&rK33Q#I#{!Z*yop$2(i#>; zz=;cFvqUfgh5SSrl6jNedns4eKaIUstH6-0RGpRm_7e{xB&78;1x>ch+zNHkvvX7s z%OZ0$p|8^^>5h3kyORQcoC3L#$9L4jd`tBrM`Zf+)b&5aP;3*6(T|Ij*7 z?I#FP*f$fQVRtvj%8JNHvLYRp?8&z-{o@x8J#h9G*8A#b!)Y+*j6}9<8AF^VNV!}&hBs7xSWnR(HPE>q+L%odn}wPeZ|i* zC|+mKzvj#={C`;c%BZNqwp}`uMv+F4l%cx@1ObsWh@p`f8l-DzL_|aZK{^zW?v_?U zV#uKxm1d-yAF}=&2E6#{iD!d zfwP}ZG1l{lK9nSa*t18(wzbGDLp$}RSI@6gC!J6{=`xe9mmh8WXHCaUft)#7Pu82X zbg%hJ5r1_zp1=X$`LWhL$N=H1Zp-_G-b=D$txZbC^S*-qeCkW{ey@27IZK8{rG6{y zovxmKYQlMOAyim_BLj<*>{zPjBVhv-&ZyKSHYicSEUIZ5Wr~$YwaXwbuB%S$G~Y3+ zqbjX6?$Ro4Eevt<#oTjTbzHnwUA5~GmrQs&#`D41z|d-lkn~r(z1$3L{L+V1vzze4 zUXjld{5TJLR$JhWM}a36cSaN{%SU9I7dgYB&72Jn)-2JsTffSZgD0cjl_IgHYAQ}c z%$Lc-`EC+b%u_B%vd+o1>5H}rXpm0idftGW3TEu6X5{?%xEc>qeg1Obp7B4d_5PgxAsO(%#6M%B8}}kv+8IC ze}}g5BmcKo0!)GvQgSH<9Puj{%Pp5<-1PV>R;Q4kv)AYtUe$;H^>tC9s-^V$zrXxM zU*IYK*P}fAp7{GVah0RaW`M4Nc8pL_>?*33k&H-Nn?FvE{AS5^6t?2(x*QShXwxX6 zt5OH*dizJbSN5(;xwXFb=#iK?#u#;ERlRIEvePq+ousjn7*LkD<1KL8Y5wa#(UV(* zWm3oUB$H<^*CtoAnxr#zs?j^G$4h&>wy>(Kbt`#Cy~(|S=F;E*9X2Iy+w^f|nIqEM9fSQG!7j37yW3pO4X>lj%R6{WO4VQc!jJ`#C4x_R9_YU2qA7!mA z!u9q0{p4MbSHPc7ZnbXC7%z1inO?1;F7S3)d?W#(8dqeBEqJ0Pv`udsswT17oV?*R zyZg+^IimBf(bSs<<2DJL2?a$`+mL~@YttlKKA>?JluW{~dwxkncAjd!U;SsI-$53L z#ADjW#gBTp_Z_rLiu1m0NNh?PyW5_mOh^z4p|W)gpEZ5^mUI>*$dSG3|MKMnrz|IP zf*f;)6j@uu5vxJ0_VT#Q`Po`F(>btG>gUP|RlsNYX9aH2C+ZuDYb3mqyql5=sa+i_ zh_1T!#cdv2Y5~Wan=@%@X_0dxcEh`z@CKLa5iHppNUTp=Z=63g%o-`|`Rg=JG44CU zdTz2TW?^$~Z?ffSXkY|a!pz~=#G3OrTnYAcc-<-K;XAj(h@=lK|M`>0pqo|zv@dpz zgbajRJ9@yi;j;&U^$VA6|8T@te7&<<8f|UBPL9sJga5`r)c`n!{r)^ zj%7$s4i=ap+Y$K<#s}7Z-@k4B5Yi6N$#4Mso6rv!XVdr-3b)BK*uFNj#M?Vj1t8f<89#8ahq z1L`Zy{BzIm%c1oiO&@nFw{&8;xznUq&&f=qMNP19*35BJT@M1+{Kjn5VwWHF_*xFX zSgXA}>wt}@!+Dw(cY)5dA#xl}5RlC(Wy3ixG~MXk>Of6;&L?2vFVFgHally`6ZlvD z1q222ofDXwo)zlpR)rpP*T0MoYDR4J2t9a2;a!AaR_?i-+ZdVXU8V8BxecouX{grcecGW{RY%`MnKjso1-!mg?{`!(D~gY!feieSI<4 zQG@J_+FzHg>Gbko z%M5|mLi_GU0haO1?AuP(?g+l6J)?d3!e-s9wZjvRg+CO@J525H>W*19fe^?nlr_G3 z!L?}1u0LBIY1=TDxtBy0vOad4P`UafIlpuYvnme@ytV&e$WAOC9hTi~!N(D|W%*<1 zlY(v7mIRZpMacVi_{u!i9=sYf_oE?93~iF@uV1Ucp!k}))u-VFzN^<^g8j~^m%(gF z*@7%l&PwiJHfTs{cz03 z=1Z;dLoFPY({-rQbO03aUYZL}j^)P5$6xbzjR&{<PFutd|QlGu0U_b_tDY+9hx=#h7sFy0=;>X%au-U*F-YKtU{C)Az z${7-R!ZlpMsWBX>l~$l#sTUu%we+GY2foQgCEIP_Zqa>1nw5eWRxy?J=Uq;^xf@2S zK}O4)&A2mqTsvgPOLo-KLSNs!G7~q<5;HFxx!w+J+IK_|4`^?_?7YPentqhJvrvt1 zBxO|ryJuA~P9C|^9Zd;$>0Nr_(~|kur=@^A2FHx0pMBw;MgsS5OL4~jg@w#-fhWV* zZO6KV=xAcyGn>v|DN232s81ycET`v0z0><*L zcR_JC8v3{*-_W_i7=5CW2vDqc*a?_6U-jQjDIVZ^Lyq<>XCOia5Z^kCEY~;%EF-p!C z*cHL&8$6rRH)q^saXZQ1;f`F+_}hry@L2=0FocXKLX9pqs6GlZ<0><+`rX8Bz2N=5 z@@L_l9;NNI2We$Ov)&^&n&XK)9sfv~c~cZ(+M=)&3-qX?Qs{6MdMRbIQ z;#*`FyGtELsm>OC_;R(CTbM{&lRb6xc0gH~(v`hxB8;jRHkpJn8@HV2 z%e%9WF2`zZWL8qI>_#8G_L+vyo;VPSm95ps{ZMGg(H>|R4*FsX3xJ1mp^bt+iEGQneVEZfK1Dx@63AY_B0$E^iv;bTl`5uBx?kF~UpQP#iV-XY_Tsyc|hQ zZ3GbOuKW^7o-pqo*e}Kh%DzJaQ59}>x3H|Ahu-hAJT*51PmgUt4L|(@dDZ9or*gee z7l+B(frKm5l?T4Ar?uczNRT`JtcUS?$hJARlsLUyK~ zP*h{)pp<~XP*SOX0;7+0;-v28TJSd<@QYVdQlyPw0dwa@3v^#PIh) z3~?tABv%%_x^7LS;3cw`E{w62K9uGD%##=c=1Nm@GtCEGtV}kt6;YF+$>Br86d?h< zNvBv;{Fs%MRelNiIISjupmbSM>Nie1{GFoas!2e-M94y~pL{Z8;2WaD9K_o)>J0TK zFL?H6gzKv7QpIqqGh}W6fMm^^trOgpn`MzwbDps7Xc!rcPC03G8Y|!zg|Y=4tnyjk zw323ioNTN86s)`NF&L+`k(1rsks0XA-UwuAXn61dg*5A#iU0dLS=?MqeKYWQYWsEGG8Au(-nbxOwiD1+#)v@DVL{Ra=kgxv?X{c|HJolu8Y`o-P_<_gP5N+;@2bR zGU@P?`jm%v+9rA$u;(%Jb*yAWhjGG~DAEzVzOdM~UyZiS`sli;B{e}S*e9gKp6oy}%RL~9`}rK~c_ z2+q7jMi^`rVQ+MZAJCl^nE(@Dv+ry0mu61$!KnUx?{+j5S+F7Wdy4(Kq&@;-&a~fT zg0z7?cNVfr6lO;n>Hk|NtFM;J??g$}+ztrib?4xRt{(&oAY?kO! zgr(z+Nu`OJ3KYK{Rk5Ko}u8AJiPYU0|Zu3c{ zF^2)m8$oZ5(q@KSs8=R~0?(xx(S*edbc3UClXX>3XxcLbN@a@RYV4fRY|~`v`pCD8 zaWj|k-q(;nsQIc*F&MJ;7iy92%v9=q*@@E>sSkCr`pP!kBvT8eZg0L$iQF_{`^$Iq zz4Y>-$yD16b6MJ3j_l3r%4U~lI^A{VSB|GJ>+j!`?MnhD@_U@;q#jq9>z*S~54_VdLW)F~wov*i;|+5U~eqb}msdE2vY+sU?(IEYQt~DhpMcU5xib`?;yFFLLQbO5`$ZQwP^P-E=@gV);afFxIVc3zaclO-1Pi7;}I_@c%sbdSxmh$GUfrzaTCblQX*@n%$t~9I5 z_>nww|V3yVDft^r=;zu&MeY7R}c~DC17W$ z6jFO=f70|-aqw^wdWC<|w2e;e|BeY1P3^N0%{@x8%5K78X*$f`_<8AyPV1fBahwT6 zTqX_LRe1>x*x`~3n?-HpATIbSqNps!j;XN2DLJvhtO0h0Ouf}x0$49VnY?5_ifgw9 zS3?p33$7Q}-hhQ!gl@e2TiP*TiUQ1`Xevt~uh1D=yqcn>~&KLwSAfm{Y8Cng8qZd9mNh4e`C!0gDjET4zU> zo!X7M-09au!z}CSdGKmK>#u%$+!=Ixcdw<^;cRi%{=4;rn;FI zW5dv;VTj$vqF{$qSz9}S`M;Dd>oe=Yd0A(Y*Y=T;&xJZRyz(fJZFq}#ObxdqK{|U* zl9|GRjh$HH^~2BQ7_lDu8^%UXKWQ}P_ZoY$yu@_5x9XGkur{(!dpT>k%`YC?JnAni{<&m9Rr(7(jfG-;X@=@E)hB(?lx*L8T9FzFBcU&n zZT|rofK~Ditk#^GOn-KFtJEwm?R}CZ?^&w4rTPH5?=Jm?0)ObFRE%P#KO?SW@+Xs~ zzW)AFyyDMz#jEMJRy8wvFx)j58=^xY2;#_v|0@vX_R3#D5pUKgV3=mvc;(ZHRP)~L8e-KMe%(;@C^5v5p{La{(qR|Y|AZV zZbZEg6;U(E>Z1O?S%4|Ro>5hU4x&*H`*!rREGL;b*e@Q=3VO8W`18d!1pmR=MJWPI zMez9`>?(d>QZbc892O#+btC#i)|y?7!(o-4<=ohogN zRSJ7y(W@2roj2nf%QICSQs|(2=#XnfccE`f=D+RXZFlZhq#rCfNjF=EXU4Sw-YmCj zDYNiN?EV*B{PlPQ@=pY~dfXqixoMjk8>N@rfWj0V*!SS44aZ@~MbG1D$}?GW+1+tM zV_ow8)c39v^%bGF2g8;u8UV@D-Jv>T{`TGT1lw8^Z4yl5B>3pUHuY1Wb0tW2Sb+UkCpN;tVeI@qa~}xa)RcJRNV<}9 zB5S@w6|#kL-H0+YN*_GA^;G}k8r!3UWymSn7l+5R#@S4}w)Vmb{rj56UN163Sa=(P zT$8uSOrp;I>~Vz75sz;PD2zOoCA#*yOk9s1YKf;@@{@m@wMKqvAK(FU7VE*cRoQ{k zw`LJf*v3ZJ=ew5Q+v_DZZDWK#!dCNRHi2H;y+Ak%C}jKlV~JKHB6SEaK<9y9Z{98x zHon2>pEb}M&(?}OJgd97sgdwVUtiq8qh`kI&15HW4)uQ2W+TDuLWt^LdPiQAM5@-e zmnu@-i(24TwzVY#0kI+;RAYk4vOj$P;#PAjL=z|&QpEfh_ z<>KgO=SX1Ylz9h=V49; zb7aYHl~JwfeY76mg(DMkO@m)Wiq`vRO_2~H=Mi3W;t(_Sos_Jb=dXfnDAFJUHj?T7 zH_p6dx4aA52nBzNv*B@u8qPW;!Z2kuTL_u=5=tqL|n3izx+|$^| zi10U+gx)A`@9eCkSOimlKn}at`;-soV(WAK=Yi~?!Q$)dyMJ{V=%x*}7mKYjLTao4 zx}20GIg40Wu3w=WtaD@HM|ktU)(k|6n3yuU%dcGa34jc- zKY-LHuFYo_X@2XpZbY4@-f}Ct{@(6&TD+0Czig&`sKs|wXX)NX)q{fSU+AHsI3R76 z`(qEmw*fwYHa>^5E;Z*!*!cLy#5@&_QA{<5DO=_8dz5dx4cqU*seQVD+v~*V?1?Ju zX||$I+Eo`J;_8&yX$#Dn@@6mUBOWMXj-|IR`h%N|ASX}m3iXfiH)o~fpX ze2qu1H&ItN%^ezQqH+Xmq8r<{0=bnDE$D`zSB+KLnAeZers@a5_XZ^xH9nYnvJt$4 zb~@Dui7E&3Zg>hK{nOv5KfO3^Sh?qUsl?7!%+-B@y@YuPhIWLca8By&(r06Qe95Vj z#x6!5zkv(Iwh<_LP2U4C0hH+fXy{i`&gj?nppR$SxBM2{BR*!XSNM}l#0OIXwHT? z!4+zdC+%LWi1Y1OK?yM|stS93vw8Q2U_0f}85hDRyQ-}$pwU2Eqr@($oFBQF&~zC> zI_t+Vt6cq;52w8r>f}`8csp;KrNsNHozSKBiYstyn`it%b6;UO!enVPPqA^!Z1_XD zF9tfEcT*r*T%ieZQWQUDdx<-dZtcxB)>ilLfI}b++PL#?3WzYtJs-lCK6gRiih_mwf+T zm+f3wJY-9~`)449%8k5Vq{MA?!0KWEZ%%iYq+y|$-F1UIhZg0k@a*%D?&xa8&6zNE z#dd7P+~UWnY@I^$Z&cW6JGT0bIw5kWD+DUPVhBAoi~$lQT}DwkbiUl$0gLG4$;C~> zGZXP&zG_2Gr?$&4tNg7l2!OZ*PfE&Kdl4>Bf5Y?nRR05jO@|hkY=>rUY}<&c?~5&= z+`{@Z3z(M9=L+o{P_S7zsmRoTDm&jjk&Nu=oK@a3L$H)8JZxdVVBB9B+?31Ic{){h z3(%)gk2c2)9Ug`_HCEcbYAv9X+f*54P+H0-gEEHHAvT3>&(<29Wz zsuNJAEPR}UMPSmhT9%u!Y?A^1;Z0r+!cCG1fHe3)4cU0V%^w9%(bR8^m7OxR!%yzu zi+zbSrVySglA|Zn`rNrS5M^uW2+zWrNxE%8ZXOBjYv3xiPy{sss}>;mDPTj{%4P<% z7h#O+=UhDB?aRBNqT;mg)y4;)h27|!!@|E{xBqB$)qup~f+yxL_~tvQ5uHi};~Na| zb;E3J$n#(qo-R#kWmRWb!AHLOKK{T@w+#~uxHgx=}b{FTSH1zX@C92I(gLVIn+<)=F%-#+9qRQ+ zZt?WaUfK7vtTO6bS;M8YJUj2^@qpoc`$adAJ{*{QzdU1xO|713>8hz#6vZAsb zUNaf>w2OIpu*gm1MUSvuO)6;Pqz1x(OXOGo>{M@WE{^QXA!kqE4uFL6up6O$Ue|>( ztnF`VZYY&7J(>MKS?FnUK7*I#!}PT#VBV^&-%+(goX z2>0iAUJMRap(HGK-gT}}v)h6@mlpb-lN4bG)JP%*`|1)rHyO_v>9UTZl~1Hwt>!A) zy4&=hXrj-I!$-|jVtZfFSeuVqx$udhe6hy^>zdkSFB^5 zW4No}ufEa1`Wfc{LUcPpu2^|{3MZ+4br}JHQ}*5H`Q=xVz16R7kMuB%kOq;l&;Cu2 z0h%yao&43FB-{S;s@>3SN9PM$KH`sX@oypp2A=)@PLd5*z#%Tb|T3C6@OilDh{6q+{Lw`S8KF#Bq!a)fi>gjR8KChvWA$W@cbU+V9pUSUviqzr3(!Mk#Q z!PCg??y(TaTJl^9wsga5vuxaD=&L6` z)ey8>k$T8lGFJ0U%LEQ}=<@c>)KQXW+`D8r757>Y*Iqe4pY<&0@#moEvyUQXc6j+2 zFK$>Sk7m7?+|*;J9sNHQjsdX>wy2A%lXkbOtL>JZWzcgfqHrMi;`GTC`WhRu=nryZ z)#erd2%C~E$LIvw z=(0F=rWpWBjeA!i0t9rLawR#4pAA>6FQSMd$OK7Q-+a`CGmb1NmOWrHkr)4uUj(;> z{S0U=5F%|}Qp3YLkb9lco4sPDwQg6>xH;5`u#0z+B%K(cSezrmEZ2`%LiU_uxiE6_cT#P=Wk!F zh(&6bZIDzy+YvBNjx<%p!<#DsX#t1Y;`@(@-<#yz2(op}`*Pd?7r%1-(g7$~Kbiol0vN&Tw<8R+^-L#YUcS&htdnnqelO;C{Af91 z$W+CzN1#`-7k-!z&95EUi6j zGGPZl9FsQqeIQ0$B0WnlpN(suY?;^4HFNjN4xm0hJ!L|`xU`fFUqtu(G54n{J}|$f z>iMzkrYWK<#4y>`Q#Gz{tt6QKvNFxRk)l{rBW5Hm&xZ*!XDsAP>5h0hMMIX0X&x8< z2x2$|YGF$Fe?g z`U#x>q)F50cbF3x3$!FyswM5JDXgaJXZ!k&x0%YN946IRsMaswk-5tE zDD7`cV*f+1@fj8qOtn|-ld>rWC&jZV1|U@8J+lWKwWquV4$d-AL_PW*WM=EV3Ab~d zj^@R1WqQitsql0k)NWRl(B&wOwHvJP{6@Dnb~_s?Aa&T)BU}c)uE*%b1D^D#gTGFd`lc8Nug^1LJ0Me@!(SOL{3ZxiV2iC-FGI9L&(9 zbD3s!S9?q9=kox(wwgb~4uiThAR=#=u~5Rg9a+WB81A#%nYH!@;cnCCu2o;Afvk_W z_evS&Kk=#UK}qVfS_4;x$EPfx%A@w*n%Od!@A_Jqb;~lweXEKgDciVwT3P-OWt*fN z1T?C-QhtP4I^h(?ae?bgG}x4WBI{hp7xGJj!TSMD901bQ)X7|f8#3svLmKD{chqwV zPVWr#ecPT<7+87A%EqSPAN#UJ-14Jn)iF+O=b`)*l+-N6>4-c%>MYLGth7wrn9W29 z>po%^H#4Sd!N`7{EVyO!F^lH6ljYfyT8rDZgNOcM*~Re?)KcXzyA9jicyY1)8TD35 zr62Fb@L=1}!Mq8rz<^4#XS%@Wjl6QF{(}oGgUH9OBEeA!42-g`EX~%yp4%$giDPdb zU&wm{h`vLM4}yIJ+U0BaEDos^JB^UCXk;q3`uN5_+y|%as8^92hSY3<0zrX~rPg1!PX?-;hj;h- zG|OLkIcQo;9ybdx^B$FHoet`1gNbKSi-LxvQPt@_DJzKPF@Uu+!7 zy}?p1$sDgPhHF)4+<$r5dXf%u%L6Obbs@1bIVizrp=HZN3L(;wFg!fwvhx#^7)aAB z`!62aP9CectL?nxJ$op(UG@-PSVF+QqN1Yc*+x@ml0qFvF3X z1Hwe#$tXJ%goLHB6T%JjGB=k^+J)YPGune;g~HUGm`rSU`9CP*8Jc?4&0ZEC=h;V) zCHY9XN8lzwG(q|z{$RwOoWVUxq^*)AdEY_C{hQKqgZ{I<(|)9tO;K+@>nXZC&d_Pw zkZl`**=r8su~CeE{pgkFq+R{XGi$BZO?pARmX=0MR*uQQtl_;!ULt`P)7AE8_lCVn zL3H%9*L*!vQd0ZJTP6UCOG1NAl`{Xhw>g@hF~-OzlTpi9#Om!oFu7)&^@kHmsXCht z6uT8p-Nfba=_y0hlUWtC+rd@|A5puHh~}0%fpPTDkPASF$!d*Hq$7jdQ^0j#amqcI zSFNy>bzjGFK-p@;*OP}W_a2xL->Jh*We&e8?zP{mObM0n-Q5t}rxG>oF1Dh)$J!ot zPkT->2RF7yrQft1>c~|ma>cVR^F#^1pJSZ~m%{)pG9U`5GSsP}__1U<`J@1GM3@$L zqFpQ42F`+XoN!ZYHSo_yV!hjCzY>`}*%<&76M#sGn0*|Yhqd>lk)FWbbWV_X*ZUci zy<3jKr*OzWmw?1mRZP(1_n;4_7qr~~FTAfwmz{G!U=cs?wam&wK<-FqD(y@jy5B}Q zg8G-4ANOAxpYqZUOm}xgY9t_)X-zN40_MM36ytv(d0T0ml{RJafd1RVTt!bOrxr^J z{$wu!j-j&&c`!8phn!?CZ?o@6O5*XT|Kn`hPbI*4k2<1VsPX0mXVum&}M7v4h>+yNZ{Gi97=! zkerKA+MjZ1LXPIqgs@G%YFdBlGTx4ln&y z$>e8>%S_f+9v^f)ddX$GLyFGWmOmAgluMeDpn^ULM#3Fo4hlD8M$_QRZg5f(Gyekb zcOZau$zjfmi`ywcKEcosJ_JaMSqPv9O{QsZbe`?h39B(vJ!R~V@HXlFc@n}87LSQU zF9*lsX9l={MpRs!S6hk&Hf$&3(cqOelq`e&do@vnu28TDgF$kB(8cMfiQzZrUUM(^ zMCTkPSexIm7C(aq_PPoUA`C+H2KuVBRJ(E*n5*2)ry!G%id+-N{k^@d^Y5y(k_52K zdD5j@YaCzS8C8o&w)pCVPS!QSC>r45dD*L3z>=S&uAj5*%5m3FX--uBp?