diff --git a/models/model_32offjns/requirements.txt b/models/model_32offjns/requirements.txt new file mode 100644 index 0000000..f90432c --- /dev/null +++ b/models/model_32offjns/requirements.txt @@ -0,0 +1,3 @@ +ultralytics +opencv-python +ipykernel \ No newline at end of file diff --git a/models/model_32offjns/src/architecture.py b/models/model_32offjns/src/architecture.py index cefe771..0d9b344 100644 --- a/models/model_32offjns/src/architecture.py +++ b/models/model_32offjns/src/architecture.py @@ -41,13 +41,13 @@ def __init__(self, lookback): self.bottleneck = self.conv_block(512, 1024) # Expansive path - self.upconv4 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=1) + self.upconv4 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2) self.dec4 = self.conv_block(1024, 512) - self.upconv3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=1) + self.upconv3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2) self.dec3 = self.conv_block(512, 256) - self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=1) + self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2) self.dec2 = self.conv_block(256, 128) - self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=1) + self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2) self.dec1 = self.conv_block(128, 64) # Final layer diff --git a/models/model_32offjns/src/best_01_26.pt b/models/model_32offjns/src/best_01_26.pt new file mode 100644 index 0000000..2531cf1 Binary files /dev/null and b/models/model_32offjns/src/best_01_26.pt differ diff --git a/models/model_32offjns/src/dataset.py b/models/model_32offjns/src/dataset.py index 556f927..cef99b8 100644 --- a/models/model_32offjns/src/dataset.py +++ b/models/model_32offjns/src/dataset.py @@ -114,10 +114,30 @@ def __getitem__(self, idx): label_drivable_area_dir = f"{self.dataset_dir}/{self.data[idx]['dataset']}/label/drivable_area/{data_idx_str}.jpg" label_cones_dir = f"{self.dataset_dir}/{self.data[idx]['dataset']}/label/cones/{data_idx_str}.jpg" - label_background = torch.tensor(cv2.imread(label_background_dir, cv2.IMREAD_GRAYSCALE), device=self.device, dtype=torch.float32) - label_lane_lines = torch.tensor(cv2.imread(label_lane_lines_dir, cv2.IMREAD_GRAYSCALE), device=self.device, dtype=torch.float32) - label_drivable_area = torch.tensor(cv2.imread(label_drivable_area_dir, cv2.IMREAD_GRAYSCALE), device=self.device, dtype=torch.float32) - label_cones = torch.tensor(cv2.imread(label_cones_dir, cv2.IMREAD_GRAYSCALE), device=self.device, dtype=torch.float32) + # label_background = torch.tensor(cv2.imread(label_background_dir, cv2.IMREAD_GRAYSCALE), device=self.device, dtype=torch.float32) + # label_lane_lines = torch.tensor(cv2.imread(label_lane_lines_dir, cv2.IMREAD_GRAYSCALE), device=self.device, dtype=torch.float32) + # label_drivable_area = torch.tensor(cv2.imread(label_drivable_area_dir, cv2.IMREAD_GRAYSCALE), device=self.device, dtype=torch.float32) + # label_cones = torch.tensor(cv2.imread(label_cones_dir, cv2.IMREAD_GRAYSCALE), device=self.device, dtype=torch.float32) + label_background = torch.tensor( + cv2.imread(label_background_dir, cv2.IMREAD_GRAYSCALE) if cv2.imread(label_background_dir, cv2.IMREAD_GRAYSCALE) is not None else np.zeros((384, 640), dtype=np.uint8), + device=self.device, + dtype=torch.float32 + ) + label_lane_lines = torch.tensor( + cv2.imread(label_lane_lines_dir, cv2.IMREAD_GRAYSCALE) if cv2.imread(label_lane_lines_dir, cv2.IMREAD_GRAYSCALE) is not None else np.zeros((384, 640), dtype=np.uint8), + device=self.device, + dtype=torch.float32 + ) + label_drivable_area = torch.tensor( + cv2.imread(label_drivable_area_dir, cv2.IMREAD_GRAYSCALE) if cv2.imread(label_drivable_area_dir, cv2.IMREAD_GRAYSCALE) is not None else np.zeros((384, 640), dtype=np.uint8), + device=self.device, + dtype=torch.float32 + ) + label_cones = torch.tensor( + cv2.imread(label_cones_dir, cv2.IMREAD_GRAYSCALE) if cv2.imread(label_cones_dir, cv2.IMREAD_GRAYSCALE) is not None else np.zeros((384, 640), dtype=np.uint8), + device=self.device, + dtype=torch.float32 + ) label_shape = label_background.shape label = torch.zeros((label_shape[0], label_shape[1], 4), device=self.device, dtype=torch.long) diff --git a/models/model_32offjns/src/methods.py b/models/model_32offjns/src/methods.py index 5a8d7e6..8b013ee 100644 --- a/models/model_32offjns/src/methods.py +++ b/models/model_32offjns/src/methods.py @@ -49,6 +49,22 @@ def upload_model_weights(model, dbx_access_token, delete=True): if delete: os.remove(local_model_weights_dir) +def upload_dataset_to_dropbox(dataset_name, dbx_access_token): + if dbx_access_token == "": + print("Dropbox access token uninitialized. Unable to upload dataset.") + return + try: + dbx = dropbox.Dropbox(dbx_access_token) + except: + print("Could not connect to Dropbox when attempting to upload dataset.") + return + # TODO: modify slightly to accomodate the upload of data and labels properly + dbx_dataset_dir = f'/UMARV/ComputerVision/ScenePerception/datasets/{dataset_name}' + local_dataset_dir = f'{os.getenv("REPO_DIR")}/datasets/{dataset_name}' + with open(local_dataset_dir, 'rb') as file: + dbx.files_upload(file.read(), dbx_dataset_dir, mode=dropbox.files.WriteMode("overwrite")) + print(f"Uploaded dataset \"{dataset_name}\" to Dropbox.") + def download_model_weights(model, dbx_access_token, delete=True): if dbx_access_token == "": print("Dropbox access token uninitialized. Unable to download model weights.") diff --git a/models/model_32offjns/src/notebooks/colab_env.ipynb b/models/model_32offjns/src/notebooks/colab_env.ipynb index 32a5a74..e5b3775 100644 --- a/models/model_32offjns/src/notebooks/colab_env.ipynb +++ b/models/model_32offjns/src/notebooks/colab_env.ipynb @@ -1,300 +1,13598 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Import Libraries" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "6YXxEdBDMFwU", - "outputId": "6309c12d-63f7-4f18-c2d3-a4dcdf549342" - }, - "outputs": [], - "source": [ - "import os\n", - "import sys\n", - "from getpass import getpass\n", - "import torch.optim as optim\n", - "!pip install dropbox > /dev/null" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Configure Environment" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "os.environ[\"ENVIRONMENT\"] = \"colab\"\n", - "os.environ[\"REPO_DIR\"] = \"/content/UMARV-CV-ScenePerception\"\n", - "os.environ[\"ROOT_DIR\"] = \"/content\"\n", - "os.environ[\"MODEL_ID\"] = \"32offjns\"\n", - "os.environ[\"MODEL_DIR\"] = f\"{os.getenv('REPO_DIR')}/models/model_{os.getenv('MODEL_ID')}\"" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "TWu7wpa8IRD1" - }, - "source": [ - "Configure git" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "MnhVZrBpuveq" + }, + "source": [ + "Google Drive to Dropbox YOLO Pipeline" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "leRagWGRuver", + "outputId": "4fa2e682-55c6-45ed-8453-eb59684ffb0f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Mounted at /content/drive\n" + ] + } + ], + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Ssx1Fahduves", + "outputId": "091304d3-f169-4e2b-beae-cfc711821e8c" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting ultralytics\n", + " Downloading ultralytics-8.3.94-py3-none-any.whl.metadata (35 kB)\n", + "Collecting dropbox\n", + " Downloading dropbox-12.0.2-py3-none-any.whl.metadata (4.3 kB)\n", + "Requirement already satisfied: numpy<=2.1.1,>=1.23.0 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (2.0.2)\n", + "Requirement already satisfied: matplotlib>=3.3.0 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (3.10.0)\n", + "Requirement already satisfied: opencv-python>=4.6.0 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (4.11.0.86)\n", + "Requirement already satisfied: pillow>=7.1.2 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (11.1.0)\n", + "Requirement already satisfied: pyyaml>=5.3.1 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (6.0.2)\n", + "Requirement already satisfied: requests>=2.23.0 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (2.32.3)\n", + "Requirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (1.14.1)\n", + "Requirement already satisfied: torch>=1.8.0 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (2.6.0+cu124)\n", + "Requirement already satisfied: torchvision>=0.9.0 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (0.21.0+cu124)\n", + "Requirement already satisfied: tqdm>=4.64.0 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (4.67.1)\n", + "Requirement already satisfied: psutil in /usr/local/lib/python3.11/dist-packages (from ultralytics) (5.9.5)\n", + "Requirement already satisfied: py-cpuinfo in /usr/local/lib/python3.11/dist-packages (from ultralytics) (9.0.0)\n", + "Requirement already satisfied: pandas>=1.1.4 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (2.2.2)\n", + "Requirement already satisfied: seaborn>=0.11.0 in /usr/local/lib/python3.11/dist-packages (from ultralytics) (0.13.2)\n", + "Collecting ultralytics-thop>=2.0.0 (from ultralytics)\n", + " Downloading ultralytics_thop-2.0.14-py3-none-any.whl.metadata (9.4 kB)\n", + "Requirement already satisfied: six>=1.12.0 in /usr/local/lib/python3.11/dist-packages (from dropbox) (1.17.0)\n", + "Collecting stone<3.3.3,>=2 (from dropbox)\n", + " Downloading stone-3.3.1-py3-none-any.whl.metadata (8.0 kB)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.3.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (4.56.0)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.4.8)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (24.2)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (3.2.1)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.11/dist-packages (from matplotlib>=3.3.0->ultralytics) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas>=1.1.4->ultralytics) (2025.1)\n", + "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas>=1.1.4->ultralytics) (2025.1)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests>=2.23.0->ultralytics) (3.4.1)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests>=2.23.0->ultralytics) (3.10)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests>=2.23.0->ultralytics) (2.3.0)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests>=2.23.0->ultralytics) (2025.1.31)\n", + "Requirement already satisfied: ply>=3.4 in /usr/local/lib/python3.11/dist-packages (from stone<3.3.3,>=2->dropbox) (3.11)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (3.18.0)\n", + "Requirement already satisfied: typing-extensions>=4.10.0 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (4.12.2)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (3.4.2)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (3.1.6)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (2025.3.0)\n", + "Collecting nvidia-cuda-nvrtc-cu12==12.4.127 (from torch>=1.8.0->ultralytics)\n", + " Downloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cuda-runtime-cu12==12.4.127 (from torch>=1.8.0->ultralytics)\n", + " Downloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cuda-cupti-cu12==12.4.127 (from torch>=1.8.0->ultralytics)\n", + " Downloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", + "Collecting nvidia-cudnn-cu12==9.1.0.70 (from torch>=1.8.0->ultralytics)\n", + " Downloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", + "Collecting nvidia-cublas-cu12==12.4.5.8 (from torch>=1.8.0->ultralytics)\n", + " Downloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cufft-cu12==11.2.1.3 (from torch>=1.8.0->ultralytics)\n", + " Downloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-curand-cu12==10.3.5.147 (from torch>=1.8.0->ultralytics)\n", + " Downloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cusolver-cu12==11.6.1.9 (from torch>=1.8.0->ultralytics)\n", + " Downloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", + "Collecting nvidia-cusparse-cu12==12.3.1.170 (from torch>=1.8.0->ultralytics)\n", + " Downloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", + "Requirement already satisfied: nvidia-cusparselt-cu12==0.6.2 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (0.6.2)\n", + "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (2.21.5)\n", + "Requirement already satisfied: nvidia-nvtx-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (12.4.127)\n", + "Collecting nvidia-nvjitlink-cu12==12.4.127 (from torch>=1.8.0->ultralytics)\n", + " Downloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Requirement already satisfied: triton==3.2.0 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (3.2.0)\n", + "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8.0->ultralytics) (1.13.1)\n", + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch>=1.8.0->ultralytics) (1.3.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch>=1.8.0->ultralytics) (3.0.2)\n", + "Downloading ultralytics-8.3.94-py3-none-any.whl (949 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m949.8/949.8 kB\u001b[0m \u001b[31m25.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading dropbox-12.0.2-py3-none-any.whl (572 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m572.1/572.1 kB\u001b[0m \u001b[31m32.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading stone-3.3.1-py3-none-any.whl (162 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m162.3/162.3 kB\u001b[0m \u001b[31m13.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl (363.4 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (13.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m110.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (24.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m85.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (883 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m54.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl (664.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m2.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl (211.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m5.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl (56.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m10.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl (127.9 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m8.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl (207.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m6.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m59.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading ultralytics_thop-2.0.14-py3-none-any.whl (26 kB)\n", + "Installing collected packages: stone, nvidia-nvjitlink-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, nvidia-cusparse-cu12, nvidia-cudnn-cu12, dropbox, nvidia-cusolver-cu12, ultralytics-thop, ultralytics\n", + " Attempting uninstall: nvidia-nvjitlink-cu12\n", + " Found existing installation: nvidia-nvjitlink-cu12 12.5.82\n", + " Uninstalling nvidia-nvjitlink-cu12-12.5.82:\n", + " Successfully uninstalled nvidia-nvjitlink-cu12-12.5.82\n", + " Attempting uninstall: nvidia-curand-cu12\n", + " Found existing installation: nvidia-curand-cu12 10.3.6.82\n", + " Uninstalling nvidia-curand-cu12-10.3.6.82:\n", + " Successfully uninstalled nvidia-curand-cu12-10.3.6.82\n", + " Attempting uninstall: nvidia-cufft-cu12\n", + " Found existing installation: nvidia-cufft-cu12 11.2.3.61\n", + " Uninstalling nvidia-cufft-cu12-11.2.3.61:\n", + " Successfully uninstalled nvidia-cufft-cu12-11.2.3.61\n", + " Attempting uninstall: nvidia-cuda-runtime-cu12\n", + " Found existing installation: nvidia-cuda-runtime-cu12 12.5.82\n", + " Uninstalling nvidia-cuda-runtime-cu12-12.5.82:\n", + " Successfully uninstalled nvidia-cuda-runtime-cu12-12.5.82\n", + " Attempting uninstall: nvidia-cuda-nvrtc-cu12\n", + " Found existing installation: nvidia-cuda-nvrtc-cu12 12.5.82\n", + " Uninstalling nvidia-cuda-nvrtc-cu12-12.5.82:\n", + " Successfully uninstalled nvidia-cuda-nvrtc-cu12-12.5.82\n", + " Attempting uninstall: nvidia-cuda-cupti-cu12\n", + " Found existing installation: nvidia-cuda-cupti-cu12 12.5.82\n", + " Uninstalling nvidia-cuda-cupti-cu12-12.5.82:\n", + " Successfully uninstalled nvidia-cuda-cupti-cu12-12.5.82\n", + " Attempting uninstall: nvidia-cublas-cu12\n", + " Found existing installation: nvidia-cublas-cu12 12.5.3.2\n", + " Uninstalling nvidia-cublas-cu12-12.5.3.2:\n", + " Successfully uninstalled nvidia-cublas-cu12-12.5.3.2\n", + " Attempting uninstall: nvidia-cusparse-cu12\n", + " Found existing installation: nvidia-cusparse-cu12 12.5.1.3\n", + " Uninstalling nvidia-cusparse-cu12-12.5.1.3:\n", + " Successfully uninstalled nvidia-cusparse-cu12-12.5.1.3\n", + " Attempting uninstall: nvidia-cudnn-cu12\n", + " Found existing installation: nvidia-cudnn-cu12 9.3.0.75\n", + " Uninstalling nvidia-cudnn-cu12-9.3.0.75:\n", + " Successfully uninstalled nvidia-cudnn-cu12-9.3.0.75\n", + " Attempting uninstall: nvidia-cusolver-cu12\n", + " Found existing installation: nvidia-cusolver-cu12 11.6.3.83\n", + " Uninstalling nvidia-cusolver-cu12-11.6.3.83:\n", + " Successfully uninstalled nvidia-cusolver-cu12-11.6.3.83\n", + "Successfully installed dropbox-12.0.2 nvidia-cublas-cu12-12.4.5.8 nvidia-cuda-cupti-cu12-12.4.127 nvidia-cuda-nvrtc-cu12-12.4.127 nvidia-cuda-runtime-cu12-12.4.127 nvidia-cudnn-cu12-9.1.0.70 nvidia-cufft-cu12-11.2.1.3 nvidia-curand-cu12-10.3.5.147 nvidia-cusolver-cu12-11.6.1.9 nvidia-cusparse-cu12-12.3.1.170 nvidia-nvjitlink-cu12-12.4.127 stone-3.3.1 ultralytics-8.3.94 ultralytics-thop-2.0.14\n" + ] + } + ], + "source": [ + "!pip install ultralytics dropbox" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "N77jMt9Huvet", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "b1358fa6-5239-491a-9469-221e33eb8cbc" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Creating new Ultralytics Settings v0.0.6 file ✅ \n", + "View Ultralytics Settings with 'yolo settings' or at '/root/.config/Ultralytics/settings.json'\n", + "Update Settings with 'yolo settings key=value', i.e. 'yolo settings runs_dir=path/to/dir'. For help see https://docs.ultralytics.com/quickstart/#ultralytics-settings.\n" + ] + } + ], + "source": [ + "from ultralytics import YOLO\n", + "from matplotlib import pyplot as plt\n", + "import os\n", + "import numpy as np\n", + "import torch\n", + "import cv2\n", + "import dropbox\n", + "from google.colab import userdata" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pgDYzH4euvet" + }, + "outputs": [], + "source": [ + "threshold_conf= 0.80\n", + "DBX_TOKEN = userdata.get('DB_TOKEN') # will retrieve the Dropbox token from Colab user secrets\n", + "##############################################\n", + "# Helper functions\n", + "def upload_dataset_to_dropbox(dataset_name, dbx_access_token, dataset_type=\"drivable_area\"):\n", + " dbx = dropbox.Dropbox(dbx_access_token)\n", + " dbx_dataset_dir = f'/UMARV/ComputerVision/ScenePerception/datasets/{dataset_name}'\n", + " local_data_dir = f'/content/{dataset_name}/data'\n", + " local_label_dir = f'/content/{dataset_name}/label'\n", + " print(os.listdir(local_label_dir))\n", + "\n", + " # Iterate over data in the directory and upload each one\n", + " for filename in os.listdir(local_data_dir):\n", + " file_path = os.path.join(local_data_dir, filename)\n", + " dropbox_path = f\"{dbx_dataset_dir}/data/{filename}\" # Path in Dropbox\n", + "\n", + " if os.path.isfile(file_path):\n", + " with open(file_path, 'rb') as file:\n", + " dbx.files_upload(file.read(), dropbox_path, mode=dropbox.files.WriteMode(\"overwrite\"))\n", + " print(f\"Uploaded {filename} to Dropbox.\")\n", + "\n", + " # Iterate over labels in the directory and upload each one\n", + " for filename in os.listdir(local_label_dir):\n", + " print(filename)\n", + " file_path = os.path.join(local_label_dir, filename)\n", + " dropbox_path = f\"{dbx_dataset_dir}/label/{dataset_type}/{filename}\" # Path in Dropbox\n", + "\n", + " # Ensure it's a file before trying to open it\n", + " if os.path.isfile(file_path):\n", + " with open(file_path, 'rb') as file:\n", + " dbx.files_upload(file.read(), dropbox_path, mode=dropbox.files.WriteMode(\"overwrite\"))\n", + " print(f\"Uploaded {filename} to Dropbox.\")\n", + "\n", + "def mp4_to_images(video_path, output_dir, prefix='frame_', image_format='jpg'):\n", + " # Ensure output directory exists\n", + " os.makedirs(output_dir, exist_ok=True)\n", + " # Open video file\n", + " cap = cv2.VideoCapture(video_path)\n", + "\n", + " if not cap.isOpened():\n", + " print(f\"Error: Cannot open video file {video_path}\")\n", + " return\n", + "\n", + " frame_count = 0\n", + "\n", + " while True:\n", + " ret, frame = cap.read()\n", + " if not ret:\n", + " break # End of video\n", + "\n", + " # Construct filename\n", + " frame_filename = os.path.join(output_dir, f\"{prefix}{frame_count:06d}.{image_format}\")\n", + "\n", + " # Save frame as image\n", + " cv2.imwrite(frame_filename, frame)\n", + "\n", + " frame_count += 1\n", + "\n", + " # # limiting number of frames to 100 for testing; TODO: Remove this later\n", + " # if frame_count >= 100:\n", + " # break\n", + " if frame_count%100 == 0:\n", + " print(frame_count)\n", + "\n", + " # Release resources\n", + " cap.release()\n", + " print(f\"Extraction complete! {frame_count} frames saved to {output_dir}\")\n", + "\n", + "def get_label(result):\n", + " masks = result.masks.data\n", + " # Sum the masks and use a threshold to create a binary mask\n", + " combined_mask = torch.sum(masks, dim=0) > 0\n", + "\n", + " # combined_mask is a tensor\n", + " return combined_mask.cpu().numpy().astype(np.float32)\n", + "\n", + "def get_img(result):\n", + " # TODO: modify dimensions of the image to fit the model\n", + " return result.orig_img\n", + "##############################################\n", + "# Pipeline function\n", + "def run_pipeline(model_wts_path, video_path, img_dataset_path):\n", + " model = YOLO(model_wts_path)\n", + "\n", + " _ = mp4_to_images(video_path, img_dataset_path)\n", + " print(f\"images saved to {img_dataset_path}\")\n", + "\n", + " results = model(img_dataset_path, stream=True)\n", + " new_train_imgs = []\n", + " new_train_lbls = []\n", + "\n", + " for result in results:\n", + " if np.mean(result.boxes.conf.cpu().numpy()) > threshold_conf:\n", + " new_train_imgs.append(get_img(result))\n", + " new_train_lbls.append(get_label(result))\n", + "\n", + " # save new training images and labels to \"YOLO_soft_labeled_data\" folder\n", + " os.makedirs(\"YOLO_soft_labeled_data\", exist_ok=True)\n", + " data_dir, label_dir = \"YOLO_soft_labeled_data/data\", \"YOLO_soft_labeled_data/label\"\n", + " os.makedirs(data_dir, exist_ok=True)\n", + " os.makedirs(label_dir, exist_ok=True)\n", + " for i, (img, lbl) in enumerate(zip(new_train_imgs, new_train_lbls)):\n", + " idx_str = str(i).zfill(6)\n", + " plt.imsave(f\"{data_dir}/{idx_str}.jpg\", img)\n", + " plt.imsave(f\"{label_dir}/{idx_str}.jpg\", lbl, cmap='gray', vmin=0, vmax=1)\n", + " print(f\"{label_dir}/{idx_str}.jpg saved\")\n", + " print(f\"data saved locally in {data_dir}\")\n", + "\n", + " upload_dataset_to_dropbox(\"YOLO_soft_labeled_data\", DBX_TOKEN)\n", + " print(\"dataset uploaded to dropbox\")\n" + ] + }, + { + "cell_type": "code", + "source": [ + "upload_dataset_to_dropbox(\"YOLO_soft_labeled_data\", \"sl.u.AFmQbsHjbW1LnFZr_typmtd6uOEHUa3QtWYvdGPt9wQG7utwg1JbsgYEvGpLESPzwwC_yEfLb_U-lObNUtHr4Ngvl9cfXAJEzOWHGuIlC6qRDDoIfz7fRojXv6zAUqjrhQnXDg2JjTDOtmDjZWcbCdhAb3u70QSlbaq3o9oY2RfhjbAkccJwgAp9Rn0f26PXkrtMz2lHtUS1AxpnF3Q5tFIAntNwsZNWphemTeqMCT4DWpKZfiy3d8h8Z3WQKXGhgfoCfKBZ5ze4PubFXSh20nd5B5i7NtlUYU809vZpTHtRa3jRGdRlf6D_WKsFo1cRoRjOy6ZPreeCE4gydgUeMB_bEhtqPOl-tOfLHMSIJZpImfMqsi-2Z5yB_oydsruiA3o0bRhQMKezYT5Kb7QOSGm1A1PgOo71ITKGSNYZQ1TOW1grbQW9VAvJmVmQAEHm_JqkezIBtmeqeGNfCLQuvm66UtjAk8d4760zbt9u3jNapFFmDNvsaIXH8Y4uV-9_gvHHLBYSuRoxkSZWHWGC6-Y52uWSrULUr-lW4Az3Zvz3NkZFJhsqhcIuE-i5u3FQmnRZLQ4QSPq9ChXoTvXVqiNOvLPEffeJ6AzDBThyTvP9imWH_CTQwrCQjf5gMYsfxmfUt_7BrK2hPxVwk3kBJFKASckZIsog_IrGQI4c0zA5AROOVau8t_5nTn6NijQKJuyPKMh34Warxjvoa2A-pYBQuxlK3Mq6SitwOY-HZkRA0Yxk4J5_Txx3CxT3g9xDNcRySe8TAmzWIbI7lLnX0fU5UZxvBGhufgq9SM6_MNvhUCC-8xq6po8vNl4H2mNBrTha5-pYMAWddWub--BLL8ByCatzKDvS6mxDOHgrsbsFrh3xqOrWPWd2vF0PL4RbNrPBDSS9IuAegumbz9OL_Sojc7MuUXPbN9VSvh1JIUBTjiXVUSfbCYbRqbHMS0m8iDwTAqmJWgqsKkwZSAgUQSk7qfaWyME9ICLRuIC2HtH5fGN0o3GswFLmF8H17QDsQpJLnS4katrzYId36vWxw2CUY3_eHYPnLjhT2Xja_4Cd8fmZC9aksPeLimbWCKiDiroqMW6L2JIP3-JIO79ENb-kHj5uzfTPJjz0MlHlkJJuJmkDZr_WADaFVOP1s_X8Vt5vHhZmSf6bNCXBCgpFGioQhJ67fdYmLYU3wNJz9TRfWZVr18l2ko7pMzUNifdkIzUeywSkKWBzpTmY2uGT0vJLi5ynubSFExKaAaPl8IKJNk8iVj1_OuXQiJcD857lRBs63gunZUnl09sUNenIOrOroFO74r_ZFADArzbESnOkdwsQogBVqOM33JET08y8s0fOQ_QjchgCm-db9wcy0lZ0c0ZuI_V93nY3MfeacH-XPstGf26FWFNgS7tn-jSDlgyg-MLrJFTbD6qSEUWoUeAjM80bu-SxocJ_h-4ADY0KIPB3oxy0pCxj5C-oLiqvYJY\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uUEtsfK7ENVp", + "outputId": "cd4817e4-5918-484f-d01d-4e84e90911f6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "['000223.jpg', '000663.jpg', '001117.jpg', '001077.jpg', '001201.jpg', '001089.jpg', '001895.jpg', '000284.jpg', '001145.jpg', '002102.jpg', '002060.jpg', '000961.jpg', '001567.jpg', '000846.jpg', '001210.jpg', '001311.jpg', '000263.jpg', '001580.jpg', '001147.jpg', '000052.jpg', '000091.jpg', '001968.jpg', '000130.jpg', '000183.jpg', '001539.jpg', '000161.jpg', '001972.jpg', '001494.jpg', '001141.jpg', '002163.jpg', '001066.jpg', '001106.jpg', '001020.jpg', '001813.jpg', '000624.jpg', '000252.jpg', '000924.jpg', '000156.jpg', '000921.jpg', '000842.jpg', '000482.jpg', '001044.jpg', '001922.jpg', '002365.jpg', '002343.jpg', '001951.jpg', '000983.jpg', '000120.jpg', '002398.jpg', '000199.jpg', '001677.jpg', '000178.jpg', '000386.jpg', '000761.jpg', '000880.jpg', '000940.jpg', '001374.jpg', '002047.jpg', '000326.jpg', '000914.jpg', '002349.jpg', '001915.jpg', '002237.jpg', '001530.jpg', '000422.jpg', '000471.jpg', '000829.jpg', '000235.jpg', '000925.jpg', '001057.jpg', '000356.jpg', '001788.jpg', '000213.jpg', '002156.jpg', '002405.jpg', '002317.jpg', '001831.jpg', '000251.jpg', '001005.jpg', '000782.jpg', '000807.jpg', '002353.jpg', '001982.jpg', '000454.jpg', '000276.jpg', '001412.jpg', '000722.jpg', '000087.jpg', '001363.jpg', '000938.jpg', '001198.jpg', '002295.jpg', '000192.jpg', '001876.jpg', '001049.jpg', '000397.jpg', '001641.jpg', '001091.jpg', '001499.jpg', '000707.jpg', '001587.jpg', '000588.jpg', '000288.jpg', '000772.jpg', '000060.jpg', '001886.jpg', '000221.jpg', '000966.jpg', '002472.jpg', '000416.jpg', '000184.jpg', '000727.jpg', '000413.jpg', '002348.jpg', '001042.jpg', '002167.jpg', '001289.jpg', '002048.jpg', '000554.jpg', '001830.jpg', '001721.jpg', '002433.jpg', '000710.jpg', '001342.jpg', '000361.jpg', '001784.jpg', '000112.jpg', '001678.jpg', '001868.jpg', '001140.jpg', '001263.jpg', '001731.jpg', '000906.jpg', '001545.jpg', '001206.jpg', '001691.jpg', '001925.jpg', '001882.jpg', '000627.jpg', '000832.jpg', '002409.jpg', '000994.jpg', '000435.jpg', '001866.jpg', '001899.jpg', '001396.jpg', '000503.jpg', '000584.jpg', '001173.jpg', '002072.jpg', '001124.jpg', '000865.jpg', '002287.jpg', '000099.jpg', '001381.jpg', '000053.jpg', '001316.jpg', '002347.jpg', '001138.jpg', '001759.jpg', '001048.jpg', '000997.jpg', '000240.jpg', '000036.jpg', '000111.jpg', '001595.jpg', '000325.jpg', '000552.jpg', '001214.jpg', '001819.jpg', '000927.jpg', '001046.jpg', '001368.jpg', '002262.jpg', '001573.jpg', '000016.jpg', '000556.jpg', '000875.jpg', '001083.jpg', '000337.jpg', '001004.jpg', '001629.jpg', '000280.jpg', '001135.jpg', '001310.jpg', '001681.jpg', '001950.jpg', '001961.jpg', '001122.jpg', '000197.jpg', '000728.jpg', '002263.jpg', '000035.jpg', '002227.jpg', '002168.jpg', '001329.jpg', '001707.jpg', '001745.jpg', '000182.jpg', '001071.jpg', '001568.jpg', '002373.jpg', '000686.jpg', '000122.jpg', '000894.jpg', '001032.jpg', '001401.jpg', '001295.jpg', '000301.jpg', '000704.jpg', '001427.jpg', '001409.jpg', '000002.jpg', '001382.jpg', '001689.jpg', '001897.jpg', '001477.jpg', '001160.jpg', '000080.jpg', '001079.jpg', '000278.jpg', '001848.jpg', '002268.jpg', '000095.jpg', '000614.jpg', '001133.jpg', '002175.jpg', '002361.jpg', '001052.jpg', '000262.jpg', '002124.jpg', '002016.jpg', '002351.jpg', '002305.jpg', '002280.jpg', '000487.jpg', '002438.jpg', '000375.jpg', '000861.jpg', '001016.jpg', '000679.jpg', '001799.jpg', '002380.jpg', '002385.jpg', '000424.jpg', '000517.jpg', '001688.jpg', '001278.jpg', '000347.jpg', '002012.jpg', '001534.jpg', '001105.jpg', '001015.jpg', '000872.jpg', '001739.jpg', '000538.jpg', '001954.jpg', '000116.jpg', '001749.jpg', '002461.jpg', '001227.jpg', '001176.jpg', '000027.jpg', '000764.jpg', '001626.jpg', '000218.jpg', '000143.jpg', '000032.jpg', '002065.jpg', '000857.jpg', '001279.jpg', '002282.jpg', '001588.jpg', '000045.jpg', '000668.jpg', '002393.jpg', '001578.jpg', '000858.jpg', '002185.jpg', '001487.jpg', '001607.jpg', '002334.jpg', '002466.jpg', '000076.jpg', '002177.jpg', '000019.jpg', '000217.jpg', '002220.jpg', '001134.jpg', '001537.jpg', '001445.jpg', '001165.jpg', '001770.jpg', '000049.jpg', '000513.jpg', '000470.jpg', '001199.jpg', '001569.jpg', '002469.jpg', '001400.jpg', '000725.jpg', '000377.jpg', '000051.jpg', '000638.jpg', '000780.jpg', '002032.jpg', '000626.jpg', '002283.jpg', '001291.jpg', '000677.jpg', '002064.jpg', '002118.jpg', '000520.jpg', '000328.jpg', '001919.jpg', '002367.jpg', '000608.jpg', '001842.jpg', '000943.jpg', '001654.jpg', '000382.jpg', '000484.jpg', '002285.jpg', '001753.jpg', '000403.jpg', '001996.jpg', '001171.jpg', '000602.jpg', '001644.jpg', '000117.jpg', '002219.jpg', '001172.jpg', '001865.jpg', '001613.jpg', '000587.jpg', '000965.jpg', '000898.jpg', '000043.jpg', '001469.jpg', '001931.jpg', '000268.jpg', '000097.jpg', '001261.jpg', '001496.jpg', '002281.jpg', '001921.jpg', '000917.jpg', '000187.jpg', '001761.jpg', '001475.jpg', '001985.jpg', '002075.jpg', '000443.jpg', '000681.jpg', '001646.jpg', '000960.jpg', '001335.jpg', '002483.jpg', '000306.jpg', '000081.jpg', '001715.jpg', '002257.jpg', '001407.jpg', '001519.jpg', '002196.jpg', '001885.jpg', '000343.jpg', '000046.jpg', '001612.jpg', '000486.jpg', '001064.jpg', '001285.jpg', '000805.jpg', '000543.jpg', '000126.jpg', '001370.jpg', '001550.jpg', '000119.jpg', '002474.jpg', '000550.jpg', '002146.jpg', '002108.jpg', '001413.jpg', '000651.jpg', '001030.jpg', '002266.jpg', '001318.jpg', '002326.jpg', '001193.jpg', '000595.jpg', '001875.jpg', '002402.jpg', '002142.jpg', '001738.jpg', '002255.jpg', '000891.jpg', '001448.jpg', '001025.jpg', '000933.jpg', '001378.jpg', '000212.jpg', '000430.jpg', '000372.jpg', '002467.jpg', '002225.jpg', '000753.jpg', '000139.jpg', '000775.jpg', '001456.jpg', '001007.jpg', '000607.jpg', '002074.jpg', '000656.jpg', '001533.jpg', '000434.jpg', '001944.jpg', '001521.jpg', '000299.jpg', '001940.jpg', '000916.jpg', '001863.jpg', '001538.jpg', '002208.jpg', '002138.jpg', '000159.jpg', '001893.jpg', '000616.jpg', '001589.jpg', '002071.jpg', '000978.jpg', '001345.jpg', '001070.jpg', '000666.jpg', '001454.jpg', '000446.jpg', '001859.jpg', '000830.jpg', '001028.jpg', '000781.jpg', '000514.jpg', '001226.jpg', '000362.jpg', '001608.jpg', '001050.jpg', '001918.jpg', '000483.jpg', '002230.jpg', '001558.jpg', '002149.jpg', '002493.jpg', '000974.jpg', '000429.jpg', '001617.jpg', '000138.jpg', '000619.jpg', '000981.jpg', '001782.jpg', '000723.jpg', '002001.jpg', '002098.jpg', '001364.jpg', '000319.jpg', '001352.jpg', '001645.jpg', '000827.jpg', '001365.jpg', '000329.jpg', '000572.jpg', '001480.jpg', '001989.jpg', '000562.jpg', '000831.jpg', '000431.jpg', '000340.jpg', '000297.jpg', '002284.jpg', '001282.jpg', '001068.jpg', '000313.jpg', '001742.jpg', '000124.jpg', '001482.jpg', '000691.jpg', '002242.jpg', '001661.jpg', '000687.jpg', '000745.jpg', '001653.jpg', '001304.jpg', '002420.jpg', '001911.jpg', '000708.jpg', '002251.jpg', '000149.jpg', '001202.jpg', '001630.jpg', '002369.jpg', '001012.jpg', '000639.jpg', '000864.jpg', '000628.jpg', '002327.jpg', '000227.jpg', '002025.jpg', '002137.jpg', '001649.jpg', '000930.jpg', '000733.jpg', '002357.jpg', '001716.jpg', '002103.jpg', '000751.jpg', '000606.jpg', '001063.jpg', '000636.jpg', '001949.jpg', '000883.jpg', '001783.jpg', '001990.jpg', '000246.jpg', '001771.jpg', '000992.jpg', '002105.jpg', '001358.jpg', '002229.jpg', '001987.jpg', '001581.jpg', '001467.jpg', '000946.jpg', '001812.jpg', '001058.jpg', '001566.jpg', '000678.jpg', '001244.jpg', '002330.jpg', '001748.jpg', '000064.jpg', '000194.jpg', '001591.jpg', '000394.jpg', '001324.jpg', '000017.jpg', '000972.jpg', '000533.jpg', '000652.jpg', '000852.jpg', '000478.jpg', '001838.jpg', '001658.jpg', '001701.jpg', '000591.jpg', '000354.jpg', '000374.jpg', '000564.jpg', '000191.jpg', '000947.jpg', '001359.jpg', '001463.jpg', '002183.jpg', '001023.jpg', '002318.jpg', '000476.jpg', '002412.jpg', '002044.jpg', '001144.jpg', '001582.jpg', '000955.jpg', '000851.jpg', '000593.jpg', '001703.jpg', '002391.jpg', '001325.jpg', '000473.jpg', '002403.jpg', '002004.jpg', '001443.jpg', '000625.jpg', '000346.jpg', '002421.jpg', '001964.jpg', '001425.jpg', '000912.jpg', '000438.jpg', '000615.jpg', '000352.jpg', '002432.jpg', '001754.jpg', '000817.jpg', '001415.jpg', '001362.jpg', '002294.jpg', '000963.jpg', '000534.jpg', '001896.jpg', '002376.jpg', '002360.jpg', '001528.jpg', '000101.jpg', '000516.jpg', '001544.jpg', '001619.jpg', '002194.jpg', '001890.jpg', '000469.jpg', '000170.jpg', '001367.jpg', '000999.jpg', '000671.jpg', '000876.jpg', '000205.jpg', '000548.jpg', '000674.jpg', '001087.jpg', '002309.jpg', '000066.jpg', '002161.jpg', '001326.jpg', '000583.jpg', '002082.jpg', '001065.jpg', '002042.jpg', '001952.jpg', '000654.jpg', '001150.jpg', '000181.jpg', '000137.jpg', '000571.jpg', '002383.jpg', '001966.jpg', '002226.jpg', '001384.jpg', '000866.jpg', '001331.jpg', '000798.jpg', '001385.jpg', '001596.jpg', '000145.jpg', '000551.jpg', '002224.jpg', '000282.jpg', '001394.jpg', '001431.jpg', '001095.jpg', '000493.jpg', '000467.jpg', '000647.jpg', '000813.jpg', '000786.jpg', '000004.jpg', '001888.jpg', '000777.jpg', '000090.jpg', '001616.jpg', '000837.jpg', '001564.jpg', '001090.jpg', '001913.jpg', '002214.jpg', '000363.jpg', '000389.jpg', '002154.jpg', '001772.jpg', '000364.jpg', '002395.jpg', '000800.jpg', '000030.jpg', '000959.jpg', '000544.jpg', '001520.jpg', '000151.jpg', '001765.jpg', '000838.jpg', '001692.jpg', '000824.jpg', '002094.jpg', '000358.jpg', '001887.jpg', '000532.jpg', '001695.jpg', '002274.jpg', '000185.jpg', '001098.jpg', '000789.jpg', '000198.jpg', '001733.jpg', '000103.jpg', '000489.jpg', '000539.jpg', '001910.jpg', '002457.jpg', '002170.jpg', '001029.jpg', '000247.jpg', '001416.jpg', '001452.jpg', '000459.jpg', '002265.jpg', '001039.jpg', '001356.jpg', '000820.jpg', '001119.jpg', '000089.jpg', '000954.jpg', '001061.jpg', '001017.jpg', '002248.jpg', '002355.jpg', '000501.jpg', '001340.jpg', '000825.jpg', '002104.jpg', '002487.jpg', '000557.jpg', '002055.jpg', '000190.jpg', '000521.jpg', '002008.jpg', '000259.jpg', '000808.jpg', '002169.jpg', '002350.jpg', '001810.jpg', '001874.jpg', '000879.jpg', '001623.jpg', '002332.jpg', '001914.jpg', '001811.jpg', '001909.jpg', '001473.jpg', '002181.jpg', '001348.jpg', '001062.jpg', '002446.jpg', '000929.jpg', '000900.jpg', '002304.jpg', '001618.jpg', '001699.jpg', '000127.jpg', '001800.jpg', '001069.jpg', '001522.jpg', '002240.jpg', '000176.jpg', '002272.jpg', '001621.jpg', '001388.jpg', '001981.jpg', '001572.jpg', '000314.jpg', '000776.jpg', '001565.jpg', '000519.jpg', '001554.jpg', '000157.jpg', '000600.jpg', '002431.jpg', '001414.jpg', '001979.jpg', '000456.jpg', '000323.jpg', '000854.jpg', '000380.jpg', '001881.jpg', '001225.jpg', '001001.jpg', '000277.jpg', '001553.jpg', '000463.jpg', '002193.jpg', '001406.jpg', '001043.jpg', '002296.jpg', '002136.jpg', '001492.jpg', '000492.jpg', '002129.jpg', '002213.jpg', '000768.jpg', '000569.jpg', '001189.jpg', '002052.jpg', '001680.jpg', '001483.jpg', '002070.jpg', '002019.jpg', '001235.jpg', '002435.jpg', '001493.jpg', '000524.jpg', '000312.jpg', '002083.jpg', '000428.jpg', '000985.jpg', '002482.jpg', '000530.jpg', '000321.jpg', '002396.jpg', '001628.jpg', '000264.jpg', '001288.jpg', '000694.jpg', '001181.jpg', '002378.jpg', '002253.jpg', '001179.jpg', '001080.jpg', '001939.jpg', '000418.jpg', '000711.jpg', '002125.jpg', '000750.jpg', '000744.jpg', '001114.jpg', '001631.jpg', '001984.jpg', '001858.jpg', '001313.jpg', '000253.jpg', '000731.jpg', '000491.jpg', '001796.jpg', '001718.jpg', '000318.jpg', '000287.jpg', '001798.jpg', '002486.jpg', '000512.jpg', '000186.jpg', '002448.jpg', '001164.jpg', '001086.jpg', '002286.jpg', '000242.jpg', '001085.jpg', '002231.jpg', '001879.jpg', '001512.jpg', '001839.jpg', '000642.jpg', '000665.jpg', '000756.jpg', '002445.jpg', '002292.jpg', '001576.jpg', '000547.jpg', '002247.jpg', '000255.jpg', '001221.jpg', '002325.jpg', '001224.jpg', '001713.jpg', '000420.jpg', '002328.jpg', '002205.jpg', '001634.jpg', '001594.jpg', '002358.jpg', '001286.jpg', '001327.jpg', '000634.jpg', '002207.jpg', '001081.jpg', '002303.jpg', '000147.jpg', '000991.jpg', '000715.jpg', '001169.jpg', '001451.jpg', '000146.jpg', '000673.jpg', '000041.jpg', '002299.jpg', '002371.jpg', '001867.jpg', '001767.jpg', '000256.jpg', '001041.jpg', '000042.jpg', '000449.jpg', '001424.jpg', '000709.jpg', '001934.jpg', '000193.jpg', '002228.jpg', '001529.jpg', '000298.jpg', '001033.jpg', '000774.jpg', '000409.jpg', '000249.jpg', '002180.jpg', '002436.jpg', '000762.jpg', '000988.jpg', '002034.jpg', '002199.jpg', '002159.jpg', '000632.jpg', '002444.jpg', '001734.jpg', '000243.jpg', '002195.jpg', '002322.jpg', '001957.jpg', '002288.jpg', '002415.jpg', '002132.jpg', '002143.jpg', '001873.jpg', '000222.jpg', '001021.jpg', '000581.jpg', '001627.jpg', '000104.jpg', '000518.jpg', '000719.jpg', '000515.jpg', '000257.jpg', '001789.jpg', '000868.jpg', '000788.jpg', '000370.jpg', '000549.jpg', '000241.jpg', '000603.jpg', '001252.jpg', '000398.jpg', '002061.jpg', '001751.jpg', '001655.jpg', '000204.jpg', '000031.jpg', '001153.jpg', '001768.jpg', '001213.jpg', '000465.jpg', '001870.jpg', '001209.jpg', '002017.jpg', '001182.jpg', '001988.jpg', '001676.jpg', '000869.jpg', '000208.jpg', '000646.jpg', '001637.jpg', '002454.jpg', '000472.jpg', '001155.jpg', '000387.jpg', '000427.jpg', '000661.jpg', '000044.jpg', '002121.jpg', '001702.jpg', '000163.jpg', '001146.jpg', '001479.jpg', '001389.jpg', '001845.jpg', '002397.jpg', '001478.jpg', '001435.jpg', '002450.jpg', '000293.jpg', '000177.jpg', '000440.jpg', '000611.jpg', '001673.jpg', '000713.jpg', '001861.jpg', '000057.jpg', '001543.jpg', '000113.jpg', '001290.jpg', '001507.jpg', '001096.jpg', '001974.jpg', '001849.jpg', '000676.jpg', '000118.jpg', '001948.jpg', '001836.jpg', '002099.jpg', '002390.jpg', '002010.jpg', '000109.jpg', '002056.jpg', '000115.jpg', '002323.jpg', '001208.jpg', '001031.jpg', '000573.jpg', '001440.jpg', '001685.jpg', '000415.jpg', '001118.jpg', '001824.jpg', '000888.jpg', '000300.jpg', '001728.jpg', '001441.jpg', '002368.jpg', '000794.jpg', '002386.jpg', '001245.jpg', '001506.jpg', '002092.jpg', '001339.jpg', '001766.jpg', '002223.jpg', '001260.jpg', '002050.jpg', '000732.jpg', '002259.jpg', '001298.jpg', '002465.jpg', '002300.jpg', '001237.jpg', '000026.jpg', '000010.jpg', '002475.jpg', '001541.jpg', '001775.jpg', '000688.jpg', '001625.jpg', '000693.jpg', '000749.jpg', '002480.jpg', '000560.jpg', '000275.jpg', '001535.jpg', '001665.jpg', '001571.jpg', '001667.jpg', '002392.jpg', '002269.jpg', '000129.jpg', '000592.jpg', '000237.jpg', '001190.jpg', '000604.jpg', '000381.jpg', '001375.jpg', '001884.jpg', '001392.jpg', '002428.jpg', '002007.jpg', '002329.jpg', '000092.jpg', '001660.jpg', '000862.jpg', '001962.jpg', '000437.jpg', '001088.jpg', '001166.jpg', '002473.jpg', '001426.jpg', '001302.jpg', '001504.jpg', '001752.jpg', '001513.jpg', '000274.jpg', '000488.jpg', '000621.jpg', '000998.jpg', '000290.jpg', '000357.jpg', '000100.jpg', '001924.jpg', '002173.jpg', '000804.jpg', '002413.jpg', '000155.jpg', '000730.jpg', '000522.jpg', '000689.jpg', '002424.jpg', '001037.jpg', '002425.jpg', '001820.jpg', '001650.jpg', '000878.jpg', '001228.jpg', '002013.jpg', '002441.jpg', '000479.jpg', '002443.jpg', '002157.jpg', '001977.jpg', '000585.jpg', '000787.jpg', '000993.jpg', '001455.jpg', '002423.jpg', '001967.jpg', '001597.jpg', '001484.jpg', '001242.jpg', '002078.jpg', '000309.jpg', '002096.jpg', '002261.jpg', '000962.jpg', '001686.jpg', '001251.jpg', '001497.jpg', '001196.jpg', '001659.jpg', '000396.jpg', '002029.jpg', '001366.jpg', '000005.jpg', '000982.jpg', '000360.jpg', '001101.jpg', '000067.jpg', '001656.jpg', '001726.jpg', '002321.jpg', '002453.jpg', '000494.jpg', '001500.jpg', '001264.jpg', '001056.jpg', '002289.jpg', '001999.jpg', '000450.jpg', '001035.jpg', '001807.jpg', '002140.jpg', '000721.jpg', '002320.jpg', '000024.jpg', '001053.jpg', '001720.jpg', '000474.jpg', '002031.jpg', '002176.jpg', '000720.jpg', '001038.jpg', '000971.jpg', '002112.jpg', '000458.jpg', '001254.jpg', '000575.jpg', '002179.jpg', '000015.jpg', '002191.jpg', '000215.jpg', '001577.jpg', '001437.jpg', '002023.jpg', '001040.jpg', '002162.jpg', '002375.jpg', '000563.jpg', '000400.jpg', '001663.jpg', '001421.jpg', '001904.jpg', '001450.jpg', '001346.jpg', '002407.jpg', '001236.jpg', '000685.jpg', '001351.jpg', '000746.jpg', '001833.jpg', '000814.jpg', '000923.jpg', '000048.jpg', '001998.jpg', '000502.jpg', '001969.jpg', '000859.jpg', '000631.jpg', '000706.jpg', '001729.jpg', '001319.jpg', '000166.jpg', '001515.jpg', '002089.jpg', '000148.jpg', '002366.jpg', '001434.jpg', '001827.jpg', '000174.jpg', '000797.jpg', '001776.jpg', '000816.jpg', '000995.jpg', '002080.jpg', '001320.jpg', '002190.jpg', '001207.jpg', '002382.jpg', '002336.jpg', '000937.jpg', '000498.jpg', '000270.jpg', '002307.jpg', '000150.jpg', '002491.jpg', '000448.jpg', '001557.jpg', '001296.jpg', '000307.jpg', '000485.jpg', '002026.jpg', '000792.jpg', '000612.jpg', '002418.jpg', '002028.jpg', '001177.jpg', '002387.jpg', '001878.jpg', '001337.jpg', '001104.jpg', '001239.jpg', '000291.jpg', '000419.jpg', '001257.jpg', '001917.jpg', '002315.jpg', '001485.jpg', '000986.jpg', '001696.jpg', '002033.jpg', '001852.jpg', '000877.jpg', '000918.jpg', '001960.jpg', '001336.jpg', '001312.jpg', '000399.jpg', '001255.jpg', '000188.jpg', '001980.jpg', '000059.jpg', '001802.jpg', '001793.jpg', '000211.jpg', '000739.jpg', '001804.jpg', '001369.jpg', '000408.jpg', '000226.jpg', '001614.jpg', '000700.jpg', '001253.jpg', '002165.jpg', '001280.jpg', '000324.jpg', '000320.jpg', '001750.jpg', '000941.jpg', '000271.jpg', '000910.jpg', '002134.jpg', '000000.jpg', '002109.jpg', '001204.jpg', '000258.jpg', '002115.jpg', '001777.jpg', '000232.jpg', '000201.jpg', '002088.jpg', '000887.jpg', '000085.jpg', '001010.jpg', '000351.jpg', '000527.jpg', '001632.jpg', '001109.jpg', '000034.jpg', '002144.jpg', '000967.jpg', '000769.jpg', '000006.jpg', '002302.jpg', '001233.jpg', '001806.jpg', '000697.jpg', '000784.jpg', '002057.jpg', '001143.jpg', '002126.jpg', '001188.jpg', '001540.jpg', '000141.jpg', '000821.jpg', '000171.jpg', '001003.jpg', '002210.jpg', '001725.jpg', '001624.jpg', '000028.jpg', '001157.jpg', '000669.jpg', '000436.jpg', '001024.jpg', '001490.jpg', '001604.jpg', '000037.jpg', '000610.jpg', '000462.jpg', '001453.jpg', '001794.jpg', '002198.jpg', '000818.jpg', '000635.jpg', '002002.jpg', '001687.jpg', '000444.jpg', '000664.jpg', '002377.jpg', '000210.jpg', '001694.jpg', '000236.jpg', '001343.jpg', '000834.jpg', '002363.jpg', '001764.jpg', '001531.jpg', '000765.jpg', '001684.jpg', '002306.jpg', '000461.jpg', '000979.jpg', '000457.jpg', '000793.jpg', '002107.jpg', '000096.jpg', '001903.jpg', '001051.jpg', '001791.jpg', '000932.jpg', '000020.jpg', '000504.jpg', '002182.jpg', '000890.jpg', '001585.jpg', '001013.jpg', '002000.jpg', '002290.jpg', '000339.jpg', '001397.jpg', '000716.jpg', '000281.jpg', '001191.jpg', '001773.jpg', '000065.jpg', '001200.jpg', '001123.jpg', '000897.jpg', '000735.jpg', '001997.jpg', '001102.jpg', '001276.jpg', '000405.jpg', '001926.jpg', '000931.jpg', '002341.jpg', '000771.jpg', '001956.jpg', '000023.jpg', '002339.jpg', '001399.jpg', '002128.jpg', '001305.jpg', '001084.jpg', '002489.jpg', '000425.jpg', '001428.jpg', '001633.jpg', '001303.jpg', '002270.jpg', '001906.jpg', '000353.jpg', '000105.jpg', '001082.jpg', '000244.jpg', '000935.jpg', '001636.jpg', '001986.jpg', '002490.jpg', '000296.jpg', '001758.jpg', '002235.jpg', '001856.jpg', '000508.jpg', '000390.jpg', '001183.jpg', '000421.jpg', '001563.jpg', '000063.jpg', '001472.jpg', '000086.jpg', '001355.jpg', '001666.jpg', '000084.jpg', '002037.jpg', '001709.jpg', '002258.jpg', '002346.jpg', '001203.jpg', '001301.jpg', '000013.jpg', '000402.jpg', '002116.jpg', '002085.jpg', '001111.jpg', '001417.jpg', '001299.jpg', '001178.jpg', '001383.jpg', '000565.jpg', '001834.jpg', '000695.jpg', '000964.jpg', '001860.jpg', '000133.jpg', '002352.jpg', '001930.jpg', '000763.jpg', '000029.jpg', '002416.jpg', '000541.jpg', '001514.jpg', '001586.jpg', '001714.jpg', '000973.jpg', '001433.jpg', '001419.jpg', '001503.jpg', '001429.jpg', '002166.jpg', '000333.jpg', '001757.jpg', '002216.jpg', '002084.jpg', '001991.jpg', '001959.jpg', '001532.jpg', '001272.jpg', '000106.jpg', '000881.jpg', '001439.jpg', '000417.jpg', '001211.jpg', '001943.jpg', '001307.jpg', '001170.jpg', '001942.jpg', '002256.jpg', '001744.jpg', '000649.jpg', '000815.jpg', '002221.jpg', '000752.jpg', '001851.jpg', '001128.jpg', '001373.jpg', '001420.jpg', '000500.jpg', '002186.jpg', '000660.jpg', '000230.jpg', '000455.jpg', '000523.jpg', '002209.jpg', '001976.jpg', '001353.jpg', '001740.jpg', '001780.jpg', '000531.jpg', '001717.jpg', '001447.jpg', '001240.jpg', '000909.jpg', '002492.jpg', '002045.jpg', '002477.jpg', '001126.jpg', '000884.jpg', '001259.jpg', '002246.jpg', '000260.jpg', '000867.jpg', '000799.jpg', '000853.jpg', '001149.jpg', '000712.jpg', '001470.jpg', '000108.jpg', '001525.jpg', '000650.jpg', '001187.jpg', '000175.jpg', '001797.jpg', '002314.jpg', '000505.jpg', '000158.jpg', '000555.jpg', '000055.jpg', '000882.jpg', '002481.jpg', '001078.jpg', '000957.jpg', '001549.jpg', '000773.jpg', '000071.jpg', '002301.jpg', '001561.jpg', '001894.jpg', '001760.jpg', '000863.jpg', '000675.jpg', '002488.jpg', '001583.jpg', '001184.jpg', '000266.jpg', '002359.jpg', '002389.jpg', '000770.jpg', '000072.jpg', '000365.jpg', '001579.jpg', '001622.jpg', '002333.jpg', '001638.jpg', '000860.jpg', '002202.jpg', '000165.jpg', '001411.jpg', '002164.jpg', '001923.jpg', '000368.jpg', '002427.jpg', '000574.jpg', '000442.jpg', '001801.jpg', '001036.jpg', '000801.jpg', '000453.jpg', '000083.jpg', '001422.jpg', '002059.jpg', '000623.jpg', '001271.jpg', '002313.jpg', '001756.jpg', '001265.jpg', '002252.jpg', '002091.jpg', '000796.jpg', '001662.jpg', '001821.jpg', '001432.jpg', '001795.jpg', '000672.jpg', '002006.jpg', '000233.jpg', '000684.jpg', '000618.jpg', '000345.jpg', '000014.jpg', '000033.jpg', '001047.jpg', '001708.jpg', '000025.jpg', '000441.jpg', '000196.jpg', '002020.jpg', '001222.jpg', '000659.jpg', '002095.jpg', '001829.jpg', '000939.jpg', '001294.jpg', '000922.jpg', '001186.jpg', '001635.jpg', '001871.jpg', '002447.jpg', '002187.jpg', '001669.jpg', '002152.jpg', '002471.jpg', '000009.jpg', '000826.jpg', '001900.jpg', '000341.jpg', '000850.jpg', '001073.jpg', '002014.jpg', '002278.jpg', '001682.jpg', '000892.jpg', '000759.jpg', '000848.jpg', '001559.jpg', '001805.jpg', '001945.jpg', '001946.jpg', '000734.jpg', '001019.jpg', '001698.jpg', '001570.jpg', '000207.jpg', '000283.jpg', '000729.jpg', '000332.jpg', '001847.jpg', '001246.jpg', '000874.jpg', '000098.jpg', '001928.jpg', '000542.jpg', '001555.jpg', '001719.jpg', '000895.jpg', '002027.jpg', '001736.jpg', '000135.jpg', '002106.jpg', '000648.jpg', '001671.jpg', '001816.jpg', '002379.jpg', '000724.jpg', '001743.jpg', '001423.jpg', '000355.jpg', '002184.jpg', '002430.jpg', '001275.jpg', '001690.jpg', '001722.jpg', '000630.jpg', '002204.jpg', '001100.jpg', '000366.jpg', '002127.jpg', '001462.jpg', '002150.jpg', '000308.jpg', '002400.jpg', '001395.jpg', '001853.jpg', '002260.jpg', '001130.jpg', '002123.jpg', '002439.jpg', '001008.jpg', '000622.jpg', '001247.jpg', '002241.jpg', '001706.jpg', '000295.jpg', '001393.jpg', '001502.jpg', '001234.jpg', '000169.jpg', '002111.jpg', '001732.jpg', '000546.jpg', '002451.jpg', '001468.jpg', '000269.jpg', '000371.jpg', '001511.jpg', '002049.jpg', '000279.jpg', '000495.jpg', '000699.jpg', '001778.jpg', '000107.jpg', '000577.jpg', '001825.jpg', '000445.jpg', '000833.jpg', '000537.jpg', '000385.jpg', '000261.jpg', '000970.jpg', '001387.jpg', '000640.jpg', '000558.jpg', '001332.jpg', '000743.jpg', '001516.jpg', '000248.jpg', '002470.jpg', '002038.jpg', '002139.jpg', '002342.jpg', '002372.jpg', '001817.jpg', '001163.jpg', '001747.jpg', '000460.jpg', '001139.jpg', '000855.jpg', '000655.jpg', '000841.jpg', '002276.jpg', '001705.jpg', '000717.jpg', '001891.jpg', '000849.jpg', '001268.jpg', '001216.jpg', '001075.jpg', '001826.jpg', '000509.jpg', '000945.jpg', '000238.jpg', '002388.jpg', '000586.jpg', '001574.jpg', '002478.jpg', '000903.jpg', '002250.jpg', '000220.jpg', '001970.jpg', '001258.jpg', '002456.jpg', '000968.jpg', '002068.jpg', '000267.jpg', '001092.jpg', '001693.jpg', '001590.jpg', '001735.jpg', '000594.jpg', '000136.jpg', '000342.jpg', '001841.jpg', '002312.jpg', '002131.jpg', '000012.jpg', '002419.jpg', '001862.jpg', '001360.jpg', '000468.jpg', '001094.jpg', '001973.jpg', '001920.jpg', '000791.jpg', '002426.jpg', '001730.jpg', '001458.jpg', '000393.jpg', '000406.jpg', '002308.jpg', '001600.jpg', '002222.jpg', '001347.jpg', '001273.jpg', '001180.jpg', '001955.jpg', '001076.jpg', '001341.jpg', '001846.jpg', '000525.jpg', '000082.jpg', '000738.jpg', '000682.jpg', '001195.jpg', '000088.jpg', '002158.jpg', '002036.jpg', '000843.jpg', '002003.jpg', '002217.jpg', '001983.jpg', '001763.jpg', '000566.jpg', '001932.jpg', '001792.jpg', '001120.jpg', '002076.jpg', '000822.jpg', '001542.jpg', '002354.jpg', '002077.jpg', '000070.jpg', '001232.jpg', '000392.jpg', '000376.jpg', '000643.jpg', '001672.jpg', '000379.jpg', '002460.jpg', '000526.jpg', '000054.jpg', '001779.jpg', '001546.jpg', '001175.jpg', '000162.jpg', '000951.jpg', '000702.jpg', '001902.jpg', '002344.jpg', '002040.jpg', '002081.jpg', '000219.jpg', '001168.jpg', '000568.jpg', '000383.jpg', '001269.jpg', '000589.jpg', '002239.jpg', '001647.jpg', '001724.jpg', '001371.jpg', '000779.jpg', '002479.jpg', '002410.jpg', '000292.jpg', '000225.jpg', '000303.jpg', '000609.jpg', '002024.jpg', '001460.jpg', '000644.jpg', '000224.jpg', '000331.jpg', '001377.jpg', '001219.jpg', '002324.jpg', '002401.jpg', '001060.jpg', '000596.jpg', '000114.jpg', '001937.jpg', '001556.jpg', '002135.jpg', '001953.jpg', '000334.jpg', '001877.jpg', '000809.jpg', '002485.jpg', '002054.jpg', '001787.jpg', '001606.jpg', '000570.jpg', '001723.jpg', '001471.jpg', '000466.jpg', '000535.jpg', '002005.jpg', '002153.jpg', '001156.jpg', '000553.jpg', '001912.jpg', '000506.jpg', '000561.jpg', '002093.jpg', '001814.jpg', '001238.jpg', '002211.jpg', '001436.jpg', '000206.jpg', '002408.jpg', '000018.jpg', '001602.jpg', '000128.jpg', '001769.jpg', '001526.jpg', '002464.jpg', '000077.jpg', '002298.jpg', '001548.jpg', '001391.jpg', '000391.jpg', '001125.jpg', '001575.jpg', '001474.jpg', '000908.jpg', '001217.jpg', '002113.jpg', '001592.jpg', '000335.jpg', '001598.jpg', '001333.jpg', '000977.jpg', '002203.jpg', '001027.jpg', '001354.jpg', '000896.jpg', '001536.jpg', '000845.jpg', '000426.jpg', '001292.jpg', '001127.jpg', '000902.jpg', '001192.jpg', '001116.jpg', '000948.jpg', '001562.jpg', '001243.jpg', '000641.jpg', '001315.jpg', '002440.jpg', '000348.jpg', '001593.jpg', '000172.jpg', '001547.jpg', '000439.jpg', '000414.jpg', '002384.jpg', '002232.jpg', '000173.jpg', '000840.jpg', '002155.jpg', '002151.jpg', '001215.jpg', '000011.jpg', '002063.jpg', '000350.jpg', '001992.jpg', '000496.jpg', '001103.jpg', '000705.jpg', '001488.jpg', '000327.jpg', '001283.jpg', '002338.jpg', '001697.jpg', '000599.jpg', '001611.jpg', '001464.jpg', '001835.jpg', '000344.jpg', '001129.jpg', '001277.jpg', '002319.jpg', '001110.jpg', '000885.jpg', '000040.jpg', '000203.jpg', '002043.jpg', '001781.jpg', '000209.jpg', '001901.jpg', '000121.jpg', '001230.jpg', '001330.jpg', '000950.jpg', '000701.jpg', '000338.jpg', '002429.jpg', '002370.jpg', '000062.jpg', '002356.jpg', '001524.jpg', '002097.jpg', '001963.jpg', '002145.jpg', '001408.jpg', '000579.jpg', '001855.jpg', '000760.jpg', '000926.jpg', '002069.jpg', '001844.jpg', '000847.jpg', '002442.jpg', '001405.jpg', '000401.jpg', '000336.jpg', '000952.jpg', '001935.jpg', '001978.jpg', '000407.jpg', '000304.jpg', '001476.jpg', '001300.jpg', '001148.jpg', '002449.jpg', '002249.jpg', '000528.jpg', '000411.jpg', '000410.jpg', '000907.jpg', '001205.jpg', '001683.jpg', '000653.jpg', '001151.jpg', '000757.jpg', '002101.jpg', '001737.jpg', '001115.jpg', '001675.jpg', '002114.jpg', '001059.jpg', '000590.jpg', '001674.jpg', '001489.jpg', '002244.jpg', '000802.jpg', '002021.jpg', '001481.jpg', '000302.jpg', '001774.jpg', '001284.jpg', '001034.jpg', '000007.jpg', '001832.jpg', '000168.jpg', '000068.jpg', '000475.jpg', '001317.jpg', '000905.jpg', '002218.jpg', '002273.jpg', '000216.jpg', '002264.jpg', '000714.jpg', '000969.jpg', '000755.jpg', '001603.jpg', '000131.jpg', '001045.jpg', '000835.jpg', '002046.jpg', '002188.jpg', '000452.jpg', '002171.jpg', '002160.jpg', '001009.jpg', '000736.jpg', '002206.jpg', '001657.jpg', '000286.jpg', '000404.jpg', '000545.jpg', '000322.jpg', '000758.jpg', '001197.jpg', '000823.jpg', '000559.jpg', '001712.jpg', '001815.jpg', '001670.jpg', '001854.jpg', '001398.jpg', '001167.jpg', '000073.jpg', '001498.jpg', '000195.jpg', '000273.jpg', '000540.jpg', '000911.jpg', '000254.jpg', '001026.jpg', '001266.jpg', '000740.jpg', '000384.jpg', '000658.jpg', '002133.jpg', '001908.jpg', '000481.jpg', '002458.jpg', '000229.jpg', '001864.jpg', '000102.jpg', '001762.jpg', '000803.jpg', '000806.jpg', '000164.jpg', '001808.jpg', '002053.jpg', '002340.jpg', '001220.jpg', '002399.jpg', '001438.jpg', '000976.jpg', '001152.jpg', '002434.jpg', '001338.jpg', '001402.jpg', '000464.jpg', '000153.jpg', '000330.jpg', '000228.jpg', '002362.jpg', '002015.jpg', '002411.jpg', '002073.jpg', '000433.jpg', '001495.jpg', '002090.jpg', '001898.jpg', '002058.jpg', '000576.jpg', '000179.jpg', '000767.jpg', '002041.jpg', '001958.jpg', '001231.jpg', '002197.jpg', '000692.jpg', '000123.jpg', '001281.jpg', '000737.jpg', '001323.jpg', '002291.jpg', '001249.jpg', '000511.jpg', '001185.jpg', '000008.jpg', '000144.jpg', '000432.jpg', '000003.jpg', '002035.jpg', '000742.jpg', '002238.jpg', '000001.jpg', '002310.jpg', '001975.jpg', '000093.jpg', '000958.jpg', '001250.jpg', '001803.jpg', '000373.jpg', '001869.jpg', '001229.jpg', '000451.jpg', '001552.jpg', '000934.jpg', '000294.jpg', '001710.jpg', '000856.jpg', '002062.jpg', '001711.jpg', '000305.jpg', '000645.jpg', '001306.jpg', '002067.jpg', '001444.jpg', '001993.jpg', '001093.jpg', '000620.jpg', '001872.jpg', '001639.jpg', '002374.jpg', '000167.jpg', '001947.jpg', '000447.jpg', '000944.jpg', '000582.jpg', '000477.jpg', '000766.jpg', '002243.jpg', '000953.jpg', '001640.jpg', '001018.jpg', '001404.jpg', '000499.jpg', '000828.jpg', '000633.jpg', '001907.jpg', '000989.jpg', '000778.jpg', '001322.jpg', '001755.jpg', '000920.jpg', '000075.jpg', '000928.jpg', '001818.jpg', '001099.jpg', '001159.jpg', '001350.jpg', '001361.jpg', '000936.jpg', '001837.jpg', '000134.jpg', '002201.jpg', '001551.jpg', '001442.jpg', '001014.jpg', '001809.jpg', '002215.jpg', '000310.jpg', '001461.jpg', '002331.jpg', '000811.jpg', '002404.jpg', '001840.jpg', '002192.jpg', '001194.jpg', '001136.jpg', '002345.jpg', '001372.jpg', '000783.jpg', '002484.jpg', '001107.jpg', '001823.jpg', '002267.jpg', '002364.jpg', '000810.jpg', '001256.jpg', '001509.jpg', '001889.jpg', '000987.jpg', '000094.jpg', '000996.jpg', '001002.jpg', '000904.jpg', '002117.jpg', '000039.jpg', '001523.jpg', '002254.jpg', '000079.jpg', '002245.jpg', '001916.jpg', '000613.jpg', '000189.jpg', '000480.jpg', '000239.jpg', '002009.jpg', '001994.jpg', '002459.jpg', '001022.jpg', '001905.jpg', '000140.jpg', '000893.jpg', '000598.jpg', '001380.jpg', '000507.jpg', '002468.jpg', '001704.jpg', '000844.jpg', '002234.jpg', '002337.jpg', '001609.jpg', '000696.jpg', '001379.jpg', '002174.jpg', '001142.jpg', '001971.jpg', '000110.jpg', '001113.jpg', '000703.jpg', '002066.jpg', '001158.jpg', '000942.jpg', '001466.jpg', '002279.jpg', '000154.jpg', '001121.jpg', '000200.jpg', '001892.jpg', '002297.jpg', '001006.jpg', '000265.jpg', '000919.jpg', '002148.jpg', '001491.jpg', '000956.jpg', '000315.jpg', '000423.jpg', '001449.jpg', '002120.jpg', '000395.jpg', '002463.jpg', '000580.jpg', '001501.jpg', '001162.jpg', '000359.jpg', '001486.jpg', '002233.jpg', '001927.jpg', '000629.jpg', '002437.jpg', '000657.jpg', '001267.jpg', '000061.jpg', '001741.jpg', '000285.jpg', '000250.jpg', '000022.jpg', '000785.jpg', '002018.jpg', '000975.jpg', '001518.jpg', '001132.jpg', '000839.jpg', '000142.jpg', '002022.jpg', '000038.jpg', '001828.jpg', '001822.jpg', '001933.jpg', '000132.jpg', '000078.jpg', '001599.jpg', '001746.jpg', '001054.jpg', '001154.jpg', '001293.jpg', '001446.jpg', '000741.jpg', '000058.jpg', '002079.jpg', '000069.jpg', '001857.jpg', '001328.jpg', '002417.jpg', '001297.jpg', '000490.jpg', '001668.jpg', '000231.jpg', '001517.jpg', '001651.jpg', '000272.jpg', '000790.jpg', '000497.jpg', '002476.jpg', '000871.jpg', '001218.jpg', '001652.jpg', '000754.jpg', '000202.jpg', '001074.jpg', '000670.jpg', '000369.jpg', '000378.jpg', '000819.jpg', '002178.jpg', '001643.jpg', '000984.jpg', '002011.jpg', '001642.jpg', '000289.jpg', '000180.jpg', '002236.jpg', '001679.jpg', '001137.jpg', '000690.jpg', '000915.jpg', '000899.jpg', '000074.jpg', '001011.jpg', '000317.jpg', '000748.jpg', '001376.jpg', '001108.jpg', '002381.jpg', '001615.jpg', '002311.jpg', '001174.jpg', '002275.jpg', '000536.jpg', '001410.jpg', '000747.jpg', '001664.jpg', '000601.jpg', '001270.jpg', '001334.jpg', '001727.jpg', '001560.jpg', '000873.jpg', '000637.jpg', '001505.jpg', '000990.jpg', '001308.jpg', '002422.jpg', '001321.jpg', '001527.jpg', '000367.jpg', '002051.jpg', '000214.jpg', '000388.jpg', '002462.jpg', '000836.jpg', '002455.jpg', '001386.jpg', '001390.jpg', '002271.jpg', '001605.jpg', '001457.jpg', '001212.jpg', '001936.jpg', '000726.jpg', '001248.jpg', '000680.jpg', '001510.jpg', '002119.jpg', '002147.jpg', '002110.jpg', '001941.jpg', '002100.jpg', '002172.jpg', '002406.jpg', '000901.jpg', '000047.jpg', '000152.jpg', '000529.jpg', '002277.jpg', '002494.jpg', '000949.jpg', '001995.jpg', '000125.jpg', '001349.jpg', '000913.jpg', '002200.jpg', '001601.jpg', '001314.jpg', '002087.jpg', '001357.jpg', '001508.jpg', '002316.jpg', '001344.jpg', '002335.jpg', '001241.jpg', '002452.jpg', '000605.jpg', '000597.jpg', '001786.jpg', '001097.jpg', '001843.jpg', '000567.jpg', '000667.jpg', '001131.jpg', '001620.jpg', '002130.jpg', '001938.jpg', '001465.jpg', '001403.jpg', '000349.jpg', '001112.jpg', '000316.jpg', '001880.jpg', '000056.jpg', '001929.jpg', '000510.jpg', '002212.jpg', '001965.jpg', '001648.jpg', '002189.jpg', '001459.jpg', '000412.jpg', '001287.jpg', '000245.jpg', '000870.jpg', '000578.jpg', '001850.jpg', '001161.jpg', '001584.jpg', '001223.jpg', '001785.jpg', '001610.jpg', '000050.jpg', '000234.jpg', '000980.jpg', '002086.jpg', '002030.jpg', '002394.jpg', '000311.jpg', '000795.jpg', '000662.jpg', '002414.jpg', '000886.jpg', '002122.jpg', '001262.jpg', '002039.jpg', '000683.jpg', '002141.jpg', '002293.jpg', '000021.jpg', '001418.jpg', '001883.jpg', '001000.jpg', '001430.jpg', '000160.jpg', '000617.jpg', '001790.jpg', '001072.jpg', '001700.jpg', '001055.jpg', '000889.jpg', '001309.jpg', '000698.jpg', '000718.jpg', '000812.jpg', '001274.jpg', '001067.jpg']\n", + "000223.jpg\n", + "Uploaded 000223.jpg to Dropbox.\n", + "000663.jpg\n", + "Uploaded 000663.jpg to Dropbox.\n", + "001117.jpg\n", + "Uploaded 001117.jpg to Dropbox.\n", + "001077.jpg\n", + "Uploaded 001077.jpg to Dropbox.\n", + "001201.jpg\n", + "Uploaded 001201.jpg to Dropbox.\n", + "001089.jpg\n", + "Uploaded 001089.jpg to Dropbox.\n", + "001895.jpg\n", + "Uploaded 001895.jpg to Dropbox.\n", + "000284.jpg\n", + "Uploaded 000284.jpg to Dropbox.\n", + "001145.jpg\n", + "Uploaded 001145.jpg to Dropbox.\n", + "002102.jpg\n", + "Uploaded 002102.jpg to Dropbox.\n", + "002060.jpg\n", + "Uploaded 002060.jpg to Dropbox.\n", + "000961.jpg\n", + "Uploaded 000961.jpg to Dropbox.\n", + "001567.jpg\n", + "Uploaded 001567.jpg to Dropbox.\n", + "000846.jpg\n", + "Uploaded 000846.jpg to Dropbox.\n", + "001210.jpg\n", + "Uploaded 001210.jpg to Dropbox.\n", + "001311.jpg\n", + "Uploaded 001311.jpg to Dropbox.\n", + "000263.jpg\n", + "Uploaded 000263.jpg to Dropbox.\n", + "001580.jpg\n", + "Uploaded 001580.jpg to Dropbox.\n", + "001147.jpg\n", + "Uploaded 001147.jpg to Dropbox.\n", + "000052.jpg\n", + "Uploaded 000052.jpg to Dropbox.\n", + "000091.jpg\n", + "Uploaded 000091.jpg to Dropbox.\n", + "001968.jpg\n", + "Uploaded 001968.jpg to Dropbox.\n", + "000130.jpg\n", + "Uploaded 000130.jpg to Dropbox.\n", + "000183.jpg\n", + "Uploaded 000183.jpg to Dropbox.\n", + "001539.jpg\n", + "Uploaded 001539.jpg to Dropbox.\n", + "000161.jpg\n", + "Uploaded 000161.jpg to Dropbox.\n", + "001972.jpg\n", + "Uploaded 001972.jpg to Dropbox.\n", + "001494.jpg\n", + "Uploaded 001494.jpg to Dropbox.\n", + "001141.jpg\n", + "Uploaded 001141.jpg to Dropbox.\n", + "002163.jpg\n", + "Uploaded 002163.jpg to Dropbox.\n", + "001066.jpg\n", + "Uploaded 001066.jpg to Dropbox.\n", + "001106.jpg\n", + "Uploaded 001106.jpg to Dropbox.\n", + "001020.jpg\n", + "Uploaded 001020.jpg to Dropbox.\n", + "001813.jpg\n", + "Uploaded 001813.jpg to Dropbox.\n", + "000624.jpg\n", + "Uploaded 000624.jpg to Dropbox.\n", + "000252.jpg\n", + "Uploaded 000252.jpg to Dropbox.\n", + "000924.jpg\n", + "Uploaded 000924.jpg to Dropbox.\n", + "000156.jpg\n", + "Uploaded 000156.jpg to Dropbox.\n", + "000921.jpg\n", + "Uploaded 000921.jpg to Dropbox.\n", + "000842.jpg\n", + "Uploaded 000842.jpg to Dropbox.\n", + "000482.jpg\n", + "Uploaded 000482.jpg to Dropbox.\n", + "001044.jpg\n", + "Uploaded 001044.jpg to Dropbox.\n", + "001922.jpg\n", + "Uploaded 001922.jpg to Dropbox.\n", + "002365.jpg\n", + "Uploaded 002365.jpg to Dropbox.\n", + "002343.jpg\n", + "Uploaded 002343.jpg to Dropbox.\n", + "001951.jpg\n", + "Uploaded 001951.jpg to Dropbox.\n", + "000983.jpg\n", + "Uploaded 000983.jpg to Dropbox.\n", + "000120.jpg\n", + "Uploaded 000120.jpg to Dropbox.\n", + "002398.jpg\n", + "Uploaded 002398.jpg to Dropbox.\n", + "000199.jpg\n", + "Uploaded 000199.jpg to Dropbox.\n", + "001677.jpg\n", + "Uploaded 001677.jpg to Dropbox.\n", + "000178.jpg\n", + "Uploaded 000178.jpg to Dropbox.\n", + "000386.jpg\n", + "Uploaded 000386.jpg to Dropbox.\n", + "000761.jpg\n", + "Uploaded 000761.jpg to Dropbox.\n", + "000880.jpg\n", + "Uploaded 000880.jpg to Dropbox.\n", + "000940.jpg\n", + "Uploaded 000940.jpg to Dropbox.\n", + "001374.jpg\n", + "Uploaded 001374.jpg to Dropbox.\n", + "002047.jpg\n", + "Uploaded 002047.jpg to Dropbox.\n", + "000326.jpg\n", + "Uploaded 000326.jpg to Dropbox.\n", + "000914.jpg\n", + "Uploaded 000914.jpg to Dropbox.\n", + "002349.jpg\n", + "Uploaded 002349.jpg to Dropbox.\n", + "001915.jpg\n", + "Uploaded 001915.jpg to Dropbox.\n", + "002237.jpg\n", + "Uploaded 002237.jpg to Dropbox.\n", + "001530.jpg\n", + "Uploaded 001530.jpg to Dropbox.\n", + "000422.jpg\n", + "Uploaded 000422.jpg to Dropbox.\n", + "000471.jpg\n", + "Uploaded 000471.jpg to Dropbox.\n", + "000829.jpg\n", + "Uploaded 000829.jpg to Dropbox.\n", + "000235.jpg\n", + "Uploaded 000235.jpg to Dropbox.\n", + "000925.jpg\n", + "Uploaded 000925.jpg to Dropbox.\n", + "001057.jpg\n", + "Uploaded 001057.jpg to Dropbox.\n", + "000356.jpg\n", + "Uploaded 000356.jpg to Dropbox.\n", + "001788.jpg\n", + "Uploaded 001788.jpg to Dropbox.\n", + "000213.jpg\n", + "Uploaded 000213.jpg to Dropbox.\n", + "002156.jpg\n", + "Uploaded 002156.jpg to Dropbox.\n", + "002405.jpg\n", + "Uploaded 002405.jpg to Dropbox.\n", + "002317.jpg\n", + "Uploaded 002317.jpg to Dropbox.\n", + "001831.jpg\n", + "Uploaded 001831.jpg to Dropbox.\n", + "000251.jpg\n", + "Uploaded 000251.jpg to Dropbox.\n", + "001005.jpg\n", + "Uploaded 001005.jpg to Dropbox.\n", + "000782.jpg\n", + "Uploaded 000782.jpg to Dropbox.\n", + "000807.jpg\n", + "Uploaded 000807.jpg to Dropbox.\n", + "002353.jpg\n", + "Uploaded 002353.jpg to Dropbox.\n", + "001982.jpg\n", + "Uploaded 001982.jpg to Dropbox.\n", + "000454.jpg\n", + "Uploaded 000454.jpg to Dropbox.\n", + "000276.jpg\n", + "Uploaded 000276.jpg to Dropbox.\n", + "001412.jpg\n", + "Uploaded 001412.jpg to Dropbox.\n", + "000722.jpg\n", + "Uploaded 000722.jpg to Dropbox.\n", + "000087.jpg\n", + "Uploaded 000087.jpg to Dropbox.\n", + "001363.jpg\n", + "Uploaded 001363.jpg to Dropbox.\n", + "000938.jpg\n", + "Uploaded 000938.jpg to Dropbox.\n", + "001198.jpg\n", + "Uploaded 001198.jpg to Dropbox.\n", + "002295.jpg\n", + "Uploaded 002295.jpg to Dropbox.\n", + "000192.jpg\n", + "Uploaded 000192.jpg to Dropbox.\n", + "001876.jpg\n", + "Uploaded 001876.jpg to Dropbox.\n", + "001049.jpg\n", + "Uploaded 001049.jpg to Dropbox.\n", + "000397.jpg\n", + "Uploaded 000397.jpg to Dropbox.\n", + "001641.jpg\n", + "Uploaded 001641.jpg to Dropbox.\n", + "001091.jpg\n", + "Uploaded 001091.jpg to Dropbox.\n", + "001499.jpg\n", + "Uploaded 001499.jpg to Dropbox.\n", + "000707.jpg\n", + "Uploaded 000707.jpg to Dropbox.\n", + "001587.jpg\n", + "Uploaded 001587.jpg to Dropbox.\n", + "000588.jpg\n", + "Uploaded 000588.jpg to Dropbox.\n", + "000288.jpg\n", + "Uploaded 000288.jpg to Dropbox.\n", + "000772.jpg\n", + "Uploaded 000772.jpg to Dropbox.\n", + "000060.jpg\n", + "Uploaded 000060.jpg to Dropbox.\n", + "001886.jpg\n", + "Uploaded 001886.jpg to Dropbox.\n", + "000221.jpg\n", + "Uploaded 000221.jpg to Dropbox.\n", + "000966.jpg\n", + "Uploaded 000966.jpg to Dropbox.\n", + "002472.jpg\n", + "Uploaded 002472.jpg to Dropbox.\n", + "000416.jpg\n", + "Uploaded 000416.jpg to Dropbox.\n", + "000184.jpg\n", + "Uploaded 000184.jpg to Dropbox.\n", + "000727.jpg\n", + "Uploaded 000727.jpg to Dropbox.\n", + "000413.jpg\n", + "Uploaded 000413.jpg to Dropbox.\n", + "002348.jpg\n", + "Uploaded 002348.jpg to Dropbox.\n", + "001042.jpg\n", + "Uploaded 001042.jpg to Dropbox.\n", + "002167.jpg\n", + "Uploaded 002167.jpg to Dropbox.\n", + "001289.jpg\n", + "Uploaded 001289.jpg to Dropbox.\n", + "002048.jpg\n", + "Uploaded 002048.jpg to Dropbox.\n", + "000554.jpg\n", + "Uploaded 000554.jpg to Dropbox.\n", + "001830.jpg\n", + "Uploaded 001830.jpg to Dropbox.\n", + "001721.jpg\n", + "Uploaded 001721.jpg to Dropbox.\n", + "002433.jpg\n", + "Uploaded 002433.jpg to Dropbox.\n", + "000710.jpg\n", + "Uploaded 000710.jpg to Dropbox.\n", + "001342.jpg\n", + "Uploaded 001342.jpg to Dropbox.\n", + "000361.jpg\n", + "Uploaded 000361.jpg to Dropbox.\n", + "001784.jpg\n", + "Uploaded 001784.jpg to Dropbox.\n", + "000112.jpg\n", + "Uploaded 000112.jpg to Dropbox.\n", + "001678.jpg\n", + "Uploaded 001678.jpg to Dropbox.\n", + "001868.jpg\n", + "Uploaded 001868.jpg to Dropbox.\n", + "001140.jpg\n", + "Uploaded 001140.jpg to Dropbox.\n", + "001263.jpg\n", + "Uploaded 001263.jpg to Dropbox.\n", + "001731.jpg\n", + "Uploaded 001731.jpg to Dropbox.\n", + "000906.jpg\n", + "Uploaded 000906.jpg to Dropbox.\n", + "001545.jpg\n", + "Uploaded 001545.jpg to Dropbox.\n", + "001206.jpg\n", + "Uploaded 001206.jpg to Dropbox.\n", + "001691.jpg\n", + "Uploaded 001691.jpg to Dropbox.\n", + "001925.jpg\n", + "Uploaded 001925.jpg to Dropbox.\n", + "001882.jpg\n", + "Uploaded 001882.jpg to Dropbox.\n", + "000627.jpg\n", + "Uploaded 000627.jpg to Dropbox.\n", + "000832.jpg\n", + "Uploaded 000832.jpg to Dropbox.\n", + "002409.jpg\n", + "Uploaded 002409.jpg to Dropbox.\n", + "000994.jpg\n", + "Uploaded 000994.jpg to Dropbox.\n", + "000435.jpg\n", + "Uploaded 000435.jpg to Dropbox.\n", + "001866.jpg\n", + "Uploaded 001866.jpg to Dropbox.\n", + "001899.jpg\n", + "Uploaded 001899.jpg to Dropbox.\n", + "001396.jpg\n", + "Uploaded 001396.jpg to Dropbox.\n", + "000503.jpg\n", + "Uploaded 000503.jpg to Dropbox.\n", + "000584.jpg\n", + "Uploaded 000584.jpg to Dropbox.\n", + "001173.jpg\n", + "Uploaded 001173.jpg to Dropbox.\n", + "002072.jpg\n", + "Uploaded 002072.jpg to Dropbox.\n", + "001124.jpg\n", + "Uploaded 001124.jpg to Dropbox.\n", + "000865.jpg\n", + "Uploaded 000865.jpg to Dropbox.\n", + "002287.jpg\n", + "Uploaded 002287.jpg to Dropbox.\n", + "000099.jpg\n", + "Uploaded 000099.jpg to Dropbox.\n", + "001381.jpg\n", + "Uploaded 001381.jpg to Dropbox.\n", + "000053.jpg\n", + "Uploaded 000053.jpg to Dropbox.\n", + "001316.jpg\n", + "Uploaded 001316.jpg to Dropbox.\n", + "002347.jpg\n", + "Uploaded 002347.jpg to Dropbox.\n", + "001138.jpg\n", + "Uploaded 001138.jpg to Dropbox.\n", + "001759.jpg\n", + "Uploaded 001759.jpg to Dropbox.\n", + "001048.jpg\n", + "Uploaded 001048.jpg to Dropbox.\n", + "000997.jpg\n", + "Uploaded 000997.jpg to Dropbox.\n", + "000240.jpg\n", + "Uploaded 000240.jpg to Dropbox.\n", + "000036.jpg\n", + "Uploaded 000036.jpg to Dropbox.\n", + "000111.jpg\n", + "Uploaded 000111.jpg to Dropbox.\n", + "001595.jpg\n", + "Uploaded 001595.jpg to Dropbox.\n", + "000325.jpg\n", + "Uploaded 000325.jpg to Dropbox.\n", + "000552.jpg\n", + "Uploaded 000552.jpg to Dropbox.\n", + "001214.jpg\n", + "Uploaded 001214.jpg to Dropbox.\n", + "001819.jpg\n", + "Uploaded 001819.jpg to Dropbox.\n", + "000927.jpg\n", + "Uploaded 000927.jpg to Dropbox.\n", + "001046.jpg\n", + "Uploaded 001046.jpg to Dropbox.\n", + "001368.jpg\n", + "Uploaded 001368.jpg to Dropbox.\n", + "002262.jpg\n", + "Uploaded 002262.jpg to Dropbox.\n", + "001573.jpg\n", + "Uploaded 001573.jpg to Dropbox.\n", + "000016.jpg\n", + "Uploaded 000016.jpg to Dropbox.\n", + "000556.jpg\n", + "Uploaded 000556.jpg to Dropbox.\n", + "000875.jpg\n", + "Uploaded 000875.jpg to Dropbox.\n", + "001083.jpg\n", + "Uploaded 001083.jpg to Dropbox.\n", + "000337.jpg\n", + "Uploaded 000337.jpg to Dropbox.\n", + "001004.jpg\n", + "Uploaded 001004.jpg to Dropbox.\n", + "001629.jpg\n", + "Uploaded 001629.jpg to Dropbox.\n", + "000280.jpg\n", + "Uploaded 000280.jpg to Dropbox.\n", + "001135.jpg\n", + "Uploaded 001135.jpg to Dropbox.\n", + "001310.jpg\n", + "Uploaded 001310.jpg to Dropbox.\n", + "001681.jpg\n", + "Uploaded 001681.jpg to Dropbox.\n", + "001950.jpg\n", + "Uploaded 001950.jpg to Dropbox.\n", + "001961.jpg\n", + "Uploaded 001961.jpg to Dropbox.\n", + "001122.jpg\n", + "Uploaded 001122.jpg to Dropbox.\n", + "000197.jpg\n", + "Uploaded 000197.jpg to Dropbox.\n", + "000728.jpg\n", + "Uploaded 000728.jpg to Dropbox.\n", + "002263.jpg\n", + "Uploaded 002263.jpg to Dropbox.\n", + "000035.jpg\n", + "Uploaded 000035.jpg to Dropbox.\n", + "002227.jpg\n", + "Uploaded 002227.jpg to Dropbox.\n", + "002168.jpg\n", + "Uploaded 002168.jpg to Dropbox.\n", + "001329.jpg\n", + "Uploaded 001329.jpg to Dropbox.\n", + "001707.jpg\n", + "Uploaded 001707.jpg to Dropbox.\n", + "001745.jpg\n", + "Uploaded 001745.jpg to Dropbox.\n", + "000182.jpg\n", + "Uploaded 000182.jpg to Dropbox.\n", + "001071.jpg\n", + "Uploaded 001071.jpg to Dropbox.\n", + "001568.jpg\n", + "Uploaded 001568.jpg to Dropbox.\n", + "002373.jpg\n", + "Uploaded 002373.jpg to Dropbox.\n", + "000686.jpg\n", + "Uploaded 000686.jpg to Dropbox.\n", + "000122.jpg\n", + "Uploaded 000122.jpg to Dropbox.\n", + "000894.jpg\n", + "Uploaded 000894.jpg to Dropbox.\n", + "001032.jpg\n", + "Uploaded 001032.jpg to Dropbox.\n", + "001401.jpg\n", + "Uploaded 001401.jpg to Dropbox.\n", + "001295.jpg\n", + "Uploaded 001295.jpg to Dropbox.\n", + "000301.jpg\n", + "Uploaded 000301.jpg to Dropbox.\n", + "000704.jpg\n", + "Uploaded 000704.jpg to Dropbox.\n", + "001427.jpg\n", + "Uploaded 001427.jpg to Dropbox.\n", + "001409.jpg\n", + "Uploaded 001409.jpg to Dropbox.\n", + "000002.jpg\n", + "Uploaded 000002.jpg to Dropbox.\n", + "001382.jpg\n", + "Uploaded 001382.jpg to Dropbox.\n", + "001689.jpg\n", + "Uploaded 001689.jpg to Dropbox.\n", + "001897.jpg\n", + "Uploaded 001897.jpg to Dropbox.\n", + "001477.jpg\n", + "Uploaded 001477.jpg to Dropbox.\n", + "001160.jpg\n", + "Uploaded 001160.jpg to Dropbox.\n", + "000080.jpg\n", + "Uploaded 000080.jpg to Dropbox.\n", + "001079.jpg\n", + "Uploaded 001079.jpg to Dropbox.\n", + "000278.jpg\n", + "Uploaded 000278.jpg to Dropbox.\n", + "001848.jpg\n", + "Uploaded 001848.jpg to Dropbox.\n", + "002268.jpg\n", + "Uploaded 002268.jpg to Dropbox.\n", + "000095.jpg\n", + "Uploaded 000095.jpg to Dropbox.\n", + "000614.jpg\n", + "Uploaded 000614.jpg to Dropbox.\n", + "001133.jpg\n", + "Uploaded 001133.jpg to Dropbox.\n", + "002175.jpg\n", + "Uploaded 002175.jpg to Dropbox.\n", + "002361.jpg\n", + "Uploaded 002361.jpg to Dropbox.\n", + "001052.jpg\n", + "Uploaded 001052.jpg to Dropbox.\n", + "000262.jpg\n", + "Uploaded 000262.jpg to Dropbox.\n", + "002124.jpg\n", + "Uploaded 002124.jpg to Dropbox.\n", + "002016.jpg\n", + "Uploaded 002016.jpg to Dropbox.\n", + "002351.jpg\n", + "Uploaded 002351.jpg to Dropbox.\n", + "002305.jpg\n", + "Uploaded 002305.jpg to Dropbox.\n", + "002280.jpg\n", + "Uploaded 002280.jpg to Dropbox.\n", + "000487.jpg\n", + "Uploaded 000487.jpg to Dropbox.\n", + "002438.jpg\n", + "Uploaded 002438.jpg to Dropbox.\n", + "000375.jpg\n", + "Uploaded 000375.jpg to Dropbox.\n", + "000861.jpg\n", + "Uploaded 000861.jpg to Dropbox.\n", + "001016.jpg\n", + "Uploaded 001016.jpg to Dropbox.\n", + "000679.jpg\n", + "Uploaded 000679.jpg to Dropbox.\n", + "001799.jpg\n", + "Uploaded 001799.jpg to Dropbox.\n", + "002380.jpg\n", + "Uploaded 002380.jpg to Dropbox.\n", + "002385.jpg\n", + "Uploaded 002385.jpg to Dropbox.\n", + "000424.jpg\n", + "Uploaded 000424.jpg to Dropbox.\n", + "000517.jpg\n", + "Uploaded 000517.jpg to Dropbox.\n", + "001688.jpg\n", + "Uploaded 001688.jpg to Dropbox.\n", + "001278.jpg\n", + "Uploaded 001278.jpg to Dropbox.\n", + "000347.jpg\n", + "Uploaded 000347.jpg to Dropbox.\n", + "002012.jpg\n", + "Uploaded 002012.jpg to Dropbox.\n", + "001534.jpg\n", + "Uploaded 001534.jpg to Dropbox.\n", + "001105.jpg\n", + "Uploaded 001105.jpg to Dropbox.\n", + "001015.jpg\n", + "Uploaded 001015.jpg to Dropbox.\n", + "000872.jpg\n", + "Uploaded 000872.jpg to Dropbox.\n", + "001739.jpg\n", + "Uploaded 001739.jpg to Dropbox.\n", + "000538.jpg\n", + "Uploaded 000538.jpg to Dropbox.\n", + "001954.jpg\n", + "Uploaded 001954.jpg to Dropbox.\n", + "000116.jpg\n", + "Uploaded 000116.jpg to Dropbox.\n", + "001749.jpg\n", + "Uploaded 001749.jpg to Dropbox.\n", + "002461.jpg\n", + "Uploaded 002461.jpg to Dropbox.\n", + "001227.jpg\n", + "Uploaded 001227.jpg to Dropbox.\n", + "001176.jpg\n", + "Uploaded 001176.jpg to Dropbox.\n", + "000027.jpg\n", + "Uploaded 000027.jpg to Dropbox.\n", + "000764.jpg\n", + "Uploaded 000764.jpg to Dropbox.\n", + "001626.jpg\n", + "Uploaded 001626.jpg to Dropbox.\n", + "000218.jpg\n", + "Uploaded 000218.jpg to Dropbox.\n", + "000143.jpg\n", + "Uploaded 000143.jpg to Dropbox.\n", + "000032.jpg\n", + "Uploaded 000032.jpg to Dropbox.\n", + "002065.jpg\n", + "Uploaded 002065.jpg to Dropbox.\n", + "000857.jpg\n", + "Uploaded 000857.jpg to Dropbox.\n", + "001279.jpg\n", + "Uploaded 001279.jpg to Dropbox.\n", + "002282.jpg\n", + "Uploaded 002282.jpg to Dropbox.\n", + "001588.jpg\n", + "Uploaded 001588.jpg to Dropbox.\n", + "000045.jpg\n", + "Uploaded 000045.jpg to Dropbox.\n", + "000668.jpg\n", + "Uploaded 000668.jpg to Dropbox.\n", + "002393.jpg\n", + "Uploaded 002393.jpg to Dropbox.\n", + "001578.jpg\n", + "Uploaded 001578.jpg to Dropbox.\n", + "000858.jpg\n", + "Uploaded 000858.jpg to Dropbox.\n", + "002185.jpg\n", + "Uploaded 002185.jpg to Dropbox.\n", + "001487.jpg\n", + "Uploaded 001487.jpg to Dropbox.\n", + "001607.jpg\n", + "Uploaded 001607.jpg to Dropbox.\n", + "002334.jpg\n", + "Uploaded 002334.jpg to Dropbox.\n", + "002466.jpg\n", + "Uploaded 002466.jpg to Dropbox.\n", + "000076.jpg\n", + "Uploaded 000076.jpg to Dropbox.\n", + "002177.jpg\n", + "Uploaded 002177.jpg to Dropbox.\n", + "000019.jpg\n", + "Uploaded 000019.jpg to Dropbox.\n", + "000217.jpg\n", + "Uploaded 000217.jpg to Dropbox.\n", + "002220.jpg\n", + "Uploaded 002220.jpg to Dropbox.\n", + "001134.jpg\n", + "Uploaded 001134.jpg to Dropbox.\n", + "001537.jpg\n", + "Uploaded 001537.jpg to Dropbox.\n", + "001445.jpg\n", + "Uploaded 001445.jpg to Dropbox.\n", + "001165.jpg\n", + "Uploaded 001165.jpg to Dropbox.\n", + "001770.jpg\n", + "Uploaded 001770.jpg to Dropbox.\n", + "000049.jpg\n", + "Uploaded 000049.jpg to Dropbox.\n", + "000513.jpg\n", + "Uploaded 000513.jpg to Dropbox.\n", + "000470.jpg\n", + "Uploaded 000470.jpg to Dropbox.\n", + "001199.jpg\n", + "Uploaded 001199.jpg to Dropbox.\n", + "001569.jpg\n", + "Uploaded 001569.jpg to Dropbox.\n", + "002469.jpg\n", + "Uploaded 002469.jpg to Dropbox.\n", + "001400.jpg\n", + "Uploaded 001400.jpg to Dropbox.\n", + "000725.jpg\n", + "Uploaded 000725.jpg to Dropbox.\n", + "000377.jpg\n", + "Uploaded 000377.jpg to Dropbox.\n", + "000051.jpg\n", + "Uploaded 000051.jpg to Dropbox.\n", + "000638.jpg\n", + "Uploaded 000638.jpg to Dropbox.\n", + "000780.jpg\n", + "Uploaded 000780.jpg to Dropbox.\n", + "002032.jpg\n", + "Uploaded 002032.jpg to Dropbox.\n", + "000626.jpg\n", + "Uploaded 000626.jpg to Dropbox.\n", + "002283.jpg\n", + "Uploaded 002283.jpg to Dropbox.\n", + "001291.jpg\n", + "Uploaded 001291.jpg to Dropbox.\n", + "000677.jpg\n", + "Uploaded 000677.jpg to Dropbox.\n", + "002064.jpg\n", + "Uploaded 002064.jpg to Dropbox.\n", + "002118.jpg\n", + "Uploaded 002118.jpg to Dropbox.\n", + "000520.jpg\n", + "Uploaded 000520.jpg to Dropbox.\n", + "000328.jpg\n", + "Uploaded 000328.jpg to Dropbox.\n", + "001919.jpg\n", + "Uploaded 001919.jpg to Dropbox.\n", + "002367.jpg\n", + "Uploaded 002367.jpg to Dropbox.\n", + "000608.jpg\n", + "Uploaded 000608.jpg to Dropbox.\n", + "001842.jpg\n", + "Uploaded 001842.jpg to Dropbox.\n", + "000943.jpg\n", + "Uploaded 000943.jpg to Dropbox.\n", + "001654.jpg\n", + "Uploaded 001654.jpg to Dropbox.\n", + "000382.jpg\n", + "Uploaded 000382.jpg to Dropbox.\n", + "000484.jpg\n", + "Uploaded 000484.jpg to Dropbox.\n", + "002285.jpg\n", + "Uploaded 002285.jpg to Dropbox.\n", + "001753.jpg\n", + "Uploaded 001753.jpg to Dropbox.\n", + "000403.jpg\n", + "Uploaded 000403.jpg to Dropbox.\n", + "001996.jpg\n", + "Uploaded 001996.jpg to Dropbox.\n", + "001171.jpg\n", + "Uploaded 001171.jpg to Dropbox.\n", + "000602.jpg\n", + "Uploaded 000602.jpg to Dropbox.\n", + "001644.jpg\n", + "Uploaded 001644.jpg to Dropbox.\n", + "000117.jpg\n", + "Uploaded 000117.jpg to Dropbox.\n", + "002219.jpg\n", + "Uploaded 002219.jpg to Dropbox.\n", + "001172.jpg\n", + "Uploaded 001172.jpg to Dropbox.\n", + "001865.jpg\n", + "Uploaded 001865.jpg to Dropbox.\n", + "001613.jpg\n", + "Uploaded 001613.jpg to Dropbox.\n", + "000587.jpg\n", + "Uploaded 000587.jpg to Dropbox.\n", + "000965.jpg\n", + "Uploaded 000965.jpg to Dropbox.\n", + "000898.jpg\n", + "Uploaded 000898.jpg to Dropbox.\n", + "000043.jpg\n", + "Uploaded 000043.jpg to Dropbox.\n", + "001469.jpg\n", + "Uploaded 001469.jpg to Dropbox.\n", + "001931.jpg\n", + "Uploaded 001931.jpg to Dropbox.\n", + "000268.jpg\n", + "Uploaded 000268.jpg to Dropbox.\n", + "000097.jpg\n", + "Uploaded 000097.jpg to Dropbox.\n", + "001261.jpg\n", + "Uploaded 001261.jpg to Dropbox.\n", + "001496.jpg\n", + "Uploaded 001496.jpg to Dropbox.\n", + "002281.jpg\n", + "Uploaded 002281.jpg to Dropbox.\n", + "001921.jpg\n", + "Uploaded 001921.jpg to Dropbox.\n", + "000917.jpg\n", + "Uploaded 000917.jpg to Dropbox.\n", + "000187.jpg\n", + "Uploaded 000187.jpg to Dropbox.\n", + "001761.jpg\n", + "Uploaded 001761.jpg to Dropbox.\n", + "001475.jpg\n", + "Uploaded 001475.jpg to Dropbox.\n", + "001985.jpg\n", + "Uploaded 001985.jpg to Dropbox.\n", + "002075.jpg\n", + "Uploaded 002075.jpg to Dropbox.\n", + "000443.jpg\n", + "Uploaded 000443.jpg to Dropbox.\n", + "000681.jpg\n", + "Uploaded 000681.jpg to Dropbox.\n", + "001646.jpg\n", + "Uploaded 001646.jpg to Dropbox.\n", + "000960.jpg\n", + "Uploaded 000960.jpg to Dropbox.\n", + "001335.jpg\n", + "Uploaded 001335.jpg to Dropbox.\n", + "002483.jpg\n", + "Uploaded 002483.jpg to Dropbox.\n", + "000306.jpg\n", + "Uploaded 000306.jpg to Dropbox.\n", + "000081.jpg\n", + "Uploaded 000081.jpg to Dropbox.\n", + "001715.jpg\n", + "Uploaded 001715.jpg to Dropbox.\n", + "002257.jpg\n", + "Uploaded 002257.jpg to Dropbox.\n", + "001407.jpg\n", + "Uploaded 001407.jpg to Dropbox.\n", + "001519.jpg\n", + "Uploaded 001519.jpg to Dropbox.\n", + "002196.jpg\n", + "Uploaded 002196.jpg to Dropbox.\n", + "001885.jpg\n", + "Uploaded 001885.jpg to Dropbox.\n", + "000343.jpg\n", + "Uploaded 000343.jpg to Dropbox.\n", + "000046.jpg\n", + "Uploaded 000046.jpg to Dropbox.\n", + "001612.jpg\n", + "Uploaded 001612.jpg to Dropbox.\n", + "000486.jpg\n", + "Uploaded 000486.jpg to Dropbox.\n", + "001064.jpg\n", + "Uploaded 001064.jpg to Dropbox.\n", + "001285.jpg\n", + "Uploaded 001285.jpg to Dropbox.\n", + "000805.jpg\n", + "Uploaded 000805.jpg to Dropbox.\n", + "000543.jpg\n", + "Uploaded 000543.jpg to Dropbox.\n", + "000126.jpg\n", + "Uploaded 000126.jpg to Dropbox.\n", + "001370.jpg\n", + "Uploaded 001370.jpg to Dropbox.\n", + "001550.jpg\n", + "Uploaded 001550.jpg to Dropbox.\n", + "000119.jpg\n", + "Uploaded 000119.jpg to Dropbox.\n", + "002474.jpg\n", + "Uploaded 002474.jpg to Dropbox.\n", + "000550.jpg\n", + "Uploaded 000550.jpg to Dropbox.\n", + "002146.jpg\n", + "Uploaded 002146.jpg to Dropbox.\n", + "002108.jpg\n", + "Uploaded 002108.jpg to Dropbox.\n", + "001413.jpg\n", + "Uploaded 001413.jpg to Dropbox.\n", + "000651.jpg\n", + "Uploaded 000651.jpg to Dropbox.\n", + "001030.jpg\n", + "Uploaded 001030.jpg to Dropbox.\n", + "002266.jpg\n", + "Uploaded 002266.jpg to Dropbox.\n", + "001318.jpg\n", + "Uploaded 001318.jpg to Dropbox.\n", + "002326.jpg\n", + "Uploaded 002326.jpg to Dropbox.\n", + "001193.jpg\n", + "Uploaded 001193.jpg to Dropbox.\n", + "000595.jpg\n", + "Uploaded 000595.jpg to Dropbox.\n", + "001875.jpg\n", + "Uploaded 001875.jpg to Dropbox.\n", + "002402.jpg\n", + "Uploaded 002402.jpg to Dropbox.\n", + "002142.jpg\n", + "Uploaded 002142.jpg to Dropbox.\n", + "001738.jpg\n", + "Uploaded 001738.jpg to Dropbox.\n", + "002255.jpg\n", + "Uploaded 002255.jpg to Dropbox.\n", + "000891.jpg\n", + "Uploaded 000891.jpg to Dropbox.\n", + "001448.jpg\n", + "Uploaded 001448.jpg to Dropbox.\n", + "001025.jpg\n", + "Uploaded 001025.jpg to Dropbox.\n", + "000933.jpg\n", + "Uploaded 000933.jpg to Dropbox.\n", + "001378.jpg\n", + "Uploaded 001378.jpg to Dropbox.\n", + "000212.jpg\n", + "Uploaded 000212.jpg to Dropbox.\n", + "000430.jpg\n", + "Uploaded 000430.jpg to Dropbox.\n", + "000372.jpg\n", + "Uploaded 000372.jpg to Dropbox.\n", + "002467.jpg\n", + "Uploaded 002467.jpg to Dropbox.\n", + "002225.jpg\n", + "Uploaded 002225.jpg to Dropbox.\n", + "000753.jpg\n", + "Uploaded 000753.jpg to Dropbox.\n", + "000139.jpg\n", + "Uploaded 000139.jpg to Dropbox.\n", + "000775.jpg\n", + "Uploaded 000775.jpg to Dropbox.\n", + "001456.jpg\n", + "Uploaded 001456.jpg to Dropbox.\n", + "001007.jpg\n", + "Uploaded 001007.jpg to Dropbox.\n", + "000607.jpg\n", + "Uploaded 000607.jpg to Dropbox.\n", + "002074.jpg\n", + "Uploaded 002074.jpg to Dropbox.\n", + "000656.jpg\n", + "Uploaded 000656.jpg to Dropbox.\n", + "001533.jpg\n", + "Uploaded 001533.jpg to Dropbox.\n", + "000434.jpg\n", + "Uploaded 000434.jpg to Dropbox.\n", + "001944.jpg\n", + "Uploaded 001944.jpg to Dropbox.\n", + "001521.jpg\n", + "Uploaded 001521.jpg to Dropbox.\n", + "000299.jpg\n", + "Uploaded 000299.jpg to Dropbox.\n", + "001940.jpg\n", + "Uploaded 001940.jpg to Dropbox.\n", + "000916.jpg\n", + "Uploaded 000916.jpg to Dropbox.\n", + "001863.jpg\n", + "Uploaded 001863.jpg to Dropbox.\n", + "001538.jpg\n", + "Uploaded 001538.jpg to Dropbox.\n", + "002208.jpg\n", + "Uploaded 002208.jpg to Dropbox.\n", + "002138.jpg\n", + "Uploaded 002138.jpg to Dropbox.\n", + "000159.jpg\n", + "Uploaded 000159.jpg to Dropbox.\n", + "001893.jpg\n", + "Uploaded 001893.jpg to Dropbox.\n", + "000616.jpg\n", + "Uploaded 000616.jpg to Dropbox.\n", + "001589.jpg\n", + "Uploaded 001589.jpg to Dropbox.\n", + "002071.jpg\n", + "Uploaded 002071.jpg to Dropbox.\n", + "000978.jpg\n", + "Uploaded 000978.jpg to Dropbox.\n", + "001345.jpg\n", + "Uploaded 001345.jpg to Dropbox.\n", + "001070.jpg\n", + "Uploaded 001070.jpg to Dropbox.\n", + "000666.jpg\n", + "Uploaded 000666.jpg to Dropbox.\n", + "001454.jpg\n", + "Uploaded 001454.jpg to Dropbox.\n", + "000446.jpg\n", + "Uploaded 000446.jpg to Dropbox.\n", + "001859.jpg\n", + "Uploaded 001859.jpg to Dropbox.\n", + "000830.jpg\n", + "Uploaded 000830.jpg to Dropbox.\n", + "001028.jpg\n", + "Uploaded 001028.jpg to Dropbox.\n", + "000781.jpg\n", + "Uploaded 000781.jpg to Dropbox.\n", + "000514.jpg\n", + "Uploaded 000514.jpg to Dropbox.\n", + "001226.jpg\n", + "Uploaded 001226.jpg to Dropbox.\n", + "000362.jpg\n", + "Uploaded 000362.jpg to Dropbox.\n", + "001608.jpg\n", + "Uploaded 001608.jpg to Dropbox.\n", + "001050.jpg\n", + "Uploaded 001050.jpg to Dropbox.\n", + "001918.jpg\n", + "Uploaded 001918.jpg to Dropbox.\n", + "000483.jpg\n", + "Uploaded 000483.jpg to Dropbox.\n", + "002230.jpg\n", + "Uploaded 002230.jpg to Dropbox.\n", + "001558.jpg\n", + "Uploaded 001558.jpg to Dropbox.\n", + "002149.jpg\n", + "Uploaded 002149.jpg to Dropbox.\n", + "002493.jpg\n", + "Uploaded 002493.jpg to Dropbox.\n", + "000974.jpg\n", + "Uploaded 000974.jpg to Dropbox.\n", + "000429.jpg\n", + "Uploaded 000429.jpg to Dropbox.\n", + "001617.jpg\n", + "Uploaded 001617.jpg to Dropbox.\n", + "000138.jpg\n", + "Uploaded 000138.jpg to Dropbox.\n", + "000619.jpg\n", + "Uploaded 000619.jpg to Dropbox.\n", + "000981.jpg\n", + "Uploaded 000981.jpg to Dropbox.\n", + "001782.jpg\n", + "Uploaded 001782.jpg to Dropbox.\n", + "000723.jpg\n", + "Uploaded 000723.jpg to Dropbox.\n", + "002001.jpg\n", + "Uploaded 002001.jpg to Dropbox.\n", + "002098.jpg\n", + "Uploaded 002098.jpg to Dropbox.\n", + "001364.jpg\n", + "Uploaded 001364.jpg to Dropbox.\n", + "000319.jpg\n", + "Uploaded 000319.jpg to Dropbox.\n", + "001352.jpg\n", + "Uploaded 001352.jpg to Dropbox.\n", + "001645.jpg\n", + "Uploaded 001645.jpg to Dropbox.\n", + "000827.jpg\n", + "Uploaded 000827.jpg to Dropbox.\n", + "001365.jpg\n", + "Uploaded 001365.jpg to Dropbox.\n", + "000329.jpg\n", + "Uploaded 000329.jpg to Dropbox.\n", + "000572.jpg\n", + "Uploaded 000572.jpg to Dropbox.\n", + "001480.jpg\n", + "Uploaded 001480.jpg to Dropbox.\n", + "001989.jpg\n", + "Uploaded 001989.jpg to Dropbox.\n", + "000562.jpg\n", + "Uploaded 000562.jpg to Dropbox.\n", + "000831.jpg\n", + "Uploaded 000831.jpg to Dropbox.\n", + "000431.jpg\n", + "Uploaded 000431.jpg to Dropbox.\n", + "000340.jpg\n", + "Uploaded 000340.jpg to Dropbox.\n", + "000297.jpg\n", + "Uploaded 000297.jpg to Dropbox.\n", + "002284.jpg\n", + "Uploaded 002284.jpg to Dropbox.\n", + "001282.jpg\n", + "Uploaded 001282.jpg to Dropbox.