You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
abstract = {We present a novel surface parameterization technique using hyperspherical harmonics ({HSH}) in representing compact, multiple, disconnected brain subcortical structures as a single analytic function. The proposed hyperspherical harmonic representation ({HyperSPHARM}) has many advantages over the widely used spherical harmonic ({SPHARM}) parameterization technique. {SPHARM} requires flattening 3D surfaces to 3D sphere which can be time consuming for large surface meshes, and can’t represent multiple disconnected objects with single parameterization. On the other hand, {HyperSPHARM} treats 3D object, via simple stereographic projection, as a surface of 4D hypersphere with extremely large radius, hence avoiding the computationally demanding flattening process. {HyperSPHARM} is shown to achieve a better reconstruction with only 5 basis compared to {SPHARM} that requires more than 441.},
85
+
pages = {598--605},
86
+
number = {0},
87
+
journaltitle = {Medical image computing and computer-assisted intervention : {MICCAI} ... International Conference on Medical Image Computing and Computer-Assisted Intervention},
author = {Hosseinbor, A. Pasha and Chung, Moo K. and Schaefer, Stacey M. and van Reekum, Carien M. and Peschke-Schmitz, Lara and Sutterer, Matt and Alexander, Andrew L. and Davidson, Richard J.},
90
+
urldate = {2025-09-23},
91
+
date = {2013},
92
+
pmid = {24505716},
93
+
pmcid = {PMC4033314}
94
+
}
95
+
96
+
97
+
@article{fock_zur_1935,
98
+
title = {Zur Theorie des Wasserstoffatoms},
99
+
volume = {98},
100
+
issn = {0044-3328},
101
+
url = {https://doi.org/10.1007/BF01336904},
102
+
doi = {10.1007/BF01336904},
103
+
abstract = {Die Schrödinger-Gleichung für das Wasserstoffatom im Impulsraum erweist sich als identisch mit der Integralgleichung für die Kugelfunktionen der vierdimensionalen Potentialtheorie. Die Transformationsgruppe der Wasserstoffgleichung ist also die vierdimensionale Drehgruppe; dadurch wird die Entartung der Wasserstoffniveaus in bezug auf die Azimutalquantenzahl l erklärt. Die aus der potentialtheoretischen Deutung der Schrödinger-Gleichung folgenden Beziehungen (Additionstheorem usw.) erlauben mannigfache physikalische Anwendungen. Die Methode ermöglicht, die unendlichen Summen, die in der Theorie des Compton-Effektes an gebundenen Elektronen und in verwandten Problemen auftreten, fast ohne Rechnung auszuwerten. Unter Zugrundelegung eines vereinfachten Atommodells lassen sich ferner explizite Ausdrücke für die Dichtematrix im Impulsraum, für Atomformfaktoren, für das Abschirmungspotential usw. aufstellen.},
104
+
pages = {145--154},
105
+
number = {3},
106
+
journaltitle = {Zeitschrift für Physik},
107
+
shortjournal = {Zeitschrift für Physik},
108
+
author = {Fock, V.},
109
+
date = {1935-03-01},
110
+
}
111
+
112
+
@article{mason_hyperspherical_2008,
113
+
title = {Hyperspherical harmonics for the representation of crystallographic texture},
doi = {https://doi.org/10.1016/j.actamat.2008.08.031},
118
+
abstract = {The feasibility of representing crystallographic textures as quaternion distributions by a series expansion method is demonstrated using hyperspherical harmonics. This approach is refined by exploiting the sample and crystal symmetries to perform the expansion more efficiently. The properties of the quaternion group space encourage a novel presentation of orientation statistics, simpler to interpret than the usual methods of texture representation. The result is a viable alternative to the Euler angle approach to texture standard in the literature today.},
author = {Bonvallet, Bryan and Griffin, Nikolla and Li, Jia},
128
+
title = {A 3D shape descriptor: 4D hyperspherical harmonics "an exploration into the fourth dimension"},
129
+
year = {2007},
130
+
isbn = {9780889866270},
131
+
publisher = {ACTA Press},
132
+
address = {USA},
133
+
abstract = {Shape matching remains a challenging problem. Most search engines on the internet use textual description to match images. More sophisticated systems use shape descriptors that are automatically constructed from the original 3D shape. In this paper, we propose a novel shape descriptor based on four dimensional (4D) hyperspherical harmonics. Shape descriptor using 3D spherical harmonics present the benefits of being insensitive to noise, orientation, scale, and translation. However, the radii cuts introduce a disadvantage of failing to recognize inner rotations. We address this problem by mapping 3D objects onto the 4D unit hypersphere and applying 4D hyperspherical harmonic decomposition to get the shape descriptor. The 4D hyperspherical harmonics have the same advantages of the 3D spherical harmonics and remove the disadvantage of the 3D spherical harmonics that is associated with the inner radii cuts.},
134
+
booktitle = {Proceedings of the IASTED International Conference on Graphics and Visualization in Engineering},
0 commit comments