_`m$GN-R znJdr8BYTg7Q=!p|cB}@1u35piZ3~f<)I5e&$t8zU?PDB_gfzUu)DgNer5wj5H>FD< z5wkA6VI(d(k5VT?T9~F*bLv+YZLbV0MZWAh5t^&Wg{N}N_|7+979CK;@g(t06fRs2 zUYbM_AC(=P7*pWK39;)qnY+wX>GhlwZ0$10S>(27<6(l1Nbh#twZgr>Y7g)E;TboF zXEI(M*8YAMj%YZ_kK3|{Wu3Jg!Zu+Wpn*ke3hHPVc&98A#GcgX#?2(HL)%t%ngBbt zTCTW5haLR-f zJPd*k41YY*66jSv@E0U@V}p&?U%7bQmJLZxT${>aa|%M(G)}sfeV7|QuEda&p*}Ug zO>HG*slH*m0mgM=yPfCH-!9V&aCd&#!Olfq`T?0h}bS^x)jVbTRO+=7msT&3obE<)x z95VD66)G?hWp};ZzulPMW0ns(KkLr@=?@qt6P`QWlMk#?qpW5}gW_RE_HXPpzV!>udKyO}q( zuq`u$B|9ri!qGO|fI~OE^)$`z=YcZzBw>BCkYwX0yIj%G&h0d}NAF-)_XN<*=S1^u zDlZ!avEwJHX5J}nK?#?`V=Z&D?F2$QQU4F~<+M=!|5vVVWDHoG^km;;5vL|o5lUus zC99kzA3;*_OL6h)!I0g(^r0T6ze`J>L5}@jb&#RHDyB(6-9_nx?g3mPdp>~Wt3t0M z1Ik;VWnma|$J0t8#*{2tMI#{+r3*j{DCe2-HJb`cePgKkdUEHb)6?ck$5#L@11eaz zI#biTBvR()Fj?2dh!gum8O;0Et2JPMg7AlpsEpI~W=RF-fM^AJjbQV}_6fGe$IL|I zd%2=`s@6Y)zCC9sH6DmhCkiEPA4n?L#Q`h@DHtzVmsx|7 zkG<-u&gSQ7N2`#wq4lr2aV9|f{c$R8lZ|C6DX>^i&1EzaEDdl#H3}#Z{hH_0Q0{dH zt1r-*0g#1)*va!nox*3p4TmqK=@c%`(8sAgf0sMVvLyAkLAZAE`bGPA0O|4kX2c%1 zfz(_XevF7o-Olbjv~Jjf(Kw#8|Ekl{ayuPcfkj;Ue&rTOlrpg3__J{fC3{?US%d|L z6wOB30&@c)r2TAW=LDz?$XQIYj}7!JgmzZZVLr{!>!4UK5*ls_&FRK@?#}X?9rDDaRV$ijJMG zCOoG={mZzyOCQ=(HxtS+jWmfD7t1agvNP7L$8Iz@10$jD=%`Lzy=F!WWKX7g0T5{} z=R*QB2IOQME30L;PXgV{z&T=`Ihx_fKOKMZ7yeVZv3CsNmwlQmC&!iS;0;* zn3>hIO0(PaBK^sK^3Zj3XWx;ZG8YRC_EPW;#;T{PcOdQfi3=bXu-^jMOp~eP#f{?+ zT-OYc*@@~rh-QG@lW{XeT1g1gfU{&GaFy+J1r~2y^=CP3u!AU8rrf$@^G?4Fhem>* zSCr&XF9^54lhQbbNR=Ht)Sf@LB$c2B5HbG<}g|a4swN!D);2 zf2RhjOTK>|>a@HI0(Ix)+==}qn=f-^zioeOLA`Ook~!hYJ{o^+S2L4J9GSB-_9Odz8P?SM6D= z+gw)Oq8dULKnaTMpkINfAc4kE!$yi&hx)w z$}2|qBYvL*nB`iF`ro_`>w}wgq{)32Qd3zUI7?QR4czun*W_Nt$46lQI!R$9qjpOWyVRrAAHa{w`KoJ4gb~MxjWJo62--v%Q=+P5p@N*-y^Fb>8&6FSCG3c zirY|De1BGoS)=3ss--4i%xb1NyL)=7+(xcN{@?{6i={fUe$dxSsA%~Td$J#`c<}%T z?VhMC&KQt?kvJ&BG?NZG0eW?|`#WM|-PtqLc-WwX1!45|*h^Ld8@-I5`85KEL@t_= zk`gEg->$%o1u@mO4>ldEy|)TMKuYzAUet|jd}DtcrF&Yr)ihK}LO9HLr~t9Wo}{SX z?!4e1;g=nEQK5TZv(M6iT-Z@!)S=n^R4|v*L4~QOK{L^SEjfYesr^E*ioDbpGLcZB zaErSRN+8Ge)2`;jKhY%{)Uu@AjSeM6ISSJQ-|;X=gjm=feZ$5{#wLufLi*ZZKMQ-Q zmy-mF9T+sW#pY*C{ZyKxy?a{Z#cb}j3||X|zI@YG#%UNU^hd13 zO-kdg_OpK$VfY_+SqGIyz>LZaCX`-9Fd}#~ls9N~L>A0%MLpMFVYv7dtMjWW!xWJy zDh~0NV2v+g<$1yLp^>!aQT?~3roA>3{g3icXz<>rY^mvGJtA5us<^3kZv5zvVT8i7Hd=K=S_p_fMicg%fT^SZ7ECPh}@?{E7{DfAzEx6 zQjYm7Z6^;YI4rxXPB-mCdm|LMsw2haPC^~|F7%e5l=AXM0KcY^d#1NWf;g@-IsfZD z#xS}k$j(rnoMr#u0$&rrMY?I*tHRf}>3=tjECFvSOE4Z@9m)McH|79z zG9Ho^NGH4KyP;F9Fd5X92GI7u%3LS8{esSBxNj#Pk>?$-0JF`tE)B*B~Wn* zhJ+SR!$&>qJtIRQ7K&()rBYD*2_iW^UOc$u|C=A55}vQApic84|1hEz z20(ze7AR&Gf6dM@#M(?@r|D*`gofb$2F*cb|Aj@xA2pZ?{wvVS5*j^Hb+jjzlN00c z5&fEOnKSn;9^Aag1voG3TP~f7uc#xDt#CuzgLx zaNJ`hh^N0a!mj_M8=&OgpJ}t+0+eXGiZ$Z)Dg2w#vZuR2d<*aaoF#`CK~*A9RFjBO zo#8Q5LScGJCfK_3W2>;UIP3*$Gu?P6a92P#7%3N!Dg0Lim-*wz3wA){SucTi4ND$1 zqD+t$0nh4DS(yOC9iWj>K*kGW6d=4qFO=;Yg0crGiRAE+k*)m~6uATh{63$1fm31s zH2R}(!kWwx;jb0$zeqrs!5kJk{=9_iimu2E?XcY9KS0BR{RZy5SvFlLw<64Z(2(r1 zT3)n*3C*6(0*bxPM}CHX^k$H)B$K6&xGQNr3)X>^nWtKi$eyty zsemjaO8!%8>iFA(zE-vyp`=D`M&90JHEjaD9BMS#Cq+%_6uBJrOIs1Y0dj z$|Ivu7<(&ZoqdH971HAd3^|@Hwj@BH>AG==@i@-Pn?~>{Q+$Hzn3pU(cI~K{>luMF zhqff=wzb82cA7atI5plhf=r>B7TxBCe zts)-Vk=?geXV=MGFy1B!fmxM#_Ze;Br>rR(qL4Rdm{6ym7O6cN#TXmNY~GGeUe-Vk z5`vHBB%2p*JZ&UWT+PMu4kV0iTki5vf7vpS4ocZrd!Kop3M%#OYI1|vkp~3}V?y(5 zqLm^}XOTx$u7)H>*9jz}AiI|z2m@9q>_Pb3^iYs<08c)`Kq%sL<4K(u#y*PpTxwy+ z?pEO}J-~T2idZ)w>528mi}%LI>tGHCWwk_+yRVw$p#1hdmK$F{V%($2na0nu+sK3W zi<9tG!4#dSQ3%qbxXplruV<7ibX*OCn3dS-LVkBu8d=liyy&^@jF{>i^mBbgT(|fd zJXHfOWMLF@4AvU}>!CFX0;(5Z{^)rmaXCSYML=>{Bj@Ef5bI++mp;JE8hDnw=Y$ zd7EIzyXDmnx&Oo3d&g59_VL5Eq>!CWW_Cu|NkUf3-efyQ_Ff^GQABoD;n+JXS=l@D zWN)%J&&Pc~zkl!N_s8R}dL_>Jp6~a%uFrdppRsPD5TR;RRk9`A=m3zxJQLY6i|fYG zOO>;xVR*mfy?wP63vnIRqY4*_nq@^P?}lE;OUCp_?PN=LU8%!W9d-f+6qG}sJk+VtK(w^~4 z!Cs-{wD3!ovzGDsha{JJ1`>o2Zx7BC&-{896gR@+Riz^S_i*|D<7~-b&Uf@`E@8ND zs9dQ)lqJ{sm(>KREaSw+$Xf09@7Y_xVJxNk#zA;$KlS>X>W?6%N~F)7>(4qc%&j2G z8+?r}gt^@X!x+eUY=n1H?$bpD?oZ|?I-;$T6d!}9c-%E*DQ2m9G;&U8-5G{p^eKX#CT`k14$Q zfv4ViIDi3ITnuj5DnCKnkDp8&RHtQ9KP*6`oY+9G)K=HkvcBO`7J0{Ny~M*YQJ-?k z#CARZ?J9TmZm|{4+?YB_{am|p z6Ct)KUp-CdzHD%J8yG0YnVN6F=X~XPST8-A^{9&j^;0=`E^4Qc5!X+V0*TO%<&3Evuu()5$OUPM!bb@*1yfq4-1jM^e*Ti1LQ`i6{+$ z(~YD0RtrHZx74t6A6}5SgjYaja)Gz`@TJF1&3(dxlQngE?=}1yq4MYPKMJy0sp+Z1 z$}jV~XD9M$g~IvS@^8;oUm2cf?H}}w|2t9!KkFaZtrsSa5cGO#sj7+>#u7EFQtO_K zQ{$q9>Gitx-8R@~6?W%8mY$%-8@#P>bx!;DwI1{;sq1(LvQ^hKl(&ZK=R4lrS+U8n z9Pbme%CVxuqLtg7liasy(%BO?3S4m+!WllFTelQ7cFh0&6rOiCiFIw((`Q?x=UUEn zQ`=P*rKOXoVP|FM*NQ#rYWsJEpU02KFp65{#dnNPmWGWFQpNf3>?pAE)eQVVMpTx# zvntFUYdp?OCrct68Zs4pw_Dg2uHCwxU|Z|V%9Tps)4NJsTG~GH-!1$Vo6)`E@81R7 z!<;MT`{LWN#Ys#I4fj<-y^vln~QHV+%z}34^;1piH_{Xu_%W!931e>;6_#e<2reYJg?NkyP5~}(5 zVr#%ImT>K+038HFkLM5BQx2n8IOP^@ZMbj(00T0N!MWDy+PQMKFxjthn@34~_ZS6v zI$ivf+kH?Wghk^cT}v2ZBii&5W)=1D!+=XKFp~PxElz)JR}s|eR;U1Tf#jfV#ZET! z4trLO({`<}9KOq(c5|(sbtTu7ztwR*h8-~W|LAR0?T@UPW&9Eqv5{r8lFl@{VZMAw zejehMd+JL6@L;(#s?L65yHc|9=*!qzTAOagj48i- zq9nP_JM`?VeHhO%&SBLz+&1o9!q@w}zkv*ul?rK=1|3!92oOtGkAj|F|FQV}@iX>K z6uE)TTB`pB`f0%ezTr~vSSjQ5u&d-a3Xyz!nYD(ufI4JxaCFo%0=LZHL1()nnttRx z<7yq=@idq33hdG1ii62sMkYazdHvH-H=H!$;W;vtqr*XgQ3&iAsTfx%!vKjKfoXAR4>RY~qZ8uSPU6xY;PS5d$uD2gLjR*kZE()^S~(xv=}^>Qlno9_%BGYcU^L8r~KI?X$z^(rO;FW zGhg?X) z6q1i~20KdGng$c-5@ClT&}$jT)o4goVigP}S+l`rb3&acC9AM;yboZN4Om*M*T_>_ zdK;C)F#lr&wPMny-Pa_}X;16Hs+dS|Ok+P7$*{O?v`K>#I*6y%D#ua?pa& zj3_$F>-7Af+n!XIW_Po~hc^he2&hk5r9;{fc6^MU?yx|^Th+8XVs`2Sb&0UQ3Pl>a z;^iRvD`DGzy5t|BvySy;*gIFc1RwO%7pZDpa=R-{hJQOsqixLZp(_|GA#2bt`o_DL z9IswjN-cz=Y;N`_KJ1fB0)TdHzoytoS6p1Y9r(9V+m&cH|LZ@loqgC=3CpPm^3IgE zs`2P^_XvyqkSPsS+g$(99M?sLCFm!g-;U4bD92>vETaji+Z;E9da{#g`}%~!SZp6z zFR`D%Cb;9XSk-#IJvZ~#Y3c$LWuN(pl-vqQSCNi&9XKD-qmnb%q) z?c&S59vcUzb_^t} z#_2^$p8mR>Am!&>$bP+JcT$Pi_@4eLi;PQJIkKx&+UDk-QOm?5pWo4{?X;>f%;pCf zVrCVD5Fb-~Drl(lx4H{;*O+axbbbi=&-P*CFUmhNW#PizXxrKE2ws37rDONUa}Rh; z?wCJeCWsAk45f`jN@2z4;@r40 z&^&RXH(H1cDX%rhKn&&M7`aZcgVErkbtmxBhd|1|)tdf&5%etdvejqQ#;otIqy3&y*-pDZ)m<~EsI+tt(Zxy;U zo55A)42bIzvFO?Bm5jJLUr73#Etm7gE1s}^B52n_7wvpb93a^+a`PJO19NkCyqjBI zc-UX);*z|y-2{5qnDxjBXPmaEfaD$%&k!LRb>#PqvsB7eDk2towHH5GmRXa-d5C>QeW+KrPi z*JzCO*SSJ4`b0yoq8Q{pl|Q)=H^}`u9B#bMM?4MU7IPbR!=-4gePV=?KUeLSy4c z(V|7&wvC8rw0)Z0L&FoSy~iUV3zQCR*StHfe=NyFj#fc{hnDTBKE21N7vD#}VYx!0 z?N~?dr6lKI!wLS&>j71p$A)%qn?k>(ioi$%OI~O>B!y`iov_tvVWG2-+q_wdDzCI5 z=d3R3L}2t;rcnJe@k{R9d$qP+yj4%iC82$4`)Id(?|B%`9(CqP5c=UEBURCI`#zrL z30{CWS5wH?3{xuc;~?ftz~FxnsGZ>3MBaQoBR(XkCQ3tDcnc{EtM)h#QyZ`L}yRv+;3JXeRyAEQjRx zD+$SelzN439y=PKmouAyb8)XKAB3qKwltZl=ok4#z>6=6xlAx`15?F?D)$u`<%5`T&E zYn-)W9BWH+=QP$%bk)WyW1IpBP?TiCS((jB&ZOVJot2#btwX$Zx%Uq5+W*J*s6P3> zpc>BtKH}tiWKiXje6_BCfeF~MyoE^7q+Em0lc(x8Ir1tjEhhD>vde})8JAm5YBM4B zRrAMd@{u*j2LBU!n;Rp43Tjv>bC8}Vy8D?<=gR7%xX#Z{h8BjrD&c0Kf9j8CRtl%-~>Tx&! zc&+?0M*C@gaNPu*w#h%CoBxDdf}N8ypK(7@ul+qsUqkm@$gX`@(z>M;F)TnaBN{M# z`SRESC2FDW-70x*t>3cxv!>VNUS$7>;~i!hUGQSbC`#7$+WU{27#oo>@k z{pIV{KKb;^H*F%#X8fw_VSes~Bc6GjWgt0tUBmMwKUIktBn{6}8uJ zQtNG1C3XMN-YyFYzdR(?t77E;XaV}<3L!Fzke8rb=M1K|gSL#+=)yrg-al4d*_aW0 zW47f{Pre4<2d?ZyLOeeC90*UC?Z&lj#a@@h;RQD3Xzzy;0;gxy>qo#(cl5hYlOOTIYj+n+xxCM%Kfr2gT8gm!Y6T>1K!M&ALc0@78RN+L_)nE_2e1xTF@{2En z85^VUnh6yP<*2u|FgvraAIIob)vHV)C&q2kdHbcN8pb9IG&4*mEH8a6bfcfICv-KG zgF)uCHai{BfHjbWf4nFUfxNzOM6d2L);86`G5Lw4N5$N?nN&^xD$r9%OU<)~UL9 zK|-^H@=Lo7KBa3V_PtI$8?i7nqt z&*MYiOV_R1xY#o=FMVWdz)JJtyVEQ5`cVK4$~=IkN1Nh5NS1ZXy+=u47VkTP)FXYRsZl0~wo%xfH*>WjAc&w*Wr zx#IYDe?l7>T-D}{{~f}*hw0E2-ZW8~GmBL;>eLmj#O z$iCL_6Fd3TmZkiN4g7Up*AyEA8IQNu2$!wev~*s4Y2m%Sp|7w1Tf@M6xKBFH6p+CC z2g6n@kTCKUlbO#_Pia1O-EpJ7Z=4@;0g`hsLeO-+@UR)z9OVCYJ#|}2zNweYp&|i-=+nFxaRIvS3xT5WM5?L zyZxI>m2nW<+73-rF7A+M0>Sx0z7W0w?{|9qY9Iqm|H)?6>{jNKQYmh|O!dOENVrk8 zgNt&!9B!z@;JWc|ZYCjmFfl|MAT@ryTMD(d_DxR-OhXfzXNo@H<=Y)5kQ?~l%w0;& z{stCEedr6RGhhAnR=gKJs6vnt3}VshG580v6t5cQJKMtfSt4g`|0KNCA8wPp;qU!q zaE}1d`a)tTMwQ&#(&tu*wbnhR*2955A56cx+@EJH>1f{& zF2p#|u51YS!v7ko&oCp!?}40Q(|!oB38cueXt8KCCM}POrlgu=6!baOQUku?xO5 z_5Rk^H!l7#WB(`VPM&Y$EGMH>Ud7i*7uTsGT(0Hb9=8}~!H#wK&{Pj zQYNB*;1)M+K;8d=!_T|8qzd}jLGVJBE2of{Y9(Hz@)S7*L`P)qKUoWU_D6gqEJSH* zke@zD;bt6Pgrp{y10Q8l%No}O8T)4 z8$?|xmjvMG&-TrMr1Fio_f%ioe~GZ(EsL@1unPGcFHi_<&bQL=3rpB8+iNe9%5Jy3 zX;*w`sM0_**pII^x<3|yv&pb4en`ONNF@`xjbn`^GJ{o=B(rJ9WqgyP=SKTSeJ=9u z&k4JoRA1WJ?kq1Z2G`$OA|}IPCJ`RtzHXWLVu4NxBZNL6grhNsq?hS>UCRtIej&W* zBj&C2_w^GEV)cFcB^B{5l!m+~KlZ<&FK9tGTDw(wM$?;7KhU3FSyb9nFZS39qd<=G zEXN+jV2k=&$#QM-22ZlYb;H!L+m$iYf2$f34R0v%`VNTqP&;Rg?k+nc3_hq6&h1&&nTc9IZGfvU;f0D zx)Lg4b;3H<_^wSC@-F~@+_L$5oQO=rFP?b4r^z*K6;TMj-o}R%PNN<7`W~UvaTd$% z;wiTB-@!%^PWhoF6RCKN;JOJqGVJ5YOJXzPmM$)N?