diff --git a/.github/workflows/python-package-conda.yml b/.github/workflows/python-package-conda.yml new file mode 100644 index 0000000000..f3586044ab --- /dev/null +++ b/.github/workflows/python-package-conda.yml @@ -0,0 +1,34 @@ +name: Python Package using Conda + +on: [push] + +jobs: + build-linux: + runs-on: ubuntu-latest + strategy: + max-parallel: 5 + + steps: + - uses: actions/checkout@v4 + - name: Set up Python 3.10 + uses: actions/setup-python@v3 + with: + python-version: '3.10' + - name: Add conda to system path + run: | + # $CONDA is an environment variable pointing to the root of the miniconda directory + echo $CONDA/bin >> $GITHUB_PATH + - name: Install dependencies + run: | + conda env update --file environment.yml --name base + - name: Lint with flake8 + run: | + conda install flake8 + # stop the build if there are Python syntax errors or undefined names + flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics + # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide + flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics + - name: Test with pytest + run: | + conda install pytest + pytest diff --git a/README.md b/README.md index 6c090c8179..7629603e3a 100644 --- a/README.md +++ b/README.md @@ -1,3 +1,6 @@ +https://github.com/mha2112/Deploying-a-Scalable-ML-Pipeline-with-FastAPI + + Working in a command line environment is recommended for ease of use with git and dvc. If on Windows, WSL1 or 2 is recommended. # Environment Set up (pip or conda) @@ -9,10 +12,11 @@ Working in a command line environment is recommended for ease of use with git an * As you work on the code, continually commit changes. Trained models you want to use in production must be committed to GitHub. * Connect your local git repo to GitHub. * Setup GitHub Actions on your repo. You can use one of the pre-made GitHub Actions if at a minimum it runs pytest and flake8 on push and requires both to pass without error. - * Make sure you set up the GitHub Action to have the same version of Python as you used in development. + * Make sure you set up the GitHub Action to have the same version of Python as you used in development." -# Data -* Download census.csv and commit it to dvc. + +# Data-----from chat===Ray, "The goal of that cleaning step was to remove those errors, but this iteration appears to have removed those... so there's really no point in cleaning the data at all. It's already in an optimal state." +(((((((* Download census.csv and commit it to dvc.---------pg.2 in comments says do not have to do))))))))) * This data is messy, try to open it in pandas and see what you get. * To clean it, use your favorite text editor to remove all spaces. diff --git a/local_api.py b/local_api.py index a3bff2f988..189502184e 100644 --- a/local_api.py +++ b/local_api.py @@ -3,12 +3,16 @@ import requests # TODO: send a GET using the URL http://127.0.0.1:8000 -r = None # Your code here + + +#r = None # Your code here +url = "http://127.0.0.1:8000" +r = requests.get(url) # TODO: print the status code -# print() +print(r.status_code) # TODO: print the welcome message -# print() +print(r.json()) @@ -30,9 +34,10 @@ } # TODO: send a POST using the data above -r = None # Your code here +#r = None # Your code here +r = requests.post(f"{url}/predict",json=data) # TODO: print the status code -# print() +print(r.status_code) # TODO: print the result -# print() +print(r.json()) diff --git a/main.py b/main.py index 638e2414de..6dd82244c6 100644 --- a/main.py +++ b/main.py @@ -4,8 +4,10 @@ from fastapi import FastAPI from pydantic import BaseModel, Field +from ml.model import save_model from ml.data import apply_label, process_data from ml.model import inference, load_model +from ml.model import train_and_save_final_model # DO NOT MODIFY class Data(BaseModel): @@ -26,25 +28,30 @@ class Data(BaseModel): hours_per_week: int = Field(..., example=40, alias="hours-per-week") native_country: str = Field(..., example="United-States", alias="native-country") -path = None # TODO: enter the path for the saved encoder -encoder = load_model(path) +#path = None # TODO: enter the path for the saved encoder +encoder_path = "model/encoder.pkl" +encoder = load_model(encoder_path) -path = None # TODO: enter the path for the saved model -model = load_model(path) +#path = None # TODO: enter the path for the saved model +model_path = "model/model.pkl" +model = load_model(model_path) # TODO: create a RESTful API using FastAPI -app = None # your code here +#app = None # your code here +app = FastAPI() + # TODO: create a GET on the root giving a welcome message @app.get("/") async def get_root(): """ Say hello!""" # your code here + return{"message":"Hello!"} pass # TODO: create a POST on a different path that does model inference -@app.post("/data/") +@app.post("/predict/") async def post_inference(data: Data): # DO NOT MODIFY: turn the Pydantic model into a dict. data_dict = data.dict() @@ -66,9 +73,18 @@ async def post_inference(data: Data): ] data_processed, _, _, _ = process_data( # your code here + X=data, + categorical_features=cat_features, + label=None, + training=False, + encoder=encoder, # use data as data input # use training = False # do not need to pass lb as input ) - _inference = None # your code here to predict the result using data_processed + #_inference = None # your code here to predict the result using data_processed + _inference = inference(model, data_processed) return {"result": apply_label(_inference)} + + + diff --git a/ml/model.py b/ml/model.py index f361110f18..fce9ce0479 100644 --- a/ml/model.py +++ b/ml/model.py @@ -2,6 +2,11 @@ from sklearn.metrics import fbeta_score, precision_score, recall_score from ml.data import process_data # TODO: add necessary import +import os +from sklearn.ensemble import RandomForestClassifier +import numpy as np +import pandas as pd + # Optional: implement hyperparameter tuning. def train_model(X_train, y_train): @@ -20,6 +25,9 @@ def train_model(X_train, y_train): Trained machine learning model. """ # TODO: implement the function + model = RandomForestClassifier(random_state=42) + model.fit(X_train, y_train) + return model pass @@ -60,6 +68,7 @@ def inference(model, X): Predictions from the model. """ # TODO: implement the function + return model.predict(X) pass def save_model(model, path): @@ -73,11 +82,16 @@ def save_model(model, path): Path to save pickle file. """ # TODO: implement the function + with open(path,"wb") as f: + pickle.dump(model,f) pass def load_model(path): """ Loads pickle file from `path` and returns it.""" # TODO: implement the function + print(f'loading model path {path}') + with open(path,"rb") as f: + return pickle.load(f) pass @@ -117,12 +131,50 @@ def performance_on_categorical_slice( fbeta : float """ + sliced_data = data[data[column_name] == slice_value] + # TODO: implement the function X_slice, y_slice, _, _ = process_data( # your code here # for input data, use data in column given as "column_name", with the slice_value # use training = False + sliced_data, + categorical_features=categorical_features, + label=label, + training=False, + encoder=encoder, + lb=lb, ) - preds = None # your code here to get prediction on X_slice using the inference function + #preds = None # your code here to get prediction on X_slice using the inference function + preds = inference(model, X_slice) precision, recall, fbeta = compute_model_metrics(y_slice, preds) return precision, recall, fbeta + +#added for k-fold model +def train_and_save_final_model(data, categorical_features, label, model_dir): + X_all, y_all, encoder, lb = process_data( + data, + categorical_features=categorical_features, + label=label, + training=True, + ) + + model = train_model(X_all, y_all) + + os.makedirs(model_dir, exist_ok=True) + model_path = os.path.join(model_dir, "model.pk1") + encoder_path= os.path.join(model_dir, "encoder.pkl") + lb_path= os.path.join(model_dir, "lb.pkl") + + save_model(model, model_path) + save_model(encoder, encoder_path) + save_model(lb,lb_path) + + #didn't see model_saved after running the code + print(f'Model saved to {model_path}') + print(f'Model saved to {encoder_path}') + print(f'Model saved to {lb_path}') + + + return model, encoder, lb + \ No newline at end of file diff --git a/model/encoder.pkl b/model/encoder.pkl new file mode 100644 index 0000000000..0fe0330a06 Binary files /dev/null and b/model/encoder.pkl differ diff --git a/model/lb.pkl b/model/lb.pkl new file mode 100644 index 0000000000..c7f9fa531b Binary files /dev/null and b/model/lb.pkl differ diff --git a/model/model.pkl b/model/model.pkl new file mode 100644 index 0000000000..d9c6766cfd Binary files /dev/null and b/model/model.pkl differ diff --git a/model_card_template.md b/model_card_template.md index 0392f3b9eb..bf41b6d3fc 100644 --- a/model_card_template.md +++ b/model_card_template.md @@ -3,16 +3,52 @@ For additional information see the Model Card paper: https://arxiv.org/pdf/1810.03993.pdf ## Model Details +Salary prediction from census data using a random forest classifier. Random forest uses multiple decision trees to train the data that improves training efficiency being an ensemble. +OneHotEncoding is used for the categorical column information and the labelBinarizer for the Salary column. ## Intended Use +Salary prediction from census data shows what common categories make less than or greater than 50K a year. ## Training Data - +The model used k-fold validation with standard k=5 parameter. Consistency metrics are done on the slicing of the k-folds. ## Evaluation Data +When the model predicts the salary to be over 50K with applied variables at testing it is 73% of time, correct. +From the slice_output.txt file there are some categories that have a higher count creating metrics that come together, but the under represented categories with few counts have a high metric in one score and a low in the others: + +relationship: Own-child, Count: 1,019 +Precision: 1.0000 | Recall: 0.1765 | F1: 0.3000 + +the own=child category has a high count and a low recall and f1 +everyone in this category did make over 50K, when predicting over 50K it is 100% right. But it still underpredicts with 1,019 samples. + +native-country: Cambodia, Count: 3 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 + +Native country being Cambodia only has 3 people representing that country so Precision is high but recall and f1 are low. The sample is small. The test data found 1 that made over 50K from Cambodia, but recall and f1 are zero showing not definite or confident results for this categoric data. + ## Metrics _Please include the metrics used and your model's performance on those metrics._ +Precision, Recall and F1 score were used to test the model with the following values: + +Precision: 0.7451 | Recall: 0.6308 | F1: 0.6832 +Precision: 0.7087 | Recall: 0.6164 | F1: 0.6593 +Precision: 0.7346 | Recall: 0.6180 | F1: 0.6713 +Precision: 0.7475 | Recall: 0.6222 | F1: 0.6791 +Precision: 0.7453 | Recall: 0.6307 | F1: 0.6832 + +The average of these scores were calculated as: +avg precision: 0.7363 +avg recall: 0.6236 +avg f1_score: 0.6752 + +Precision being what values were actually correcty or true positive is 73% +recall or sensitivity of values that could be missed is 62% +F1 score the balance between both precision and recall is 67% ## Ethical Considerations +The model will predict salary based on the other categorical information and is using performance slicing to id bias or gender, sex, race. ## Caveats and Recommendations +The missing values could even be question marks: occupation: ?, Count: 389 +Precision: 0.6923 | Recall: 0.4286 | F1: 0.5294, this slice_output found 39 question marks for the census question occupattion. The data is not clean and can create distraction from the true numbers or data analyzed. \ No newline at end of file diff --git a/python3 b/python3 new file mode 100644 index 0000000000..e69de29bb2 diff --git a/screenshots/continuous_integration.png b/screenshots/continuous_integration.png new file mode 100644 index 0000000000..5b64b3180a Binary files /dev/null and b/screenshots/continuous_integration.png differ diff --git a/screenshots/local_api.png b/screenshots/local_api.png new file mode 100644 index 0000000000..a8ee44733c Binary files /dev/null and b/screenshots/local_api.png differ diff --git a/screenshots/unit_test.png b/screenshots/unit_test.png new file mode 100644 index 0000000000..fe21bfd653 Binary files /dev/null and b/screenshots/unit_test.png differ diff --git a/slice_output.txt b/slice_output.txt new file mode 100644 index 0000000000..a0a2494b2f --- /dev/null +++ b/slice_output.txt @@ -0,0 +1,5020 @@ +workclass: ?, Count: 389 +Precision: 0.6923 | Recall: 0.4286 | F1: 0.5294 +workclass: Federal-gov, Count: 191 +Precision: 0.7571 | Recall: 0.7571 | F1: 0.7571 +workclass: Local-gov, Count: 387 +Precision: 0.7500 | Recall: 0.6545 | F1: 0.6990 +workclass: Private, Count: 4,578 +Precision: 0.7447 | Recall: 0.6324 | F1: 0.6840 +workclass: Self-emp-inc, Count: 212 +Precision: 0.7565 | Recall: 0.7373 | F1: 0.7468 +workclass: Self-emp-not-inc, Count: 498 +Precision: 0.7339 | Recall: 0.5096 | F1: 0.6015 +workclass: State-gov, Count: 254 +Precision: 0.7500 | Recall: 0.6575 | F1: 0.7007 +workclass: Without-pay, Count: 4 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 183 +Precision: 0.4286 | Recall: 0.2500 | F1: 0.3158 +education: 11th, Count: 225 +Precision: 1.0000 | Recall: 0.2727 | F1: 0.4286 +education: 12th, Count: 98 +Precision: 1.0000 | Recall: 0.4000 | F1: 0.5714 +education: 1st-4th, Count: 23 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 5th-6th, Count: 62 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 7th-8th, Count: 141 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +education: 9th, Count: 115 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +education: Assoc-acdm, Count: 198 +Precision: 0.6923 | Recall: 0.5745 | F1: 0.6279 +education: Assoc-voc, Count: 273 +Precision: 0.6667 | Recall: 0.5397 | F1: 0.5965 +education: Bachelors, Count: 1,053 +Precision: 0.7564 | Recall: 0.7244 | F1: 0.7401 +education: Doctorate, Count: 77 +Precision: 0.8500 | Recall: 0.8947 | F1: 0.8718 +education: HS-grad, Count: 2,085 +Precision: 0.6622 | Recall: 0.4261 | F1: 0.5185 +education: Masters, Count: 369 +Precision: 0.8309 | Recall: 0.8309 | F1: 0.8309 +education: Preschool, Count: 10 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 116 +Precision: 0.8191 | Recall: 0.9167 | F1: 0.8652 +education: Some-college, Count: 1,485 +Precision: 0.6952 | Recall: 0.5271 | F1: 0.5996 +marital-status: Divorced, Count: 920 +Precision: 0.7826 | Recall: 0.3495 | F1: 0.4832 +marital-status: Married-AF-spouse, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 2,950 +Precision: 0.7377 | Recall: 0.6816 | F1: 0.7085 +marital-status: Married-spouse-absent, Count: 96 +Precision: 1.0000 | Recall: 0.2500 | F1: 0.4000 +marital-status: Never-married, Count: 2,126 +Precision: 0.8182 | Recall: 0.4369 | F1: 0.5696 +marital-status: Separated, Count: 209 +Precision: 1.0000 | Recall: 0.4211 | F1: 0.5926 +marital-status: Widowed, Count: 208 +Precision: 1.0000 | Recall: 0.1579 | F1: 0.2727 +occupation: ?, Count: 389 +Precision: 0.6923 | Recall: 0.4286 | F1: 0.5294 +occupation: Adm-clerical, Count: 726 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +occupation: Armed-Forces, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 821 +Precision: 0.6641 | Recall: 0.4696 | F1: 0.5502 +occupation: Exec-managerial, Count: 838 +Precision: 0.8011 | Recall: 0.7506 | F1: 0.7750 +occupation: Farming-fishing, Count: 193 +Precision: 0.6364 | Recall: 0.2500 | F1: 0.3590 +occupation: Handlers-cleaners, Count: 273 +Precision: 0.5714 | Recall: 0.3333 | F1: 0.4211 +occupation: Machine-op-inspct, Count: 378 +Precision: 0.5938 | Recall: 0.4043 | F1: 0.4810 +occupation: Other-service, Count: 667 +Precision: 0.8571 | Recall: 0.2308 | F1: 0.3636 +occupation: Priv-house-serv, Count: 26 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 828 +Precision: 0.7882 | Recall: 0.7500 | F1: 0.7686 +occupation: Protective-serv, Count: 136 +Precision: 0.6970 | Recall: 0.5476 | F1: 0.6133 +occupation: Sales, Count: 729 +Precision: 0.7333 | Recall: 0.6875 | F1: 0.7097 +occupation: Tech-support, Count: 189 +Precision: 0.6744 | Recall: 0.5686 | F1: 0.6170 +occupation: Transport-moving, Count: 317 +Precision: 0.6000 | Recall: 0.4219 | F1: 0.4954 +relationship: Husband, Count: 2,590 +Precision: 0.7401 | Recall: 0.6838 | F1: 0.7108 +relationship: Not-in-family, Count: 1,702 +Precision: 0.8021 | Recall: 0.4096 | F1: 0.5423 +relationship: Other-relative, Count: 178 +Precision: 1.0000 | Recall: 0.3750 | F1: 0.5455 +relationship: Own-child, Count: 1,019 +Precision: 1.0000 | Recall: 0.1765 | F1: 0.3000 +relationship: Unmarried, Count: 702 +Precision: 0.9231 | Recall: 0.2667 | F1: 0.4138 +relationship: Wife, Count: 322 +Precision: 0.7164 | Recall: 0.6713 | F1: 0.6931 +race: Amer-Indian-Eskimo, Count: 71 +Precision: 0.6250 | Recall: 0.5000 | F1: 0.5556 +race: Asian-Pac-Islander, Count: 193 +Precision: 0.7547 | Recall: 0.6452 | F1: 0.6957 +race: Black, Count: 599 +Precision: 0.7692 | Recall: 0.6154 | F1: 0.6838 +race: Other, Count: 55 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +race: White, Count: 5,595 +Precision: 0.7448 | Recall: 0.6317 | F1: 0.6836 +sex: Female, Count: 2,126 +Precision: 0.7267 | Recall: 0.5021 | F1: 0.5939 +sex: Male, Count: 4,387 +Precision: 0.7476 | Recall: 0.6532 | F1: 0.6972 +native-country: ?, Count: 125 +Precision: 0.7097 | Recall: 0.7097 | F1: 0.7097 +native-country: Cambodia, Count: 3 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Canada, Count: 22 +Precision: 0.6250 | Recall: 0.6250 | F1: 0.6250 +native-country: China, Count: 18 +Precision: 1.0000 | Recall: 0.8750 | F1: 0.9333 +native-country: Columbia, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 19 +Precision: 0.6667 | Recall: 0.8000 | F1: 0.7273 +native-country: Dominican-Republic, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 5 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: El-Salvador, Count: 20 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: England, Count: 14 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +native-country: France, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Germany, Count: 32 +Precision: 0.8333 | Recall: 0.7692 | F1: 0.8000 +native-country: Greece, Count: 7 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Guatemala, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Haiti, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Honduras, Count: 4 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 8 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: Hungary, Count: 3 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: India, Count: 21 +Precision: 0.7778 | Recall: 0.8750 | F1: 0.8235 +native-country: Iran, Count: 12 +Precision: 0.3333 | Recall: 0.2000 | F1: 0.2500 +native-country: Ireland, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 14 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Jamaica, Count: 13 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Japan, Count: 11 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Laos, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Mexico, Count: 114 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Nicaragua, Count: 7 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Philippines, Count: 35 +Precision: 1.0000 | Recall: 0.6250 | F1: 0.7692 +native-country: Poland, Count: 14 +Precision: 0.6667 | Recall: 1.0000 | F1: 0.8000 +native-country: Portugal, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Puerto-Rico, Count: 22 +Precision: 0.8333 | Recall: 0.8333 | F1: 0.8333 +native-country: Scotland, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: South, Count: 13 +Precision: 0.3333 | Recall: 0.5000 | F1: 0.4000 +native-country: Taiwan, Count: 11 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Thailand, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Trinadad&Tobago, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: United-States, Count: 5,870 +Precision: 0.7448 | Recall: 0.6265 | F1: 0.6805 +native-country: Vietnam, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Yugoslavia, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: ?, Count: 368 +Precision: 0.6786 | Recall: 0.4318 | F1: 0.5278 +workclass: Federal-gov, Count: 186 +Precision: 0.7424 | Recall: 0.6447 | F1: 0.6901 +workclass: Local-gov, Count: 475 +Precision: 0.6912 | Recall: 0.6714 | F1: 0.6812 +workclass: Never-worked, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,513 +Precision: 0.6974 | Recall: 0.6033 | F1: 0.6469 +workclass: Self-emp-inc, Count: 231 +Precision: 0.8319 | Recall: 0.7557 | F1: 0.7920 +workclass: Self-emp-not-inc, Count: 480 +Precision: 0.6598 | Recall: 0.5039 | F1: 0.5714 +workclass: State-gov, Count: 256 +Precision: 0.7188 | Recall: 0.7302 | F1: 0.7244 +workclass: Without-pay, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 197 +Precision: 0.5000 | Recall: 0.0833 | F1: 0.1429 +education: 11th, Count: 235 +Precision: 0.8000 | Recall: 0.2857 | F1: 0.4211 +education: 12th, Count: 77 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 1st-4th, Count: 29 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 5th-6th, Count: 70 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 7th-8th, Count: 118 +Precision: 1.0000 | Recall: 0.2727 | F1: 0.4286 +education: 9th, Count: 84 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: Assoc-acdm, Count: 225 +Precision: 0.6078 | Recall: 0.5741 | F1: 0.5905 +education: Assoc-voc, Count: 251 +Precision: 0.6341 | Recall: 0.4194 | F1: 0.5049 +education: Bachelors, Count: 1,071 +Precision: 0.7460 | Recall: 0.7600 | F1: 0.7529 +education: Doctorate, Count: 83 +Precision: 0.7812 | Recall: 0.8333 | F1: 0.8065 +education: HS-grad, Count: 2,157 +Precision: 0.5520 | Recall: 0.4220 | F1: 0.4783 +education: Masters, Count: 351 +Precision: 0.7949 | Recall: 0.7908 | F1: 0.7928 +education: Preschool, Count: 13 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +education: Prof-school, Count: 117 +Precision: 0.8696 | Recall: 0.9091 | F1: 0.8889 +education: Some-college, Count: 1,434 +Precision: 0.6761 | Recall: 0.4898 | F1: 0.5680 +marital-status: Divorced, Count: 853 +Precision: 0.8108 | Recall: 0.3448 | F1: 0.4839 +marital-status: Married-AF-spouse, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +marital-status: Married-civ-spouse, Count: 3,044 +Precision: 0.6967 | Recall: 0.6535 | F1: 0.6744 +marital-status: Married-spouse-absent, Count: 74 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +marital-status: Never-married, Count: 2,124 +Precision: 0.9070 | Recall: 0.3861 | F1: 0.5417 +marital-status: Separated, Count: 224 +Precision: 0.7143 | Recall: 0.6250 | F1: 0.6667 +marital-status: Widowed, Count: 191 +Precision: 0.8889 | Recall: 0.4706 | F1: 0.6154 +occupation: ?, Count: 369 +Precision: 0.6786 | Recall: 0.4318 | F1: 0.5278 +occupation: Adm-clerical, Count: 768 +Precision: 0.6364 | Recall: 0.4949 | F1: 0.5568 +occupation: Armed-Forces, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 793 +Precision: 0.6000 | Recall: 0.4693 | F1: 0.5266 +occupation: Exec-managerial, Count: 806 +Precision: 0.7886 | Recall: 0.7500 | F1: 0.7688 +occupation: Farming-fishing, Count: 196 +Precision: 0.6000 | Recall: 0.3750 | F1: 0.4615 +occupation: Handlers-cleaners, Count: 271 +Precision: 0.6667 | Recall: 0.1053 | F1: 0.1818 +occupation: Machine-op-inspct, Count: 392 +Precision: 0.5789 | Recall: 0.2245 | F1: 0.3235 +occupation: Other-service, Count: 659 +Precision: 0.6667 | Recall: 0.1538 | F1: 0.2500 +occupation: Priv-house-serv, Count: 36 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 855 +Precision: 0.7454 | Recall: 0.7358 | F1: 0.7405 +occupation: Protective-serv, Count: 148 +Precision: 0.6170 | Recall: 0.6444 | F1: 0.6304 +occupation: Sales, Count: 686 +Precision: 0.6570 | Recall: 0.6175 | F1: 0.6366 +occupation: Tech-support, Count: 178 +Precision: 0.7037 | Recall: 0.7917 | F1: 0.7451 +occupation: Transport-moving, Count: 353 +Precision: 0.6122 | Recall: 0.3947 | F1: 0.4800 +relationship: Husband, Count: 2,652 +Precision: 0.7039 | Recall: 0.6520 | F1: 0.6770 +relationship: Not-in-family, Count: 1,639 +Precision: 0.8659 | Recall: 0.4176 | F1: 0.5635 +relationship: Other-relative, Count: 199 +Precision: 0.5000 | Recall: 0.1667 | F1: 0.2500 +relationship: Own-child, Count: 1,000 +Precision: 0.7500 | Recall: 0.2143 | F1: 0.3333 +relationship: Unmarried, Count: 673 +Precision: 0.7857 | Recall: 0.3143 | F1: 0.4490 +relationship: Wife, Count: 349 +Precision: 0.6564 | Recall: 0.6859 | F1: 0.6708 +race: Amer-Indian-Eskimo, Count: 67 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +race: Asian-Pac-Islander, Count: 205 +Precision: 0.7561 | Recall: 0.5536 | F1: 0.6392 +race: Black, Count: 600 +Precision: 0.6078 | Recall: 0.4366 | F1: 0.5082 +race: Other, Count: 52 +Precision: 0.6667 | Recall: 0.4000 | F1: 0.5000 +race: White, Count: 5,588 +Precision: 0.7102 | Recall: 0.6295 | F1: 0.6674 +sex: Female, Count: 2,195 +Precision: 0.6869 | Recall: 0.5738 | F1: 0.6253 +sex: Male, Count: 4,317 +Precision: 0.7124 | Recall: 0.6241 | F1: 0.6653 +native-country: ?, Count: 106 +Precision: 0.8182 | Recall: 0.6000 | F1: 0.6923 +native-country: Cambodia, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Canada, Count: 26 +Precision: 0.7500 | Recall: 0.3750 | F1: 0.5000 +native-country: China, Count: 15 +Precision: 0.6000 | Recall: 0.7500 | F1: 0.6667 +native-country: Columbia, Count: 12 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 27 +Precision: 0.8750 | Recall: 0.7778 | F1: 0.8235 +native-country: Dominican-Republic, Count: 17 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 6 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: El-Salvador, Count: 17 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: England, Count: 20 +Precision: 0.7500 | Recall: 0.4286 | F1: 0.5455 +native-country: France, Count: 6 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Germany, Count: 20 +Precision: 0.6667 | Recall: 0.2857 | F1: 0.4000 +native-country: Greece, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Guatemala, Count: 10 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Haiti, Count: 12 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Honduras, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 4 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Hungary, Count: 2 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: India, Count: 24 +Precision: 0.8571 | Recall: 0.6667 | F1: 0.7500 +native-country: Iran, Count: 3 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Ireland, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 11 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Jamaica, Count: 21 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Japan, Count: 9 