\n", + "001068.jpg\n", + "Uploaded 001068.jpg to Dropbox.\n", + "000313.jpg\n", + "Uploaded 000313.jpg to Dropbox.\n", + "001742.jpg\n", + "Uploaded 001742.jpg to Dropbox.\n", + "000124.jpg\n", + "Uploaded 000124.jpg to Dropbox.\n", + "001482.jpg\n", + "Uploaded 001482.jpg to Dropbox.\n", + "000691.jpg\n", + "Uploaded 000691.jpg to Dropbox.\n", + "002242.jpg\n", + "Uploaded 002242.jpg to Dropbox.\n", + "001661.jpg\n", + "Uploaded 001661.jpg to Dropbox.\n", + "000687.jpg\n", + "Uploaded 000687.jpg to Dropbox.\n", + "000745.jpg\n", + "Uploaded 000745.jpg to Dropbox.\n", + "001653.jpg\n", + "Uploaded 001653.jpg to Dropbox.\n", + "001304.jpg\n", + "Uploaded 001304.jpg to Dropbox.\n", + "002420.jpg\n", + "Uploaded 002420.jpg to Dropbox.\n", + "001911.jpg\n", + "Uploaded 001911.jpg to Dropbox.\n", + "000708.jpg\n", + "Uploaded 000708.jpg to Dropbox.\n", + "002251.jpg\n", + "Uploaded 002251.jpg to Dropbox.\n", + "000149.jpg\n", + "Uploaded 000149.jpg to Dropbox.\n", + "001202.jpg\n", + "Uploaded 001202.jpg to Dropbox.\n", + "001630.jpg\n", + "Uploaded 001630.jpg to Dropbox.\n", + "002369.jpg\n", + "Uploaded 002369.jpg to Dropbox.\n", + "001012.jpg\n", + "Uploaded 001012.jpg to Dropbox.\n", + "000639.jpg\n", + "Uploaded 000639.jpg to Dropbox.\n", + "000864.jpg\n", + "Uploaded 000864.jpg to Dropbox.\n", + "000628.jpg\n", + "Uploaded 000628.jpg to Dropbox.\n", + "002327.jpg\n", + "Uploaded 002327.jpg to Dropbox.\n", + "000227.jpg\n", + "Uploaded 000227.jpg to Dropbox.\n", + "002025.jpg\n", + "Uploaded 002025.jpg to Dropbox.\n", + "002137.jpg\n", + "Uploaded 002137.jpg to Dropbox.\n", + "001649.jpg\n", + "Uploaded 001649.jpg to Dropbox.\n", + "000930.jpg\n", + "Uploaded 000930.jpg to Dropbox.\n", + "000733.jpg\n", + "Uploaded 000733.jpg to Dropbox.\n", + "002357.jpg\n", + "Uploaded 002357.jpg to Dropbox.\n", + "001716.jpg\n", + "Uploaded 001716.jpg to Dropbox.\n", + "002103.jpg\n", + "Uploaded 002103.jpg to Dropbox.\n", + "000751.jpg\n", + "Uploaded 000751.jpg to Dropbox.\n", + "000606.jpg\n", + "Uploaded 000606.jpg to Dropbox.\n", + "001063.jpg\n", + "Uploaded 001063.jpg to Dropbox.\n", + "000636.jpg\n", + "Uploaded 000636.jpg to Dropbox.\n", + "001949.jpg\n", + "Uploaded 001949.jpg to Dropbox.\n", + "000883.jpg\n", + "Uploaded 000883.jpg to Dropbox.\n", + "001783.jpg\n", + "Uploaded 001783.jpg to Dropbox.\n", + "001990.jpg\n", + "Uploaded 001990.jpg to Dropbox.\n", + "000246.jpg\n", + "Uploaded 000246.jpg to Dropbox.\n", + "001771.jpg\n", + "Uploaded 001771.jpg to Dropbox.\n", + "000992.jpg\n", + "Uploaded 000992.jpg to Dropbox.\n", + "002105.jpg\n", + "Uploaded 002105.jpg to Dropbox.\n", + "001358.jpg\n", + "Uploaded 001358.jpg to Dropbox.\n", + "002229.jpg\n", + "Uploaded 002229.jpg to Dropbox.\n", + "001987.jpg\n", + "Uploaded 001987.jpg to Dropbox.\n", + "001581.jpg\n", + "Uploaded 001581.jpg to Dropbox.\n", + "001467.jpg\n", + "Uploaded 001467.jpg to Dropbox.\n", + "000946.jpg\n", + "Uploaded 000946.jpg to Dropbox.\n", + "001812.jpg\n", + "Uploaded 001812.jpg to Dropbox.\n", + "001058.jpg\n", + "Uploaded 001058.jpg to Dropbox.\n", + "001566.jpg\n", + "Uploaded 001566.jpg to Dropbox.\n", + "000678.jpg\n", + "Uploaded 000678.jpg to Dropbox.\n", + "001244.jpg\n", + "Uploaded 001244.jpg to Dropbox.\n", + "002330.jpg\n", + "Uploaded 002330.jpg to Dropbox.\n", + "001748.jpg\n", + "Uploaded 001748.jpg to Dropbox.\n", + "000064.jpg\n", + "Uploaded 000064.jpg to Dropbox.\n", + "000194.jpg\n", + "Uploaded 000194.jpg to Dropbox.\n", + "001591.jpg\n", + "Uploaded 001591.jpg to Dropbox.\n", + "000394.jpg\n", + "Uploaded 000394.jpg to Dropbox.\n", + "001324.jpg\n", + "Uploaded 001324.jpg to Dropbox.\n", + "000017.jpg\n", + "Uploaded 000017.jpg to Dropbox.\n", + "000972.jpg\n", + "Uploaded 000972.jpg to Dropbox.\n", + "000533.jpg\n", + "Uploaded 000533.jpg to Dropbox.\n", + "000652.jpg\n", + "Uploaded 000652.jpg to Dropbox.\n", + "000852.jpg\n", + "Uploaded 000852.jpg to Dropbox.\n", + "000478.jpg\n", + "Uploaded 000478.jpg to Dropbox.\n", + "001838.jpg\n", + "Uploaded 001838.jpg to Dropbox.\n", + "001658.jpg\n", + "Uploaded 001658.jpg to Dropbox.\n", + "001701.jpg\n", + "Uploaded 001701.jpg to Dropbox.\n", + "000591.jpg\n", + "Uploaded 000591.jpg to Dropbox.\n", + "000354.jpg\n", + "Uploaded 000354.jpg to Dropbox.\n", + "000374.jpg\n", + "Uploaded 000374.jpg to Dropbox.\n", + "000564.jpg\n", + "Uploaded 000564.jpg to Dropbox.\n", + "000191.jpg\n", + "Uploaded 000191.jpg to Dropbox.\n", + "000947.jpg\n", + "Uploaded 000947.jpg to Dropbox.\n", + "001359.jpg\n", + "Uploaded 001359.jpg to Dropbox.\n", + "001463.jpg\n", + "Uploaded 001463.jpg to Dropbox.\n", + "002183.jpg\n", + "Uploaded 002183.jpg to Dropbox.\n", + "001023.jpg\n", + "Uploaded 001023.jpg to Dropbox.\n", + "002318.jpg\n", + "Uploaded 002318.jpg to Dropbox.\n", + "000476.jpg\n", + "Uploaded 000476.jpg to Dropbox.\n", + "002412.jpg\n", + "Uploaded 002412.jpg to Dropbox.\n", + "002044.jpg\n", + "Uploaded 002044.jpg to Dropbox.\n", + "001144.jpg\n", + "Uploaded 001144.jpg to Dropbox.\n", + "001582.jpg\n", + "Uploaded 001582.jpg to Dropbox.\n", + "000955.jpg\n", + "Uploaded 000955.jpg to Dropbox.\n", + "000851.jpg\n", + "Uploaded 000851.jpg to Dropbox.\n", + "000593.jpg\n", + "Uploaded 000593.jpg to Dropbox.\n", + "001703.jpg\n", + "Uploaded 001703.jpg to Dropbox.\n", + "002391.jpg\n", + "Uploaded 002391.jpg to Dropbox.\n", + "001325.jpg\n", + "Uploaded 001325.jpg to Dropbox.\n", + "000473.jpg\n", + "Uploaded 000473.jpg to Dropbox.\n", + "002403.jpg\n", + "Uploaded 002403.jpg to Dropbox.\n", + "002004.jpg\n", + "Uploaded 002004.jpg to Dropbox.\n", + "001443.jpg\n", + "Uploaded 001443.jpg to Dropbox.\n", + "000625.jpg\n", + "Uploaded 000625.jpg to Dropbox.\n", + "000346.jpg\n", + "Uploaded 000346.jpg to Dropbox.\n", + "002421.jpg\n", + "Uploaded 002421.jpg to Dropbox.\n", + "001964.jpg\n", + "Uploaded 001964.jpg to Dropbox.\n", + "001425.jpg\n", + "Uploaded 001425.jpg to Dropbox.\n", + "000912.jpg\n", + "Uploaded 000912.jpg to Dropbox.\n", + "000438.jpg\n", + "Uploaded 000438.jpg to Dropbox.\n", + "000615.jpg\n", + "Uploaded 000615.jpg to Dropbox.\n", + "000352.jpg\n", + "Uploaded 000352.jpg to Dropbox.\n", + "002432.jpg\n", + "Uploaded 002432.jpg to Dropbox.\n", + "001754.jpg\n", + "Uploaded 001754.jpg to Dropbox.\n", + "000817.jpg\n", + "Uploaded 000817.jpg to Dropbox.\n", + "001415.jpg\n", + "Uploaded 001415.jpg to Dropbox.\n", + "001362.jpg\n", + "Uploaded 001362.jpg to Dropbox.\n", + "002294.jpg\n", + "Uploaded 002294.jpg to Dropbox.\n", + "000963.jpg\n", + "Uploaded 000963.jpg to Dropbox.\n", + "000534.jpg\n", + "Uploaded 000534.jpg to Dropbox.\n", + "001896.jpg\n", + "Uploaded 001896.jpg to Dropbox.\n", + "002376.jpg\n", + "Uploaded 002376.jpg to Dropbox.\n", + "002360.jpg\n", + "Uploaded 002360.jpg to Dropbox.\n", + "001528.jpg\n", + "Uploaded 001528.jpg to Dropbox.\n", + "000101.jpg\n", + "Uploaded 000101.jpg to Dropbox.\n", + "000516.jpg\n", + "Uploaded 000516.jpg to Dropbox.\n", + "001544.jpg\n", + "Uploaded 001544.jpg to Dropbox.\n", + "001619.jpg\n", + "Uploaded 001619.jpg to Dropbox.\n", + "002194.jpg\n", + "Uploaded 002194.jpg to Dropbox.\n", + "001890.jpg\n", + "Uploaded 001890.jpg to Dropbox.\n", + "000469.jpg\n", + "Uploaded 000469.jpg to Dropbox.\n", + "000170.jpg\n", + "Uploaded 000170.jpg to Dropbox.\n", + "001367.jpg\n", + "Uploaded 001367.jpg to Dropbox.\n", + "000999.jpg\n", + "Uploaded 000999.jpg to Dropbox.\n", + "000671.jpg\n", + "Uploaded 000671.jpg to Dropbox.\n", + "000876.jpg\n", + "Uploaded 000876.jpg to Dropbox.\n", + "000205.jpg\n", + "Uploaded 000205.jpg to Dropbox.\n", + "000548.jpg\n", + "Uploaded 000548.jpg to Dropbox.\n", + "000674.jpg\n", + "Uploaded 000674.jpg to Dropbox.\n", + "001087.jpg\n", + "Uploaded 001087.jpg to Dropbox.\n", + "002309.jpg\n", + "Uploaded 002309.jpg to Dropbox.\n", + "000066.jpg\n", + "Uploaded 000066.jpg to Dropbox.\n", + "002161.jpg\n", + "Uploaded 002161.jpg to Dropbox.\n", + "001326.jpg\n", + "Uploaded 001326.jpg to Dropbox.\n", + "000583.jpg\n", + "Uploaded 000583.jpg to Dropbox.\n", + "002082.jpg\n", + "Uploaded 002082.jpg to Dropbox.\n", + "001065.jpg\n", + "Uploaded 001065.jpg to Dropbox.\n", + "002042.jpg\n", + "Uploaded 002042.jpg to Dropbox.\n", + "001952.jpg\n", + "Uploaded 001952.jpg to Dropbox.\n", + "000654.jpg\n", + "Uploaded 000654.jpg to Dropbox.\n", + "001150.jpg\n", + "Uploaded 001150.jpg to Dropbox.\n", + "000181.jpg\n", + "Uploaded 000181.jpg to Dropbox.\n", + "000137.jpg\n", + "Uploaded 000137.jpg to Dropbox.\n", + "000571.jpg\n", + "Uploaded 000571.jpg to Dropbox.\n", + "002383.jpg\n", + "Uploaded 002383.jpg to Dropbox.\n", + "001966.jpg\n", + "Uploaded 001966.jpg to Dropbox.\n", + "002226.jpg\n", + "Uploaded 002226.jpg to Dropbox.\n", + "001384.jpg\n", + "Uploaded 001384.jpg to Dropbox.\n", + "000866.jpg\n", + "Uploaded 000866.jpg to Dropbox.\n", + "001331.jpg\n", + "Uploaded 001331.jpg to Dropbox.\n", + "000798.jpg\n", + "Uploaded 000798.jpg to Dropbox.\n", + "001385.jpg\n", + "Uploaded 001385.jpg to Dropbox.\n", + "001596.jpg\n", + "Uploaded 001596.jpg to Dropbox.\n", + "000145.jpg\n", + "Uploaded 000145.jpg to Dropbox.\n", + "000551.jpg\n", + "Uploaded 000551.jpg to Dropbox.\n", + "002224.jpg\n", + "Uploaded 002224.jpg to Dropbox.\n", + "000282.jpg\n", + "Uploaded 000282.jpg to Dropbox.\n", + "001394.jpg\n", + "Uploaded 001394.jpg to Dropbox.\n", + "001431.jpg\n", + "Uploaded 001431.jpg to Dropbox.\n", + "001095.jpg\n", + "Uploaded 001095.jpg to Dropbox.\n", + "000493.jpg\n", + "Uploaded 000493.jpg to Dropbox.\n", + "000467.jpg\n", + "Uploaded 000467.jpg to Dropbox.\n", + "000647.jpg\n", + "Uploaded 000647.jpg to Dropbox.\n", + "000813.jpg\n", + "Uploaded 000813.jpg to Dropbox.\n", + "000786.jpg\n", + "Uploaded 000786.jpg to Dropbox.\n", + "000004.jpg\n", + "Uploaded 000004.jpg to Dropbox.\n", + "001888.jpg\n", + "Uploaded 001888.jpg to Dropbox.\n", + "000777.jpg\n", + "Uploaded 000777.jpg to Dropbox.\n", + "000090.jpg\n", + "Uploaded 000090.jpg to Dropbox.\n", + "001616.jpg\n", + "Uploaded 001616.jpg to Dropbox.\n", + "000837.jpg\n", + "Uploaded 000837.jpg to Dropbox.\n", + "001564.jpg\n", + "Uploaded 001564.jpg to Dropbox.\n", + "001090.jpg\n", + "Uploaded 001090.jpg to Dropbox.\n", + "001913.jpg\n", + "Uploaded 001913.jpg to Dropbox.\n", + "002214.jpg\n", + "Uploaded 002214.jpg to Dropbox.\n", + "000363.jpg\n", + "Uploaded 000363.jpg to Dropbox.\n", + "000389.jpg\n", + "Uploaded 000389.jpg to Dropbox.\n", + "002154.jpg\n", + "Uploaded 002154.jpg to Dropbox.\n", + "001772.jpg\n", + "Uploaded 001772.jpg to Dropbox.\n", + "000364.jpg\n", + "Uploaded 000364.jpg to Dropbox.\n", + "002395.jpg\n", + "Uploaded 002395.jpg to Dropbox.\n", + "000800.jpg\n", + "Uploaded 000800.jpg to Dropbox.\n", + "000030.jpg\n", + "Uploaded 000030.jpg to Dropbox.\n", + "000959.jpg\n", + "Uploaded 000959.jpg to Dropbox.\n", + "000544.jpg\n", + "Uploaded 000544.jpg to Dropbox.\n", + "001520.jpg\n", + "Uploaded 001520.jpg to Dropbox.\n", + "000151.jpg\n", + "Uploaded 000151.jpg to Dropbox.\n", + "001765.jpg\n", + "Uploaded 001765.jpg to Dropbox.\n", + "000838.jpg\n", + "Uploaded 000838.jpg to Dropbox.\n", + "001692.jpg\n", + "Uploaded 001692.jpg to Dropbox.\n", + "000824.jpg\n", + "Uploaded 000824.jpg to Dropbox.\n", + "002094.jpg\n", + "Uploaded 002094.jpg to Dropbox.\n", + "000358.jpg\n", + "Uploaded 000358.jpg to Dropbox.\n", + "001887.jpg\n", + "Uploaded 001887.jpg to Dropbox.\n", + "000532.jpg\n", + "Uploaded 000532.jpg to Dropbox.\n", + "001695.jpg\n", + "Uploaded 001695.jpg to Dropbox.\n", + "002274.jpg\n", + "Uploaded 002274.jpg to Dropbox.\n", + "000185.jpg\n", + "Uploaded 000185.jpg to Dropbox.\n", + "001098.jpg\n", + "Uploaded 001098.jpg to Dropbox.\n", + "000789.jpg\n", + "Uploaded 000789.jpg to Dropbox.\n", + "000198.jpg\n", + "Uploaded 000198.jpg to Dropbox.\n", + "001733.jpg\n", + "Uploaded 001733.jpg to Dropbox.\n", + "000103.jpg\n", + "Uploaded 000103.jpg to Dropbox.\n", + "000489.jpg\n", + "Uploaded 000489.jpg to Dropbox.\n", + "000539.jpg\n", + "Uploaded 000539.jpg to Dropbox.\n", + "001910.jpg\n", + "Uploaded 001910.jpg to Dropbox.\n", + "002457.jpg\n", + "Uploaded 002457.jpg to Dropbox.\n", + "002170.jpg\n", + "Uploaded 002170.jpg to Dropbox.\n", + "001029.jpg\n", + "Uploaded 001029.jpg to Dropbox.\n", + "000247.jpg\n", + "Uploaded 000247.jpg to Dropbox.\n", + "001416.jpg\n", + "Uploaded 001416.jpg to Dropbox.\n", + "001452.jpg\n", + "Uploaded 001452.jpg to Dropbox.\n", + "000459.jpg\n", + "Uploaded 000459.jpg to Dropbox.\n", + "002265.jpg\n", + "Uploaded 002265.jpg to Dropbox.\n", + "001039.jpg\n", + "Uploaded 001039.jpg to Dropbox.\n", + "001356.jpg\n", + "Uploaded 001356.jpg to Dropbox.\n", + "000820.jpg\n", + "Uploaded 000820.jpg to Dropbox.\n", + "001119.jpg\n", + "Uploaded 001119.jpg to Dropbox.\n", + "000089.jpg\n", + "Uploaded 000089.jpg to Dropbox.\n", + "000954.jpg\n", + "Uploaded 000954.jpg to Dropbox.\n", + "001061.jpg\n", + "Uploaded 001061.jpg to Dropbox.\n", + "001017.jpg\n", + "Uploaded 001017.jpg to Dropbox.\n", + "002248.jpg\n", + "Uploaded 002248.jpg to Dropbox.\n", + "002355.jpg\n", + "Uploaded 002355.jpg to Dropbox.\n", + "000501.jpg\n", + "Uploaded 000501.jpg to Dropbox.\n", + "001340.jpg\n", + "Uploaded 001340.jpg to Dropbox.\n", + "000825.jpg\n", + "Uploaded 000825.jpg to Dropbox.\n", + "002104.jpg\n", + "Uploaded 002104.jpg to Dropbox.\n", + "002487.jpg\n", + "Uploaded 002487.jpg to Dropbox.\n", + "000557.jpg\n", + "Uploaded 000557.jpg to Dropbox.\n", + "002055.jpg\n", + "Uploaded 002055.jpg to Dropbox.\n", + "000190.jpg\n", + "Uploaded 000190.jpg to Dropbox.\n", + "000521.jpg\n", + "Uploaded 000521.jpg to Dropbox.\n", + "002008.jpg\n", + "Uploaded 002008.jpg to Dropbox.\n", + "000259.jpg\n", + "Uploaded 000259.jpg to Dropbox.\n", + "000808.jpg\n", + "Uploaded 000808.jpg to Dropbox.\n", + "002169.jpg\n", + "Uploaded 002169.jpg to Dropbox.\n", + "002350.jpg\n", + "Uploaded 002350.jpg to Dropbox.\n", + "001810.jpg\n", + "Uploaded 001810.jpg to Dropbox.\n", + "001874.jpg\n", + "Uploaded 001874.jpg to Dropbox.\n", + "000879.jpg\n", + "Uploaded 000879.jpg to Dropbox.\n", + "001623.jpg\n", + "Uploaded 001623.jpg to Dropbox.\n", + "002332.jpg\n", + "Uploaded 002332.jpg to Dropbox.\n", + "001914.jpg\n", + "Uploaded 001914.jpg to Dropbox.\n", + "001811.jpg\n", + "Uploaded 001811.jpg to Dropbox.\n", + "001909.jpg\n", + "Uploaded 001909.jpg to Dropbox.\n", + "001473.jpg\n", + "Uploaded 001473.jpg to Dropbox.\n", + "002181.jpg\n", + "Uploaded 002181.jpg to Dropbox.\n", + "001348.jpg\n", + "Uploaded 001348.jpg to Dropbox.\n", + "001062.jpg\n", + "Uploaded 001062.jpg to Dropbox.\n", + "002446.jpg\n", + "Uploaded 002446.jpg to Dropbox.\n", + "000929.jpg\n", + "Uploaded 000929.jpg to Dropbox.\n", + "000900.jpg\n", + "Uploaded 000900.jpg to Dropbox.\n", + "002304.jpg\n", + "Uploaded 002304.jpg to Dropbox.\n", + "001618.jpg\n", + "Uploaded 001618.jpg to Dropbox.\n", + "001699.jpg\n", + "Uploaded 001699.jpg to Dropbox.\n", + "000127.jpg\n", + "Uploaded 000127.jpg to Dropbox.\n", + "001800.jpg\n", + "Uploaded 001800.jpg to Dropbox.\n", + "001069.jpg\n", + "Uploaded 001069.jpg to Dropbox.\n", + "001522.jpg\n", + "Uploaded 001522.jpg to Dropbox.\n", + "002240.jpg\n", + "Uploaded 002240.jpg to Dropbox.\n", + "000176.jpg\n", + "Uploaded 000176.jpg to Dropbox.\n", + "002272.jpg\n", + "Uploaded 002272.jpg to Dropbox.\n", + "001621.jpg\n", + "Uploaded 001621.jpg to Dropbox.\n", + "001388.jpg\n", + "Uploaded 001388.jpg to Dropbox.\n", + "001981.jpg\n", + "Uploaded 001981.jpg to Dropbox.\n", + "001572.jpg\n", + "Uploaded 001572.jpg to Dropbox.\n", + "000314.jpg\n", + "Uploaded 000314.jpg to Dropbox.\n", + "000776.jpg\n", + "Uploaded 000776.jpg to Dropbox.\n", + "001565.jpg\n", + "Uploaded 001565.jpg to Dropbox.\n", + "000519.jpg\n", + "Uploaded 000519.jpg to Dropbox.\n", + "001554.jpg\n", + "Uploaded 001554.jpg to Dropbox.\n", + "000157.jpg\n", + "Uploaded 000157.jpg to Dropbox.\n", + "000600.jpg\n", + "Uploaded 000600.jpg to Dropbox.\n", + "002431.jpg\n", + "Uploaded 002431.jpg to Dropbox.\n", + "001414.jpg\n", + "Uploaded 001414.jpg to Dropbox.\n", + "001979.jpg\n", + "Uploaded 001979.jpg to Dropbox.\n", + "000456.jpg\n", + "Uploaded 000456.jpg to Dropbox.\n", + "000323.jpg\n", + "Uploaded 000323.jpg to Dropbox.\n", + "000854.jpg\n", + "Uploaded 000854.jpg to Dropbox.\n", + "000380.jpg\n", + "Uploaded 000380.jpg to Dropbox.\n", + "001881.jpg\n", + "Uploaded 001881.jpg to Dropbox.\n", + "001225.jpg\n", + "Uploaded 001225.jpg to Dropbox.\n", + "001001.jpg\n", + "Uploaded 001001.jpg to Dropbox.\n", + "000277.jpg\n", + "Uploaded 000277.jpg to Dropbox.\n", + "001553.jpg\n", + "Uploaded 001553.jpg to Dropbox.\n", + "000463.jpg\n", + "Uploaded 000463.jpg to Dropbox.\n", + "002193.jpg\n", + "Uploaded 002193.jpg to Dropbox.\n", + "001406.jpg\n", + "Uploaded 001406.jpg to Dropbox.\n", + "001043.jpg\n", + "Uploaded 001043.jpg to Dropbox.\n", + "002296.jpg\n", + "Uploaded 002296.jpg to Dropbox.\n", + "002136.jpg\n", + "Uploaded 002136.jpg to Dropbox.\n", + "001492.jpg\n", + "Uploaded 001492.jpg to Dropbox.\n", + "000492.jpg\n", + "Uploaded 000492.jpg to Dropbox.\n", + "002129.jpg\n", + "Uploaded 002129.jpg to Dropbox.\n", + "002213.jpg\n", + "Uploaded 002213.jpg to Dropbox.\n", + "000768.jpg\n", + "Uploaded 000768.jpg to Dropbox.\n", + "000569.jpg\n", + "Uploaded 000569.jpg to Dropbox.\n", + "001189.jpg\n", + "Uploaded 001189.jpg to Dropbox.\n", + "002052.jpg\n", + "Uploaded 002052.jpg to Dropbox.\n", + "001680.jpg\n", + "Uploaded 001680.jpg to Dropbox.\n", + "001483.jpg\n", + "Uploaded 001483.jpg to Dropbox.\n", + "002070.jpg\n", + "Uploaded 002070.jpg to Dropbox.\n", + "002019.jpg\n", + "Uploaded 002019.jpg to Dropbox.\n", + "001235.jpg\n", + "Uploaded 001235.jpg to Dropbox.\n", + "002435.jpg\n", + "Uploaded 002435.jpg to Dropbox.\n", + "001493.jpg\n", + "Uploaded 001493.jpg to Dropbox.\n", + "000524.jpg\n", + "Uploaded 000524.jpg to Dropbox.\n", + "000312.jpg\n", + "Uploaded 000312.jpg to Dropbox.\n", + "002083.jpg\n", + "Uploaded 002083.jpg to Dropbox.\n", + "000428.jpg\n", + "Uploaded 000428.jpg to Dropbox.\n", + "000985.jpg\n", + "Uploaded 000985.jpg to Dropbox.\n", + "002482.jpg\n", + "Uploaded 002482.jpg to Dropbox.\n", + "000530.jpg\n", + "Uploaded 000530.jpg to Dropbox.\n", + "000321.jpg\n", + "Uploaded 000321.jpg to Dropbox.\n", + "002396.jpg\n", + "Uploaded 002396.jpg to Dropbox.\n", + "001628.jpg\n", + "Uploaded 001628.jpg to Dropbox.\n", + "000264.jpg\n", + "Uploaded 000264.jpg to Dropbox.\n", + "001288.jpg\n", + "Uploaded 001288.jpg to Dropbox.\n", + "000694.jpg\n", + "Uploaded 000694.jpg to Dropbox.\n", + "001181.jpg\n", + "Uploaded 001181.jpg to Dropbox.\n", + "002378.jpg\n", + "Uploaded 002378.jpg to Dropbox.\n", + "002253.jpg\n", + "Uploaded 002253.jpg to Dropbox.\n", + "001179.jpg\n", + "Uploaded 001179.jpg to Dropbox.\n", + "001080.jpg\n", + "Uploaded 001080.jpg to Dropbox.\n", + "001939.jpg\n", + "Uploaded 001939.jpg to Dropbox.\n", + "000418.jpg\n", + "Uploaded 000418.jpg to Dropbox.\n", + "000711.jpg\n", + "Uploaded 000711.jpg to Dropbox.\n", + "002125.jpg\n", + "Uploaded 002125.jpg to Dropbox.\n", + "000750.jpg\n", + "Uploaded 000750.jpg to Dropbox.\n", + "000744.jpg\n", + "Uploaded 000744.jpg to Dropbox.\n", + "001114.jpg\n", + "Uploaded 001114.jpg to Dropbox.\n", + "001631.jpg\n", + "Uploaded 001631.jpg to Dropbox.\n", + "001984.jpg\n", + "Uploaded 001984.jpg to Dropbox.\n", + "001858.jpg\n", + "Uploaded 001858.jpg to Dropbox.\n", + "001313.jpg\n", + "Uploaded 001313.jpg to Dropbox.\n", + "000253.jpg\n", + "Uploaded 000253.jpg to Dropbox.\n", + "000731.jpg\n", + "Uploaded 000731.jpg to Dropbox.\n", + "000491.jpg\n", + "Uploaded 000491.jpg to Dropbox.\n", + "001796.jpg\n", + "Uploaded 001796.jpg to Dropbox.\n", + "001718.jpg\n", + "Uploaded 001718.jpg to Dropbox.\n", + "000318.jpg\n", + "Uploaded 000318.jpg to Dropbox.\n", + "000287.jpg\n", + "Uploaded 000287.jpg to Dropbox.\n", + "001798.jpg\n", + "Uploaded 001798.jpg to Dropbox.\n", + "002486.jpg\n", + "Uploaded 002486.jpg to Dropbox.\n", + "000512.jpg\n", + "Uploaded 000512.jpg to Dropbox.\n", + "000186.jpg\n", + "Uploaded 000186.jpg to Dropbox.\n", + "002448.jpg\n", + "Uploaded 002448.jpg to Dropbox.\n", + "001164.jpg\n", + "Uploaded 001164.jpg to Dropbox.\n", + "001086.jpg\n", + "Uploaded 001086.jpg to Dropbox.\n", + "002286.jpg\n", + "Uploaded 002286.jpg to Dropbox.\n", + "000242.jpg\n", + "Uploaded 000242.jpg to Dropbox.\n", + "001085.jpg\n", + "Uploaded 001085.jpg to Dropbox.\n", + "002231.jpg\n", + "Uploaded 002231.jpg to Dropbox.\n", + "001879.jpg\n", + "Uploaded 001879.jpg to Dropbox.\n", + "001512.jpg\n", + "Uploaded 001512.jpg to Dropbox.\n", + "001839.jpg\n", + "Uploaded 001839.jpg to Dropbox.\n", + "000642.jpg\n", + "Uploaded 000642.jpg to Dropbox.\n", + "000665.jpg\n", + "Uploaded 000665.jpg to Dropbox.\n", + "000756.jpg\n", + "Uploaded 000756.jpg to Dropbox.\n", + "002445.jpg\n", + "Uploaded 002445.jpg to Dropbox.\n", + "002292.jpg\n", + "Uploaded 002292.jpg to Dropbox.\n", + "001576.jpg\n", + "Uploaded 001576.jpg to Dropbox.\n", + "000547.jpg\n", + "Uploaded 000547.jpg to Dropbox.\n", + "002247.jpg\n", + "Uploaded 002247.jpg to Dropbox.\n", + "000255.jpg\n", + "Uploaded 000255.jpg to Dropbox.\n", + "001221.jpg\n", + "Uploaded 001221.jpg to Dropbox.\n", + "002325.jpg\n", + "Uploaded 002325.jpg to Dropbox.\n", + "001224.jpg\n", + "Uploaded 001224.jpg to Dropbox.\n", + "001713.jpg\n", + "Uploaded 001713.jpg to Dropbox.\n", + "000420.jpg\n", + "Uploaded 000420.jpg to Dropbox.\n", + "002328.jpg\n", + "Uploaded 002328.jpg to Dropbox.\n", + "002205.jpg\n", + "Uploaded 002205.jpg to Dropbox.\n", + "001634.jpg\n", + "Uploaded 001634.jpg to Dropbox.\n", + "001594.jpg\n", + "Uploaded 001594.jpg to Dropbox.\n", + "002358.jpg\n", + "Uploaded 002358.jpg to Dropbox.\n", + "001286.jpg\n", + "Uploaded 001286.jpg to Dropbox.\n", + "001327.jpg\n", + "Uploaded 001327.jpg to Dropbox.\n", + "000634.jpg\n", + "Uploaded 000634.jpg to Dropbox.\n", + "002207.jpg\n", + "Uploaded 002207.jpg to Dropbox.\n", + "001081.jpg\n", + "Uploaded 001081.jpg to Dropbox.\n", + "002303.jpg\n", + "Uploaded 002303.jpg to Dropbox.\n", + "000147.jpg\n", + "Uploaded 000147.jpg to Dropbox.\n", + "000991.jpg\n", + "Uploaded 000991.jpg to Dropbox.\n", + "000715.jpg\n", + "Uploaded 000715.jpg to Dropbox.\n", + "001169.jpg\n", + "Uploaded 001169.jpg to Dropbox.\n", + "001451.jpg\n", + "Uploaded 001451.jpg to Dropbox.\n", + "000146.jpg\n", + "Uploaded 000146.jpg to Dropbox.\n", + "000673.jpg\n", + "Uploaded 000673.jpg to Dropbox.\n", + "000041.jpg\n", + "Uploaded 000041.jpg to Dropbox.\n", + "002299.jpg\n", + "Uploaded 002299.jpg to Dropbox.\n", + "002371.jpg\n", + "Uploaded 002371.jpg to Dropbox.\n", + "001867.jpg\n", + "Uploaded 001867.jpg to Dropbox.\n", + "001767.jpg\n", + "Uploaded 001767.jpg to Dropbox.\n", + "000256.jpg\n", + "Uploaded 000256.jpg to Dropbox.\n", + "001041.jpg\n", + "Uploaded 001041.jpg to Dropbox.\n", + "000042.jpg\n", + "Uploaded 000042.jpg to Dropbox.\n", + "000449.jpg\n", + "Uploaded 000449.jpg to Dropbox.\n", + "001424.jpg\n", + "Uploaded 001424.jpg to Dropbox.\n", + "000709.jpg\n", + "Uploaded 000709.jpg to Dropbox.\n", + "001934.jpg\n", + "Uploaded 001934.jpg to Dropbox.\n", + "000193.jpg\n", + "Uploaded 000193.jpg to Dropbox.\n", + "002228.jpg\n", + "Uploaded 002228.jpg to Dropbox.\n", + "001529.jpg\n", + "Uploaded 001529.jpg to Dropbox.\n", + "000298.jpg\n", + "Uploaded 000298.jpg to Dropbox.\n", + "001033.jpg\n", + "Uploaded 001033.jpg to Dropbox.\n", + "000774.jpg\n", + "Uploaded 000774.jpg to Dropbox.\n", + "000409.jpg\n", + "Uploaded 000409.jpg to Dropbox.\n", + "000249.jpg\n", + "Uploaded 000249.jpg to Dropbox.\n", + "002180.jpg\n", + "Uploaded 002180.jpg to Dropbox.\n", + "002436.jpg\n", + "Uploaded 002436.jpg to Dropbox.\n", + "000762.jpg\n", + "Uploaded 000762.jpg to Dropbox.\n", + "000988.jpg\n", + "Uploaded 000988.jpg to Dropbox.\n", + "002034.jpg\n", + "Uploaded 002034.jpg to Dropbox.\n", + "002199.jpg\n", + "Uploaded 002199.jpg to Dropbox.\n", + "002159.jpg\n", + "Uploaded 002159.jpg to Dropbox.\n", + "000632.jpg\n", + "Uploaded 000632.jpg to Dropbox.\n", + "002444.jpg\n", + "Uploaded 002444.jpg to Dropbox.\n", + "001734.jpg\n", + "Uploaded 001734.jpg to Dropbox.\n", + "000243.jpg\n", + "Uploaded 000243.jpg to Dropbox.\n", + "002195.jpg\n", + "Uploaded 002195.jpg to Dropbox.\n", + "002322.jpg\n", + "Uploaded 002322.jpg to Dropbox.\n", + "001957.jpg\n", + "Uploaded 001957.jpg to Dropbox.\n", + "002288.jpg\n", + "Uploaded 002288.jpg to Dropbox.\n", + "002415.jpg\n", + "Uploaded 002415.jpg to Dropbox.\n", + "002132.jpg\n", + "Uploaded 002132.jpg to Dropbox.\n", + "002143.jpg\n", + "Uploaded 002143.jpg to Dropbox.\n", + "001873.jpg\n", + "Uploaded 001873.jpg to Dropbox.\n", + "000222.jpg\n", + "Uploaded 000222.jpg to Dropbox.\n", + "001021.jpg\n", + "Uploaded 001021.jpg to Dropbox.\n", + "000581.jpg\n", + "Uploaded 000581.jpg to Dropbox.\n", + "001627.jpg\n", + "Uploaded 001627.jpg to Dropbox.\n", + "000104.jpg\n", + "Uploaded 000104.jpg to Dropbox.\n", + "000518.jpg\n", + "Uploaded 000518.jpg to Dropbox.\n", + "000719.jpg\n", + "Uploaded 000719.jpg to Dropbox.\n", + "000515.jpg\n", + "Uploaded 000515.jpg to Dropbox.\n", + "000257.jpg\n", + "Uploaded 000257.jpg to Dropbox.\n", + "001789.jpg\n", + "Uploaded 001789.jpg to Dropbox.\n", + "000868.jpg\n", + "Uploaded 000868.jpg to Dropbox.\n", + "000788.jpg\n", + "Uploaded 000788.jpg to Dropbox.\n", + "000370.jpg\n", + "Uploaded 000370.jpg to Dropbox.\n", + "000549.jpg\n", + "Uploaded 000549.jpg to Dropbox.\n", + "000241.jpg\n", + "Uploaded 000241.jpg to Dropbox.\n", + "000603.jpg\n", + "Uploaded 000603.jpg to Dropbox.\n", + "001252.jpg\n", + "Uploaded 001252.jpg to Dropbox.\n", + "000398.jpg\n", + "Uploaded 000398.jpg to Dropbox.\n", + "002061.jpg\n", + "Uploaded 002061.jpg to Dropbox.\n", + "001751.jpg\n", + "Uploaded 001751.jpg to Dropbox.\n", + "001655.jpg\n", + "Uploaded 001655.jpg to Dropbox.\n", + "000204.jpg\n", + "Uploaded 000204.jpg to Dropbox.\n", + "000031.jpg\n", + "Uploaded 000031.jpg to Dropbox.\n", + "001153.jpg\n", + "Uploaded 001153.jpg to Dropbox.\n", + "001768.jpg\n", + "Uploaded 001768.jpg to Dropbox.\n", + "001213.jpg\n", + "Uploaded 001213.jpg to Dropbox.\n", + "000465.jpg\n", + "Uploaded 000465.jpg to Dropbox.\n", + "001870.jpg\n", + "Uploaded 001870.jpg to Dropbox.\n", + "001209.jpg\n", + "Uploaded 001209.jpg to Dropbox.\n", + "002017.jpg\n", + "Uploaded 002017.jpg to Dropbox.\n", + "001182.jpg\n", + "Uploaded 001182.jpg to Dropbox.\n", + "001988.jpg\n", + "Uploaded 001988.jpg to Dropbox.\n", + "001676.jpg\n", + "Uploaded 001676.jpg to Dropbox.\n", + "000869.jpg\n", + "Uploaded 000869.jpg to Dropbox.\n", + "000208.jpg\n", + "Uploaded 000208.jpg to Dropbox.\n", + "000646.jpg\n", + "Uploaded 000646.jpg to Dropbox.\n", + "001637.jpg\n", + "Uploaded 001637.jpg to Dropbox.\n", + "002454.jpg\n", + "Uploaded 002454.jpg to Dropbox.\n", + "000472.jpg\n", + "Uploaded 000472.jpg to Dropbox.\n", + "001155.jpg\n", + "Uploaded 001155.jpg to Dropbox.\n", + "000387.jpg\n", + "Uploaded 000387.jpg to Dropbox.\n", + "000427.jpg\n", + "Uploaded 000427.jpg to Dropbox.\n", + "000661.jpg\n", + "Uploaded 000661.jpg to Dropbox.\n", + "000044.jpg\n", + "Uploaded 000044.jpg to Dropbox.\n", + "002121.jpg\n", + "Uploaded 002121.jpg to Dropbox.\n", + "001702.jpg\n", + "Uploaded 001702.jpg to Dropbox.\n", + "000163.jpg\n", + "Uploaded 000163.jpg to Dropbox.\n", + "001146.jpg\n", + "Uploaded 001146.jpg to Dropbox.\n", + "001479.jpg\n", + "Uploaded 001479.jpg to Dropbox.\n", + "001389.jpg\n", + "Uploaded 001389.jpg to Dropbox.\n", + "001845.jpg\n", + "Uploaded 001845.jpg to Dropbox.\n", + "002397.jpg\n", + "Uploaded 002397.jpg to Dropbox.\n", + "001478.jpg\n", + "Uploaded 001478.jpg to Dropbox.\n", + "001435.jpg\n", + "Uploaded 001435.jpg to Dropbox.\n", + "002450.jpg\n", + "Uploaded 002450.jpg to Dropbox.\n", + "000293.jpg\n", + "Uploaded 000293.jpg to Dropbox.\n", + "000177.jpg\n", + "Uploaded 000177.jpg to Dropbox.\n", + "000440.jpg\n", + "Uploaded 000440.jpg to Dropbox.\n", + "000611.jpg\n", + "Uploaded 000611.jpg to Dropbox.\n", + "001673.jpg\n", + "Uploaded 001673.jpg to Dropbox.\n", + "000713.jpg\n", + "Uploaded 000713.jpg to Dropbox.\n", + "001861.jpg\n", + "Uploaded 001861.jpg to Dropbox.\n", + "000057.jpg\n", + "Uploaded 000057.jpg to Dropbox.\n", + "001543.jpg\n", + "Uploaded 001543.jpg to Dropbox.\n", + "000113.jpg\n", + "Uploaded 000113.jpg to Dropbox.\n", + "001290.jpg\n", + "Uploaded 001290.jpg to Dropbox.\n", + "001507.jpg\n", + "Uploaded 001507.jpg to Dropbox.\n", + "001096.jpg\n", + "Uploaded 001096.jpg to Dropbox.\n", + "001974.jpg\n", + "Uploaded 001974.jpg to Dropbox.\n", + "001849.jpg\n", + "Uploaded 001849.jpg to Dropbox.\n", + "000676.jpg\n", + "Uploaded 000676.jpg to Dropbox.\n", + "000118.jpg\n", + "Uploaded 000118.jpg to Dropbox.\n", + "001948.jpg\n", + "Uploaded 001948.jpg to Dropbox.\n", + "001836.jpg\n", + "Uploaded 001836.jpg to Dropbox.\n", + "002099.jpg\n", + "Uploaded 002099.jpg to Dropbox.\n", + "002390.jpg\n", + "Uploaded 002390.jpg to Dropbox.\n", + "002010.jpg\n", + "Uploaded 002010.jpg to Dropbox.\n", + "000109.jpg\n", + "Uploaded 000109.jpg to Dropbox.\n", + "002056.jpg\n", + "Uploaded 002056.jpg to Dropbox.\n", + "000115.jpg\n", + "Uploaded 000115.jpg to Dropbox.\n", + "002323.jpg\n", + "Uploaded 002323.jpg to Dropbox.\n", + "001208.jpg\n", + "Uploaded 001208.jpg to Dropbox.\n", + "001031.jpg\n", + "Uploaded 001031.jpg to Dropbox.\n", + "000573.jpg\n", + "Uploaded 000573.jpg to Dropbox.\n", + "001440.jpg\n", + "Uploaded 001440.jpg to Dropbox.\n", + "001685.jpg\n", + "Uploaded 001685.jpg to Dropbox.\n", + "000415.jpg\n", + "Uploaded 000415.jpg to Dropbox.\n", + "001118.jpg\n", + "Uploaded 001118.jpg to Dropbox.\n", + "001824.jpg\n", + "Uploaded 001824.jpg to Dropbox.\n", + "000888.jpg\n", + "Uploaded 000888.jpg to Dropbox.\n", + "000300.jpg\n", + "Uploaded 000300.jpg to Dropbox.\n", + "001728.jpg\n", + "Uploaded 001728.jpg to Dropbox.\n", + "001441.jpg\n", + "Uploaded 001441.jpg to Dropbox.\n", + "002368.jpg\n", + "Uploaded 002368.jpg to Dropbox.\n", + "000794.jpg\n", + "Uploaded 000794.jpg to Dropbox.\n", + "002386.jpg\n", + "Uploaded 002386.jpg to Dropbox.\n", + "001245.jpg\n", + "Uploaded 001245.jpg to Dropbox.\n", + "001506.jpg\n", + "Uploaded 001506.jpg to Dropbox.\n", + "002092.jpg\n", + "Uploaded 002092.jpg to Dropbox.\n", + "001339.jpg\n", + "Uploaded 001339.jpg to Dropbox.\n", + "001766.jpg\n", + "Uploaded 001766.jpg to Dropbox.\n", + "002223.jpg\n", + "Uploaded 002223.jpg to Dropbox.\n", + "001260.jpg\n", + "Uploaded 001260.jpg to Dropbox.\n", + "002050.jpg\n", + "Uploaded 002050.jpg to Dropbox.\n", + "000732.jpg\n", + "Uploaded 000732.jpg to Dropbox.\n", + "002259.jpg\n", + "Uploaded 002259.jpg to Dropbox.\n", + "001298.jpg\n", + "Uploaded 001298.jpg to Dropbox.\n", + "002465.jpg\n", + "Uploaded 002465.jpg to Dropbox.\n", + "002300.jpg\n", + "Uploaded 002300.jpg to Dropbox.\n", + "001237.jpg\n", + "Uploaded 001237.jpg to Dropbox.\n", + "000026.jpg\n", + "Uploaded 000026.jpg to Dropbox.\n", + "000010.jpg\n", + "Uploaded 000010.jpg to Dropbox.\n", + "002475.jpg\n", + "Uploaded 002475.jpg to Dropbox.\n", + "001541.jpg\n", + "Uploaded 001541.jpg to Dropbox.\n", + "001775.jpg\n", + "Uploaded 001775.jpg to Dropbox.\n", + "000688.jpg\n", + "Uploaded 000688.jpg to Dropbox.\n", + "001625.jpg\n", + "Uploaded 001625.jpg to Dropbox.\n", + "000693.jpg\n", + "Uploaded 000693.jpg to Dropbox.\n", + "000749.jpg\n", + "Uploaded 000749.jpg to Dropbox.\n", + "002480.jpg\n", + "Uploaded 002480.jpg to Dropbox.\n", + "000560.jpg\n", + "Uploaded 000560.jpg to Dropbox.\n", + "000275.jpg\n", + "Uploaded 000275.jpg to Dropbox.\n", + "001535.jpg\n", + "Uploaded 001535.jpg to Dropbox.\n", + "001665.jpg\n", + "Uploaded 001665.jpg to Dropbox.\n", + "001571.jpg\n", + "Uploaded 001571.jpg to Dropbox.\n", + "001667.jpg\n", + "Uploaded 001667.jpg to Dropbox.\n", + "002392.jpg\n", + "Uploaded 002392.jpg to Dropbox.\n", + "002269.jpg\n", + "Uploaded 002269.jpg to Dropbox.\n", + "000129.jpg\n", + "Uploaded 000129.jpg to Dropbox.\n", + "000592.jpg\n", + "Uploaded 000592.jpg to Dropbox.\n", + "000237.jpg\n", + "Uploaded 000237.jpg to Dropbox.\n", + "001190.jpg\n", + "Uploaded 001190.jpg to Dropbox.\n", + "000604.jpg\n", + "Uploaded 000604.jpg to Dropbox.\n", + "000381.jpg\n", + "Uploaded 000381.jpg to Dropbox.\n", + "001375.jpg\n", + "Uploaded 001375.jpg to Dropbox.\n", + "001884.jpg\n", + "Uploaded 001884.jpg to Dropbox.\n", + "001392.jpg\n", + "Uploaded 001392.jpg to Dropbox.\n", + "002428.jpg\n", + "Uploaded 002428.jpg to Dropbox.\n", + "002007.jpg\n", + "Uploaded 002007.jpg to Dropbox.\n", + "002329.jpg\n", + "Uploaded 002329.jpg to Dropbox.\n", + "000092.jpg\n", + "Uploaded 000092.jpg to Dropbox.\n", + "001660.jpg\n", + "Uploaded 001660.jpg to Dropbox.\n", + "000862.jpg\n", + "Uploaded 000862.jpg to Dropbox.\n", + "001962.jpg\n", + "Uploaded 001962.jpg to Dropbox.\n", + "000437.jpg\n", + "Uploaded 000437.jpg to Dropbox.\n", + "001088.jpg\n", + "Uploaded 001088.jpg to Dropbox.\n", + "001166.jpg\n", + "Uploaded 001166.jpg to Dropbox.\n", + "002473.jpg\n", + "Uploaded 002473.jpg to Dropbox.\n", + "001426.jpg\n", + "Uploaded 001426.jpg to Dropbox.\n", + "001302.jpg\n", + "Uploaded 001302.jpg to Dropbox.\n", + "001504.jpg\n", + "Uploaded 001504.jpg to Dropbox.\n", + "001752.jpg\n", + "Uploaded 001752.jpg to Dropbox.\n", + "001513.jpg\n", + "Uploaded 001513.jpg to Dropbox.\n", + "000274.jpg\n", + "Uploaded 000274.jpg to Dropbox.\n", + "000488.jpg\n", + "Uploaded 000488.jpg to Dropbox.\n", + "000621.jpg\n", + "Uploaded 000621.jpg to Dropbox.\n", + "000998.jpg\n", + "Uploaded 000998.jpg to Dropbox.\n", + "000290.jpg\n", + "Uploaded 000290.jpg to Dropbox.\n", + "000357.jpg\n", + "Uploaded 000357.jpg to Dropbox.\n", + "000100.jpg\n", + "Uploaded 000100.jpg to Dropbox.\n", + "001924.jpg\n", + "Uploaded 001924.jpg to Dropbox.\n", + "002173.jpg\n", + "Uploaded 002173.jpg to Dropbox.\n", + "000804.jpg\n", + "Uploaded 000804.jpg to Dropbox.\n", + "002413.jpg\n", + "Uploaded 002413.jpg to Dropbox.\n", + "000155.jpg\n", + "Uploaded 000155.jpg to Dropbox.\n", + "000730.jpg\n", + "Uploaded 000730.jpg to Dropbox.\n", + "000522.jpg\n", + "Uploaded 000522.jpg to Dropbox.\n", + "000689.jpg\n", + "Uploaded 000689.jpg to Dropbox.\n", + "002424.jpg\n", + "Uploaded 002424.jpg to Dropbox.\n", + "001037.jpg\n", + "Uploaded 001037.jpg to Dropbox.\n", + "002425.jpg\n", + "Uploaded 002425.jpg to Dropbox.\n", + "001820.jpg\n", + "Uploaded 001820.jpg to Dropbox.\n", + "001650.jpg\n", + "Uploaded 001650.jpg to Dropbox.\n", + "000878.jpg\n", + "Uploaded 000878.jpg to Dropbox.\n", + "001228.jpg\n", + "Uploaded 001228.jpg to Dropbox.\n", + "002013.jpg\n", + "Uploaded 002013.jpg to Dropbox.\n", + "002441.jpg\n", + "Uploaded 002441.jpg to Dropbox.\n", + "000479.jpg\n", + "Uploaded 000479.jpg to Dropbox.\n", + "002443.jpg\n", + "Uploaded 002443.jpg to Dropbox.\n", + "002157.jpg\n", + "Uploaded 002157.jpg to Dropbox.\n", + "001977.jpg\n", + "Uploaded 001977.jpg to Dropbox.\n", + "000585.jpg\n", + "Uploaded 000585.jpg to Dropbox.\n", + "000787.jpg\n", + "Uploaded 000787.jpg to Dropbox.\n", + "000993.jpg\n", + "Uploaded 000993.jpg to Dropbox.\n", + "001455.jpg\n", + "Uploaded 001455.jpg to Dropbox.\n", + "002423.jpg\n", + "Uploaded 002423.jpg to Dropbox.\n", + "001967.jpg\n", + "Uploaded 001967.jpg to Dropbox.\n", + "001597.jpg\n", + "Uploaded 001597.jpg to Dropbox.\n", + "001484.jpg\n", + "Uploaded 001484.jpg to Dropbox.\n", + "001242.jpg\n", + "Uploaded 001242.jpg to Dropbox.\n", + "002078.jpg\n", + "Uploaded 002078.jpg to Dropbox.\n", + "000309.jpg\n", + "Uploaded 000309.jpg to Dropbox.\n", + "002096.jpg\n", + "Uploaded 002096.jpg to Dropbox.\n", + "002261.jpg\n", + "Uploaded 002261.jpg to Dropbox.\n", + "000962.jpg\n", + "Uploaded 000962.jpg to Dropbox.\n", + "001686.jpg\n", + "Uploaded 001686.jpg to Dropbox.\n", + "001251.jpg\n", + "Uploaded 001251.jpg to Dropbox.\n", + "001497.jpg\n", + "Uploaded 001497.jpg to Dropbox.\n", + "001196.jpg\n", + "Uploaded 001196.jpg to Dropbox.\n", + "001659.jpg\n", + "Uploaded 001659.jpg to Dropbox.\n", + "000396.jpg\n", + "Uploaded 000396.jpg to Dropbox.\n", + "002029.jpg\n", + "Uploaded 002029.jpg to Dropbox.\n", + "001366.jpg\n", + "Uploaded 001366.jpg to Dropbox.\n", + "000005.jpg\n", + "Uploaded 000005.jpg to Dropbox.\n", + "000982.jpg\n", + "Uploaded 000982.jpg to Dropbox.\n", + "000360.jpg\n", + "Uploaded 000360.jpg to Dropbox.\n", + "001101.jpg\n", + "Uploaded 001101.jpg to Dropbox.\n", + "000067.jpg\n", + "Uploaded 000067.jpg to Dropbox.\n", + "001656.jpg\n", + "Uploaded 001656.jpg to Dropbox.\n", + "001726.jpg\n", + "Uploaded 001726.jpg to Dropbox.\n", + "002321.jpg\n", + "Uploaded 002321.jpg to Dropbox.\n", + "002453.jpg\n", + "Uploaded 002453.jpg to Dropbox.\n", + "000494.jpg\n", + "Uploaded 000494.jpg to Dropbox.\n", + "001500.jpg\n", + "Uploaded 001500.jpg to Dropbox.\n", + "001264.jpg\n", + "Uploaded 001264.jpg to Dropbox.\n", + "001056.jpg\n", + "Uploaded 001056.jpg to Dropbox.\n", + "002289.jpg\n", + "Uploaded 002289.jpg to Dropbox.\n", + "001999.jpg\n", + "Uploaded 001999.jpg to Dropbox.\n", + "000450.jpg\n", + "Uploaded 000450.jpg to Dropbox.\n", + "001035.jpg\n", + "Uploaded 001035.jpg to Dropbox.\n", + "001807.jpg\n", + "Uploaded 001807.jpg to Dropbox.\n", + "002140.jpg\n", + "Uploaded 002140.jpg to Dropbox.\n", + "000721.jpg\n", + "Uploaded 000721.jpg to Dropbox.\n", + "002320.jpg\n", + "Uploaded 002320.jpg to Dropbox.\n", + "000024.jpg\n", + "Uploaded 000024.jpg to Dropbox.\n", + "001053.jpg\n", + "Uploaded 001053.jpg to Dropbox.\n", + "001720.jpg\n", + "Uploaded 001720.jpg to Dropbox.\n", + "000474.jpg\n", + "Uploaded 000474.jpg to Dropbox.\n", + "002031.jpg\n", + "Uploaded 002031.jpg to Dropbox.\n", + "002176.jpg\n", + "Uploaded 002176.jpg to Dropbox.\n", + "000720.jpg\n", + "Uploaded 000720.jpg to Dropbox.\n", + "001038.jpg\n", + "Uploaded 001038.jpg to Dropbox.\n", + "000971.jpg\n", + "Uploaded 000971.jpg to Dropbox.\n", + "002112.jpg\n", + "Uploaded 002112.jpg to Dropbox.\n", + "000458.jpg\n", + "Uploaded 000458.jpg to Dropbox.\n", + "001254.jpg\n", + "Uploaded 001254.jpg to Dropbox.\n", + "000575.jpg\n", + "Uploaded 000575.jpg to Dropbox.\n", + "002179.jpg\n", + "Uploaded 002179.jpg to Dropbox.\n", + "000015.jpg\n", + "Uploaded 000015.jpg to Dropbox.\n", + "002191.jpg\n", + "Uploaded 002191.jpg to Dropbox.\n", + "000215.jpg\n", + "Uploaded 000215.jpg to Dropbox.\n", + "001577.jpg\n", + "Uploaded 001577.jpg to Dropbox.\n", + "001437.jpg\n", + "Uploaded 001437.jpg to Dropbox.\n", + "002023.jpg\n", + "Uploaded 002023.jpg to Dropbox.\n", + "001040.jpg\n", + "Uploaded 001040.jpg to Dropbox.\n", + "002162.jpg\n", + "Uploaded 002162.jpg to Dropbox.\n", + "002375.jpg\n", + "Uploaded 002375.jpg to Dropbox.\n", + "000563.jpg\n", + "Uploaded 000563.jpg to Dropbox.\n", + "000400.jpg\n", + "Uploaded 000400.jpg to Dropbox.\n", + "001663.jpg\n", + "Uploaded 001663.jpg to Dropbox.\n", + "001421.jpg\n", + "Uploaded 001421.jpg to Dropbox.\n", + "001904.jpg\n", + "Uploaded 001904.jpg to Dropbox.\n", + "001450.jpg\n", + "Uploaded 001450.jpg to Dropbox.\n", + "001346.jpg\n", + "Uploaded 001346.jpg to Dropbox.\n", + "002407.jpg\n", + "Uploaded 002407.jpg to Dropbox.\n", + "001236.jpg\n", + "Uploaded 001236.jpg to Dropbox.\n", + "000685.jpg\n", + "Uploaded 000685.jpg to Dropbox.\n", + "001351.jpg\n", + "Uploaded 001351.jpg to Dropbox.\n", + "000746.jpg\n", + "Uploaded 000746.jpg to Dropbox.\n", + "001833.jpg\n", + "Uploaded 001833.jpg to Dropbox.\n", + "000814.jpg\n", + "Uploaded 000814.jpg to Dropbox.\n", + "000923.jpg\n", + "Uploaded 000923.jpg to Dropbox.\n", + "000048.jpg\n", + "Uploaded 000048.jpg to Dropbox.\n", + "001998.jpg\n", + "Uploaded 001998.jpg to Dropbox.\n", + "000502.jpg\n", + "Uploaded 000502.jpg to Dropbox.\n", + "001969.jpg\n", + "Uploaded 001969.jpg to Dropbox.\n", + "000859.jpg\n", + "Uploaded 000859.jpg to Dropbox.\n", + "000631.jpg\n", + "Uploaded 000631.jpg to Dropbox.\n", + "000706.jpg\n", + "Uploaded 000706.jpg to Dropbox.\n", + "001729.jpg\n", + "Uploaded 001729.jpg to Dropbox.\n", + "001319.jpg\n", + "Uploaded 001319.jpg to Dropbox.\n", + "000166.jpg\n", + "Uploaded 000166.jpg to Dropbox.\n", + "001515.jpg\n", + "Uploaded 001515.jpg to Dropbox.\n", + "002089.jpg\n", + "Uploaded 002089.jpg to Dropbox.\n", + "000148.jpg\n", + "Uploaded 000148.jpg to Dropbox.\n", + "002366.jpg\n", + "Uploaded 002366.jpg to Dropbox.\n", + "001434.jpg\n", + "Uploaded 001434.jpg to Dropbox.\n", + "001827.jpg\n", + "Uploaded 001827.jpg to Dropbox.\n", + "000174.jpg\n", + "Uploaded 000174.jpg to Dropbox.\n", + "000797.jpg\n", + "Uploaded 000797.jpg to Dropbox.\n", + "001776.jpg\n", + "Uploaded 001776.jpg to Dropbox.\n", + "000816.jpg\n", + "Uploaded 000816.jpg to Dropbox.\n", + "000995.jpg\n", + "Uploaded 000995.jpg to Dropbox.\n", + "002080.jpg\n", + "Uploaded 002080.jpg to Dropbox.\n", + "001320.jpg\n", + "Uploaded 001320.jpg to Dropbox.\n", + "002190.jpg\n", + "Uploaded 002190.jpg to Dropbox.\n", + "001207.jpg\n", + "Uploaded 001207.jpg to Dropbox.\n", + "002382.jpg\n", + "Uploaded 002382.jpg to Dropbox.\n", + "002336.jpg\n", + "Uploaded 002336.jpg to Dropbox.\n", + "000937.jpg\n", + "Uploaded 000937.jpg to Dropbox.\n", + "000498.jpg\n", + "Uploaded 000498.jpg to Dropbox.\n", + "000270.jpg\n", + "Uploaded 000270.jpg to Dropbox.\n", + "002307.jpg\n", + "Uploaded 002307.jpg to Dropbox.\n", + "000150.jpg\n", + "Uploaded 000150.jpg to Dropbox.\n", + "002491.jpg\n", + "Uploaded 002491.jpg to Dropbox.\n", + "000448.jpg\n", + "Uploaded 000448.jpg to Dropbox.\n", + "001557.jpg\n", + "Uploaded 001557.jpg to Dropbox.\n", + "001296.jpg\n", + "Uploaded 001296.jpg to Dropbox.\n", + "000307.jpg\n", + "Uploaded 000307.jpg to Dropbox.\n", + "000485.jpg\n", + "Uploaded 000485.jpg to Dropbox.\n", + "002026.jpg\n", + "Uploaded 002026.jpg to Dropbox.\n", + "000792.jpg\n", + "Uploaded 000792.jpg to Dropbox.\n", + "000612.jpg\n", + "Uploaded 000612.jpg to Dropbox.\n", + "002418.jpg\n", + "Uploaded 002418.jpg to Dropbox.\n", + "002028.jpg\n", + "Uploaded 002028.jpg to Dropbox.\n", + "001177.jpg\n", + "Uploaded 001177.jpg to Dropbox.\n", + "002387.jpg\n", + "Uploaded 002387.jpg to Dropbox.\n", + "001878.jpg\n", + "Uploaded 001878.jpg to Dropbox.\n", + "001337.jpg\n", + "Uploaded 001337.jpg to Dropbox.\n", + "001104.jpg\n", + "Uploaded 001104.jpg to Dropbox.\n", + "001239.jpg\n", + "Uploaded 001239.jpg to Dropbox.\n", + "000291.jpg\n", + "Uploaded 000291.jpg to Dropbox.\n", + "000419.jpg\n", + "Uploaded 000419.jpg to Dropbox.\n", + "001257.jpg\n", + "Uploaded 001257.jpg to Dropbox.\n", + "001917.jpg\n", + "Uploaded 001917.jpg to Dropbox.\n", + "002315.jpg\n", + "Uploaded 002315.jpg to Dropbox.\n", + "001485.jpg\n", + "Uploaded 001485.jpg to Dropbox.\n", + "000986.jpg\n", + "Uploaded 000986.jpg to Dropbox.\n", + "001696.jpg\n", + "Uploaded 001696.jpg to Dropbox.\n", + "002033.jpg\n", + "Uploaded 002033.jpg to Dropbox.\n", + "001852.jpg\n", + "Uploaded 001852.jpg to Dropbox.\n", + "000877.jpg\n", + "Uploaded 000877.jpg to Dropbox.\n", + "000918.jpg\n", + "Uploaded 000918.jpg to Dropbox.\n", + "001960.jpg\n", + "Uploaded 001960.jpg to Dropbox.\n", + "001336.jpg\n", + "Uploaded 001336.jpg to Dropbox.\n", + "001312.jpg\n", + "Uploaded 001312.jpg to Dropbox.\n", + "000399.jpg\n", + "Uploaded 000399.jpg to Dropbox.\n", + "001255.jpg\n", + "Uploaded 001255.jpg to Dropbox.