{`K!jxD$zrL@$ZAcNL!l>1O$ zXV$!TWsTU_*wDgAmHf(-ikYWfSwf6CWp4aK-H@&%dF4e1#=&$k{$H0_ z3Qv$9=lbw7`-%-5tS53jQ<|YpjH0WaVx#eB=Be1CP8b-cDWClQ`j|(J8Q0Ua-&4+hoOvOZwNoqGl)s zQ)-|b75qDx>-Q1b#YD@sU2(-dl?N}in*^;J@+U6zNjAs-n##wyL7Jz8K0bTS&Cq);%S-?89o&A~FYxlS)GFHV)Yc(3DXuT-+i5aItDO#}K9CXi)BT+(;k zTutsH+$cqE}>Pm=udwfDpLA#>V}{VtagZyibYTj>rrIMLBvN<8Vf zr>#~ZqZ`60sw+pd-;nE$*OLGxe|5EGYn>+7a%U;Iecf#skyPeY>UeTQ%lKBOk`iCkT|C@Du=lis8R!qG$rDp)I>G$MoJDKGhANzE4 z((6-W6xPhPtu$}Taozb`*F@_P+wwc#*|!ae?byHXa@}=O)Os4DRxQKYjOWxlm+*dP z8G>s>XTW0A(IbNR2Gc>JYtScdx*Fl`Ze2Oy7pN}DgX|JX>U8(F_YO3l#MfUSHxRmO z2sF;p9=+zi>g%Qi!S}9D)oUK)>@T_+c;MGf!ADw$m)Qmpqm<*m2u(-)CJ*XB)5B`J zx!@8W86iO#@xGHvM5Kke(@;p|+v$-a+p>PI!P)b4M~WDk%`ZO;cFY_#B$`i<*ur$& zh1+IGH4jz=;;7a?5!}5I(KhQ7A;Z&Iyw<7(=jf`&Wh*<(VRAtyww}~@yT#K~*SB@U zeEw|xIpR7d^~eqqo*vAK;yKUgo^{n5PtV~OvF>nLt2vE-NZpI@-0eMI=P)T6pK#-p z(a_-(+~o1raU!ijZ>&KC^xL9#DIaM}lx}Gkmv4$j^0?jfT>N&e;3iQChm4_U#iA=h zIBR(6<+{#Z^B$w3B>!#m{Z6--`W@|RGsjm)Rc;|YtFc{R^xqsE_`e~CbND@S(^gzkI59_ zbp7Ct+U_Ubh0+@*N}5obBRxO#sYPqc3R<=MQeB&443^B0-Q>Ogev&3+KV| zxV`uKHy(TU0&*Twl-FV>?L!(F)7L$%W6?MgE@JI zMQzK0dMH!90+@Ze@~HMdS*_a#BR>=ql={$Fk(Ow8gA(%e;`DH9!QgV=z!KFP)MWUu z(3N6k^T(rP+q%&!iwRIISIG&zHFiI3o2T0Wzae6 ze7K$w@J$C>b7+0TJA6;uH8(TUwB`x}p;p|q7vzfM>4{l=Qb6;r-o@X3vzQCV<*WJ8 zjt3?bpr~HTIl^ptelAgGyeoAvCpF)2dD>8S0HIWcmZJd^qSQ<-$BaXM1Lk_TjofYH zpzVcRwJoZ9A9_b$Sc2m2H*dq)8yC|CYr|?op%I3{f^j{bf{+^>_5L=x&ezlQH8ilv zvsBA$I!ctL>pa;SPN%jW&kxp|A5=CVE=G1uoCCmnyVf&m=FMS0l{JE2q|YN&nIy|3 zuK8#90~{m2l(3$7vSX)j@AgV{qAm{ZZPGKdwHt{)Ajubhf69wiJ?+BHzSz&!QL>?}EkQ71$F3FFU*bc) zI#r$J?+0BISMJUGhbXYdy`pf#1A*9;T<*xFb}E5jYSGY6k;xu?igGuY>otL2bgWRO z+?)*|4yK1}xe&c>!tWyrD;<-lUGW@^M{~#86%hJ-408H;*q`-LwNsnx+RyVFoUt=( z3H8dqnZ8p)-Dej2{FTJ3Wh3m$&WrX=#GMh#S8BwCw!q&drng@>zLX30m)&yMb zw1}7=*A}e^vBrkNgVI}=#t%^%kZL1{CMOc>?Z$&Poqwu2_zEUpaSu2<@4$I+koZPo zl=cD4Wni^0#{|(r-3eXloB=0a<(Q3yCk)?XHp@aAHR16KWt-H|{R$_|Gyjxu(YQny zn95j>9Wg~oIWMg{Sf|X6yYn4$odw8`oKDS`zr60Y7>tpDn1;cow9+c`_Pa(fS1j!8 z#Ehr`*)Ws?K@3z4^V@FXwUWu*9}4hmserJR2bqVrR+fbQRDJNm;ZLDSO%hJ_2m#|y z8fAN8hj(ptV-dqQMmOS+CzC}z)PtUon^V^c>3~+vd<`GoUA|C~e{vXf@S(>{05TcA zfN12(!(9EE^*2*vh#O3{QqSgNlc4h?(;*9PG;QRg`1sOU7B{Wun3DI`etU?Mcm)VI}{fHu)r(Pq& zbdRKXHZsCLZkqhpYg_5UUjDW7+~2j@+_G|_zl!8(X;CKC-rTI)o+7%|$+N_4ASl^4 z;FVJ0JFKAY#{PqHBh&7PJ8dI)#*EjH+S&tUp5k-wJPkIze_URgA2k{LnbQ)l`=&$e zYP@im_F(yuy4i>II6(rrqvPZr2lL8c2O$J zsrD{(z<=_1efLu5?z5pt!@kJxk~r$<0qSau*y2Jt&!1Yzgg)J{GHj4!^Z<5g^o0Bg2^f? z>+4-sr?ayGJv}}77hXsI(z6^hcokTX%h86A8j-xF$!RJ6pqbM8T8_bsCyD;K-urJc zpFWK-h$)7q`oU|<1M46pN8B_e85eQ-+P^HDM4Q3eDjXlyM`qR^&soGO(hFr2lD-!< z{TMM{;KjeATiG5p@GZaY^X}bMK2aa6p2m710`9qe?PPm_#jPJqZ$sc@pcAI#d>Ojr ztiLrAu_aC~WbUXKYH@!55W~r5%zP(u7su`LBlBC~sI&F$m+uMxNh+A%Il6?&h{;1Y zPwIR{bq{0%9ab`&KdP##++1>SgEIuT9#6fkRHUyWK6~-A+lE@4Yb9^Wc628p6c#=Y zSopGP0mri})-0>|#K};IoswBPgFaX!hdKgn>EpTWKP8x7*)zb+S*TxEG9FYH?EV(h z-a-$ptNgX%u3xzII#162=SL5^TZfRfF(@+whBbiDoVQ@0lk)|!NB%LSqLL$4mL8JI zBGQ>*(za{ce2Qj$mc=sd_M8Y~GLh%w87ns*Uczf+)PXa4K^nE}wSfoVc0R4s)&K{zjN5xOZ4sL~89Voh?cuqopx z*t0YVNfAhXSaZjcE5~@dq>{8#PqV{WkCUkTk@zr&9FI&k-DiqjA?D!r@`Gs{8~dKi zAAY~yI#nQtLLksb_={GJH|*}v3!DGwfdY~N*$CmOxu`9jt%5b}b7QJ$f8X-bRrj-| z^{}$-C$o3DS%Ilu7y0%~BesKBQ0Isvy&u1FO!q8v>^BwdBfA90^kZdhrbneqS@S`e zbM~npyOd()b3cpCy3#n%REqw_x=wQBOzQqMN=+?PfunRQ#+zXb(}>cAII5^T(-~j| zV;Z+|?S7c1EnX&iZ6=Dn%=z56d|jB!=JB7f7xc_uF0$%Z^H@4FPcxOJw0{sg+_B_2 zKAG7vxnERcY~!rw>W1OeKC!rj#5C1imn9sBl0#B>QS3Ezc5GzUASWWw7i-ICzL$kk^BXE45tS1o z!uA~xNU8og5a3`!M0%Xf%r+U5h<{{xj13>@FZpv}lbeZCb5w*;UlT{GZ4il1x=5b7 zV9p}7b>E?^S6Ox?Es^!Igc6s+*T7EkKfaL}KKSkLE^FI9dzrT*m{x5#a zlf806@aP>#k<{r&{p8Ek??ob(_dQ6l{Qu~ysXcxSfAEMp&>_MaTHDXHO#C|Cw$hr^3St~!8pM!2%M1#ZO>F#f##C0Y4v|bmLwt5zpH&W>o_&z*)4;pa>r$H~-W$4%e<|;n zxeXe8mO799--&tImKN2z1GbfSm@-<7``zQ+QC^aj762$#_P*KkkXQu{P^y`)tTh;l z-Vp^daD4yxQMs-$-Y=;O;7yC>4O|6M$W3ymM(2Z05q zT4v?^2};nL6E@OWQg)>0A=!D){|1hhO=sIZEYNmdLG%nhr|ig z)hyN5AXnzvqMTe^&CAb68!kRUKDTwp3N%^BJ}=w-wjZ(l93?+@JF3me#l=idH73)f z61<8Pw6eDVfLA1JaZo~eAJW1GHQ3j)AlZAe~A!{>1f%|(!$ckCuX z2gI=OI=AE|G)0w;y*q%CtK`$pl1%YlS*d3`Y=I1E8SGrNXa;C&`73vsN=^(9R6VjS zsXW}=EZPV~c(x%HxM(qP`9oC7L`opR{2sq0Ctj z!T;w?Ov*yBbg5liyY`-rHid@QfhOHU8nqhaF-dR4_wVezj$v)p;r+(xW6z|=QOtMQ1exE_K|BNy?PQ_2)`!G#&TBAp&u(U&!`5 zgy9<0wmm1btoTYwJv1Losv5n#D8g_Yx*Q+MaP6^P58~dg==joKlf3W0IZ_4XMX^QE zKda<8xw~5ytUxv(_;w2{VY!*I<-R2J0baBLJ1oS_sGi>j#1|*QU$QNh=Nx%{nbO^X@8;?|BES z>+tE%a!acB8M(=vXASDPjM%M8Oa0gg?*2`VrZCW>M$US=xux}{O6l}oH4XJH#Wg|& zL{d%;7LD9DgUzL%|3?de=HFZVqzz6Bj>sv(z~46pY67Mcnd~`QO|BC$r?7dvG7M~L zyjKQ04dtuEz;VDXvN{|<=?}|I^6&vTJOek}Mwfb1xtsA6xH;0-pL!%ViIK8xyG#Fl z8iU(L&S0^YA@W-ny`~j&tO>?hOF=3vpki0TZd=>$RLxl7+=#N2`3YMJfD4+zcmYRl z1VQ32&>p@q)I%fO{#BS+m_5h=OGI8ozs2LP{p}uL5-w|%>NjabJfP7Qg@C{Q)XOvT zlPdx|521nn6Groe#pY&Akd-Uer=vl;lM8axd5Tq0WcGn=te}OAz-rlBzgC$fsjjzl zzWM{+=RT<=T&1lfZ4Nq8To3(}8L(N(MMjRU`7?;}2) zj6rDptAXsS%iz+^E!mRjwFk_6X3RGdn)iZhA=nHQ%35x=^cj<&<-DT$E&+OsHyNYG6o`V z4hy05)R;Tk}ph7h)`*FJol!c(f&igJ<7=v2?(GIi2uE zX*G2*s^;vKfJk1;R^}}6vRY^qRG{dp#=Jc_uOD`agIg#fAETbD^VdxhVrFXG^E)M$ zzgpzX?kU86d2DbbYbEn^*$Vp_vReUly?a_@;p8PohZvogl(52*(% z)#mAkv+Jdl6x(+~Ln;IXS}IUeU41JIJu~1? zym#U!sgJj0YNdl3^8rgD1S|-C>CSg$@@Xq<=H>KLr?2DvXp;6EPCVbwc^77Nv9JB}=1b8plmiZKkDn#M!`+?Z zca_OMn-AjM9PxJ_DjPo1!xL37qIbOH@A9?b^RHYY=AmM=CYxr^9bAbeeQM~ts=oarXSl)ZSNPlOU<-ezzTy%=>4Ay=VYN@wUSE}OaM z!Q9qK+N0edtz<;eBWoP3j$8yClXffk zBf5@%x-qZ{DBD?!q5!NkM+8KL8 zne7}t(@pC;kvfg5pg>LjrdL>bqt!?}r?}uyNcwTwFd&Ks~sspH;zHh(2 zCUS3;w3JcKIUXHbp!N^H^*^s~VX{P9V|BA)Kk*wB%;>`Gy`2937k=$S>y^d|uc(BZ6 z+QJ@`Ig2dTg`CX(R+WdIT@{J9@nMVZZvXS^tnDWS!~gsaH#aW16cnyifgn7z37EI)!-0p=&Fs5bQpg_ztqp7%d%A|=0~9t_HfE~$%c z$ze)um5r`_Tl!MngZ|Mc@B4R|JCIBx?wQGc{ch(#hE$Tm>7;#fG4pwYQ>q|Ok^`$= zn>Z$N_p_i!?Be2|-8X&rS7_GZyr_@UJ6FkfgF}HhFM_Mn0*(r0Q7BlYoiCv1EE56& zQ=)!M*>ZH=(=HrUN0nX3K4(s0)QHO}k3;SvMF_Ts_{~qHpC~S2!D+CZK9~_8h@R>- z82*hXAhr@q+)qbOB54=Sns~iXy$z!WuCX>uHv3j>8%no&z$HLDzHS* z0aaRaq7xt67xQ5010--1)^He?`*rk2uO`9{VH<@?8}_j zFt(4u_5sI=z188oo_+TB&_x~Qg)RAb0>WiM+2M9EZChE|S~!N0CKh{Nx>WZ7hQ{Cb z5VQ{6HcNf(lP@lrPr@>Co9Ez-f~XC&P}&GU^#E{CpSYSQVG3G3JRK2Gy}5jy2lpYb zmx|!@z}`Eoq}%VS6=UAQ(bwYi&_e>=v^q7M$3Yt*s|r39ms&l}20@tl-_L1EyiA@L zc^vh_dYmrt0&C-^Fy_^`;~`Ou=q8BXi#9v`B06Am__>t3+a)rHSt{>4@hE4n;|EtE zom)QiM8S*@t#yS!ZGx%dYM-u$%%$hSl0s$t@---Dp7OmPLzg}cs?hVEoXV^KZ(nC8 z1G(lh?d}V)JuoL6G|!*1zyIa@L@BUPXngpHaKnhkGEv)$SoVXwoHWrhtvKT(rd~(R z`Zw==F;e1fR%(zs^$$pO`YmQO4b;98zI5Hauv{V|d2X)qu6;lQ{s&FlcU#|YyMg77 zwpo;cZw_|C%m^3X>fllD&rkAXbvA3@})5=Fo&?-%UBTIjE7X9$kJ;oyuU|)8Q;mGJ97pBdeh->9QrQnw)}l`qEhM9YO%})( zRRFs68HOz2g3&egMHxDzdR~wByTX6f7*UF%CJ$%;14>RRT9h%=R|bygz3@-|<$NmE zV0?5Ayh0Z2X!b??w`q86q)Oqef0PXSnc3P|(7I2{=kw?PCXBK)_ba^*F_J&`K^gyj z5DC;qICN=TU4hWgXZ&G=@96O6f$m8B3e+xCX%L;>{JKt56!`;j&AYov^hvapKS6BY z@h%mVI!_v?eWGk{(sXM$-tEQKm|dilA=qo(ikQ=!PtCUEVnh~D2Tah6Q#p>iV!zK| zCyvFq7Ve<+oK&_g4Rqokv%h_Q0Q_|t1mEOsK(1x;Okc(&90LLEa;DbJUrW5Aa5xk> z9)w8VL2LK_o0?z|8!kGko%(`-sXu~TGfV73Se~!wfhqx^Z~T=DG6dpt z?hvlxrIX1jc#CBn`MuK~v(HVIA;>zAF>TR63&t{`gxbrtV@#1wWnE^8GzB|x3QdhU}U_m<|kU}N_A>Z2+`OtTU zOQ9tNlu1rUa#`|JN34pSH{2)EPUU7F3#E^r4`E%9U zz=^oSh$Kx_qZk{F_Ln<}f)Pg=awXj)nZJ9)pM)8kQ5j%A7Vne2&@0wR69MgPT5+K@ zTRJo;Fa0tKp;fM$2U}X`vWcv$KOoA?Po(pnsF+ykb%S?wO9pr6VYg4a8f*`?f#~Os z?~FSX6nX1ByGDT}ZEg3)FojQ@`!5oE;h8*l`Au&GdAEES!9+OQC+W)6k)A_b8e*Gui9JH_D0+ zjg!m&ejU1mO$rX<2xF709+G2dJq-KLbb)P8#4v13%}UFnkU@TuAe=B(@tW(B8kUo6_*%mdYIr#%q`~Hg3d+WdYp$)nh$?k=%oJYz(8KwRx zrCG_+hK%=b3hkGS$Z_YM%aOA@-1_|H;f~DAuGNn2-Met-0{=KskzSfrk(DNycD%6Y zjIb5DByVtl-RO5oI3QY{8}NXFRJg$N>h?H0n=HBYoR5<%9LbL94_<%cvEuKH z9|=hvJPUvI-jaT^TuN3-M(^@ zI?F386>>bx{r=sXcTd2e4W2%LOR0&njy-v*h-()on{uLe0uqsZM`07x&U%Ays>?R@ z3P+tl<4!JDv+hB1?qkq}ZYeDJ=HURuGT*Tf@E_y-iawNZvQ(l5SrgPwbKA8R`q?M|PrOF;d5@4VT6rmOWp{+4+`a zzI=U2GDl2sds(~o#lIw9(`+uqe#&9ex#s5PFe+;*X1N}gL!q249ZPM`)NHA&3Klxo zmBbA8{EEyBaRpSSOF7~D7})@iX$J4kQD2f}S-``(c`VB^#n%%h zULm*o?_A1@^?TOo=Y>4zqv%3UV&SPR4qN@>kl283PnDUBeRM)eU-~wu=tJ3CCi*)8 z1mbw|d&^1WvPRt<9(6v&dic?pFSdit1mqtKM+&=B1SRXHD2mdy@9Lfnpks)SkMeaL zT6?Hdi(!;6>MCGAD>BKN{m5`F$t7Zp9-+c=N`J<^?I)=ZCHvxv{BE`6#rWM+VK4ZRFhK#k0q2lo z#5QH4?S1D+Qdiatmr~lp@~g_tsN2sKMAdbA^7+L=lDPD^n4sWx)d+QEeG zJ!6#w!}gE)Q5@;NXLrNM^CVfw+4~n1f06v-AyCetp*E2m^5qD=Gc~tUSVsA!BP0>! zuPo)IEG_e5=EKTi%^Rsd_HFwy2g5PvK6Wid<;KDrqGxu~!fp%CbUPO?Z>>}$tV|dV zBKL$uL(TO>#B|&2&g^z25wQi<;=DHpTZh*f5v8B4zh386kFEb096+wHXtfhLp*o;J z(jSbKf;qeK1))HFz$eKuvT~RB0Zs_4PG@Qwl7ES!6l#8QDWTDCJIvwh4|piN30i*M z23$u4_fhWvj>3iPO(x>7%BU843jhDjk^Vc1^8f#bNDcPR#i{OHo%2;RSEiZ3L2j3x z5F`uTkrur__p$W;yLADp(E21or)6D;WBu7%|I=N4T*MApD%BsKZ8=`*?=~^uu4ADg zYMzi9pOHKob}a5f+kLUK`%*=MV)OH^b9w1~2On;`IhG!=;hx{j1HDUgeJ9_N@&6yz z-a8)aJ^mYytdPC3$tYXdTgaw}%n;eK_ok99${yL3&1LUoWsmIaj4rbGx?j%k@%{Jv zyZ^ZRqjS!qPF+4e@9}!hH|`5_GJO9;GLRoDCGrf#1_qu!Ji`fa <3JYNz?ARn+? zm0FY-_bj2FCy(o>+aM-vrJlx1NSx_VcTx!J@!rPIB*j{vC&%a==91mr6MA50m zl~yd^MEF(j{L@R^{%nzz2yVutJZAA*i7vmlj_#{!hDSTBR6KT1=1_{wxwvg1;N%jZJ{dck^nez#WoOhKM9Ha+czQdj^VDuX883@$e%&@mQ)2Zn{ zb6aP)REzZI6Zt;rPHiyu)?{Kg=GGd+=8UbC>PgZYA(_az@QN4eLyp5j>f#o}b-HJL zwlYD=?n)M1L{C>|L<&O@TvNgu+_xgNg(K_C#>Xd`R%U>Cg<}auWYHsjRhjGQJ;Vhr zM;24b_rku53_SfSy7sZhbA~m|1YZ)v4z9Z}McG~VgC3p5_r8hDUuTFr8WdEkf2B+7 z%feagEF9DoE0kR_8;C+*+2{g9+tFqI)wr_4(V9 z#}5-VQ}O%G;EE2wJ#g1)$Qq+q!&1^g``6=1rt$r%pEj&-*kDh-uMns;imLLwq8DUJ z8|bW<+xk_}p6lGHE}TF0Cqen#_q{;ho-cnI<4J;t_DCAbocvQ+_^1~A@R8x>W+7y= z`dfmWPvXJZ=baBL_K5=y3KBiMtFyaRmB>!S=57(QfAD(_NxHg6!-B&GK>qeYedJ zwRv(+b@-^>F#vm(uEp8?ax;y~Ux_Nt{3xk`aR+aR+*>uvk#X80@ZS$1lMzL`r8F3? z>F_QSJm2~1#%K8qE^e-+bdcv=tcI~#^153Ud*}vIAc`fef~#Bhb;bOZp&K>k zDNA2=_w(eEr64lp`5iOPbgyr>ZzP^W+Yvnef;pfz!0G}>v^e)kxj!0{w?f_OGlxkO zD!mF-gu9XecphmoG_x!kG#APH@mGLBX$^GCqNG zC(Rmkm8z2o|rkVnnza5=Q5g(E=J z{Zj^9fS3`Y14H7vEUm(;Wx)R!65L0kO_(5>z zDaer}E9cbFt@?B3LzT&_@Is#P>8<*k{G$%SgZ2_ShF>^&MP^p8puoWF10A(>Qk`=(vfwfQ<= zT2hQVAZ6L42Grpc zgx#E{-@b*d>okc=9gz=CnR20w);aj7?