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Laos, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Mexico, Count: 120 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +native-country: Nicaragua, Count: 6 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Outlying-US(Guam-USVI-etc), Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 41 +Precision: 0.6000 | Recall: 0.6000 | F1: 0.6000 +native-country: Poland, Count: 13 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +native-country: Portugal, Count: 8 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Puerto-Rico, Count: 19 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Scotland, Count: 5 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: South, Count: 17 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Taiwan, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Thailand, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Trinadad&Tobago, Count: 5 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: United-States, Count: 5,856 +Precision: 0.7068 | Recall: 0.6225 | F1: 0.6619 +native-country: Vietnam, Count: 13 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Yugoslavia, Count: 6 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +workclass: ?, Count: 357 +Precision: 0.6250 | Recall: 0.4444 | F1: 0.5195 +workclass: Federal-gov, Count: 195 +Precision: 0.7179 | Recall: 0.7887 | F1: 0.7517 +workclass: Local-gov, Count: 395 +Precision: 0.6939 | Recall: 0.5812 | F1: 0.6326 +workclass: Never-worked, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,566 +Precision: 0.7378 | Recall: 0.6123 | F1: 0.6692 +workclass: Self-emp-inc, Count: 225 +Precision: 0.7826 | Recall: 0.7500 | F1: 0.7660 +workclass: Self-emp-not-inc, Count: 514 +Precision: 0.7475 | Recall: 0.5000 | F1: 0.5992 +workclass: State-gov, Count: 255 +Precision: 0.7273 | Recall: 0.7089 | F1: 0.7179 +workclass: Without-pay, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 180 +Precision: 0.7500 | Recall: 0.5000 | F1: 0.6000 +education: 11th, Count: 242 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +education: 12th, Count: 85 +Precision: 1.0000 | Recall: 0.2727 | F1: 0.4286 +education: 1st-4th, Count: 42 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 5th-6th, Count: 72 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: 7th-8th, Count: 160 +Precision: 0.5000 | Recall: 0.1000 | F1: 0.1667 +education: 9th, Count: 110 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: Assoc-acdm, Count: 199 +Precision: 0.6889 | Recall: 0.5962 | F1: 0.6392 +education: Assoc-voc, Count: 283 +Precision: 0.8333 | Recall: 0.5233 | F1: 0.6429 +education: Bachelors, Count: 1,073 +Precision: 0.7332 | Recall: 0.7528 | F1: 0.7429 +education: Doctorate, Count: 85 +Precision: 0.7536 | Recall: 0.8966 | F1: 0.8189 +education: HS-grad, Count: 2,063 +Precision: 0.5864 | Recall: 0.3601 | F1: 0.4462 +education: Masters, Count: 329 +Precision: 0.8218 | Recall: 0.8034 | F1: 0.8125 +education: Preschool, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 120 +Precision: 0.9184 | Recall: 0.9677 | F1: 0.9424 +education: Some-college, Count: 1,458 +Precision: 0.6887 | Recall: 0.5069 | F1: 0.5840 +marital-status: Divorced, Count: 899 +Precision: 0.6512 | Recall: 0.3218 | F1: 0.4308 +marital-status: Married-AF-spouse, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 3,011 +Precision: 0.7336 | Recall: 0.6603 | F1: 0.6950 +marital-status: Married-spouse-absent, Count: 76 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +marital-status: Never-married, Count: 2,100 +Precision: 0.7800 | Recall: 0.4149 | F1: 0.5417 +marital-status: Separated, Count: 215 +Precision: 1.0000 | Recall: 0.4167 | F1: 0.5882 +marital-status: Widowed, Count: 207 +Precision: 1.0000 | Recall: 0.2222 | F1: 0.3636 +occupation: ?, Count: 359 +Precision: 0.6250 | Recall: 0.4444 | F1: 0.5195 +occupation: Adm-clerical, Count: 755 +Precision: 0.6076 | Recall: 0.4615 | F1: 0.5246 +occupation: Armed-Forces, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 849 +Precision: 0.6718 | Recall: 0.4378 | F1: 0.5301 +occupation: Exec-managerial, Count: 808 +Precision: 0.7836 | Recall: 0.7467 | F1: 0.7647 +occupation: Farming-fishing, Count: 201 +Precision: 0.7143 | Recall: 0.2273 | F1: 0.3448 +occupation: Handlers-cleaners, Count: 297 +Precision: 0.6667 | Recall: 0.2353 | F1: 0.3478 +occupation: Machine-op-inspct, Count: 408 +Precision: 0.6316 | Recall: 0.2400 | F1: 0.3478 +occupation: Other-service, Count: 626 +Precision: 0.7500 | Recall: 0.1200 | F1: 0.2069 +occupation: Priv-house-serv, Count: 32 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 817 +Precision: 0.8000 | Recall: 0.7890 | F1: 0.7945 +occupation: Protective-serv, Count: 129 +Precision: 0.5714 | Recall: 0.5405 | F1: 0.5556 +occupation: Sales, Count: 729 +Precision: 0.6989 | Recall: 0.6468 | F1: 0.6718 +occupation: Tech-support, Count: 190 +Precision: 0.6721 | Recall: 0.6721 | F1: 0.6721 +occupation: Transport-moving, Count: 311 +Precision: 0.7059 | Recall: 0.4211 | F1: 0.5275 +relationship: Husband, Count: 2,694 +Precision: 0.7378 | Recall: 0.6656 | F1: 0.6998 +relationship: Not-in-family, Count: 1,648 +Precision: 0.7342 | Recall: 0.3742 | F1: 0.4957 +relationship: Other-relative, Count: 208 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +relationship: Own-child, Count: 969 +Precision: 0.7500 | Recall: 0.3000 | F1: 0.4286 +relationship: Unmarried, Count: 708 +Precision: 0.7500 | Recall: 0.3000 | F1: 0.4286 +relationship: Wife, Count: 285 +Precision: 0.7031 | Recall: 0.6294 | F1: 0.6642 +race: Amer-Indian-Eskimo, Count: 55 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +race: Asian-Pac-Islander, Count: 210 +Precision: 0.6383 | Recall: 0.5769 | F1: 0.6061 +race: Black, Count: 634 +Precision: 0.7581 | Recall: 0.5875 | F1: 0.6620 +race: Other, Count: 50 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +race: White, Count: 5,563 +Precision: 0.7378 | Recall: 0.6217 | F1: 0.6748 +sex: Female, Count: 2,124 +Precision: 0.7099 | Recall: 0.5251 | F1: 0.6037 +sex: Male, Count: 4,388 +Precision: 0.7381 | Recall: 0.6331 | F1: 0.6816 +native-country: ?, Count: 104 +Precision: 0.5714 | Recall: 0.6000 | F1: 0.5854 +native-country: Cambodia, Count: 6 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Canada, Count: 25 +Precision: 0.7143 | Recall: 0.5556 | F1: 0.6250 +native-country: China, Count: 10 +Precision: 0.3333 | Recall: 1.0000 | F1: 0.5000 +native-country: Columbia, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 21 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Dominican-Republic, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: El-Salvador, Count: 25 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: England, Count: 18 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: France, Count: 7 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Germany, Count: 27 +Precision: 0.6667 | Recall: 0.5714 | F1: 0.6154 +native-country: Greece, Count: 4 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Guatemala, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Haiti, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Holand-Netherlands, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Honduras, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hungary, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: India, Count: 15 +Precision: 0.6250 | Recall: 0.6250 | F1: 0.6250 +native-country: Iran, Count: 9 +Precision: 1.0000 | Recall: 0.8000 | F1: 0.8889 +native-country: Ireland, Count: 4 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 20 +Precision: 1.0000 | Recall: 0.5714 | F1: 0.7273 +native-country: Jamaica, Count: 14 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Japan, Count: 16 +Precision: 0.5000 | Recall: 0.6667 | F1: 0.5714 +native-country: Laos, Count: 4 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Mexico, Count: 152 +Precision: 1.0000 | Recall: 0.2857 | F1: 0.4444 +native-country: Nicaragua, Count: 5 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: Outlying-US(Guam-USVI-etc), Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 37 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Poland, Count: 8 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Portugal, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Puerto-Rico, Count: 27 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Scotland, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: South, Count: 12 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +native-country: Taiwan, Count: 14 +Precision: 0.7500 | Recall: 0.6000 | F1: 0.6667 +native-country: Thailand, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Trinadad&Tobago, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: United-States, Count: 5,818 +Precision: 0.7428 | Recall: 0.6205 | F1: 0.6762 +native-country: Vietnam, Count: 20 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: ?, Count: 345 +Precision: 0.7308 | Recall: 0.5278 | F1: 0.6129 +workclass: Federal-gov, Count: 200 +Precision: 0.7973 | Recall: 0.7375 | F1: 0.7662 +workclass: Local-gov, Count: 421 +Precision: 0.7434 | Recall: 0.6667 | F1: 0.7029 +workclass: Never-worked, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,547 +Precision: 0.7450 | Recall: 0.5990 | F1: 0.6641 +workclass: Self-emp-inc, Count: 214 +Precision: 0.7769 | Recall: 0.8211 | F1: 0.7984 +workclass: Self-emp-not-inc, Count: 511 +Precision: 0.6667 | Recall: 0.5035 | F1: 0.5737 +workclass: State-gov, Count: 270 +Precision: 0.8364 | Recall: 0.6866 | F1: 0.7541 +workclass: Without-pay, Count: 3 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +education: 10th, Count: 184 +Precision: 0.5000 | Recall: 0.1538 | F1: 0.2353 +education: 11th, Count: 240 +Precision: 1.0000 | Recall: 0.3636 | F1: 0.5333 +education: 12th, Count: 86 +Precision: 1.0000 | Recall: 0.1429 | F1: 0.2500 +education: 1st-4th, Count: 43 +Precision: 1.0000 | Recall: 0.2500 | F1: 0.4000 +education: 5th-6th, Count: 67 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +education: 7th-8th, Count: 104 +Precision: 0.6000 | Recall: 0.5000 | F1: 0.5455 +education: 9th, Count: 100 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +education: Assoc-acdm, Count: 205 +Precision: 0.7561 | Recall: 0.5849 | F1: 0.6596 +education: Assoc-voc, Count: 292 +Precision: 0.6667 | Recall: 0.5600 | F1: 0.6087 +education: Bachelors, Count: 1,068 +Precision: 0.7864 | Recall: 0.7522 | F1: 0.7689 +education: Doctorate, Count: 75 +Precision: 0.8548 | Recall: 0.9298 | F1: 0.8908 +education: HS-grad, Count: 2,105 +Precision: 0.6771 | Recall: 0.3746 | F1: 0.4824 +education: Masters, Count: 319 +Precision: 0.8034 | Recall: 0.8034 | F1: 0.8034 +education: Preschool, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 112 +Precision: 0.8471 | Recall: 0.9474 | F1: 0.8944 +education: Some-college, Count: 1,501 +Precision: 0.6481 | Recall: 0.5336 | F1: 0.5853 +marital-status: Divorced, Count: 869 +Precision: 0.7895 | Recall: 0.3448 | F1: 0.4800 +marital-status: Married-AF-spouse, Count: 7 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 2,996 +Precision: 0.7412 | Recall: 0.6679 | F1: 0.7026 +marital-status: Married-spouse-absent, Count: 96 +Precision: 0.6667 | Recall: 0.2222 | F1: 0.3333 +marital-status: Never-married, Count: 2,171 +Precision: 0.8718 | Recall: 0.3542 | F1: 0.5037 +marital-status: Separated, Count: 186 +Precision: 1.0000 | Recall: 0.3571 | F1: 0.5263 +marital-status: Widowed, Count: 187 +Precision: 1.0000 | Recall: 0.3077 | F1: 0.4706 +occupation: ?, Count: 346 +Precision: 0.7308 | Recall: 0.5278 | F1: 0.6129 +occupation: Adm-clerical, Count: 791 +Precision: 0.6495 | Recall: 0.5431 | F1: 0.5915 +occupation: Armed-Forces, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 820 +Precision: 0.5909 | Recall: 0.4358 | F1: 0.5016 +occupation: Exec-managerial, Count: 791 +Precision: 0.8072 | Recall: 0.7792 | F1: 0.7929 +occupation: Farming-fishing, Count: 203 +Precision: 0.7857 | Recall: 0.4783 | F1: 0.5946 +occupation: Handlers-cleaners, Count: 288 +Precision: 0.6667 | Recall: 0.1739 | F1: 0.2759 +occupation: Machine-op-inspct, Count: 427 +Precision: 0.6552 | Recall: 0.3725 | F1: 0.4750 +occupation: Other-service, Count: 647 +Precision: 0.8333 | Recall: 0.1562 | F1: 0.2632 +occupation: Priv-house-serv, Count: 26 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 817 +Precision: 0.8128 | Recall: 0.7951 | F1: 0.8039 +occupation: Protective-serv, Count: 130 +Precision: 0.7353 | Recall: 0.5814 | F1: 0.6494 +occupation: Sales, Count: 739 +Precision: 0.6918 | Recall: 0.5288 | F1: 0.5994 +occupation: Tech-support, Count: 180 +Precision: 0.7143 | Recall: 0.6250 | F1: 0.6667 +occupation: Transport-moving, Count: 306 +Precision: 0.6000 | Recall: 0.2679 | F1: 0.3704 +relationship: Husband, Count: 2,631 +Precision: 0.7392 | Recall: 0.6661 | F1: 0.7008 +relationship: Not-in-family, Count: 1,650 +Precision: 0.8451 | Recall: 0.3488 | F1: 0.4938 +relationship: Other-relative, Count: 184 +Precision: 1.0000 | Recall: 0.3750 | F1: 0.5455 +relationship: Own-child, Count: 1,082 +Precision: 1.0000 | Recall: 0.2941 | F1: 0.4545 +relationship: Unmarried, Count: 656 +Precision: 0.7857 | Recall: 0.3056 | F1: 0.4400 +relationship: Wife, Count: 309 +Precision: 0.7434 | Recall: 0.7107 | F1: 0.7267 +race: Amer-Indian-Eskimo, Count: 65 +Precision: 0.6000 | Recall: 0.4286 | F1: 0.5000 +race: Asian-Pac-Islander, Count: 207 +Precision: 0.7273 | Recall: 0.5714 | F1: 0.6400 +race: Black, Count: 621 +Precision: 0.8333 | Recall: 0.5495 | F1: 0.6623 +race: Other, Count: 67 +Precision: 0.6667 | Recall: 0.5714 | F1: 0.6154 +race: White, Count: 5,552 +Precision: 0.7450 | Recall: 0.6301 | F1: 0.6828 +sex: Female, Count: 2,130 +Precision: 0.7622 | Recall: 0.5851 | F1: 0.6620 +sex: Male, Count: 4,382 +Precision: 0.7451 | Recall: 0.6289 | F1: 0.6821 +native-country: ?, Count: 127 +Precision: 0.8065 | Recall: 0.6579 | F1: 0.7246 +native-country: Cambodia, Count: 2 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Canada, Count: 22 +Precision: 0.6000 | Recall: 0.4286 | F1: 0.5000 +native-country: China, Count: 15 +Precision: 1.0000 | Recall: 0.4000 | F1: 0.5714 +native-country: Columbia, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 16 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Dominican-Republic, Count: 20 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: El-Salvador, Count: 24 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: England, Count: 19 +Precision: 0.8750 | Recall: 0.7000 | F1: 0.7778 +native-country: France, Count: 5 +Precision: 0.7500 | Recall: 1.0000 | F1: 0.8571 +native-country: Germany, Count: 28 +Precision: 1.0000 | Recall: 0.5556 | F1: 0.7143 +native-country: Greece, Count: 7 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Guatemala, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Haiti, Count: 7 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Honduras, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hungary, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: India, Count: 20 +Precision: 0.7000 | Recall: 1.0000 | F1: 0.8235 +native-country: Iran, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ireland, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Italy, Count: 14 +Precision: 1.0000 | Recall: 0.4286 | F1: 0.6000 +native-country: Jamaica, Count: 19 +Precision: 1.0000 | Recall: 0.6667 | F1: 0.8000 +native-country: Japan, Count: 13 +Precision: 1.0000 | Recall: 0.7143 | F1: 0.8333 +native-country: Laos, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Mexico, Count: 132 +Precision: 0.6667 | Recall: 0.2500 | F1: 0.3636 +native-country: Nicaragua, Count: 9 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Outlying-US(Guam-USVI-etc), Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 38 +Precision: 0.5556 | Recall: 0.5000 | F1: 0.5263 +native-country: Poland, Count: 14 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +native-country: Portugal, Count: 8 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Puerto-Rico, Count: 19 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: South, Count: 18 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +native-country: Taiwan, Count: 8 +Precision: 0.7500 | Recall: 1.0000 | F1: 0.8571 +native-country: Thailand, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Trinadad&Tobago, Count: 3 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: United-States, Count: 5,820 +Precision: 0.7438 | Recall: 0.6265 | F1: 0.6801 +native-country: Vietnam, Count: 14 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Yugoslavia, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: ?, Count: 377 +Precision: 0.3750 | Recall: 0.2500 | F1: 0.3000 +workclass: Federal-gov, Count: 188 +Precision: 0.8136 | Recall: 0.6486 | F1: 0.7218 +workclass: Local-gov, Count: 415 +Precision: 0.7451 | Recall: 0.6129 | F1: 0.6726 +workclass: Never-worked, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,492 +Precision: 0.7312 | Recall: 0.6145 | F1: 0.6678 +workclass: Self-emp-inc, Count: 234 +Precision: 0.8222 | Recall: 0.8538 | F1: 0.8377 +workclass: Self-emp-not-inc, Count: 538 +Precision: 0.7607 | Recall: 0.5973 | F1: 0.6692 +workclass: State-gov, Count: 263 +Precision: 0.7705 | Recall: 0.6620 | F1: 0.7121 +workclass: Without-pay, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 189 +Precision: 1.0000 | Recall: 0.0769 | F1: 0.1429 +education: 11th, Count: 233 +Precision: 1.0000 | Recall: 0.2857 | F1: 0.4444 +education: 12th, Count: 87 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +education: 1st-4th, Count: 31 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 5th-6th, Count: 62 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: 7th-8th, Count: 123 +Precision: 0.5000 | Recall: 0.1429 | F1: 0.2222 +education: 9th, Count: 105 +Precision: 1.0000 | Recall: 0.1250 | F1: 0.2222 +education: Assoc-acdm, Count: 240 +Precision: 0.6275 | Recall: 0.5424 | F1: 0.5818 +education: Assoc-voc, Count: 283 +Precision: 0.6774 | Recall: 0.5600 | F1: 0.6131 +education: Bachelors, Count: 1,090 +Precision: 0.7551 | Recall: 0.7620 | F1: 0.7585 +education: Doctorate, Count: 93 +Precision: 0.8873 | Recall: 0.8514 | F1: 0.8690 +education: HS-grad, Count: 2,091 +Precision: 0.6590 | Recall: 0.4145 | F1: 0.5089 +education: Masters, Count: 355 +Precision: 0.8564 | Recall: 0.8350 | F1: 0.8456 +education: Preschool, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 111 +Precision: 0.8571 | Recall: 0.8780 | F1: 0.8675 +education: Some-college, Count: 1,413 +Precision: 0.6582 | Recall: 0.5265 | F1: 0.5850 +marital-status: Divorced, Count: 902 +Precision: 0.7857 | Recall: 0.3333 | F1: 0.4681 +marital-status: Married-AF-spouse, Count: 6 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 2,975 +Precision: 0.7359 | Recall: 0.6762 | F1: 0.7048 +marital-status: Married-spouse-absent, Count: 76 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +marital-status: Never-married, Count: 2,162 +Precision: 0.9020 | Recall: 0.4742 | F1: 0.6216 +marital-status: Separated, Count: 191 +Precision: 1.0000 | Recall: 0.2308 | F1: 0.3750 +marital-status: Widowed, Count: 200 +Precision: 0.8333 | Recall: 0.2778 | F1: 0.4167 +occupation: ?, Count: 380 +Precision: 0.3750 | Recall: 0.2500 | F1: 0.3000 +occupation: Adm-clerical, Count: 730 +Precision: 0.6538 | Recall: 0.5543 | F1: 0.6000 +occupation: Armed-Forces, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 816 +Precision: 0.6165 | Recall: 0.4339 | F1: 0.5093 +occupation: Exec-managerial, Count: 823 +Precision: 0.7805 | Recall: 0.8060 | F1: 0.7931 +occupation: Farming-fishing, Count: 201 +Precision: 0.8000 | Recall: 0.4615 | F1: 0.5854 +occupation: Handlers-cleaners, Count: 241 +Precision: 1.0000 | Recall: 0.4000 | F1: 0.5714 +occupation: Machine-op-inspct, Count: 397 +Precision: 0.5294 | Recall: 0.3396 | F1: 0.4138 +occupation: Other-service, Count: 696 +Precision: 0.8571 | Recall: 0.2143 | F1: 0.3429 +occupation: Priv-house-serv, Count: 29 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 823 +Precision: 0.7943 | Recall: 0.7943 | F1: 0.7943 +occupation: Protective-serv, Count: 106 +Precision: 0.8276 | Recall: 0.5455 | F1: 0.6575 +occupation: Sales, Count: 767 +Precision: 0.7576 | Recall: 0.5787 | F1: 0.6562 +occupation: Tech-support, Count: 191 +Precision: 0.8140 | Recall: 0.5224 | F1: 0.6364 +occupation: Transport-moving, Count: 310 +Precision: 0.6341 | Recall: 0.3881 | F1: 0.4815 +relationship: Husband, Count: 2,626 +Precision: 0.7342 | Recall: 0.6802 | F1: 0.7062 +relationship: Not-in-family, Count: 1,666 +Precision: 0.8353 | Recall: 0.4152 | F1: 0.5547 +relationship: Other-relative, Count: 212 +Precision: 1.0000 | Recall: 0.1000 | F1: 0.1818 +relationship: Own-child, Count: 998 +Precision: 1.0000 | Recall: 0.4444 | F1: 0.6154 +relationship: Unmarried, Count: 707 +Precision: 0.9444 | Recall: 0.3269 | F1: 0.4857 +relationship: Wife, Count: 303 +Precision: 0.7419 | Recall: 0.6389 | F1: 0.6866 +race: Amer-Indian-Eskimo, Count: 53 +Precision: 0.3333 | Recall: 0.1667 | F1: 0.2222 +race: Asian-Pac-Islander, Count: 224 +Precision: 0.7333 | Recall: 0.6600 | F1: 0.6947 +race: Black, Count: 670 +Precision: 0.7895 | Recall: 0.5625 | F1: 0.6569 +race: Other, Count: 47 +Precision: 0.6000 | Recall: 0.7500 | F1: 0.6667 +race: White, Count: 5,518 +Precision: 0.7453 | Recall: 0.6352 | F1: 0.6858 +sex: Female, Count: 2,196 +Precision: 0.7738 | Recall: 0.5221 | F1: 0.6235 +sex: Male, Count: 4,316 +Precision: 0.7412 | Recall: 0.6513 | F1: 0.6933 +native-country: ?, Count: 121 +Precision: 0.7692 | Recall: 0.7407 | F1: 0.7547 +native-country: Cambodia, Count: 4 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Canada, Count: 26 +Precision: 0.8571 | Recall: 0.8571 | F1: 0.8571 +native-country: China, Count: 17 +Precision: 0.6667 | Recall: 1.0000 | F1: 0.8000 +native-country: Columbia, Count: 17 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Cuba, Count: 12 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +native-country: Dominican-Republic, Count: 14 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Ecuador, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: El-Salvador, Count: 20 +Precision: 1.0000 | Recall: 0.6667 | F1: 0.8000 +native-country: England, Count: 19 +Precision: 0.7500 | Recall: 0.6000 | F1: 0.6667 +native-country: France, Count: 6 +Precision: 1.0000 | Recall: 0.7500 | F1: 0.8571 +native-country: Germany, Count: 30 +Precision: 1.0000 | Recall: 0.7500 | F1: 0.8571 +native-country: Greece, Count: 10 +Precision: 0.8000 | Recall: 1.0000 | F1: 0.8889 +native-country: Guatemala, Count: 15 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Haiti, Count: 10 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Honduras, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Hungary, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: India, Count: 20 +Precision: 0.6667 | Recall: 0.7500 | F1: 0.7059 +native-country: Iran, Count: 11 +Precision: 0.7500 | Recall: 1.0000 | F1: 0.8571 +native-country: Ireland, Count: 7 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 14 +Precision: 0.3333 | Recall: 0.2500 | F1: 0.2857 +native-country: Jamaica, Count: 14 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Japan, Count: 13 +Precision: 1.0000 | Recall: 0.8000 | F1: 0.8889 +native-country: Laos, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Mexico, Count: 125 +Precision: 0.8333 | Recall: 0.5556 | F1: 0.6667 +native-country: Nicaragua, Count: 7 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Outlying-US(Guam-USVI-etc), Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 47 +Precision: 0.8889 | Recall: 0.6154 | F1: 0.7273 +native-country: Poland, Count: 11 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Portugal, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Puerto-Rico, Count: 27 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Scotland, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: South, Count: 20 +Precision: 0.2500 | Recall: 0.3333 | F1: 0.2857 +native-country: Taiwan, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Thailand, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Trinadad&Tobago, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: United-States, Count: 5,806 +Precision: 0.7448 | Recall: 0.6257 | F1: 0.6801 +native-country: Vietnam, Count: 15 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Yugoslavia, Count: 6 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +workclass: ?, Count: 389 +Precision: 0.6923 | Recall: 0.4286 | F1: 0.5294 +workclass: Federal-gov, Count: 191 +Precision: 0.7571 | Recall: 0.7571 | F1: 0.7571 +workclass: Local-gov, Count: 387 +Precision: 0.7500 | Recall: 0.6545 | F1: 0.6990 +workclass: Private, Count: 4,578 +Precision: 0.7447 | Recall: 0.6324 | F1: 0.6840 +workclass: Self-emp-inc, Count: 212 +Precision: 0.7565 | Recall: 0.7373 | F1: 0.7468 +workclass: Self-emp-not-inc, Count: 498 +Precision: 0.7339 | Recall: 0.5096 | F1: 0.6015 +workclass: State-gov, Count: 254 +Precision: 0.7500 | Recall: 0.6575 | F1: 0.7007 +workclass: Without-pay, Count: 4 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 183 +Precision: 0.4286 | Recall: 0.2500 | F1: 0.3158 +education: 11th, Count: 225 +Precision: 1.0000 | Recall: 0.2727 | F1: 0.4286 +education: 12th, Count: 98 +Precision: 1.0000 | Recall: 0.4000 | F1: 0.5714 +education: 1st-4th, Count: 23 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 5th-6th, Count: 62 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 7th-8th, Count: 141 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +education: 9th, Count: 115 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +education: Assoc-acdm, Count: 198 +Precision: 0.6923 | Recall: 0.5745 | F1: 0.6279 +education: Assoc-voc, Count: 273 +Precision: 0.6667 | Recall: 0.5397 | F1: 0.5965 +education: Bachelors, Count: 1,053 +Precision: 0.7564 | Recall: 0.7244 | F1: 0.7401 +education: Doctorate, Count: 77 +Precision: 0.8500 | Recall: 0.8947 | F1: 0.8718 +education: HS-grad, Count: 2,085 +Precision: 0.6622 | Recall: 0.4261 | F1: 0.5185 +education: Masters, Count: 369 +Precision: 0.8309 | Recall: 0.8309 | F1: 0.8309 +education: Preschool, Count: 10 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 116 +Precision: 0.8191 | Recall: 0.9167 | F1: 0.8652 +education: Some-college, Count: 1,485 +Precision: 0.6952 | Recall: 0.5271 | F1: 0.5996 +marital-status: Divorced, Count: 920 +Precision: 0.7826 | Recall: 0.3495 | F1: 0.4832 +marital-status: Married-AF-spouse, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 2,950 +Precision: 0.7377 | Recall: 0.6816 | F1: 0.7085 +marital-status: Married-spouse-absent, Count: 96 +Precision: 1.0000 | Recall: 0.2500 | F1: 0.4000 +marital-status: Never-married, Count: 2,126 +Precision: 0.8182 | Recall: 0.4369 | F1: 0.5696 +marital-status: Separated, Count: 209 +Precision: 1.0000 | Recall: 0.4211 | F1: 0.5926 +marital-status: Widowed, Count: 208 +Precision: 1.0000 | Recall: 0.1579 | F1: 0.2727 +occupation: ?, Count: 389 +Precision: 0.6923 | Recall: 0.4286 | F1: 0.5294 +occupation: Adm-clerical, Count: 726 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +occupation: Armed-Forces, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 821 +Precision: 0.6641 | Recall: 0.4696 | F1: 0.5502 +occupation: Exec-managerial, Count: 838 +Precision: 0.8011 | Recall: 0.7506 | F1: 0.7750 +occupation: Farming-fishing, Count: 193 +Precision: 0.6364 | Recall: 0.2500 | F1: 0.3590 +occupation: Handlers-cleaners, Count: 273 +Precision: 0.5714 | Recall: 0.3333 | F1: 0.4211 +occupation: Machine-op-inspct, Count: 378 +Precision: 0.5938 | Recall: 0.4043 | F1: 0.4810 +occupation: Other-service, Count: 667 +Precision: 0.8571 | Recall: 0.2308 | F1: 0.3636 +occupation: Priv-house-serv, Count: 26 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 828 +Precision: 0.7882 | Recall: 0.7500 | F1: 0.7686 +occupation: Protective-serv, Count: 136 +Precision: 0.6970 | Recall: 0.5476 | F1: 0.6133 +occupation: Sales, Count: 729 +Precision: 0.7333 | Recall: 0.6875 | F1: 0.7097 +occupation: Tech-support, Count: 189 +Precision: 0.6744 | Recall: 0.5686 | F1: 0.6170 +occupation: Transport-moving, Count: 317 +Precision: 0.6000 | Recall: 0.4219 | F1: 0.4954 +relationship: Husband, Count: 2,590 +Precision: 0.7401 | Recall: 0.6838 | F1: 0.7108 +relationship: Not-in-family, Count: 1,702 +Precision: 0.8021 | Recall: 0.4096 | F1: 0.5423 +relationship: Other-relative, Count: 178 +Precision: 1.0000 | Recall: 0.3750 | F1: 0.5455 +relationship: Own-child, Count: 1,019 +Precision: 1.0000 | Recall: 0.1765 | F1: 0.3000 +relationship: Unmarried, Count: 702 +Precision: 0.9231 | Recall: 0.2667 | F1: 0.4138 +relationship: Wife, Count: 322 +Precision: 0.7164 | Recall: 0.6713 | F1: 0.6931 +race: Amer-Indian-Eskimo, Count: 71 +Precision: 0.6250 | Recall: 0.5000 | F1: 0.5556 +race: Asian-Pac-Islander, Count: 193 +Precision: 0.7547 | Recall: 0.6452 | F1: 0.6957 +race: Black, Count: 599 +Precision: 0.7692 | Recall: 0.6154 | F1: 0.6838 +race: Other, Count: 55 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +race: White, Count: 5,595 +Precision: 0.7448 | Recall: 0.6317 | F1: 0.6836 +sex: Female, Count: 2,126 +Precision: 0.7267 | Recall: 0.5021 | F1: 0.5939 +sex: Male, Count: 4,387 +Precision: 0.7476 | Recall: 0.6532 | F1: 0.6972 +native-country: ?, Count: 125 +Precision: 0.7097 | Recall: 0.7097 | F1: 0.7097 +native-country: Cambodia, Count: 3 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Canada, Count: 22 +Precision: 0.6250 | Recall: 0.6250 | F1: 0.6250 +native-country: China, Count: 18 +Precision: 1.0000 | Recall: 0.8750 | F1: 0.9333 +native-country: Columbia, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 19 +Precision: 0.6667 | Recall: 0.8000 | F1: 0.7273 +native-country: Dominican-Republic, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 5 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: El-Salvador, Count: 20 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: England, Count: 14 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +native-country: France, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Germany, Count: 32 +Precision: 0.8333 | Recall: 0.7692 | F1: 0.8000 +native-country: Greece, Count: 7 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Guatemala, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Haiti, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Honduras, Count: 4 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 8 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: Hungary, Count: 3 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: India, Count: 21 +Precision: 0.7778 | Recall: 0.8750 | F1: 0.8235 +native-country: Iran, Count: 12 +Precision: 0.3333 | Recall: 0.2000 | F1: 0.2500 +native-country: Ireland, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 14 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Jamaica, Count: 13 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Japan, Count: 11 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Laos, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Mexico, Count: 114 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Nicaragua, Count: 7 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Philippines, Count: 35 +Precision: 1.0000 | Recall: 0.6250 | F1: 0.7692 +native-country: Poland, Count: 14 +Precision: 0.6667 | Recall: 1.0000 | F1: 0.8000 +native-country: Portugal, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Puerto-Rico, Count: 22 +Precision: 0.8333 | Recall: 0.8333 | F1: 0.8333 +native-country: Scotland, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: South, Count: 13 +Precision: 0.3333 | Recall: 0.5000 | F1: 0.4000 +native-country: Taiwan, Count: 11 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Thailand, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Trinadad&Tobago, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: United-States, Count: 5,870 +Precision: 0.7448 | Recall: 0.6265 | F1: 0.6805 +native-country: Vietnam, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Yugoslavia, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: ?, Count: 368 +Precision: 0.6786 | Recall: 0.4318 | F1: 0.5278 +workclass: Federal-gov, Count: 186 +Precision: 0.7424 | Recall: 0.6447 | F1: 0.6901 +workclass: Local-gov, Count: 475 +Precision: 0.6912 | Recall: 0.6714 | F1: 0.6812 +workclass: Never-worked, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,513 +Precision: 0.6974 | Recall: 0.6033 | F1: 0.6469 +workclass: Self-emp-inc, Count: 231 +Precision: 0.8319 | Recall: 0.7557 | F1: 0.7920 +workclass: Self-emp-not-inc, Count: 480 +Precision: 0.6598 | Recall: 0.5039 | F1: 0.5714 +workclass: State-gov, Count: 256 +Precision: 0.7188 | Recall: 0.7302 | F1: 0.7244 +workclass: Without-pay, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 197 +Precision: 0.5000 | Recall: 0.0833 | F1: 0.1429 +education: 11th, Count: 235 +Precision: 0.8000 | Recall: 0.2857 | F1: 0.4211 +education: 12th, Count: 77 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 1st-4th, Count: 29 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 5th-6th, Count: 70 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 7th-8th, Count: 118 +Precision: 1.0000 | Recall: 0.2727 | F1: 0.4286 +education: 9th, Count: 84 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: Assoc-acdm, Count: 225 +Precision: 0.6078 | Recall: 0.5741 | F1: 0.5905 +education: Assoc-voc, Count: 251 +Precision: 0.6341 | Recall: 0.4194 | F1: 0.5049 +education: Bachelors, Count: 1,071 +Precision: 0.7460 | Recall: 0.7600 | F1: 0.7529 +education: Doctorate, Count: 83 +Precision: 0.7812 | Recall: 0.8333 | F1: 0.8065 +education: HS-grad, Count: 2,157 +Precision: 0.5520 | Recall: 0.4220 | F1: 0.4783 +education: Masters, Count: 351 +Precision: 0.7949 | Recall: 0.7908 | F1: 0.7928 +education: Preschool, Count: 13 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +education: Prof-school, Count: 117 +Precision: 0.8696 | Recall: 0.9091 | F1: 0.8889 +education: Some-college, Count: 1,434 +Precision: 0.6761 | Recall: 0.4898 | F1: 0.5680 +marital-status: Divorced, Count: 853 +Precision: 0.8108 | Recall: 0.3448 | F1: 0.4839 +marital-status: Married-AF-spouse, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +marital-status: Married-civ-spouse, Count: 3,044 +Precision: 0.6967 | Recall: 0.6535 | F1: 0.6744 +marital-status: Married-spouse-absent, Count: 74 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +marital-status: Never-married, Count: 2,124 +Precision: 0.9070 | Recall: 0.3861 | F1: 0.5417 +marital-status: Separated, Count: 224 +Precision: 0.7143 | Recall: 0.6250 | F1: 0.6667 +marital-status: Widowed, Count: 191 +Precision: 0.8889 | Recall: 0.4706 | F1: 0.6154 +occupation: ?, Count: 369 +Precision: 0.6786 | Recall: 0.4318 | F1: 0.5278 +occupation: Adm-clerical, Count: 768 +Precision: 0.6364 | Recall: 0.4949 | F1: 0.5568 +occupation: Armed-Forces, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 793 +Precision: 0.6000 | Recall: 0.4693 | F1: 0.5266 +occupation: Exec-managerial, Count: 806 +Precision: 0.7886 | Recall: 0.7500 | F1: 0.7688 +occupation: Farming-fishing, Count: 196 +Precision: 0.6000 | Recall: 0.3750 | F1: 0.4615 +occupation: Handlers-cleaners, Count: 271 +Precision: 0.6667 | Recall: 0.1053 | F1: 0.1818 +occupation: Machine-op-inspct, Count: 392 +Precision: 0.5789 | Recall: 0.2245 | F1: 0.3235 +occupation: Other-service, Count: 659 +Precision: 0.6667 | Recall: 0.1538 | F1: 0.2500 +occupation: Priv-house-serv, Count: 36 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 855 +Precision: 0.7454 | Recall: 0.7358 | F1: 0.7405 +occupation: Protective-serv, Count: 148 +Precision: 0.6170 | Recall: 0.6444 | F1: 0.6304 +occupation: Sales, Count: 686 +Precision: 0.6570 | Recall: 0.6175 | F1: 0.6366 +occupation: Tech-support, Count: 178 +Precision: 0.7037 | Recall: 0.7917 | F1: 0.7451 +occupation: Transport-moving, Count: 353 +Precision: 0.6122 | Recall: 0.3947 | F1: 0.4800 +relationship: Husband, Count: 2,652 +Precision: 0.7039 | Recall: 0.6520 | F1: 0.6770 +relationship: Not-in-family, Count: 1,639 +Precision: 0.8659 | Recall: 0.4176 | F1: 0.5635 +relationship: Other-relative, Count: 199 +Precision: 0.5000 | Recall: 0.1667 | F1: 0.2500 +relationship: Own-child, Count: 1,000 +Precision: 0.7500 | Recall: 0.2143 | F1: 0.3333 +relationship: Unmarried, Count: 673 +Precision: 0.7857 | Recall: 0.3143 | F1: 0.4490 +relationship: Wife, Count: 349 +Precision: 0.6564 | Recall: 0.6859 | F1: 0.6708 +race: Amer-Indian-Eskimo, Count: 67 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +race: Asian-Pac-Islander, Count: 205 +Precision: 0.7561 | Recall: 0.5536 | F1: 0.6392 +race: Black, Count: 600 +Precision: 0.6078 | Recall: 0.4366 | F1: 0.5082 +race: Other, Count: 52 +Precision: 0.6667 | Recall: 0.4000 | F1: 0.5000 +race: White, Count: 5,588 +Precision: 0.7102 | Recall: 0.6295 | F1: 0.6674 +sex: Female, Count: 2,195 +Precision: 0.6869 | Recall: 0.5738 | F1: 0.6253 +sex: Male, Count: 4,317 +Precision: 0.7124 | Recall: 0.6241 | F1: 0.6653 +native-country: ?, Count: 106 +Precision: 0.8182 | Recall: 0.6000 | F1: 0.6923 +native-country: Cambodia, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Canada, Count: 26 +Precision: 0.7500 | Recall: 0.3750 | F1: 0.5000 +native-country: China, Count: 15 +Precision: 0.6000 | Recall: 0.7500 | F1: 0.6667 +native-country: Columbia, Count: 12 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 27 +Precision: 0.8750 | Recall: 0.7778 | F1: 0.8235 +native-country: Dominican-Republic, Count: 17 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 6 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: El-Salvador, Count: 17 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: England, Count: 20 +Precision: 0.7500 | Recall: 0.4286 | F1: 0.5455 +native-country: France, Count: 6 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Germany, Count: 20 +Precision: 0.6667 | Recall: 0.2857 | F1: 0.4000 +native-country: Greece, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Guatemala, Count: 10 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Haiti, Count: 12 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Honduras, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 4 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Hungary, Count: 2 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: India, Count: 24 +Precision: 0.8571 | Recall: 0.6667 | F1: 0.7500 +native-country: Iran, Count: 3 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Ireland, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 11 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Jamaica, Count: 21 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Japan, Count: 9 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Laos, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Mexico, Count: 120 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +native-country: Nicaragua, Count: 6 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Outlying-US(Guam-USVI-etc), Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 41 +Precision: 0.6000 | Recall: 0.6000 | F1: 0.6000 +native-country: Poland, Count: 13 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +native-country: Portugal, Count: 8 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Puerto-Rico, Count: 19 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Scotland, Count: 5 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: South, Count: 17 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Taiwan, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Thailand, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Trinadad&Tobago, Count: 5 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: United-States, Count: 5,856 +Precision: 0.7068 | Recall: 0.6225 | F1: 0.6619 +native-country: Vietnam, Count: 13 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Yugoslavia, Count: 6 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +workclass: ?, Count: 357 +Precision: 0.6250 | Recall: 0.4444 | F1: 0.5195 +workclass: Federal-gov, Count: 195 +Precision: 0.7179 | Recall: 0.7887 | F1: 0.7517 +workclass: Local-gov, Count: 395 +Precision: 0.6939 | Recall: 0.5812 | F1: 0.6326 +workclass: Never-worked, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,566 +Precision: 0.7378 | Recall: 0.6123 | F1: 0.6692 +workclass: Self-emp-inc, Count: 225 +Precision: 0.7826 | Recall: 0.7500 | F1: 0.7660 +workclass: Self-emp-not-inc, Count: 514 +Precision: 0.7475 | Recall: 0.5000 | F1: 0.5992 +workclass: State-gov, Count: 255 +Precision: 0.7273 | Recall: 0.7089 | F1: 0.7179 +workclass: Without-pay, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 180 +Precision: 0.7500 | Recall: 0.5000 | F1: 0.6000 +education: 11th, Count: 242 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +education: 12th, Count: 85 +Precision: 1.0000 | Recall: 0.2727 | F1: 0.4286 +education: 1st-4th, Count: 42 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 5th-6th, Count: 72 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: 7th-8th, Count: 160 +Precision: 0.5000 | Recall: 0.1000 | F1: 0.1667 +education: 9th, Count: 110 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: Assoc-acdm, Count: 199 +Precision: 0.6889 | Recall: 0.5962 | F1: 0.6392 +education: Assoc-voc, Count: 283 +Precision: 0.8333 | Recall: 0.5233 | F1: 0.6429 +education: Bachelors, Count: 1,073 +Precision: 0.7332 | Recall: 0.7528 | F1: 0.7429 +education: Doctorate, Count: 85 +Precision: 0.7536 | Recall: 0.8966 | F1: 0.8189 +education: HS-grad, Count: 2,063 +Precision: 0.5864 | Recall: 0.3601 | F1: 0.4462 +education: Masters, Count: 329 +Precision: 0.8218 | Recall: 0.8034 | F1: 0.8125 +education: Preschool, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 120 +Precision: 0.9184 | Recall: 0.9677 | F1: 0.9424 +education: Some-college, Count: 1,458 +Precision: 0.6887 | Recall: 0.5069 | F1: 0.5840 +marital-status: Divorced, Count: 899 +Precision: 0.6512 | Recall: 0.3218 | F1: 0.4308 +marital-status: Married-AF-spouse, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 3,011 +Precision: 0.7336 | Recall: 0.6603 | F1: 0.6950 +marital-status: Married-spouse-absent, Count: 76 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +marital-status: Never-married, Count: 2,100 +Precision: 0.7800 | Recall: 0.4149 | F1: 0.5417 +marital-status: Separated, Count: 215 +Precision: 1.0000 | Recall: 0.4167 | F1: 0.5882 +marital-status: Widowed, Count: 207 +Precision: 1.0000 | Recall: 0.2222 | F1: 0.3636 +occupation: ?, Count: 359 +Precision: 0.6250 | Recall: 0.4444 | F1: 0.5195 +occupation: Adm-clerical, Count: 755 +Precision: 0.6076 | Recall: 0.4615 | F1: 0.5246 +occupation: Armed-Forces, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 849 +Precision: 0.6718 | Recall: 0.4378 | F1: 0.5301 +occupation: Exec-managerial, Count: 808 +Precision: 0.7836 | Recall: 0.7467 | F1: 0.7647 +occupation: Farming-fishing, Count: 201 +Precision: 0.7143 | Recall: 0.2273 | F1: 0.3448 +occupation: Handlers-cleaners, Count: 297 +Precision: 0.6667 | Recall: 0.2353 | F1: 0.3478 +occupation: Machine-op-inspct, Count: 408 +Precision: 0.6316 | Recall: 0.2400 | F1: 0.3478 +occupation: Other-service, Count: 626 +Precision: 0.7500 | Recall: 0.1200 | F1: 0.2069 +occupation: Priv-house-serv, Count: 32 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 817 +Precision: 0.8000 | Recall: 0.7890 | F1: 0.7945 +occupation: Protective-serv, Count: 129 +Precision: 0.5714 | Recall: 0.5405 | F1: 0.5556 +occupation: Sales, Count: 729 +Precision: 0.6989 | Recall: 0.6468 | F1: 0.6718 +occupation: Tech-support, Count: 190 +Precision: 0.6721 | Recall: 0.6721 | F1: 0.6721 +occupation: Transport-moving, Count: 311 +Precision: 0.7059 | Recall: 0.4211 | F1: 0.5275 +relationship: Husband, Count: 2,694 +Precision: 0.7378 | Recall: 0.6656 | F1: 0.6998 +relationship: Not-in-family, Count: 1,648 +Precision: 0.7342 | Recall: 0.3742 | F1: 0.4957 +relationship: Other-relative, Count: 208 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +relationship: Own-child, Count: 969 +Precision: 0.7500 | Recall: 0.3000 | F1: 0.4286 +relationship: Unmarried, Count: 708 +Precision: 0.7500 | Recall: 0.3000 | F1: 0.4286 +relationship: Wife, Count: 285 +Precision: 0.7031 | Recall: 0.6294 | F1: 0.6642 +race: Amer-Indian-Eskimo, Count: 55 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +race: Asian-Pac-Islander, Count: 210 +Precision: 0.6383 | Recall: 0.5769 | F1: 0.6061 +race: Black, Count: 634 +Precision: 0.7581 | Recall: 0.5875 | F1: 0.6620 +race: Other, Count: 50 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +race: White, Count: 5,563 +Precision: 0.7378 | Recall: 0.6217 | F1: 0.6748 +sex: Female, Count: 2,124 +Precision: 0.7099 | Recall: 0.5251 | F1: 0.6037 +sex: Male, Count: 4,388 +Precision: 0.7381 | Recall: 0.6331 | F1: 0.6816 +native-country: ?, Count: 104 +Precision: 0.5714 | Recall: 0.6000 | F1: 0.5854 +native-country: Cambodia, Count: 6 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Canada, Count: 25 +Precision: 0.7143 | Recall: 0.5556 | F1: 0.6250 +native-country: China, Count: 10 +Precision: 0.3333 | Recall: 1.0000 | F1: 0.5000 +native-country: Columbia, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 21 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Dominican-Republic, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: El-Salvador, Count: 25 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: England, Count: 18 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: France, Count: 7 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Germany, Count: 27 +Precision: 0.6667 | Recall: 0.5714 | F1: 0.6154 +native-country: Greece, Count: 4 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Guatemala, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Haiti, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Holand-Netherlands, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Honduras, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hungary, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: India, Count: 15 +Precision: 0.6250 | Recall: 0.6250 | F1: 0.6250 +native-country: Iran, Count: 9 +Precision: 1.0000 | Recall: 0.8000 | F1: 0.8889 +native-country: Ireland, Count: 4 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 20 +Precision: 1.0000 | Recall: 0.5714 | F1: 0.7273 +native-country: Jamaica, Count: 14 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Japan, Count: 16 +Precision: 0.5000 | Recall: 0.6667 | F1: 0.5714 +native-country: Laos, Count: 4 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Mexico, Count: 152 +Precision: 1.0000 | Recall: 0.2857 | F1: 0.4444 +native-country: Nicaragua, Count: 5 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: Outlying-US(Guam-USVI-etc), Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 37 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Poland, Count: 8 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Portugal, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Puerto-Rico, Count: 27 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Scotland, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: South, Count: 12 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +native-country: Taiwan, Count: 14 +Precision: 0.7500 | Recall: 0.6000 | F1: 0.6667 +native-country: Thailand, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Trinadad&Tobago, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: United-States, Count: 5,818 +Precision: 0.7428 | Recall: 0.6205 | F1: 0.6762 +native-country: Vietnam, Count: 20 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: ?, Count: 345 +Precision: 0.7308 | Recall: 0.5278 | F1: 0.6129 +workclass: Federal-gov, Count: 200 +Precision: 0.7973 | Recall: 0.7375 | F1: 0.7662 +workclass: Local-gov, Count: 421 +Precision: 0.7434 | Recall: 0.6667 | F1: 0.7029 +workclass: Never-worked, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,547 +Precision: 0.7450 | Recall: 0.5990 | F1: 0.6641 +workclass: Self-emp-inc, Count: 214 +Precision: 0.7769 | Recall: 0.8211 | F1: 0.7984 +workclass: Self-emp-not-inc, Count: 511 +Precision: 0.6667 | Recall: 0.5035 | F1: 0.5737 +workclass: State-gov, Count: 270 +Precision: 0.8364 | Recall: 0.6866 | F1: 0.7541 +workclass: Without-pay, Count: 3 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +education: 10th, Count: 184 +Precision: 0.5000 | Recall: 0.1538 | F1: 0.2353 +education: 11th, Count: 240 +Precision: 1.0000 | Recall: 0.3636 | F1: 0.5333 +education: 12th, Count: 86 +Precision: 1.0000 | Recall: 0.1429 | F1: 0.2500 +education: 1st-4th, Count: 43 +Precision: 1.0000 | Recall: 0.2500 | F1: 0.4000 +education: 5th-6th, Count: 67 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +education: 7th-8th, Count: 104 +Precision: 0.6000 | Recall: 0.5000 | F1: 0.5455 +education: 9th, Count: 100 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +education: Assoc-acdm, Count: 205 +Precision: 0.7561 | Recall: 0.5849 | F1: 0.6596 +education: Assoc-voc, Count: 292 +Precision: 0.6667 | Recall: 0.5600 | F1: 0.6087 +education: Bachelors, Count: 1,068 +Precision: 0.7864 | Recall: 0.7522 | F1: 0.7689 +education: Doctorate, Count: 75 +Precision: 0.8548 | Recall: 0.9298 | F1: 0.8908 +education: HS-grad, Count: 2,105 +Precision: 0.6771 | Recall: 0.3746 | F1: 0.4824 +education: Masters, Count: 319 +Precision: 0.8034 | Recall: 0.8034 | F1: 0.8034 +education: Preschool, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 112 +Precision: 0.8471 | Recall: 0.9474 | F1: 0.8944 +education: Some-college, Count: 1,501 +Precision: 0.6481 | Recall: 0.5336 | F1: 0.5853 +marital-status: Divorced, Count: 869 +Precision: 0.7895 | Recall: 0.3448 | F1: 0.4800 +marital-status: Married-AF-spouse, Count: 7 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 2,996 +Precision: 0.7412 | Recall: 0.6679 | F1: 0.7026 +marital-status: Married-spouse-absent, Count: 96 +Precision: 0.6667 | Recall: 0.2222 | F1: 0.3333 +marital-status: Never-married, Count: 2,171 +Precision: 0.8718 | Recall: 0.3542 | F1: 0.5037 +marital-status: Separated, Count: 186 +Precision: 1.0000 | Recall: 0.3571 | F1: 0.5263 +marital-status: Widowed, Count: 187 +Precision: 1.0000 | Recall: 0.3077 | F1: 0.4706 +occupation: ?, Count: 346 +Precision: 0.7308 | Recall: 0.5278 | F1: 0.6129 +occupation: Adm-clerical, Count: 791 +Precision: 0.6495 | Recall: 0.5431 | F1: 0.5915 +occupation: Armed-Forces, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 820 +Precision: 0.5909 | Recall: 0.4358 | F1: 0.5016 +occupation: Exec-managerial, Count: 791 +Precision: 0.8072 | Recall: 0.7792 | F1: 0.7929 +occupation: Farming-fishing, Count: 203 +Precision: 0.7857 | Recall: 0.4783 | F1: 0.5946 +occupation: Handlers-cleaners, Count: 288 +Precision: 0.6667 | Recall: 0.1739 | F1: 0.2759 +occupation: Machine-op-inspct, Count: 427 +Precision: 0.6552 | Recall: 0.3725 | F1: 0.4750 +occupation: Other-service, Count: 647 +Precision: 0.8333 | Recall: 0.1562 | F1: 0.2632 +occupation: Priv-house-serv, Count: 26 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 817 +Precision: 0.8128 | Recall: 0.7951 | F1: 0.8039 +occupation: Protective-serv, Count: 130 +Precision: 0.7353 | Recall: 0.5814 | F1: 0.6494 +occupation: Sales, Count: 739 +Precision: 0.6918 | Recall: 0.5288 | F1: 0.5994 +occupation: Tech-support, Count: 180 +Precision: 0.7143 | Recall: 0.6250 | F1: 0.6667 +occupation: Transport-moving, Count: 306 +Precision: 0.6000 | Recall: 0.2679 | F1: 0.3704 +relationship: Husband, Count: 2,631 +Precision: 0.7392 | Recall: 0.6661 | F1: 0.7008 +relationship: Not-in-family, Count: 1,650 +Precision: 0.8451 | Recall: 0.3488 | F1: 0.4938 +relationship: Other-relative, Count: 184 +Precision: 1.0000 | Recall: 0.3750 | F1: 0.5455 +relationship: Own-child, Count: 1,082 +Precision: 1.0000 | Recall: 0.2941 | F1: 0.4545 +relationship: Unmarried, Count: 656 +Precision: 0.7857 | Recall: 0.3056 | F1: 0.4400 +relationship: Wife, Count: 309 +Precision: 0.7434 | Recall: 0.7107 | F1: 0.7267 +race: Amer-Indian-Eskimo, Count: 65 +Precision: 0.6000 | Recall: 0.4286 | F1: 0.5000 +race: Asian-Pac-Islander, Count: 207 +Precision: 0.7273 | Recall: 0.5714 | F1: 0.6400 +race: Black, Count: 621 +Precision: 0.8333 | Recall: 0.5495 | F1: 0.6623 +race: Other, Count: 67 +Precision: 0.6667 | Recall: 0.5714 | F1: 0.6154 +race: White, Count: 5,552 +Precision: 0.7450 | Recall: 0.6301 | F1: 0.6828 +sex: Female, Count: 2,130 +Precision: 0.7622 | Recall: 0.5851 | F1: 0.6620 +sex: Male, Count: 4,382 +Precision: 0.7451 | Recall: 0.6289 | F1: 0.6821 +native-country: ?, Count: 127 +Precision: 0.8065 | Recall: 0.6579 | F1: 0.7246 +native-country: Cambodia, Count: 2 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Canada, Count: 22 +Precision: 0.6000 | Recall: 0.4286 | F1: 0.5000 +native-country: China, Count: 15 +Precision: 1.0000 | Recall: 0.4000 | F1: 0.5714 +native-country: Columbia, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 16 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Dominican-Republic, Count: 20 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: El-Salvador, Count: 24 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: England, Count: 19 +Precision: 0.8750 | Recall: 0.7000 | F1: 0.7778 +native-country: France, Count: 5 +Precision: 0.7500 | Recall: 1.0000 | F1: 0.8571 +native-country: Germany, Count: 28 +Precision: 1.0000 | Recall: 0.5556 | F1: 0.7143 +native-country: Greece, Count: 7 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Guatemala, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Haiti, Count: 7 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Honduras, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hungary, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: India, Count: 20 +Precision: 0.7000 | Recall: 1.0000 | F1: 0.8235 +native-country: Iran, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ireland, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Italy, Count: 