\n", + "000188.jpg\n", + "Uploaded 000188.jpg to Dropbox.\n", + "001980.jpg\n", + "Uploaded 001980.jpg to Dropbox.\n", + "000059.jpg\n", + "Uploaded 000059.jpg to Dropbox.\n", + "001802.jpg\n", + "Uploaded 001802.jpg to Dropbox.\n", + "001793.jpg\n", + "Uploaded 001793.jpg to Dropbox.\n", + "000211.jpg\n", + "Uploaded 000211.jpg to Dropbox.\n", + "000739.jpg\n", + "Uploaded 000739.jpg to Dropbox.\n", + "001804.jpg\n", + "Uploaded 001804.jpg to Dropbox.\n", + "001369.jpg\n", + "Uploaded 001369.jpg to Dropbox.\n", + "000408.jpg\n", + "Uploaded 000408.jpg to Dropbox.\n", + "000226.jpg\n", + "Uploaded 000226.jpg to Dropbox.\n", + "001614.jpg\n", + "Uploaded 001614.jpg to Dropbox.\n", + "000700.jpg\n", + "Uploaded 000700.jpg to Dropbox.\n", + "001253.jpg\n", + "Uploaded 001253.jpg to Dropbox.\n", + "002165.jpg\n", + "Uploaded 002165.jpg to Dropbox.\n", + "001280.jpg\n", + "Uploaded 001280.jpg to Dropbox.\n", + "000324.jpg\n", + "Uploaded 000324.jpg to Dropbox.\n", + "000320.jpg\n", + "Uploaded 000320.jpg to Dropbox.\n", + "001750.jpg\n", + "Uploaded 001750.jpg to Dropbox.\n", + "000941.jpg\n", + "Uploaded 000941.jpg to Dropbox.\n", + "000271.jpg\n", + "Uploaded 000271.jpg to Dropbox.\n", + "000910.jpg\n", + "Uploaded 000910.jpg to Dropbox.\n", + "002134.jpg\n", + "Uploaded 002134.jpg to Dropbox.\n", + "000000.jpg\n", + "Uploaded 000000.jpg to Dropbox.\n", + "002109.jpg\n", + "Uploaded 002109.jpg to Dropbox.\n", + "001204.jpg\n", + "Uploaded 001204.jpg to Dropbox.\n", + "000258.jpg\n", + "Uploaded 000258.jpg to Dropbox.\n", + "002115.jpg\n", + "Uploaded 002115.jpg to Dropbox.\n", + "001777.jpg\n", + "Uploaded 001777.jpg to Dropbox.\n", + "000232.jpg\n", + "Uploaded 000232.jpg to Dropbox.\n", + "000201.jpg\n", + "Uploaded 000201.jpg to Dropbox.\n", + "002088.jpg\n", + "Uploaded 002088.jpg to Dropbox.\n", + "000887.jpg\n", + "Uploaded 000887.jpg to Dropbox.\n", + "000085.jpg\n", + "Uploaded 000085.jpg to Dropbox.\n", + "001010.jpg\n", + "Uploaded 001010.jpg to Dropbox.\n", + "000351.jpg\n", + "Uploaded 000351.jpg to Dropbox.\n", + "000527.jpg\n", + "Uploaded 000527.jpg to Dropbox.\n", + "001632.jpg\n", + "Uploaded 001632.jpg to Dropbox.\n", + "001109.jpg\n", + "Uploaded 001109.jpg to Dropbox.\n", + "000034.jpg\n", + "Uploaded 000034.jpg to Dropbox.\n", + "002144.jpg\n", + "Uploaded 002144.jpg to Dropbox.\n", + "000967.jpg\n", + "Uploaded 000967.jpg to Dropbox.\n", + "000769.jpg\n", + "Uploaded 000769.jpg to Dropbox.\n", + "000006.jpg\n", + "Uploaded 000006.jpg to Dropbox.\n", + "002302.jpg\n", + "Uploaded 002302.jpg to Dropbox.\n", + "001233.jpg\n", + "Uploaded 001233.jpg to Dropbox.\n", + "001806.jpg\n", + "Uploaded 001806.jpg to Dropbox.\n", + "000697.jpg\n", + "Uploaded 000697.jpg to Dropbox.\n", + "000784.jpg\n", + "Uploaded 000784.jpg to Dropbox.\n", + "002057.jpg\n", + "Uploaded 002057.jpg to Dropbox.\n", + "001143.jpg\n", + "Uploaded 001143.jpg to Dropbox.\n", + "002126.jpg\n", + "Uploaded 002126.jpg to Dropbox.\n", + "001188.jpg\n", + "Uploaded 001188.jpg to Dropbox.\n", + "001540.jpg\n", + "Uploaded 001540.jpg to Dropbox.\n", + "000141.jpg\n", + "Uploaded 000141.jpg to Dropbox.\n", + "000821.jpg\n", + "Uploaded 000821.jpg to Dropbox.\n", + "000171.jpg\n", + "Uploaded 000171.jpg to Dropbox.\n", + "001003.jpg\n", + "Uploaded 001003.jpg to Dropbox.\n", + "002210.jpg\n", + "Uploaded 002210.jpg to Dropbox.\n", + "001725.jpg\n", + "Uploaded 001725.jpg to Dropbox.\n", + "001624.jpg\n", + "Uploaded 001624.jpg to Dropbox.\n", + "000028.jpg\n", + "Uploaded 000028.jpg to Dropbox.\n", + "001157.jpg\n", + "Uploaded 001157.jpg to Dropbox.\n", + "000669.jpg\n", + "Uploaded 000669.jpg to Dropbox.\n", + "000436.jpg\n", + "Uploaded 000436.jpg to Dropbox.\n", + "001024.jpg\n", + "Uploaded 001024.jpg to Dropbox.\n", + "001490.jpg\n", + "Uploaded 001490.jpg to Dropbox.\n", + "001604.jpg\n", + "Uploaded 001604.jpg to Dropbox.\n", + "000037.jpg\n", + "Uploaded 000037.jpg to Dropbox.\n", + "000610.jpg\n", + "Uploaded 000610.jpg to Dropbox.\n", + "000462.jpg\n", + "Uploaded 000462.jpg to Dropbox.\n", + "001453.jpg\n", + "Uploaded 001453.jpg to Dropbox.\n", + "001794.jpg\n", + "Uploaded 001794.jpg to Dropbox.\n", + "002198.jpg\n", + "Uploaded 002198.jpg to Dropbox.\n", + "000818.jpg\n", + "Uploaded 000818.jpg to Dropbox.\n", + "000635.jpg\n", + "Uploaded 000635.jpg to Dropbox.\n", + "002002.jpg\n", + "Uploaded 002002.jpg to Dropbox.\n", + "001687.jpg\n", + "Uploaded 001687.jpg to Dropbox.\n", + "000444.jpg\n", + "Uploaded 000444.jpg to Dropbox.\n", + "000664.jpg\n", + "Uploaded 000664.jpg to Dropbox.\n", + "002377.jpg\n", + "Uploaded 002377.jpg to Dropbox.\n", + "000210.jpg\n", + "Uploaded 000210.jpg to Dropbox.\n", + "001694.jpg\n", + "Uploaded 001694.jpg to Dropbox.\n", + "000236.jpg\n", + "Uploaded 000236.jpg to Dropbox.\n", + "001343.jpg\n", + "Uploaded 001343.jpg to Dropbox.\n", + "000834.jpg\n", + "Uploaded 000834.jpg to Dropbox.\n", + "002363.jpg\n", + "Uploaded 002363.jpg to Dropbox.\n", + "001764.jpg\n", + "Uploaded 001764.jpg to Dropbox.\n", + "001531.jpg\n", + "Uploaded 001531.jpg to Dropbox.\n", + "000765.jpg\n", + "Uploaded 000765.jpg to Dropbox.\n", + "001684.jpg\n", + "Uploaded 001684.jpg to Dropbox.\n", + "002306.jpg\n", + "Uploaded 002306.jpg to Dropbox.\n", + "000461.jpg\n", + "Uploaded 000461.jpg to Dropbox.\n", + "000979.jpg\n", + "Uploaded 000979.jpg to Dropbox.\n", + "000457.jpg\n", + "Uploaded 000457.jpg to Dropbox.\n", + "000793.jpg\n", + "Uploaded 000793.jpg to Dropbox.\n", + "002107.jpg\n", + "Uploaded 002107.jpg to Dropbox.\n", + "000096.jpg\n", + "Uploaded 000096.jpg to Dropbox.\n", + "001903.jpg\n", + "Uploaded 001903.jpg to Dropbox.\n", + "001051.jpg\n", + "Uploaded 001051.jpg to Dropbox.\n", + "001791.jpg\n", + "Uploaded 001791.jpg to Dropbox.\n", + "000932.jpg\n", + "Uploaded 000932.jpg to Dropbox.\n", + "000020.jpg\n", + "Uploaded 000020.jpg to Dropbox.\n", + "000504.jpg\n", + "Uploaded 000504.jpg to Dropbox.\n", + "002182.jpg\n", + "Uploaded 002182.jpg to Dropbox.\n", + "000890.jpg\n", + "Uploaded 000890.jpg to Dropbox.\n", + "001585.jpg\n", + "Uploaded 001585.jpg to Dropbox.\n", + "001013.jpg\n", + "Uploaded 001013.jpg to Dropbox.\n", + "002000.jpg\n", + "Uploaded 002000.jpg to Dropbox.\n", + "002290.jpg\n", + "Uploaded 002290.jpg to Dropbox.\n", + "000339.jpg\n", + "Uploaded 000339.jpg to Dropbox.\n", + "001397.jpg\n", + "Uploaded 001397.jpg to Dropbox.\n", + "000716.jpg\n", + "Uploaded 000716.jpg to Dropbox.\n", + "000281.jpg\n", + "Uploaded 000281.jpg to Dropbox.\n", + "001191.jpg\n", + "Uploaded 001191.jpg to Dropbox.\n", + "001773.jpg\n", + "Uploaded 001773.jpg to Dropbox.\n", + "000065.jpg\n", + "Uploaded 000065.jpg to Dropbox.\n", + "001200.jpg\n", + "Uploaded 001200.jpg to Dropbox.\n", + "001123.jpg\n", + "Uploaded 001123.jpg to Dropbox.\n", + "000897.jpg\n", + "Uploaded 000897.jpg to Dropbox.\n", + "000735.jpg\n", + "Uploaded 000735.jpg to Dropbox.\n", + "001997.jpg\n", + "Uploaded 001997.jpg to Dropbox.\n", + "001102.jpg\n", + "Uploaded 001102.jpg to Dropbox.\n", + "001276.jpg\n", + "Uploaded 001276.jpg to Dropbox.\n", + "000405.jpg\n", + "Uploaded 000405.jpg to Dropbox.\n", + "001926.jpg\n", + "Uploaded 001926.jpg to Dropbox.\n", + "000931.jpg\n", + "Uploaded 000931.jpg to Dropbox.\n", + "002341.jpg\n", + "Uploaded 002341.jpg to Dropbox.\n", + "000771.jpg\n", + "Uploaded 000771.jpg to Dropbox.\n", + "001956.jpg\n", + "Uploaded 001956.jpg to Dropbox.\n", + "000023.jpg\n", + "Uploaded 000023.jpg to Dropbox.\n", + "002339.jpg\n", + "Uploaded 002339.jpg to Dropbox.\n", + "001399.jpg\n", + "Uploaded 001399.jpg to Dropbox.\n", + "002128.jpg\n", + "Uploaded 002128.jpg to Dropbox.\n", + "001305.jpg\n", + "Uploaded 001305.jpg to Dropbox.\n", + "001084.jpg\n", + "Uploaded 001084.jpg to Dropbox.\n", + "002489.jpg\n", + "Uploaded 002489.jpg to Dropbox.\n", + "000425.jpg\n", + "Uploaded 000425.jpg to Dropbox.\n", + "001428.jpg\n", + "Uploaded 001428.jpg to Dropbox.\n", + "001633.jpg\n", + "Uploaded 001633.jpg to Dropbox.\n", + "001303.jpg\n", + "Uploaded 001303.jpg to Dropbox.\n", + "002270.jpg\n", + "Uploaded 002270.jpg to Dropbox.\n", + "001906.jpg\n", + "Uploaded 001906.jpg to Dropbox.\n", + "000353.jpg\n", + "Uploaded 000353.jpg to Dropbox.\n", + "000105.jpg\n", + "Uploaded 000105.jpg to Dropbox.\n", + "001082.jpg\n", + "Uploaded 001082.jpg to Dropbox.\n", + "000244.jpg\n", + "Uploaded 000244.jpg to Dropbox.\n", + "000935.jpg\n", + "Uploaded 000935.jpg to Dropbox.\n", + "001636.jpg\n", + "Uploaded 001636.jpg to Dropbox.\n", + "001986.jpg\n", + "Uploaded 001986.jpg to Dropbox.\n", + "002490.jpg\n", + "Uploaded 002490.jpg to Dropbox.\n", + "000296.jpg\n", + "Uploaded 000296.jpg to Dropbox.\n", + "001758.jpg\n", + "Uploaded 001758.jpg to Dropbox.\n", + "002235.jpg\n", + "Uploaded 002235.jpg to Dropbox.\n", + "001856.jpg\n", + "Uploaded 001856.jpg to Dropbox.\n", + "000508.jpg\n", + "Uploaded 000508.jpg to Dropbox.\n", + "000390.jpg\n", + "Uploaded 000390.jpg to Dropbox.\n", + "001183.jpg\n", + "Uploaded 001183.jpg to Dropbox.\n", + "000421.jpg\n", + "Uploaded 000421.jpg to Dropbox.\n", + "001563.jpg\n", + "Uploaded 001563.jpg to Dropbox.\n", + "000063.jpg\n", + "Uploaded 000063.jpg to Dropbox.\n", + "001472.jpg\n", + "Uploaded 001472.jpg to Dropbox.\n", + "000086.jpg\n", + "Uploaded 000086.jpg to Dropbox.\n", + "001355.jpg\n", + "Uploaded 001355.jpg to Dropbox.\n", + "001666.jpg\n", + "Uploaded 001666.jpg to Dropbox.\n", + "000084.jpg\n", + "Uploaded 000084.jpg to Dropbox.\n", + "002037.jpg\n", + "Uploaded 002037.jpg to Dropbox.\n", + "001709.jpg\n", + "Uploaded 001709.jpg to Dropbox.\n", + "002258.jpg\n", + "Uploaded 002258.jpg to Dropbox.\n", + "002346.jpg\n", + "Uploaded 002346.jpg to Dropbox.\n", + "001203.jpg\n", + "Uploaded 001203.jpg to Dropbox.\n", + "001301.jpg\n", + "Uploaded 001301.jpg to Dropbox.\n", + "000013.jpg\n", + "Uploaded 000013.jpg to Dropbox.\n", + "000402.jpg\n", + "Uploaded 000402.jpg to Dropbox.\n", + "002116.jpg\n", + "Uploaded 002116.jpg to Dropbox.\n", + "002085.jpg\n", + "Uploaded 002085.jpg to Dropbox.\n", + "001111.jpg\n", + "Uploaded 001111.jpg to Dropbox.\n", + "001417.jpg\n", + "Uploaded 001417.jpg to Dropbox.\n", + "001299.jpg\n", + "Uploaded 001299.jpg to Dropbox.\n", + "001178.jpg\n", + "Uploaded 001178.jpg to Dropbox.\n", + "001383.jpg\n", + "Uploaded 001383.jpg to Dropbox.\n", + "000565.jpg\n", + "Uploaded 000565.jpg to Dropbox.\n", + "001834.jpg\n", + "Uploaded 001834.jpg to Dropbox.\n", + "000695.jpg\n", + "Uploaded 000695.jpg to Dropbox.\n", + "000964.jpg\n", + "Uploaded 000964.jpg to Dropbox.\n", + "001860.jpg\n", + "Uploaded 001860.jpg to Dropbox.\n", + "000133.jpg\n", + "Uploaded 000133.jpg to Dropbox.\n", + "002352.jpg\n", + "Uploaded 002352.jpg to Dropbox.\n", + "001930.jpg\n", + "Uploaded 001930.jpg to Dropbox.\n", + "000763.jpg\n", + "Uploaded 000763.jpg to Dropbox.\n", + "000029.jpg\n", + "Uploaded 000029.jpg to Dropbox.\n", + "002416.jpg\n", + "Uploaded 002416.jpg to Dropbox.\n", + "000541.jpg\n", + "Uploaded 000541.jpg to Dropbox.\n", + "001514.jpg\n", + "Uploaded 001514.jpg to Dropbox.\n", + "001586.jpg\n", + "Uploaded 001586.jpg to Dropbox.\n", + "001714.jpg\n", + "Uploaded 001714.jpg to Dropbox.\n", + "000973.jpg\n", + "Uploaded 000973.jpg to Dropbox.\n", + "001433.jpg\n", + "Uploaded 001433.jpg to Dropbox.\n", + "001419.jpg\n", + "Uploaded 001419.jpg to Dropbox.\n", + "001503.jpg\n", + "Uploaded 001503.jpg to Dropbox.\n", + "001429.jpg\n", + "Uploaded 001429.jpg to Dropbox.\n", + "002166.jpg\n", + "Uploaded 002166.jpg to Dropbox.\n", + "000333.jpg\n", + "Uploaded 000333.jpg to Dropbox.\n", + "001757.jpg\n", + "Uploaded 001757.jpg to Dropbox.\n", + "002216.jpg\n", + "Uploaded 002216.jpg to Dropbox.\n", + "002084.jpg\n", + "Uploaded 002084.jpg to Dropbox.\n", + "001991.jpg\n", + "Uploaded 001991.jpg to Dropbox.\n", + "001959.jpg\n", + "Uploaded 001959.jpg to Dropbox.\n", + "001532.jpg\n", + "Uploaded 001532.jpg to Dropbox.\n", + "001272.jpg\n", + "Uploaded 001272.jpg to Dropbox.\n", + "000106.jpg\n", + "Uploaded 000106.jpg to Dropbox.\n", + "000881.jpg\n", + "Uploaded 000881.jpg to Dropbox.\n", + "001439.jpg\n", + "Uploaded 001439.jpg to Dropbox.\n", + "000417.jpg\n", + "Uploaded 000417.jpg to Dropbox.\n", + "001211.jpg\n", + "Uploaded 001211.jpg to Dropbox.\n", + "001943.jpg\n", + "Uploaded 001943.jpg to Dropbox.\n", + "001307.jpg\n", + "Uploaded 001307.jpg to Dropbox.\n", + "001170.jpg\n", + "Uploaded 001170.jpg to Dropbox.\n", + "001942.jpg\n", + "Uploaded 001942.jpg to Dropbox.\n", + "002256.jpg\n", + "Uploaded 002256.jpg to Dropbox.\n", + "001744.jpg\n", + "Uploaded 001744.jpg to Dropbox.\n", + "000649.jpg\n", + "Uploaded 000649.jpg to Dropbox.\n", + "000815.jpg\n", + "Uploaded 000815.jpg to Dropbox.\n", + "002221.jpg\n", + "Uploaded 002221.jpg to Dropbox.\n", + "000752.jpg\n", + "Uploaded 000752.jpg to Dropbox.\n", + "001851.jpg\n", + "Uploaded 001851.jpg to Dropbox.\n", + "001128.jpg\n", + "Uploaded 001128.jpg to Dropbox.\n", + "001373.jpg\n", + "Uploaded 001373.jpg to Dropbox.\n", + "001420.jpg\n", + "Uploaded 001420.jpg to Dropbox.\n", + "000500.jpg\n", + "Uploaded 000500.jpg to Dropbox.\n", + "002186.jpg\n", + "Uploaded 002186.jpg to Dropbox.\n", + "000660.jpg\n", + "Uploaded 000660.jpg to Dropbox.\n", + "000230.jpg\n", + "Uploaded 000230.jpg to Dropbox.\n", + "000455.jpg\n", + "Uploaded 000455.jpg to Dropbox.\n", + "000523.jpg\n", + "Uploaded 000523.jpg to Dropbox.\n", + "002209.jpg\n", + "Uploaded 002209.jpg to Dropbox.\n", + "001976.jpg\n", + "Uploaded 001976.jpg to Dropbox.\n", + "001353.jpg\n", + "Uploaded 001353.jpg to Dropbox.\n", + "001740.jpg\n", + "Uploaded 001740.jpg to Dropbox.\n", + "001780.jpg\n", + "Uploaded 001780.jpg to Dropbox.\n", + "000531.jpg\n", + "Uploaded 000531.jpg to Dropbox.\n", + "001717.jpg\n", + "Uploaded 001717.jpg to Dropbox.\n", + "001447.jpg\n", + "Uploaded 001447.jpg to Dropbox.\n", + "001240.jpg\n", + "Uploaded 001240.jpg to Dropbox.\n", + "000909.jpg\n", + "Uploaded 000909.jpg to Dropbox.\n", + "002492.jpg\n", + "Uploaded 002492.jpg to Dropbox.\n", + "002045.jpg\n", + "Uploaded 002045.jpg to Dropbox.\n", + "002477.jpg\n", + "Uploaded 002477.jpg to Dropbox.\n", + "001126.jpg\n", + "Uploaded 001126.jpg to Dropbox.\n", + "000884.jpg\n", + "Uploaded 000884.jpg to Dropbox.\n", + "001259.jpg\n", + "Uploaded 001259.jpg to Dropbox.\n", + "002246.jpg\n", + "Uploaded 002246.jpg to Dropbox.\n", + "000260.jpg\n", + "Uploaded 000260.jpg to Dropbox.\n", + "000867.jpg\n", + "Uploaded 000867.jpg to Dropbox.\n", + "000799.jpg\n", + "Uploaded 000799.jpg to Dropbox.\n", + "000853.jpg\n", + "Uploaded 000853.jpg to Dropbox.\n", + "001149.jpg\n", + "Uploaded 001149.jpg to Dropbox.\n", + "000712.jpg\n", + "Uploaded 000712.jpg to Dropbox.\n", + "001470.jpg\n", + "Uploaded 001470.jpg to Dropbox.\n", + "000108.jpg\n", + "Uploaded 000108.jpg to Dropbox.\n", + "001525.jpg\n", + "Uploaded 001525.jpg to Dropbox.\n", + "000650.jpg\n", + "Uploaded 000650.jpg to Dropbox.\n", + "001187.jpg\n", + "Uploaded 001187.jpg to Dropbox.\n", + "000175.jpg\n", + "Uploaded 000175.jpg to Dropbox.\n", + "001797.jpg\n", + "Uploaded 001797.jpg to Dropbox.\n", + "002314.jpg\n", + "Uploaded 002314.jpg to Dropbox.\n", + "000505.jpg\n", + "Uploaded 000505.jpg to Dropbox.\n", + "000158.jpg\n", + "Uploaded 000158.jpg to Dropbox.\n", + "000555.jpg\n", + "Uploaded 000555.jpg to Dropbox.\n", + "000055.jpg\n", + "Uploaded 000055.jpg to Dropbox.\n", + "000882.jpg\n", + "Uploaded 000882.jpg to Dropbox.\n", + "002481.jpg\n", + "Uploaded 002481.jpg to Dropbox.\n", + "001078.jpg\n", + "Uploaded 001078.jpg to Dropbox.\n", + "000957.jpg\n", + "Uploaded 000957.jpg to Dropbox.\n", + "001549.jpg\n", + "Uploaded 001549.jpg to Dropbox.\n", + "000773.jpg\n", + "Uploaded 000773.jpg to Dropbox.\n", + "000071.jpg\n", + "Uploaded 000071.jpg to Dropbox.\n", + "002301.jpg\n", + "Uploaded 002301.jpg to Dropbox.\n", + "001561.jpg\n", + "Uploaded 001561.jpg to Dropbox.\n", + "001894.jpg\n", + "Uploaded 001894.jpg to Dropbox.\n", + "001760.jpg\n", + "Uploaded 001760.jpg to Dropbox.\n", + "000863.jpg\n", + "Uploaded 000863.jpg to Dropbox.\n", + "000675.jpg\n", + "Uploaded 000675.jpg to Dropbox.\n", + "002488.jpg\n", + "Uploaded 002488.jpg to Dropbox.\n", + "001583.jpg\n", + "Uploaded 001583.jpg to Dropbox.\n", + "001184.jpg\n", + "Uploaded 001184.jpg to Dropbox.\n", + "000266.jpg\n", + "Uploaded 000266.jpg to Dropbox.\n", + "002359.jpg\n", + "Uploaded 002359.jpg to Dropbox.\n", + "002389.jpg\n", + "Uploaded 002389.jpg to Dropbox.\n", + "000770.jpg\n", + "Uploaded 000770.jpg to Dropbox.\n", + "000072.jpg\n", + "Uploaded 000072.jpg to Dropbox.\n", + "000365.jpg\n", + "Uploaded 000365.jpg to Dropbox.\n", + "001579.jpg\n", + "Uploaded 001579.jpg to Dropbox.\n", + "001622.jpg\n", + "Uploaded 001622.jpg to Dropbox.\n", + "002333.jpg\n", + "Uploaded 002333.jpg to Dropbox.\n", + "001638.jpg\n", + "Uploaded 001638.jpg to Dropbox.\n", + "000860.jpg\n", + "Uploaded 000860.jpg to Dropbox.\n", + "002202.jpg\n", + "Uploaded 002202.jpg to Dropbox.\n", + "000165.jpg\n", + "Uploaded 000165.jpg to Dropbox.\n", + "001411.jpg\n", + "Uploaded 001411.jpg to Dropbox.\n", + "002164.jpg\n", + "Uploaded 002164.jpg to Dropbox.\n", + "001923.jpg\n", + "Uploaded 001923.jpg to Dropbox.\n", + "000368.jpg\n", + "Uploaded 000368.jpg to Dropbox.\n", + "002427.jpg\n", + "Uploaded 002427.jpg to Dropbox.\n", + "000574.jpg\n", + "Uploaded 000574.jpg to Dropbox.\n", + "000442.jpg\n", + "Uploaded 000442.jpg to Dropbox.\n", + "001801.jpg\n", + "Uploaded 001801.jpg to Dropbox.\n", + "001036.jpg\n", + "Uploaded 001036.jpg to Dropbox.\n", + "000801.jpg\n", + "Uploaded 000801.jpg to Dropbox.\n", + "000453.jpg\n", + "Uploaded 000453.jpg to Dropbox.\n", + "000083.jpg\n", + "Uploaded 000083.jpg to Dropbox.\n", + "001422.jpg\n", + "Uploaded 001422.jpg to Dropbox.\n", + "002059.jpg\n", + "Uploaded 002059.jpg to Dropbox.\n", + "000623.jpg\n", + "Uploaded 000623.jpg to Dropbox.\n", + "001271.jpg\n", + "Uploaded 001271.jpg to Dropbox.\n", + "002313.jpg\n", + "Uploaded 002313.jpg to Dropbox.\n", + "001756.jpg\n", + "Uploaded 001756.jpg to Dropbox.\n", + "001265.jpg\n", + "Uploaded 001265.jpg to Dropbox.\n", + "002252.jpg\n", + "Uploaded 002252.jpg to Dropbox.\n", + "002091.jpg\n", + "Uploaded 002091.jpg to Dropbox.\n", + "000796.jpg\n", + "Uploaded 000796.jpg to Dropbox.\n", + "001662.jpg\n", + "Uploaded 001662.jpg to Dropbox.\n", + "001821.jpg\n", + "Uploaded 001821.jpg to Dropbox.\n", + "001432.jpg\n", + "Uploaded 001432.jpg to Dropbox.\n", + "001795.jpg\n", + "Uploaded 001795.jpg to Dropbox.\n", + "000672.jpg\n", + "Uploaded 000672.jpg to Dropbox.\n", + "002006.jpg\n", + "Uploaded 002006.jpg to Dropbox.\n", + "000233.jpg\n", + "Uploaded 000233.jpg to Dropbox.\n", + "000684.jpg\n", + "Uploaded 000684.jpg to Dropbox.\n", + "000618.jpg\n", + "Uploaded 000618.jpg to Dropbox.\n", + "000345.jpg\n", + "Uploaded 000345.jpg to Dropbox.\n", + "000014.jpg\n", + "Uploaded 000014.jpg to Dropbox.\n", + "000033.jpg\n", + "Uploaded 000033.jpg to Dropbox.\n", + "001047.jpg\n", + "Uploaded 001047.jpg to Dropbox.\n", + "001708.jpg\n", + "Uploaded 001708.jpg to Dropbox.\n", + "000025.jpg\n", + "Uploaded 000025.jpg to Dropbox.\n", + "000441.jpg\n", + "Uploaded 000441.jpg to Dropbox.\n", + "000196.jpg\n", + "Uploaded 000196.jpg to Dropbox.\n", + "002020.jpg\n", + "Uploaded 002020.jpg to Dropbox.\n", + "001222.jpg\n", + "Uploaded 001222.jpg to Dropbox.\n", + "000659.jpg\n", + "Uploaded 000659.jpg to Dropbox.\n", + "002095.jpg\n", + "Uploaded 002095.jpg to Dropbox.\n", + "001829.jpg\n", + "Uploaded 001829.jpg to Dropbox.\n", + "000939.jpg\n", + "Uploaded 000939.jpg to Dropbox.\n", + "001294.jpg\n", + "Uploaded 001294.jpg to Dropbox.\n", + "000922.jpg\n", + "Uploaded 000922.jpg to Dropbox.\n", + "001186.jpg\n", + "Uploaded 001186.jpg to Dropbox.\n", + "001635.jpg\n", + "Uploaded 001635.jpg to Dropbox.\n", + "001871.jpg\n", + "Uploaded 001871.jpg to Dropbox.\n", + "002447.jpg\n", + "Uploaded 002447.jpg to Dropbox.\n", + "002187.jpg\n", + "Uploaded 002187.jpg to Dropbox.\n", + "001669.jpg\n", + "Uploaded 001669.jpg to Dropbox.\n", + "002152.jpg\n", + "Uploaded 002152.jpg to Dropbox.\n", + "002471.jpg\n", + "Uploaded 002471.jpg to Dropbox.\n", + "000009.jpg\n", + "Uploaded 000009.jpg to Dropbox.\n", + "000826.jpg\n", + "Uploaded 000826.jpg to Dropbox.\n", + "001900.jpg\n", + "Uploaded 001900.jpg to Dropbox.\n", + "000341.jpg\n", + "Uploaded 000341.jpg to Dropbox.\n", + "000850.jpg\n", + "Uploaded 000850.jpg to Dropbox.\n", + "001073.jpg\n", + "Uploaded 001073.jpg to Dropbox.\n", + "002014.jpg\n", + "Uploaded 002014.jpg to Dropbox.\n", + "002278.jpg\n", + "Uploaded 002278.jpg to Dropbox.\n", + "001682.jpg\n", + "Uploaded 001682.jpg to Dropbox.\n", + "000892.jpg\n", + "Uploaded 000892.jpg to Dropbox.\n", + "000759.jpg\n", + "Uploaded 000759.jpg to Dropbox.\n", + "000848.jpg\n", + "Uploaded 000848.jpg to Dropbox.\n", + "001559.jpg\n", + "Uploaded 001559.jpg to Dropbox.\n", + "001805.jpg\n", + "Uploaded 001805.jpg to Dropbox.\n", + "001945.jpg\n", + "Uploaded 001945.jpg to Dropbox.\n", + "001946.jpg\n", + "Uploaded 001946.jpg to Dropbox.\n", + "000734.jpg\n", + "Uploaded 000734.jpg to Dropbox.\n", + "001019.jpg\n", + "Uploaded 001019.jpg to Dropbox.\n", + "001698.jpg\n", + "Uploaded 001698.jpg to Dropbox.\n", + "001570.jpg\n", + "Uploaded 001570.jpg to Dropbox.\n", + "000207.jpg\n", + "Uploaded 000207.jpg to Dropbox.\n", + "000283.jpg\n", + "Uploaded 000283.jpg to Dropbox.\n", + "000729.jpg\n", + "Uploaded 000729.jpg to Dropbox.\n", + "000332.jpg\n", + "Uploaded 000332.jpg to Dropbox.\n", + "001847.jpg\n", + "Uploaded 001847.jpg to Dropbox.\n", + "001246.jpg\n", + "Uploaded 001246.jpg to Dropbox.\n", + "000874.jpg\n", + "Uploaded 000874.jpg to Dropbox.\n", + "000098.jpg\n", + "Uploaded 000098.jpg to Dropbox.\n", + "001928.jpg\n", + "Uploaded 001928.jpg to Dropbox.\n", + "000542.jpg\n", + "Uploaded 000542.jpg to Dropbox.\n", + "001555.jpg\n", + "Uploaded 001555.jpg to Dropbox.\n", + "001719.jpg\n", + "Uploaded 001719.jpg to Dropbox.\n", + "000895.jpg\n", + "Uploaded 000895.jpg to Dropbox.\n", + "002027.jpg\n", + "Uploaded 002027.jpg to Dropbox.\n", + "001736.jpg\n", + "Uploaded 001736.jpg to Dropbox.\n", + "000135.jpg\n", + "Uploaded 000135.jpg to Dropbox.\n", + "002106.jpg\n", + "Uploaded 002106.jpg to Dropbox.\n", + "000648.jpg\n", + "Uploaded 000648.jpg to Dropbox.\n", + "001671.jpg\n", + "Uploaded 001671.jpg to Dropbox.\n", + "001816.jpg\n", + "Uploaded 001816.jpg to Dropbox.\n", + "002379.jpg\n", + "Uploaded 002379.jpg to Dropbox.\n", + "000724.jpg\n", + "Uploaded 000724.jpg to Dropbox.\n", + "001743.jpg\n", + "Uploaded 001743.jpg to Dropbox.\n", + "001423.jpg\n", + "Uploaded 001423.jpg to Dropbox.\n", + "000355.jpg\n", + "Uploaded 000355.jpg to Dropbox.\n", + "002184.jpg\n", + "Uploaded 002184.jpg to Dropbox.\n", + "002430.jpg\n", + "Uploaded 002430.jpg to Dropbox.\n", + "001275.jpg\n", + "Uploaded 001275.jpg to Dropbox.\n", + "001690.jpg\n", + "Uploaded 001690.jpg to Dropbox.\n", + "001722.jpg\n", + "Uploaded 001722.jpg to Dropbox.\n", + "000630.jpg\n", + "Uploaded 000630.jpg to Dropbox.\n", + "002204.jpg\n", + "Uploaded 002204.jpg to Dropbox.\n", + "001100.jpg\n", + "Uploaded 001100.jpg to Dropbox.\n", + "000366.jpg\n", + "Uploaded 000366.jpg to Dropbox.\n", + "002127.jpg\n", + "Uploaded 002127.jpg to Dropbox.\n", + "001462.jpg\n", + "Uploaded 001462.jpg to Dropbox.\n", + "002150.jpg\n", + "Uploaded 002150.jpg to Dropbox.\n", + "000308.jpg\n", + "Uploaded 000308.jpg to Dropbox.\n", + "002400.jpg\n", + "Uploaded 002400.jpg to Dropbox.\n", + "001395.jpg\n", + "Uploaded 001395.jpg to Dropbox.\n", + "001853.jpg\n", + "Uploaded 001853.jpg to Dropbox.\n", + "002260.jpg\n", + "Uploaded 002260.jpg to Dropbox.\n", + "001130.jpg\n", + "Uploaded 001130.jpg to Dropbox.\n", + "002123.jpg\n", + "Uploaded 002123.jpg to Dropbox.\n", + "002439.jpg\n", + "Uploaded 002439.jpg to Dropbox.\n", + "001008.jpg\n", + "Uploaded 001008.jpg to Dropbox.\n", + "000622.jpg\n", + "Uploaded 000622.jpg to Dropbox.\n", + "001247.jpg\n", + "Uploaded 001247.jpg to Dropbox.\n", + "002241.jpg\n", + "Uploaded 002241.jpg to Dropbox.\n", + "001706.jpg\n", + "Uploaded 001706.jpg to Dropbox.\n", + "000295.jpg\n", + "Uploaded 000295.jpg to Dropbox.\n", + "001393.jpg\n", + "Uploaded 001393.jpg to Dropbox.\n", + "001502.jpg\n", + "Uploaded 001502.jpg to Dropbox.\n", + "001234.jpg\n", + "Uploaded 001234.jpg to Dropbox.\n", + "000169.jpg\n", + "Uploaded 000169.jpg to Dropbox.\n", + "002111.jpg\n", + "Uploaded 002111.jpg to Dropbox.\n", + "001732.jpg\n", + "Uploaded 001732.jpg to Dropbox.\n", + "000546.jpg\n", + "Uploaded 000546.jpg to Dropbox.\n", + "002451.jpg\n", + "Uploaded 002451.jpg to Dropbox.\n", + "001468.jpg\n", + "Uploaded 001468.jpg to Dropbox.\n", + "000269.jpg\n", + "Uploaded 000269.jpg to Dropbox.\n", + "000371.jpg\n", + "Uploaded 000371.jpg to Dropbox.\n", + "001511.jpg\n", + "Uploaded 001511.jpg to Dropbox.\n", + "002049.jpg\n", + "Uploaded 002049.jpg to Dropbox.\n", + "000279.jpg\n", + "Uploaded 000279.jpg to Dropbox.\n", + "000495.jpg\n", + "Uploaded 000495.jpg to Dropbox.\n", + "000699.jpg\n", + "Uploaded 000699.jpg to Dropbox.\n", + "001778.jpg\n", + "Uploaded 001778.jpg to Dropbox.\n", + "000107.jpg\n", + "Uploaded 000107.jpg to Dropbox.\n", + "000577.jpg\n", + "Uploaded 000577.jpg to Dropbox.\n", + "001825.jpg\n", + "Uploaded 001825.jpg to Dropbox.\n", + "000445.jpg\n", + "Uploaded 000445.jpg to Dropbox.\n", + "000833.jpg\n", + "Uploaded 000833.jpg to Dropbox.\n", + "000537.jpg\n", + "Uploaded 000537.jpg to Dropbox.\n", + "000385.jpg\n", + "Uploaded 000385.jpg to Dropbox.\n", + "000261.jpg\n", + "Uploaded 000261.jpg to Dropbox.\n", + "000970.jpg\n", + "Uploaded 000970.jpg to Dropbox.\n", + "001387.jpg\n", + "Uploaded 001387.jpg to Dropbox.\n", + "000640.jpg\n", + "Uploaded 000640.jpg to Dropbox.\n", + "000558.jpg\n", + "Uploaded 000558.jpg to Dropbox.\n", + "001332.jpg\n", + "Uploaded 001332.jpg to Dropbox.\n", + "000743.jpg\n", + "Uploaded 000743.jpg to Dropbox.\n", + "001516.jpg\n", + "Uploaded 001516.jpg to Dropbox.\n", + "000248.jpg\n", + "Uploaded 000248.jpg to Dropbox.\n", + "002470.jpg\n", + "Uploaded 002470.jpg to Dropbox.\n", + "002038.jpg\n", + "Uploaded 002038.jpg to Dropbox.\n", + "002139.jpg\n", + "Uploaded 002139.jpg to Dropbox.\n", + "002342.jpg\n", + "Uploaded 002342.jpg to Dropbox.\n", + "002372.jpg\n", + "Uploaded 002372.jpg to Dropbox.\n", + "001817.jpg\n", + "Uploaded 001817.jpg to Dropbox.\n", + "001163.jpg\n", + "Uploaded 001163.jpg to Dropbox.\n", + "001747.jpg\n", + "Uploaded 001747.jpg to Dropbox.\n", + "000460.jpg\n", + "Uploaded 000460.jpg to Dropbox.\n", + "001139.jpg\n", + "Uploaded 001139.jpg to Dropbox.\n", + "000855.jpg\n", + "Uploaded 000855.jpg to Dropbox.\n", + "000655.jpg\n", + "Uploaded 000655.jpg to Dropbox.\n", + "000841.jpg\n", + "Uploaded 000841.jpg to Dropbox.\n", + "002276.jpg\n", + "Uploaded 002276.jpg to Dropbox.\n", + "001705.jpg\n", + "Uploaded 001705.jpg to Dropbox.\n", + "000717.jpg\n", + "Uploaded 000717.jpg to Dropbox.\n", + "001891.jpg\n", + "Uploaded 001891.jpg to Dropbox.\n", + "000849.jpg\n", + "Uploaded 000849.jpg to Dropbox.\n", + "001268.jpg\n", + "Uploaded 001268.jpg to Dropbox.\n", + "001216.jpg\n", + "Uploaded 001216.jpg to Dropbox.\n", + "001075.jpg\n", + "Uploaded 001075.jpg to Dropbox.\n", + "001826.jpg\n", + "Uploaded 001826.jpg to Dropbox.\n", + "000509.jpg\n", + "Uploaded 000509.jpg to Dropbox.\n", + "000945.jpg\n", + "Uploaded 000945.jpg to Dropbox.\n", + "000238.jpg\n", + "Uploaded 000238.jpg to Dropbox.\n", + "002388.jpg\n", + "Uploaded 002388.jpg to Dropbox.\n", + "000586.jpg\n", + "Uploaded 000586.jpg to Dropbox.\n", + "001574.jpg\n", + "Uploaded 001574.jpg to Dropbox.\n", + "002478.jpg\n", + "Uploaded 002478.jpg to Dropbox.\n", + "000903.jpg\n", + "Uploaded 000903.jpg to Dropbox.\n", + "002250.jpg\n", + "Uploaded 002250.jpg to Dropbox.\n", + "000220.jpg\n", + "Uploaded 000220.jpg to Dropbox.\n", + "001970.jpg\n", + "Uploaded 001970.jpg to Dropbox.\n", + "001258.jpg\n", + "Uploaded 001258.jpg to Dropbox.\n", + "002456.jpg\n", + "Uploaded 002456.jpg to Dropbox.\n", + "000968.jpg\n", + "Uploaded 000968.jpg to Dropbox.\n", + "002068.jpg\n", + "Uploaded 002068.jpg to Dropbox.\n", + "000267.jpg\n", + "Uploaded 000267.jpg to Dropbox.\n", + "001092.jpg\n", + "Uploaded 001092.jpg to Dropbox.\n", + "001693.jpg\n", + "Uploaded 001693.jpg to Dropbox.\n", + "001590.jpg\n", + "Uploaded 001590.jpg to Dropbox.\n", + "001735.jpg\n", + "Uploaded 001735.jpg to Dropbox.\n", + "000594.jpg\n", + "Uploaded 000594.jpg to Dropbox.\n", + "000136.jpg\n", + "Uploaded 000136.jpg to Dropbox.\n", + "000342.jpg\n", + "Uploaded 000342.jpg to Dropbox.\n", + "001841.jpg\n", + "Uploaded 001841.jpg to Dropbox.\n", + "002312.jpg\n", + "Uploaded 002312.jpg to Dropbox.\n", + "002131.jpg\n", + "Uploaded 002131.jpg to Dropbox.\n", + "000012.jpg\n", + "Uploaded 000012.jpg to Dropbox.\n", + "002419.jpg\n", + "Uploaded 002419.jpg to Dropbox.\n", + "001862.jpg\n", + "Uploaded 001862.jpg to Dropbox.\n", + "001360.jpg\n", + "Uploaded 001360.jpg to Dropbox.\n", + "000468.jpg\n", + "Uploaded 000468.jpg to Dropbox.\n", + "001094.jpg\n", + "Uploaded 001094.jpg to Dropbox.\n", + "001973.jpg\n", + "Uploaded 001973.jpg to Dropbox.\n", + "001920.jpg\n", + "Uploaded 001920.jpg to Dropbox.\n", + "000791.jpg\n", + "Uploaded 000791.jpg to Dropbox.\n", + "002426.jpg\n", + "Uploaded 002426.jpg to Dropbox.\n", + "001730.jpg\n", + "Uploaded 001730.jpg to Dropbox.\n", + "001458.jpg\n", + "Uploaded 001458.jpg to Dropbox.\n", + "000393.jpg\n", + "Uploaded 000393.jpg to Dropbox.\n", + "000406.jpg\n", + "Uploaded 000406.jpg to Dropbox.\n", + "002308.jpg\n", + "Uploaded 002308.jpg to Dropbox.\n", + "001600.jpg\n", + "Uploaded 001600.jpg to Dropbox.\n", + "002222.jpg\n", + "Uploaded 002222.jpg to Dropbox.\n", + "001347.jpg\n", + "Uploaded 001347.jpg to Dropbox.\n", + "001273.jpg\n", + "Uploaded 001273.jpg to Dropbox.\n", + "001180.jpg\n", + "Uploaded 001180.jpg to Dropbox.\n", + "001955.jpg\n", + "Uploaded 001955.jpg to Dropbox.\n", + "001076.jpg\n", + "Uploaded 001076.jpg to Dropbox.\n", + "001341.jpg\n", + "Uploaded 001341.jpg to Dropbox.\n", + "001846.jpg\n", + "Uploaded 001846.jpg to Dropbox.\n", + "000525.jpg\n", + "Uploaded 000525.jpg to Dropbox.\n", + "000082.jpg\n", + "Uploaded 000082.jpg to Dropbox.\n", + "000738.jpg\n", + "Uploaded 000738.jpg to Dropbox.\n", + "000682.jpg\n", + "Uploaded 000682.jpg to Dropbox.\n", + "001195.jpg\n", + "Uploaded 001195.jpg to Dropbox.\n", + "000088.jpg\n", + "Uploaded 000088.jpg to Dropbox.\n", + "002158.jpg\n", + "Uploaded 002158.jpg to Dropbox.\n", + "002036.jpg\n", + "Uploaded 002036.jpg to Dropbox.\n", + "000843.jpg\n", + "Uploaded 000843.jpg to Dropbox.\n", + "002003.jpg\n", + "Uploaded 002003.jpg to Dropbox.\n", + "002217.jpg\n", + "Uploaded 002217.jpg to Dropbox.\n", + "001983.jpg\n", + "Uploaded 001983.jpg to Dropbox.\n", + "001763.jpg\n", + "Uploaded 001763.jpg to Dropbox.\n", + "000566.jpg\n", + "Uploaded 000566.jpg to Dropbox.\n", + "001932.jpg\n", + "Uploaded 001932.jpg to Dropbox.\n", + "001792.jpg\n", + "Uploaded 001792.jpg to Dropbox.\n", + "001120.jpg\n", + "Uploaded 001120.jpg to Dropbox.\n", + "002076.jpg\n", + "Uploaded 002076.jpg to Dropbox.\n", + "000822.jpg\n", + "Uploaded 000822.jpg to Dropbox.\n", + "001542.jpg\n", + "Uploaded 001542.jpg to Dropbox.\n", + "002354.jpg\n", + "Uploaded 002354.jpg to Dropbox.\n", + "002077.jpg\n", + "Uploaded 002077.jpg to Dropbox.\n", + "000070.jpg\n", + "Uploaded 000070.jpg to Dropbox.\n", + "001232.jpg\n", + "Uploaded 001232.jpg to Dropbox.\n", + "000392.jpg\n", + "Uploaded 000392.jpg to Dropbox.\n", + "000376.jpg\n", + "Uploaded 000376.jpg to Dropbox.\n", + "000643.jpg\n", + "Uploaded 000643.jpg to Dropbox.\n", + "001672.jpg\n", + "Uploaded 001672.jpg to Dropbox.\n", + "000379.jpg\n", + "Uploaded 000379.jpg to Dropbox.\n", + "002460.jpg\n", + "Uploaded 002460.jpg to Dropbox.\n", + "000526.jpg\n", + "Uploaded 000526.jpg to Dropbox.\n", + "000054.jpg\n", + "Uploaded 000054.jpg to Dropbox.\n", + "001779.jpg\n", + "Uploaded 001779.jpg to Dropbox.\n", + "001546.jpg\n", + "Uploaded 001546.jpg to Dropbox.\n", + "001175.jpg\n", + "Uploaded 001175.jpg to Dropbox.\n", + "000162.jpg\n", + "Uploaded 000162.jpg to Dropbox.\n", + "000951.jpg\n", + "Uploaded 000951.jpg to Dropbox.\n", + "000702.jpg\n", + "Uploaded 000702.jpg to Dropbox.\n", + "001902.jpg\n", + "Uploaded 001902.jpg to Dropbox.\n", + "002344.jpg\n", + "Uploaded 002344.jpg to Dropbox.\n", + "002040.jpg\n", + "Uploaded 002040.jpg to Dropbox.\n", + "002081.jpg\n", + "Uploaded 002081.jpg to Dropbox.\n", + "000219.jpg\n", + "Uploaded 000219.jpg to Dropbox.\n", + "001168.jpg\n", + "Uploaded 001168.jpg to Dropbox.\n", + "000568.jpg\n", + "Uploaded 000568.jpg to Dropbox.\n", + "000383.jpg\n", + "Uploaded 000383.jpg to Dropbox.\n", + "001269.jpg\n", + "Uploaded 001269.jpg to Dropbox.\n", + "000589.jpg\n", + "Uploaded 000589.jpg to Dropbox.\n", + "002239.jpg\n", + "Uploaded 002239.jpg to Dropbox.\n", + "001647.jpg\n", + "Uploaded 001647.jpg to Dropbox.\n", + "001724.jpg\n", + "Uploaded 001724.jpg to Dropbox.\n", + "001371.jpg\n", + "Uploaded 001371.jpg to Dropbox.\n", + "000779.jpg\n", + "Uploaded 000779.jpg to Dropbox.\n", + "002479.jpg\n", + "Uploaded 002479.jpg to Dropbox.\n", + "002410.jpg\n", + "Uploaded 002410.jpg to Dropbox.\n", + "000292.jpg\n", + "Uploaded 000292.jpg to Dropbox.\n", + "000225.jpg\n", + "Uploaded 000225.jpg to Dropbox.\n", + "000303.jpg\n", + "Uploaded 000303.jpg to Dropbox.\n", + "000609.jpg\n", + "Uploaded 000609.jpg to Dropbox.\n", + "002024.jpg\n", + "Uploaded 002024.jpg to Dropbox.\n", + "001460.jpg\n", + "Uploaded 001460.jpg to Dropbox.\n", + "000644.jpg\n", + "Uploaded 000644.jpg to Dropbox.\n", + "000224.jpg\n", + "Uploaded 000224.jpg to Dropbox.\n", + "000331.jpg\n", + "Uploaded 000331.jpg to Dropbox.\n", + "001377.jpg\n", + "Uploaded 001377.jpg to Dropbox.\n", + "001219.jpg\n", + "Uploaded 001219.jpg to Dropbox.\n", + "002324.jpg\n", + "Uploaded 002324.jpg to Dropbox.\n", + "002401.jpg\n", + "Uploaded 002401.jpg to Dropbox.\n", + "001060.jpg\n", + "Uploaded 001060.jpg to Dropbox.\n", + "000596.jpg\n", + "Uploaded 000596.jpg to Dropbox.\n", + "000114.jpg\n", + "Uploaded 000114.jpg to Dropbox.\n", + "001937.jpg\n", + "Uploaded 001937.jpg to Dropbox.\n", + "001556.jpg\n", + "Uploaded 001556.jpg to Dropbox.\n", + "002135.jpg\n", + "Uploaded 002135.jpg to Dropbox.\n", + "001953.jpg\n", + "Uploaded 001953.jpg to Dropbox.\n", + "000334.jpg\n", + "Uploaded 000334.jpg to Dropbox.\n", + "001877.jpg\n", + "Uploaded 001877.jpg to Dropbox.\n", + "000809.jpg\n", + "Uploaded 000809.jpg to Dropbox.\n", + "002485.jpg\n", + "Uploaded 002485.jpg to Dropbox.\n", + "002054.jpg\n", + "Uploaded 002054.jpg to Dropbox.\n", + "001787.jpg\n", + "Uploaded 001787.jpg to Dropbox.\n", + "001606.jpg\n", + "Uploaded 001606.jpg to Dropbox.\n", + "000570.jpg\n", + "Uploaded 000570.jpg to Dropbox.\n", + "001723.jpg\n", + "Uploaded 001723.jpg to Dropbox.\n", + "001471.jpg\n", + "Uploaded 001471.jpg to Dropbox.\n", + "000466.jpg\n", + "Uploaded 000466.jpg to Dropbox.\n", + "000535.jpg\n", + "Uploaded 000535.jpg to Dropbox.\n", + "002005.jpg\n", + "Uploaded 002005.jpg to Dropbox.\n", + "002153.jpg\n", + "Uploaded 002153.jpg to Dropbox.\n", + "001156.jpg\n", + "Uploaded 001156.jpg to Dropbox.\n", + "000553.jpg\n", + "Uploaded 000553.jpg to Dropbox.\n", + "001912.jpg\n", + "Uploaded 001912.jpg to Dropbox.\n", + "000506.jpg\n", + "Uploaded 000506.jpg to Dropbox.\n", + "000561.jpg\n", + "Uploaded 000561.jpg to Dropbox.\n", + "002093.jpg\n", + "Uploaded 002093.jpg to Dropbox.\n", + "001814.jpg\n", + "Uploaded 001814.jpg to Dropbox.\n", + "001238.jpg\n", + "Uploaded 001238.jpg to Dropbox.\n", + "002211.jpg\n", + "Uploaded 002211.jpg to Dropbox.\n", + "001436.jpg\n", + "Uploaded 001436.jpg to Dropbox.\n", + "000206.jpg\n", + "Uploaded 000206.jpg to Dropbox.\n", + "002408.jpg\n", + "Uploaded 002408.jpg to Dropbox.\n", + "000018.jpg\n", + "Uploaded 000018.jpg to Dropbox.\n", + "001602.jpg\n", + "Uploaded 001602.jpg to Dropbox.\n", + "000128.jpg\n", + "Uploaded 000128.jpg to Dropbox.\n", + "001769.jpg\n", + "Uploaded 001769.jpg to Dropbox.\n", + "001526.jpg\n", + "Uploaded 001526.jpg to Dropbox.\n", + "002464.jpg\n", + "Uploaded 002464.jpg to Dropbox.\n", + "000077.jpg\n", + "Uploaded 000077.jpg to Dropbox.\n", + "002298.jpg\n", + "Uploaded 002298.jpg to Dropbox.\n", + "001548.jpg\n", + "Uploaded 001548.jpg to Dropbox.\n", + "001391.jpg\n", + "Uploaded 001391.jpg to Dropbox.\n", + "000391.jpg\n", + "Uploaded 000391.jpg to Dropbox.\n", + "001125.jpg\n", + "Uploaded 001125.jpg to Dropbox.\n", + "001575.jpg\n", + "Uploaded 001575.jpg to Dropbox.\n", + "001474.jpg\n", + "Uploaded 001474.jpg to Dropbox.\n", + "000908.jpg\n", + "Uploaded 000908.jpg to Dropbox.\n", + "001217.jpg\n", + "Uploaded 001217.jpg to Dropbox.\n", + "002113.jpg\n", + "Uploaded 002113.jpg to Dropbox.\n", + "001592.jpg\n", + "Uploaded 001592.jpg to Dropbox.\n", + "000335.jpg\n", + "Uploaded 000335.jpg to Dropbox.\n", + "001598.jpg\n", + "Uploaded 001598.jpg to Dropbox.\n", + "001333.jpg\n", + "Uploaded 001333.jpg to Dropbox.\n", + "000977.jpg\n", + "Uploaded 000977.jpg to Dropbox.\n", + "002203.jpg\n", + "Uploaded 002203.jpg to Dropbox.\n", + "001027.jpg\n", + "Uploaded 001027.jpg to Dropbox.\n", + "001354.jpg\n", + "Uploaded 001354.jpg to Dropbox.\n", + "000896.jpg\n", + "Uploaded 000896.jpg to Dropbox.\n", + "001536.jpg\n", + "Uploaded 001536.jpg to Dropbox.\n", + "000845.jpg\n", + "Uploaded 000845.jpg to Dropbox.\n", + "000426.jpg\n", + "Uploaded 000426.jpg to Dropbox.\n", + "001292.jpg\n", + "Uploaded 001292.jpg to Dropbox.\n", + "001127.jpg\n", + "Uploaded 001127.jpg to Dropbox.\n", + "000902.jpg\n", + "Uploaded 000902.jpg to Dropbox.\n", + "001192.jpg\n", + "Uploaded 001192.jpg to Dropbox.\n", + "001116.jpg\n", + "Uploaded 001116.jpg to Dropbox.\n", + "000948.jpg\n", + "Uploaded 000948.jpg to Dropbox.\n", + "001562.jpg\n", + "Uploaded 001562.jpg to Dropbox.\n", + "001243.jpg\n", + "Uploaded 001243.jpg to Dropbox.\n", + "000641.jpg\n", + "Uploaded 000641.jpg to Dropbox.\n", + "001315.jpg\n", + "Uploaded 001315.jpg to Dropbox.\n", + "002440.jpg\n", + "Uploaded 002440.jpg to Dropbox.\n", + "000348.jpg\n", + "Uploaded 000348.jpg to Dropbox.\n", + "001593.jpg\n", + "Uploaded 001593.jpg to Dropbox.\n", + "000172.jpg\n", + "Uploaded 000172.jpg to Dropbox.\n", + "001547.jpg\n", + "Uploaded 001547.jpg to Dropbox.\n", + "000439.jpg\n", + "Uploaded 000439.jpg to Dropbox.\n", + "000414.jpg\n", + "Uploaded 000414.jpg to Dropbox.\n", + "002384.jpg\n", + "Uploaded 002384.jpg to Dropbox.\n", + "002232.jpg\n", + "Uploaded 002232.jpg to Dropbox.\n", + "000173.jpg\n", + "Uploaded 000173.jpg to Dropbox.\n", + "000840.jpg\n", + "Uploaded 000840.jpg to Dropbox.\n", + "002155.jpg\n", + "Uploaded 002155.jpg to Dropbox.\n", + "002151.jpg\n", + "Uploaded 002151.jpg to Dropbox.\n", + "001215.jpg\n", + "Uploaded 001215.jpg to Dropbox.\n", + "000011.jpg\n", + "Uploaded 000011.jpg to Dropbox.\n", + "002063.jpg\n", + "Uploaded 002063.jpg to Dropbox.\n", + "000350.jpg\n", + "Uploaded 000350.jpg to Dropbox.\n", + "001992.jpg\n", + "Uploaded 001992.jpg to Dropbox.\n", + "000496.jpg\n", + "Uploaded 000496.jpg to Dropbox.\n", + "001103.jpg\n", + "Uploaded 001103.jpg to Dropbox.\n", + "000705.jpg\n", + "Uploaded 000705.jpg to Dropbox.\n", + "001488.jpg\n", + "Uploaded 001488.jpg to Dropbox.\n", + "000327.jpg\n", + "Uploaded 000327.jpg to Dropbox.\n", + "001283.jpg\n", + "Uploaded 001283.jpg to Dropbox.\n", + "002338.jpg\n", + "Uploaded 002338.jpg to Dropbox.\n", + "001697.jpg\n", + "Uploaded 001697.jpg to Dropbox.\n", + "000599.jpg\n", + "Uploaded 000599.jpg to Dropbox.\n", + "001611.jpg\n", + "Uploaded 001611.jpg to Dropbox.\n", + "001464.jpg\n", + "Uploaded 001464.jpg to Dropbox.\n", + "001835.jpg\n", + "Uploaded 001835.jpg to Dropbox.\n", + "000344.jpg\n", + "Uploaded 000344.jpg to Dropbox.\n", + "001129.jpg\n", + "Uploaded 001129.jpg to Dropbox.\n", + "001277.jpg\n", + "Uploaded 001277.jpg to Dropbox.\n", + "002319.jpg\n", + "Uploaded 002319.jpg to Dropbox.\n", + "001110.jpg\n", + "Uploaded 001110.jpg to Dropbox.\n", + "000885.jpg\n", + "Uploaded 000885.jpg to Dropbox.\n", + "000040.jpg\n", + "Uploaded 000040.jpg to Dropbox.\n", + "000203.jpg\n", + "Uploaded 000203.jpg to Dropbox.\n", + "002043.jpg\n", + "Uploaded 002043.jpg to Dropbox.\n", + "001781.jpg\n", + "Uploaded 001781.jpg to Dropbox.\n", + "000209.jpg\n", + "Uploaded 000209.jpg to Dropbox.\n", + "001901.jpg\n", + "Uploaded 001901.jpg to Dropbox.\n", + "000121.jpg\n", + "Uploaded 000121.jpg to Dropbox.\n", + "001230.jpg\n", + "Uploaded 001230.jpg to Dropbox.\n", + "001330.jpg\n", + "Uploaded 001330.jpg to Dropbox.\n", + "000950.jpg\n", + "Uploaded 000950.jpg to Dropbox.\n", + "000701.jpg\n", + "Uploaded 000701.jpg to Dropbox.\n", + "000338.jpg\n", + "Uploaded 000338.jpg to Dropbox.\n", + "002429.jpg\n", + "Uploaded 002429.jpg to Dropbox.\n", + "002370.jpg\n", + "Uploaded 002370.jpg to Dropbox.\n", + "000062.jpg\n", + "Uploaded 000062.jpg to Dropbox.\n", + "002356.jpg\n", + "Uploaded 002356.jpg to Dropbox.\n", + "001524.jpg\n", + "Uploaded 001524.jpg to Dropbox.\n", + "002097.jpg\n", + "Uploaded 002097.jpg to Dropbox.\n", + "001963.jpg\n", + "Uploaded 001963.jpg to Dropbox.\n", + "002145.jpg\n", + "Uploaded 002145.jpg to Dropbox.\n", + "001408.jpg\n", + "Uploaded 001408.jpg to Dropbox.\n", + "000579.jpg\n", + "Uploaded 000579.jpg to Dropbox.\n", + "001855.jpg\n", + "Uploaded 001855.jpg to Dropbox.\n", + "000760.jpg\n", + "Uploaded 000760.jpg to Dropbox.\n", + "000926.jpg\n", + "Uploaded 000926.jpg to Dropbox.\n", + "002069.jpg\n", + "Uploaded 002069.jpg to Dropbox.\n", + "001844.jpg\n", + "Uploaded 001844.jpg to Dropbox.\n", + "000847.jpg\n", + "Uploaded 000847.jpg to Dropbox.\n", + "002442.jpg\n", + "Uploaded 002442.jpg to Dropbox.\n", + "001405.jpg\n", + "Uploaded 001405.jpg to Dropbox.\n", + "000401.jpg\n", + "Uploaded 000401.jpg to Dropbox.\n", + "000336.jpg\n", + "Uploaded 000336.jpg to Dropbox.\n", + "000952.jpg\n", + "Uploaded 000952.jpg to Dropbox.\n", + "001935.jpg\n", + "Uploaded 001935.jpg to Dropbox.\n", + "001978.jpg\n", + "Uploaded 001978.jpg to Dropbox.\n", + "000407.jpg\n", + "Uploaded 000407.jpg to Dropbox.\n", + "000304.jpg\n", + "Uploaded 000304.jpg to Dropbox.\n", + "001476.jpg\n", + "Uploaded 001476.jpg to Dropbox.\n", + "001300.jpg\n", + "Uploaded 001300.jpg to Dropbox.\n", + "001148.jpg\n", + "Uploaded 001148.jpg to Dropbox.\n", + "002449.jpg\n", + "Uploaded 002449.jpg to Dropbox.\n", + "002249.jpg\n", + "Uploaded 002249.jpg to Dropbox.\n", + "000528.jpg\n", + "Uploaded 000528.jpg to Dropbox.\n", + "000411.jpg\n", + "Uploaded 000411.jpg to Dropbox.\n", + "000410.jpg\n", + "Uploaded 000410.jpg to Dropbox.\n", + "000907.jpg\n", + "Uploaded 000907.jpg to Dropbox.\n", + "001205.jpg\n", + "Uploaded 001205.jpg to Dropbox.\n", + "001683.jpg\n", + "Uploaded 001683.jpg to Dropbox.\n", + "000653.jpg\n", + "Uploaded 000653.jpg to Dropbox.\n", + "001151.jpg\n", + "Uploaded 001151.jpg to Dropbox.\n", + "000757.jpg\n", + "Uploaded 000757.jpg to Dropbox.\n", + "002101.jpg\n", + "Uploaded 002101.jpg to Dropbox.\n", + "001737.jpg\n", + "Uploaded 001737.jpg to Dropbox.\n", + "001115.jpg\n", + "Uploaded 001115.jpg to Dropbox.\n", + "001675.jpg\n", + "Uploaded 001675.jpg to Dropbox.\n", + "002114.jpg\n", + "Uploaded 002114.jpg to Dropbox.\n", + "001059.jpg\n", + "Uploaded 001059.jpg to Dropbox.