+u$HXauJqi^+O5||L1Ltn?Q$T zf|agz3*2DW6F^n#$nfbS3sc(bU``fdM?*+z>RKH><%3l(=S;0p#*8|nXDp>B@7K(( z%W#2_l5ykn^7oJ7`kupA*grIOB6jg{=MRKaz}xIq{3<72)8& z4l2nBU_Iv{zDE>eX~IL{vSwC~ zOdkOZ*77yXHFDJVI@(>kFhd0)X~{YoR^QWvyR-pS3ww^1JB%agt32Zvm+4I2$Bn~t z11OQK21m~HcsWBgOymaWm@J4z!>%W4?4aeDA;_@4m?jKv9f_tG!Bk{gt{eY#SFc>z;v;Y`WLPBMhD!5Au$qI@A zk781^60kld1;}s_hV=~bbcUK?;Xme6mC=pYm6l-40tYf1L&N}yTk=RI^DP5X5%Xyu z>hr1l-=AUkE24H(-o0eTtun>-FlZ&R!{dEXj3qUf=PAFY(I zn-%xq35))Grd-%kvtp-=x8U3=r{4MVcEaMg+fItqU^}yVj!kT8pozJ*UOkciRGpF! z2^vbS)fCGPNWvnoS!t$8N340p-d0$|LzZU3hj4IS-B{Y#)SH}Nz7*vi{vzsrJRbHm=M7~nhQ@ZM z4|IwGw%P8gIPz@t6?f8;w-WJV1~>$XLT0PAL|LiAtM-yRK9}c7U;!wslJvh+ zfh2m)!xi6^rJHF^%~@8I0KkkDJ2IBLyaJ&$0I`pP0SE-Qyo!r;Il58jcb}Kl51Q$q z1B523>??yzPOYexV3J+Uxt>&V>qf9U?UVpIecOKQuKc|VL^3kxO5kdr!k)$|L@9}@P ze;Y6RM4v*LljP_ zMbNh1aC25h_5~QYNzE!E;lkcip*r#;ebw4A25tN8j|y3%b5738zvWv`Jo5k0I9%8) z{^iaL#%o-Sp+ighd{U@qJ8s+AZo@_UQ2+rN^L`N!Y{E@iyV=A-(MetT(c#&J!2NKh zA~VSr%vhow%G-{$o2NnVnQVH>NlwDLE`MTv@OH+=^zkdY5lH@3@i54o&RVX%!S2WO zaVoUU01#>*zo$&$Pr{_%lUt(pR`~Vtdh*5RM$M^>ws3KN<0a~R(PM>>bEfecLhraS zgV@@JH596sHI3DCNTVS~-|l}pmQ4kDG9J7nwkosudq{Q`ug3J_w~ma~&BH;$Z_b6P zzRc@4y*zlpJOh~#|J#qNAqW4E(;GS1xJ9us&&8d$OW3K;LUAq&U9K`|W@`TZO{rqX z9e>)|%l`Js0=rh_{KKaqYzRl#Q*IBI+(N(bj5pHp3TZnVj_{I3a zFztdULz&Or#v$=yl`Tkn zXczoeiV*&A9P<3j0+Jicu5jI77+ z&$@1?Jy*m`+N?=m;yG#ig*kpoQ(=Qn+M-wawTf$4N7!yDuCJKwkLg*T`=S(vv&44` zY<^mYzVWgnC4^rXhqJW4=~u58r?!oJ?i00Kn;$(CUx;8NHw_ot9ERzB@PF^l=iO0B zg+E|fzhm&JCb{A6Uu}1rPN9~un2u$UZ*O}HtXQ!&9$)s;V?FcxwO{G7^|h|6UB43% zSSw*R*OK?aZF9v_ZF*Dt95JiB6J4c$v$^)NgTKoTZ@ie_x%$RRi2rv|QB0;&2VbQT z1O16hN;(>La$Z{Jbi@+BK?ZWfmaF&-!Hw1Gx4hY=J|e+jUmRF9TYT_{F4yLq9V`Fm zGdth+O@$97{MmeyP&3$8w_JTcZQN&=WSojpS4>YU#|iJcJPm-hY_Sr=w2@7QztZtw zKfaY8{}g6(KwjlTiL#}Ty;~A;Kiw@crH$7gZWC{by4_Xc#pNVxao4okAstUJLzE0I z&=}$LakmTg)sAgEPsrFGmKfp{h+7G-TN{-_uHXr6;$-UC%1sf5o~hn(V8gfCw>hL5 zT#TAn=$P&##5I@$T`SV&L2|Lw`2s~Vrhm#33V!W|u&TCF`PfDe0}abi;$geo>uKYE zxoQ1VLzYHo>$93WMUGUPC-$3dnP>czg6sXH{-VE%=S7G4Cvj6`M4G2b{dq1V6YMyA z@5r2KV7nyFKA~`QB}d z=%Kf>+wX%aDi}7)>zE!n_ zcKe;+LR7Sbo86LUOus|a-D%HiEpVrp9*^fw=b*a^mzX~w3VU)Yb{o~yN5z=>ex_ae z({S};pdIv%t{Ha}{)~b3g#~Fby3TW1gXFyHV`e}LB*-v!EE<5N9qzqju4ub`#!W77 zWT-n4dPP45vK3Yt)50`wKiG@QmNn|Xzi?!|8lq_NRRYr>6h*T}L7JD*`cn>*PBBi!?MZcc8+o)9AY z?h6sCZ@yf~$o!J^gpUpLtA}+GdtcWTnAVs(f8fq8j0B%6&$m&!sV;71YMzWR{aRiVF~YibpJS}Ob|It-BTTT zZ^5G!XmCR<(rh9H!yle8aNh%=0QHo0AA97OaZY_VfEi@)*RM|p!sgW3?N--Ef06ds z9Vd!tT_)XeexU9@%tC07tUkuxt4HNYnZcgZSmzFUJkfYdcFxIe%nST9jG5y|SKF{} z-wGd21VV2~b#?Vv>UAl#xH=?WP-TqV+27)Q@VG+Qlc?j({kt)?%krEp5+BxH*Z=<3 z&&f>$DzcX!0^D!|pP?!5|M8$5ob2nneXVSa7Z;?AgmETJdKrR!f1+Osw*waiug6P< zL>Jl|^SfI|-UaW4RW+Z!ZnGbjApgqzItr!wIf_sJC!`a#deA@!9AePdEdDpuWPW#d z_sc`0X7o~TCjS(fkv+X2r85`zrz8l_Bc{CA&4-~)2QkDKIblI<-+r^VljSZDk6_5G z@&%cy{cOWJb!z~9awyEV@b$&p2QAqOMS^GnNp0^F7I)+f5=<>E?NpP-7vXPb2X_WT zOQDUIWk{VEYeJEirjK@caO3$PT>@qdU8yNti{QBql>nf}Xw*3B=ptLkjhfLC!Cm80 zDIl*$J#a4T(meP40^2Ih!614+)bt;>%$$OV^w~_2o7v51Vh}UzV2ytJwsv?p7CQu! z4KyRKvFMrrc3{zxZRnW^%!S1uU`d>I7^~=@cEh@tu5)K$@v|2<5anRaQt|ac5d9tA6tRjAc>fP_yT#oQg#3{cJQ>SVr=@ zUvt$z=36O2JJo?F(9?eyh7xL8%TB_S44C*LayG`v=o7n5#n^Y|L0#)1yP-_mdPDbnpktz!!jwS|&gVdx)9yEU znxE@y#Q=J_R=#GF1<{u}Nq6Nt!14n<0s#&|&fSMu_x@6&+^YLzMzi4@>dx#Lh&o~# zg&aCJr5(Ve#~D%|Y-CD7WNR6=7vvTGksG~n+HM8wp;Erj5f>vkD#Jwy_xHx$_-W12M<@ z$dcwT&`$+xhk`)#T19gw!-OIXO-^=yeT4Pt&Q4A_yJd8Rw2CoJ^RKnB2>!_8atS3me*JVMKeaQH0uJyZ2x%kiNxd4wk)>V_ia9_`?xY??-f#PZtLwH zd=xOSOBqnq@|Qg&7kWWdJfCe-J<1y(HWrk#Qv9fhKrN0Li^oyn)6nOq#0qSdkH4{G zw~ETjf-v7{Ka}=QNR{%i*8Z!%3|+?k@(w)Awe;vij=ym)Q`u4sA0Ty39V#;q?nt{! zjXc+z=6>p0q*cF*y(6=ibHO$F9*`LivDce~8(qszRHw4ZH?ME8=FEzW>8fE&4OO&L zNv-Cs9Q{SB=veb6-Jak#zE-Rh*rjSkU(!2tjpyFO=AEy4QBt(W*0-Y|B2Sq?QaFBm z`}E!Psm3&rogn|qONxN)P|YH|Cl_eS1M2a73~IkkYB$>Bn9nDgdhPb-sWDlHR?K7?$sj_}gZ!>^%W#rc{QrKf%{>eyVW)M%5ab3Kzh)G<%fEgSH z#hPhDk%1wEP2Z(epxQc;YATAk`<){*X6_uH5oJ5WJr%&FKyJa*pBB$#RHQvn9D<;E zZQ!OTz%{>1%nZTFkPQ6kIb^7yju$T~;5F5LZ*K#(?K3zOybk_q^+-|(8fAkD81}4} z(y=-APlei=cTHbA+$iVB1}U-Zxpk$8PD_OAM;G+v-2Dh9n;f$*J+!=6=*N%oZrI!~ zBCe_-n-@D^2klnxTRytHnUUs3zt`^?!-5~$^g|@qUC9Rb#NxCPRzsL(9X0_*aI0WDQFLIQk>l<0lev{WF42Gb zXWZ)qy#?9<#y{DL0-ho>dj83Lpdsiivt+dupnA&sdHcmKxN#Lzo}sE*T4(?qS#bLp z$45-=sY{rfVVxnn!SLe8*o|KsLVfBYEWAk6Wts#`tK_f;i^89W$P$(`G7yg}n0TY_ zXSI0k*8U)0WU7Cp9I zp18)7}f!2-p9sd)Z03E4iSAElQQNF`f*$D8I;SY#>q2PsL<*jpT4XyM;b5P zm2aLSf3;ZVxUU&TDs-6`QTV^;K;f4<{Yn0B8YD2<)9@2O(%b$$Fq3guL`?o;ws(B!YMskkb~e7JRezOq5xyUUyLffRXbG zItRgG_E%m@Yae1k^f<`0sUVOKfWL!Y`21kfNCu@Op?LoVi2FPqDiU1_?S!I=+?#yQ z;={5^XS>IF6p6rjFjfa^hAr&TM^;zE0z_Bmq8^o%crNlksp3Z_MQ={U*#0@G|ICXA zYH@h!R53SWeX!a}NAOjjTkdJcGlMQEibGly+)GYHR+QhqDH-I0yR zVcOPznp{_jT=zUHC1BGAuHAtUt`FK3!lCSc5RtyJ=egP>HgLUD+%;Ibpo)BaEoEJQ0|HCWUcz@K7R7+X{b%g?&*Z3c?%Jg$)ZsTT5P4Fl?3cWh zV2eSnR%ruPZagU?W*ScEEXOtHb-}%~dDbR)W76S4DG-0=WG5 z%#2P0hJNgHZ^17m#M$AQFMEFAy)ao?F3|2aOO5b>uCV4X_Hxj&mD!v5^x-Ru5x%TT zfw}Ivl+}}pX-5{mGoY5L$N4>_bM_JhBqpL)^pp7ZYy2z(QbQH~Ym^(|sT zKARAJr%lrWzJdsJm-b)4Y5%vbYN{BSeEq6IcSqOJSHFm|MbW{mHiK% z+MGL950bUuO7>;5bW2^y8!eVw@k=~_)ZZ`O4CKsI&>I?x2skD?#jcC>d39@hwYE`q z|4T^Th}D@p#k*@gsAp|+b3Ry|(!hJVdJ1Xp*W#_yTVkfgfh(AgFrDgbk{=^jr7ZHc zCby2-kHPR9PkZca>ygTvy)+!`4kCnM2$(bm>^y|qVH0<;l`aGneB+7Dq(y* z+IM@UwWbBTzS0&oE(Tc<2sg@>TI6F@=3qyK zZ&VpP6wn%co%W-jK-m##NrlbTm#sleAW*2DRc^sYoZV36-NCm9a!&Ir7P z^n;MEnv#;D-3_jsp>?q1UqZpikbU!o`Gr8n0N4U_e6JQl=o{E zu{~?{=Gj&TJw9_N!_o8dNh)i6rSUhCHHOoyWoAm~q1`;sezGu%`UVQ>3g)hD;VXS9 z+W4Rj05hpJk1Hr>2PCglu8UcJRjnAmuGWWLiZczYyVq~oG2};vwZ4bB4_eMSrFd>H zeESA$nvM_QI|lfC1$GZVvn(W{a&S^Oe)-a3dloZPfN6>heMrD z_Sf>fEm(D%!Jw6_yUF`2Dq4e)67HVAy6Se~W=g;XR`L+)sKT1!)~E|3zAfa7LA7w! z03 z_D~q%9zIt>sV*6c(wI3uQ z_%5%Vp=XChr03pehnyD|TmH{+6m#d zuO@i63nU$>-FJCE-%9A?jzstA+yW7mUHBfc!~1`^-#2-1qZi4a_o|NI`$SgqC)l=0 zqEcR@>jluaeyU%VV;_Dju*@rzv2}Fj_AvLBE!RUUDn9|tMT}IIvkM8he6e><0J{z5 zR-Z}G`vA3x6ts1UUF0zh(S>C&tZHhw>%XIP=70n+l`2S}b5p4T^Gim(a{4tDv3|OexK~fE#&2#RTbLVGI zs6a;qhI_f+&&OO<8($1~Y5xsAq&jUqBSw>6O@ob`x>Fl$53o1DCDI-4f5lBd2#r0qY0!Nf4HRNdlBzJ-D3o#c6;LVR<;DywYyN&)=v;Xa!APesZb2s;k zu&?+ZEr9N0*=Rm!t`)^|mVmtkVCmWy@vl}rFC$KxKLIjW~@z@H?BJNwaWy%_-6Sw&y?4b*3T&DF;^E`5Y(fi-@K-m@9>SW}+p zKg*x}(S`V%>A3DU*VY+7IHEO^^EM9vDcxHg02t!GkL(3uSzYo^NkS1ZdG`UJsrGU3 z^i+fhovZ^UMc4u&z<0LlmA?9n1RYM*0=r&@6+tXin6Z+#AS6SPNZC({R>_4DEzrX- zR-Mv+hj+2gtW9Cl`oYdKuM0f|7pyd!7w+p$b_TI{5J3WYR5n*2D*G>IqB@Z*m0jIKWvkz2UFawTFcsJ7KT3N5B&|`rUA@%yU>IEu*xh>JU*dB6vNY;>q z5gF8w-?#)fWmNI%EYSvbcM`{s>xGykhBhKrgL>#5ER=Ke*WRtf@%}yv&KJw%$9CDp z$oR)9E%7&-0e_57@R*}FI)V5RI0V=0x0uoj`WFDtV;{8_s{@Ip_;G z8{h7vIQ@lB6U$U)DH3H0$9nu_#8S=OlpEUt!s>$$eg6HegRfDJ7V1jnC!LcwLN*yL zSQ_!2+Rwpnsq3t|e=mXgq)CV4S(Epz#B;`OCqMj%Sn}S1Xn*$SDLAN&*mGwR>%hD5+K7;T=?!!+xzh7IdYcVD@!LmE>`d!uvsp_P1 z3{xzhIl;M*G0a!Fj8dIzLY2z6RT`B_MtIfoFl139CWHm1JNRFRBt34|apTIcR|UC0 zidWk5xo_#ldirW=kZVr$Zv{&nEOS`QZUJVd+h;14Rm?{E&K#YHp{*k;A?m8Ko5Z^D zu4~mC%5bKRO$er3s~r9lros!qTmqh#uq?F{ReIB z6*B@Ow*JQlsZpQjYEnar?1vF#_2~nv``g>bL;nAXjdIyRp#eAGLr_mbXiib1WfsVc zjCly`URV{@bhy4XH?l!QyKkQ%>t0*s7bBz6<4;=|CckMw;2$VE%qD38*s$a)-}u*R zOy57Jxulam_>wkJQv$OzKc{xV>FSA^g4c^4=EPdkedTgV;XYKj(g2H8SmPMW^zoJM z^j4nLvr8yVzuD+}HkJiQq^vLYop8UGenR+5f_5{o<`1PoqWAFnUzlw<`c@M*TqE!= z-bLPPe~oB}G!HgW3CJ_z_nz5*YlO;0xgz|eo6C7U+4O*5xxy@^ch$LvcK8^}Yj$)l zR)r~REPi2&8lnn-V61sg-Dzk0eWOA)E~W2rZ|0)kEbCx%(wxg54W`TCjW@8uaoeKA zx%zIc>7L#eNM+B9fNv;{qfW6**1as~R{a}Jk0nyeK+7tErrJ*%+^@;i&Uv4zZ|Gx0 z<8`KC_1qRGYD{{kE2m{Z)v@ctL;|@FmL7ypl?xjpAt?@UJYumVmFras^V+mKKwEdr z{!>_z-yFS$`?t3pN^byvFjVip#gPeZjF5@+_*pt^4=_py^~1fUdP~+gvN}*=+p&!> z4h!$+_lD>C+(nx(A7c1J1daRzL*OcQK*}KMUG>|c+^ZF%K(=@7@X9^sh7b3KWyn-&AA0Y><}+7o56cO* zAf@Zs=GP&tDVUKOsayg-YoxDUO9ctbWuy20v)00)29OEh!bR?{tEbhZ?y71+kO!kA zd{=lgvG2w$=>!Lh_OD#%1(-t4)5(daw<^0v>z=<0%6Hx^(VP;dZ2l-yIDf2pqN#c* z4VBB$9+PGGQwZk~7ciTAh*++H;7&TfhusJ+sxc*zDoByUI@`10}u3dWR6c0bYV7MU2N@NUCv!qtSmwrVwNu^ z6}mG~C+{^@6g6temjx8tdOo}&p!JmoE>)yXLth>ZS*wb!|EW6CHEt!oE%zw;_F}r; zlWh$*>JQTi!nt$#Wc1ri%>wqtOmCNaa6{VEf+TQdhK6KcYAFe+u@FP_f7R>>?954* zy9vz*AMotM;MGHS{lqR{DkMDtlV$iVnqK~WWr}y#-?1_fLk@KU2nN$pu8dUujKzm@ z{FzQygOYJg93|BnTfgUoQL>`jR((IVyc*re%=YF$1zCs@kxoRECS#G@O2S#X&So1Q zq=!YBf^hu#_}1~~*xMbhBIjJ)?ieLW6nG(kpAL24s%-xlfR_l8g}_X|!NEd{6s zHc8eNHEb;qTGxx2zRH)tq?kWX{ROFq3wnUrvRspq+OWq=-d&_Tk}Ozx>kNgT%)nOo z`&NxI0zAK?QVYs|8PFc(zG2{Qa6tc3S;e39Li?qF=+G+O&W77-tZG!S zB0yPu0<)xxhdU%C!a-q4(=Oi7Vo^O^*?!AMY{mj+S8d08gszLsK4KbE#abJxtFR_1W@*BNAMw1yE5y*#Op9o8Ru<-pY_TS3af}u9@}ZwgAOTNM|Haj|)pH zjc3Vu$#18IFe6?GEg@VRi72rYkyh3LWD*R%pVf0n>1CfXb#RaHk%pJ1QzrlZiIO3` zNH^Y5t@+ZIT0z@-S0y$xwG$HlcyQ&K7r>vGRej9~frXbfJ3Xn!8gV3kc%i+CfDfxoZo z&1x&SXaAMQkS%q!J#651!t5V(-eh~HZ?ubFzJ&pso+u`d3f9|)pIqvmp{baWuiSup z85{x}bBtk(u)d4vz~r6czMxa2{SuE99ZQ2DdeXkj*Q$63AMdr`4Y7nU9rk?r?SLE^ zKK)yE+mC3!M#4oSJo>Xevlpc9!2T)fV@4K`IQUZAs7L#+o{h@m&PuPEj`tyKBGqY(Q ze~3oV8Hw~aEw-Bm6ILh)O{?YFRx3(rLe5$aVP%DX)Jm2#PEH2sRKp^QNQR*>_BEzk z_t2g>&^*RgKVSAN{&(DJA3IVyX{%=vDI0G7LjgsDvxd8y`+mSXvt&N^;xva&me&S8 zxtpat<5D;z)(t1}+oRP&EX7DYr!k)un@%qke}dGQwWo3Z!~Hs0+`kSe20*)g^8HO! zMaY`691A9qLLTj-E6i`ntl(X1NP6jy8-m?P!u`~NVUmN2VD{rR){ zo!2L`FY|F{a^Y&I4VsMliBjOaK}eW?Q*LB_-Ie~%jMo-HQGL4TKJx>- ze-)M}?iDnbg0YXN?