14 +Precision: 1.0000 | Recall: 0.4286 | F1: 0.6000 +native-country: Jamaica, Count: 19 +Precision: 1.0000 | Recall: 0.6667 | F1: 0.8000 +native-country: Japan, Count: 13 +Precision: 1.0000 | Recall: 0.7143 | F1: 0.8333 +native-country: Laos, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Mexico, Count: 132 +Precision: 0.6667 | Recall: 0.2500 | F1: 0.3636 +native-country: Nicaragua, Count: 9 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Outlying-US(Guam-USVI-etc), Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 38 +Precision: 0.5556 | Recall: 0.5000 | F1: 0.5263 +native-country: Poland, Count: 14 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +native-country: Portugal, Count: 8 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Puerto-Rico, Count: 19 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: South, Count: 18 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +native-country: Taiwan, Count: 8 +Precision: 0.7500 | Recall: 1.0000 | F1: 0.8571 +native-country: Thailand, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Trinadad&Tobago, Count: 3 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: United-States, Count: 5,820 +Precision: 0.7438 | Recall: 0.6265 | F1: 0.6801 +native-country: Vietnam, Count: 14 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Yugoslavia, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: ?, Count: 377 +Precision: 0.3750 | Recall: 0.2500 | F1: 0.3000 +workclass: Federal-gov, Count: 188 +Precision: 0.8136 | Recall: 0.6486 | F1: 0.7218 +workclass: Local-gov, Count: 415 +Precision: 0.7451 | Recall: 0.6129 | F1: 0.6726 +workclass: Never-worked, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,492 +Precision: 0.7312 | Recall: 0.6145 | F1: 0.6678 +workclass: Self-emp-inc, Count: 234 +Precision: 0.8222 | Recall: 0.8538 | F1: 0.8377 +workclass: Self-emp-not-inc, Count: 538 +Precision: 0.7607 | Recall: 0.5973 | F1: 0.6692 +workclass: State-gov, Count: 263 +Precision: 0.7705 | Recall: 0.6620 | F1: 0.7121 +workclass: Without-pay, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 189 +Precision: 1.0000 | Recall: 0.0769 | F1: 0.1429 +education: 11th, Count: 233 +Precision: 1.0000 | Recall: 0.2857 | F1: 0.4444 +education: 12th, Count: 87 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +education: 1st-4th, Count: 31 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 5th-6th, Count: 62 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: 7th-8th, Count: 123 +Precision: 0.5000 | Recall: 0.1429 | F1: 0.2222 +education: 9th, Count: 105 +Precision: 1.0000 | Recall: 0.1250 | F1: 0.2222 +education: Assoc-acdm, Count: 240 +Precision: 0.6275 | Recall: 0.5424 | F1: 0.5818 +education: Assoc-voc, Count: 283 +Precision: 0.6774 | Recall: 0.5600 | F1: 0.6131 +education: Bachelors, Count: 1,090 +Precision: 0.7551 | Recall: 0.7620 | F1: 0.7585 +education: Doctorate, Count: 93 +Precision: 0.8873 | Recall: 0.8514 | F1: 0.8690 +education: HS-grad, Count: 2,091 +Precision: 0.6590 | Recall: 0.4145 | F1: 0.5089 +education: Masters, Count: 355 +Precision: 0.8564 | Recall: 0.8350 | F1: 0.8456 +education: Preschool, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 111 +Precision: 0.8571 | Recall: 0.8780 | F1: 0.8675 +education: Some-college, Count: 1,413 +Precision: 0.6582 | Recall: 0.5265 | F1: 0.5850 +marital-status: Divorced, Count: 902 +Precision: 0.7857 | Recall: 0.3333 | F1: 0.4681 +marital-status: Married-AF-spouse, Count: 6 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 2,975 +Precision: 0.7359 | Recall: 0.6762 | F1: 0.7048 +marital-status: Married-spouse-absent, Count: 76 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +marital-status: Never-married, Count: 2,162 +Precision: 0.9020 | Recall: 0.4742 | F1: 0.6216 +marital-status: Separated, Count: 191 +Precision: 1.0000 | Recall: 0.2308 | F1: 0.3750 +marital-status: Widowed, Count: 200 +Precision: 0.8333 | Recall: 0.2778 | F1: 0.4167 +occupation: ?, Count: 380 +Precision: 0.3750 | Recall: 0.2500 | F1: 0.3000 +occupation: Adm-clerical, Count: 730 +Precision: 0.6538 | Recall: 0.5543 | F1: 0.6000 +occupation: Armed-Forces, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 816 +Precision: 0.6165 | Recall: 0.4339 | F1: 0.5093 +occupation: Exec-managerial, Count: 823 +Precision: 0.7805 | Recall: 0.8060 | F1: 0.7931 +occupation: Farming-fishing, Count: 201 +Precision: 0.8000 | Recall: 0.4615 | F1: 0.5854 +occupation: Handlers-cleaners, Count: 241 +Precision: 1.0000 | Recall: 0.4000 | F1: 0.5714 +occupation: Machine-op-inspct, Count: 397 +Precision: 0.5294 | Recall: 0.3396 | F1: 0.4138 +occupation: Other-service, Count: 696 +Precision: 0.8571 | Recall: 0.2143 | F1: 0.3429 +occupation: Priv-house-serv, Count: 29 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 823 +Precision: 0.7943 | Recall: 0.7943 | F1: 0.7943 +occupation: Protective-serv, Count: 106 +Precision: 0.8276 | Recall: 0.5455 | F1: 0.6575 +occupation: Sales, Count: 767 +Precision: 0.7576 | Recall: 0.5787 | F1: 0.6562 +occupation: Tech-support, Count: 191 +Precision: 0.8140 | Recall: 0.5224 | F1: 0.6364 +occupation: Transport-moving, Count: 310 +Precision: 0.6341 | Recall: 0.3881 | F1: 0.4815 +relationship: Husband, Count: 2,626 +Precision: 0.7342 | Recall: 0.6802 | F1: 0.7062 +relationship: Not-in-family, Count: 1,666 +Precision: 0.8353 | Recall: 0.4152 | F1: 0.5547 +relationship: Other-relative, Count: 212 +Precision: 1.0000 | Recall: 0.1000 | F1: 0.1818 +relationship: Own-child, Count: 998 +Precision: 1.0000 | Recall: 0.4444 | F1: 0.6154 +relationship: Unmarried, Count: 707 +Precision: 0.9444 | Recall: 0.3269 | F1: 0.4857 +relationship: Wife, Count: 303 +Precision: 0.7419 | Recall: 0.6389 | F1: 0.6866 +race: Amer-Indian-Eskimo, Count: 53 +Precision: 0.3333 | Recall: 0.1667 | F1: 0.2222 +race: Asian-Pac-Islander, Count: 224 +Precision: 0.7333 | Recall: 0.6600 | F1: 0.6947 +race: Black, Count: 670 +Precision: 0.7895 | Recall: 0.5625 | F1: 0.6569 +race: Other, Count: 47 +Precision: 0.6000 | Recall: 0.7500 | F1: 0.6667 +race: White, Count: 5,518 +Precision: 0.7453 | Recall: 0.6352 | F1: 0.6858 +sex: Female, Count: 2,196 +Precision: 0.7738 | Recall: 0.5221 | F1: 0.6235 +sex: Male, Count: 4,316 +Precision: 0.7412 | Recall: 0.6513 | F1: 0.6933 +native-country: ?, Count: 121 +Precision: 0.7692 | Recall: 0.7407 | F1: 0.7547 +native-country: Cambodia, Count: 4 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Canada, Count: 26 +Precision: 0.8571 | Recall: 0.8571 | F1: 0.8571 +native-country: China, Count: 17 +Precision: 0.6667 | Recall: 1.0000 | F1: 0.8000 +native-country: Columbia, Count: 17 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Cuba, Count: 12 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +native-country: Dominican-Republic, Count: 14 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Ecuador, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: El-Salvador, Count: 20 +Precision: 1.0000 | Recall: 0.6667 | F1: 0.8000 +native-country: England, Count: 19 +Precision: 0.7500 | Recall: 0.6000 | F1: 0.6667 +native-country: France, Count: 6 +Precision: 1.0000 | Recall: 0.7500 | F1: 0.8571 +native-country: Germany, Count: 30 +Precision: 1.0000 | Recall: 0.7500 | F1: 0.8571 +native-country: Greece, Count: 10 +Precision: 0.8000 | Recall: 1.0000 | F1: 0.8889 +native-country: Guatemala, Count: 15 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Haiti, Count: 10 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Honduras, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Hungary, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: India, Count: 20 +Precision: 0.6667 | Recall: 0.7500 | F1: 0.7059 +native-country: Iran, Count: 11 +Precision: 0.7500 | Recall: 1.0000 | F1: 0.8571 +native-country: Ireland, Count: 7 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 14 +Precision: 0.3333 | Recall: 0.2500 | F1: 0.2857 +native-country: Jamaica, Count: 14 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Japan, Count: 13 +Precision: 1.0000 | Recall: 0.8000 | F1: 0.8889 +native-country: Laos, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Mexico, Count: 125 +Precision: 0.8333 | Recall: 0.5556 | F1: 0.6667 +native-country: Nicaragua, Count: 7 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Outlying-US(Guam-USVI-etc), Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 47 +Precision: 0.8889 | Recall: 0.6154 | F1: 0.7273 +native-country: Poland, Count: 11 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Portugal, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Puerto-Rico, Count: 27 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Scotland, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: South, Count: 20 +Precision: 0.2500 | Recall: 0.3333 | F1: 0.2857 +native-country: Taiwan, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Thailand, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Trinadad&Tobago, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: United-States, Count: 5,806 +Precision: 0.7448 | Recall: 0.6257 | F1: 0.6801 +native-country: Vietnam, Count: 15 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Yugoslavia, Count: 6 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +workclass: ?, Count: 389 +Precision: 0.6923 | Recall: 0.4286 | F1: 0.5294 +workclass: Federal-gov, Count: 191 +Precision: 0.7571 | Recall: 0.7571 | F1: 0.7571 +workclass: Local-gov, Count: 387 +Precision: 0.7500 | Recall: 0.6545 | F1: 0.6990 +workclass: Private, Count: 4,578 +Precision: 0.7447 | Recall: 0.6324 | F1: 0.6840 +workclass: Self-emp-inc, Count: 212 +Precision: 0.7565 | Recall: 0.7373 | F1: 0.7468 +workclass: Self-emp-not-inc, Count: 498 +Precision: 0.7339 | Recall: 0.5096 | F1: 0.6015 +workclass: State-gov, Count: 254 +Precision: 0.7500 | Recall: 0.6575 | F1: 0.7007 +workclass: Without-pay, Count: 4 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 183 +Precision: 0.4286 | Recall: 0.2500 | F1: 0.3158 +education: 11th, Count: 225 +Precision: 1.0000 | Recall: 0.2727 | F1: 0.4286 +education: 12th, Count: 98 +Precision: 1.0000 | Recall: 0.4000 | F1: 0.5714 +education: 1st-4th, Count: 23 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 5th-6th, Count: 62 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 7th-8th, Count: 141 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +education: 9th, Count: 115 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +education: Assoc-acdm, Count: 198 +Precision: 0.6923 | Recall: 0.5745 | F1: 0.6279 +education: Assoc-voc, Count: 273 +Precision: 0.6667 | Recall: 0.5397 | F1: 0.5965 +education: Bachelors, Count: 1,053 +Precision: 0.7564 | Recall: 0.7244 | F1: 0.7401 +education: Doctorate, Count: 77 +Precision: 0.8500 | Recall: 0.8947 | F1: 0.8718 +education: HS-grad, Count: 2,085 +Precision: 0.6622 | Recall: 0.4261 | F1: 0.5185 +education: Masters, Count: 369 +Precision: 0.8309 | Recall: 0.8309 | F1: 0.8309 +education: Preschool, Count: 10 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 116 +Precision: 0.8191 | Recall: 0.9167 | F1: 0.8652 +education: Some-college, Count: 1,485 +Precision: 0.6952 | Recall: 0.5271 | F1: 0.5996 +marital-status: Divorced, Count: 920 +Precision: 0.7826 | Recall: 0.3495 | F1: 0.4832 +marital-status: Married-AF-spouse, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 2,950 +Precision: 0.7377 | Recall: 0.6816 | F1: 0.7085 +marital-status: Married-spouse-absent, Count: 96 +Precision: 1.0000 | Recall: 0.2500 | F1: 0.4000 +marital-status: Never-married, Count: 2,126 +Precision: 0.8182 | Recall: 0.4369 | F1: 0.5696 +marital-status: Separated, Count: 209 +Precision: 1.0000 | Recall: 0.4211 | F1: 0.5926 +marital-status: Widowed, Count: 208 +Precision: 1.0000 | Recall: 0.1579 | F1: 0.2727 +occupation: ?, Count: 389 +Precision: 0.6923 | Recall: 0.4286 | F1: 0.5294 +occupation: Adm-clerical, Count: 726 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +occupation: Armed-Forces, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 821 +Precision: 0.6641 | Recall: 0.4696 | F1: 0.5502 +occupation: Exec-managerial, Count: 838 +Precision: 0.8011 | Recall: 0.7506 | F1: 0.7750 +occupation: Farming-fishing, Count: 193 +Precision: 0.6364 | Recall: 0.2500 | F1: 0.3590 +occupation: Handlers-cleaners, Count: 273 +Precision: 0.5714 | Recall: 0.3333 | F1: 0.4211 +occupation: Machine-op-inspct, Count: 378 +Precision: 0.5938 | Recall: 0.4043 | F1: 0.4810 +occupation: Other-service, Count: 667 +Precision: 0.8571 | Recall: 0.2308 | F1: 0.3636 +occupation: Priv-house-serv, Count: 26 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 828 +Precision: 0.7882 | Recall: 0.7500 | F1: 0.7686 +occupation: Protective-serv, Count: 136 +Precision: 0.6970 | Recall: 0.5476 | F1: 0.6133 +occupation: Sales, Count: 729 +Precision: 0.7333 | Recall: 0.6875 | F1: 0.7097 +occupation: Tech-support, Count: 189 +Precision: 0.6744 | Recall: 0.5686 | F1: 0.6170 +occupation: Transport-moving, Count: 317 +Precision: 0.6000 | Recall: 0.4219 | F1: 0.4954 +relationship: Husband, Count: 2,590 +Precision: 0.7401 | Recall: 0.6838 | F1: 0.7108 +relationship: Not-in-family, Count: 1,702 +Precision: 0.8021 | Recall: 0.4096 | F1: 0.5423 +relationship: Other-relative, Count: 178 +Precision: 1.0000 | Recall: 0.3750 | F1: 0.5455 +relationship: Own-child, Count: 1,019 +Precision: 1.0000 | Recall: 0.1765 | F1: 0.3000 +relationship: Unmarried, Count: 702 +Precision: 0.9231 | Recall: 0.2667 | F1: 0.4138 +relationship: Wife, Count: 322 +Precision: 0.7164 | Recall: 0.6713 | F1: 0.6931 +race: Amer-Indian-Eskimo, Count: 71 +Precision: 0.6250 | Recall: 0.5000 | F1: 0.5556 +race: Asian-Pac-Islander, Count: 193 +Precision: 0.7547 | Recall: 0.6452 | F1: 0.6957 +race: Black, Count: 599 +Precision: 0.7692 | Recall: 0.6154 | F1: 0.6838 +race: Other, Count: 55 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +race: White, Count: 5,595 +Precision: 0.7448 | Recall: 0.6317 | F1: 0.6836 +sex: Female, Count: 2,126 +Precision: 0.7267 | Recall: 0.5021 | F1: 0.5939 +sex: Male, Count: 4,387 +Precision: 0.7476 | Recall: 0.6532 | F1: 0.6972 +native-country: ?, Count: 125 +Precision: 0.7097 | Recall: 0.7097 | F1: 0.7097 +native-country: Cambodia, Count: 3 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Canada, Count: 22 +Precision: 0.6250 | Recall: 0.6250 | F1: 0.6250 +native-country: China, Count: 18 +Precision: 1.0000 | Recall: 0.8750 | F1: 0.9333 +native-country: Columbia, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 19 +Precision: 0.6667 | Recall: 0.8000 | F1: 0.7273 +native-country: Dominican-Republic, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 5 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: El-Salvador, Count: 20 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: England, Count: 14 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +native-country: France, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Germany, Count: 32 +Precision: 0.8333 | Recall: 0.7692 | F1: 0.8000 +native-country: Greece, Count: 7 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Guatemala, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Haiti, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Honduras, Count: 4 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 8 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: Hungary, Count: 3 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: India, Count: 21 +Precision: 0.7778 | Recall: 0.8750 | F1: 0.8235 +native-country: Iran, Count: 12 +Precision: 0.3333 | Recall: 0.2000 | F1: 0.2500 +native-country: Ireland, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 14 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Jamaica, Count: 13 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Japan, Count: 11 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Laos, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Mexico, Count: 114 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Nicaragua, Count: 7 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Philippines, Count: 35 +Precision: 1.0000 | Recall: 0.6250 | F1: 0.7692 +native-country: Poland, Count: 14 +Precision: 0.6667 | Recall: 1.0000 | F1: 0.8000 +native-country: Portugal, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Puerto-Rico, Count: 22 +Precision: 0.8333 | Recall: 0.8333 | F1: 0.8333 +native-country: Scotland, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: South, Count: 13 +Precision: 0.3333 | Recall: 0.5000 | F1: 0.4000 +native-country: Taiwan, Count: 11 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Thailand, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Trinadad&Tobago, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: United-States, Count: 5,870 +Precision: 0.7448 | Recall: 0.6265 | F1: 0.6805 +native-country: Vietnam, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Yugoslavia, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: ?, Count: 368 +Precision: 0.6786 | Recall: 0.4318 | F1: 0.5278 +workclass: Federal-gov, Count: 186 +Precision: 0.7424 | Recall: 0.6447 | F1: 0.6901 +workclass: Local-gov, Count: 475 +Precision: 0.6912 | Recall: 0.6714 | F1: 0.6812 +workclass: Never-worked, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,513 +Precision: 0.6974 | Recall: 0.6033 | F1: 0.6469 +workclass: Self-emp-inc, Count: 231 +Precision: 0.8319 | Recall: 0.7557 | F1: 0.7920 +workclass: Self-emp-not-inc, Count: 480 +Precision: 0.6598 | Recall: 0.5039 | F1: 0.5714 +workclass: State-gov, Count: 256 +Precision: 0.7188 | Recall: 0.7302 | F1: 0.7244 +workclass: Without-pay, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 197 +Precision: 0.5000 | Recall: 0.0833 | F1: 0.1429 +education: 11th, Count: 235 +Precision: 0.8000 | Recall: 0.2857 | F1: 0.4211 +education: 12th, Count: 77 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 1st-4th, Count: 29 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 5th-6th, Count: 70 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 7th-8th, Count: 118 +Precision: 1.0000 | Recall: 0.2727 | F1: 0.4286 +education: 9th, Count: 84 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: Assoc-acdm, Count: 225 +Precision: 0.6078 | Recall: 0.5741 | F1: 0.5905 +education: Assoc-voc, Count: 251 +Precision: 0.6341 | Recall: 0.4194 | F1: 0.5049 +education: Bachelors, Count: 1,071 +Precision: 0.7460 | Recall: 0.7600 | F1: 0.7529 +education: Doctorate, Count: 83 +Precision: 0.7812 | Recall: 0.8333 | F1: 0.8065 +education: HS-grad, Count: 2,157 +Precision: 0.5520 | Recall: 0.4220 | F1: 0.4783 +education: Masters, Count: 351 +Precision: 0.7949 | Recall: 0.7908 | F1: 0.7928 +education: Preschool, Count: 13 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +education: Prof-school, Count: 117 +Precision: 0.8696 | Recall: 0.9091 | F1: 0.8889 +education: Some-college, Count: 1,434 +Precision: 0.6761 | Recall: 0.4898 | F1: 0.5680 +marital-status: Divorced, Count: 853 +Precision: 0.8108 | Recall: 0.3448 | F1: 0.4839 +marital-status: Married-AF-spouse, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +marital-status: Married-civ-spouse, Count: 3,044 +Precision: 0.6967 | Recall: 0.6535 | F1: 0.6744 +marital-status: Married-spouse-absent, Count: 74 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +marital-status: Never-married, Count: 2,124 +Precision: 0.9070 | Recall: 0.3861 | F1: 0.5417 +marital-status: Separated, Count: 224 +Precision: 0.7143 | Recall: 0.6250 | F1: 0.6667 +marital-status: Widowed, Count: 191 +Precision: 0.8889 | Recall: 0.4706 | F1: 0.6154 +occupation: ?, Count: 369 +Precision: 0.6786 | Recall: 0.4318 | F1: 0.5278 +occupation: Adm-clerical, Count: 768 +Precision: 0.6364 | Recall: 0.4949 | F1: 0.5568 +occupation: Armed-Forces, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 793 +Precision: 0.6000 | Recall: 0.4693 | F1: 0.5266 +occupation: Exec-managerial, Count: 806 +Precision: 0.7886 | Recall: 0.7500 | F1: 0.7688 +occupation: Farming-fishing, Count: 196 +Precision: 0.6000 | Recall: 0.3750 | F1: 0.4615 +occupation: Handlers-cleaners, Count: 271 +Precision: 0.6667 | Recall: 0.1053 | F1: 0.1818 +occupation: Machine-op-inspct, Count: 392 +Precision: 0.5789 | Recall: 0.2245 | F1: 0.3235 +occupation: Other-service, Count: 659 +Precision: 0.6667 | Recall: 0.1538 | F1: 0.2500 +occupation: Priv-house-serv, Count: 36 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 855 +Precision: 0.7454 | Recall: 0.7358 | F1: 0.7405 +occupation: Protective-serv, Count: 148 +Precision: 0.6170 | Recall: 0.6444 | F1: 0.6304 +occupation: Sales, Count: 686 +Precision: 0.6570 | Recall: 0.6175 | F1: 0.6366 +occupation: Tech-support, Count: 178 +Precision: 0.7037 | Recall: 0.7917 | F1: 0.7451 +occupation: Transport-moving, Count: 353 +Precision: 0.6122 | Recall: 0.3947 | F1: 0.4800 +relationship: Husband, Count: 2,652 +Precision: 0.7039 | Recall: 0.6520 | F1: 0.6770 +relationship: Not-in-family, Count: 1,639 +Precision: 0.8659 | Recall: 0.4176 | F1: 0.5635 +relationship: Other-relative, Count: 199 +Precision: 0.5000 | Recall: 0.1667 | F1: 0.2500 +relationship: Own-child, Count: 1,000 +Precision: 0.7500 | Recall: 0.2143 | F1: 0.3333 +relationship: Unmarried, Count: 673 +Precision: 0.7857 | Recall: 0.3143 | F1: 0.4490 +relationship: Wife, Count: 349 +Precision: 0.6564 | Recall: 0.6859 | F1: 0.6708 +race: Amer-Indian-Eskimo, Count: 67 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +race: Asian-Pac-Islander, Count: 205 +Precision: 0.7561 | Recall: 0.5536 | F1: 0.6392 +race: Black, Count: 600 +Precision: 0.6078 | Recall: 0.4366 | F1: 0.5082 +race: Other, Count: 52 +Precision: 0.6667 | Recall: 0.4000 | F1: 0.5000 +race: White, Count: 5,588 +Precision: 0.7102 | Recall: 0.6295 | F1: 0.6674 +sex: Female, Count: 2,195 +Precision: 0.6869 | Recall: 0.5738 | F1: 0.6253 +sex: Male, Count: 4,317 +Precision: 0.7124 | Recall: 0.6241 | F1: 0.6653 +native-country: ?, Count: 106 +Precision: 0.8182 | Recall: 0.6000 | F1: 0.6923 +native-country: Cambodia, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Canada, Count: 26 +Precision: 0.7500 | Recall: 0.3750 | F1: 0.5000 +native-country: China, Count: 15 +Precision: 0.6000 | Recall: 0.7500 | F1: 0.6667 +native-country: Columbia, Count: 12 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 27 +Precision: 0.8750 | Recall: 0.7778 | F1: 0.8235 +native-country: Dominican-Republic, Count: 17 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 6 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: El-Salvador, Count: 17 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: England, Count: 20 +Precision: 0.7500 | Recall: 0.4286 | F1: 0.5455 +native-country: France, Count: 6 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Germany, Count: 20 +Precision: 0.6667 | Recall: 0.2857 | F1: 0.4000 +native-country: Greece, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Guatemala, Count: 10 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Haiti, Count: 12 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Honduras, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 4 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Hungary, Count: 2 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: India, Count: 24 +Precision: 0.8571 | Recall: 0.6667 | F1: 0.7500 +native-country: Iran, Count: 3 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Ireland, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 11 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Jamaica, Count: 21 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Japan, Count: 9 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Laos, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Mexico, Count: 120 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +native-country: Nicaragua, Count: 6 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Outlying-US(Guam-USVI-etc), Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 41 +Precision: 0.6000 | Recall: 0.6000 | F1: 0.6000 +native-country: Poland, Count: 13 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +native-country: Portugal, Count: 8 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Puerto-Rico, Count: 19 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Scotland, Count: 5 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: South, Count: 17 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Taiwan, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Thailand, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Trinadad&Tobago, Count: 5 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: United-States, Count: 5,856 +Precision: 0.7068 | Recall: 0.6225 | F1: 0.6619 +native-country: Vietnam, Count: 13 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Yugoslavia, Count: 6 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +workclass: ?, Count: 357 +Precision: 0.6250 | Recall: 0.4444 | F1: 0.5195 +workclass: Federal-gov, Count: 195 +Precision: 0.7179 | Recall: 0.7887 | F1: 0.7517 +workclass: Local-gov, Count: 395 +Precision: 0.6939 | Recall: 0.5812 | F1: 0.6326 +workclass: Never-worked, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,566 +Precision: 0.7378 | Recall: 0.6123 | F1: 0.6692 +workclass: Self-emp-inc, Count: 225 +Precision: 0.7826 | Recall: 0.7500 | F1: 0.7660 +workclass: Self-emp-not-inc, Count: 514 +Precision: 0.7475 | Recall: 0.5000 | F1: 0.5992 +workclass: State-gov, Count: 255 +Precision: 0.7273 | Recall: 0.7089 | F1: 0.7179 +workclass: Without-pay, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 180 +Precision: 0.7500 | Recall: 0.5000 | F1: 0.6000 +education: 11th, Count: 242 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +education: 12th, Count: 85 +Precision: 1.0000 | Recall: 0.2727 | F1: 0.4286 +education: 1st-4th, Count: 42 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 5th-6th, Count: 72 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: 7th-8th, Count: 160 +Precision: 0.5000 | Recall: 0.1000 | F1: 0.1667 +education: 9th, Count: 110 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: Assoc-acdm, Count: 199 +Precision: 0.6889 | Recall: 0.5962 | F1: 0.6392 +education: Assoc-voc, Count: 283 +Precision: 0.8333 | Recall: 0.5233 | F1: 0.6429 +education: Bachelors, Count: 1,073 +Precision: 0.7332 | Recall: 0.7528 | F1: 0.7429 +education: Doctorate, Count: 85 +Precision: 0.7536 | Recall: 0.8966 | F1: 0.8189 +education: HS-grad, Count: 2,063 +Precision: 0.5864 | Recall: 0.3601 | F1: 0.4462 +education: Masters, Count: 329 +Precision: 0.8218 | Recall: 0.8034 | F1: 0.8125 +education: Preschool, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 120 +Precision: 0.9184 | Recall: 0.9677 | F1: 0.9424 +education: Some-college, Count: 1,458 +Precision: 0.6887 | Recall: 0.5069 | F1: 0.5840 +marital-status: Divorced, Count: 899 +Precision: 0.6512 | Recall: 0.3218 | F1: 0.4308 +marital-status: Married-AF-spouse, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 3,011 +Precision: 0.7336 | Recall: 0.6603 | F1: 0.6950 +marital-status: Married-spouse-absent, Count: 76 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +marital-status: Never-married, Count: 2,100 +Precision: 0.7800 | Recall: 0.4149 | F1: 0.5417 +marital-status: Separated, Count: 215 +Precision: 1.0000 | Recall: 0.4167 | F1: 0.5882 +marital-status: Widowed, Count: 207 +Precision: 1.0000 | Recall: 0.2222 | F1: 0.3636 +occupation: ?, Count: 359 +Precision: 0.6250 | Recall: 0.4444 | F1: 0.5195 +occupation: Adm-clerical, Count: 755 +Precision: 0.6076 | Recall: 0.4615 | F1: 0.5246 +occupation: Armed-Forces, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 849 +Precision: 0.6718 | Recall: 0.4378 | F1: 0.5301 +occupation: Exec-managerial, Count: 808 +Precision: 0.7836 | Recall: 0.7467 | F1: 0.7647 +occupation: Farming-fishing, Count: 201 +Precision: 0.7143 | Recall: 0.2273 | F1: 0.3448 +occupation: Handlers-cleaners, Count: 297 +Precision: 0.6667 | Recall: 0.2353 | F1: 0.3478 +occupation: Machine-op-inspct, Count: 408 +Precision: 0.6316 | Recall: 0.2400 | F1: 0.3478 +occupation: Other-service, Count: 626 +Precision: 0.7500 | Recall: 0.1200 | F1: 0.2069 +occupation: Priv-house-serv, Count: 32 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 817 +Precision: 0.8000 | Recall: 0.7890 | F1: 0.7945 +occupation: Protective-serv, Count: 129 +Precision: 0.5714 | Recall: 0.5405 | F1: 0.5556 +occupation: Sales, Count: 729 +Precision: 0.6989 | Recall: 0.6468 | F1: 0.6718 +occupation: Tech-support, Count: 190 +Precision: 0.6721 | Recall: 0.6721 | F1: 0.6721 +occupation: Transport-moving, Count: 311 +Precision: 0.7059 | Recall: 0.4211 | F1: 0.5275 +relationship: Husband, Count: 2,694 +Precision: 0.7378 | Recall: 0.6656 | F1: 0.6998 +relationship: Not-in-family, Count: 1,648 +Precision: 0.7342 | Recall: 0.3742 | F1: 0.4957 +relationship: Other-relative, Count: 208 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +relationship: Own-child, Count: 969 +Precision: 0.7500 | Recall: 0.3000 | F1: 0.4286 +relationship: Unmarried, Count: 708 +Precision: 0.7500 | Recall: 0.3000 | F1: 0.4286 +relationship: Wife, Count: 285 +Precision: 0.7031 | Recall: 0.6294 | F1: 0.6642 +race: Amer-Indian-Eskimo, Count: 55 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +race: Asian-Pac-Islander, Count: 210 +Precision: 0.6383 | Recall: 0.5769 | F1: 0.6061 +race: Black, Count: 634 +Precision: 0.7581 | Recall: 0.5875 | F1: 0.6620 +race: Other, Count: 50 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +race: White, Count: 5,563 +Precision: 0.7378 | Recall: 0.6217 | F1: 0.6748 +sex: Female, Count: 2,124 +Precision: 0.7099 | Recall: 0.5251 | F1: 0.6037 +sex: Male, Count: 4,388 +Precision: 0.7381 | Recall: 0.6331 | F1: 0.6816 +native-country: ?, Count: 104 +Precision: 0.5714 | Recall: 0.6000 | F1: 0.5854 +native-country: Cambodia, Count: 6 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Canada, Count: 25 +Precision: 0.7143 | Recall: 0.5556 | F1: 0.6250 +native-country: China, Count: 10 +Precision: 0.3333 | Recall: 1.0000 | F1: 0.5000 +native-country: Columbia, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 21 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Dominican-Republic, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: El-Salvador, Count: 25 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: England, Count: 18 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: France, Count: 7 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Germany, Count: 27 +Precision: 0.6667 | Recall: 0.5714 | F1: 0.6154 +native-country: Greece, Count: 4 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Guatemala, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Haiti, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Holand-Netherlands, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Honduras, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hungary, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: India, Count: 15 +Precision: 0.6250 | Recall: 0.6250 | F1: 0.6250 +native-country: Iran, Count: 9 +Precision: 1.0000 | Recall: 0.8000 | F1: 0.8889 +native-country: Ireland, Count: 4 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 20 +Precision: 1.0000 | Recall: 0.5714 | F1: 0.7273 +native-country: Jamaica, Count: 14 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Japan, Count: 16 +Precision: 0.5000 | Recall: 0.6667 | F1: 0.5714 +native-country: Laos, Count: 4 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Mexico, Count: 152 +Precision: 1.0000 | Recall: 0.2857 | F1: 0.4444 +native-country: Nicaragua, Count: 5 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: Outlying-US(Guam-USVI-etc), Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 37 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Poland, Count: 8 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Portugal, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Puerto-Rico, Count: 27 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Scotland, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: South, Count: 12 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +native-country: Taiwan, Count: 14 +Precision: 0.7500 | Recall: 0.6000 | F1: 0.6667 +native-country: Thailand, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Trinadad&Tobago, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: United-States, Count: 5,818 +Precision: 0.7428 | Recall: 0.6205 | F1: 0.6762 +native-country: Vietnam, Count: 20 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: ?, Count: 345 +Precision: 0.7308 | Recall: 0.5278 | F1: 0.6129 +workclass: Federal-gov, Count: 200 +Precision: 0.7973 | Recall: 0.7375 | F1: 0.7662 +workclass: Local-gov, Count: 421 +Precision: 0.7434 | Recall: 0.6667 | F1: 0.7029 +workclass: Never-worked, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,547 +Precision: 0.7450 | Recall: 0.5990 | F1: 0.6641 +workclass: Self-emp-inc, Count: 214 +Precision: 0.7769 | Recall: 0.8211 | F1: 0.7984 +workclass: Self-emp-not-inc, Count: 511 +Precision: 0.6667 | Recall: 0.5035 | F1: 0.5737 +workclass: State-gov, Count: 270 +Precision: 0.8364 | Recall: 0.6866 | F1: 0.7541 +workclass: Without-pay, Count: 3 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +education: 10th, Count: 184 +Precision: 0.5000 | Recall: 0.1538 | F1: 0.2353 +education: 11th, Count: 240 +Precision: 1.0000 | Recall: 0.3636 | F1: 0.5333 +education: 12th, Count: 86 +Precision: 1.0000 | Recall: 0.1429 | F1: 0.2500 +education: 1st-4th, Count: 43 +Precision: 1.0000 | Recall: 0.2500 | F1: 0.4000 +education: 5th-6th, Count: 67 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +education: 7th-8th, Count: 104 +Precision: 0.6000 | Recall: 0.5000 | F1: 0.5455 +education: 9th, Count: 100 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +education: Assoc-acdm, Count: 205 +Precision: 0.7561 | Recall: 0.5849 | F1: 0.6596 +education: Assoc-voc, Count: 292 +Precision: 0.6667 | Recall: 0.5600 | F1: 0.6087 +education: Bachelors, Count: 1,068 +Precision: 0.7864 | Recall: 0.7522 | F1: 0.7689 +education: Doctorate, Count: 75 +Precision: 0.8548 | Recall: 0.9298 | F1: 0.8908 +education: HS-grad, Count: 2,105 +Precision: 0.6771 | Recall: 0.3746 | F1: 0.4824 +education: Masters, Count: 319 +Precision: 0.8034 | Recall: 0.8034 | F1: 0.8034 +education: Preschool, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 112 +Precision: 0.8471 | Recall: 0.9474 | F1: 0.8944 +education: Some-college, Count: 1,501 +Precision: 0.6481 | Recall: 0.5336 | F1: 0.5853 +marital-status: Divorced, Count: 869 +Precision: 0.7895 | Recall: 0.3448 | F1: 0.4800 +marital-status: Married-AF-spouse, Count: 7 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 2,996 +Precision: 0.7412 | Recall: 0.6679 | F1: 0.7026 +marital-status: Married-spouse-absent, Count: 96 +Precision: 0.6667 | Recall: 0.2222 | F1: 0.3333 +marital-status: Never-married, Count: 2,171 +Precision: 0.8718 | Recall: 0.3542 | F1: 0.5037 +marital-status: Separated, Count: 186 +Precision: 1.0000 | Recall: 0.3571 | F1: 0.5263 +marital-status: Widowed, Count: 187 +Precision: 1.0000 | Recall: 0.3077 | F1: 0.4706 +occupation: ?, Count: 346 +Precision: 0.7308 | Recall: 0.5278 | F1: 0.6129 +occupation: Adm-clerical, Count: 791 +Precision: 0.6495 | Recall: 0.5431 | F1: 0.5915 +occupation: Armed-Forces, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 820 +Precision: 0.5909 | Recall: 0.4358 | F1: 0.5016 +occupation: Exec-managerial, Count: 791 +Precision: 0.8072 | Recall: 0.7792 | F1: 0.7929 +occupation: Farming-fishing, Count: 203 +Precision: 0.7857 | Recall: 0.4783 | F1: 0.5946 +occupation: Handlers-cleaners, Count: 288 +Precision: 0.6667 | Recall: 0.1739 | F1: 0.2759 +occupation: Machine-op-inspct, Count: 427 +Precision: 0.6552 | Recall: 0.3725 | F1: 0.4750 +occupation: Other-service, Count: 647 +Precision: 0.8333 | Recall: 0.1562 | F1: 0.2632 +occupation: Priv-house-serv, Count: 26 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 817 +Precision: 0.8128 | Recall: 0.7951 | F1: 0.8039 +occupation: Protective-serv, Count: 130 +Precision: 0.7353 | Recall: 0.5814 | F1: 0.6494 +occupation: Sales, Count: 739 +Precision: 0.6918 | Recall: 0.5288 | F1: 0.5994 +occupation: Tech-support, Count: 180 +Precision: 0.7143 | Recall: 0.6250 | F1: 0.6667 +occupation: Transport-moving, Count: 306 +Precision: 0.6000 | Recall: 0.2679 | F1: 0.3704 +relationship: Husband, Count: 2,631 +Precision: 0.7392 | Recall: 0.6661 | F1: 0.7008 +relationship: Not-in-family, Count: 1,650 +Precision: 0.8451 | Recall: 0.3488 | F1: 0.4938 +relationship: Other-relative, Count: 184 +Precision: 1.0000 | Recall: 0.3750 | F1: 0.5455 +relationship: Own-child, Count: 1,082 +Precision: 1.0000 | Recall: 0.2941 | F1: 0.4545 +relationship: Unmarried, Count: 656 +Precision: 0.7857 | Recall: 0.3056 | F1: 0.4400 +relationship: Wife, Count: 309 +Precision: 0.7434 | Recall: 0.7107 | F1: 0.7267 +race: Amer-Indian-Eskimo, Count: 65 +Precision: 0.6000 | Recall: 0.4286 | F1: 0.5000 +race: Asian-Pac-Islander, Count: 207 +Precision: 0.7273 | Recall: 0.5714 | F1: 0.6400 +race: Black, Count: 621 +Precision: 0.8333 | Recall: 0.5495 | F1: 0.6623 +race: Other, Count: 67 +Precision: 0.6667 | Recall: 0.5714 | F1: 0.6154 +race: White, Count: 5,552 +Precision: 0.7450 | Recall: 0.6301 | F1: 0.6828 +sex: Female, Count: 2,130 +Precision: 0.7622 | Recall: 0.5851 | F1: 0.6620 +sex: Male, Count: 4,382 +Precision: 0.7451 | Recall: 0.6289 | F1: 0.6821 +native-country: ?, Count: 127 +Precision: 0.8065 | Recall: 0.6579 | F1: 0.7246 +native-country: Cambodia, Count: 2 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Canada, Count: 22 +Precision: 0.6000 | Recall: 0.4286 | F1: 0.5000 +native-country: China, Count: 15 +Precision: 1.0000 | Recall: 0.4000 | F1: 0.5714 +native-country: Columbia, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 16 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Dominican-Republic, Count: 20 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: El-Salvador, Count: 24 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: England, Count: 19 +Precision: 0.8750 | Recall: 0.7000 | F1: 0.7778 +native-country: France, Count: 5 +Precision: 0.7500 | Recall: 1.0000 | F1: 0.8571 +native-country: Germany, Count: 28 +Precision: 1.0000 | Recall: 0.5556 | F1: 0.7143 +native-country: Greece, Count: 7 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Guatemala, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Haiti, Count: 7 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Honduras, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hungary, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: India, Count: 20 +Precision: 0.7000 | Recall: 1.0000 | F1: 0.8235 +native-country: Iran, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ireland, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Italy, Count: 14 +Precision: 1.0000 | Recall: 0.4286 | F1: 0.6000 +native-country: Jamaica, Count: 19 +Precision: 1.0000 | Recall: 0.6667 | F1: 0.8000 +native-country: Japan, Count: 13 +Precision: 1.0000 | Recall: 0.7143 | F1: 0.8333 +native-country: Laos, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Mexico, Count: 132 +Precision: 0.6667 | Recall: 0.2500 | F1: 0.3636 +native-country: Nicaragua, Count: 9 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Outlying-US(Guam-USVI-etc), Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 38 +Precision: 0.5556 | Recall: 0.5000 | F1: 0.5263 +native-country: Poland, Count: 14 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +native-country: Portugal, Count: 8 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Puerto-Rico, Count: 19 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: South, Count: 18 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +native-country: Taiwan, Count: 8 +Precision: 0.7500 | Recall: 1.0000 | F1: 0.8571 +native-country: Thailand, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Trinadad&Tobago, Count: 3 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: United-States, Count: 5,820 +Precision: 0.7438 | Recall: 0.6265 | F1: 0.6801 +native-country: Vietnam, Count: 14 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Yugoslavia, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: ?, Count: 377 +Precision: 0.3750 | Recall: 0.2500 | F1: 0.3000 +workclass: Federal-gov, Count: 188 +Precision: 0.8136 | Recall: 0.6486 | F1: 0.7218 +workclass: Local-gov, Count: 415 +Precision: 0.7451 | Recall: 0.6129 | F1: 0.6726 +workclass: Never-worked, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,492 +Precision: 0.7312 | Recall: 0.6145 | F1: 0.6678 +workclass: Self-emp-inc, Count: 234 +Precision: 0.8222 | Recall: 0.8538 | F1: 0.8377 +workclass: Self-emp-not-inc, Count: 538 +Precision: 0.7607 | Recall: 0.5973 | F1: 0.6692 +workclass: State-gov, Count: 263 +Precision: 0.7705 | Recall: 0.6620 | F1: 0.7121 +workclass: Without-pay, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 189 +Precision: 1.0000 | Recall: 0.0769 | F1: 0.1429 +education: 11th, Count: 233 +Precision: 1.0000 | Recall: 0.2857 | F1: 0.4444 +education: 12th, Count: 87 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +education: 1st-4th, Count: 31 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 5th-6th, Count: 62 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: 7th-8th, Count: 123 +Precision: 0.5000 | Recall: 0.1429 | F1: 0.2222 +education: 9th, Count: 105 +Precision: 1.0000 | Recall: 0.1250 | F1: 0.2222 +education: Assoc-acdm, Count: 240 +Precision: 0.6275 | Recall: 0.5424 | F1: 0.5818 +education: Assoc-voc, Count: 283 +Precision: 0.6774 | Recall: 0.5600 | F1: 0.6131 +education: Bachelors, Count: 1,090 +Precision: 0.7551 | Recall: 0.7620 | F1: 0.7585 +education: Doctorate, Count: 93 +Precision: 0.8873 | Recall: 0.8514 | F1: 0.8690 +education: HS-grad, Count: 2,091 +Precision: 0.6590 | Recall: 0.4145 | F1: 0.5089 +education: Masters, Count: 355 +Precision: 0.8564 | Recall: 0.8350 | F1: 0.8456 +education: Preschool, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 111 +Precision: 0.8571 | Recall: 0.8780 | F1: 0.8675 +education: Some-college, Count: 1,413 +Precision: 0.6582 | Recall: 0.5265 | F1: 0.5850 +marital-status: Divorced, Count: 902 +Precision: 0.7857 | Recall: 0.3333 | F1: 0.4681 +marital-status: Married-AF-spouse, Count: 6 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 2,975 +Precision: 0.7359 | Recall: 0.6762 | F1: 0.7048 +marital-status: Married-spouse-absent, Count: 76 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +marital-status: Never-married, Count: 2,162 +Precision: 0.9020 | Recall: 0.4742 | F1: 0.6216 +marital-status: Separated, Count: 191 +Precision: 1.0000 | Recall: 0.2308 | F1: 0.3750 +marital-status: Widowed, Count: 200 +Precision: 0.8333 | Recall: 0.2778 | F1: 0.4167 +occupation: ?, Count: 380 +Precision: 0.3750 | Recall: 0.2500 | F1: 0.3000 +occupation: Adm-clerical, Count: 730 +Precision: 0.6538 | Recall: 0.5543 | F1: 0.6000 +occupation: Armed-Forces, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 816 +Precision: 0.6165 | Recall: 0.4339 | F1: 0.5093 +occupation: Exec-managerial, Count: 823 +Precision: 0.7805 | Recall: 0.8060 | F1: 0.7931 +occupation: Farming-fishing, Count: 201 +Precision: 0.8000 | Recall: 0.4615 | F1: 0.5854 +occupation: Handlers-cleaners, Count: 241 +Precision: 1.0000 | Recall: 0.4000 | F1: 0.5714 +occupation: Machine-op-inspct, Count: 397 +Precision: 0.5294 | Recall: 0.3396 | F1: 0.4138 +occupation: Other-service, Count: 696 +Precision: 0.8571 | Recall: 0.2143 | F1: 0.3429 +occupation: Priv-house-serv, Count: 29 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 823 +Precision: 0.7943 | Recall: 0.7943 | F1: 0.7943 +occupation: Protective-serv, Count: 106 +Precision: 0.8276 | Recall: 0.5455 | F1: 0.6575 +occupation: Sales, Count: 767 +Precision: 0.7576 | Recall: 0.5787 | F1: 0.6562 +occupation: Tech-support, Count: 191 +Precision: 0.8140 | Recall: 0.5224 | F1: 0.6364 +occupation: Transport-moving, Count: 310 +Precision: 0.6341 | Recall: 0.3881 | F1: 0.4815 +relationship: Husband, Count: 2,626 +Precision: 0.7342 | Recall: 0.6802 | F1: 0.7062 +relationship: Not-in-family, Count: 1,666 +Precision: 0.8353 | Recall: 0.4152 | F1: 0.5547 +relationship: Other-relative, Count: 212 +Precision: 1.0000 | Recall: 0.1000 | F1: 0.1818 +relationship: Own-child, Count: 998 +Precision: 1.0000 | Recall: 0.4444 | F1: 0.6154 +relationship: Unmarried, Count: 707 +Precision: 0.9444 | Recall: 0.3269 | F1: 0.4857 +relationship: Wife, Count: 303 +Precision: 0.7419 | Recall: 0.6389 | F1: 0.6866 +race: Amer-Indian-Eskimo, Count: 53 +Precision: 0.3333 | Recall: 0.1667 | F1: 0.2222 +race: Asian-Pac-Islander, Count: 224 +Precision: 0.7333 | Recall: 0.6600 | F1: 0.6947 +race: Black, Count: 670 +Precision: 0.7895 | Recall: 0.5625 | F1: 0.6569 +race: Other, Count: 47 +Precision: 0.6000 | Recall: 0.7500 | F1: 0.6667 +race: White, Count: 5,518 +Precision: 0.7453 | Recall: 0.6352 | F1: 0.6858 +sex: Female, Count: 2,196 +Precision: 0.7738 | Recall: 0.5221 | F1: 0.6235 +sex: Male, Count: 4,316 +Precision: 0.7412 | Recall: 0.6513 | F1: 0.6933 +native-country: ?, Count: 121 +Precision: 0.7692 | Recall: 0.7407 | F1: 0.7547 +native-country: Cambodia, Count: 4 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Canada, Count: 26 +Precision: 0.8571 | Recall: 0.8571 | F1: 0.8571 +native-country: China, Count: 17 +Precision: 0.6667 | Recall: 1.0000 | F1: 0.8000 +native-country: Columbia, Count: 17 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Cuba, Count: 12 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +native-country: Dominican-Republic, Count: 14 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Ecuador, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: El-Salvador, Count: 20 +Precision: 1.0000 | Recall: 0.6667 | F1: 0.8000 +native-country: England, Count: 19 +Precision: 0.7500 | Recall: 0.6000 | F1: 0.6667 +native-country: France, Count: 6 +Precision: 1.0000 | Recall: 0.7500 | F1: 0.8571 +native-country: Germany, Count: 30 +Precision: 1.0000 | Recall: 0.7500 | F1: 0.8571 +native-country: Greece, Count: 10 +Precision: 0.8000 | Recall: 1.0000 | F1: 0.8889 +native-country: Guatemala, Count: 15 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Haiti, Count: 10 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Honduras, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Hungary, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: India, Count: 20 +Precision: 0.6667 | Recall: 0.7500 | F1: 0.7059 +native-country: Iran, Count: 11 +Precision: 0.7500 | Recall: 1.0000 | F1: 0.8571 +native-country: Ireland, Count: 7 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 14 +Precision: 0.3333 | Recall: 0.2500 | F1: 0.2857 +native-country: Jamaica, Count: 14 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Japan, Count: 13 +Precision: 1.0000 | Recall: 0.8000 | F1: 0.8889 +native-country: Laos, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Mexico, Count: 125 +Precision: 0.8333 | Recall: 0.5556 | F1: 0.6667 +native-country: Nicaragua, Count: 7 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Outlying-US(Guam-USVI-etc), Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 47 +Precision: 0.8889 | Recall: 0.6154 | F1: 0.7273 +native-country: Poland, Count: 11 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Portugal, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Puerto-Rico, Count: 27 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Scotland, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: South, Count: 20 +Precision: 0.2500 | Recall: 0.3333 | F1: 0.2857 +native-country: Taiwan, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Thailand, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Trinadad&Tobago, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: United-States, Count: 5,806 +Precision: 0.7448 | Recall: 0.6257 | F1: 0.6801 +native-country: Vietnam, Count: 15 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Yugoslavia, Count: 6 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +workclass: ?, Count: 389 +Precision: 0.6923 | Recall: 0.4286 | F1: 0.5294 +workclass: Federal-gov, Count: 191 +Precision: 0.7571 | Recall: 0.7571 | F1: 0.7571 +workclass: Local-gov, Count: 387 +Precision: 0.7500 | Recall: 0.6545 | F1: 0.6990 +workclass: Private, Count: 4,578 +Precision: 0.7447 | Recall: 0.6324 | F1: 0.6840 +workclass: Self-emp-inc, Count: 212 +Precision: 0.7565 | Recall: 0.7373 | F1: 0.7468 +workclass: Self-emp-not-inc, Count: 498 +Precision: 0.7339 | Recall: 0.5096 | F1: 0.6015 +workclass: State-gov, Count: 254 +Precision: 0.7500 | Recall: 0.6575 | F1: 0.7007 +workclass: Without-pay, Count: 4 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 183 +Precision: 0.4286 | Recall: 0.2500 | F1: 0.3158 +education: 11th, Count: 225 +Precision: 1.0000 | Recall: 0.2727 | F1: 0.4286 +education: 12th, Count: 98 +Precision: 1.0000 | Recall: 0.4000 | F1: 0.5714 +education: 1st-4th, Count: 23 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 5th-6th, Count: 62 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 7th-8th, Count: 141 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +education: 9th, Count: 115 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +education: Assoc-acdm, Count: 198 +Precision: 0.6923 | Recall: 0.5745 | F1: 0.6279 +education: Assoc-voc, Count: 273 +Precision: 0.6667 | Recall: 0.5397 | F1: 0.5965 +education: Bachelors, Count: 1,053 +Precision: 0.7564 | Recall: 0.7244 | F1: 0.7401 +education: Doctorate, Count: 77 +Precision: 0.8500 | Recall: 0.8947 | F1: 0.8718 +education: HS-grad, Count: 2,085 +Precision: 0.6622 | Recall: 0.4261 | F1: 0.5185 +education: Masters, Count: 369 +Precision: 0.8309 | Recall: 0.8309 | F1: 0.8309 +education: Preschool, Count: 10 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 116 +Precision: 0.8191 | Recall: 0.9167 | F1: 0.8652 +education: Some-college, Count: 1,485 +Precision: 0.6952 | Recall: 0.5271 | F1: 0.5996 +marital-status: Divorced, Count: 920 +Precision: 0.7826 | Recall: 0.3495 | F1: 0.4832 +marital-status: Married-AF-spouse, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 2,950 +Precision: 0.7377 | Recall: 0.6816 | F1: 0.7085 +marital-status: Married-spouse-absent, Count: 96 +Precision: 1.0000 | Recall: 0.2500 | F1: 0.4000 +marital-status: Never-married, Count: 2,126 +Precision: 0.8182 | Recall: 0.4369 | F1: 0.5696 +marital-status: Separated, Count: 209 +Precision: 1.0000 | Recall: 0.4211 | F1: 0.5926 +marital-status: Widowed, Count: 208 +Precision: 1.0000 | Recall: 0.1579 | F1: 0.2727 +occupation: ?, Count: 389 +Precision: 0.6923 | Recall: 0.4286 | F1: 0.5294 +occupation: Adm-clerical, Count: 726 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +occupation: Armed-Forces, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 821 +Precision: 0.6641 | Recall: 0.4696 | F1: 0.5502 +occupation: Exec-managerial, Count: 838 +Precision: 0.8011 | Recall: 0.7506 | F1: 0.7750 +occupation: Farming-fishing, Count: 193 +Precision: 0.6364 | Recall: 0.2500 | F1: 0.3590 +occupation: Handlers-cleaners, Count: 273 +Precision: 0.5714 | Recall: 0.3333 | F1: 0.4211 +occupation: Machine-op-inspct, Count: 378 +Precision: 0.5938 | Recall: 0.4043 | F1: 0.4810 +occupation: Other-service, Count: 667 +Precision: 0.8571 | Recall: 0.2308 | F1: 0.3636 +occupation: Priv-house-serv, Count: 26 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 828 +Precision: 0.7882 | Recall: 0.7500 | F1: 0.7686 +occupation: Protective-serv, Count: 136 +Precision: 0.6970 | Recall: 0.5476 | F1: 0.6133 +occupation: Sales, Count: 729 +Precision: 0.7333 | Recall: 0.6875 | F1: 0.7097 +occupation: Tech-support, Count: 189 +Precision: 0.6744 | Recall: 0.5686 | F1: 0.6170 +occupation: Transport-moving, Count: 317 +Precision: 0.6000 | Recall: 0.4219 | F1: 0.4954 +relationship: Husband, Count: 2,590 +Precision: 0.7401 | Recall: 0.6838 | F1: 0.7108 +relationship: Not-in-family, Count: 1,702 +Precision: 0.8021 | Recall: 0.4096 | F1: 0.5423 +relationship: Other-relative, Count: 178 +Precision: 1.0000 | Recall: 0.3750 | F1: 0.5455 +relationship: Own-child, Count: 1,019 +Precision: 1.0000 | Recall: 0.1765 | F1: 0.3000 +relationship: Unmarried, Count: 702 +Precision: 0.9231 | Recall: 0.2667 | F1: 0.4138 +relationship: Wife, Count: 322 +Precision: 0.7164 | Recall: 0.6713 | F1: 0.6931 +race: Amer-Indian-Eskimo, Count: 71 +Precision: 0.6250 | Recall: 0.5000 | F1: 0.5556 +race: Asian-Pac-Islander, Count: 193 +Precision: 0.7547 | Recall: 0.6452 | F1: 0.6957 +race: Black, Count: 599 +Precision: 0.7692 | Recall: 0.6154 | F1: 0.6838 +race: Other, Count: 55 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +race: White, Count: 5,595 +Precision: 0.7448 | Recall: 0.6317 | F1: 0.6836 +sex: Female, Count: 2,126 +Precision: 0.7267 | Recall: 0.5021 | F1: 0.5939 +sex: Male, Count: 4,387 +Precision: 0.7476 | Recall: 0.6532 | F1: 0.6972 +native-country: ?, Count: 125 +Precision: 0.7097 | Recall: 0.7097 | F1: 0.7097 +native-country: Cambodia, Count: 3 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Canada, Count: 22 +Precision: 0.6250 | Recall: 0.6250 | F1: 0.6250 +native-country: China, Count: 18 +Precision: 1.0000 | Recall: 0.8750 | F1: 0.9333 +native-country: Columbia, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 19 +Precision: 0.6667 | Recall: 0.8000 | F1: 0.7273 +native-country: Dominican-Republic, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 5 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: El-Salvador, Count: 20 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: England, Count: 14 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +native-country: France, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Germany, Count: 32 +Precision: 0.8333 | Recall: 0.7692 | F1: 0.8000 +native-country: Greece, Count: 7 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Guatemala, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Haiti, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Honduras, Count: 