\n", + "000590.jpg\n", + "Uploaded 000590.jpg to Dropbox.\n", + "001674.jpg\n", + "Uploaded 001674.jpg to Dropbox.\n", + "001489.jpg\n", + "Uploaded 001489.jpg to Dropbox.\n", + "002244.jpg\n", + "Uploaded 002244.jpg to Dropbox.\n", + "000802.jpg\n", + "Uploaded 000802.jpg to Dropbox.\n", + "002021.jpg\n", + "Uploaded 002021.jpg to Dropbox.\n", + "001481.jpg\n", + "Uploaded 001481.jpg to Dropbox.\n", + "000302.jpg\n", + "Uploaded 000302.jpg to Dropbox.\n", + "001774.jpg\n", + "Uploaded 001774.jpg to Dropbox.\n", + "001284.jpg\n", + "Uploaded 001284.jpg to Dropbox.\n", + "001034.jpg\n", + "Uploaded 001034.jpg to Dropbox.\n", + "000007.jpg\n", + "Uploaded 000007.jpg to Dropbox.\n", + "001832.jpg\n", + "Uploaded 001832.jpg to Dropbox.\n", + "000168.jpg\n", + "Uploaded 000168.jpg to Dropbox.\n", + "000068.jpg\n", + "Uploaded 000068.jpg to Dropbox.\n", + "000475.jpg\n", + "Uploaded 000475.jpg to Dropbox.\n", + "001317.jpg\n", + "Uploaded 001317.jpg to Dropbox.\n", + "000905.jpg\n", + "Uploaded 000905.jpg to Dropbox.\n", + "002218.jpg\n", + "Uploaded 002218.jpg to Dropbox.\n", + "002273.jpg\n", + "Uploaded 002273.jpg to Dropbox.\n", + "000216.jpg\n", + "Uploaded 000216.jpg to Dropbox.\n", + "002264.jpg\n", + "Uploaded 002264.jpg to Dropbox.\n", + "000714.jpg\n", + "Uploaded 000714.jpg to Dropbox.\n", + "000969.jpg\n", + "Uploaded 000969.jpg to Dropbox.\n", + "000755.jpg\n", + "Uploaded 000755.jpg to Dropbox.\n", + "001603.jpg\n", + "Uploaded 001603.jpg to Dropbox.\n", + "000131.jpg\n", + "Uploaded 000131.jpg to Dropbox.\n", + "001045.jpg\n", + "Uploaded 001045.jpg to Dropbox.\n", + "000835.jpg\n", + "Uploaded 000835.jpg to Dropbox.\n", + "002046.jpg\n", + "Uploaded 002046.jpg to Dropbox.\n", + "002188.jpg\n", + "Uploaded 002188.jpg to Dropbox.\n", + "000452.jpg\n", + "Uploaded 000452.jpg to Dropbox.\n", + "002171.jpg\n", + "Uploaded 002171.jpg to Dropbox.\n", + "002160.jpg\n", + "Uploaded 002160.jpg to Dropbox.\n", + "001009.jpg\n", + "Uploaded 001009.jpg to Dropbox.\n", + "000736.jpg\n", + "Uploaded 000736.jpg to Dropbox.\n", + "002206.jpg\n", + "Uploaded 002206.jpg to Dropbox.\n", + "001657.jpg\n", + "Uploaded 001657.jpg to Dropbox.\n", + "000286.jpg\n", + "Uploaded 000286.jpg to Dropbox.\n", + "000404.jpg\n", + "Uploaded 000404.jpg to Dropbox.\n", + "000545.jpg\n", + "Uploaded 000545.jpg to Dropbox.\n", + "000322.jpg\n", + "Uploaded 000322.jpg to Dropbox.\n", + "000758.jpg\n", + "Uploaded 000758.jpg to Dropbox.\n", + "001197.jpg\n", + "Uploaded 001197.jpg to Dropbox.\n", + "000823.jpg\n", + "Uploaded 000823.jpg to Dropbox.\n", + "000559.jpg\n", + "Uploaded 000559.jpg to Dropbox.\n", + "001712.jpg\n", + "Uploaded 001712.jpg to Dropbox.\n", + "001815.jpg\n", + "Uploaded 001815.jpg to Dropbox.\n", + "001670.jpg\n", + "Uploaded 001670.jpg to Dropbox.\n", + "001854.jpg\n", + "Uploaded 001854.jpg to Dropbox.\n", + "001398.jpg\n", + "Uploaded 001398.jpg to Dropbox.\n", + "001167.jpg\n", + "Uploaded 001167.jpg to Dropbox.\n", + "000073.jpg\n", + "Uploaded 000073.jpg to Dropbox.\n", + "001498.jpg\n", + "Uploaded 001498.jpg to Dropbox.\n", + "000195.jpg\n", + "Uploaded 000195.jpg to Dropbox.\n", + "000273.jpg\n", + "Uploaded 000273.jpg to Dropbox.\n", + "000540.jpg\n", + "Uploaded 000540.jpg to Dropbox.\n", + "000911.jpg\n", + "Uploaded 000911.jpg to Dropbox.\n", + "000254.jpg\n", + "Uploaded 000254.jpg to Dropbox.\n", + "001026.jpg\n", + "Uploaded 001026.jpg to Dropbox.\n", + "001266.jpg\n", + "Uploaded 001266.jpg to Dropbox.\n", + "000740.jpg\n", + "Uploaded 000740.jpg to Dropbox.\n", + "000384.jpg\n", + "Uploaded 000384.jpg to Dropbox.\n", + "000658.jpg\n", + "Uploaded 000658.jpg to Dropbox.\n", + "002133.jpg\n", + "Uploaded 002133.jpg to Dropbox.\n", + "001908.jpg\n", + "Uploaded 001908.jpg to Dropbox.\n", + "000481.jpg\n", + "Uploaded 000481.jpg to Dropbox.\n", + "002458.jpg\n", + "Uploaded 002458.jpg to Dropbox.\n", + "000229.jpg\n", + "Uploaded 000229.jpg to Dropbox.\n", + "001864.jpg\n", + "Uploaded 001864.jpg to Dropbox.\n", + "000102.jpg\n", + "Uploaded 000102.jpg to Dropbox.\n", + "001762.jpg\n", + "Uploaded 001762.jpg to Dropbox.\n", + "000803.jpg\n", + "Uploaded 000803.jpg to Dropbox.\n", + "000806.jpg\n", + "Uploaded 000806.jpg to Dropbox.\n", + "000164.jpg\n", + "Uploaded 000164.jpg to Dropbox.\n", + "001808.jpg\n", + "Uploaded 001808.jpg to Dropbox.\n", + "002053.jpg\n", + "Uploaded 002053.jpg to Dropbox.\n", + "002340.jpg\n", + "Uploaded 002340.jpg to Dropbox.\n", + "001220.jpg\n", + "Uploaded 001220.jpg to Dropbox.\n", + "002399.jpg\n", + "Uploaded 002399.jpg to Dropbox.\n", + "001438.jpg\n", + "Uploaded 001438.jpg to Dropbox.\n", + "000976.jpg\n", + "Uploaded 000976.jpg to Dropbox.\n", + "001152.jpg\n", + "Uploaded 001152.jpg to Dropbox.\n", + "002434.jpg\n", + "Uploaded 002434.jpg to Dropbox.\n", + "001338.jpg\n", + "Uploaded 001338.jpg to Dropbox.\n", + "001402.jpg\n", + "Uploaded 001402.jpg to Dropbox.\n", + "000464.jpg\n", + "Uploaded 000464.jpg to Dropbox.\n", + "000153.jpg\n", + "Uploaded 000153.jpg to Dropbox.\n", + "000330.jpg\n", + "Uploaded 000330.jpg to Dropbox.\n", + "000228.jpg\n", + "Uploaded 000228.jpg to Dropbox.\n", + "002362.jpg\n", + "Uploaded 002362.jpg to Dropbox.\n", + "002015.jpg\n", + "Uploaded 002015.jpg to Dropbox.\n", + "002411.jpg\n", + "Uploaded 002411.jpg to Dropbox.\n", + "002073.jpg\n", + "Uploaded 002073.jpg to Dropbox.\n", + "000433.jpg\n", + "Uploaded 000433.jpg to Dropbox.\n", + "001495.jpg\n", + "Uploaded 001495.jpg to Dropbox.\n", + "002090.jpg\n", + "Uploaded 002090.jpg to Dropbox.\n", + "001898.jpg\n", + "Uploaded 001898.jpg to Dropbox.\n", + "002058.jpg\n", + "Uploaded 002058.jpg to Dropbox.\n", + "000576.jpg\n", + "Uploaded 000576.jpg to Dropbox.\n", + "000179.jpg\n", + "Uploaded 000179.jpg to Dropbox.\n", + "000767.jpg\n", + "Uploaded 000767.jpg to Dropbox.\n", + "002041.jpg\n", + "Uploaded 002041.jpg to Dropbox.\n", + "001958.jpg\n", + "Uploaded 001958.jpg to Dropbox.\n", + "001231.jpg\n", + "Uploaded 001231.jpg to Dropbox.\n", + "002197.jpg\n", + "Uploaded 002197.jpg to Dropbox.\n", + "000692.jpg\n", + "Uploaded 000692.jpg to Dropbox.\n", + "000123.jpg\n", + "Uploaded 000123.jpg to Dropbox.\n", + "001281.jpg\n", + "Uploaded 001281.jpg to Dropbox.\n", + "000737.jpg\n", + "Uploaded 000737.jpg to Dropbox.\n", + "001323.jpg\n", + "Uploaded 001323.jpg to Dropbox.\n", + "002291.jpg\n", + "Uploaded 002291.jpg to Dropbox.\n", + "001249.jpg\n", + "Uploaded 001249.jpg to Dropbox.\n", + "000511.jpg\n", + "Uploaded 000511.jpg to Dropbox.\n", + "001185.jpg\n", + "Uploaded 001185.jpg to Dropbox.\n", + "000008.jpg\n", + "Uploaded 000008.jpg to Dropbox.\n", + "000144.jpg\n", + "Uploaded 000144.jpg to Dropbox.\n", + "000432.jpg\n", + "Uploaded 000432.jpg to Dropbox.\n", + "000003.jpg\n", + "Uploaded 000003.jpg to Dropbox.\n", + "002035.jpg\n", + "Uploaded 002035.jpg to Dropbox.\n", + "000742.jpg\n", + "Uploaded 000742.jpg to Dropbox.\n", + "002238.jpg\n", + "Uploaded 002238.jpg to Dropbox.\n", + "000001.jpg\n", + "Uploaded 000001.jpg to Dropbox.\n", + "002310.jpg\n", + "Uploaded 002310.jpg to Dropbox.\n", + "001975.jpg\n", + "Uploaded 001975.jpg to Dropbox.\n", + "000093.jpg\n", + "Uploaded 000093.jpg to Dropbox.\n", + "000958.jpg\n", + "Uploaded 000958.jpg to Dropbox.\n", + "001250.jpg\n", + "Uploaded 001250.jpg to Dropbox.\n", + "001803.jpg\n", + "Uploaded 001803.jpg to Dropbox.\n", + "000373.jpg\n", + "Uploaded 000373.jpg to Dropbox.\n", + "001869.jpg\n", + "Uploaded 001869.jpg to Dropbox.\n", + "001229.jpg\n", + "Uploaded 001229.jpg to Dropbox.\n", + "000451.jpg\n", + "Uploaded 000451.jpg to Dropbox.\n", + "001552.jpg\n", + "Uploaded 001552.jpg to Dropbox.\n", + "000934.jpg\n", + "Uploaded 000934.jpg to Dropbox.\n", + "000294.jpg\n", + "Uploaded 000294.jpg to Dropbox.\n", + "001710.jpg\n", + "Uploaded 001710.jpg to Dropbox.\n", + "000856.jpg\n", + "Uploaded 000856.jpg to Dropbox.\n", + "002062.jpg\n", + "Uploaded 002062.jpg to Dropbox.\n", + "001711.jpg\n", + "Uploaded 001711.jpg to Dropbox.\n", + "000305.jpg\n", + "Uploaded 000305.jpg to Dropbox.\n", + "000645.jpg\n", + "Uploaded 000645.jpg to Dropbox.\n", + "001306.jpg\n", + "Uploaded 001306.jpg to Dropbox.\n", + "002067.jpg\n", + "Uploaded 002067.jpg to Dropbox.\n", + "001444.jpg\n", + "Uploaded 001444.jpg to Dropbox.\n", + "001993.jpg\n", + "Uploaded 001993.jpg to Dropbox.\n", + "001093.jpg\n", + "Uploaded 001093.jpg to Dropbox.\n", + "000620.jpg\n", + "Uploaded 000620.jpg to Dropbox.\n", + "001872.jpg\n", + "Uploaded 001872.jpg to Dropbox.\n", + "001639.jpg\n", + "Uploaded 001639.jpg to Dropbox.\n", + "002374.jpg\n", + "Uploaded 002374.jpg to Dropbox.\n", + "000167.jpg\n", + "Uploaded 000167.jpg to Dropbox.\n", + "001947.jpg\n", + "Uploaded 001947.jpg to Dropbox.\n", + "000447.jpg\n", + "Uploaded 000447.jpg to Dropbox.\n", + "000944.jpg\n", + "Uploaded 000944.jpg to Dropbox.\n", + "000582.jpg\n", + "Uploaded 000582.jpg to Dropbox.\n", + "000477.jpg\n", + "Uploaded 000477.jpg to Dropbox.\n", + "000766.jpg\n", + "Uploaded 000766.jpg to Dropbox.\n", + "002243.jpg\n", + "Uploaded 002243.jpg to Dropbox.\n", + "000953.jpg\n", + "Uploaded 000953.jpg to Dropbox.\n", + "001640.jpg\n", + "Uploaded 001640.jpg to Dropbox.\n", + "001018.jpg\n", + "Uploaded 001018.jpg to Dropbox.\n", + "001404.jpg\n", + "Uploaded 001404.jpg to Dropbox.\n", + "000499.jpg\n", + "Uploaded 000499.jpg to Dropbox.\n", + "000828.jpg\n", + "Uploaded 000828.jpg to Dropbox.\n", + "000633.jpg\n", + "Uploaded 000633.jpg to Dropbox.\n", + "001907.jpg\n", + "Uploaded 001907.jpg to Dropbox.\n", + "000989.jpg\n", + "Uploaded 000989.jpg to Dropbox.\n", + "000778.jpg\n", + "Uploaded 000778.jpg to Dropbox.\n", + "001322.jpg\n", + "Uploaded 001322.jpg to Dropbox.\n", + "001755.jpg\n", + "Uploaded 001755.jpg to Dropbox.\n", + "000920.jpg\n", + "Uploaded 000920.jpg to Dropbox.\n", + "000075.jpg\n", + "Uploaded 000075.jpg to Dropbox.\n", + "000928.jpg\n", + "Uploaded 000928.jpg to Dropbox.\n", + "001818.jpg\n", + "Uploaded 001818.jpg to Dropbox.\n", + "001099.jpg\n", + "Uploaded 001099.jpg to Dropbox.\n", + "001159.jpg\n", + "Uploaded 001159.jpg to Dropbox.\n", + "001350.jpg\n", + "Uploaded 001350.jpg to Dropbox.\n", + "001361.jpg\n", + "Uploaded 001361.jpg to Dropbox.\n", + "000936.jpg\n", + "Uploaded 000936.jpg to Dropbox.\n", + "001837.jpg\n", + "Uploaded 001837.jpg to Dropbox.\n", + "000134.jpg\n", + "Uploaded 000134.jpg to Dropbox.\n", + "002201.jpg\n", + "Uploaded 002201.jpg to Dropbox.\n", + "001551.jpg\n", + "Uploaded 001551.jpg to Dropbox.\n", + "001442.jpg\n", + "Uploaded 001442.jpg to Dropbox.\n", + "001014.jpg\n", + "Uploaded 001014.jpg to Dropbox.\n", + "001809.jpg\n", + "Uploaded 001809.jpg to Dropbox.\n", + "002215.jpg\n", + "Uploaded 002215.jpg to Dropbox.\n", + "000310.jpg\n", + "Uploaded 000310.jpg to Dropbox.\n", + "001461.jpg\n", + "Uploaded 001461.jpg to Dropbox.\n", + "002331.jpg\n", + "Uploaded 002331.jpg to Dropbox.\n", + "000811.jpg\n", + "Uploaded 000811.jpg to Dropbox.\n", + "002404.jpg\n", + "Uploaded 002404.jpg to Dropbox.\n", + "001840.jpg\n", + "Uploaded 001840.jpg to Dropbox.\n", + "002192.jpg\n", + "Uploaded 002192.jpg to Dropbox.\n", + "001194.jpg\n", + "Uploaded 001194.jpg to Dropbox.\n", + "001136.jpg\n", + "Uploaded 001136.jpg to Dropbox.\n", + "002345.jpg\n", + "Uploaded 002345.jpg to Dropbox.\n", + "001372.jpg\n", + "Uploaded 001372.jpg to Dropbox.\n", + "000783.jpg\n", + "Uploaded 000783.jpg to Dropbox.\n", + "002484.jpg\n", + "Uploaded 002484.jpg to Dropbox.\n", + "001107.jpg\n", + "Uploaded 001107.jpg to Dropbox.\n", + "001823.jpg\n", + "Uploaded 001823.jpg to Dropbox.\n", + "002267.jpg\n", + "Uploaded 002267.jpg to Dropbox.\n", + "002364.jpg\n", + "Uploaded 002364.jpg to Dropbox.\n", + "000810.jpg\n", + "Uploaded 000810.jpg to Dropbox.\n", + "001256.jpg\n", + "Uploaded 001256.jpg to Dropbox.\n", + "001509.jpg\n", + "Uploaded 001509.jpg to Dropbox.\n", + "001889.jpg\n", + "Uploaded 001889.jpg to Dropbox.\n", + "000987.jpg\n", + "Uploaded 000987.jpg to Dropbox.\n", + "000094.jpg\n", + "Uploaded 000094.jpg to Dropbox.\n", + "000996.jpg\n", + "Uploaded 000996.jpg to Dropbox.\n", + "001002.jpg\n", + "Uploaded 001002.jpg to Dropbox.\n", + "000904.jpg\n", + "Uploaded 000904.jpg to Dropbox.\n", + "002117.jpg\n", + "Uploaded 002117.jpg to Dropbox.\n", + "000039.jpg\n", + "Uploaded 000039.jpg to Dropbox.\n", + "001523.jpg\n", + "Uploaded 001523.jpg to Dropbox.\n", + "002254.jpg\n", + "Uploaded 002254.jpg to Dropbox.\n", + "000079.jpg\n", + "Uploaded 000079.jpg to Dropbox.\n", + "002245.jpg\n", + "Uploaded 002245.jpg to Dropbox.\n", + "001916.jpg\n", + "Uploaded 001916.jpg to Dropbox.\n", + "000613.jpg\n", + "Uploaded 000613.jpg to Dropbox.\n", + "000189.jpg\n", + "Uploaded 000189.jpg to Dropbox.\n", + "000480.jpg\n", + "Uploaded 000480.jpg to Dropbox.\n", + "000239.jpg\n", + "Uploaded 000239.jpg to Dropbox.\n", + "002009.jpg\n", + "Uploaded 002009.jpg to Dropbox.\n", + "001994.jpg\n", + "Uploaded 001994.jpg to Dropbox.\n", + "002459.jpg\n", + "Uploaded 002459.jpg to Dropbox.\n", + "001022.jpg\n", + "Uploaded 001022.jpg to Dropbox.\n", + "001905.jpg\n", + "Uploaded 001905.jpg to Dropbox.\n", + "000140.jpg\n", + "Uploaded 000140.jpg to Dropbox.\n", + "000893.jpg\n", + "Uploaded 000893.jpg to Dropbox.\n", + "000598.jpg\n", + "Uploaded 000598.jpg to Dropbox.\n", + "001380.jpg\n", + "Uploaded 001380.jpg to Dropbox.\n", + "000507.jpg\n", + "Uploaded 000507.jpg to Dropbox.\n", + "002468.jpg\n", + "Uploaded 002468.jpg to Dropbox.\n", + "001704.jpg\n", + "Uploaded 001704.jpg to Dropbox.\n", + "000844.jpg\n", + "Uploaded 000844.jpg to Dropbox.\n", + "002234.jpg\n", + "Uploaded 002234.jpg to Dropbox.\n", + "002337.jpg\n", + "Uploaded 002337.jpg to Dropbox.\n", + "001609.jpg\n", + "Uploaded 001609.jpg to Dropbox.\n", + "000696.jpg\n", + "Uploaded 000696.jpg to Dropbox.\n", + "001379.jpg\n", + "Uploaded 001379.jpg to Dropbox.\n", + "002174.jpg\n", + "Uploaded 002174.jpg to Dropbox.\n", + "001142.jpg\n", + "Uploaded 001142.jpg to Dropbox.\n", + "001971.jpg\n", + "Uploaded 001971.jpg to Dropbox.\n", + "000110.jpg\n", + "Uploaded 000110.jpg to Dropbox.\n", + "001113.jpg\n", + "Uploaded 001113.jpg to Dropbox.\n", + "000703.jpg\n", + "Uploaded 000703.jpg to Dropbox.\n", + "002066.jpg\n", + "Uploaded 002066.jpg to Dropbox.\n", + "001158.jpg\n", + "Uploaded 001158.jpg to Dropbox.\n", + "000942.jpg\n", + "Uploaded 000942.jpg to Dropbox.\n", + "001466.jpg\n", + "Uploaded 001466.jpg to Dropbox.\n", + "002279.jpg\n", + "Uploaded 002279.jpg to Dropbox.\n", + "000154.jpg\n", + "Uploaded 000154.jpg to Dropbox.\n", + "001121.jpg\n", + "Uploaded 001121.jpg to Dropbox.\n", + "000200.jpg\n", + "Uploaded 000200.jpg to Dropbox.\n", + "001892.jpg\n", + "Uploaded 001892.jpg to Dropbox.\n", + "002297.jpg\n", + "Uploaded 002297.jpg to Dropbox.\n", + "001006.jpg\n", + "Uploaded 001006.jpg to Dropbox.\n", + "000265.jpg\n", + "Uploaded 000265.jpg to Dropbox.\n", + "000919.jpg\n", + "Uploaded 000919.jpg to Dropbox.\n", + "002148.jpg\n", + "Uploaded 002148.jpg to Dropbox.\n", + "001491.jpg\n", + "Uploaded 001491.jpg to Dropbox.\n", + "000956.jpg\n", + "Uploaded 000956.jpg to Dropbox.\n", + "000315.jpg\n", + "Uploaded 000315.jpg to Dropbox.\n", + "000423.jpg\n", + "Uploaded 000423.jpg to Dropbox.\n", + "001449.jpg\n", + "Uploaded 001449.jpg to Dropbox.\n", + "002120.jpg\n", + "Uploaded 002120.jpg to Dropbox.\n", + "000395.jpg\n", + "Uploaded 000395.jpg to Dropbox.\n", + "002463.jpg\n", + "Uploaded 002463.jpg to Dropbox.\n", + "000580.jpg\n", + "Uploaded 000580.jpg to Dropbox.\n", + "001501.jpg\n", + "Uploaded 001501.jpg to Dropbox.\n", + "001162.jpg\n", + "Uploaded 001162.jpg to Dropbox.\n", + "000359.jpg\n", + "Uploaded 000359.jpg to Dropbox.\n", + "001486.jpg\n", + "Uploaded 001486.jpg to Dropbox.\n", + "002233.jpg\n", + "Uploaded 002233.jpg to Dropbox.\n", + "001927.jpg\n", + "Uploaded 001927.jpg to Dropbox.\n", + "000629.jpg\n", + "Uploaded 000629.jpg to Dropbox.\n", + "002437.jpg\n", + "Uploaded 002437.jpg to Dropbox.\n", + "000657.jpg\n", + "Uploaded 000657.jpg to Dropbox.\n", + "001267.jpg\n", + "Uploaded 001267.jpg to Dropbox.\n", + "000061.jpg\n", + "Uploaded 000061.jpg to Dropbox.\n", + "001741.jpg\n", + "Uploaded 001741.jpg to Dropbox.\n", + "000285.jpg\n", + "Uploaded 000285.jpg to Dropbox.\n", + "000250.jpg\n", + "Uploaded 000250.jpg to Dropbox.\n", + "000022.jpg\n", + "Uploaded 000022.jpg to Dropbox.\n", + "000785.jpg\n", + "Uploaded 000785.jpg to Dropbox.\n", + "002018.jpg\n", + "Uploaded 002018.jpg to Dropbox.\n", + "000975.jpg\n", + "Uploaded 000975.jpg to Dropbox.\n", + "001518.jpg\n", + "Uploaded 001518.jpg to Dropbox.\n", + "001132.jpg\n", + "Uploaded 001132.jpg to Dropbox.\n", + "000839.jpg\n", + "Uploaded 000839.jpg to Dropbox.\n", + "000142.jpg\n", + "Uploaded 000142.jpg to Dropbox.\n", + "002022.jpg\n", + "Uploaded 002022.jpg to Dropbox.\n", + "000038.jpg\n", + "Uploaded 000038.jpg to Dropbox.\n", + "001828.jpg\n", + "Uploaded 001828.jpg to Dropbox.\n", + "001822.jpg\n", + "Uploaded 001822.jpg to Dropbox.\n", + "001933.jpg\n", + "Uploaded 001933.jpg to Dropbox.\n", + "000132.jpg\n", + "Uploaded 000132.jpg to Dropbox.\n", + "000078.jpg\n", + "Uploaded 000078.jpg to Dropbox.\n", + "001599.jpg\n", + "Uploaded 001599.jpg to Dropbox.\n", + "001746.jpg\n", + "Uploaded 001746.jpg to Dropbox.\n", + "001054.jpg\n", + "Uploaded 001054.jpg to Dropbox.\n", + "001154.jpg\n", + "Uploaded 001154.jpg to Dropbox.\n", + "001293.jpg\n", + "Uploaded 001293.jpg to Dropbox.\n", + "001446.jpg\n", + "Uploaded 001446.jpg to Dropbox.\n", + "000741.jpg\n", + "Uploaded 000741.jpg to Dropbox.\n", + "000058.jpg\n", + "Uploaded 000058.jpg to Dropbox.\n", + "002079.jpg\n", + "Uploaded 002079.jpg to Dropbox.\n", + "000069.jpg\n", + "Uploaded 000069.jpg to Dropbox.\n", + "001857.jpg\n", + "Uploaded 001857.jpg to Dropbox.\n", + "001328.jpg\n", + "Uploaded 001328.jpg to Dropbox.\n", + "002417.jpg\n", + "Uploaded 002417.jpg to Dropbox.\n", + "001297.jpg\n", + "Uploaded 001297.jpg to Dropbox.\n", + "000490.jpg\n", + "Uploaded 000490.jpg to Dropbox.\n", + "001668.jpg\n", + "Uploaded 001668.jpg to Dropbox.\n", + "000231.jpg\n", + "Uploaded 000231.jpg to Dropbox.\n", + "001517.jpg\n", + "Uploaded 001517.jpg to Dropbox.\n", + "001651.jpg\n", + "Uploaded 001651.jpg to Dropbox.\n", + "000272.jpg\n", + "Uploaded 000272.jpg to Dropbox.\n", + "000790.jpg\n", + "Uploaded 000790.jpg to Dropbox.\n", + "000497.jpg\n", + "Uploaded 000497.jpg to Dropbox.\n", + "002476.jpg\n", + "Uploaded 002476.jpg to Dropbox.\n", + "000871.jpg\n", + "Uploaded 000871.jpg to Dropbox.\n", + "001218.jpg\n", + "Uploaded 001218.jpg to Dropbox.\n", + "001652.jpg\n", + "Uploaded 001652.jpg to Dropbox.\n", + "000754.jpg\n", + "Uploaded 000754.jpg to Dropbox.\n", + "000202.jpg\n", + "Uploaded 000202.jpg to Dropbox.\n", + "001074.jpg\n", + "Uploaded 001074.jpg to Dropbox.\n", + "000670.jpg\n", + "Uploaded 000670.jpg to Dropbox.\n", + "000369.jpg\n", + "Uploaded 000369.jpg to Dropbox.\n", + "000378.jpg\n", + "Uploaded 000378.jpg to Dropbox.\n", + "000819.jpg\n", + "Uploaded 000819.jpg to Dropbox.\n", + "002178.jpg\n", + "Uploaded 002178.jpg to Dropbox.\n", + "001643.jpg\n", + "Uploaded 001643.jpg to Dropbox.\n", + "000984.jpg\n", + "Uploaded 000984.jpg to Dropbox.\n", + "002011.jpg\n", + "Uploaded 002011.jpg to Dropbox.\n", + "001642.jpg\n", + "Uploaded 001642.jpg to Dropbox.\n", + "000289.jpg\n", + "Uploaded 000289.jpg to Dropbox.\n", + "000180.jpg\n", + "Uploaded 000180.jpg to Dropbox.\n", + "002236.jpg\n", + "Uploaded 002236.jpg to Dropbox.\n", + "001679.jpg\n", + "Uploaded 001679.jpg to Dropbox.\n", + "001137.jpg\n", + "Uploaded 001137.jpg to Dropbox.\n", + "000690.jpg\n", + "Uploaded 000690.jpg to Dropbox.\n", + "000915.jpg\n", + "Uploaded 000915.jpg to Dropbox.\n", + "000899.jpg\n", + "Uploaded 000899.jpg to Dropbox.\n", + "000074.jpg\n", + "Uploaded 000074.jpg to Dropbox.\n", + "001011.jpg\n", + "Uploaded 001011.jpg to Dropbox.\n", + "000317.jpg\n", + "Uploaded 000317.jpg to Dropbox.\n", + "000748.jpg\n", + "Uploaded 000748.jpg to Dropbox.\n", + "001376.jpg\n", + "Uploaded 001376.jpg to Dropbox.\n", + "001108.jpg\n", + "Uploaded 001108.jpg to Dropbox.\n", + "002381.jpg\n", + "Uploaded 002381.jpg to Dropbox.\n", + "001615.jpg\n", + "Uploaded 001615.jpg to Dropbox.\n", + "002311.jpg\n", + "Uploaded 002311.jpg to Dropbox.\n", + "001174.jpg\n", + "Uploaded 001174.jpg to Dropbox.\n", + "002275.jpg\n", + "Uploaded 002275.jpg to Dropbox.\n", + "000536.jpg\n", + "Uploaded 000536.jpg to Dropbox.\n", + "001410.jpg\n", + "Uploaded 001410.jpg to Dropbox.\n", + "000747.jpg\n", + "Uploaded 000747.jpg to Dropbox.\n", + "001664.jpg\n", + "Uploaded 001664.jpg to Dropbox.\n", + "000601.jpg\n", + "Uploaded 000601.jpg to Dropbox.\n", + "001270.jpg\n", + "Uploaded 001270.jpg to Dropbox.\n", + "001334.jpg\n", + "Uploaded 001334.jpg to Dropbox.\n", + "001727.jpg\n", + "Uploaded 001727.jpg to Dropbox.\n", + "001560.jpg\n", + "Uploaded 001560.jpg to Dropbox.\n", + "000873.jpg\n", + "Uploaded 000873.jpg to Dropbox.\n", + "000637.jpg\n", + "Uploaded 000637.jpg to Dropbox.\n", + "001505.jpg\n", + "Uploaded 001505.jpg to Dropbox.\n", + "000990.jpg\n", + "Uploaded 000990.jpg to Dropbox.\n", + "001308.jpg\n", + "Uploaded 001308.jpg to Dropbox.\n", + "002422.jpg\n", + "Uploaded 002422.jpg to Dropbox.\n", + "001321.jpg\n", + "Uploaded 001321.jpg to Dropbox.\n", + "001527.jpg\n", + "Uploaded 001527.jpg to Dropbox.\n", + "000367.jpg\n", + "Uploaded 000367.jpg to Dropbox.\n", + "002051.jpg\n", + "Uploaded 002051.jpg to Dropbox.\n", + "000214.jpg\n", + "Uploaded 000214.jpg to Dropbox.\n", + "000388.jpg\n", + "Uploaded 000388.jpg to Dropbox.\n", + "002462.jpg\n", + "Uploaded 002462.jpg to Dropbox.\n", + "000836.jpg\n", + "Uploaded 000836.jpg to Dropbox.\n", + "002455.jpg\n", + "Uploaded 002455.jpg to Dropbox.\n", + "001386.jpg\n", + "Uploaded 001386.jpg to Dropbox.\n", + "001390.jpg\n", + "Uploaded 001390.jpg to Dropbox.\n", + "002271.jpg\n", + "Uploaded 002271.jpg to Dropbox.\n", + "001605.jpg\n", + "Uploaded 001605.jpg to Dropbox.\n", + "001457.jpg\n", + "Uploaded 001457.jpg to Dropbox.\n", + "001212.jpg\n", + "Uploaded 001212.jpg to Dropbox.\n", + "001936.jpg\n", + "Uploaded 001936.jpg to Dropbox.\n", + "000726.jpg\n", + "Uploaded 000726.jpg to Dropbox.\n", + "001248.jpg\n", + "Uploaded 001248.jpg to Dropbox.\n", + "000680.jpg\n", + "Uploaded 000680.jpg to Dropbox.\n", + "001510.jpg\n", + "Uploaded 001510.jpg to Dropbox.\n", + "002119.jpg\n", + "Uploaded 002119.jpg to Dropbox.\n", + "002147.jpg\n", + "Uploaded 002147.jpg to Dropbox.\n", + "002110.jpg\n", + "Uploaded 002110.jpg to Dropbox.\n", + "001941.jpg\n", + "Uploaded 001941.jpg to Dropbox.\n", + "002100.jpg\n", + "Uploaded 002100.jpg to Dropbox.\n", + "002172.jpg\n", + "Uploaded 002172.jpg to Dropbox.\n", + "002406.jpg\n", + "Uploaded 002406.jpg to Dropbox.\n", + "000901.jpg\n", + "Uploaded 000901.jpg to Dropbox.\n", + "000047.jpg\n", + "Uploaded 000047.jpg to Dropbox.\n", + "000152.jpg\n", + "Uploaded 000152.jpg to Dropbox.\n", + "000529.jpg\n", + "Uploaded 000529.jpg to Dropbox.\n", + "002277.jpg\n", + "Uploaded 002277.jpg to Dropbox.\n", + "002494.jpg\n", + "Uploaded 002494.jpg to Dropbox.\n", + "000949.jpg\n", + "Uploaded 000949.jpg to Dropbox.\n", + "001995.jpg\n", + "Uploaded 001995.jpg to Dropbox.\n", + "000125.jpg\n", + "Uploaded 000125.jpg to Dropbox.\n", + "001349.jpg\n", + "Uploaded 001349.jpg to Dropbox.\n", + "000913.jpg\n", + "Uploaded 000913.jpg to Dropbox.\n", + "002200.jpg\n", + "Uploaded 002200.jpg to Dropbox.\n", + "001601.jpg\n", + "Uploaded 001601.jpg to Dropbox.\n", + "001314.jpg\n", + "Uploaded 001314.jpg to Dropbox.\n", + "002087.jpg\n", + "Uploaded 002087.jpg to Dropbox.\n", + "001357.jpg\n", + "Uploaded 001357.jpg to Dropbox.\n", + "001508.jpg\n", + "Uploaded 001508.jpg to Dropbox.\n", + "002316.jpg\n", + "Uploaded 002316.jpg to Dropbox.\n", + "001344.jpg\n", + "Uploaded 001344.jpg to Dropbox.\n", + "002335.jpg\n", + "Uploaded 002335.jpg to Dropbox.\n", + "001241.jpg\n", + "Uploaded 001241.jpg to Dropbox.\n", + "002452.jpg\n", + "Uploaded 002452.jpg to Dropbox.\n", + "000605.jpg\n", + "Uploaded 000605.jpg to Dropbox.\n", + "000597.jpg\n", + "Uploaded 000597.jpg to Dropbox.\n", + "001786.jpg\n", + "Uploaded 001786.jpg to Dropbox.\n", + "001097.jpg\n", + "Uploaded 001097.jpg to Dropbox.\n", + "001843.jpg\n", + "Uploaded 001843.jpg to Dropbox.\n", + "000567.jpg\n", + "Uploaded 000567.jpg to Dropbox.\n", + "000667.jpg\n", + "Uploaded 000667.jpg to Dropbox.\n", + "001131.jpg\n", + "Uploaded 001131.jpg to Dropbox.\n", + "001620.jpg\n", + "Uploaded 001620.jpg to Dropbox.\n", + "002130.jpg\n", + "Uploaded 002130.jpg to Dropbox.\n", + "001938.jpg\n", + "Uploaded 001938.jpg to Dropbox.\n", + "001465.jpg\n", + "Uploaded 001465.jpg to Dropbox.\n", + "001403.jpg\n", + "Uploaded 001403.jpg to Dropbox.\n", + "000349.jpg\n", + "Uploaded 000349.jpg to Dropbox.\n", + "001112.jpg\n", + "Uploaded 001112.jpg to Dropbox.\n", + "000316.jpg\n", + "Uploaded 000316.jpg to Dropbox.\n", + "001880.jpg\n", + "Uploaded 001880.jpg to Dropbox.\n", + "000056.jpg\n", + "Uploaded 000056.jpg to Dropbox.\n", + "001929.jpg\n", + "Uploaded 001929.jpg to Dropbox.\n", + "000510.jpg\n", + "Uploaded 000510.jpg to Dropbox.\n", + "002212.jpg\n", + "Uploaded 002212.jpg to Dropbox.\n", + "001965.jpg\n", + "Uploaded 001965.jpg to Dropbox.\n", + "001648.jpg\n", + "Uploaded 001648.jpg to Dropbox.\n", + "002189.jpg\n", + "Uploaded 002189.jpg to Dropbox.\n", + "001459.jpg\n", + "Uploaded 001459.jpg to Dropbox.\n", + "000412.jpg\n", + "Uploaded 000412.jpg to Dropbox.\n", + "001287.jpg\n", + "Uploaded 001287.jpg to Dropbox.\n", + "000245.jpg\n", + "Uploaded 000245.jpg to Dropbox.\n", + "000870.jpg\n", + "Uploaded 000870.jpg to Dropbox.\n", + "000578.jpg\n", + "Uploaded 000578.jpg to Dropbox.\n", + "001850.jpg\n", + "Uploaded 001850.jpg to Dropbox.\n", + "001161.jpg\n", + "Uploaded 001161.jpg to Dropbox.\n", + "001584.jpg\n", + "Uploaded 001584.jpg to Dropbox.\n", + "001223.jpg\n", + "Uploaded 001223.jpg to Dropbox.\n", + "001785.jpg\n", + "Uploaded 001785.jpg to Dropbox.\n", + "001610.jpg\n", + "Uploaded 001610.jpg to Dropbox.\n", + "000050.jpg\n", + "Uploaded 000050.jpg to Dropbox.\n", + "000234.jpg\n", + "Uploaded 000234.jpg to Dropbox.\n", + "000980.jpg\n", + "Uploaded 000980.jpg to Dropbox.\n", + "002086.jpg\n", + "Uploaded 002086.jpg to Dropbox.\n", + "002030.jpg\n", + "Uploaded 002030.jpg to Dropbox.\n", + "002394.jpg\n", + "Uploaded 002394.jpg to Dropbox.\n", + "000311.jpg\n", + "Uploaded 000311.jpg to Dropbox.\n", + "000795.jpg\n", + "Uploaded 000795.jpg to Dropbox.\n", + "000662.jpg\n", + "Uploaded 000662.jpg to Dropbox.\n", + "002414.jpg\n", + "Uploaded 002414.jpg to Dropbox.\n", + "000886.jpg\n", + "Uploaded 000886.jpg to Dropbox.\n", + "002122.jpg\n", + "Uploaded 002122.jpg to Dropbox.\n", + "001262.jpg\n", + "Uploaded 001262.jpg to Dropbox.\n", + "002039.jpg\n", + "Uploaded 002039.jpg to Dropbox.\n", + "000683.jpg\n", + "Uploaded 000683.jpg to Dropbox.\n", + "002141.jpg\n", + "Uploaded 002141.jpg to Dropbox.\n", + "002293.jpg\n", + "Uploaded 002293.jpg to Dropbox.\n", + "000021.jpg\n", + "Uploaded 000021.jpg to Dropbox.\n", + "001418.jpg\n", + "Uploaded 001418.jpg to Dropbox.\n", + "001883.jpg\n", + "Uploaded 001883.jpg to Dropbox.\n", + "001000.jpg\n", + "Uploaded 001000.jpg to Dropbox.\n", + "001430.jpg\n", + "Uploaded 001430.jpg to Dropbox.\n", + "000160.jpg\n", + "Uploaded 000160.jpg to Dropbox.\n", + "000617.jpg\n", + "Uploaded 000617.jpg to Dropbox.\n", + "001790.jpg\n", + "Uploaded 001790.jpg to Dropbox.\n", + "001072.jpg\n", + "Uploaded 001072.jpg to Dropbox.\n", + "001700.jpg\n", + "Uploaded 001700.jpg to Dropbox.\n", + "001055.jpg\n", + "Uploaded 001055.jpg to Dropbox.\n", + "000889.jpg\n", + "Uploaded 000889.jpg to Dropbox.\n", + "001309.jpg\n", + "Uploaded 001309.jpg to Dropbox.\n", + "000698.jpg\n", + "Uploaded 000698.jpg to Dropbox.\n", + "000718.jpg\n", + "Uploaded 000718.jpg to Dropbox.\n", + "000812.jpg\n", + "Uploaded 000812.jpg to Dropbox.\n", + "001274.jpg\n", + "Uploaded 001274.jpg to Dropbox.\n", + "001067.jpg\n", + "Uploaded 001067.jpg to Dropbox.\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "collapsed": true, + "id": "mlPkVEdmuveu", + "outputId": "32110dca-f590-4496-d3f5-ea1cb7b7d00e" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1;30;43mStreaming output truncated to the last 5000 lines.\u001b[0m\n", + "image 335/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000334.jpg: 384x640 1 driveable, 10.6ms\n", + "image 336/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000335.jpg: 384x640 1 driveable, 10.6ms\n", + "image 337/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000336.jpg: 384x640 1 driveable, 10.6ms\n", + "image 338/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000337.jpg: 384x640 1 driveable, 10.7ms\n", + "image 339/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000338.jpg: 384x640 1 driveable, 10.6ms\n", + "image 340/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000339.jpg: 384x640 1 driveable, 10.6ms\n", + "image 341/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000340.jpg: 384x640 1 driveable, 11.7ms\n", + "image 342/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000341.jpg: 384x640 1 driveable, 11.3ms\n", + "image 343/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000342.jpg: 384x640 1 driveable, 10.6ms\n", + "image 344/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000343.jpg: 384x640 1 driveable, 10.6ms\n", + "image 345/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000344.jpg: 384x640 1 driveable, 10.7ms\n", + "image 346/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000345.jpg: 384x640 1 driveable, 10.6ms\n", + "image 347/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000346.jpg: 384x640 1 driveable, 10.6ms\n", + "image 348/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000347.jpg: 384x640 1 driveable, 10.6ms\n", + "image 349/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000348.jpg: 384x640 1 driveable, 10.6ms\n", + "image 350/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000349.jpg: 384x640 1 driveable, 10.6ms\n", + "image 351/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000350.jpg: 384x640 1 driveable, 10.6ms\n", + "image 352/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000351.jpg: 384x640 1 driveable, 10.6ms\n", + "image 353/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000352.jpg: 384x640 1 driveable, 10.6ms\n", + "image 354/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000353.jpg: 384x640 1 driveable, 10.9ms\n", + "image 355/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000354.jpg: 384x640 1 driveable, 10.6ms\n", + "image 356/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000355.jpg: 384x640 1 driveable, 10.6ms\n", + "image 357/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000356.jpg: 384x640 1 driveable, 10.6ms\n", + "image 358/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000357.jpg: 384x640 1 driveable, 10.6ms\n", + "image 359/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000358.jpg: 384x640 1 driveable, 10.6ms\n", + "image 360/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000359.jpg: 384x640 1 driveable, 10.6ms\n", + "image 361/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000360.jpg: 384x640 1 driveable, 10.6ms\n", + "image 362/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000361.jpg: 384x640 1 driveable, 10.6ms\n", + "image 363/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000362.jpg: 384x640 1 driveable, 10.6ms\n", + "image 364/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000363.jpg: 384x640 1 driveable, 10.6ms\n", + "image 365/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000364.jpg: 384x640 1 driveable, 10.6ms\n", + "image 366/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000365.jpg: 384x640 1 driveable, 10.6ms\n", + "image 367/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000366.jpg: 384x640 1 driveable, 10.6ms\n", + "image 368/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000367.jpg: 384x640 1 driveable, 10.6ms\n", + "image 369/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000368.jpg: 384x640 1 driveable, 10.6ms\n", + "image 370/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000369.jpg: 384x640 1 driveable, 10.6ms\n", + "image 371/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000370.jpg: 384x640 1 driveable, 10.6ms\n", + "image 372/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000371.jpg: 384x640 1 driveable, 10.9ms\n", + "image 373/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000372.jpg: 384x640 1 driveable, 10.6ms\n", + "image 374/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000373.jpg: 384x640 1 driveable, 10.6ms\n", + "image 375/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000374.jpg: 384x640 1 driveable, 10.6ms\n", + "image 376/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000375.jpg: 384x640 1 driveable, 11.1ms\n", + "image 377/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000376.jpg: 384x640 1 driveable, 11.4ms\n", + "image 378/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000377.jpg: 384x640 1 driveable, 10.6ms\n", + "image 379/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000378.jpg: 384x640 1 driveable, 10.6ms\n", + "image 380/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000379.jpg: 384x640 1 driveable, 10.6ms\n", + "image 381/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000380.jpg: 384x640 1 driveable, 10.6ms\n", + "image 382/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000381.jpg: 384x640 1 driveable, 10.6ms\n", + "image 383/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000382.jpg: 384x640 1 driveable, 10.6ms\n", + "image 384/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000383.jpg: 384x640 1 driveable, 10.6ms\n", + "image 385/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000384.jpg: 384x640 1 driveable, 10.6ms\n", + "image 386/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000385.jpg: 384x640 1 driveable, 10.6ms\n", + "image 387/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000386.jpg: 384x640 1 driveable, 10.6ms\n", + "image 388/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000387.jpg: 384x640 1 driveable, 10.6ms\n", + "image 389/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000388.jpg: 384x640 1 driveable, 11.1ms\n", + "image 390/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000389.jpg: 384x640 1 driveable, 10.8ms\n", + "image 391/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000390.jpg: 384x640 1 driveable, 10.8ms\n", + "image 392/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000391.jpg: 384x640 1 driveable, 10.8ms\n", + "image 393/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000392.jpg: 384x640 1 driveable, 10.8ms\n", + "image 394/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000393.jpg: 384x640 1 driveable, 10.8ms\n", + "image 395/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000394.jpg: 384x640 1 driveable, 10.8ms\n", + "image 396/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000395.jpg: 384x640 1 driveable, 10.8ms\n", + "image 397/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000396.jpg: 384x640 1 driveable, 10.8ms\n", + "image 398/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000397.jpg: 384x640 1 driveable, 10.8ms\n", + "image 399/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000398.jpg: 384x640 1 driveable, 10.8ms\n", + "image 400/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000399.jpg: 384x640 1 driveable, 10.8ms\n", + "image 401/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000400.jpg: 384x640 1 driveable, 10.8ms\n", + "image 402/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000401.jpg: 384x640 1 driveable, 10.8ms\n", + "image 403/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000402.jpg: 384x640 1 driveable, 10.8ms\n", + "image 404/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000403.jpg: 384x640 1 driveable, 10.8ms\n", + "image 405/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000404.jpg: 384x640 1 driveable, 10.8ms\n", + "image 406/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000405.jpg: 384x640 1 driveable, 11.0ms\n", + "image 407/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000406.jpg: 384x640 1 driveable, 12.3ms\n", + "image 408/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000407.jpg: 384x640 1 driveable, 11.1ms\n", + "image 409/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000408.jpg: 384x640 1 driveable, 11.4ms\n", + "image 410/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000409.jpg: 384x640 1 driveable, 11.1ms\n", + "image 411/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000410.jpg: 384x640 1 driveable, 11.0ms\n", + "image 412/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000411.jpg: 384x640 1 driveable, 10.8ms\n", + "image 413/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000412.jpg: 384x640 1 driveable, 10.8ms\n", + "image 414/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000413.jpg: 384x640 1 driveable, 10.8ms\n", + "image 415/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000414.jpg: 384x640 1 driveable, 10.8ms\n", + "image 416/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000415.jpg: 384x640 1 driveable, 10.8ms\n", + "image 417/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000416.jpg: 384x640 1 driveable, 10.8ms\n", + "image 418/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000417.jpg: 384x640 1 driveable, 10.8ms\n", + "image 419/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000418.jpg: 384x640 1 driveable, 10.8ms\n", + "image 420/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000419.jpg: 384x640 1 driveable, 10.8ms\n", + "image 421/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000420.jpg: 384x640 1 driveable, 10.8ms\n", + "image 422/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000421.jpg: 384x640 1 driveable, 10.8ms\n", + "image 423/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000422.jpg: 384x640 1 driveable, 10.8ms\n", + "image 424/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000423.jpg: 384x640 1 driveable, 10.8ms\n", + "image 425/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000424.jpg: 384x640 1 driveable, 10.8ms\n", + "image 426/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000425.jpg: 384x640 1 driveable, 10.8ms\n", + "image 427/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000426.jpg: 384x640 1 driveable, 10.8ms\n", + "image 428/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000427.jpg: 384x640 1 driveable, 10.8ms\n", + "image 429/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000428.jpg: 384x640 1 driveable, 10.8ms\n", + "image 430/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000429.jpg: 384x640 1 driveable, 10.8ms\n", + "image 431/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000430.jpg: 384x640 1 driveable, 10.8ms\n", + "image 432/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000431.jpg: 384x640 1 driveable, 10.8ms\n", + "image 433/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000432.jpg: 384x640 1 driveable, 10.8ms\n", + "image 434/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000433.jpg: 384x640 1 driveable, 10.8ms\n", + "image 435/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000434.jpg: 384x640 1 driveable, 10.8ms\n", + "image 436/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000435.jpg: 384x640 1 driveable, 10.8ms\n", + "image 437/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000436.jpg: 384x640 1 driveable, 10.8ms\n", + "image 438/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000437.jpg: 384x640 1 driveable, 11.0ms\n", + "image 439/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000438.jpg: 384x640 1 driveable, 10.9ms\n", + "image 440/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000439.jpg: 384x640 1 driveable, 11.0ms\n", + "image 441/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000440.jpg: 384x640 1 driveable, 11.0ms\n", + "image 442/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000441.jpg: 384x640 1 driveable, 11.0ms\n", + "image 443/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000442.jpg: 384x640 1 driveable, 23.1ms\n", + "image 444/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000443.jpg: 384x640 1 driveable, 11.5ms\n", + "image 445/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000444.jpg: 384x640 1 driveable, 11.2ms\n", + "image 446/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000445.jpg: 384x640 1 driveable, 11.0ms\n", + "image 447/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000446.jpg: 384x640 1 driveable, 11.0ms\n", + "image 448/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000447.jpg: 384x640 1 driveable, 11.0ms\n", + "image 449/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000448.jpg: 384x640 1 driveable, 11.0ms\n", + "image 450/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000449.jpg: 384x640 1 driveable, 11.0ms\n", + "image 451/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000450.jpg: 384x640 1 driveable, 11.0ms\n", + "image 452/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000451.jpg: 384x640 1 driveable, 11.0ms\n", + "image 453/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000452.jpg: 384x640 1 driveable, 11.0ms\n", + "image 454/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000453.jpg: 384x640 1 driveable, 11.0ms\n", + "image 455/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000454.jpg: 384x640 1 driveable, 11.0ms\n", + "image 456/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000455.jpg: 384x640 1 driveable, 11.0ms\n", + "image 457/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000456.jpg: 384x640 1 driveable, 11.0ms\n", + "image 458/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000457.jpg: 384x640 1 driveable, 11.0ms\n", + "image 459/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000458.jpg: 384x640 1 driveable, 11.0ms\n", + "image 460/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000459.jpg: 384x640 1 driveable, 11.0ms\n", + "image 461/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000460.jpg: 384x640 1 driveable, 11.0ms\n", + "image 462/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000461.jpg: 384x640 1 driveable, 11.0ms\n", + "image 463/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000462.jpg: 384x640 1 driveable, 11.0ms\n", + "image 464/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000463.jpg: 384x640 1 driveable, 11.0ms\n", + "image 465/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000464.jpg: 384x640 1 driveable, 10.9ms\n", + "image 466/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000465.jpg: 384x640 1 driveable, 10.9ms\n", + "image 467/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000466.jpg: 384x640 1 driveable, 10.9ms\n", + "image 468/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000467.jpg: 384x640 1 driveable, 11.0ms\n", + "image 469/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000468.jpg: 384x640 1 driveable, 10.9ms\n", + "image 470/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000469.jpg: 384x640 1 driveable, 11.0ms\n", + "image 471/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000470.jpg: 384x640 1 driveable, 11.0ms\n", + "image 