~Musi)q9X8@*XFYX6E%26X+Wy!qnzt9pe%lxJ(o^+LzTl_&FZ zZ&ofS=@c(UmgCJ6Y|6(zww<$EvK(`f&NGMO2Zk0 zgP=3920Lff?doSfD{OclS3Xn+uU0a;hITMdts0$+Fr}!6uBTEWKUiWpJ;5eP4khBu z^nQQ&f~fOHKc2XMSepE3rAf0JZPerm()vorpKKnT^nH)xZf9aPc;IuEp$+GKV} zti&{k7AGiDaEd+u49>1A&8Ij?@7Xx2j=bVVQSI3FZ+@p975ax-uSC;M#hI(Dqu3+l zR)Tt;6`dj}9?A2)IRfOEE#XWv2q3@TG)h}csK4aT91?oz7n|`zFuLY6msDIK^y#cW z35_DW@;-8G{a)5Sk+fsQX+I_Pj8vrDZOV5kuC%ksyTpqEzX80dJN^KUR+gYx^wHdxzdV)au1ZN72CyVE-t3S-h z8KU{;T*>)oqW97=#W;rik3{o+J9a>)rh!DMtcBjwIbILle|!JC!S6Ww&Ho#JU&jz8 z)=q^L;$b7CTETTZP4)jf$B?~W#0H9-9Skgv6bAc|^A_z3h1lypY@3CAsh&Rv&eo64 z(ki$e4l(HH`hPp5HD;zAq0IL_ntcZf0IT*7Ot)@h1ozjf3{P@Xq`34eQg<#2mkMD{ z*-pDweRb(icOiQ~2s3C}Gl-j34b7>hCfSU<)w(rXs7sJ4VyXH414iGIcvGLlOaal> zmCiqPcrB)cg;)@Ki^22+17<2CA0YzL)lWA$kLDDptzEI|{)t&|mP27{{ck-xD6LP& zjBw+54h;T9^pUQJeXUh;f9-sO-CnBLcCJfDj?2FqH(H`uo832V#l-#0as6nY`j=3C zC%Q1ErO598!F5^ZC{7T=(GnS<*x%*6z-o(ukPx{7p}Fzpr>S&a91a-qKjc}iOl@Ol zN7lGhHFtbkcyPZKBegLBa{`V~8#BI67ibPf_M8N{1DB8q-ABH5QZo`q=(p4jRQ`$>_pw5S8hhwPpA zSM!M`SGTR58|JpO>h5|O7;TE_JLBaFe7;*F7PXWJ$)Lbfz5)}-F|=?G zU;nefit^{4ftWqTDXtwTr_1I_!BC8*e802(m zjQEa{V_)Hd{<@lY`d*L5KEBDSI4fdr+)!jsAH`4HrK!P%ePt>xlE} zIx~_*UY3k=!PZoAeh0yII(K zcEROJ82m`T)F{^jE&Wr6--d|wfX$BbkDcQw8O-cC0KzX~7fHZ`aAaq>npfi@x1W)$h&u(4xM^ z6@tQ>L@o`fk%|^@`LW~fy6-Ih+KX=5*!>5yC!CH_J?MpiWC$lN z1`;P55cmUpfpyJ}(&#FZT;nj=kFd0^eHCv^w6tEL1o7!k(Hlm^A`%G{6kY_E<_1KN zbphXYomGK$Z1w!`IKre^oEEj_~!Zhs)Y?F@i&Wi@3%foQUNrwAk<@@SZx3D z;_N>z9{5I_g`8TLw%}ep{WA;FYJiR!n*k3p0DZS+ht{qtj?9%~sk(oaTCh~fzSjDM zjJOwRYsO-@b}=XC{^0IctMYoA0n)BN&1+Ym?}|rZ2K@cT*jy%Ljxc8kl;UWr$9$>u zr`GLwgfBPn!;mEt6r>}pNoRR=TE#Y7EO{_{UCE%AW*st;-8T7;dzAF*yfFI>$9Hbp zHefXcXmj|IDotc_+s+y`m4`L)n6E5@i|^!kC)?e(OeeKSQ%lRq+4(L!T8ks!lijy} zGe_2$;AI~=_=Y~ zZK;G*M=FAN(7Gm$jaTcTRTLbM^!`_8bB*qP$J^4NppsDs0om>W@_Dq;wHgfu=);YM zC(`W)2M4-0mikfzfxPNPz4d#GN%1;SluxH=(zgGcm5D`{CzjMVOXpKJ0BPj7dG&U0 zPzyK)Gl?5H0@-$d=Z$XGzkSP%UU2U!cW(W!89PtNo4`B<_V;YNjS5qoE7A)#2e``w3=g(AVNiPqry+ z0{SiE;Ib_DDnE#21H3*Gx+IO66F592Xruo?UmYy|aku0=3#7()CH(d368h-56QeC2 zGOXO3wZ8>23MocaU(iO&D~^0TJyP&lzkF+p?@m(`^bFBzdF#O^(%4_FzxRpd)*{FX zRiXLoPz#%&kg1v0`QGG9X8n35imBsXFFIuS*eZy6FHQDRt9DvT;v468(bzjWTvvia zd@8^{iAZA#1&%H`^=)c3wy2ItQIuxgRh_ZZvt_C|Q|Avjwrc@uHwW~cV!G?$*@0wf z_Thw3ko(`udSg%zT(aGIX7~|xUsXZ3ozF1rzH|whD$lH&>FZ4QAU_vKeA5A0VyEQZ zNyB}XUz?9g-uo=Qg}IBe-p|M9BhU(c?AY&Io86&Q=e9Pmia(RWxnSwMBTqK z$Y$_z=lPMKjh(>-G23fnFHSVueklOtWq~pkJL6Z?OzJbA6}i?P?IM+L>;|?gFl6(x zZjU6DbRYlm5EF0NnSl6-Tfi`QED zoPjk_%z{dRSIs6nzw5}L{8Mn{;uYiEamKpPHfynI)V^<*4AK!lMCJs_ChkW@JkG9o znFscGoo)T!;D{=}zx-_%YZrQ)pU zCr7xaY!g*qA@@H@NKi++^NDwWE=lKCyJ)=3%S|t|-wy(pD6wBV7-fTI^^W7e2Gidh znY5>@71B?crR7zE*y`>@zMm?r(foT`y@0AUNsklkK1(?^vb>w9(>TvV@T~_o~r(irgQV zcKkVdBF9Sfk8@ROAT4`RcUYNR6XxB0 z`??s0j{#Vu^g0a-ENzc2pRFM|xYLfyHiSN`js)8&TG-5f2>AC9vviUtLmPz@9IwPV z_XbT}pd+<^<6+|-k#RXapIQ|LMRn6$Y-bEQ$Jga4_iec(>NkxY=dLz_AF5ajjqA^F z&-AM!`G2_fhP;+!GEI^^)hIolrlj+}yzk&Ss-)EN&*JUS7&!r==;it&MA08%_@+*g z3Da?(-)*d_>1c{D?yFo$s`A`S{xal4ULNl9h;@_;8BVHcY13A2Zzzc?fvCI_aS~Ya zG&L`rXW!K@V6fV*AhGR}je1#T(OhNoYf?sONh{yrn#xzJ^uXOl zG|s%Dk-5wTCi=K8&w0(Hnm%zdB+=&aQjC^u9MK+k;)aQxe#7Am7U`dTt8C>L-4~qu z)zg^aEQM|eaWhg4`lGgee0GAH;%x!}R|D7&_zi2v%Xqb-<;i<>tLQt-0*8uM=mhe0 z+Mc}5R4vgt#k4!x$z+&rx#^jHU2W#YtoW$;`?+j@#sO(au0tY-i={HaR zUJ+c?UfKKd2KaV=lmLh`B58R~Z*2|;J{0h))$OXVtr|NDeM>~J z=@fpe8B`Gy$hV%Rzml|>$=McmB3#o6r%XN>j74#L*t2H0kw<4+ab?!ljc=6Dy?VA^guOY1 zu@b(6@6GaTp~J1C%<$w?~l6Sk1qAkmQQ8>_L zBAE70qQa7gA~B;BbTp-I@)gZRhBCI}w+a|viO$GmL{)q2@wcw@Pkp-hXo#ad{V$3R z=^I}xrFD0jdHLVGll$QM+04KM(*42Zc!q5oId>hYKE(OfOhvG)mI3Q6=Pk3jy?VajC3yh-2l!RRr( z7w%&JbSEh@!~Ry8K6+Fi%5hrO^eERggIO>jVK(zOMx)<9SWoyebZO|6D04dX4%2Q4 z55b#P{~)0f<)Xul!}#bchFi@7&F9tP%NYLgf2qd(9GBH@Xu;15X)w9c>YSIpm!}n_ zwHDG9{vNbvXma@DO@3$86*$MNzOi5R7E}L*jQ6veZ3(7ONXj!g{o6K)oAPqkvFl59 zdgon4hG-m*e`1c2)M+BsduFkuOC)WdiVM!`y4j{O2OCV|UeT3z^ZnLsa282R-qVx& zUdKp6j=d8z+c!Jj>BD(JGUfW^U{BMBfn9C+-!5uN>C&Hx=i)6!hAVTYb+}DvUr(^M zOzn^*@8)eByzrpZ-)Hq?I>9xGc%Wgz26>tV7TbZ_~<-pYAfHS8rI2TeN!Y9~YMR7+X~NJ?`w` ztQQ|}hO)H%Cb9Uu`xi<`=WNxhnx;kNqrf5Gl(gRB`Uc#3x$5A9Q5)-aM0BTp#&`LR z8}c*jIze64iJQg!DF34c2yT~*z^l9%ZC|l49zP)0Ejo_*GrlB9M*i|NY(19iunyzp z&RR6-&DQ5^NsTt${}QC$N6RkT+7*@X=#F!GXRU~C`Tlu;wjGGklpJv&U8p%{ zb5Or&Q_CPGeAkAPtKVQGs^UNqH{N5-xg)d7UH&a$4V4GpojWkrq#-bu=bX5QMFzBFfHBPV1QB*4jqDuiiiaajWiAeD%}kVB8W=23JOCGAq^@e zQX*YS!_du8@8W)b|F8G+e0cqGT}o~CKKFU9b*v-YAWTjKOx107`&`9<^dnw#urI~- zs?xy150ahZCCuh?=1)^s6kK5(j+*t6;cT0l`e3{C*w>)`@jc0}-v~m`@>gEj>F2Se zGHIV0?T{%x?Z+a1`QaCG^yODu7)4Epc?A#eh{(}+DaR;1Q=MSD?N^MGv$(cNMwPCia}^1jB5R!M5JoF$#K_g zw)64vX(#@`o0Hm@66pn!QtcRR82{*J!z>^9t&$G96jL;)v|rfJ4hI@KUfxFTtaw5l zkjdXg1B;Su(*`SV)DF#yLB8I2HKvOvBINDkf`8B(OoRL32MLnNZ4YRgn6C@y>+742 zl~1Hs+w0TJRgo4`De2PRpEVg-Xwlij!2s3d;~kR0;d1nN6H zc`eoJE%Qdx-i>DhHnkER%egzVglqgP9UGa%{huJwMsr@$BR`&;WgheuGe;X_Qeijo z%z_5T(BG99i`QC~A-OUqne_rvvKJETNmCmlqHVE>E#R`$ewslFS(D>%w51wF`;Cu} z{{%ZnAjqeWIlH@Sb_thKie0Nq*I44UCOYULB{E7{dFod%djgMPNGp!U=KLR^8Lg#g zRzwRJeWK&1GO1d68=z)p%Bgp+j!rcs*07&_G{}fVjY9%NLtR#7E>$?&moGq5cDlId z^i54n+90=m2FAVPn+Hdxz@Mop_di&c-Jgj!;~YNNT6hcj-aYDHRVXBko#!Z%Sxd)) zLtcz`6Ql>!vLTpPECWT}tZD`n2QgI8vjm)k?Uxg6?umUA5%uZ~ZP0sq+!Z5djSp*L z9`!fi;`CLa`eorzbQbQ$-vX|ahMa=!qsS(8Fo&I55LgozF@`uy#a{Unu#FXhc+ot~ zx8Pm|>^f!DwoBaR=EYhJ_ObWyvga(exCNih_&sMYdH6w?a+9h0PP_)|Vi$*Wh{{VR z7XGhpX*0G*2AOX?G6y-nn_s>hE%jScskX5ZefAO3dL1J!tYIXM`N0*thxfottqVhs zYpXH>!h`AdcnMQJ0C7I6hPao|&;vx9`5u~n_=M5~maU0xJH(*DZ~+ZZSwlg!q(;TW z@Cw!<54^#fsV5*L)&B@**1@hAplz(+2U$;t%TE4p!4%tT)v9jA`TK3rFpD!?G$MMB z&)?0o#Au5ZQ2#2qbJ|%pH#LPqQ}0!*(yCO>0YOQoFkBryJOaMuTmR9ZhXf^YO{FG^ znrt-l>jvf2k-GCAYG7cC<+!FAoszVDcMRbYR84Ufyki|%otcUwAC=X$ZPr|*>_w}p zsCfA#pKHtG`9v!3#FAUR8P<`Ax%u7DD3a|;zR~{0wXbFNAGK6Ylb6`J_HOplOwQvK z<_Yi+V$(J@#^)-~aY1&;{V8e)(3;UB5i9Aawp`voTr zOc?TSKYIkqKSI2VZ~0Z&pCHLqSvkoEk?eU?zK5ks^VO0I%EojD$UEZ=KYR6j1Bh-cxG21b=-kw~uVaogp!cM>42&5A@%V9~vl(2&_j|0v$sZ#4g_{$s z4IW&$y1_W;fOrshKK}={Q!vOmw|LCaT8TGZmjJ#9dt0ZA!Y&-l`4s|V|2TugyRnIh zXVBW>VgzS(7lp`Wp4^+I!}fWU#6^zcW97>Vzlj*C3(Cx|){kvI$51Mri|7o(^7O?4-eCoKQ;`MJI8=r4@237;+ZDp%csbet8`2I z<7w}$We1LB;yE7Szc*+~1*di(nMr3p$Y_7LANujauxY;DpBOq0D^?dGTAzUD~@pvsr4m6EjgPQL;dxrlG4`zQ*n|8CPz!r>PMJ zeL7L6;A^1dtwpH6ysz(Oup8=;Iz}hIyz+Gs_cxGkc(3(RYgklaaI!&M8xYs8hJjh3 z-iw#1F2j7^IvvZux5R$(YDshTyW|lSm7IFsbf8Q#C$q3nlIJ6_19~^yPUT%uZ}(L) zoNs?hU6}HjqXD{cLvt(72Lrn0MeW(c<*=`5V5>8L?rj%-yJ#6nFDrb56eX>0Tf=)z`|vui&@o zw|>cL!0?u;zNyj6I>gbIA%PP%NVfcfueqHj`l*h7D&U+f~QsQ2|egR>d(Em$gcqr)YH-H0E&+}vPAIQdchFIR~KHK+^H zSj;BI#ymqQ1%Eq8Ss@axYdT&%jZ+4+ccgRE7yvCXbDO#k$GLiTA2M|@Hcg1@K4UHY zC^_z*0NEywf?Jm{*a3LNjUZeuYW+DHsXt2A4+z+;JJ+q5eb(jVpt*8nJny7@Hg%}Z zu!VSuv+i8u79AqHih!m>FtEd>mw65DE1;O~ni+Dihx|0%SgwhZ`94G9JOaX(506Mm zaJUz*Sk*&29Tj5~yE*ubyxAncUcF`ksqwK|h|KtDU2T{m>|CASe zH$>I`mrvPyymuyVE5x-k%ys8(Ja$yWmSS7p>`wY}U%$8_ie>HyIY(YKS6=L#qdw)f zy71cxk)tC&)vG)}GFOM3qjEEl7<1oJbt%71Zqod{v!ZcAF8tT^`8x@!OqeTWomX%_ z{RJnw+AT^)=P(v-e)Jy%M%z2fzR8b&eSKm(<@d8{L0W|_JXn)S?%;MhF-w+Hiel(Q z{^qai4hDVOqQX?H%hk)k@mKP~iF)PH6+Ux2(rWmvfv=J3PD~q7vDI)@c7L58{z3-d zqM(?RI)@x61I|s#KnRvTU88?tbD|N8cM#r+YBOf=yDQLKxNWPCoSQ6>zNsP8F-#C` zBsKUcRmJTmUsT=mdI>-d)`OZ<1waHnhQK%r=5G?^JCBTRYCL1LNcNehL}Tsnjf(Kh z7q0pC`;Ls-BW))F`9^U%_Q6BHf4%nTbk;EAf+!cU0sctQRP!N%xVnA_2jAXY8r4pz z;7}0aEY0s?AvF)*O;pT(E2a_@Wjl17S^4~AC77OW>rJ7r!%bghm)Gb0oUs4QnC=KE z=^GWSUbJWzY`@<(w>)OsyH*jsspWbiivK;3xH2!r znm1wM()}<4{kHtdiS&FPvg4Nyp@=YNFBMZ8SdgfU!}z* zpo;j@B93p1kO)7lrXO`K&Uc>5$Fb{-$j|8f;~On($(>@3(XEQQ$4&qITdZZlap{tw zNcQ(hp2E<%*L+GdCOQkmMrUqF#MP8L$nCAIP30qlZp!&L7GNjx{fdyX1z08WNZ+vO zyD$7*M&c%ZT5viVkA<=@Sr2rpRO_2n4EtV0BB-n|J0@F7;Z`DVO_mbr3zfp7##?eI z_t(WI)Q-1%G*(uZl3pv~RDgWOziPNFh1|%F=3QK*%Uo9RAvs}JdEQ#+E6zdfBCb~S zE{9h*mf7oHQTHqIZFMYv>T$l5$ z-mN9PUwu5l^W60H}`s(vS!Swv*T3^~k>DZ(v*25$fu2%1`s_1iV3#>O67>krte z$!PMQe0{AhY>(!+psNeDU8?3o(8K_9R9fir3o%ZlDC@ZE8mV-F33zKjTV{(3#KCV6 z0~B-!UWLqhAb~EHxq=?A{^Z#ELpTinW}ulfGK%M`vZ$YEhul27Jz(2!sGe-9N~L#o zt%yXZkJtOJ_Kd-85pAD_CdYIH%6a(0WY+**OPSQ{i`q7Ka~^VDgErB2;I|Cm=wC)* z;0VZdtvgIMHlMk>3&H-~QJv7q#_&_4kd)+Bf}iVtOOg@8$V-~@*FX|IPrq|UL=Wa- zKrpMBo7=2}&ZbaxI7}h+ZdB*<`*EKRw|aFpD(a6qPzR7cufTLV&w_zwb~?B@1LoHRWEMyzJ_e%niBRRy0!+rtV7TGOG|L%@24S{^X~fm?8#c%jJV zZtrrHq%0if=5p34rQU`0H@~N5iLZeCg3bNWDUm%gJFas1UJXGdyS3q~5_uWdr+t?5 z{UlYGi-VEf6B+0|L=|1j)cx`i^miw5D94~di|hjt!go#h*WWVR!_c$GoCTqxtd4nSuh9SuQ?r)`W6u)KL! z!QBepp3={sg(IX7R$UYlk44gY2HH!uX6frPXFrHvr(Z!P@IEG_7Wwx>{~3nL9Hn&FX!|sfPNzA3$h`#9 z$~VyW7ozukGOD4o0zuQ;EJY-ozZSxbtwhvK+GGAtRHvQ8?UJhTm zHHEjRauT&Uzk#kb9y0}C1W4r{3Snqu=_EKYo%fpMh0msl@sW!X@A)q0Tvbq2YWl~# zA66xa`s($#()huMIV{`-myKp1Ygo&1dmV;;rChOMcs!gafaY3l+(`zp2|lSV|KK-NpLo}!pm1YqMiPrum%z%42v zO66H)mhflQvN122XmP+oZ@dHXSKu()W z6nm=`N^i9V7Xa=C)K)B6a?I_5#ppb(Qll6BVMuWJKA36g}$@a z2M7vpPL*(PAs0j9hEd!n$dXL5^?xFuQ%FSO{w<$proW)29RAlrgC*t{lKAR;Q?sH; zV?=0oLWj-9%9vubFaS!{3aMT}V8e_E<34Wo7pGTReJB|`VVn~vp8?{(i$2}vWZA8< zLUyp{PK`QN{P8dmk3U`E1DSB#&{v^~MwWk#y?Dg|XxAfMmQevBq`G-+i)g(Nz=iX!qD}h8ZOLAHUwg@cm<#8Da*qcwS zKzhC!=3A8+dZN65JOIpm=c!SQp2#UxAccqd?DjLt$ED^e!1K7s{1h@%A>PS@5C^a8 z3B;VTl#fkbp|(3$SWaqOPyv4dRh?flj(x}_0Z8ur|}q>^tm&^SEoKM z9BeA7J`{$ASIgt2&y?8>IGhjrsOT}fl`QWCETh^6Uo?2N|wJ}^*Ump+quIHgYTswd~s1L;bxGOwnpA(vrG|t`U zxeQMqC9pC#`)Y^JsqyPWsi&5qSu01Xp@nRbT<<_EJ2>4(rZtI2Jy@(>Z#{4CCM z2S@?1XHUz7aMkIG2|qGy zr_P%S3_ipL2!B{9?7Z)W=%0LuY3rL24#DCZXSqVT#ba7ssW|hqnDp-PTO3qpXq8hv zAigCKH6R*e8OS-%LU;bLD3bKKuo^)<;Jcoivr+oo_P$~o*X|^SSX^F%8tZ*zBvoMm z2kOgF2QUc%7C$A46fVQg@g;W=Bln_>Ht*@V(!{Gy>|d*^QHS(wYdF`QW%#<&kv_=) zt6Jlww{+xqN#4@=%i6uts_i8$uCXlS`=nJdmNJ})QZN5qffbgJ@Ltr?