4 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 8 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: Hungary, Count: 3 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: India, Count: 21 +Precision: 0.7778 | Recall: 0.8750 | F1: 0.8235 +native-country: Iran, Count: 12 +Precision: 0.3333 | Recall: 0.2000 | F1: 0.2500 +native-country: Ireland, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 14 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Jamaica, Count: 13 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Japan, Count: 11 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Laos, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Mexico, Count: 114 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Nicaragua, Count: 7 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Philippines, Count: 35 +Precision: 1.0000 | Recall: 0.6250 | F1: 0.7692 +native-country: Poland, Count: 14 +Precision: 0.6667 | Recall: 1.0000 | F1: 0.8000 +native-country: Portugal, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Puerto-Rico, Count: 22 +Precision: 0.8333 | Recall: 0.8333 | F1: 0.8333 +native-country: Scotland, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: South, Count: 13 +Precision: 0.3333 | Recall: 0.5000 | F1: 0.4000 +native-country: Taiwan, Count: 11 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Thailand, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Trinadad&Tobago, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: United-States, Count: 5,870 +Precision: 0.7448 | Recall: 0.6265 | F1: 0.6805 +native-country: Vietnam, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Yugoslavia, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: ?, Count: 368 +Precision: 0.6786 | Recall: 0.4318 | F1: 0.5278 +workclass: Federal-gov, Count: 186 +Precision: 0.7424 | Recall: 0.6447 | F1: 0.6901 +workclass: Local-gov, Count: 475 +Precision: 0.6912 | Recall: 0.6714 | F1: 0.6812 +workclass: Never-worked, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,513 +Precision: 0.6974 | Recall: 0.6033 | F1: 0.6469 +workclass: Self-emp-inc, Count: 231 +Precision: 0.8319 | Recall: 0.7557 | F1: 0.7920 +workclass: Self-emp-not-inc, Count: 480 +Precision: 0.6598 | Recall: 0.5039 | F1: 0.5714 +workclass: State-gov, Count: 256 +Precision: 0.7188 | Recall: 0.7302 | F1: 0.7244 +workclass: Without-pay, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 197 +Precision: 0.5000 | Recall: 0.0833 | F1: 0.1429 +education: 11th, Count: 235 +Precision: 0.8000 | Recall: 0.2857 | F1: 0.4211 +education: 12th, Count: 77 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 1st-4th, Count: 29 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 5th-6th, Count: 70 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 7th-8th, Count: 118 +Precision: 1.0000 | Recall: 0.2727 | F1: 0.4286 +education: 9th, Count: 84 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: Assoc-acdm, Count: 225 +Precision: 0.6078 | Recall: 0.5741 | F1: 0.5905 +education: Assoc-voc, Count: 251 +Precision: 0.6341 | Recall: 0.4194 | F1: 0.5049 +education: Bachelors, Count: 1,071 +Precision: 0.7460 | Recall: 0.7600 | F1: 0.7529 +education: Doctorate, Count: 83 +Precision: 0.7812 | Recall: 0.8333 | F1: 0.8065 +education: HS-grad, Count: 2,157 +Precision: 0.5520 | Recall: 0.4220 | F1: 0.4783 +education: Masters, Count: 351 +Precision: 0.7949 | Recall: 0.7908 | F1: 0.7928 +education: Preschool, Count: 13 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +education: Prof-school, Count: 117 +Precision: 0.8696 | Recall: 0.9091 | F1: 0.8889 +education: Some-college, Count: 1,434 +Precision: 0.6761 | Recall: 0.4898 | F1: 0.5680 +marital-status: Divorced, Count: 853 +Precision: 0.8108 | Recall: 0.3448 | F1: 0.4839 +marital-status: Married-AF-spouse, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +marital-status: Married-civ-spouse, Count: 3,044 +Precision: 0.6967 | Recall: 0.6535 | F1: 0.6744 +marital-status: Married-spouse-absent, Count: 74 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +marital-status: Never-married, Count: 2,124 +Precision: 0.9070 | Recall: 0.3861 | F1: 0.5417 +marital-status: Separated, Count: 224 +Precision: 0.7143 | Recall: 0.6250 | F1: 0.6667 +marital-status: Widowed, Count: 191 +Precision: 0.8889 | Recall: 0.4706 | F1: 0.6154 +occupation: ?, Count: 369 +Precision: 0.6786 | Recall: 0.4318 | F1: 0.5278 +occupation: Adm-clerical, Count: 768 +Precision: 0.6364 | Recall: 0.4949 | F1: 0.5568 +occupation: Armed-Forces, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 793 +Precision: 0.6000 | Recall: 0.4693 | F1: 0.5266 +occupation: Exec-managerial, Count: 806 +Precision: 0.7886 | Recall: 0.7500 | F1: 0.7688 +occupation: Farming-fishing, Count: 196 +Precision: 0.6000 | Recall: 0.3750 | F1: 0.4615 +occupation: Handlers-cleaners, Count: 271 +Precision: 0.6667 | Recall: 0.1053 | F1: 0.1818 +occupation: Machine-op-inspct, Count: 392 +Precision: 0.5789 | Recall: 0.2245 | F1: 0.3235 +occupation: Other-service, Count: 659 +Precision: 0.6667 | Recall: 0.1538 | F1: 0.2500 +occupation: Priv-house-serv, Count: 36 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 855 +Precision: 0.7454 | Recall: 0.7358 | F1: 0.7405 +occupation: Protective-serv, Count: 148 +Precision: 0.6170 | Recall: 0.6444 | F1: 0.6304 +occupation: Sales, Count: 686 +Precision: 0.6570 | Recall: 0.6175 | F1: 0.6366 +occupation: Tech-support, Count: 178 +Precision: 0.7037 | Recall: 0.7917 | F1: 0.7451 +occupation: Transport-moving, Count: 353 +Precision: 0.6122 | Recall: 0.3947 | F1: 0.4800 +relationship: Husband, Count: 2,652 +Precision: 0.7039 | Recall: 0.6520 | F1: 0.6770 +relationship: Not-in-family, Count: 1,639 +Precision: 0.8659 | Recall: 0.4176 | F1: 0.5635 +relationship: Other-relative, Count: 199 +Precision: 0.5000 | Recall: 0.1667 | F1: 0.2500 +relationship: Own-child, Count: 1,000 +Precision: 0.7500 | Recall: 0.2143 | F1: 0.3333 +relationship: Unmarried, Count: 673 +Precision: 0.7857 | Recall: 0.3143 | F1: 0.4490 +relationship: Wife, Count: 349 +Precision: 0.6564 | Recall: 0.6859 | F1: 0.6708 +race: Amer-Indian-Eskimo, Count: 67 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +race: Asian-Pac-Islander, Count: 205 +Precision: 0.7561 | Recall: 0.5536 | F1: 0.6392 +race: Black, Count: 600 +Precision: 0.6078 | Recall: 0.4366 | F1: 0.5082 +race: Other, Count: 52 +Precision: 0.6667 | Recall: 0.4000 | F1: 0.5000 +race: White, Count: 5,588 +Precision: 0.7102 | Recall: 0.6295 | F1: 0.6674 +sex: Female, Count: 2,195 +Precision: 0.6869 | Recall: 0.5738 | F1: 0.6253 +sex: Male, Count: 4,317 +Precision: 0.7124 | Recall: 0.6241 | F1: 0.6653 +native-country: ?, Count: 106 +Precision: 0.8182 | Recall: 0.6000 | F1: 0.6923 +native-country: Cambodia, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Canada, Count: 26 +Precision: 0.7500 | Recall: 0.3750 | F1: 0.5000 +native-country: China, Count: 15 +Precision: 0.6000 | Recall: 0.7500 | F1: 0.6667 +native-country: Columbia, Count: 12 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 27 +Precision: 0.8750 | Recall: 0.7778 | F1: 0.8235 +native-country: Dominican-Republic, Count: 17 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 6 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: El-Salvador, Count: 17 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: England, Count: 20 +Precision: 0.7500 | Recall: 0.4286 | F1: 0.5455 +native-country: France, Count: 6 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Germany, Count: 20 +Precision: 0.6667 | Recall: 0.2857 | F1: 0.4000 +native-country: Greece, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Guatemala, Count: 10 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Haiti, Count: 12 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Honduras, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 4 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Hungary, Count: 2 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: India, Count: 24 +Precision: 0.8571 | Recall: 0.6667 | F1: 0.7500 +native-country: Iran, Count: 3 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Ireland, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 11 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Jamaica, Count: 21 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Japan, Count: 9 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Laos, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Mexico, Count: 120 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +native-country: Nicaragua, Count: 6 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Outlying-US(Guam-USVI-etc), Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 41 +Precision: 0.6000 | Recall: 0.6000 | F1: 0.6000 +native-country: Poland, Count: 13 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +native-country: Portugal, Count: 8 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Puerto-Rico, Count: 19 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Scotland, Count: 5 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: South, Count: 17 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Taiwan, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Thailand, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Trinadad&Tobago, Count: 5 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: United-States, Count: 5,856 +Precision: 0.7068 | Recall: 0.6225 | F1: 0.6619 +native-country: Vietnam, Count: 13 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Yugoslavia, Count: 6 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +workclass: ?, Count: 357 +Precision: 0.6250 | Recall: 0.4444 | F1: 0.5195 +workclass: Federal-gov, Count: 195 +Precision: 0.7179 | Recall: 0.7887 | F1: 0.7517 +workclass: Local-gov, Count: 395 +Precision: 0.6939 | Recall: 0.5812 | F1: 0.6326 +workclass: Never-worked, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,566 +Precision: 0.7378 | Recall: 0.6123 | F1: 0.6692 +workclass: Self-emp-inc, Count: 225 +Precision: 0.7826 | Recall: 0.7500 | F1: 0.7660 +workclass: Self-emp-not-inc, Count: 514 +Precision: 0.7475 | Recall: 0.5000 | F1: 0.5992 +workclass: State-gov, Count: 255 +Precision: 0.7273 | Recall: 0.7089 | F1: 0.7179 +workclass: Without-pay, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 180 +Precision: 0.7500 | Recall: 0.5000 | F1: 0.6000 +education: 11th, Count: 242 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +education: 12th, Count: 85 +Precision: 1.0000 | Recall: 0.2727 | F1: 0.4286 +education: 1st-4th, Count: 42 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 5th-6th, Count: 72 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: 7th-8th, Count: 160 +Precision: 0.5000 | Recall: 0.1000 | F1: 0.1667 +education: 9th, Count: 110 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: Assoc-acdm, Count: 199 +Precision: 0.6889 | Recall: 0.5962 | F1: 0.6392 +education: Assoc-voc, Count: 283 +Precision: 0.8333 | Recall: 0.5233 | F1: 0.6429 +education: Bachelors, Count: 1,073 +Precision: 0.7332 | Recall: 0.7528 | F1: 0.7429 +education: Doctorate, Count: 85 +Precision: 0.7536 | Recall: 0.8966 | F1: 0.8189 +education: HS-grad, Count: 2,063 +Precision: 0.5864 | Recall: 0.3601 | F1: 0.4462 +education: Masters, Count: 329 +Precision: 0.8218 | Recall: 0.8034 | F1: 0.8125 +education: Preschool, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 120 +Precision: 0.9184 | Recall: 0.9677 | F1: 0.9424 +education: Some-college, Count: 1,458 +Precision: 0.6887 | Recall: 0.5069 | F1: 0.5840 +marital-status: Divorced, Count: 899 +Precision: 0.6512 | Recall: 0.3218 | F1: 0.4308 +marital-status: Married-AF-spouse, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 3,011 +Precision: 0.7336 | Recall: 0.6603 | F1: 0.6950 +marital-status: Married-spouse-absent, Count: 76 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +marital-status: Never-married, Count: 2,100 +Precision: 0.7800 | Recall: 0.4149 | F1: 0.5417 +marital-status: Separated, Count: 215 +Precision: 1.0000 | Recall: 0.4167 | F1: 0.5882 +marital-status: Widowed, Count: 207 +Precision: 1.0000 | Recall: 0.2222 | F1: 0.3636 +occupation: ?, Count: 359 +Precision: 0.6250 | Recall: 0.4444 | F1: 0.5195 +occupation: Adm-clerical, Count: 755 +Precision: 0.6076 | Recall: 0.4615 | F1: 0.5246 +occupation: Armed-Forces, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 849 +Precision: 0.6718 | Recall: 0.4378 | F1: 0.5301 +occupation: Exec-managerial, Count: 808 +Precision: 0.7836 | Recall: 0.7467 | F1: 0.7647 +occupation: Farming-fishing, Count: 201 +Precision: 0.7143 | Recall: 0.2273 | F1: 0.3448 +occupation: Handlers-cleaners, Count: 297 +Precision: 0.6667 | Recall: 0.2353 | F1: 0.3478 +occupation: Machine-op-inspct, Count: 408 +Precision: 0.6316 | Recall: 0.2400 | F1: 0.3478 +occupation: Other-service, Count: 626 +Precision: 0.7500 | Recall: 0.1200 | F1: 0.2069 +occupation: Priv-house-serv, Count: 32 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 817 +Precision: 0.8000 | Recall: 0.7890 | F1: 0.7945 +occupation: Protective-serv, Count: 129 +Precision: 0.5714 | Recall: 0.5405 | F1: 0.5556 +occupation: Sales, Count: 729 +Precision: 0.6989 | Recall: 0.6468 | F1: 0.6718 +occupation: Tech-support, Count: 190 +Precision: 0.6721 | Recall: 0.6721 | F1: 0.6721 +occupation: Transport-moving, Count: 311 +Precision: 0.7059 | Recall: 0.4211 | F1: 0.5275 +relationship: Husband, Count: 2,694 +Precision: 0.7378 | Recall: 0.6656 | F1: 0.6998 +relationship: Not-in-family, Count: 1,648 +Precision: 0.7342 | Recall: 0.3742 | F1: 0.4957 +relationship: Other-relative, Count: 208 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +relationship: Own-child, Count: 969 +Precision: 0.7500 | Recall: 0.3000 | F1: 0.4286 +relationship: Unmarried, Count: 708 +Precision: 0.7500 | Recall: 0.3000 | F1: 0.4286 +relationship: Wife, Count: 285 +Precision: 0.7031 | Recall: 0.6294 | F1: 0.6642 +race: Amer-Indian-Eskimo, Count: 55 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +race: Asian-Pac-Islander, Count: 210 +Precision: 0.6383 | Recall: 0.5769 | F1: 0.6061 +race: Black, Count: 634 +Precision: 0.7581 | Recall: 0.5875 | F1: 0.6620 +race: Other, Count: 50 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +race: White, Count: 5,563 +Precision: 0.7378 | Recall: 0.6217 | F1: 0.6748 +sex: Female, Count: 2,124 +Precision: 0.7099 | Recall: 0.5251 | F1: 0.6037 +sex: Male, Count: 4,388 +Precision: 0.7381 | Recall: 0.6331 | F1: 0.6816 +native-country: ?, Count: 104 +Precision: 0.5714 | Recall: 0.6000 | F1: 0.5854 +native-country: Cambodia, Count: 6 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Canada, Count: 25 +Precision: 0.7143 | Recall: 0.5556 | F1: 0.6250 +native-country: China, Count: 10 +Precision: 0.3333 | Recall: 1.0000 | F1: 0.5000 +native-country: Columbia, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 21 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Dominican-Republic, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: El-Salvador, Count: 25 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: England, Count: 18 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: France, Count: 7 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Germany, Count: 27 +Precision: 0.6667 | Recall: 0.5714 | F1: 0.6154 +native-country: Greece, Count: 4 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Guatemala, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Haiti, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Holand-Netherlands, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Honduras, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hungary, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: India, Count: 15 +Precision: 0.6250 | Recall: 0.6250 | F1: 0.6250 +native-country: Iran, Count: 9 +Precision: 1.0000 | Recall: 0.8000 | F1: 0.8889 +native-country: Ireland, Count: 4 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 20 +Precision: 1.0000 | Recall: 0.5714 | F1: 0.7273 +native-country: Jamaica, Count: 14 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Japan, Count: 16 +Precision: 0.5000 | Recall: 0.6667 | F1: 0.5714 +native-country: Laos, Count: 4 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Mexico, Count: 152 +Precision: 1.0000 | Recall: 0.2857 | F1: 0.4444 +native-country: Nicaragua, Count: 5 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: Outlying-US(Guam-USVI-etc), Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 37 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Poland, Count: 8 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Portugal, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Puerto-Rico, Count: 27 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Scotland, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: South, Count: 12 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +native-country: Taiwan, Count: 14 +Precision: 0.7500 | Recall: 0.6000 | F1: 0.6667 +native-country: Thailand, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Trinadad&Tobago, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: United-States, Count: 5,818 +Precision: 0.7428 | Recall: 0.6205 | F1: 0.6762 +native-country: Vietnam, Count: 20 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: ?, Count: 345 +Precision: 0.7308 | Recall: 0.5278 | F1: 0.6129 +workclass: Federal-gov, Count: 200 +Precision: 0.7973 | Recall: 0.7375 | F1: 0.7662 +workclass: Local-gov, Count: 421 +Precision: 0.7434 | Recall: 0.6667 | F1: 0.7029 +workclass: Never-worked, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,547 +Precision: 0.7450 | Recall: 0.5990 | F1: 0.6641 +workclass: Self-emp-inc, Count: 214 +Precision: 0.7769 | Recall: 0.8211 | F1: 0.7984 +workclass: Self-emp-not-inc, Count: 511 +Precision: 0.6667 | Recall: 0.5035 | F1: 0.5737 +workclass: State-gov, Count: 270 +Precision: 0.8364 | Recall: 0.6866 | F1: 0.7541 +workclass: Without-pay, Count: 3 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +education: 10th, Count: 184 +Precision: 0.5000 | Recall: 0.1538 | F1: 0.2353 +education: 11th, Count: 240 +Precision: 1.0000 | Recall: 0.3636 | F1: 0.5333 +education: 12th, Count: 86 +Precision: 1.0000 | Recall: 0.1429 | F1: 0.2500 +education: 1st-4th, Count: 43 +Precision: 1.0000 | Recall: 0.2500 | F1: 0.4000 +education: 5th-6th, Count: 67 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +education: 7th-8th, Count: 104 +Precision: 0.6000 | Recall: 0.5000 | F1: 0.5455 +education: 9th, Count: 100 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +education: Assoc-acdm, Count: 205 +Precision: 0.7561 | Recall: 0.5849 | F1: 0.6596 +education: Assoc-voc, Count: 292 +Precision: 0.6667 | Recall: 0.5600 | F1: 0.6087 +education: Bachelors, Count: 1,068 +Precision: 0.7864 | Recall: 0.7522 | F1: 0.7689 +education: Doctorate, Count: 75 +Precision: 0.8548 | Recall: 0.9298 | F1: 0.8908 +education: HS-grad, Count: 2,105 +Precision: 0.6771 | Recall: 0.3746 | F1: 0.4824 +education: Masters, Count: 319 +Precision: 0.8034 | Recall: 0.8034 | F1: 0.8034 +education: Preschool, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 112 +Precision: 0.8471 | Recall: 0.9474 | F1: 0.8944 +education: Some-college, Count: 1,501 +Precision: 0.6481 | Recall: 0.5336 | F1: 0.5853 +marital-status: Divorced, Count: 869 +Precision: 0.7895 | Recall: 0.3448 | F1: 0.4800 +marital-status: Married-AF-spouse, Count: 7 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 2,996 +Precision: 0.7412 | Recall: 0.6679 | F1: 0.7026 +marital-status: Married-spouse-absent, Count: 96 +Precision: 0.6667 | Recall: 0.2222 | F1: 0.3333 +marital-status: Never-married, Count: 2,171 +Precision: 0.8718 | Recall: 0.3542 | F1: 0.5037 +marital-status: Separated, Count: 186 +Precision: 1.0000 | Recall: 0.3571 | F1: 0.5263 +marital-status: Widowed, Count: 187 +Precision: 1.0000 | Recall: 0.3077 | F1: 0.4706 +occupation: ?, Count: 346 +Precision: 0.7308 | Recall: 0.5278 | F1: 0.6129 +occupation: Adm-clerical, Count: 791 +Precision: 0.6495 | Recall: 0.5431 | F1: 0.5915 +occupation: Armed-Forces, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 820 +Precision: 0.5909 | Recall: 0.4358 | F1: 0.5016 +occupation: Exec-managerial, Count: 791 +Precision: 0.8072 | Recall: 0.7792 | F1: 0.7929 +occupation: Farming-fishing, Count: 203 +Precision: 0.7857 | Recall: 0.4783 | F1: 0.5946 +occupation: Handlers-cleaners, Count: 288 +Precision: 0.6667 | Recall: 0.1739 | F1: 0.2759 +occupation: Machine-op-inspct, Count: 427 +Precision: 0.6552 | Recall: 0.3725 | F1: 0.4750 +occupation: Other-service, Count: 647 +Precision: 0.8333 | Recall: 0.1562 | F1: 0.2632 +occupation: Priv-house-serv, Count: 26 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 817 +Precision: 0.8128 | Recall: 0.7951 | F1: 0.8039 +occupation: Protective-serv, Count: 130 +Precision: 0.7353 | Recall: 0.5814 | F1: 0.6494 +occupation: Sales, Count: 739 +Precision: 0.6918 | Recall: 0.5288 | F1: 0.5994 +occupation: Tech-support, Count: 180 +Precision: 0.7143 | Recall: 0.6250 | F1: 0.6667 +occupation: Transport-moving, Count: 306 +Precision: 0.6000 | Recall: 0.2679 | F1: 0.3704 +relationship: Husband, Count: 2,631 +Precision: 0.7392 | Recall: 0.6661 | F1: 0.7008 +relationship: Not-in-family, Count: 1,650 +Precision: 0.8451 | Recall: 0.3488 | F1: 0.4938 +relationship: Other-relative, Count: 184 +Precision: 1.0000 | Recall: 0.3750 | F1: 0.5455 +relationship: Own-child, Count: 1,082 +Precision: 1.0000 | Recall: 0.2941 | F1: 0.4545 +relationship: Unmarried, Count: 656 +Precision: 0.7857 | Recall: 0.3056 | F1: 0.4400 +relationship: Wife, Count: 309 +Precision: 0.7434 | Recall: 0.7107 | F1: 0.7267 +race: Amer-Indian-Eskimo, Count: 65 +Precision: 0.6000 | Recall: 0.4286 | F1: 0.5000 +race: Asian-Pac-Islander, Count: 207 +Precision: 0.7273 | Recall: 0.5714 | F1: 0.6400 +race: Black, Count: 621 +Precision: 0.8333 | Recall: 0.5495 | F1: 0.6623 +race: Other, Count: 67 +Precision: 0.6667 | Recall: 0.5714 | F1: 0.6154 +race: White, Count: 5,552 +Precision: 0.7450 | Recall: 0.6301 | F1: 0.6828 +sex: Female, Count: 2,130 +Precision: 0.7622 | Recall: 0.5851 | F1: 0.6620 +sex: Male, Count: 4,382 +Precision: 0.7451 | Recall: 0.6289 | F1: 0.6821 +native-country: ?, Count: 127 +Precision: 0.8065 | Recall: 0.6579 | F1: 0.7246 +native-country: Cambodia, Count: 2 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Canada, Count: 22 +Precision: 0.6000 | Recall: 0.4286 | F1: 0.5000 +native-country: China, Count: 15 +Precision: 1.0000 | Recall: 0.4000 | F1: 0.5714 +native-country: Columbia, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 16 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Dominican-Republic, Count: 20 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: El-Salvador, Count: 24 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: England, Count: 19 +Precision: 0.8750 | Recall: 0.7000 | F1: 0.7778 +native-country: France, Count: 5 +Precision: 0.7500 | Recall: 1.0000 | F1: 0.8571 +native-country: Germany, Count: 28 +Precision: 1.0000 | Recall: 0.5556 | F1: 0.7143 +native-country: Greece, Count: 7 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Guatemala, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Haiti, Count: 7 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Honduras, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hungary, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: India, Count: 20 +Precision: 0.7000 | Recall: 1.0000 | F1: 0.8235 +native-country: Iran, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ireland, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Italy, Count: 14 +Precision: 1.0000 | Recall: 0.4286 | F1: 0.6000 +native-country: Jamaica, Count: 19 +Precision: 1.0000 | Recall: 0.6667 | F1: 0.8000 +native-country: Japan, Count: 13 +Precision: 1.0000 | Recall: 0.7143 | F1: 0.8333 +native-country: Laos, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Mexico, Count: 132 +Precision: 0.6667 | Recall: 0.2500 | F1: 0.3636 +native-country: Nicaragua, Count: 9 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Outlying-US(Guam-USVI-etc), Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 38 +Precision: 0.5556 | Recall: 0.5000 | F1: 0.5263 +native-country: Poland, Count: 14 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +native-country: Portugal, Count: 8 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Puerto-Rico, Count: 19 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: South, Count: 18 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +native-country: Taiwan, Count: 8 +Precision: 0.7500 | Recall: 1.0000 | F1: 0.8571 +native-country: Thailand, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Trinadad&Tobago, Count: 3 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: United-States, Count: 5,820 +Precision: 0.7438 | Recall: 0.6265 | F1: 0.6801 +native-country: Vietnam, Count: 14 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Yugoslavia, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: ?, Count: 377 +Precision: 0.3750 | Recall: 0.2500 | F1: 0.3000 +workclass: Federal-gov, Count: 188 +Precision: 0.8136 | Recall: 0.6486 | F1: 0.7218 +workclass: Local-gov, Count: 415 +Precision: 0.7451 | Recall: 0.6129 | F1: 0.6726 +workclass: Never-worked, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,492 +Precision: 0.7312 | Recall: 0.6145 | F1: 0.6678 +workclass: Self-emp-inc, Count: 234 +Precision: 0.8222 | Recall: 0.8538 | F1: 0.8377 +workclass: Self-emp-not-inc, Count: 538 +Precision: 0.7607 | Recall: 0.5973 | F1: 0.6692 +workclass: State-gov, Count: 263 +Precision: 0.7705 | Recall: 0.6620 | F1: 0.7121 +workclass: Without-pay, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 189 +Precision: 1.0000 | Recall: 0.0769 | F1: 0.1429 +education: 11th, Count: 233 +Precision: 1.0000 | Recall: 0.2857 | F1: 0.4444 +education: 12th, Count: 87 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +education: 1st-4th, Count: 31 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 5th-6th, Count: 62 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: 7th-8th, Count: 123 +Precision: 0.5000 | Recall: 0.1429 | F1: 0.2222 +education: 9th, Count: 105 +Precision: 1.0000 | Recall: 0.1250 | F1: 0.2222 +education: Assoc-acdm, Count: 240 +Precision: 0.6275 | Recall: 0.5424 | F1: 0.5818 +education: Assoc-voc, Count: 283 +Precision: 0.6774 | Recall: 0.5600 | F1: 0.6131 +education: Bachelors, Count: 1,090 +Precision: 0.7551 | Recall: 0.7620 | F1: 0.7585 +education: Doctorate, Count: 93 +Precision: 0.8873 | Recall: 0.8514 | F1: 0.8690 +education: HS-grad, Count: 2,091 +Precision: 0.6590 | Recall: 0.4145 | F1: 0.5089 +education: Masters, Count: 355 +Precision: 0.8564 | Recall: 0.8350 | F1: 0.8456 +education: Preschool, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 111 +Precision: 0.8571 | Recall: 0.8780 | F1: 0.8675 +education: Some-college, Count: 1,413 +Precision: 0.6582 | Recall: 0.5265 | F1: 0.5850 +marital-status: Divorced, Count: 902 +Precision: 0.7857 | Recall: 0.3333 | F1: 0.4681 +marital-status: Married-AF-spouse, Count: 6 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 2,975 +Precision: 0.7359 | Recall: 0.6762 | F1: 0.7048 +marital-status: Married-spouse-absent, Count: 76 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +marital-status: Never-married, Count: 2,162 +Precision: 0.9020 | Recall: 0.4742 | F1: 0.6216 +marital-status: Separated, Count: 191 +Precision: 1.0000 | Recall: 0.2308 | F1: 0.3750 +marital-status: Widowed, Count: 200 +Precision: 0.8333 | Recall: 0.2778 | F1: 0.4167 +occupation: ?, Count: 380 +Precision: 0.3750 | Recall: 0.2500 | F1: 0.3000 +occupation: Adm-clerical, Count: 730 +Precision: 0.6538 | Recall: 0.5543 | F1: 0.6000 +occupation: Armed-Forces, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 816 +Precision: 0.6165 | Recall: 0.4339 | F1: 0.5093 +occupation: Exec-managerial, Count: 823 +Precision: 0.7805 | Recall: 0.8060 | F1: 0.7931 +occupation: Farming-fishing, Count: 201 +Precision: 0.8000 | Recall: 0.4615 | F1: 0.5854 +occupation: Handlers-cleaners, Count: 241 +Precision: 1.0000 | Recall: 0.4000 | F1: 0.5714 +occupation: Machine-op-inspct, Count: 397 +Precision: 0.5294 | Recall: 0.3396 | F1: 0.4138 +occupation: Other-service, Count: 696 +Precision: 0.8571 | Recall: 0.2143 | F1: 0.3429 +occupation: Priv-house-serv, Count: 29 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 823 +Precision: 0.7943 | Recall: 0.7943 | F1: 0.7943 +occupation: Protective-serv, Count: 106 +Precision: 0.8276 | Recall: 0.5455 | F1: 0.6575 +occupation: Sales, Count: 767 +Precision: 0.7576 | Recall: 0.5787 | F1: 0.6562 +occupation: Tech-support, Count: 191 +Precision: 0.8140 | Recall: 0.5224 | F1: 0.6364 +occupation: Transport-moving, Count: 310 +Precision: 0.6341 | Recall: 0.3881 | F1: 0.4815 +relationship: Husband, Count: 2,626 +Precision: 0.7342 | Recall: 0.6802 | F1: 0.7062 +relationship: Not-in-family, Count: 1,666 +Precision: 0.8353 | Recall: 0.4152 | F1: 0.5547 +relationship: Other-relative, Count: 212 +Precision: 1.0000 | Recall: 0.1000 | F1: 0.1818 +relationship: Own-child, Count: 998 +Precision: 1.0000 | Recall: 0.4444 | F1: 0.6154 +relationship: Unmarried, Count: 707 +Precision: 0.9444 | Recall: 0.3269 | F1: 0.4857 +relationship: Wife, Count: 303 +Precision: 0.7419 | Recall: 0.6389 | F1: 0.6866 +race: Amer-Indian-Eskimo, Count: 53 +Precision: 0.3333 | Recall: 0.1667 | F1: 0.2222 +race: Asian-Pac-Islander, Count: 224 +Precision: 0.7333 | Recall: 0.6600 | F1: 0.6947 +race: Black, Count: 670 +Precision: 0.7895 | Recall: 0.5625 | F1: 0.6569 +race: Other, Count: 47 +Precision: 0.6000 | Recall: 0.7500 | F1: 0.6667 +race: White, Count: 5,518 +Precision: 0.7453 | Recall: 0.6352 | F1: 0.6858 +sex: Female, Count: 2,196 +Precision: 0.7738 | Recall: 0.5221 | F1: 0.6235 +sex: Male, Count: 4,316 +Precision: 0.7412 | Recall: 0.6513 | F1: 0.6933 +native-country: ?, Count: 121 +Precision: 0.7692 | Recall: 0.7407 | F1: 0.7547 +native-country: Cambodia, Count: 4 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Canada, Count: 26 +Precision: 0.8571 | Recall: 0.8571 | F1: 0.8571 +native-country: China, Count: 17 +Precision: 0.6667 | Recall: 1.0000 | F1: 0.8000 +native-country: Columbia, Count: 17 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Cuba, Count: 12 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +native-country: Dominican-Republic, Count: 14 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Ecuador, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: El-Salvador, Count: 20 +Precision: 1.0000 | Recall: 0.6667 | F1: 0.8000 +native-country: England, Count: 19 +Precision: 0.7500 | Recall: 0.6000 | F1: 0.6667 +native-country: France, Count: 6 +Precision: 1.0000 | Recall: 0.7500 | F1: 0.8571 +native-country: Germany, Count: 30 +Precision: 1.0000 | Recall: 0.7500 | F1: 0.8571 +native-country: Greece, Count: 10 +Precision: 0.8000 | Recall: 1.0000 | F1: 0.8889 +native-country: Guatemala, Count: 15 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Haiti, Count: 10 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Honduras, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Hungary, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: India, Count: 20 +Precision: 0.6667 | Recall: 0.7500 | F1: 0.7059 +native-country: Iran, Count: 11 +Precision: 0.7500 | Recall: 1.0000 | F1: 0.8571 +native-country: Ireland, Count: 7 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 14 +Precision: 0.3333 | Recall: 0.2500 | F1: 0.2857 +native-country: Jamaica, Count: 14 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Japan, Count: 13 +Precision: 1.0000 | Recall: 0.8000 | F1: 0.8889 +native-country: Laos, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Mexico, Count: 125 +Precision: 0.8333 | Recall: 0.5556 | F1: 0.6667 +native-country: Nicaragua, Count: 7 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Outlying-US(Guam-USVI-etc), Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 47 +Precision: 0.8889 | Recall: 0.6154 | F1: 0.7273 +native-country: Poland, Count: 11 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Portugal, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Puerto-Rico, Count: 27 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Scotland, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: South, Count: 20 +Precision: 0.2500 | Recall: 0.3333 | F1: 0.2857 +native-country: Taiwan, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Thailand, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Trinadad&Tobago, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: United-States, Count: 5,806 +Precision: 0.7448 | Recall: 0.6257 | F1: 0.6801 +native-country: Vietnam, Count: 15 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Yugoslavia, Count: 6 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +workclass: ?, Count: 389 +Precision: 0.6923 | Recall: 0.4286 | F1: 0.5294 +workclass: Federal-gov, Count: 191 +Precision: 0.7571 | Recall: 0.7571 | F1: 0.7571 +workclass: Local-gov, Count: 387 +Precision: 0.7500 | Recall: 0.6545 | F1: 0.6990 +workclass: Private, Count: 4,578 +Precision: 0.7447 | Recall: 0.6324 | F1: 0.6840 +workclass: Self-emp-inc, Count: 212 +Precision: 0.7565 | Recall: 0.7373 | F1: 0.7468 +workclass: Self-emp-not-inc, Count: 498 +Precision: 0.7339 | Recall: 0.5096 | F1: 0.6015 +workclass: State-gov, Count: 254 +Precision: 0.7500 | Recall: 0.6575 | F1: 0.7007 +workclass: Without-pay, Count: 4 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 183 +Precision: 0.4286 | Recall: 0.2500 | F1: 0.3158 +education: 11th, Count: 225 +Precision: 1.0000 | Recall: 0.2727 | F1: 0.4286 +education: 12th, Count: 98 +Precision: 1.0000 | Recall: 0.4000 | F1: 0.5714 +education: 1st-4th, Count: 23 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 5th-6th, Count: 62 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 7th-8th, Count: 141 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +education: 9th, Count: 115 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +education: Assoc-acdm, Count: 198 +Precision: 0.6923 | Recall: 0.5745 | F1: 0.6279 +education: Assoc-voc, Count: 273 +Precision: 0.6667 | Recall: 0.5397 | F1: 0.5965 +education: Bachelors, Count: 1,053 +Precision: 0.7564 | Recall: 0.7244 | F1: 0.7401 +education: Doctorate, Count: 77 +Precision: 0.8500 | Recall: 0.8947 | F1: 0.8718 +education: HS-grad, Count: 2,085 +Precision: 0.6622 | Recall: 0.4261 | F1: 0.5185 +education: Masters, Count: 369 +Precision: 0.8309 | Recall: 0.8309 | F1: 0.8309 +education: Preschool, Count: 10 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 116 +Precision: 0.8191 | Recall: 0.9167 | F1: 0.8652 +education: Some-college, Count: 1,485 +Precision: 0.6952 | Recall: 0.5271 | F1: 0.5996 +marital-status: Divorced, Count: 920 +Precision: 0.7826 | Recall: 0.3495 | F1: 0.4832 +marital-status: Married-AF-spouse, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 2,950 +Precision: 0.7377 | Recall: 0.6816 | F1: 0.7085 +marital-status: Married-spouse-absent, Count: 96 +Precision: 1.0000 | Recall: 0.2500 | F1: 0.4000 +marital-status: Never-married, Count: 2,126 +Precision: 0.8182 | Recall: 0.4369 | F1: 0.5696 +marital-status: Separated, Count: 209 +Precision: 1.0000 | Recall: 0.4211 | F1: 0.5926 +marital-status: Widowed, Count: 208 +Precision: 1.0000 | Recall: 0.1579 | F1: 0.2727 +occupation: ?, Count: 389 +Precision: 0.6923 | Recall: 0.4286 | F1: 0.5294 +occupation: Adm-clerical, Count: 726 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +occupation: Armed-Forces, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 821 +Precision: 0.6641 | Recall: 0.4696 | F1: 0.5502 +occupation: Exec-managerial, Count: 838 +Precision: 0.8011 | Recall: 0.7506 | F1: 0.7750 +occupation: Farming-fishing, Count: 193 +Precision: 0.6364 | Recall: 0.2500 | F1: 0.3590 +occupation: Handlers-cleaners, Count: 273 +Precision: 0.5714 | Recall: 0.3333 | F1: 0.4211 +occupation: Machine-op-inspct, Count: 378 +Precision: 0.5938 | Recall: 0.4043 | F1: 0.4810 +occupation: Other-service, Count: 667 +Precision: 0.8571 | Recall: 0.2308 | F1: 0.3636 +occupation: Priv-house-serv, Count: 26 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 828 +Precision: 0.7882 | Recall: 0.7500 | F1: 0.7686 +occupation: Protective-serv, Count: 136 +Precision: 0.6970 | Recall: 0.5476 | F1: 0.6133 +occupation: Sales, Count: 729 +Precision: 0.7333 | Recall: 0.6875 | F1: 0.7097 +occupation: Tech-support, Count: 189 +Precision: 0.6744 | Recall: 0.5686 | F1: 0.6170 +occupation: Transport-moving, Count: 317 +Precision: 0.6000 | Recall: 0.4219 | F1: 0.4954 +relationship: Husband, Count: 2,590 +Precision: 0.7401 | Recall: 0.6838 | F1: 0.7108 +relationship: Not-in-family, Count: 1,702 +Precision: 0.8021 | Recall: 0.4096 | F1: 0.5423 +relationship: Other-relative, Count: 178 +Precision: 1.0000 | Recall: 0.3750 | F1: 0.5455 +relationship: Own-child, Count: 1,019 +Precision: 1.0000 | Recall: 0.1765 | F1: 0.3000 +relationship: Unmarried, Count: 702 +Precision: 0.9231 | Recall: 0.2667 | F1: 0.4138 +relationship: Wife, Count: 322 +Precision: 0.7164 | Recall: 0.6713 | F1: 0.6931 +race: Amer-Indian-Eskimo, Count: 71 +Precision: 0.6250 | Recall: 0.5000 | F1: 0.5556 +race: Asian-Pac-Islander, Count: 193 +Precision: 0.7547 | Recall: 0.6452 | F1: 0.6957 +race: Black, Count: 599 +Precision: 0.7692 | Recall: 0.6154 | F1: 0.6838 +race: Other, Count: 55 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +race: White, Count: 5,595 +Precision: 0.7448 | Recall: 0.6317 | F1: 0.6836 +sex: Female, Count: 2,126 +Precision: 0.7267 | Recall: 0.5021 | F1: 0.5939 +sex: Male, Count: 4,387 +Precision: 0.7476 | Recall: 0.6532 | F1: 0.6972 +native-country: ?, Count: 125 +Precision: 0.7097 | Recall: 0.7097 | F1: 0.7097 +native-country: Cambodia, Count: 3 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Canada, Count: 22 +Precision: 0.6250 | Recall: 0.6250 | F1: 0.6250 +native-country: China, Count: 18 +Precision: 1.0000 | Recall: 0.8750 | F1: 0.9333 +native-country: Columbia, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 19 +Precision: 0.6667 | Recall: 0.8000 | F1: 0.7273 +native-country: Dominican-Republic, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 5 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: El-Salvador, Count: 20 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: England, Count: 14 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +native-country: France, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Germany, Count: 32 +Precision: 0.8333 | Recall: 0.7692 | F1: 0.8000 +native-country: Greece, Count: 7 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Guatemala, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Haiti, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Honduras, Count: 4 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 8 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: Hungary, Count: 3 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: India, Count: 21 +Precision: 0.7778 | Recall: 0.8750 | F1: 0.8235 +native-country: Iran, Count: 12 +Precision: 0.3333 | Recall: 0.2000 | F1: 0.2500 +native-country: Ireland, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 14 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Jamaica, Count: 13 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Japan, Count: 11 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Laos, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Mexico, Count: 114 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Nicaragua, Count: 7 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Philippines, Count: 35 +Precision: 1.0000 | Recall: 0.6250 | F1: 0.7692 +native-country: Poland, Count: 14 +Precision: 0.6667 | Recall: 1.0000 | F1: 0.8000 +native-country: Portugal, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Puerto-Rico, Count: 22 +Precision: 0.8333 | Recall: 0.8333 | F1: 0.8333 +native-country: Scotland, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: South, Count: 13 +Precision: 0.3333 | Recall: 0.5000 | F1: 0.4000 +native-country: Taiwan, Count: 11 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Thailand, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Trinadad&Tobago, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: United-States, Count: 5,870 +Precision: 0.7448 | Recall: 0.6265 | F1: 0.6805 +native-country: Vietnam, Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Yugoslavia, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: ?, Count: 368 +Precision: 0.6786 | Recall: 0.4318 | F1: 0.5278 +workclass: Federal-gov, Count: 186 +Precision: 0.7424 | Recall: 0.6447 | F1: 0.6901 +workclass: Local-gov, Count: 475 +Precision: 0.6912 | Recall: 0.6714 | F1: 0.6812 +workclass: Never-worked, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,513 +Precision: 0.6974 | Recall: 0.6033 | F1: 0.6469 +workclass: Self-emp-inc, Count: 231 +Precision: 0.8319 | Recall: 0.7557 | F1: 0.7920 +workclass: Self-emp-not-inc, Count: 480 +Precision: 0.6598 | Recall: 0.5039 | F1: 0.5714 +workclass: State-gov, Count: 256 +Precision: 0.7188 | Recall: 0.7302 | F1: 0.7244 +workclass: Without-pay, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 197 +Precision: 0.5000 | Recall: 0.0833 | F1: 0.1429 +education: 11th, Count: 235 +Precision: 0.8000 | Recall: 0.2857 | F1: 0.4211 +education: 12th, Count: 77 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 1st-4th, Count: 29 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 5th-6th, Count: 70 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 7th-8th, Count: 118 +Precision: 1.0000 | Recall: 0.2727 | F1: 0.4286 +education: 9th, Count: 84 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: Assoc-acdm, Count: 225 +Precision: 0.6078 | Recall: 0.5741 | F1: 0.5905 +education: Assoc-voc, Count: 251 +Precision: 0.6341 | Recall: 0.4194 | F1: 0.5049 +education: Bachelors, Count: 1,071 +Precision: 0.7460 | Recall: 0.7600 | F1: 0.7529 +education: Doctorate, Count: 83 +Precision: 0.7812 | Recall: 0.8333 | F1: 0.8065 +education: HS-grad, Count: 2,157 +Precision: 0.5520 | Recall: 0.4220 | F1: 0.4783 +education: Masters, Count: 351 +Precision: 0.7949 | Recall: 0.7908 | F1: 0.7928 +education: Preschool, Count: 13 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +education: Prof-school, Count: 117 +Precision: 0.8696 | Recall: 0.9091 | F1: 0.8889 +education: Some-college, Count: 1,434 +Precision: 0.6761 | Recall: 0.4898 | F1: 0.5680 +marital-status: Divorced, Count: 853 +Precision: 0.8108 | Recall: 0.3448 | F1: 0.4839 +marital-status: Married-AF-spouse, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +marital-status: Married-civ-spouse, Count: 3,044 +Precision: 0.6967 | Recall: 0.6535 | F1: 0.6744 +marital-status: Married-spouse-absent, Count: 74 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +marital-status: Never-married, Count: 2,124 +Precision: 0.9070 | Recall: 0.3861 | F1: 0.5417 +marital-status: Separated, Count: 224 +Precision: 0.7143 | Recall: 0.6250 | F1: 0.6667 +marital-status: Widowed, Count: 191 +Precision: 0.8889 | Recall: 0.4706 | F1: 0.6154 +occupation: ?, Count: 369 +Precision: 0.6786 | Recall: 0.4318 | F1: 0.5278 +occupation: Adm-clerical, Count: 768 +Precision: 0.6364 | Recall: 0.4949 | F1: 0.5568 +occupation: Armed-Forces, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 793 +Precision: 0.6000 | Recall: 0.4693 | F1: 0.5266 +occupation: Exec-managerial, Count: 806 +Precision: 0.7886 | Recall: 0.7500 | F1: 0.7688 +occupation: Farming-fishing, Count: 196 +Precision: 0.6000 | Recall: 0.3750 | F1: 0.4615 +occupation: Handlers-cleaners, Count: 271 +Precision: 0.6667 | Recall: 0.1053 | F1: 0.1818 +occupation: Machine-op-inspct, Count: 392 +Precision: 0.5789 | Recall: 0.2245 | F1: 0.3235 +occupation: Other-service, Count: 659 +Precision: 0.6667 | Recall: 0.1538 | F1: 0.2500 +occupation: Priv-house-serv, Count: 36 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 855 +Precision: 0.7454 | Recall: 0.7358 | F1: 0.7405 +occupation: Protective-serv, Count: 148 +Precision: 0.6170 | Recall: 0.6444 | F1: 0.6304 +occupation: Sales, Count: 686 +Precision: 0.6570 | Recall: 0.6175 | F1: 0.6366 +occupation: Tech-support, Count: 178 +Precision: 0.7037 | Recall: 0.7917 | F1: 0.7451 +occupation: Transport-moving, Count: 353 +Precision: 0.6122 | Recall: 0.3947 | F1: 0.4800 +relationship: Husband, Count: 2,652 +Precision: 0.7039 | Recall: 0.6520 | F1: 0.6770 +relationship: Not-in-family, Count: 1,639 +Precision: 0.8659 | Recall: 0.4176 | F1: 0.5635 +relationship: Other-relative, Count: 199 +Precision: 0.5000 | Recall: 0.1667 | F1: 0.2500 +relationship: Own-child, Count: 1,000 +Precision: 0.7500 | Recall: 0.2143 | F1: 0.3333 +relationship: Unmarried, Count: 673 +Precision: 0.7857 | Recall: 0.3143 | F1: 0.4490 +relationship: Wife, Count: 349 +Precision: 0.6564 | Recall: 0.6859 | F1: 0.6708 +race: Amer-Indian-Eskimo, Count: 67 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +race: Asian-Pac-Islander, Count: 205 +Precision: 0.7561 | Recall: 0.5536 | F1: 0.6392 +race: Black, Count: 600 +Precision: 0.6078 | Recall: 0.4366 | F1: 0.5082 +race: Other, Count: 52 +Precision: 0.6667 | Recall: 0.4000 | F1: 0.5000 +race: White, Count: 5,588 +Precision: 0.7102 | Recall: 0.6295 | F1: 0.6674 +sex: Female, Count: 2,195 +Precision: 0.6869 | Recall: 0.5738 | F1: 0.6253 +sex: Male, Count: 4,317 +Precision: 0.7124 | Recall: 0.6241 | F1: 0.6653 +native-country: ?, Count: 106 +Precision: 0.8182 | Recall: 0.6000 | F1: 0.6923 +native-country: Cambodia, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Canada, Count: 26 +Precision: 0.7500 | Recall: 0.3750 | F1: 0.5000 +native-country: China, Count: 15 +Precision: 0.6000 | Recall: 0.7500 | F1: 0.6667 +native-country: Columbia, Count: 12 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 27 +Precision: 0.8750 | Recall: 0.7778 | F1: 0.8235 +native-country: Dominican-Republic, Count: 17 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 6 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: El-Salvador, Count: 17 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: England, Count: 20 +Precision: 0.7500 | Recall: 0.4286 | F1: 0.5455 +native-country: France, Count: 6 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Germany, Count: 20 +Precision: 0.6667 | Recall: 0.2857 | F1: 0.4000 +native-country: Greece, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Guatemala, Count: 10 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Haiti, Count: 12 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Honduras, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 4 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Hungary, Count: 2 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: India, Count: 24 +Precision: 0.8571 | Recall: 0.6667 | F1: 0.7500 +native-country: Iran, Count: 3 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Ireland, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 11 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Jamaica, Count: 21 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Japan, Count: 9 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Laos, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Mexico, Count: 120 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +native-country: Nicaragua, Count: 6 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Outlying-US(Guam-USVI-etc), Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 41 +Precision: 0.6000 | Recall: 0.6000 | F1: 0.6000 +native-country: Poland, Count: 13 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +native-country: Portugal, Count: 8 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Puerto-Rico, Count: 19 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Scotland, Count: 5 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: South, Count: 17 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Taiwan, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Thailand, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Trinadad&Tobago, Count: 5 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: United-States, Count: 5,856 +Precision: 0.7068 | Recall: 0.6225 | F1: 0.6619 +native-country: Vietnam, Count: 13 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Yugoslavia, Count: 6 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +workclass: ?, Count: 357 +Precision: 0.6250 | Recall: 0.4444 | F1: 0.5195 +workclass: Federal-gov, Count: 195 +Precision: 0.7179 | Recall: 0.7887 | F1: 0.7517 +workclass: Local-gov, Count: 395 +Precision: 0.6939 | Recall: 0.5812 | F1: 0.6326 +workclass: Never-worked, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,566 +Precision: 0.7378 | Recall: 0.6123 | F1: 0.6692 +workclass: Self-emp-inc, Count: 225 +Precision: 0.7826 | Recall: 0.7500 | F1: 0.7660 +workclass: Self-emp-not-inc, Count: 514 +Precision: 0.7475 | Recall: 0.5000 | F1: 0.5992 +workclass: State-gov, Count: 255 +Precision: 0.7273 | Recall: 0.7089 | F1: 0.7179 +workclass: Without-pay, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 180 +Precision: 0.7500 | Recall: 0.5000 | F1: 0.6000 +education: 11th, Count: 242 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +education: 12th, Count: 85 +Precision: 1.0000 | Recall: 0.2727 | F1: 0.4286 +education: 1st-4th, Count: 42 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 5th-6th, Count: 72 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: 7th-8th, Count: 160 +Precision: 0.5000 | Recall: 0.1000 | F1: 0.1667 +education: 9th, Count: 110 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: Assoc-acdm, Count: 199 +Precision: 0.6889 | Recall: 0.5962 | F1: 0.6392 +education: Assoc-voc, Count: 283 +Precision: 0.8333 | Recall: 0.5233 | F1: 0.6429 +education: Bachelors, Count: 1,073 +Precision: 0.7332 | Recall: 0.7528 | F1: 0.7429 +education: Doctorate, Count: 85 +Precision: 0.7536 | Recall: 0.8966 | F1: 0.8189 +education: HS-grad, Count: 2,063 +Precision: 0.5864 | Recall: 0.3601 | F1: 0.4462 +education: Masters, Count: 329 +Precision: 0.8218 | Recall: 0.8034 | F1: 0.8125 +education: Preschool, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 120 +Precision: 0.9184 | Recall: 0.9677 | F1: 0.9424 +education: Some-college, Count: 1,458 +Precision: 0.6887 | Recall: 0.5069 | F1: 0.5840 +marital-status: Divorced, Count: 899 +Precision: 0.6512 | Recall: 0.3218 | F1: 0.4308 +marital-status: Married-AF-spouse, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 3,011 +Precision: 0.7336 | Recall: 0.6603 | F1: 0.6950 +marital-status: Married-spouse-absent, Count: 76 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +marital-status: Never-married, Count: 2,100 +Precision: 0.7800 | Recall: 0.4149 | F1: 0.5417 +marital-status: Separated, Count: 215 +Precision: 1.0000 | Recall: 0.4167 | F1: 0.5882 +marital-status: Widowed, Count: 207 +Precision: 1.0000 | Recall: 0.2222 | F1: 0.3636 +occupation: ?, Count: 359 +Precision: 0.6250 | Recall: 0.4444 | F1: 0.5195 +occupation: Adm-clerical, Count: 755 +Precision: 0.6076 | Recall: 0.4615 | F1: 0.5246 +occupation: Armed-Forces, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 849 +Precision: 0.6718 | Recall: 0.4378 | F1: 0.5301 +occupation: Exec-managerial, Count: 808 +Precision: 0.7836 | Recall: 0.7467 | F1: 0.7647 +occupation: Farming-fishing, Count: 201 +Precision: 0.7143 | Recall: 0.2273 | F1: 0.3448 +occupation: Handlers-cleaners, Count: 297 +Precision: 0.6667 | Recall: 0.2353 | F1: 0.3478 +occupation: Machine-op-inspct, Count: 408 +Precision: 0.6316 | Recall: 0.2400 | F1: 0.3478 +occupation: Other-service, Count: 626 +Precision: 0.7500 | Recall: 0.1200 | F1: 0.2069 +occupation: Priv-house-serv, Count: 32 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 817 +Precision: 0.8000 | Recall: 0.7890 | F1: 0.7945 +occupation: Protective-serv, Count: 129 +Precision: 0.5714 | Recall: 0.5405 | F1: 0.5556 +occupation: Sales, Count: 729 +Precision: 0.6989 | Recall: 0.6468 | F1: 0.6718 +occupation: Tech-support, Count: 190 +Precision: 0.6721 | Recall: 0.6721 | F1: 0.6721 +occupation: Transport-moving, Count: 311 +Precision: 0.7059 | Recall: 0.4211 | F1: 0.5275 +relationship: Husband, Count: 2,694 +Precision: 0.7378 | Recall: 0.6656 | F1: 0.6998 +relationship: Not-in-family, Count: 1,648 +Precision: 0.7342 | Recall: 0.3742 | F1: 0.4957 +relationship: Other-relative, Count: 208 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +relationship: Own-child, Count: 969 +Precision: 0.7500 | Recall: 0.3000 | F1: 0.4286 +relationship: Unmarried, Count: 708 +Precision: 0.7500 | Recall: 0.3000 | F1: 0.4286 +relationship: Wife, Count: 285 +Precision: 0.7031 | Recall: 0.6294 | F1: 0.6642 +race: Amer-Indian-Eskimo, Count: 55 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +race: Asian-Pac-Islander, Count: 210 +Precision: 0.6383 | Recall: 0.5769 | F1: 0.6061 +race: Black, Count: 634 +Precision: 0.7581 | Recall: 0.5875 | F1: 0.6620 +race: Other, Count: 50 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +race: White, Count: 5,563 +Precision: 0.7378 | Recall: 0.6217 | F1: 0.6748 +sex: Female, Count: 2,124 +Precision: 0.7099 | Recall: 0.5251 | F1: 0.6037 +sex: Male, Count: 4,388 +Precision: 0.7381 | Recall: 0.6331 | F1: 0.6816 +native-country: ?, Count: 104 +Precision: 0.5714 | Recall: 0.6000 | F1: 0.5854 +native-country: Cambodia, Count: 6 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Canada, Count: 25 +Precision: 0.7143 | Recall: 0.5556 | F1: 0.6250 +native-country: China, Count: 10 +Precision: 0.3333 | Recall: 1.0000 | F1: 0.5000 +native-country: Columbia, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 21 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Dominican-Republic, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: El-Salvador, Count: 25 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: England, Count: 18 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: France, Count: 7 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +native-country: Germany, Count: 27 +Precision: 0.6667 | Recall: 0.5714 | F1: 0.6154 +native-country: Greece, Count: 4 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Guatemala, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Haiti, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Holand-Netherlands, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Honduras, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hungary, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: India, Count: 15 +Precision: 0.6250 | Recall: 0.6250 | F1: 0.6250 +native-country: Iran, Count: 9 +Precision: 1.0000 | Recall: 0.8000 | F1: 0.8889 +native-country: Ireland, Count: 4 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 20 +Precision: 1.0000 | Recall: 0.5714 | F1: 0.7273 +native-country: Jamaica, Count: 14 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Japan, Count: 16 +Precision: 0.5000 | Recall: 0.6667 | F1: 0.5714 +native-country: Laos, Count: 4 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Mexico, Count: 152 +Precision: 1.0000 | Recall: 0.2857 | F1: 0.4444 +native-country: Nicaragua, Count: 5 +Precision: 0.5000 | Recall: 1.0000 | F1: 0.6667 +native-country: Outlying-US(Guam-USVI-etc), Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 37 +Precision: 0.7500 | Recall: 0.7500 | F1: 0.7500 +native-country: Poland, Count: 8 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Portugal, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Puerto-Rico, Count: 27 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Scotland, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: South, Count: 12 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +native-country: Taiwan, Count: 14 +Precision: 0.7500 | Recall: 0.6000 | F1: 0.6667 +native-country: Thailand, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Trinadad&Tobago, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: United-States, Count: 5,818 +Precision: 0.7428 | Recall: 0.6205 | F1: 0.6762 +native-country: Vietnam, Count: 20 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: ?, Count: 345 +Precision: 0.7308 | Recall: 0.5278 | F1: 0.6129 +workclass: Federal-gov, Count: 200 +Precision: 0.7973 | Recall: 0.7375 | F1: 0.7662 +workclass: Local-gov, Count: 421 +Precision: 0.7434 | Recall: 0.6667 | F1: 0.7029 +workclass: Never-worked, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,547 +Precision: 0.7450 | Recall: 0.5990 | F1: 0.6641 +workclass: Self-emp-inc, Count: 214 +Precision: 0.7769 | Recall: 0.8211 | F1: 0.7984 +workclass: Self-emp-not-inc, Count: 511 +Precision: 0.6667 | Recall: 0.5035 | F1: 0.5737 +workclass: State-gov, Count: 270 +Precision: 0.8364 | Recall: 0.6866 | F1: 0.7541 +workclass: Without-pay, Count: 3 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +education: 10th, Count: 184 +Precision: 0.5000 | Recall: 0.1538 | F1: 0.2353 +education: 11th, Count: 240 +Precision: 1.0000 | Recall: 0.3636 | F1: 0.5333 +education: 12th, Count: 86 +Precision: 1.0000 | Recall: 0.1429 | F1: 0.2500 +education: 1st-4th, Count: 43 +Precision: 1.0000 | Recall: 0.2500 | F1: 0.4000 +education: 5th-6th, Count: 67 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +education: 7th-8th, Count: 104 +Precision: 0.6000 | Recall: 0.5000 | F1: 0.5455 +education: 9th, Count: 100 +Precision: 1.0000 | Recall: 0.2000 | F1: 0.3333 +education: Assoc-acdm, Count: 205 +Precision: 0.7561 | Recall: 0.5849 | F1: 0.6596 +education: Assoc-voc, Count: 292 +Precision: 0.6667 | Recall: 0.5600 | F1: 0.6087 +education: Bachelors, Count: 1,068 +Precision: 0.7864 | Recall: 0.7522 | F1: 0.7689 +education: Doctorate, Count: 75 +Precision: 0.8548 | Recall: 0.9298 | F1: 0.8908 +education: HS-grad, Count: 2,105 +Precision: 0.6771 | Recall: 0.3746 | F1: 0.4824 +education: Masters, Count: 319 +Precision: 0.8034 | Recall: 0.8034 | F1: 0.8034 +education: Preschool, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 112 +Precision: 0.8471 | Recall: 0.9474 | F1: 0.8944 +education: Some-college, Count: 1,501 +Precision: 0.6481 | Recall: 0.5336 | F1: 0.5853 +marital-status: Divorced, Count: 869 +Precision: 0.7895 | Recall: 0.3448 | F1: 0.4800 +marital-status: Married-AF-spouse, Count: 7 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 2,996 +Precision: 0.7412 | Recall: 0.6679 | F1: 0.7026 +marital-status: Married-spouse-absent, Count: 96 +Precision: 0.6667 | Recall: 0.2222 | F1: 0.3333 +marital-status: Never-married, Count: 2,171 +Precision: 0.8718 | Recall: 0.3542 | F1: 0.5037 +marital-status: Separated, Count: 186 +Precision: 1.0000 | Recall: 0.3571 | F1: 0.5263 +marital-status: Widowed, Count: 187 +Precision: 1.0000 | Recall: 0.3077 | F1: 0.4706 +occupation: ?, Count: 346 +Precision: 0.7308 | Recall: 0.5278 | F1: 0.6129 +occupation: Adm-clerical, Count: 791 +Precision: 0.6495 | Recall: 0.5431 | F1: 0.5915 +occupation: Armed-Forces, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 820 +Precision: 0.5909 | Recall: 0.4358 | F1: 0.5016 +occupation: Exec-managerial, Count: 791 +Precision: 0.8072 | Recall: 0.7792 | F1: 0.7929 +occupation: Farming-fishing, Count: 203 +Precision: 0.7857 | Recall: 0.4783 | F1: 0.5946 +occupation: Handlers-cleaners, Count: 288 +Precision: 0.6667 | Recall: 0.1739 | F1: 0.2759 +occupation: Machine-op-inspct, Count: 427 +Precision: 0.6552 | Recall: 0.3725 | F1: 0.4750 +occupation: Other-service, Count: 647 +Precision: 0.8333 | Recall: 0.1562 | F1: 0.2632 +occupation: Priv-house-serv, Count: 26 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 817 +Precision: 0.8128 | Recall: 0.7951 | F1: 0.8039 +occupation: Protective-serv, Count: 130 +Precision: 0.7353 | Recall: 0.5814 | F1: 0.6494 +occupation: Sales, Count: 739 +Precision: 0.6918 | Recall: 0.5288 | F1: 0.5994 +occupation: Tech-support, Count: 180 +Precision: 0.7143 | Recall: 0.6250 | F1: 0.6667 +occupation: Transport-moving, Count: 306 +Precision: 0.6000 | Recall: 0.2679 | F1: 0.3704 +relationship: Husband, Count: 2,631 +Precision: 0.7392 | Recall: 0.6661 | F1: 0.7008 +relationship: Not-in-family, Count: 1,650 +Precision: 0.8451 | Recall: 0.3488 | F1: 0.4938 +relationship: Other-relative, Count: 184 +Precision: 1.0000 | Recall: 0.3750 | F1: 0.5455 +relationship: Own-child, Count: 1,082 +Precision: 1.0000 | Recall: 0.2941 | F1: 0.4545 +relationship: Unmarried, Count: 656 +Precision: 0.7857 | Recall: 0.3056 | F1: 0.4400 +relationship: Wife, Count: 309 +Precision: 0.7434 | Recall: 0.7107 | F1: 0.7267 +race: Amer-Indian-Eskimo, Count: 65 +Precision: 0.6000 | Recall: 0.4286 | F1: 0.5000 +race: Asian-Pac-Islander, Count: 207 +Precision: 0.7273 | Recall: 0.5714 | F1: 0.6400 +race: Black, Count: 621 +Precision: 0.8333 | Recall: 0.5495 | F1: 0.6623 +race: Other, Count: 67 +Precision: 0.6667 | Recall: 0.5714 | F1: 0.6154 +race: White, Count: 5,552 +Precision: 0.7450 | Recall: 0.6301 | F1: 0.6828 +sex: Female, Count: 2,130 +Precision: 0.7622 | Recall: 0.5851 | F1: 0.6620 +sex: Male, Count: 4,382 +Precision: 0.7451 | Recall: 0.6289 | F1: 0.6821 +native-country: ?, Count: 127 +Precision: 0.8065 | Recall: 0.6579 | F1: 0.7246 +native-country: Cambodia, Count: 2 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Canada, Count: 22 +Precision: 0.6000 | Recall: 0.4286 | F1: 0.5000 +native-country: China, Count: 15 +Precision: 1.0000 | Recall: 0.4000 | F1: 0.5714 +native-country: Columbia, Count: 11 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Cuba, Count: 16 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Dominican-Republic, Count: 20 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ecuador, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: El-Salvador, Count: 24 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: England, Count: 19 +Precision: 0.8750 | Recall: 0.7000 | F1: 0.7778 +native-country: France, Count: 5 +Precision: 0.7500 | Recall: 1.0000 | F1: 0.8571 +native-country: Germany, Count: 28 +Precision: 1.0000 | Recall: 0.5556 | F1: 0.7143 +native-country: Greece, Count: 7 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Guatemala, Count: 13 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Haiti, Count: 7 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Honduras, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hungary, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: India, Count: 20 +Precision: 0.7000 | Recall: 1.0000 | F1: 0.8235 +native-country: Iran, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Ireland, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Italy, Count: 14 +Precision: 1.0000 | Recall: 0.4286 | F1: 0.6000 +native-country: Jamaica, Count: 19 +Precision: 1.0000 | Recall: 0.6667 | F1: 0.8000 +native-country: Japan, Count: 13 +Precision: 1.0000 | Recall: 0.7143 | F1: 0.8333 +native-country: Laos, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Mexico, Count: 132 +Precision: 0.6667 | Recall: 0.2500 | F1: 0.3636 +native-country: Nicaragua, Count: 9 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Outlying-US(Guam-USVI-etc), Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 8 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 38 +Precision: 0.5556 | Recall: 0.5000 | F1: 0.5263 +native-country: Poland, Count: 14 +Precision: 0.6667 | Recall: 0.5000 | F1: 0.5714 +native-country: Portugal, Count: 8 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +native-country: Puerto-Rico, Count: 19 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: South, Count: 18 +Precision: 0.5000 | Recall: 0.3333 | F1: 0.4000 +native-country: Taiwan, Count: 8 +Precision: 0.7500 | Recall: 1.0000 | F1: 0.8571 +native-country: Thailand, Count: 5 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Trinadad&Tobago, Count: 3 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: United-States, Count: 5,820 +Precision: 0.7438 | Recall: 0.6265 | F1: 0.6801 +native-country: Vietnam, Count: 14 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Yugoslavia, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: ?, Count: 377 +Precision: 0.3750 | Recall: 0.2500 | F1: 0.3000 +workclass: Federal-gov, Count: 188 +Precision: 0.8136 | Recall: 0.6486 | F1: 0.7218 +workclass: Local-gov, Count: 415 +Precision: 0.7451 | Recall: 0.6129 | F1: 0.6726 +workclass: Never-worked, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +workclass: Private, Count: 4,492 +Precision: 0.7312 | Recall: 0.6145 | F1: 0.6678 +workclass: Self-emp-inc, Count: 234 +Precision: 0.8222 | Recall: 0.8538 | F1: 0.8377 +workclass: Self-emp-not-inc, Count: 538 +Precision: 0.7607 | Recall: 0.5973 | F1: 0.6692 +workclass: State-gov, Count: 263 +Precision: 0.7705 | Recall: 0.6620 | F1: 0.7121 +workclass: Without-pay, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: 10th, Count: 189 +Precision: 1.0000 | Recall: 0.0769 | F1: 0.1429 +education: 11th, Count: 233 +Precision: 1.0000 | Recall: 0.2857 | F1: 0.4444 +education: 12th, Count: 87 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +education: 1st-4th, Count: 31 +Precision: 1.0000 | Recall: 0.5000 | F1: 0.6667 +education: 5th-6th, Count: 62 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +education: 7th-8th, Count: 123 +Precision: 0.5000 | Recall: 0.1429 | F1: 0.2222 +education: 9th, Count: 105 +Precision: 1.0000 | Recall: 0.1250 | F1: 0.2222 +education: Assoc-acdm, Count: 240 +Precision: 0.6275 | Recall: 0.5424 | F1: 0.5818 +education: Assoc-voc, Count: 283 +Precision: 0.6774 | Recall: 0.5600 | F1: 0.6131 +education: Bachelors, Count: 1,090 +Precision: 0.7551 | Recall: 0.7620 | F1: 0.7585 +education: Doctorate, Count: 93 +Precision: 0.8873 | Recall: 0.8514 | F1: 0.8690 +education: HS-grad, Count: 2,091 +Precision: 0.6590 | Recall: 0.4145 | F1: 0.5089 +education: Masters, Count: 355 +Precision: 0.8564 | Recall: 0.8350 | F1: 0.8456 +education: Preschool, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +education: Prof-school, Count: 111 +Precision: 0.8571 | Recall: 0.8780 | F1: 0.8675 +education: Some-college, Count: 1,413 +Precision: 0.6582 | Recall: 0.5265 | F1: 0.5850 +marital-status: Divorced, Count: 902 +Precision: 0.7857 | Recall: 0.3333 | F1: 0.4681 +marital-status: Married-AF-spouse, Count: 6 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +marital-status: Married-civ-spouse, Count: 2,975 +Precision: 0.7359 | Recall: 0.6762 | F1: 0.7048 +marital-status: Married-spouse-absent, Count: 76 +Precision: 1.0000 | Recall: 0.3333 | F1: 0.5000 +marital-status: Never-married, Count: 2,162 +Precision: 0.9020 | Recall: 0.4742 | F1: 0.6216 +marital-status: Separated, Count: 191 +Precision: 1.0000 | Recall: 0.2308 | F1: 0.3750 +marital-status: Widowed, Count: 200 +Precision: 0.8333 | Recall: 0.2778 | F1: 0.4167 +occupation: ?, Count: 380 +Precision: 0.3750 | Recall: 0.2500 | F1: 0.3000 +occupation: Adm-clerical, Count: 730 +Precision: 0.6538 | Recall: 0.5543 | F1: 0.6000 +occupation: Armed-Forces, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Craft-repair, Count: 816 +Precision: 0.6165 | Recall: 0.4339 | F1: 0.5093 +occupation: Exec-managerial, Count: 823 +Precision: 0.7805 | Recall: 0.8060 | F1: 0.7931 +occupation: Farming-fishing, Count: 201 +Precision: 0.8000 | Recall: 0.4615 | F1: 0.5854 +occupation: Handlers-cleaners, Count: 241 +Precision: 1.0000 | Recall: 0.4000 | F1: 0.5714 +occupation: Machine-op-inspct, Count: 397 +Precision: 0.5294 | Recall: 0.3396 | F1: 0.4138 +occupation: Other-service, Count: 696 +Precision: 0.8571 | Recall: 0.2143 | F1: 0.3429 +occupation: Priv-house-serv, Count: 29 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +occupation: Prof-specialty, Count: 823 +Precision: 0.7943 | Recall: 0.7943 | F1: 0.7943 +occupation: Protective-serv, Count: 106 +Precision: 0.8276 | Recall: 0.5455 | F1: 0.6575 +occupation: Sales, Count: 767 +Precision: 0.7576 | Recall: 0.5787 | F1: 0.6562 +occupation: Tech-support, Count: 191 +Precision: 0.8140 | Recall: 0.5224 | F1: 0.6364 +occupation: Transport-moving, Count: 310 +Precision: 0.6341 | Recall: 0.3881 | F1: 0.4815 +relationship: Husband, Count: 2,626 +Precision: 0.7342 | Recall: 0.6802 | F1: 0.7062 +relationship: Not-in-family, Count: 1,666 +Precision: 0.8353 | Recall: 0.4152 | F1: 0.5547 +relationship: Other-relative, Count: 212 +Precision: 1.0000 | Recall: 0.1000 | F1: 0.1818 +relationship: Own-child, Count: 998 +Precision: 1.0000 | Recall: 0.4444 | F1: 0.6154 +relationship: Unmarried, Count: 707 +Precision: 0.9444 | Recall: 0.3269 | F1: 0.4857 +relationship: Wife, Count: 303 +Precision: 0.7419 | Recall: 0.6389 | F1: 0.6866 +race: Amer-Indian-Eskimo, Count: 53 +Precision: 0.3333 | Recall: 0.1667 | F1: 0.2222 +race: Asian-Pac-Islander, Count: 224 +Precision: 0.7333 | Recall: 0.6600 | F1: 0.6947 +race: Black, Count: 670 +Precision: 0.7895 | Recall: 0.5625 | F1: 0.6569 +race: Other, Count: 47 +Precision: 0.6000 | Recall: 0.7500 | F1: 0.6667 +race: White, Count: 5,518 +Precision: 0.7453 | Recall: 0.6352 | F1: 0.6858 +sex: Female, Count: 2,196 +Precision: 0.7738 | Recall: 0.5221 | F1: 0.6235 +sex: Male, Count: 4,316 +Precision: 0.7412 | Recall: 0.6513 | F1: 0.6933 +native-country: ?, Count: 121 +Precision: 0.7692 | Recall: 0.7407 | F1: 0.7547 +native-country: Cambodia, Count: 4 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Canada, Count: 26 +Precision: 0.8571 | Recall: 0.8571 | F1: 0.8571 +native-country: China, Count: 17 +Precision: 0.6667 | Recall: 1.0000 | F1: 0.8000 +native-country: Columbia, Count: 17 +Precision: 0.0000 | Recall: 1.0000 | F1: 0.0000 +native-country: Cuba, Count: 12 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 +native-country: Dominican-Republic, Count: 14 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Ecuador, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: El-Salvador, Count: 20 +Precision: 1.0000 | Recall: 0.6667 | F1: 0.8000 +native-country: England, Count: 19 +Precision: 0.7500 | Recall: 0.6000 | F1: 0.6667 +native-country: France, Count: 6 +Precision: 1.0000 | Recall: 0.7500 | F1: 0.8571 +native-country: Germany, Count: 30 +Precision: 1.0000 | Recall: 0.7500 | F1: 0.8571 +native-country: Greece, Count: 10 +Precision: 0.8000 | Recall: 1.0000 | F1: 0.8889 +native-country: Guatemala, Count: 15 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Haiti, Count: 10 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Honduras, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Hong, Count: 4 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Hungary, Count: 3 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: India, Count: 20 +Precision: 0.6667 | Recall: 0.7500 | F1: 0.7059 +native-country: Iran, Count: 11 +Precision: 0.7500 | Recall: 1.0000 | F1: 0.8571 +native-country: Ireland, Count: 7 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Italy, Count: 14 +Precision: 0.3333 | Recall: 0.2500 | F1: 0.2857 +native-country: Jamaica, Count: 14 +Precision: 0.5000 | Recall: 0.5000 | F1: 0.5000 +native-country: Japan, Count: 13 +Precision: 1.0000 | Recall: 0.8000 | F1: 0.8889 +native-country: Laos, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Mexico, Count: 125 +Precision: 0.8333 | Recall: 0.5556 | F1: 0.6667 +native-country: Nicaragua, Count: 7 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Outlying-US(Guam-USVI-etc), Count: 5 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Peru, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Philippines, Count: 47 +Precision: 0.8889 | Recall: 0.6154 | F1: 0.7273 +native-country: Poland, Count: 11 +Precision: 1.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Portugal, Count: 6 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Puerto-Rico, Count: 27 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Scotland, Count: 1 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: South, Count: 20 +Precision: 0.2500 | Recall: 0.3333 | F1: 0.2857 +native-country: Taiwan, Count: 9 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Thailand, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: Trinadad&Tobago, Count: 2 +Precision: 1.0000 | Recall: 1.0000 | F1: 1.0000 +native-country: United-States, Count: 5,806 +Precision: 0.7448 | Recall: 0.6257 | F1: 0.6801 +native-country: Vietnam, Count: 15 +Precision: 0.0000 | Recall: 0.0000 | F1: 0.0000 +native-country: Yugoslavia, Count: 6 +Precision: 0.6667 | Recall: 0.6667 | F1: 0.6667 diff --git a/test_ml.py b/test_ml.py index 5f8306f14c..7ac4563e08 100644 --- a/test_ml.py +++ b/test_ml.py @@ -1,28 +1,94 @@ import pytest # TODO: add necessary import +from ml.model import train_and_save_final_model +from ml.model import inference +from sklearn.ensemble import RandomForestClassifier +from sklearn.model_selection import train_test_split +import os +import pandas as pd +import tempfile + + # TODO: implement the first test. Change the function name and input as needed -def test_one(): +#sample data +@pytest.fixture +def fake_sample_data(): + return pd.DataFrame({ + 'feature1': ['A', 'B','C'], + 'feature2': ["X", "Y", 'Z'], + 'label': [1, 0, 1] + }) + + +def test_train_and_save_final_model(fake_sample_data): + """ # add description for the first test + test if the pipeline runs. """ # Your code here + with tempfile.TemporaryDirectory()as tmp_dir: + model, encoder, lb = train_and_save_final_model( + data=fake_sample_data, + categorical_features=["feature1", "feature2"], + label='label', + model_dir=tmp_dir + ) + #check output is not none + assert model is not None + assert encoder is not None + assert lb is not None pass +#Effective Python Testing With pytest, Dane Hillard,Dec 08, 2024, https://realpython.com/pytest-python-testing/ + # TODO: implement the second test. Change the function name and input as needed -def test_two(): +def test_function_inference(): """ # add description for the second test + test function def inference(model, X): """ # Your code here + + #simple model to train, look for prediction + model = RandomForestClassifier().fit( + pd.DataFrame({"a": [0,1], "b": [1, 0]}), + [0,1] + ) + + preds = model.predict(pd.DataFrame({"a": [1], "b": [0]})) + + #assert what should be true + assert preds[0] in [0, 1] pass # TODO: implement the third test. Change the function name and input as needed -def test_three(): +def test_data_split_shape(): """ # add description for the third test + checks the shape of training and test datasets """ # Your code here + #using the same sample dataset in test1 + data = pd.DataFrame({ + 'feature1': ['A', 'B','C'], + 'feature2': ["X", "Y", 'Z'], + 'label': [1, 0, 1] + }) + + #split and label + X=data[['feature1', 'feature2']] + y=data['label'] + + #train test split 1-train 2- split + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1, random_state=42) + + #check shapes + assert X_train.shape ==(2, 2) + assert X_test.shape ==(1, 2) + assert y_train.shape[0] == 2 + assert y_test.shape[0] == 1 pass diff --git a/train_model.py b/train_model.py index ae783ed5b9..cb99333a47 100644 --- a/train_model.py +++ b/train_model.py @@ -1,7 +1,10 @@ import os +from ml.model import train_and_save_final_model import pandas as pd from sklearn.model_selection import train_test_split +from sklearn.model_selection import KFold +import numpy as np from ml.data import process_data from ml.model import ( @@ -13,15 +16,18 @@ train_model, ) # TODO: load the cencus.csv data -project_path = "Your path here" +project_path = "/home/mha2112/Deploying-a-Scalable-ML-Pipeline-with-FastAPI" data_path = os.path.join(project_path, "data", "census.csv") print(data_path) -data = None # your code here +#data = None # your code here +data = pd.read_csv(data_path) # TODO: split the provided data to have a train dataset and a test dataset # Optional enhancement, use K-fold cross validation instead of a train-test split. -train, test = None, None# Your code here - +#X_train, X_test, y_train, y_test = train_test_split +#train, test = None, None# Your code here +#train, test = train_test_split(data, test_size=.20, random_state=42) +###K-fold # DO NOT MODIFY cat_features = [ "workclass", @@ -34,54 +40,99 @@ "native-country", ] -# TODO: use the process_data function provided to process the data. -X_train, y_train, encoder, lb = process_data( - # your code here - # use the train dataset - # use training=True - # do not need to pass encoder and lb as input + +k=5 +kf = KFold(n_splits=k, shuffle=True, random_state=42) +#some scores-precision_score, recall_scores, f1_scores +precision_score=[] +recall_scores=[] +f1_scores=[] + +#train and eval +for fold, (train_idx, test_idx) in enumerate(kf.split(data)): + train= data.iloc[train_idx] + test= data.iloc[test_idx] + + X_train, y_train, encoder, lb = process_data( + train, + categorical_features=cat_features, + label="salary", + training=True + ) + + X_test, y_test, _, _ = process_data( + test, + categorical_features=cat_features, + label="salary", + training=False, + encoder=encoder, + lb=lb ) -X_test, y_test, _, _ = process_data( - test, - categorical_features=cat_features, - label="salary", - training=False, - encoder=encoder, - lb=lb, -) + # TODO: use the train_model function to train the model on the training dataset -model = None # your code here +#model = None # your code here + model = train_model(X_train, y_train) # save the model and the encoder -model_path = os.path.join(project_path, "model", "model.pkl") -save_model(model, model_path) -encoder_path = os.path.join(project_path, "model", "encoder.pkl") -save_model(encoder, encoder_path) +#model_path = os.path.join(project_path, "model", "model.pkl") +#save_model(model, model_path) +#encoder_path = os.path.join(project_path, "model", "encoder.pkl") +#save_model(encoder, encoder_path) # load the model -model = load_model( - model_path -) +#model = load_model( + #model_path +#) # TODO: use the inference function to run the model inferences on the test dataset. -preds = None # your code here +#preds = None # your code here + preds = inference(model, X_test) + # Calculate and print the metrics -p, r, fb = compute_model_metrics(y_test, preds) -print(f"Precision: {p:.4f} | Recall: {r:.4f} | F1: {fb:.4f}") + p, r, fb = compute_model_metrics(y_test, preds) + precision_score.append(p) + recall_scores.append(r) + f1_scores.append(fb) + print(f"Precision: {p:.4f} | Recall: {r:.4f} | F1: {fb:.4f}") + + + # TODO: compute the performance on model slices using the performance_on_categorical_slice function # iterate through the categorical features -for col in cat_features: + for col in cat_features: # iterate through the unique values in one categorical feature - for slicevalue in sorted(test[col].unique()): - count = test[test[col] == slicevalue].shape[0] - p, r, fb = performance_on_categorical_slice( + for slicevalue in sorted(test[col].unique()): + count = test[test[col] == slicevalue].shape[0] + p, r, fb = performance_on_categorical_slice( # your code here # use test, col and slicevalue as part of the input - ) - with open("slice_output.txt", "a") as f: - print(f"{col}: {slicevalue}, Count: {count:,}", file=f) - print(f"Precision: {p:.4f} | Recall: {r:.4f} | F1: {fb:.4f}", file=f) + data=test, + column_name=col, + slice_value=slicevalue, + categorical_features=cat_features, + label='salary', + encoder=encoder, + lb=lb, + model=model + ) + with open("slice_output.txt", "a") as f: + print(f"{col}: {slicevalue}, Count: {count:,}", file=f) + print(f"Precision: {p:.4f} | Recall: {r:.4f} | F1: {fb:.4f}", file=f) + +#metrics for folds +print(f"\n=== Average Metrics Across Folds ===") +print(f"avg precision: {np.mean(precision_score): .4f}") +print(f"avg recall: {np.mean(recall_scores): .4f}") +print(f"avg f1_score: {np.mean(f1_scores): .4f}") + +#added because of k-fold model +final_model, encoder, lb = train_and_save_final_model( + data=data, + categorical_features=cat_features, + label="salary", + model_dir=os.path.join(project_path, "model") +) diff --git a/which b/which new file mode 100644 index 0000000000..f30653b5ac --- /dev/null +++ b/which @@ -0,0 +1,14 @@ +[?2004h[?1h=[?25l +>>> [?12l[?25h[1@>[1@ [1@c[1@o[1@n[1@d[1@a[1@ [1@e[1@n[1@v[1@ [1@c[1@r[1@e[1@a[1@t[1@e[1@ [1@-[1@f[1@ [1@e[1@n[1@v[1@i[1@r[1@o[1@n[1@m[1@e[1@n[1@t[1@.[1@y[1@m[1@l + [?2004l[?1l>[?2004h[?1h=[?25l +>>> [?12l[?25h[1@>[1@ [1@c[1@o[1@n[1@d[1@a[1@ [1@e[1@n[1@v[1@ [1@c[1@r[1@e[1@a[1@t[1@e[1@ [1@-[1@f[1@ [1@e[1@n[1@v[1@i[1@r[1@o[1@n[1@m[1@e[1@n[1@t[1@.[1@y[1@m[1@l + [?2004l[?1l>[?2004h[?1h=[?25l +>>> [?12l[?25h[1@>[1@ [1@c[1@o[1@n[1@d[1@a[1@ [1@e[1@n[1@v[1@ [1@c[1@r[1@e[1@a[1@t[1@e[1@ [1@-[1@f[1@ [1@e[1@n[1@v[1@i[1@r[1@o[1@n[1@m[1@e[1@n[1@t[1@.[1@y[1@m[1@l + [?2004l[?1l>[?2004h[?1h=[?25l +>>> [?12l[?25h[1@c[1@o[1@d[1@a[?25l[?12l[?25h[1@>[1@ [1@p[1@y[1@t[1@h[1@o[1@n[1@3[1@ [1@-[1@m[1@ [1@v[1@e[1@n[1@v[1@ [1@f[1@a[1@s[1@t[1@a[1@p[1@i + [?2004l[?1l>[?2004h[?1h=[?25l +>>> [?12l[?25h[1@>[1@ [1@s[1@o[1@u[1@r[1@c[1@e[1@ [1@f[1@a[1@s[1@t[1@a[1@p[1@i[1@/[1@b[1@i[1@n[1@/[1@a[1@c[1@t[1@i[1@v[1@a[1@t[1@e + [?2004l[?1l>[?2004h[?1h=[?25l +>>> [?12l[?25h + [?2004l[?1l>[?2004h[?1h=[?25l +>>> [?12l[?25h[1@y[1@t[1@h[1@o[1@n[1@ [1@-[1@-[1@v[1@e[1@r[1@s[1@i[1@o[1@n \ No newline at end of file