472/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000471.jpg: 384x640 1 driveable, 11.0ms\n", + "image 473/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000472.jpg: 384x640 1 driveable, 11.0ms\n", + "image 474/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000473.jpg: 384x640 1 driveable, 11.0ms\n", + "image 475/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000474.jpg: 384x640 1 driveable, 10.9ms\n", + "image 476/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000475.jpg: 384x640 1 driveable, 11.0ms\n", + "image 477/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000476.jpg: 384x640 1 driveable, 11.2ms\n", + "image 478/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000477.jpg: 384x640 1 driveable, 11.0ms\n", + "image 479/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000478.jpg: 384x640 1 driveable, 10.9ms\n", + "image 480/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000479.jpg: 384x640 1 driveable, 10.9ms\n", + "image 481/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000480.jpg: 384x640 1 driveable, 11.0ms\n", + "image 482/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000481.jpg: 384x640 1 driveable, 10.9ms\n", + "image 483/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000482.jpg: 384x640 1 driveable, 11.0ms\n", + "image 484/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000483.jpg: 384x640 1 driveable, 11.1ms\n", + "image 485/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000484.jpg: 384x640 1 driveable, 11.1ms\n", + "image 486/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000485.jpg: 384x640 1 driveable, 11.1ms\n", + "image 487/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000486.jpg: 384x640 1 driveable, 11.1ms\n", + "image 488/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000487.jpg: 384x640 1 driveable, 11.1ms\n", + "image 489/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000488.jpg: 384x640 1 driveable, 11.2ms\n", + "image 490/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000489.jpg: 384x640 1 driveable, 11.2ms\n", + "image 491/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000490.jpg: 384x640 1 driveable, 11.2ms\n", + "image 492/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000491.jpg: 384x640 1 driveable, 11.1ms\n", + "image 493/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000492.jpg: 384x640 1 driveable, 11.1ms\n", + "image 494/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000493.jpg: 384x640 1 driveable, 11.1ms\n", + "image 495/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000494.jpg: 384x640 1 driveable, 11.1ms\n", + "image 496/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000495.jpg: 384x640 1 driveable, 11.1ms\n", + "image 497/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000496.jpg: 384x640 1 driveable, 10.9ms\n", + "image 498/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000497.jpg: 384x640 1 driveable, 11.0ms\n", + "image 499/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000498.jpg: 384x640 1 driveable, 10.9ms\n", + "image 500/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000499.jpg: 384x640 1 driveable, 11.0ms\n", + "image 501/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000500.jpg: 384x640 1 driveable, 10.9ms\n", + "image 502/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000501.jpg: 384x640 1 driveable, 10.9ms\n", + "image 503/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000502.jpg: 384x640 1 driveable, 10.9ms\n", + "image 504/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000503.jpg: 384x640 1 driveable, 11.0ms\n", + "image 505/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000504.jpg: 384x640 1 driveable, 10.9ms\n", + "image 506/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000505.jpg: 384x640 1 driveable, 10.9ms\n", + "image 507/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000506.jpg: 384x640 1 driveable, 11.0ms\n", + "image 508/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000507.jpg: 384x640 1 driveable, 10.9ms\n", + "image 509/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000508.jpg: 384x640 1 driveable, 11.0ms\n", + "image 510/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000509.jpg: 384x640 1 driveable, 11.8ms\n", + "image 511/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000510.jpg: 384x640 1 driveable, 15.4ms\n", + "image 512/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000511.jpg: 384x640 1 driveable, 11.0ms\n", + "image 513/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000512.jpg: 384x640 1 driveable, 10.9ms\n", + "image 514/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000513.jpg: 384x640 1 driveable, 13.3ms\n", + "image 515/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000514.jpg: 384x640 1 driveable, 13.7ms\n", + "image 516/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000515.jpg: 384x640 1 driveable, 13.0ms\n", + "image 517/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000516.jpg: 384x640 1 driveable, 14.3ms\n", + "image 518/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000517.jpg: 384x640 1 driveable, 11.6ms\n", + "image 519/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000518.jpg: 384x640 1 driveable, 11.0ms\n", + "image 520/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000519.jpg: 384x640 1 driveable, 15.2ms\n", + "image 521/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000520.jpg: 384x640 1 driveable, 11.9ms\n", + "image 522/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000521.jpg: 384x640 1 driveable, 11.0ms\n", + "image 523/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000522.jpg: 384x640 1 driveable, 11.0ms\n", + "image 524/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000523.jpg: 384x640 1 driveable, 11.0ms\n", + "image 525/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000524.jpg: 384x640 1 driveable, 11.0ms\n", + "image 526/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000525.jpg: 384x640 1 driveable, 11.0ms\n", + "image 527/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000526.jpg: 384x640 1 driveable, 11.0ms\n", + "image 528/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000527.jpg: 384x640 1 driveable, 11.0ms\n", + "image 529/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000528.jpg: 384x640 1 driveable, 11.0ms\n", + "image 530/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000529.jpg: 384x640 1 driveable, 11.0ms\n", + "image 531/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000530.jpg: 384x640 1 driveable, 12.8ms\n", + "image 532/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000531.jpg: 384x640 1 driveable, 13.5ms\n", + "image 533/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000532.jpg: 384x640 1 driveable, 13.6ms\n", + "image 534/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000533.jpg: 384x640 1 driveable, 11.0ms\n", + "image 535/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000534.jpg: 384x640 1 driveable, 11.1ms\n", + "image 536/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000535.jpg: 384x640 1 driveable, 11.0ms\n", + "image 537/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000536.jpg: 384x640 1 driveable, 12.2ms\n", + "image 538/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000537.jpg: 384x640 1 driveable, 12.1ms\n", + "image 539/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000538.jpg: 384x640 1 driveable, 13.4ms\n", + "image 540/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000539.jpg: 384x640 1 driveable, 13.0ms\n", + "image 541/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000540.jpg: 384x640 1 driveable, 11.0ms\n", + "image 542/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000541.jpg: 384x640 1 driveable, 11.0ms\n", + "image 543/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000542.jpg: 384x640 1 driveable, 13.6ms\n", + "image 544/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000543.jpg: 384x640 1 driveable, 11.3ms\n", + "image 545/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000544.jpg: 384x640 1 driveable, 14.8ms\n", + "image 546/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000545.jpg: 384x640 1 driveable, 15.1ms\n", + "image 547/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000546.jpg: 384x640 1 driveable, 13.0ms\n", + "image 548/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000547.jpg: 384x640 1 driveable, 11.8ms\n", + "image 549/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000548.jpg: 384x640 1 driveable, 13.4ms\n", + "image 550/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000549.jpg: 384x640 1 driveable, 12.4ms\n", + "image 551/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000550.jpg: 384x640 1 driveable, 13.8ms\n", + "image 552/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000551.jpg: 384x640 1 driveable, 12.4ms\n", + "image 553/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000552.jpg: 384x640 1 driveable, 12.4ms\n", + "image 554/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000553.jpg: 384x640 1 driveable, 12.6ms\n", + "image 555/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000554.jpg: 384x640 1 driveable, 12.6ms\n", + "image 556/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000555.jpg: 384x640 1 driveable, 12.6ms\n", + "image 557/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000556.jpg: 384x640 1 driveable, 12.6ms\n", + "image 558/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000557.jpg: 384x640 1 driveable, 12.6ms\n", + "image 559/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000558.jpg: 384x640 1 driveable, 12.6ms\n", + "image 560/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000559.jpg: 384x640 1 driveable, 12.7ms\n", + "image 561/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000560.jpg: 384x640 1 driveable, 12.7ms\n", + "image 562/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000561.jpg: 384x640 1 driveable, 12.6ms\n", + "image 563/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000562.jpg: 384x640 1 driveable, 17.3ms\n", + "image 564/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000563.jpg: 384x640 1 driveable, 16.6ms\n", + "image 565/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000564.jpg: 384x640 1 driveable, 12.9ms\n", + "image 566/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000565.jpg: 384x640 1 driveable, 16.2ms\n", + "image 567/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000566.jpg: 384x640 1 driveable, 17.2ms\n", + "image 568/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000567.jpg: 384x640 1 driveable, 12.9ms\n", + "image 569/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000568.jpg: 384x640 1 driveable, 12.9ms\n", + "image 570/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000569.jpg: 384x640 1 driveable, 12.9ms\n", + "image 571/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000570.jpg: 384x640 1 driveable, 12.9ms\n", + "image 572/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000571.jpg: 384x640 1 driveable, 12.9ms\n", + "image 573/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000572.jpg: 384x640 1 driveable, 12.9ms\n", + "image 574/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000573.jpg: 384x640 1 driveable, 13.2ms\n", + "image 575/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000574.jpg: 384x640 1 driveable, 13.2ms\n", + "image 576/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000575.jpg: 384x640 1 driveable, 13.1ms\n", + "image 577/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000576.jpg: 384x640 1 driveable, 13.1ms\n", + "image 578/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000577.jpg: 384x640 1 driveable, 13.7ms\n", + "image 579/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000578.jpg: 384x640 1 driveable, 13.3ms\n", + "image 580/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000579.jpg: 384x640 1 driveable, 13.7ms\n", + "image 581/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000580.jpg: 384x640 1 driveable, 13.8ms\n", + "image 582/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000581.jpg: 384x640 1 driveable, 12.9ms\n", + "image 583/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000582.jpg: 384x640 1 driveable, 13.0ms\n", + "image 584/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000583.jpg: 384x640 1 driveable, 12.9ms\n", + "image 585/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000584.jpg: 384x640 1 driveable, 14.2ms\n", + "image 586/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000585.jpg: 384x640 1 driveable, 15.0ms\n", + "image 587/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000586.jpg: 384x640 1 driveable, 13.6ms\n", + "image 588/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000587.jpg: 384x640 1 driveable, 13.7ms\n", + "image 589/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000588.jpg: 384x640 1 driveable, 13.0ms\n", + "image 590/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000589.jpg: 384x640 1 driveable, 15.7ms\n", + "image 591/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000590.jpg: 384x640 1 driveable, 13.5ms\n", + "image 592/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000591.jpg: 384x640 1 driveable, 13.8ms\n", + "image 593/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000592.jpg: 384x640 1 driveable, 16.8ms\n", + "image 594/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000593.jpg: 384x640 1 driveable, 16.6ms\n", + "image 595/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000594.jpg: 384x640 1 driveable, 14.6ms\n", + "image 596/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000595.jpg: 384x640 1 driveable, 13.6ms\n", + "image 597/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000596.jpg: 384x640 1 driveable, 13.9ms\n", + "image 598/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000597.jpg: 384x640 1 driveable, 12.8ms\n", + "image 599/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000598.jpg: 384x640 1 driveable, 12.9ms\n", + "image 600/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000599.jpg: 384x640 1 driveable, 12.9ms\n", + "image 601/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000600.jpg: 384x640 1 driveable, 12.9ms\n", + "image 602/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000601.jpg: 384x640 1 driveable, 12.9ms\n", + "image 603/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000602.jpg: 384x640 1 driveable, 12.9ms\n", + "image 604/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000603.jpg: 384x640 1 driveable, 12.9ms\n", + "image 605/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000604.jpg: 384x640 1 driveable, 12.9ms\n", + "image 606/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000605.jpg: 384x640 1 driveable, 12.9ms\n", + "image 607/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000606.jpg: 384x640 1 driveable, 11.7ms\n", + "image 608/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000607.jpg: 384x640 1 driveable, 11.7ms\n", + "image 609/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000608.jpg: 384x640 1 driveable, 11.7ms\n", + "image 610/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000609.jpg: 384x640 1 driveable, 11.7ms\n", + "image 611/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000610.jpg: 384x640 1 driveable, 11.7ms\n", + "image 612/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000611.jpg: 384x640 1 driveable, 11.7ms\n", + "image 613/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000612.jpg: 384x640 1 driveable, 11.7ms\n", + "image 614/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000613.jpg: 384x640 1 driveable, 11.1ms\n", + "image 615/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000614.jpg: 384x640 1 driveable, 11.1ms\n", + "image 616/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000615.jpg: 384x640 1 driveable, 11.1ms\n", + "image 617/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000616.jpg: 384x640 1 driveable, 11.1ms\n", + "image 618/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000617.jpg: 384x640 1 driveable, 11.1ms\n", + "image 619/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000618.jpg: 384x640 1 driveable, 11.2ms\n", + "image 620/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000619.jpg: 384x640 1 driveable, 11.1ms\n", + "image 621/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000620.jpg: 384x640 1 driveable, 11.2ms\n", + "image 622/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000621.jpg: 384x640 1 driveable, 11.1ms\n", + "image 623/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000622.jpg: 384x640 1 driveable, 11.1ms\n", + "image 624/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000623.jpg: 384x640 1 driveable, 11.8ms\n", + "image 625/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000624.jpg: 384x640 1 driveable, 11.1ms\n", + "image 626/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000625.jpg: 384x640 1 driveable, 11.8ms\n", + "image 627/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000626.jpg: 384x640 1 driveable, 11.0ms\n", + "image 628/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000627.jpg: 384x640 1 driveable, 11.2ms\n", + "image 629/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000628.jpg: 384x640 1 driveable, 10.9ms\n", + "image 630/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000629.jpg: 384x640 1 driveable, 10.9ms\n", + "image 631/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000630.jpg: 384x640 1 driveable, 11.0ms\n", + "image 632/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000631.jpg: 384x640 1 driveable, 11.0ms\n", + "image 633/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000632.jpg: 384x640 1 driveable, 11.0ms\n", + "image 634/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000633.jpg: 384x640 1 driveable, 10.9ms\n", + "image 635/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000634.jpg: 384x640 1 driveable, 10.9ms\n", + "image 636/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000635.jpg: 384x640 1 driveable, 10.9ms\n", + "image 637/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000636.jpg: 384x640 1 driveable, 10.9ms\n", + "image 638/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000637.jpg: 384x640 1 driveable, 10.9ms\n", + "image 639/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000638.jpg: 384x640 1 driveable, 11.0ms\n", + "image 640/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000639.jpg: 384x640 1 driveable, 10.9ms\n", + "image 641/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000640.jpg: 384x640 1 driveable, 11.0ms\n", + "image 642/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000641.jpg: 384x640 1 driveable, 10.9ms\n", + "image 643/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000642.jpg: 384x640 1 driveable, 10.9ms\n", + "image 644/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000643.jpg: 384x640 1 driveable, 10.9ms\n", + "image 645/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000644.jpg: 384x640 1 driveable, 11.0ms\n", + "image 646/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000645.jpg: 384x640 1 driveable, 10.9ms\n", + "image 647/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000646.jpg: 384x640 1 driveable, 11.0ms\n", + "image 648/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000647.jpg: 384x640 1 driveable, 11.0ms\n", + "image 649/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000648.jpg: 384x640 1 driveable, 11.0ms\n", + "image 650/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000649.jpg: 384x640 1 driveable, 11.0ms\n", + "image 651/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000650.jpg: 384x640 1 driveable, 11.0ms\n", + "image 652/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000651.jpg: 384x640 1 driveable, 11.2ms\n", + "image 653/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000652.jpg: 384x640 1 driveable, 11.4ms\n", + "image 654/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000653.jpg: 384x640 1 driveable, 11.0ms\n", + "image 655/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000654.jpg: 384x640 1 driveable, 11.0ms\n", + "image 656/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000655.jpg: 384x640 1 driveable, 10.9ms\n", + "image 657/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000656.jpg: 384x640 1 driveable, 11.0ms\n", + "image 658/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000657.jpg: 384x640 1 driveable, 11.0ms\n", + "image 659/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000658.jpg: 384x640 1 driveable, 10.9ms\n", + "image 660/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000659.jpg: 384x640 1 driveable, 11.0ms\n", + "image 661/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000660.jpg: 384x640 1 driveable, 12.3ms\n", + "image 662/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000661.jpg: 384x640 1 driveable, 10.9ms\n", + "image 663/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000662.jpg: 384x640 1 driveable, 11.0ms\n", + "image 664/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000663.jpg: 384x640 1 driveable, 10.9ms\n", + "image 665/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000664.jpg: 384x640 1 driveable, 11.0ms\n", + "image 666/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000665.jpg: 384x640 1 driveable, 11.0ms\n", + "image 667/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000666.jpg: 384x640 1 driveable, 10.9ms\n", + "image 668/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000667.jpg: 384x640 1 driveable, 11.0ms\n", + "image 669/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000668.jpg: 384x640 1 driveable, 10.9ms\n", + "image 670/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000669.jpg: 384x640 1 driveable, 11.0ms\n", + "image 671/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000670.jpg: 384x640 1 driveable, 11.0ms\n", + "image 672/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000671.jpg: 384x640 1 driveable, 10.9ms\n", + "image 673/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000672.jpg: 384x640 1 driveable, 11.0ms\n", + "image 674/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000673.jpg: 384x640 1 driveable, 10.9ms\n", + "image 675/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000674.jpg: 384x640 1 driveable, 10.8ms\n", + "image 676/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000675.jpg: 384x640 1 driveable, 10.8ms\n", + "image 677/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000676.jpg: 384x640 1 driveable, 10.8ms\n", + "image 678/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000677.jpg: 384x640 1 driveable, 10.8ms\n", + "image 679/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000678.jpg: 384x640 1 driveable, 10.8ms\n", + "image 680/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000679.jpg: 384x640 1 driveable, 10.8ms\n", + "image 681/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000680.jpg: 384x640 1 driveable, 10.8ms\n", + "image 682/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000681.jpg: 384x640 1 driveable, 10.8ms\n", + "image 683/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000682.jpg: 384x640 1 driveable, 10.8ms\n", + "image 684/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000683.jpg: 384x640 1 driveable, 10.8ms\n", + "image 685/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000684.jpg: 384x640 1 driveable, 10.8ms\n", + "image 686/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000685.jpg: 384x640 1 driveable, 11.4ms\n", + "image 687/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000686.jpg: 384x640 1 driveable, 11.9ms\n", + "image 688/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000687.jpg: 384x640 1 driveable, 10.8ms\n", + "image 689/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000688.jpg: 384x640 1 driveable, 10.8ms\n", + "image 690/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000689.jpg: 384x640 1 driveable, 10.8ms\n", + "image 691/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000690.jpg: 384x640 1 driveable, 10.8ms\n", + "image 692/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000691.jpg: 384x640 1 driveable, 10.8ms\n", + "image 693/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000692.jpg: 384x640 1 driveable, 10.8ms\n", + "image 694/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000693.jpg: 384x640 1 driveable, 10.8ms\n", + "image 695/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000694.jpg: 384x640 1 driveable, 10.8ms\n", + "image 696/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000695.jpg: 384x640 1 driveable, 11.2ms\n", + "image 697/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000696.jpg: 384x640 1 driveable, 10.8ms\n", + "image 698/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000697.jpg: 384x640 1 driveable, 10.8ms\n", + "image 699/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000698.jpg: 384x640 1 driveable, 10.8ms\n", + "image 700/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000699.jpg: 384x640 1 driveable, 10.8ms\n", + "image 701/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000700.jpg: 384x640 1 driveable, 10.8ms\n", + "image 702/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000701.jpg: 384x640 1 driveable, 10.8ms\n", + "image 703/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000702.jpg: 384x640 1 driveable, 10.8ms\n", + "image 704/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000703.jpg: 384x640 1 driveable, 10.8ms\n", + "image 705/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000704.jpg: 384x640 1 driveable, 10.8ms\n", + "image 706/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000705.jpg: 384x640 1 driveable, 10.8ms\n", + "image 707/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000706.jpg: 384x640 1 driveable, 10.8ms\n", + "image 708/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000707.jpg: 384x640 1 driveable, 10.8ms\n", + "image 709/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000708.jpg: 384x640 1 driveable, 10.8ms\n", + "image 710/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000709.jpg: 384x640 1 driveable, 10.8ms\n", + "image 711/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000710.jpg: 384x640 1 driveable, 10.8ms\n", + "image 712/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000711.jpg: 384x640 1 driveable, 10.8ms\n", + "image 713/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000712.jpg: 384x640 1 driveable, 10.8ms\n", + "image 714/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000713.jpg: 384x640 1 driveable, 10.8ms\n", + "image 715/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000714.jpg: 384x640 1 driveable, 10.7ms\n", + "image 716/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000715.jpg: 384x640 1 driveable, 10.6ms\n", + "image 717/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000716.jpg: 384x640 1 driveable, 10.6ms\n", + "image 718/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000717.jpg: 384x640 1 driveable, 10.6ms\n", + "image 719/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000718.jpg: 384x640 1 driveable, 10.6ms\n", + "image 720/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000719.jpg: 384x640 1 driveable, 10.7ms\n", + "image 721/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000720.jpg: 384x640 1 driveable, 11.1ms\n", + "image 722/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000721.jpg: 384x640 1 driveable, 10.6ms\n", + "image 723/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000722.jpg: 384x640 1 driveable, 10.6ms\n", + "image 724/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000723.jpg: 384x640 1 driveable, 10.6ms\n", + "image 725/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000724.jpg: 384x640 1 driveable, 10.6ms\n", + "image 726/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000725.jpg: 384x640 1 driveable, 10.6ms\n", + "image 727/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000726.jpg: 384x640 1 driveable, 10.6ms\n", + "image 728/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000727.jpg: 384x640 1 driveable, 10.6ms\n", + "image 729/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000728.jpg: 384x640 1 driveable, 10.6ms\n", + "image 730/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000729.jpg: 384x640 1 driveable, 10.6ms\n", + "image 731/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000730.jpg: 384x640 1 driveable, 12.7ms\n", + "image 732/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000731.jpg: 384x640 1 driveable, 10.6ms\n", + "image 733/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000732.jpg: 384x640 1 driveable, 10.7ms\n", + "image 734/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000733.jpg: 384x640 1 driveable, 10.6ms\n", + "image 735/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000734.jpg: 384x640 1 driveable, 10.8ms\n", + "image 736/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000735.jpg: 384x640 1 driveable, 10.6ms\n", + "image 737/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000736.jpg: 384x640 1 driveable, 10.6ms\n", + "image 738/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000737.jpg: 384x640 1 driveable, 10.6ms\n", + "image 739/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000738.jpg: 384x640 1 driveable, 10.7ms\n", + "image 740/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000739.jpg: 384x640 1 driveable, 10.6ms\n", + "image 741/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000740.jpg: 384x640 1 driveable, 10.6ms\n", + "image 742/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000741.jpg: 384x640 1 driveable, 10.6ms\n", + "image 743/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000742.jpg: 384x640 1 driveable, 10.6ms\n", + "image 744/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000743.jpg: 384x640 1 driveable, 10.6ms\n", + "image 745/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000744.jpg: 384x640 1 driveable, 10.6ms\n", + "image 746/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000745.jpg: 384x640 1 driveable, 10.7ms\n", + "image 747/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000746.jpg: 384x640 1 driveable, 10.6ms\n", + "image 748/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000747.jpg: 384x640 1 driveable, 10.6ms\n", + "image 749/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000748.jpg: 384x640 1 driveable, 10.6ms\n", + "image 750/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000749.jpg: 384x640 1 driveable, 10.6ms\n", + "image 751/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000750.jpg: 384x640 1 driveable, 10.6ms\n", + "image 752/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000751.jpg: 384x640 1 driveable, 10.7ms\n", + "image 753/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000752.jpg: 384x640 1 driveable, 10.6ms\n", + "image 754/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000753.jpg: 384x640 1 driveable, 11.0ms\n", + "image 755/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000754.jpg: 384x640 1 driveable, 11.4ms\n", + "image 756/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000755.jpg: 384x640 1 driveable, 11.2ms\n", + "image 757/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000756.jpg: 384x640 1 driveable, 10.6ms\n", + "image 758/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000757.jpg: 384x640 1 driveable, 10.6ms\n", + "image 759/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000758.jpg: 384x640 1 driveable, 10.6ms\n", + "image 760/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000759.jpg: 384x640 1 driveable, 11.0ms\n", + "image 761/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000760.jpg: 384x640 1 driveable, 10.6ms\n", + "image 762/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000761.jpg: 384x640 1 driveable, 10.6ms\n", + "image 763/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000762.jpg: 384x640 1 driveable, 10.6ms\n", + "image 764/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000763.jpg: 384x640 1 driveable, 10.7ms\n", + "image 765/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000764.jpg: 384x640 1 driveable, 10.6ms\n", + "image 766/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000765.jpg: 384x640 1 driveable, 12.6ms\n", + "image 767/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000766.jpg: 384x640 1 driveable, 10.6ms\n", + "image 768/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000767.jpg: 384x640 1 driveable, 10.6ms\n", + "image 769/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000768.jpg: 384x640 1 driveable, 10.6ms\n", + "image 770/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000769.jpg: 384x640 1 driveable, 10.6ms\n", + "image 771/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000770.jpg: 384x640 1 driveable, 10.6ms\n", + "image 772/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000771.jpg: 384x640 1 driveable, 10.6ms\n", + "image 773/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000772.jpg: 384x640 1 driveable, 10.6ms\n", + "image 774/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000773.jpg: 384x640 1 driveable, 10.7ms\n", + "image 775/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000774.jpg: 384x640 1 driveable, 10.6ms\n", + "image 776/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000775.jpg: 384x640 1 driveable, 10.6ms\n", + "image 777/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000776.jpg: 384x640 1 driveable, 10.6ms\n", + "image 778/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000777.jpg: 384x640 1 driveable, 10.6ms\n", + "image 779/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000778.jpg: 384x640 1 driveable, 10.6ms\n", + "image 780/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000779.jpg: 384x640 1 driveable, 10.6ms\n", + "image 781/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000780.jpg: 384x640 1 driveable, 10.6ms\n", + "image 782/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000781.jpg: 384x640 1 driveable, 10.7ms\n", + "image 783/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000782.jpg: 384x640 1 driveable, 10.8ms\n", + "image 784/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000783.jpg: 384x640 1 driveable, 10.8ms\n", + "image 785/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000784.jpg: 384x640 1 driveable, 10.8ms\n", + "image 786/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000785.jpg: 384x640 1 driveable, 10.8ms\n", + "image 787/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000786.jpg: 384x640 1 driveable, 12.1ms\n", + "image 788/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000787.jpg: 384x640 1 driveable, 11.5ms\n", + "image 789/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000788.jpg: 384x640 1 driveable, 11.3ms\n", + "image 790/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000789.jpg: 384x640 1 driveable, 10.8ms\n", + "image 791/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000790.jpg: 384x640 1 driveable, 10.8ms\n", + "image 792/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000791.jpg: 384x640 1 driveable, 10.8ms\n", + "image 793/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000792.jpg: 384x640 1 driveable, 10.8ms\n", + "image 794/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000793.jpg: 384x640 1 driveable, 10.8ms\n", + "image 795/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000794.jpg: 384x640 1 driveable, 10.8ms\n", + "image 796/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000795.jpg: 384x640 1 driveable, 10.8ms\n", + "image 797/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000796.jpg: 384x640 1 driveable, 10.8ms\n", + "image 798/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000797.jpg: 384x640 1 driveable, 10.9ms\n", + "image 799/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000798.jpg: 384x640 1 driveable, 10.8ms\n", + "image 800/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000799.jpg: 384x640 1 driveable, 11.1ms\n", + "image 801/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000800.jpg: 384x640 1 driveable, 10.9ms\n", + "image 802/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000801.jpg: 384x640 1 driveable, 10.8ms\n", + "image 803/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000802.jpg: 384x640 1 driveable, 10.9ms\n", + "image 804/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000803.jpg: 384x640 1 driveable, 10.9ms\n", + "image 805/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000804.jpg: 384x640 1 driveable, 11.0ms\n", + "image 806/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000805.jpg: 384x640 1 driveable, 11.0ms\n", + "image 807/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000806.jpg: 384x640 1 driveable, 11.0ms\n", + "image 808/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000807.jpg: 384x640 1 driveable, 11.0ms\n", + "image 809/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000808.jpg: 384x640 1 driveable, 10.9ms\n", + "image 810/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000809.jpg: 384x640 1 driveable, 11.0ms\n", + "image 811/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000810.jpg: 384x640 1 driveable, 10.9ms\n", + "image 812/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000811.jpg: 384x640 1 driveable, 11.2ms\n", + "image 813/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000812.jpg: 384x640 1 driveable, 11.0ms\n", + "image 814/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000813.jpg: 384x640 1 driveable, 12.6ms\n", + "image 815/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000814.jpg: 384x640 1 driveable, 11.0ms\n", + "image 816/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000815.jpg: 384x640 1 driveable, 11.0ms\n", + "image 817/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000816.jpg: 384x640 1 driveable, 11.0ms\n", + "image 818/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000817.jpg: 384x640 1 driveable, 11.0ms\n", + "image 819/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000818.jpg: 384x640 1 driveable, 11.0ms\n", + "image 820/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000819.jpg: 384x640 1 driveable, 11.2ms\n", + "image 821/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000820.jpg: 384x640 1 driveable, 11.3ms\n", + "image 822/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000821.jpg: 384x640 1 driveable, 11.6ms\n", + "image 823/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000822.jpg: 384x640 1 driveable, 11.0ms\n", + "image 824/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000823.jpg: 384x640 1 driveable, 10.9ms\n", + "image 825/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000824.jpg: 384x640 1 driveable, 11.0ms\n", + "image 826/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000825.jpg: 384x640 1 driveable, 11.0ms\n", + "image 827/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000826.jpg: 384x640 1 driveable, 11.0ms\n", + "image 828/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000827.jpg: 384x640 1 driveable, 11.0ms\n", + "image 829/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000828.jpg: 384x640 1 driveable, 11.1ms\n", + "image 830/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000829.jpg: 384x640 1 driveable, 11.3ms\n", + "image 831/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000830.jpg: 384x640 1 driveable, 11.1ms\n", + "image 832/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000831.jpg: 384x640 1 driveable, 11.2ms\n", + "image 833/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000832.jpg: 384x640 1 driveable, 13.4ms\n", + "image 834/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000833.jpg: 384x640 1 driveable, 11.1ms\n", + "image 835/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000834.jpg: 384x640 1 driveable, 11.2ms\n", + "image 836/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000835.jpg: 384x640 1 driveable, 11.1ms\n", + "image 837/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000836.jpg: 384x640 1 driveable, 11.1ms\n", + "image 838/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000837.jpg: 384x640 1 driveable, 11.1ms\n", + "image 839/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000838.jpg: 384x640 1 driveable, 11.1ms\n", + "image 840/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000839.jpg: 384x640 1 driveable, 11.1ms\n", + "image 841/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000840.jpg: 384x640 1 driveable, 11.1ms\n", + "image 842/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000841.jpg: 384x640 1 driveable, 11.0ms\n", + "image 843/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000842.jpg: 384x640 1 driveable, 11.0ms\n", + "image 844/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000843.jpg: 384x640 1 driveable, 11.0ms\n", + "image 845/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000844.jpg: 384x640 1 driveable, 10.9ms\n", + "image 846/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000845.jpg: 384x640 1 driveable, 10.9ms\n", + "image 847/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000846.jpg: 384x640 1 driveable, 10.9ms\n", + "image 848/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000847.jpg: 384x640 1 driveable, 11.0ms\n", + "image 849/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000848.jpg: 384x640 1 driveable, 11.6ms\n", + "image 850/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000849.jpg: 384x640 1 driveable, 11.0ms\n", + "image 851/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000850.jpg: 384x640 1 driveable, 10.9ms\n", + "image 852/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000851.jpg: 384x640 1 driveable, 11.2ms\n", + "image 853/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000852.jpg: 384x640 1 driveable, 10.9ms\n", + "image 854/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000853.jpg: 384x640 1 driveable, 11.4ms\n", + "image 855/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000854.jpg: 384x640 1 driveable, 11.0ms\n", + "image 856/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000855.jpg: 384x640 1 driveable, 11.0ms\n", + "image 857/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000856.jpg: 384x640 1 driveable, 11.0ms\n", + "image 858/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000857.jpg: 384x640 1 driveable, 11.0ms\n", + "image 859/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000858.jpg: 384x640 1 driveable, 11.0ms\n", + "image 860/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000859.jpg: 384x640 1 driveable, 11.0ms\n", + "image 861/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000860.jpg: 384x640 1 driveable, 10.9ms\n", + "image 862/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000861.jpg: 384x640 1 driveable, 11.7ms\n", + "image 863/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000862.jpg: 384x640 1 driveable, 11.0ms\n", + "image 864/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000863.jpg: 384x640 1 driveable, 11.0ms\n", + "image 865/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000864.jpg: 384x640 1 driveable, 11.0ms\n", + "image 866/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000865.jpg: 384x640 1 driveable, 11.0ms\n", + "image 