*+HN*@775^ zQ@O|ZqOX*DW8c3}*8O{yoj05c`3{q&ls*-k7sX zX5s%ew~3upC-76;>!eh#_O(L&q`Xu_H6WIOjr9{4`Zie`BfrA!h~Rpg#-5MS%NuXp zstZVc!ou(JhAUG&wcBGo*;*u=vPvw~G;SvG6`aT!6pus<#5cxR-HYMVagJ^B3Ik+h7PNN56iS?hWHLJ;I=JdHjZ?m1evk>!1s!wRt$>+dPvbeY`*P>2O|l zm8+#_RRAMo<`k~Pfay#-kokS|0@h~Q*$T;xuGxuBEPu#mVUGQlt;8FheKObl7+H;e z`H)rUn<4{UcYtc617p0|J*y9%y_eKrD=#t3|Ev?PPLGLhq7qISP-y_vss$xM;V}Pa zo(WfE_3D#|%Mvp_U_roU!oc_HQbTGzh!g`U`we@;#<$J@A!Z-Hjd~am&~YWstVgJV zQstXRL-3t)2rP1Dk{x-GC#z><#u(t#vc-h(MI}yc)Q)K0kk-31aOuyfo*b0Z1^dgV zWFn+!4YwxfKUlZVdep8)gJsWu`*YYU$jblUJ^?;y8R!E)pQ2M#E(&!uhy|Efx{yC`0Oh@cMONm86 zIR_wpZ~uS#11LpS_y5HVSa8#x8FH)`mxFKhs%6SX$uljzmJ0OLvDO^u1Nd40p03Sa ziv~I)d?zW+sLp~M`%7Tl05c|B8RSCGC%~eITEM1Yu`2G|tr~gAm^9Fef{q2!7|XYh z9BRSD4cjSxneX6e9Az{Sy?a>!e7nX^rHG%t%#qATb?}|&oeogycxca5*46C{_dlNnGnoyJ{_D}c z@Y7Z5N#HIlxhY1oUaRZi^WfbG>Ztvs0Vd}#weXx$w$(!^u0*tJ1tdQp{{MUkhLq5`Ts$cpKwXSbzgE|?1rt0?_imiS-9h%A zIFWkj0RW-i25cLOaof_!0}g0-OGJ~`;T8DV1@E*CcDtfc09Ik1u{q1- z{DsieWhV0aS%@|;&|&L8>Y_o!LoPaYh&G&fna--7%q1nRIN>|kcg(Irg9t^CDIa*1 zxPWI3SP~YZ*SPG!v<|wQ=Bf1|Utm>%cDhPJCQU}0>mWy%66*7`U!?iPxVVnV*Bn!p zH8glDnbS;VV|(AYIe8w%C5s(X)Y!V|o17jTz=G=@OKrh$-oI`8_~t4Mec<7r_Hrmo z*hxT~g_uMUmPf`ZC(zjpJV8q7w=!1gKa{$)1pkP$jkJ;8Nq4u=A+}j{emNtWSZUba`o=0J{J-GMQ zr?8{P^CJ%>FB$yW8oxoDC(2DB6?*lzyxR#46)_?)$#=*MssyzkUX1u=WV!qy+{dPz z3{x)=2tHYB#Vc=78bGdG)_Bg~R~*@7Apjk#odfecMF$EV20Xlh3TQ$gm}b}=-mamQ z)BCT_){Q+SIki8P+gcK0cr)bSX7fQ`_dK`?UZL4<{dLm6dzLn9;b+MdKUFCZ^aHck zdHZDtn?-MYpS&6V{ogMk>t~FJ`{+-8fB4G z`AlH#25EoRe*jCcDsGjndu9(R(3`R6Ou6n{nDi6L&h|amUC(=VlIE3O=B`0~8TVtn zY?m{vD^ot04MP8r*fnR$Wo>}KQ#iNa$#{FW&fv`@Q*v{YT;)>lzN5Py(riD9NO0hw z4Yze>{JlyoTDLyhkg^~tE#H8Doe*W}jqp=z@p#IIN^jD>{;k*}eucj9_mP^hey{LW zOx)(3LNJ^-C;~{uA{c$dOB){5$-0klhs6b_%xA*B52#2rXi z4#y>;9XxpqgO^B zuUygo-euwQV>nE7pentG$L?04*l|Bv=+<*qt{eUa6MA_ped$Gs+dflHr(Dc0n-Ki* z3F5|2!5AqX1==GL?eGmpP64CV_wfmIak!tGFc{4DU|4dmm=HY)+6#B&+7an(N6)9+ z{~gB3%~rk^ch>eOyU-|t;;N$ZLQe0?3x01L++Wh%(xho03f$=XQ8KX#7(}*MP5AkH zm{1Ca&m-|u>o=+B>5&I8zTK@!9_?ENji&7lIwBKsFl8p;P9P@!FrrOgvRy(+FM59Z zcy=e4kSLDSOygG2T)_2kYE}u@tG?t$upS^Ohi5dpUzY7q->fS+FiCRC-d3_QxC|Od#Q3hA#$J<;NDcTPBSM-kNhc^bFL(11)gGd_4 z(KwCj z^V@jAxvTt``cDr3{eOWmS<<1rAzNQe2-`t%{tR+*luTw2(`9V5-RGy`}m7dfLI z=-ysuTS9PEZxAVb!JO1uPoN7bTAz^O0KN8-caf2iSc@|ZZ=m#s^EQnK>QC!3hCW0iWuXOeRA`3jJa)#Mg zEc``5W@}=z^re5AoQPstf1_ThWsC?_6oqW-OkJU*htdM3pFLS|%H0ETW?fbyl>Xb& z(1mSCoNP!y1#oRzQCqTl65PB`yQA9POM^i))V_g4B<0z63f1Ele?-5K@!~jwU`_3q zA<~tFhXF+st6f%mkeU%H23rkGzjO5eot0GhbDgN)3;Y*>_{<|KvedI97xXG~@_cr3 z;$7>it|ue6X$=R=h=c`889xVD?^f0up;1e2)!3{;(RQoqF)t}Lh1B(e^Q-sfgX)a9 zNV>(bnfIwbW)gn{`Ok1>PVX&19hFry8-sK)xt?L$gfHpQQ{t>tumtU_-i~O>+EFKd zbIBZMCgN|-I-oJ=|3uI@X;Ru4i%lXM@(NsGKXQHf{zzE8D!xriPo{Hv0_s4&tXB7f z(WuZcd`ov30paTJqlPfnu~i@%!@YHmE*l7CiYtI($OaSFA+pE1+-W0y+W)5c|4+r+ zIh7Aij#Tt6+_m``$%Ld%UP=mNxsgKKwR$O;k-p(SlVu?TkdF0I83s+!ID%) zrE<)%*7k2pbyFc6hOAfs1asrzfCAD%lB9eEU8}}d0x{@o8=MPhPr0$jEL?Py^bHcg z%{Wz%dpO5h8$5ip3disze^bV|(LII`N_v-HKYvCWNK%X3eUtq~zsP)DZs}rNFXOuG zt89C(xU=%yw6obA;1dDW-K4>)-O5Rrl=vpV99y763&+s=p7>&4Kw6>h`ixob<` zCJIW;o6_E(ik_=EU|OBc@5ad5lCl=)5M*8YG+)_BJU;k#@ zw-Wqoa3Oj4>vnlKp8Gj#^`je=zTE@W3OLaK)}*O|mlNV>*H9MY`P;UIm6n+_Xx+QQ za?c2-`jf&{l&s`mU?lLeH=O80L>br~I5^&?nJ?41Vy<7hor!bZF`75ka{MdbU%q{w zbu8@tA5ilBBpz#_S1r0iE6*SiD2~q(8?;e&y6D$orei-cd7ok3E=*U#(Aj|_@vkC= z?N!sW(Jg9nd=|5Yia(i zpMXM{CahSxr8KE#mTT<1Jiu7DC|iq}crCnTxAQKn8`q~>s9UHj9m*F#I+M$jwvZ9} zYMC8zbPKipspt|2=W{0E7`W1K;kSf6YsuW8V)deqR)K10bcX(RC(%xsyjGee249u^ zu$`7hz{Q_U@%{wv7|k+@;wsJe_a{+r^b+${$0N3su;HWTEJ0au##S%e?me$;uQA%G z{8Z8H6hDXm{kZjRNpr)rbL(rI1q90eGC3UR_Anhe{J;@+vtqH z!I#LPesi~?Eib38KGLMGkJdf2Fr0EpqsD%FXlDD~Qqua%*REfe7d_lsohO)dWJl-gRa{1x*kq z{(U&*?#=*jx<$(ZGHb@asP3O(e2oa=yX$)Lpkh@+l44|w#!l|eSy7%GhFDp&U6etfI&n`r}(%zUqG)w90aq}aa1uN?(aRE4b88nETA3pl-^B zhEQ{$Re3kQj7Pz_W7*6g4yuyQ73gu`ztC}dt=@_Kp)~UQdhEFe%%rv8;^0~8qr?ln zUALcf)w1_7FN)YsaZ2;r^vX)-)D?y|fU`m^SvodHhR<$!93}7KmhM{4q?dG?0mG7*FO3RGJgKcwnmD{`e zDuA@&qOiRu+~o{?A~dwk=v0Qt^$c_?i(7%at}ZWMpyrjengcE@@wK}35g1U;SLI%k zhZ&J!ehny?tev6b`RP@gU3!@_DoMIw%fobP^ahSv0zoHm+(X`GEaokm-16jmRRLPN z`*pVL+8HA{tqa-qm!KO!LqMQ?k{3E4C!vG!_kI;kispQlsMb$?5b%_UN-x`YFab=S z?A$6D$tojL7&0AdZK$a$Gc(u;)8zVd~n)X5iNN;p}x{d03;mAWoQ zMQlx-)sEDw2Z|pbFYO=%+4|17|0cJ0@!~YRiMe9KO4(C~Kwl(6NiY4L}L>f#T}@?657tDQ={#-rMPJf~9Ir2u-q(7nj0-Xr}Vug`yr z?>TI;syQ%?k5;$DdG||iCLVOV2p`*}1{W|yJgh5KwjE-v(h*21nM~~_G&$&Dt#=+N z?@w%VX4MHeYAC?^eJ^}&pHvpo{~l&ONPX!>@jKp2;shnTc`+oiO$ReQAts%?8@0`VW$c zcVMQxs^FoC6TJ|e@LH`NQ^QD%B}S?&dnh5+AJS-Ps)g~p1wSk19*5SsMRiSJZc~2w zfG;%uPdHM)ovv(BQ&f+pmbhp%#(V6i{lYd_Q`?qy+pLEAT&8Iy-ICVsy)p3>Kop?m z_38W-$Tv$!cidM(SEbG*#@G^L4x54H?qk(N{vT++w-pOh_x73J)jD&;0ZLsnFrIy# zLt{!v#Q2qyK7b%7*n~!?z3sc=SU}W;rEKiUiL2NigD5VRU!x&0Dq4Pse0t&5fI3&( zKNX5UF@$-+T6oUma%%6q7?Rt+dD0JP8*UE^_WT-dPB7Mhd3~WjwET`0o5S6ue=VRj z1b?8Udayg10o;*SOi4-Ul)_!}7lJ`-ERHM9IambiHtolRzR_H2zuf38*@D!x@i1tX zrUv>-h;+ymM&Jk2zp_=w0ckGc*0kag4{bQsz0$XN)j_G>=j&~(FePy3-+^&(>KO13 zVKS-58rd|o4fPQ4$|yMXIpB4M(btE3_!qE8HHA=Y_Eva!vB`q!_UUbBgfG@M0}cmT z{mU;353(SyZU&DZMgi7%3VLBO7@Qe32zm61g7RBu)TZ( zpp+oVj$gY6dvwd6s|C5alJCI$Obk!du_Nioa9K?i-d3poevVW)b*%tl0Sa*#kO46H z^yWVK6k)#L*Njs}B?#uNY`_vv2(**ZLUjcwtXgpaD!RW{<~@vgB^skD-Il3QcU@!1 z2bbL>c)QCP`RD7k%mgeG8ZXTTEPYG3s(43SY8*zLVOWRTTTHmTRHs2s7$u<&p32=z zMKXs1Gc%Qxrp{-7vJJf!@QDedRvjs$Z7r4P;R9IQ%<@PDubH*M4dQ1R@@Q2_q3EF= z_VAgtYOgEI{A4F~4S_u+Ot&P~E-Wec-_X^4pvxk5(`zB%iusUpkpw}jUL-=j5m{>r zLw`U}q2bH+9H)7*fM8z*!&xA7{CVjbsU*f#FC3Bm^>#FAJqpnEQ#|Er@aYhHVr02r zbg+m~&x;o9&wRi(XL@7f0SFpv)?rkS)>_t4wd-NJ1J*!sEc?VDSHGCNl zx@htSKkED=z#7ok_ig-s65O_YkFohu$-oBpExB2zA`f|w+h#yap;@j%W7%)oy?x6v z=Y9}H5?!u*y>4FvxR+dtlx5pK-`T$50dzjS`Gq%o|A-Ql#ugN$koSOJ{)eX3xai;x zEu`!ZeV{u-zwqy0AZx+Nod0po01&8uo_~?j9$y|rL?&{vzn|B9y$`TVn6Gyf?o%p# zv$}*GFh^A^(EiX!NGYBt@4^z1=uhy^HZ%G|!@7kB@w^)!rP~-c_onT?NGZdjt@ox} zhaDE20w>Xg$9dJokz@5E%coP-sf+CoV2gqoY46U7Ly-$=z~WA6BjSbuT5VNYRf{dA z_*z}-?l*LYS<%6^S0Jm&G3Ai9-ZKH>$>w=k%6l#hKjFHdNjFT90=?C< z|5gO2y6M-FrX)qygPvj^HiNj-{oh4|RgQ9E?Z4aeT|@N)%sJ|Z3CdE;MTzpNXvPY8 z;_l6Go}Io&k317ND2Ox@EFxMNMmCbYjB0IZ&5oe{_B-V4H%~+?1V1D#R{Z`zzt)y3t%~ zJ#G@OqLf=8V5|pYI_iQoKnM;3Us;i$nZiqO79KDRC;+x z3Ki?4$EeOAb`RcLL~J0#EMycV5EY7J3EHM9L3S(pVdNSAU7fr46sa#Et=vp0>cYk8 zB_!v@y4|P2I_f9r`FWp|<8;9aqqk1OPN_jAXU0D(z`1TXc9iCV8 z#Z)wFDq}mS<-g@t@orukGLCJ+BL5~|cTm2|;=}lpyIkg&XYE5am+D@Na5p4_Ve3l* zmJb?aDA7Ib=wOzqOto7$p*4-q83RYjJr3xXmlPhmk z<9L5N^KE#F`u{v)`wUae7u_Wt=IPkKMcbq#troJ0-`t)Bg&_$jSNqhSQg=0^_3nld zQJ___Mw}3CYj65>JkuVg0iW%UYUwoV2hGU4WruV_4)es=Gnl%sZUW=IEjm7El_we# zDkVH}f_1e479=L`!mI-0?!zeH4s($H=(&i#-Fx?Haj$=imuOZr9(o+zZI337MpER7 zKfm|m^%#*vhXx+u9rx#XcZ}E)M_6?hnZmnwxDEpf5c(rd{Yc}C zE|dMp9y8&qzxF=ot>733$XO^4$?=_)EAD3L2W5MoBkQn!;eM-0rO*7GjH2)TVnW;5 znFbzOZrQZmh-57@W5HWAJhT{FA^XzJb`2x3b@}8ai+2f9eZ+%(3y<89JG{tx7K_jn ze7W3A>G~$Hb+^ponX=y6+Gx?9;dBaZRkP)lsvqPH{uuI~5noE1@LTLIstr__i4``V zQ8(i%tOe~}$EBN;3lEM+8E#0d=vTR<=XcbujFt~s`OX;@S_-E(7Z`P`6tRdD*Rjg6 z4<`2pKjJi@1aUpSaX;=qio`qI&oYSZ8yrLb3!m5D z%VXwJCXZuP>=zyDJYD5ag+_|O1Sp}8+Z-Ylf;774`seVNOR9OX9kqPbZG!~@OFq2~ zIU)H^E)%3TTJ$LmzW?$#Rr6Dz3O3@d-oGeHL6k~v?&70ulnI@0;P+)Jm6NQz7|f;t zMnzRt{k=A4e`jJr*ObD@LUXSF{ZFXnev9RK5Gee#kE9j*>#VzCdq%9P$fG~^S05_s zU~sMgqjO}W>z<@iYuaL#XY_vEe>OEoXK1^})jg>o zh}QRd!|yjS+xS#`JK^9P`!cjIYiiW>-ls1hO-kC|wp-zhZ;@M|lnSNp=o3TRs&0I# z%s9$-S)-yOS5>3>!Fr|qSh?ar=6c|3j7g6~l(-TDXMG>p%4*3-U>jNq#Y5MWJ9U3K zx_r&k$fWF*L}bX)*K$;5rTP26IlXO%m>k}EU3r=zhvk5k-%gL7qj;~eRJi`SYUf^e z;C@qoz77U^o<2TXD>}W8U?8ayZmRnp*zUi*D@M?TI=EVdvHald83X5Er{ksak>w$$ zSDFHmNUoxzZKuBiyT9&~pQYZ3&Q9#Us~pxHPnghU*^@Yai+;Efy@0;Zm5G(r|^>dxBYmz)1Xl8Pa=KUW9jB zQ;=Do+5TiBV*}WQ%=2E^eo(Z52$9m z-o8%hTN|aBIBIG3^oHow&FJkW&VDE3ipg87=+bQtG(I*0u#s67-Xi$rS9vOnd06?WmN$V*ni3pgf`m5{&$49O)$I+jMMF+LyG zKgwq>Y_++PUmio?o0?zxKRd3VeJ&9At@B1>j;hN@RmL~Q;k_-=gPMmUwiJOek6%gW zx=e_+XrGAXHObYR@ z*UPPysKX~Z?OO~+mPWY<(pOd~yD9BP6@tNpD#2DPYn9XM_^yzjpG0S*^;Z9tHHhr9 z0vT0$7aT7j0F@Pj-WISW+}@m{&7p2 zOS^ARs*bBdL~$X)<#bqA#UoBVP+I1IY79`i{bc+QQ3j6*2EiNMq4tV}y@+TX-FB5> zgupLKdP&188}+T>NlqSjgU~Oe;GD-+S3KLgDk<5tr#KjiXGX!G_Vk&g(>RY0i1*PZ z&73m~eHw?(L>H}l+zBRoI-S6Dj*<2O(f`0KEBU#%vwOeDW`l+ExqX9b$9jg+o+6?} z;1cf~C?A#9C*OlWMc{_lIuBm2lfU*#-?W;bG3$&zZAg%dZ!kqn;ffGZd&$R5r#42P z4c!yHQ!e1tjWd4_@3`F|>c6pDiF$L<=N69ITjX&Q!Eu8E(l14KOP-zjPBoj$Y!KAB zJy);-l76z84sC|GhfxM`_eU77B3?OHj3lOC9bI;_=~?FsRaq_HgGt1LYJwdRE4qlx zE&TT`E0rq_3{h=X&slY#D{lOTYG1XUS~a{0qxsK#WE>qq%?kGttU2DJSi7oj+4`)+b1tZ5W zPf>4>o<-JCG-)Y98<-GebngkN)d5}u?>r}G)1+|sX8l8mM|+(k+Af`HxiAAcSaV#@ zZkN9G7dXXz_Xg&C{1K^2S2XKSOs zJbNQqma~Q5{VkqJ`1T`~c*}QKc?`=ruq^7N)}n;p7=;xApERXkt77TG9gOXOB^~qi ztJ_kYz5}0eRXve--|o%+gE2p3olNAw!k{wc`NX52uRj9WQoCgS{NuI{jeid}7uc)c zQF5 z1Fy%+R@r1*=Sv%vYP$0b+JpfG0A>*7QE~w*vJqAZz75UeLad}5A*cRS z@B!9TBw|x*F2p!wtKh)NNZs^=mTO{CB9+;;$U$?Ozx3Cg-ak_xvV?`vArT$w3dQ;C zBWN??qi!kUav^-GHE;--oP4_LGq-YdgFMvjPmETIw#&@t5gw7q{Eev7#cUQ zQa*G81|yI)vF>~hzRGC;4Yc_m4ft;_QvHRIOCOVAjNvtg+oDFdq?_;Qy=OrY(~>!d zja_;`ZkA_Q=Vbm-i|@7O0Tnsme5Y@NUdq2kDSji5t)bk8Gx%) zno2KdBiAZ0Xk1ePuU?rKPNd&^_z?Pr_l>5)HtjeXs0X#@$~*93Zf1%-y`%!RwGx;N zNGB0{=VQ^C|NdsTnOZoZO2~@Z zMoQ}caRKs*NG>@qs!K)YKf8G&w0ZDTRJ@u#P{Yj1$`%wJ-f2b>qTZ|(Jd$O%^(7?q zU9pTeoGO_Peos(L88PY^qGE2QW=>d%NWO}roLxeiseQ%`r-*2|6&)ljsY!