867/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000866.jpg: 384x640 1 driveable, 11.5ms\n", + "image 868/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000867.jpg: 384x640 1 driveable, 11.0ms\n", + "image 869/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000868.jpg: 384x640 1 driveable, 11.0ms\n", + "image 870/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000869.jpg: 384x640 1 driveable, 10.9ms\n", + "image 871/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000870.jpg: 384x640 1 driveable, 10.9ms\n", + "image 872/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000871.jpg: 384x640 1 driveable, 10.9ms\n", + "image 873/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000872.jpg: 384x640 1 driveable, 11.0ms\n", + "image 874/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000873.jpg: 384x640 1 driveable, 10.9ms\n", + "image 875/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000874.jpg: 384x640 1 driveable, 10.9ms\n", + "image 876/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000875.jpg: 384x640 1 driveable, 11.0ms\n", + "image 877/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000876.jpg: 384x640 1 driveable, 10.9ms\n", + "image 878/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000877.jpg: 384x640 1 driveable, 11.0ms\n", + "image 879/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000878.jpg: 384x640 1 driveable, 11.0ms\n", + "image 880/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000879.jpg: 384x640 1 driveable, 10.9ms\n", + "image 881/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000880.jpg: 384x640 1 driveable, 11.0ms\n", + "image 882/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000881.jpg: 384x640 1 driveable, 11.0ms\n", + "image 883/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000882.jpg: 384x640 1 driveable, 11.0ms\n", + "image 884/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000883.jpg: 384x640 1 driveable, 11.0ms\n", + "image 885/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000884.jpg: 384x640 1 driveable, 11.0ms\n", + "image 886/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000885.jpg: 384x640 1 driveable, 14.8ms\n", + "image 887/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000886.jpg: 384x640 1 driveable, 11.1ms\n", + "image 888/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000887.jpg: 384x640 1 driveable, 11.0ms\n", + "image 889/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000888.jpg: 384x640 1 driveable, 10.9ms\n", + "image 890/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000889.jpg: 384x640 1 driveable, 11.0ms\n", + "image 891/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000890.jpg: 384x640 1 driveable, 11.0ms\n", + "image 892/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000891.jpg: 384x640 1 driveable, 10.9ms\n", + "image 893/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000892.jpg: 384x640 1 driveable, 11.0ms\n", + "image 894/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000893.jpg: 384x640 1 driveable, 11.5ms\n", + "image 895/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000894.jpg: 384x640 1 driveable, 11.0ms\n", + "image 896/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000895.jpg: 384x640 1 driveable, 11.0ms\n", + "image 897/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000896.jpg: 384x640 1 driveable, 11.0ms\n", + "image 898/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000897.jpg: 384x640 1 driveable, 10.9ms\n", + "image 899/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000898.jpg: 384x640 1 driveable, 10.9ms\n", + "image 900/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000899.jpg: 384x640 1 driveable, 10.9ms\n", + "image 901/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000900.jpg: 384x640 1 driveable, 10.9ms\n", + "image 902/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000901.jpg: 384x640 1 driveable, 13.6ms\n", + "image 903/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000902.jpg: 384x640 1 driveable, 11.0ms\n", + "image 904/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000903.jpg: 384x640 1 driveable, 10.9ms\n", + "image 905/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000904.jpg: 384x640 1 driveable, 10.9ms\n", + "image 906/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000905.jpg: 384x640 1 driveable, 10.9ms\n", + "image 907/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000906.jpg: 384x640 1 driveable, 11.0ms\n", + "image 908/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000907.jpg: 384x640 1 driveable, 11.0ms\n", + "image 909/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000908.jpg: 384x640 1 driveable, 11.0ms\n", + "image 910/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000909.jpg: 384x640 1 driveable, 10.9ms\n", + "image 911/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000910.jpg: 384x640 1 driveable, 11.0ms\n", + "image 912/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000911.jpg: 384x640 1 driveable, 10.9ms\n", + "image 913/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000912.jpg: 384x640 1 driveable, 10.9ms\n", + "image 914/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000913.jpg: 384x640 1 driveable, 10.9ms\n", + "image 915/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000914.jpg: 384x640 1 driveable, 11.5ms\n", + "image 916/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000915.jpg: 384x640 1 driveable, 10.9ms\n", + "image 917/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000916.jpg: 384x640 1 driveable, 10.1ms\n", + "image 918/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000917.jpg: 384x640 1 driveable, 10.0ms\n", + "image 919/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000918.jpg: 384x640 1 driveable, 10.0ms\n", + "image 920/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000919.jpg: 384x640 1 driveable, 10.8ms\n", + "image 921/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000920.jpg: 384x640 1 driveable, 11.0ms\n", + "image 922/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000921.jpg: 384x640 1 driveable, 10.7ms\n", + "image 923/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000922.jpg: 384x640 1 driveable, 10.2ms\n", + "image 924/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000923.jpg: 384x640 1 driveable, 10.1ms\n", + "image 925/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000924.jpg: 384x640 1 driveable, 10.1ms\n", + "image 926/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000925.jpg: 384x640 1 driveable, 10.1ms\n", + "image 927/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000926.jpg: 384x640 1 driveable, 11.4ms\n", + "image 928/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000927.jpg: 384x640 1 driveable, 10.1ms\n", + "image 929/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000928.jpg: 384x640 1 driveable, 10.1ms\n", + "image 930/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000929.jpg: 384x640 1 driveable, 10.1ms\n", + "image 931/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000930.jpg: 384x640 1 driveable, 10.1ms\n", + "image 932/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000931.jpg: 384x640 1 driveable, 9.9ms\n", + "image 933/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000932.jpg: 384x640 1 driveable, 9.9ms\n", + "image 934/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000933.jpg: 384x640 1 driveable, 10.3ms\n", + "image 935/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000934.jpg: 384x640 1 driveable, 11.0ms\n", + "image 936/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000935.jpg: 384x640 1 driveable, 10.0ms\n", + "image 937/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000936.jpg: 384x640 2 driveables, 12.9ms\n", + "image 938/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000937.jpg: 384x640 2 driveables, 10.8ms\n", + "image 939/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000938.jpg: 384x640 2 driveables, 17.6ms\n", + "image 940/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000939.jpg: 384x640 2 driveables, 13.2ms\n", + "image 941/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000940.jpg: 384x640 2 driveables, 10.0ms\n", + "image 942/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000941.jpg: 384x640 2 driveables, 12.4ms\n", + "image 943/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000942.jpg: 384x640 1 driveable, 9.9ms\n", + "image 944/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000943.jpg: 384x640 2 driveables, 15.6ms\n", + "image 945/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000944.jpg: 384x640 2 driveables, 13.3ms\n", + "image 946/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000945.jpg: 384x640 1 driveable, 11.2ms\n", + "image 947/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000946.jpg: 384x640 1 driveable, 10.7ms\n", + "image 948/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000947.jpg: 384x640 1 driveable, 10.3ms\n", + "image 949/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000948.jpg: 384x640 1 driveable, 10.4ms\n", + "image 950/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000949.jpg: 384x640 1 driveable, 10.1ms\n", + "image 951/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000950.jpg: 384x640 1 driveable, 10.2ms\n", + "image 952/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000951.jpg: 384x640 1 driveable, 17.6ms\n", + "image 953/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000952.jpg: 384x640 1 driveable, 11.5ms\n", + "image 954/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000953.jpg: 384x640 1 driveable, 10.2ms\n", + "image 955/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000954.jpg: 384x640 1 driveable, 10.1ms\n", + "image 956/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000955.jpg: 384x640 1 driveable, 10.2ms\n", + "image 957/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000956.jpg: 384x640 1 driveable, 10.5ms\n", + "image 958/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000957.jpg: 384x640 1 driveable, 9.8ms\n", + "image 959/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000958.jpg: 384x640 1 driveable, 9.7ms\n", + "image 960/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000959.jpg: 384x640 1 driveable, 9.8ms\n", + "image 961/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000960.jpg: 384x640 1 driveable, 9.7ms\n", + "image 962/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000961.jpg: 384x640 1 driveable, 10.1ms\n", + "image 963/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000962.jpg: 384x640 1 driveable, 10.1ms\n", + "image 964/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000963.jpg: 384x640 1 driveable, 9.7ms\n", + "image 965/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000964.jpg: 384x640 1 driveable, 9.7ms\n", + "image 966/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000965.jpg: 384x640 1 driveable, 16.0ms\n", + "image 967/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000966.jpg: 384x640 1 driveable, 12.7ms\n", + "image 968/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000967.jpg: 384x640 1 driveable, 11.3ms\n", + "image 969/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000968.jpg: 384x640 1 driveable, 16.0ms\n", + "image 970/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000969.jpg: 384x640 1 driveable, 23.0ms\n", + "image 971/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000970.jpg: 384x640 1 driveable, 11.6ms\n", + "image 972/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000971.jpg: 384x640 1 driveable, 15.5ms\n", + "image 973/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000972.jpg: 384x640 1 driveable, 15.4ms\n", + "image 974/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000973.jpg: 384x640 1 driveable, 10.4ms\n", + "image 975/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000974.jpg: 384x640 1 driveable, 10.4ms\n", + "image 976/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000975.jpg: 384x640 1 driveable, 11.6ms\n", + "image 977/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000976.jpg: 384x640 1 driveable, 9.9ms\n", + "image 978/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000977.jpg: 384x640 1 driveable, 17.3ms\n", + "image 979/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000978.jpg: 384x640 1 driveable, 10.1ms\n", + "image 980/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000979.jpg: 384x640 1 driveable, 13.7ms\n", + "image 981/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000980.jpg: 384x640 1 driveable, 12.2ms\n", + "image 982/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000981.jpg: 384x640 1 driveable, 12.6ms\n", + "image 983/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000982.jpg: 384x640 1 driveable, 12.2ms\n", + "image 984/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000983.jpg: 384x640 1 driveable, 12.2ms\n", + "image 985/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000984.jpg: 384x640 1 driveable, 12.2ms\n", + "image 986/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000985.jpg: 384x640 1 driveable, 12.5ms\n", + "image 987/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000986.jpg: 384x640 1 driveable, 12.2ms\n", + "image 988/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000987.jpg: 384x640 1 driveable, 12.2ms\n", + "image 989/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000988.jpg: 384x640 1 driveable, 12.2ms\n", + "image 990/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000989.jpg: 384x640 1 driveable, 13.1ms\n", + "image 991/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000990.jpg: 384x640 1 driveable, 12.5ms\n", + "image 992/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000991.jpg: 384x640 1 driveable, 12.4ms\n", + "image 993/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000992.jpg: 384x640 1 driveable, 18.3ms\n", + "image 994/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000993.jpg: 384x640 1 driveable, 13.0ms\n", + "image 995/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000994.jpg: 384x640 1 driveable, 12.4ms\n", + "image 996/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000995.jpg: 384x640 1 driveable, 12.6ms\n", + "image 997/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000996.jpg: 384x640 1 driveable, 12.6ms\n", + "image 998/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000997.jpg: 384x640 1 driveable, 12.6ms\n", + "image 999/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000998.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1000/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_000999.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1001/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001000.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1002/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001001.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1003/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001002.jpg: 384x640 1 driveable, 15.2ms\n", + "image 1004/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001003.jpg: 384x640 1 driveable, 13.3ms\n", + "image 1005/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001004.jpg: 384x640 1 driveable, 16.1ms\n", + "image 1006/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001005.jpg: 384x640 1 driveable, 14.4ms\n", + "image 1007/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001006.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1008/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001007.jpg: 384x640 1 driveable, 15.3ms\n", + "image 1009/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001008.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1010/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001009.jpg: 384x640 1 driveable, 13.5ms\n", + "image 1011/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001010.jpg: 384x640 1 driveable, 15.0ms\n", + "image 1012/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001011.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1013/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001012.jpg: 384x640 1 driveable, 13.4ms\n", + "image 1014/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001013.jpg: 384x640 1 driveable, 13.3ms\n", + "image 1015/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001014.jpg: 384x640 1 driveable, 13.9ms\n", + "image 1016/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001015.jpg: 384x640 1 driveable, 13.4ms\n", + "image 1017/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001016.jpg: 384x640 1 driveable, 13.6ms\n", + "image 1018/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001017.jpg: 384x640 1 driveable, 15.1ms\n", + "image 1019/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001018.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1020/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001019.jpg: 384x640 1 driveable, 14.5ms\n", + "image 1021/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001020.jpg: 384x640 1 driveable, 13.9ms\n", + "image 1022/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001021.jpg: 384x640 1 driveable, 13.6ms\n", + "image 1023/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001022.jpg: 384x640 1 driveable, 13.4ms\n", + "image 1024/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001023.jpg: 384x640 1 driveable, 13.4ms\n", + "image 1025/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001024.jpg: 384x640 1 driveable, 13.5ms\n", + "image 1026/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001025.jpg: 384x640 1 driveable, 13.4ms\n", + "image 1027/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001026.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1028/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001027.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1029/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001028.jpg: 384x640 1 driveable, 13.0ms\n", + "image 1030/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001029.jpg: 384x640 1 driveable, 13.0ms\n", + "image 1031/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001030.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1032/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001031.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1033/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001032.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1034/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001033.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1035/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001034.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1036/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001035.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1037/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001036.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1038/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001037.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1039/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001038.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1040/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001039.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1041/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001040.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1042/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001041.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1043/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001042.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1044/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001043.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1045/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001044.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1046/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001045.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1047/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001046.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1048/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001047.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1049/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001048.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1050/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001049.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1051/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001050.jpg: 384x640 1 driveable, 13.0ms\n", + "image 1052/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001051.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1053/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001052.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1054/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001053.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1055/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001054.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1056/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001055.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1057/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001056.jpg: 384x640 1 driveable, 12.5ms\n", + "image 1058/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001057.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1059/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001058.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1060/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001059.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1061/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001060.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1062/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001061.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1063/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001062.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1064/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001063.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1065/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001064.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1066/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001065.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1067/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001066.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1068/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001067.jpg: 384x640 1 driveable, 11.8ms\n", + "image 1069/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001068.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1070/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001069.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1071/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001070.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1072/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001071.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1073/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001072.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1074/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001073.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1075/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001074.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1076/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001075.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1077/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001076.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1078/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001077.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1079/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001078.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1080/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001079.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1081/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001080.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1082/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001081.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1083/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001082.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1084/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001083.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1085/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001084.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1086/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001085.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1087/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001086.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1088/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001087.jpg: 384x640 1 driveable, 12.3ms\n", + "image 1089/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001088.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1090/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001089.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1091/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001090.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1092/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001091.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1093/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001092.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1094/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001093.jpg: 384x640 1 driveable, 11.6ms\n", + "image 1095/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001094.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1096/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001095.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1097/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001096.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1098/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001097.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1099/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001098.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1100/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001099.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1101/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001100.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1102/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001101.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1103/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001102.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1104/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001103.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1105/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001104.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1106/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001105.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1107/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001106.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1108/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001107.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1109/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001108.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1110/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001109.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1111/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001110.jpg: 384x640 1 driveable, 11.4ms\n", + "image 1112/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001111.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1113/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001112.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1114/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001113.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1115/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001114.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1116/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001115.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1117/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001116.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1118/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001117.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1119/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001118.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1120/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001119.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1121/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001120.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1122/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001121.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1123/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001122.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1124/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001123.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1125/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001124.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1126/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001125.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1127/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001126.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1128/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001127.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1129/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001128.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1130/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001129.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1131/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001130.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1132/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001131.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1133/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001132.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1134/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001133.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1135/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001134.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1136/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001135.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1137/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001136.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1138/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001137.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1139/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001138.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1140/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001139.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1141/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001140.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1142/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001141.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1143/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001142.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1144/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001143.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1145/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001144.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1146/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001145.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1147/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001146.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1148/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001147.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1149/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001148.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1150/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001149.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1151/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001150.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1152/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001151.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1153/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001152.jpg: 384x640 1 driveable, 11.4ms\n", + "image 1154/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001153.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1155/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001154.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1156/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001155.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1157/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001156.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1158/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001157.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1159/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001158.jpg: 384x640 1 driveable, 11.4ms\n", + "image 1160/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001159.jpg: 384x640 1 driveable, 11.2ms\n", + "image 1161/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001160.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1162/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001161.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1163/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001162.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1164/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001163.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1165/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001164.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1166/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001165.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1167/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001166.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1168/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001167.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1169/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001168.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1170/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001169.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1171/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001170.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1172/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001171.jpg: 384x640 1 driveable, 11.2ms\n", + "image 1173/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001172.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1174/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001173.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1175/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001174.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1176/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001175.jpg: 384x640 1 driveable, 11.2ms\n", + "image 1177/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001176.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1178/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001177.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1179/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001178.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1180/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001179.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1181/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001180.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1182/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001181.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1183/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001182.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1184/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001183.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1185/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001184.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1186/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001185.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1187/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001186.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1188/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001187.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1189/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001188.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1190/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001189.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1191/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001190.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1192/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001191.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1193/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001192.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1194/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001193.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1195/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001194.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1196/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001195.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1197/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001196.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1198/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001197.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1199/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001198.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1200/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001199.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1201/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001200.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1202/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001201.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1203/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001202.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1204/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001203.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1205/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001204.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1206/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001205.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1207/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001206.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1208/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001207.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1209/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001208.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1210/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001209.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1211/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001210.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1212/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001211.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1213/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001212.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1214/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001213.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1215/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001214.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1216/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001215.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1217/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001216.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1218/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001217.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1219/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001218.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1220/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001219.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1221/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001220.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1222/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001221.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1223/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001222.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1224/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001223.jpg: 384x640 1 driveable, 11.4ms\n", + "image 1225/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001224.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1226/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001225.jpg: 384x640 1 driveable, 11.4ms\n", + "image 1227/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001226.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1228/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001227.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1229/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001228.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1230/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001229.jpg: 384x640 1 driveable, 11.8ms\n", + "image 1231/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001230.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1232/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001231.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1233/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001232.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1234/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001233.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1235/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001234.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1236/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001235.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1237/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001236.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1238/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001237.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1239/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001238.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1240/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001239.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1241/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001240.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1242/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001241.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1243/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001242.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1244/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001243.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1245/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001244.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1246/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001245.