*CuA3Yj zcqsk;LFtE^46ixo5-_|NJ`*289~+<3yGwM*qcpg=Hlr-&&#Z2bnDqKQlbnKdk&>;RlX9F ze5-&wu3<_p(DCYDjp#RF0jS<}x4SyWHNPR6x&aPEdpoZtWL z@|5XKJdJA76gzl?i;K}_s&d>ncPtr-xL;Ow^t+paW_QfQ;tcwE@{qZ(p`F&HO5YxT zBS}uw+(qmZvR=%)kJI+Wg~64(v-$1;nMOUuwDm(AfCL}WPxXJGqk-Z=oX??Xv5kL`aN$EzsPw784PprR>Dz1Y&(PN6(C z&ZVG9K3BIefsyvw8mdkbHz_K6deDiVEU+I*e6=)ME7)9vU4be(wQZ24KP8LD ztpJ%!z4$x6yRr^LBNn{1udN0VgQ7J9DiZBU598}G(&}S#`TM2QsoMqOzDx{Wtnn&Z zm;N|aM4J#OJRPyH)ttN|a-m{mixqE~>IqqDI`v~JNL#{+RMmET{+yyqT>N#A9=aH$ zt4{jJHr8F|YRzs*>YC7suke>HKu zz$dk9#w^E~{INCJG7Pi&+@#rG`9khPkMakZYt?blz1MjSW%ALFcfH7c=gabZFKsN3 z-q@w~K5Q8--C9ItM$Dj#~c*+Rahv;R&*u)a!T(O)}o0 zGw{VuUK1TRU!VW?bbd)>>bPKsTXAk!xn6&wu#3{BSaG!7d_ka2;3lY}ox12lBSp1)D?Xc^eC=oqub(h5F$ZsjvyfFVODNrsW>&>t|=fzbX)_QPcUb zl>Ec2ha8f+7YzHv(Tlk^KD5T1&okj@pY2>sj&qfuh;$p9P@fwyn&*^ujI1ncDj@vP zP_>7Q8znaxSVp4G@O_SSl9)`_r8A`*`qICL@x!S|kL+n$E4lD^=X}ED?*gab3$DuZ zg7!o3e{NO~t={P(P*y=5VQ_mLRn3Q(f=!1ev!U8J@lw2P)8*2XisxQ}6ZwYGO= z0D$%vK1RDhw}j1Rr&5d^H~CcVrmijxkNKF3xxy_*=oex@%up8iBiac0K?6Y* zaOm+tP!|AHe2SNkNIkfs*6w8jtPSSt|F)}hFM%~e{#9#+%uRs}U&vJ1DKH8w1yUUF zwmQmyi-jHfg*pH&#M@;zT+h=u>)QTZ&Bqr#;yzj)1s#?$I|`e>Jh8126nw-Q>GPp) z!DX>64U}tuNv^ZKjnrub+M?ZKxO+1*Gecma3;HaI_anly7XOi#g#(uk=+1j5pkmGN zAWyOdealDt#eD0uxekAPDj1>u6da>{^+=lvhKIxngs=JW4(DH}#s4buwO6BCsJv>n zU9%fHQ!_6}D53`1exd3$YOU#09&y)P6wjIDTbn}M+L2BiGRxHpZKPZDMqLmuZ@u7F z{T{UDzZxxyFTcI^%Q2wS0+B#A{W7~yMjPm{PInHDjz#&&1NcU-ZLE8IbV)vU>nxLT zKX*+^y?XEYx=`1dNZs|8#4cvqAud)TguS7@sm^o|b0lgaFeNMyB z0*hOpstUYW_|?ul7F$25iaK}83P^s=l-@6g6uoHMOJw$6bg-nAIf%O}fokTr%#wL| z^XacGO*8wU>d3~A(P#qZ=B_5PXz-%|8Ar^_^II(~c57va0wfeyj1@{4o79B=W%&o+ zbw2`oTP=HaA?E9K9aPwn>vcWiK89~rcX}QYUF9sY9yK3rCyNcOg?z5@Lp-8{C?zRA@fAxkQ)5i9R{_W=*F8otz9s{pFP&d7YemYg ztZ6nxq#97%&FlVIf)Y*qh`z4XY#;*`9y4cKJ@sLFUL2b)U^k)L?q1;p4Wdm?Tv)l& z^}3-?FQVql^8>1z%wl>y>RIv@EWzUst%H0X#G+JLG+AZWKB-f|w}jUsF729cUshcy z!?(KBS3Bwu`aH}|hZ*{zDTCQ~qbV*)DTvk*@oDxuI4078Lt~O!nZx5Be3y9#yTK}vFnK|nyd zr3aWHM7pJgA^wYVKIh%}o#*ilFJ?Qj_g-t?_jO+}nCqB#ZD&{(B|1`qDm14nEnBX+ zD_Uh%kBa$6O7DB0_wd)R-@S~nVc+*oK8*_2$jZBABQKM(QyzS}XFz#Y2m)u1tnZy< z+MecW6b*<+OyjodDvORfz#zN>T0qfd!@^x-bs(8sT3Tu;2`Jz|kFziN$mpNu_KJv% zwO_h%fA>EKM|3uAQkCT=_H4cK*O;mUBDldxJCOuH_U}`f_T-VC=F~aL$KR0QXu{Oe z9c0e}3~SX6w&=hwt+3$rl)kw2-HhXid?U!<%IvCzD@ImuCJ-DyDlB_xXB_dTX}B z8n?eiHsfw;XI80 z##d%?kD@rGhiAb0ZSf=eNCP!yyTl5-yXFr*(C%3Yo6QIq zuJp(JAT-erh+X?Oz1S}(btH3?9lo`ioLWY8%3L6PnGGN1- zQ#}JzW)bDzh%RvdA$ZJz!91v*ZsNJ*Zl}z!PCo9M^np2Lj}k2B z_;Px)46@k0@G+kH-8v;>?PKVon$l2ZW>!HToU#3N$z-?&hakL%zyA4msZgVZ9XBht z&xt0_$F&Q`xf4fq;-8I|99t-!+Dh?(hlSpUXjc2#doL{oYtQH^r0h3X29inIqEh9M zr!QEW-Be_aoiTUAU+6=g75gJfD|>G2a&y9rV+k6o-Q*2$@duMew?b1w@XT%Rr4wGh zC%XDmZ$T&I;UC0CmoLEyc)+%5i^(=un>C**OC#MX-A5gfhaisYq4%X`E&IS*OnFSS zRSQWD>`DU*JE6n#Fav$h@WVTHS~w)qFU8vu7oVqskJU=xffS>y&@Z5d0tBF=1`u_c zW4>`1Yvj0s^Y_!;r6XRM5wQo~v(IpJ)V|nawF9ay0wmNW1BqLu!TC`E*@0u$S0Z`v zZK=(LdE0lKBU*JA`6Gx!&&}A^7m0FtM{t(d*2&%G4hTSSSyn*nu!~&rKLK6e`2F~# z1iiS-W86P|`s983%C%J>o7zv{vcv*=9@d37^C2sI3Oz>qznv}j)gyHM$^Ji%=?KHc z|KEp@OW*PQF{hjfrxib(kn$@W&a=P5f&ql{?u|$dg}8GtjgiXyIvd_$6o8+H7&4K>gnnGy!?6_^U%7{I#QpC zQ=8#5zfzwFQXYtz)ytDf`SZ7M1mvRE;~mQx_1IlQYxFybFH1B>dba0xMiG!}J^y_~ zrVp(rqVx{o3^i@8vz`3j$W)mSNfSy;hiUpO^jo)`#zn}Lu4M5}Am37(gD3rVRtuuY zULvR{V+&odLw5cBq@hjvp=eeq(|HpZ9NS{rm=_Z@KZP7Q zt*Lo4=j*b+gIeBv5?V(X$=TcL9p~Hf{XUgYu<}9s z+Us74V}{O~hBNe>zN_MGY#E-@>#GmoZO9pqun!i!hz~lK{S$B`B#xY;9wu5WaXHEm z0HLTrqy>1sr}?~pU%DD*&m}+j1dM{3=61J1&|+mp>G?>iYxbo5z00H7YK6nNC)q3z zGx4Bf^q4#nUUH ziu{Y$iww1*njd&Sf@T)q^QX?fLw^+622=K;AbG$}Q~(fr9@ozbP|v=IU$&D1GWw$4 z{dq`$0u7P9AE-TmQ-_ol`v-6sunR%35LL|sf@RhkV5kdTU!?BU6f~rArM&Al0UPY4LsRgBOxl6E1(^t3E%9q)A?zlle}B zbN5NvKM6?n^;@P0r&3E5g+3|e#?9h%}AgVp~0^KV}cfBa06oDx|5b~Gh%+cRiZp%3Isp;1m&)pRP*1h^j2rwfxC3KOSZ!8 zqbKLB3w!J@C}RA6pa=hE4Os%R#KwoWUR=P&4hYAKB>{mL$X_JbEmG$Kwt#E_vc>eRo7P7f_61E0no23^zd#a^T{X=@_}h=Sq!lMoWCKT z0M$Ig;rYTlbZ<4M3FXF<(C;J8L*7`nyK*f*K#ho2G`_I{0Vdx&PL_VxsUzK_v^uOt zhrug7B%$(shqH%JAdOk}ut!;{xVt7Qu`sFK)?19&ureXCLETp6m&$n1H**Ox08?;W z67S;deiUgkKo6~_`xaK%R{ABWTAay)Dg;nd*KZ#NwP?R)2Lr7v5My2zlYK=|_1h@P z?=M@xn|k2KxgZI}6;aC9q_l!grCt*)(8D@zTfv2hkPd@xebs{#@=1fHKBG%kpIGDe z_HT2@^E8warSs~CMqAXHC?ot#(5|Y4n=N`C@oS0(_MMaDU^seM0sXP-+Wp3p(X`S=T+U8+ ziwQx!?mkr)s$Sd^E|Nn8Rus^|2~D-F_J^ypo&+Jt9>ISP@IVNpdp|Zsv!o8A@UA!N z%soG!O@Nzje9pdA*BB(|EzN+Q8F061q7EgKLql&ru7B_9$_@l8*T3s9TKMG+YKW%m zO)tz}I(wHS~$SqF0_@8O8Gvi2le5 z6P1s_NCsTT2DuKwZ2|7VZ!g9tC?&1$B@lh|;FH(oESq)zr)Zqp+S>KSb6q*6Rsr4i zoGnyHBuNq%H8~i5e*xu#jRiI?;Veb0y*~^%3+(KayFaFo^Nhl9^k#)?EGpf*T{9G0 z_nBg~?d5z3D#S5Am=dVLR1Ny_i*TO0FaeQTA}RH?jN1As^)r^G{cralIr}PXV+Zj` z{%#p}I?$NTHN{13HA09!%Fb^fOjFzm;&qos_na2`2+78Ted>USXGqEZ$E|e({~zX& z75pIy!{*i?{qZt(WLzzPPX_G9E1Knd(JlU?im&8EyZ;p)?^G$L!K#L+a*=}+^L zit5>DDmB@*6UJ;qubEOU<`a83CkV0ts?p&}ok#D!w+C2~%mCY&=ZyL4I%BLj1K;Y9 z0drQkp&=bClUQJpU3;PIf>G43; zP_+usJgy0?cS>!8IY?@32FOC9X0FQnQ_ZuHW>9;x_XAXBFI%msHirsJL`TE4uH2NJ zPFFL&*WDu*gWW(lL!ti|*rqLjI}Z?{<}YLK<_yFR|I^UtvS7=h`J^_6tDR^Sg`EYH z%RaH&Ok~0ZZ=9FTE{~ z={8SEo3u29aWbOK%1#nMNfj%WH8#7IUtfY4X-U6z&;{8Lk~LEKU`ImagME<_hG_(& zxQ`TqjI6FI=fz;`{$=~Y%M8G4J)Bui7KXf+sZj4iXr8cguXg`U_C8h;ur~Q%%I-P4 zApew}B)*V)F0tOI^12E;NaL+S&wKep3wDkB%%y+sY>QLZmG!Ss$cTHf3vf?wUt z8r~I+pW%@XtZmRXAz@qQDeMVl*oTYntvL!^y%WnV7O-(1+&0Xf$t#GJL~MV81P^*b zQW*YFSZ}ed^3;}a2wUmoCN}-7x|J%`DKgAL0t$YY+1`iCH8;|#OOX6|gsL)|(m5dA zX{2+N-^X`jxYA5l!-wJQ82Fp?F%ET14|aS&k131a2ve7VsmW(WkXNz{GXpu*`4_-W zwti|?x$XG2;T^m+<65FV)>C671cPp7JpY)+r%iokFRI@-d|bzy3d7p!AzXAB?5LjP zkqUA{ThH|qFN&T>+I<7g1v5K#2{CAqB~9SEXZAfeR{}DIPXJh@J|E@~NiOBxv5v;7fH1K~|{`WDzL;wH0%_mF`a3J^>R<_sO zX7cM&ivIlgMp>CwIPU=dWUa+Nu&Vt0FTF>m;ljVn0H)lMEC5`3Q|@d5>n8-*QNing zexPt8-Ozr$BK4T{C`|&%H>F;bFeB0g(A5q4lQy95y98re%hslk$N%;+$hibYlwg$s zS=ymToI@=?s5*`*$U#vu3ay8@SldDNnhU1s@drWz-Z^sA!R>6!pS zsi6lA=#xe60>}(3JfNKb&R3s7kCr{^JoHa$$rOz-K+;R)NUMZlI_q|gZXr23mtb? z@*%9IE^^_qe-8Oc7jn);t|)gZ^Fs#t)pe$hX{E7aab8tY^S>&M61h2X0wY$8zVuAw=}=Ge7xD zFxo|nY&C`mDl3@7bpiHed(^bB$5eKR&N%=Xz}ufIbxN1vg3PHL2S46e=-IEC0e`4> zbsvQ_sc=8DqpT!AqIWqsy?&*t;V z`hICQ-q)2V@d^8?i}4*dV5G#+r(5_2ZAWtnvU|lOBoYn}54&rULho{Na;g`GPX8Sd z7i@eKj(u=%32P;{>Iwj+J7U_Q6{VNu=p7)InMct8CHKvj>06J^1@L#d4*Cf=9`$z< z6k?Z(3<7kj%Ly4;_XCjr8{f1Ws`Sg5nKnH2(zcI1(bsY=;tV(7@|q^o#EGI?hf{;y zMDB^tbIO>-Jt>hCMy+|IV=j$VdA9rQ4|l zCyv7oI{RrE zP}P8Q7QI(6Y_p)5u8w;gtc5Z^*WD2!(y>2&9C2DAW$mGji9p(dhr68!dcQ8Er4O$9 z?2D;0E0ZGHd_SK?%i0kA%=?Q=2DY%j z!)tM)jHHb}VU15k@n#j}7bS8Xg0keDBdnh2okuKX@F!(H^ zUm6B?p;iv-YN~ZW*sturNtPV=4;NqrspOW^Z5V54F!dxdDyKoN#TZzp1JT3ou6>a= zKaFIGnwhheO+X(qC9~6HDsJPT&E%gmuE@0+&o`x$(TrvyW@QdxNO=zmBtz+KmS<`; zkgdH2k(3oSo!ho=&Tu#SV=Gfh-gwQP&t|GAfoTv>J4{w6(T zEx`G5Sr#6Ig-yI&gA?Qz*{$F2Y*!8?kTmt@o*k*@8la#(sHghpgwW;%PvGF(gk1e&Z&t!Xkf38mfN#Bvq9AL35;OXS&#wSyBL#l1bm~OO zm78$cP9%MscyZ!K7zc$uh*1hD2TuZ?m%bAI6=J87cPk1*yjM!(zRe!{zt({T$Ick-$iYQ##!X|G#;I@jK)0SC5v`Fio6%8 z-TFgLG+(~4KWeD+Z`e=-FVy=pEm35j4uYFO`NQ*E&eeo)6NpBu$^cY=p5xw8KF*Qj zbL&UIwFLO%7%XsZ%hODKc*mv6-1>yGgwwrTo+)_aZQkwrrVW@68K9VW&j7PwW zqd-;BVK7Nk;wi$E>LgXFXWQO9ArB{L`kS8En9o;Rv`8XN*26;HcxtcknV-EC&&%H| zCq(sbKV7!6&bISHa`dXoXc#lVGD2+gYP;%FlfhbbGF_u`nj6EZX(pB?UDpH43*cY|Qc=Zp zWOBs~H_(QSINc`}%zL3kr-Sel zXrqOO&;*3YNz~6zG&*M~%f8h3Iz$$JUmr$*PitPMD4*VrX#1|ape33U6EJ}=+v0?~D7Hst$NJ7#D*m;5Xr|^u;#9LhQqFd#w{w2dO5+b{-@{AZV7HVp^R2*h z6g5|^tMm#1t2p8_F-&pGE?T<{eMV}bv+Wc2H+k?*uYbgG`XU*_Na2!JKQuiLd)*fBsO|h$W6+n$FI8pSEbmJ4gv}r|&jBiVrGD8&eLk~tFC-m{5 zn2}o#l~ws7Cj)%F2&FpBBkNwJHurcl#;FIO5NDBnVhDSb5|PBPfMI=%Pv|m1{{CBW zLh{2?GP9lB1vAh4xX2W#xTPsUpFpIhjZz>=BsS_iOUq5=%fX|X$0@_@{d%l~kCYSr z^xbt^`x|D(EWQV14dfnAh(M34_m|fTXHQ>QsBMc;Q_6gLD1s#``fDVVT)j@S|NZ*+ zo_;+q({vboC8G}ExGj>sMJ6?Ia>e3W-=&!%8PmnQea+Un%$xv)iMI~nDZ}45!={R= z7TXag&+Jr6oU%8nL?lS+dg9}z)AXmuyILOKC+%iS@Qc8s z$T3;FIn??6nx)vvA8OQ+)TpD1t8VMGfE`;wv}AIOnbW{e*KOe(ZA^xgUomO5`ka`I zxCxW-&Pa>y{Riz(Io2W4V&RaV5br8m`om1rpK<+QAg)_{54x`Z^2hgaRl?V=GXgx& zM>qo`qmR?Jr*=Gfa3l_%e7F7b_2J*wxrk3KwX!|r!83=8PqnH`roWwb`@CQXEtoe$fWIA0=hjo(T>k=xslLD3WqN-p=2ITmdLK!NasAc?i(47s_I58h z=G$jN8PY9_uCP|YuV)qS)EY7@kcae zk)sLj+J#(9x%sU})1ng&E_NR@w;AsZxRpFT<1^i*sztwlWI0t%pwWVr`?$#UzwHs6 zM|Y!;R&H;G_D@Lc-(`qUbX;=U|xx;25b^XoEyPz_M0sUx02?cSYkc)}miqztoF zd+lTdCpMHEG?ddz-IHMFs<%h)Wi+C@h#lZ9I3ocJZF4b;s|i&S%8p{J9>JtOPK zj18x>nFN{ap3+0~?TU$;jba$H-|Y~&Y^oFmR(6mtF3Gp}{jKz2DmVTxr;hJ}EmvV2 z-=P#^@kr1x>cP=7n0!xVl6+Cc(a+zMn}2-`rF`S}6 z1efteesrICyla7Fm?AcI(*i9yj=pg7<3Yj%(0YR#JxU_IeEbVhApO17&hE&p5#0## zSG)U4=h3je*i)FH7?zNBRvz=rY#l>-XLQ48R5FdrE$sUb?Un?--_loD=a6_M(jYtR zlY=Eh$JI+Pk&%_vF0lz{N*USNq8}XrtsXG^!9tGc8SG! z7vd$}XITAncS|&Zj`pt{NhAlVHg{^P@BLG|Kc^u7rO$k33;+c3kN< zSBzO*RRmrMbl%s%`tlo#$DJcjshh5LU|=Bg05oJZGj>XloG9QD|I5{dwR%N;;PzK9 z`D|R=`Tpuz`#ZYU@o|}cs>|V{A9S;z_X@CQJ|hf?TqagQV=7tcTptr%y_4&k4?#tZ zRT+6TqMwop2#&?yZmAEt1fF5I4(nK43iLjY8BustJm<27|*Sy`YU>#F+4 zMj8JOK>mT%DzeE?@1wdV73ka+83x=AtA}Ew6|#CRj_LjIXWsH)nKEVfBne$PL~OA@ z2q~-EJ9z+s89*v4M@O~$(W=(k*;wqSLdJ~jA<`nkB!u5e9OeJcWd_%a9D0msnz zDEHcg-@hdi<_!ANCsSW=N-=<7lRz;+Mmzh4Y6!ztD{0~MnqcMu9xv3G=iS`aG3~r4 zHKO71$&B`}2c+JwVP;TluRe;iYv$ABK;-V{A7+CeEQ}*r*gFNoH24=|yb;3C0al#}E{s|GfSovH=9r-kBg)w(h-iw_o;)7KI#$(ug|c1~6M zTnwxbcxv}cWd!fs_bNfRI{g>*=-{8x#9vtMm#-8L6@B+g$2}g+sCLz2kE9?A=`hW= zUt#fSsbErbmKEe!t?JxmSHsFLr(s&@-Sat5GBdAkghuOx$K6j@qkT`Ddq`E0?t9rz z4>hR3OX7W#Mi?b=WD$i7Sa-;NjOEmJWNkP#wsrigy9yW01HH({qR%{4E22zvR_Uqf zRJ@ehcCKJF8%8xcZP`12M}3IK-7#}zYw3qe&xE`i41tfl5+O6TVNK^HT{-XT`vfd1 zdjVyM&h?Rx?inz{%N8al$;8v7>iRjQMoVvQoZqP?Q`KrS!c!K(-qaP}71uIiA{P!F z?oVx*Tzj=?Srk_==D>qR8}(SnT_qVUa_n&gLH{CI`^t-jh5OL#)N1Rn*~no)nHqRw zYE(eFl8ff-lkw!+A5hhK>5T+sPTa+yUgTn_b3B6fao~#u!0A2ZmwG4V?c|GiW2q5+ zM;c|4>?uqU_j6jTrMR)o>e}oW?Bt)fo)BCbAy&6*g-%vh1b+POJux^IIX@@JgwTRJ zQTX}0Y^X@fN>`QSKR|7eOTc*DV;L_HnxM^4iEV}ecl5kG#{yjx>2 zxq&!G%nn2WZ0x91Y#APE+P4w)=p|wwn{hPUkByXBhiHjlDCo?>N z$=sFH+|e?q=vuSS++y;*9h{E6V~o#-F|!o>q8EgNI#8yvs;e0VeaqW|srytij?@#R zD*~S*LsoNm3-3ZI9bbG7W5~aYbD}v1UB@4g7HHxuWYZe4EUI?utkJ0~*epRDOsv&j zrc_4E6JW}V%<~hjNANCRb=OAxUWDRcun@gP<8NGyCfsX%Ug?>-eneGs3ACZ!Z|5s2 z4#St<3U{YersZdAojGPt->)Gbb#B1aBo(Df#_XU4zx>S-r+yF!?b9%w+f-uqh`QkU zT$>tRB=!pZf0gU>Bt3giB(d85$Lno>aB%)hq5q%i|8~A3oUo~$cZEbYPW^OuM*N78 z+-)r{sb_cp&fc2ZvrR+R68FiPwbKTr;_@LxqnUdw{B(5AG$uHsapdw@`jF!4q1XjT zqwe#DEL=6e<;!>XM>#bcoTh}0`Zp7W3?9@1|}3yy+^Z0wmd z=S&;QDffx;WBx$Ks_u*uBzSomvospp0yje!@wuCC4bXi>>B8|19i?EC(`;#uX&++& zF^9HY&nYi0-s|<|aPc0`;m3_l!}C!UBVIbryG6>+&^5hD^3!XKO%qMqPP=CcCkiCP zTZVygr0eu}V#2}z^cT^UH`+S+&ei2gbA7I;clF_bQ|V)~ zbHcefURIzW2bmD<4U}=^SFc;DPcoWYpDGwmp)vgO%$|dF7G`c{=*yroQn)yo*@4*P z)lZmnoqn5_0@N*TzMxp0DcZ5e!I0Sy*Rl9N6b3 z|LLVdT7yY&wcq(Ra@kV6DGgn`?pzZ_u zk|9!@AED2mx2_=R##xe(dS$}kVxXMuc))W3rT8w?wiSBVc7ffzz*tw}x{0A}t@hD? z)Q5FFVk82HKPZH1E8UT{m`h({&>;q@Ym?-hnTpg_gqHWntwr`_X}6%PNTBZHp?*RT z=!yVs{XXvlz_S>A8@zHZ`ZaL$>fap_&A1tS8jd+?aW(G&o4`|hs@o%L@)+Pw15;@` zxj&lP;->-{gcYJAgQrHviLraVE{+EDN~3$HEYke?5tC6T_B2{hl|=_rkB5(^Pr=?g zEZ~!|$;8s6wwz%6$tBdH}?D$CcL$$I8juW(CemabF5i9vr27+~xlhN{rx%;L^2K|hAV_^*H znv$Irnq~S>y2S-+Qe#Z#Z$6AkD8=NoOi%{xHysPxL=C+pmnB}|4A+BHtoBWrFm6I3 zOY4H~MX)bFHUHYblljOZ!o=P0&a{l9q-zk?tpK@iO3j1SCbuz#0I|F_=`jS<{x4kl zfr&PNwn8XHf$ORyqv%JnIr}%jIf&$%c`>(DAaGNIv#LCr3S^v;3h1k?l%xn{$t__X zkO^c>636_xq+bGrgqs z9eenUxUN{K#CAR&pHpNO0tcr&qEAOB6t77uvT1rY$9HR?_l2Bu@Oe&~MQ!R&Y#NZu zO@@iq&gHu!^e%#Xj2g;tG>+^{`hRw1Rw9LyxQca&gs8cZ`NRoB(^CP|W zQ9TjAh)z0x)VgREPs}VGjL7lv_CCjyMFOv3P)GL@Q+xA-%Xv045{D139h$F+h1xr1 zIE2XWs3J@&UGu9`9FoTFbv|Mx-3qqDG0Yy3HYdQ>x5xCvmw-ii<9}o>NFH|^a(;0* zyaF1Es7AlT^aYS4L2SISyu7^LW{YP?3Nv=Cn&fU23p@whtXu{drMEM-W;p#E#i8wp zL&=qA`kiObiJ2KUx8Neq=KgX!c(u_;U#sJ4V&l0Z6D%R##{*hwYHGA6BnexrtZQp) zG2$@-cK{trN-7b9!6;rwC;I2OnSI;u7NI$TC-XS%G-QZ4dq{RG^&(C8iZ+eO?I_m< znJ`td*E;vVN_J5!rbNAceRo0~*xw)4IXWA_3&D&0R~8@2ILG`}BbtIc6xjhF6xLZ)XCB(Q;4V zW)qf`sx_)~xBK2$QNkcfb0=rGj7}1<`|qa4;1sN7Fh>P$+iMNr@`5eYv?Ho#DgO|Z z{Wq2TOpR64LKy=i7({I4+O|QM3D=Z&o)r#|n|X;RJ=Rlsbb9Ln#z19$ZBq^7Z7^4S zF@p0gg(+xN*;O??ismq8y0F2%coX&dH7?X1q!@u9C+OkbzH?|U7bAs-9gpmCKn!O> zU$hi0M>n@lY2uM*bN62}0$-7kOWhL`l-bg_D39wP{`OJ*^g>B1T;!EEHTf=6bxKJT zCo@;}bc%u|)kp}X4F~i3{MVhHo3WxC!T~czq9S9G&UfNa*b9&{mC+zs>L+=cBP^D} zU9ocSF-QhvpP=Y{U4GUl_vNC_GgR3TBqi2RWGoi6KU++B{SjMS=nrS>l#({<+*+%x zim#h}YT*4IaT|w&Rt+e5h~;$#VgrEHfx#^#t0SXA?+YDM>{eA1#&+kD%XusBLDQcl zw+L3Jy-{n8`-c-2o)9ea^EP6O1)6$DqC$&$GIj`tYnza3+l~s-`2;& zSyHyWHc?8Sm_z&59XgxEF#Q#mt9y;j_gz?Z7M1l1hy-;`h?{N#O54l`?i<=tjT)g^-Uvwic8)a3(Ctbid2%wNvi zC0h;Z8ISM6JeieF3bMQ@(1F$xcfXd~(ZZQ_2=xyx&L>i=a{ zXv~e&!N5S=O3YmZ)fCmy(%GG=<%c$mT=bcTV=8s$@I8kU%IPK}PzvtfYut`~M<%?i zvVONHx+#e_u1UHLTW=e^Q*d9rED^6OHpgB zfZZhIF!Y1kUI3xZ$Dt<)fnwGB@b}NX`frs8cF)HYx?2fCGlayXi!0 z9N+IDKhE7RbWeu6w`1l{n$hD-|LCFUf+4kM!_`g*5ti#tB>(BIyk$D7dR7dAoC_6L zM!`bo*V4vse*uY>4(NU$MqF{4`6i*OfRHplTjxHC9TR;gG4c5PTBoSk0lG(pbgzx- zQHVS_O)Mzc$rH3(l4f^84@M2=fROr{2}~BOY4N&7qQlwS9~!VRQ}uR-vr|bR^G7$# z;@*{wVcLJV05ypz(gnvkCt7AKcNQCSeS1(ZZG@C6SJziWzWl`6^s0~={2M&C#84Bs zjR~Dr?)j%?X(D;lH}~nM=NM1HR@O-M?(XcZn$CVwtfiG~!jkWU^A-mzp(k;X&n`7) z!hRDBCM$Zkx%du}dJ}$GKN88zgi6%y7;h6PEX6D;?Tp9ByDCI7ku`Hi6?Q*x!gT!& zmx`IUk{mYE?2UOoDXq@Cmg22jt^>?m-PRdKuK^`x3EJ{j?YrQVns^cum3#$XYT%PcD6+kD_pJRGF)u6BhysWM8teFE`jGBvt?c z5FnMH?A!Ycf{o6uFnhrBQC|TfkihXENMk8hOrltQu~195HJC7fo|C!E;2O~uuj>=Z z{Mlb_>F#6!jP+SmyiD!Tic>>*DPYL(P}edQt0DqSdWO%-)uhtWQ}}lP8KxERpL|;v zJ|M;KhA+PVHupuELyP$Dkmao@Udwe?afYWMedg6S&x#w$F~Dbc=mfJy(*)&-%YE$T zM!xYdz#H!qZ%7PQJtq&th+E_($nOZrBq7p+t#~sUz}n z{*dc3%YU&+f!E!fH(eguLr^A~HiOa@1e&O^4g+l+fWbbv!F7KeRPzAioaY^;=_+ws z4q|G-z4lItc#twXn{jy+AXUxd#<;(n<8G~InG#cg38o=JT6+W46l^PNtwg6%rN}q+ zx||v$#hC=IG%?&0$C2|%1MCy(K-dZ55Zzqhy|=E9Fqbf~gf%x3dC&pAe*MfwAY|IJ z%E@v`cYEt?!BYp*_qGd-rvyn=Yvn_On_WhSCA0mf?B>X>3Q zkKf=w{sqU=LZLVn&K|KF3UM4v@H#WWxW18U9(TJn@KIo@Kf>X0x|<17Y@S%h_RaKk zg1rS1f1cA1nr}rg@rEuHjc?dpItBGqbvXMfxg^Rj35c6}3f>kl=CG(RJ5QL*6mmQ9 z9^4}ufV%Ai`aWGi@pqnq^2nW241mhn+yFjp-te{^r=jRqb`_H~RNFP8KS!ml2f0PJgkS0(CjUvOcBw#9zW>~ zu57kWA(wqV73Gq*RYD3l2&(?pgOa{Rt_txqV!yf>w-C)pCm?18{kE<5K-vuMU(Hiv zmo(vY$@`Y`cw8g<6{QlDb&Os1-`9jr&?y10Nl0>p?t!YVmBHL|#p0`~kq>c*TsSV8 zv@X+kGbRAwy?~(I?eNm7|2DYwK-UnNog>w+dx5{xw}N^fdVco~_sPq@?tDyLzi~>c zS9BqkyC2L>>V1qasSN-Jc(EmC4ukLw{Ln}-anzLwYPlG ziEjxmg#yu&ln(I}Q%bx``J8c%+97^2kg)@jEQGs%qNw6BAMa{^<#M`WZ$n>qH2Rr?Gg7_CO z={-FAF5s8jMhkqVZ@LyB6K5qobOtFB;~P{bq(flb0^*bO&z?__`aI+NxFJfNgD)z6 z@RU<< zgNOt$SD2;;vkc%L1QzNJra^WOkVZspv~D#Eq-Ih|4m-X>VKZ>M^tP4$2E26t=oMyz2$`HA?>ogE7U);f58jF*DhBz+_H%PURP6#hLN{KZ zx~tZ3f~k%eeO|t^IwJlqfxT`OdtbARiQ59!yXa@W5dK~)bW_3B#! zps&+S=WY}dO(}L|qUDd7aV%EtJXHBvO}Ut|t!-eq{Hi^&n;BdAtKNlfBYLhE4 zSE1~5cIKerM^UV;aWkLP+vIs57AtA}M3{{J4;)Qo#xukdH08_oK?UbZn6X^L@t(ZP zKba|#RwkZL>Ks^iI57paedcBO(L^)fK1_2|b81nNrPzDfb*_$gzd!cSzU{@dudcfQ z@v*J3XkXAfFyp~up%yi*jXT(eu7`uo9`KfzRze#Zx^4kX0XHlcwWz?d03<- zLq_h2%15R4D>Y6fLQivW^vef)tL~*+>0HskxkIR!LfIc~I5+re{S}qt**&I#S}mCt zCBjMd$TS2sRE(y5tYHI?VG0uf2+kAW_e>f6m)i0_{0ZN^MFRZ)@j6KeC-Z-f{V%2H zQ<^OQU;lRvx@7Vhkps*h>_m1RCl$Cf8FGi46@5qV*k2QkZn)46ZythiBbdW+u(E>Y z6{LE4|NWD@Z}%^2;%zWSkE+h&`hwnhSu{T5K_YcCzXQ*_1r5ET@i@SpEpOrq-^s}F z4f4?dciht?u=YTsg|;`GlJI-vvI{bD^P{IKjR)=-dyjHmg9M-(Uup0mVPRm!0zZfw z3L{hz_O8iV5^Qh)AgQRi6fN@t+J#Nzv7B@9VL1rOt|CFSs0Y~BKl(S{W30wv#zgw; z1_6n=T92W%1yn^)f()4OPjhF3DAW#8>0Tf?0Uwd9e8agtCWikjd{kDPaEe#qFONZX zV+HsTz|rE*CDqkv>rMt}bwI*2u(w}=gMquOCY3fH3vIpgKzEU(!&Y=3fih)(AoWAh zlng}}s)2Wa0$F}&x&=DEs^K1)dUPUangAvEPyKttX-VMOakG<_Edoma%A3~nL@=XP z!hpOJU<2822DiQt0cQ||ulC;tbNLuB`tNW*f1Gy=sHi=!ZZMLULP;^(-$3CC8s91J zhPQGaWSBeg7ZMyE$_ZXZXGKEVLGbLJZgX^fKuI}Fd zdMZ>#Tzh%^BF{-=6*P{ZNK=69zX$t>2Zv%PipijU^L2p@vgP3ZR|yVfd4~37#8t=- z>)z<#eSA9g!Dv~@fPP(ubDl9r70$dh4Z8Fpyq}+bD(Sl0srkMG4rD-(lN(w_uhTHJ zPP9Qr9?&Rf;lVWwl2-#`w2MMT;5TOFF5 z9H&spFJWgQ)(kE_nyotvcJz@}dg*RPlRXMPrC$lhre5{ymn@tz=AwZ{O0xDyUu>^Wc?gNDQHD|AmO+*4F7Zqxj;bSj;5j17|^_ZeV17 z5WsR`7ykJ30Uh?iz$@=+L}RL?g_}^sb-rh8<_MrGdtLgrYF6wQLIb<7%jWw3GJDU< z`A}#_ueO;n>BC(O7TCR|Lv=K^g*hsrOEz?`wi`seDugR^Clj zr>GUbN?|J4in3cR3Kyb!#scmNkU&n`T2eVzn6LNt*|Ka5%T>)eH^;qE`ks>+l4m?f zOUxW~sd%UHa8z@Nq{5Zr^A7Ms&MzU6Z1pp$h~2MW-7Y>LZg-jq3qYzdA9?s%X6$}l z;h?jX+kOu6ujvE?5jmg7!uxRmr59z7Uk>tqo123>b*7%oy4X3ZmCMNhNXH=bCo*be z!v)w_v$HevcYIN$S$8U*wqK)Z7Hva--@PQ~+gsUa!1%Ss5e`8`8 zId3QZ-E{vSA7d9=34M}a-a(P{XzRZv;O)Ku$}$)NTv%edKK4`^HOCu+SfD6ktw*y| zz{cFk$ESIPfOwrbUoBGxoorvn7Ka| zBPS!@Fqe?G;7)9)!D?H!;Q0gW7ER{D)Tb5cmQ*>cU>^yDo~AefPkr??{~Q8Q77dwj zcE`-@?17aP3n=U+@%XGm`a&KADxtW61PVOu5wboEk5H2OJk+sBR~WBwY{{j0qa5)& zh5CP`-5Wy7EcAAt<^j1xXeCv@l0bw1IV{^s&GMxQbAeI zyqdG_;02any_pH79}-dOHv^OJ*RRoH8u!N$Hl|x9>BFWT6&>jASEha`vsTCaVwJ6W zYmYf~^Imiga>LW5r3;3r135-@A%Mdru>?J7IDgdZrpe&HY-3GVtOge;;NW2P$v>e< zaDO-s#qu|*yuCAxSk8@&0X**KzRP$@TI7eMFs9chHNN>RC9~BsbeUzO=U(_LYz7sw z{x@(l6R+^6gCZ4~s*8NO^rRDV)#ZxjO(g%XPpC0hgxj|Y@@h;O$>Ly}eIJYIH_}HOV7KU$cy{9(33@4Jt_A+Zn7`SnN6f*K?997m zhlsEu{C(5Qpn<~-;-T3nGIIwul!ieK4Dc9Va;dH~Al!NU>dvmjp68D1E;x0k)*x6( zFDCa+>7bzM0iX`T&4VYaJ-!ie39HxMG4VH8?l{-R<$H&SP?*ti<*JOWX-!oO@gWd? zYVjoKTJje$$@P~ZCOuT>2mN)b+v5Bl$pbaTkL`9(RPAL1bkJFw{SdHFi>TGFuAn1)YTfq;z#+V&`?ruwc62)SM5-7fh&kwX?OK>knvS;CaJ!&Vd5 zY_fDA;4{fle_y?*Q>MoxKL<&DhNsaySYAcKzQFM{^NawLc z)ITsM6b|{0G_Cu)UvhB|mz^VVpOL6uewM)|kBT5rJ2_5$Sc2%x5?PW;_Cw9Xyt13~ zYbj{8F%t~v90z$7WbKeCSDEw1neKs19Bab;OL)|H(Q0$bI3?b8>e5iWg>cHpmfc!K zQu&HSrYrj%GxBjSl@@(S__F(Qqnz0qqKAhNOyzesC4%*v`V+M!!X0yJZHTh&RXaFKOfH5!^dH*xo7U# z_ukj_tE=xA;uT+#4D*u;#-$vg$-GtOESrCxURKjpS2@tLzYOkM;A(WUm5h0u%SF#& z{}o;>ZF<))e*-m%n{DqrZzL+K=$(pt;wI&Gjft{1fM~#t4s+=Gsjc%o`(mhFrQe1$ zV5Zt0ruw^&%AfvT@u?;kirA-dXwB?m25I$3&`yJ6O1plwN8#yZ=ja+GpI3%#SdpV> z0NJD(DlEf;N)x@3(ys7e_C|=E(d^nIi$zV?t8kndT+2*e z)K95c{0&h)at?_wgpS-Q6|a|QbPSIvBm8;_eOYGZ^tn(8`c{B#N-^60XC3;(EZZl! zo>*3&l;Me`(Qhtx->96?>G) z-h>X`L437^+k^RI4X9M?rS2e~TSk$?=?>JDyn=r&NJE_9F;nNxqjWpc3GzF|0!~?O z^OQY}xc`@u_kXJ0i^bfyK;jlop24zF*sy&=7vT4=2F2H~0J-UqD*#*PDo;vFK7-`a z-AvV>?%dVWrH4D7TMdv7Sp7_Eb*}bYP5aNKSK7*;it97Kv7ZR=`wwRs2%j^D_5NFJ z2t0bmbRVIQ*eJh~?^|~S!yf)@uY#R+2owC+8}_oRI+Z(*95UKT!*fm8e^)=tFvfAX zStNeEV_6%}Q!QYO#09Tz+yUBNAbFc;i6$1pDEAZ}TWxA!C|U{&xou<0TNrLzsNV&3 z&*9;!vKQ{cYdLd!+ZNy`3k^~eo3FtsK~uw;l+zvkbMp)%eu8T8BHIb4^GS%O*V>}A z+R>dUy!j{ht2Kigo%jt#`V(Ow@&(dPX2Fw1J4u=^nKyH=(yO4V2Z1&hB|H-CT7uNX z?AXD9T!XYJ1{=;pcV36#~^_VGFkg|AjB?)3)cn^?ek$DF$gz z;9WnS$=WIvn`&_{hxMqjW;?ghbRqrR-Pw4JTTzGPn0J*NcR{HQ0ugB4wuK*C5AP(y zH#o$wGz9cIeS0K2M#aAQ%d)P$8{C#I!HS!!3}e)op>gJc3adIgaoq6u9q~Vj^!8LO z$d1$W%G z>c}kAST9h+sTM39(_@nl42`D$8vic*l>=&KuuT$r6WDX@vWknfmuGEc#_j=C9uS_& zW`6JlP!y<6!F$o)$TGf_cah&y!!jF%_OIssGy8?~_c`=rKr~-H zPbw~J@VwAIbi3dDy@B1`dMlgs&C(QZ3QU@yZDsUu}_<`4A8$v0F}k*%!Eym- z{~+u=FY|Q!bDVdDn#{@C7Nfzi8J@lSldtOA>YXbJ4=#1Fr131cl3JTv?Z%H<`1RXtL(p9sfG~%< zjZ2WdLJ3L9kk0X4_tljZb6YwvauaaNjb@|ENPEW`g0@>V9Tp4UY*5ZF@#(BIB6#ga%UOZO7o*PS&@_pDZZ{N@h@Rlq4xrGb;z5DmWI=bmcSy+GoW9;0PTulf4j!#|>v zbS#>1DktewBwdxY?;~}-N{s6N-9=COd3im_^2ec*fXz1%q}qtAeBIieo10TuXvT3V zk)LV>?YhsaG=N`;LmBMzpp2t06&p)xpADQET)ShF@mRIytX?9-(wSapZ4wX#V9|=( z*N8XhjccGnvFV~28%D38RQJEw9a(|Qn5n5ZK@L}_`)4e2+f8Wf!;Dw8s$}_9oD4|R z0^$qE7nqoyNP!*V4SVRvc57IGXzx3nuQx>#K71glgt-pe9ha13OD3}_6Eha?-4D_L zowL|^^&?0_ckvG;ifdEr#4%eb$4e+S!CKSkwgW+6vE14!c?Ab>YrU2{w6ANvWg|{9 z*S8qP5Yuybfj$Z){Mv`o4g=5%Xr1!gBd72N5zmiG;gU3kQS3#&y)UGt2}(FVq|