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1247/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001246.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1248/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001247.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1249/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001248.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1250/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001249.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1251/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001250.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1252/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001251.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1253/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001252.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1254/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001253.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1255/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001254.jpg: 384x640 1 driveable, 13.1ms\n", + "image 1256/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001255.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1257/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001256.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1258/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001257.jpg: 384x640 1 driveable, 11.4ms\n", + "image 1259/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001258.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1260/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001259.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1261/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001260.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1262/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001261.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1263/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001262.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1264/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001263.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1265/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001264.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1266/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001265.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1267/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001266.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1268/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001267.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1269/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001268.jpg: 384x640 2 driveables, 10.9ms\n", + "image 1270/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001269.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1271/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001270.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1272/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001271.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1273/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001272.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1274/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001273.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1275/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001274.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1276/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001275.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1277/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001276.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1278/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001277.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1279/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001278.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1280/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001279.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1281/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001280.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1282/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001281.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1283/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001282.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1284/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001283.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1285/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001284.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1286/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001285.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1287/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001286.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1288/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001287.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1289/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001288.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1290/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001289.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1291/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001290.jpg: 384x640 1 driveable, 11.2ms\n", + "image 1292/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001291.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1293/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001292.jpg: 384x640 1 driveable, 11.2ms\n", + "image 1294/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001293.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1295/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001294.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1296/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001295.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1297/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001296.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1298/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001297.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1299/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001298.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1300/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001299.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1301/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001300.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1302/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001301.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1303/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001302.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1304/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001303.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1305/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001304.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1306/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001305.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1307/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001306.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1308/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001307.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1309/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001308.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1310/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001309.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1311/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001310.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1312/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001311.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1313/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001312.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1314/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001313.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1315/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001314.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1316/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001315.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1317/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001316.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1318/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001317.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1319/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001318.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1320/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001319.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1321/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001320.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1322/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001321.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1323/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001322.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1324/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001323.jpg: 384x640 1 driveable, 11.8ms\n", + "image 1325/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001324.jpg: 384x640 1 driveable, 11.4ms\n", + "image 1326/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001325.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1327/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001326.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1328/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001327.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1329/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001328.jpg: 384x640 1 driveable, 11.2ms\n", + "image 1330/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001329.jpg: 384x640 1 driveable, 11.2ms\n", + "image 1331/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001330.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1332/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001331.jpg: 384x640 1 driveable, 11.2ms\n", + "image 1333/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001332.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1334/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001333.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1335/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001334.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1336/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001335.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1337/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001336.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1338/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001337.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1339/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001338.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1340/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001339.jpg: 384x640 1 driveable, 11.4ms\n", + "image 1341/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001340.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1342/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001341.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1343/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001342.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1344/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001343.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1345/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001344.jpg: 384x640 1 driveable, 12.8ms\n", + "image 1346/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001345.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1347/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001346.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1348/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001347.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1349/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001348.jpg: 384x640 1 driveable, 12.3ms\n", + "image 1350/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001349.jpg: 384x640 1 driveable, 13.1ms\n", + "image 1351/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001350.jpg: 384x640 1 driveable, 11.4ms\n", + "image 1352/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001351.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1353/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001352.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1354/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001353.jpg: 384x640 1 driveable, 25.8ms\n", + "image 1355/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001354.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1356/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001355.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1357/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001356.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1358/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001357.jpg: 384x640 1 driveable, 14.3ms\n", + "image 1359/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001358.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1360/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001359.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1361/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001360.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1362/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001361.jpg: 384x640 1 driveable, 12.2ms\n", + "image 1363/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001362.jpg: 384x640 1 driveable, 12.2ms\n", + "image 1364/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001363.jpg: 384x640 1 driveable, 17.2ms\n", + "image 1365/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001364.jpg: 384x640 1 driveable, 12.2ms\n", + "image 1366/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001365.jpg: 384x640 1 driveable, 15.8ms\n", + "image 1367/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001366.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1368/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001367.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1369/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001368.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1370/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001369.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1371/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001370.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1372/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001371.jpg: 384x640 1 driveable, 21.3ms\n", + "image 1373/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001372.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1374/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001373.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1375/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001374.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1376/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001375.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1377/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001376.jpg: 384x640 1 driveable, 21.1ms\n", + "image 1378/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001377.jpg: 384x640 1 driveable, 14.1ms\n", + "image 1379/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001378.jpg: 384x640 1 driveable, 15.7ms\n", + "image 1380/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001379.jpg: 384x640 1 driveable, 13.6ms\n", + "image 1381/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001380.jpg: 384x640 1 driveable, 15.7ms\n", + "image 1382/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001381.jpg: 384x640 1 driveable, 15.4ms\n", + "image 1383/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001382.jpg: 384x640 1 driveable, 13.2ms\n", + "image 1384/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001383.jpg: 384x640 1 driveable, 13.5ms\n", + "image 1385/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001384.jpg: 384x640 1 driveable, 13.9ms\n", + "image 1386/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001385.jpg: 384x640 1 driveable, 13.4ms\n", + "image 1387/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001386.jpg: 384x640 1 driveable, 13.5ms\n", + "image 1388/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001387.jpg: 384x640 1 driveable, 13.4ms\n", + "image 1389/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001388.jpg: 384x640 1 driveable, 13.5ms\n", + "image 1390/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001389.jpg: 384x640 1 driveable, 13.5ms\n", + "image 1391/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001390.jpg: 384x640 1 driveable, 13.6ms\n", + "image 1392/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001391.jpg: 384x640 1 driveable, 13.5ms\n", + "image 1393/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001392.jpg: 384x640 1 driveable, 13.5ms\n", + "image 1394/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001393.jpg: 384x640 1 driveable, 14.8ms\n", + "image 1395/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001394.jpg: 384x640 1 driveable, 14.9ms\n", + "image 1396/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001395.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1397/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001396.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1398/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001397.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1399/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001398.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1400/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001399.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1401/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001400.jpg: 384x640 1 driveable, 16.8ms\n", + "image 1402/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001401.jpg: 384x640 1 driveable, 15.4ms\n", + "image 1403/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001402.jpg: 384x640 1 driveable, 14.2ms\n", + "image 1404/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001403.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1405/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001404.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1406/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001405.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1407/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001406.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1408/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001407.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1409/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001408.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1410/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001409.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1411/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001410.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1412/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001411.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1413/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001412.jpg: 384x640 1 driveable, 14.4ms\n", + "image 1414/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001413.jpg: 384x640 1 driveable, 15.4ms\n", + "image 1415/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001414.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1416/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001415.jpg: 384x640 1 driveable, 17.4ms\n", + "image 1417/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001416.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1418/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001417.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1419/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001418.jpg: 384x640 1 driveable, 15.4ms\n", + "image 1420/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001419.jpg: 384x640 1 driveable, 14.8ms\n", + "image 1421/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001420.jpg: 384x640 1 driveable, 14.4ms\n", + "image 1422/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001421.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1423/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001422.jpg: 384x640 1 driveable, 17.8ms\n", + "image 1424/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001423.jpg: 384x640 1 driveable, 14.0ms\n", + "image 1425/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001424.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1426/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001425.jpg: 384x640 1 driveable, 14.3ms\n", + "image 1427/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001426.jpg: 384x640 1 driveable, 14.1ms\n", + "image 1428/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001427.jpg: 384x640 1 driveable, 15.5ms\n", + "image 1429/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001428.jpg: 384x640 1 driveable, 14.6ms\n", + "image 1430/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001429.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1431/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001430.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1432/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001431.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1433/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001432.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1434/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001433.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1435/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001434.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1436/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001435.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1437/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001436.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1438/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001437.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1439/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001438.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1440/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001439.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1441/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001440.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1442/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001441.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1443/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001442.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1444/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001443.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1445/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001444.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1446/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001445.jpg: 384x640 1 driveable, 12.5ms\n", + "image 1447/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001446.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1448/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001447.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1449/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001448.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1450/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001449.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1451/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001450.jpg: 384x640 1 driveable, 12.3ms\n", + "image 1452/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001451.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1453/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001452.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1454/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001453.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1455/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001454.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1456/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001455.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1457/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001456.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1458/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001457.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1459/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001458.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1460/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001459.jpg: 384x640 1 driveable, 12.2ms\n", + "image 1461/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001460.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1462/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001461.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1463/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001462.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1464/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001463.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1465/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001464.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1466/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001465.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1467/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001466.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1468/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001467.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1469/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001468.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1470/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001469.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1471/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001470.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1472/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001471.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1473/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001472.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1474/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001473.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1475/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001474.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1476/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001475.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1477/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001476.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1478/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001477.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1479/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001478.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1480/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001479.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1481/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001480.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1482/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001481.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1483/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001482.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1484/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001483.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1485/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001484.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1486/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001485.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1487/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001486.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1488/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001487.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1489/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001488.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1490/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001489.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1491/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001490.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1492/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001491.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1493/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001492.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1494/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001493.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1495/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001494.jpg: 384x640 1 driveable, 11.2ms\n", + "image 1496/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001495.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1497/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001496.jpg: 384x640 1 driveable, 11.4ms\n", + "image 1498/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001497.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1499/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001498.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1500/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001499.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1501/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001500.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1502/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001501.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1503/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001502.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1504/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001503.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1505/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001504.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1506/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001505.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1507/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001506.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1508/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001507.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1509/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001508.jpg: 384x640 3 driveables, 11.0ms\n", + "image 1510/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001509.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1511/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001510.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1512/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001511.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1513/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001512.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1514/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001513.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1515/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001514.jpg: 384x640 1 driveable, 10.6ms\n", + "image 1516/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001515.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1517/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001516.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1518/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001517.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1519/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001518.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1520/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001519.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1521/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001520.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1522/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001521.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1523/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001522.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1524/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001523.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1525/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001524.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1526/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001525.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1527/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001526.jpg: 384x640 1 driveable, 11.6ms\n", + "image 1528/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001527.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1529/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001528.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1530/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001529.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1531/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001530.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1532/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001531.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1533/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001532.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1534/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001533.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1535/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001534.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1536/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001535.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1537/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001536.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1538/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001537.jpg: 384x640 2 driveables, 10.5ms\n", + "image 1539/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001538.jpg: 384x640 3 driveables, 10.5ms\n", + "image 1540/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001539.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1541/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001540.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1542/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001541.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1543/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001542.jpg: 384x640 1 driveable, 10.7ms\n", + "image 1544/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001543.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1545/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001544.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1546/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001545.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1547/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001546.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1548/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001547.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1549/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001548.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1550/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001549.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1551/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001550.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1552/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001551.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1553/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001552.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1554/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001553.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1555/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001554.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1556/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001555.jpg: 384x640 1 driveable, 10.6ms\n", + "image 1557/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001556.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1558/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001557.jpg: 384x640 1 driveable, 10.4ms\n", + "image 1559/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001558.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1560/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001559.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1561/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001560.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1562/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001561.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1563/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001562.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1564/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001563.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1565/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001564.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1566/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001565.jpg: 384x640 1 driveable, 10.4ms\n", + "image 1567/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001566.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1568/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001567.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1569/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001568.jpg: 384x640 2 driveables, 10.5ms\n", + "image 1570/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001569.jpg: 384x640 1 driveable, 10.5ms\n", + "image 1571/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001570.jpg: 384x640 1 driveable, 10.6ms\n", + "image 1572/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001571.jpg: 384x640 1 driveable, 10.6ms\n", + "image 1573/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001572.jpg: 384x640 1 driveable, 10.6ms\n", + "image 1574/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001573.jpg: 384x640 1 driveable, 10.6ms\n", + "image 1575/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001574.jpg: 384x640 1 driveable, 10.6ms\n", + "image 1576/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001575.jpg: 384x640 1 driveable, 10.6ms\n", + "image 1577/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001576.jpg: 384x640 1 driveable, 10.6ms\n", + "image 1578/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001577.jpg: 384x640 1 driveable, 10.6ms\n", + "image 1579/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001578.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1580/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001579.jpg: 384x640 1 driveable, 10.6ms\n", + "image 1581/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001580.jpg: 384x640 1 driveable, 10.6ms\n", + "image 1582/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001581.jpg: 384x640 1 driveable, 10.6ms\n", + "image 1583/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001582.jpg: 384x640 1 driveable, 10.6ms\n", + "image 1584/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001583.jpg: 384x640 1 driveable, 11.4ms\n", + "image 1585/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001584.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1586/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001585.jpg: 384x640 1 driveable, 10.7ms\n", + "image 1587/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001586.jpg: 384x640 1 driveable, 10.7ms\n", + "image 1588/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001587.jpg: 384x640 1 driveable, 10.6ms\n", + "image 1589/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001588.jpg: 384x640 1 driveable, 10.6ms\n", + "image 1590/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001589.jpg: 384x640 1 driveable, 10.6ms\n", + "image 1591/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001590.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1592/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001591.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1593/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001592.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1594/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001593.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1595/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001594.jpg: 384x640 1 driveable, 12.3ms\n", + "image 1596/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001595.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1597/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001596.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1598/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001597.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1599/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001598.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1600/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001599.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1601/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001600.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1602/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001601.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1603/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001602.jpg: 384x640 1 driveable, 10.8ms\n", + "image 1604/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001603.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1605/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001604.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1606/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001605.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1607/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001606.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1608/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001607.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1609/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001608.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1610/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001609.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1611/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001610.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1612/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001611.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1613/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001612.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1614/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001613.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1615/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001614.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1616/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001615.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1617/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001616.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1618/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001617.jpg: 384x640 1 driveable, 11.2ms\n", + "image 1619/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001618.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1620/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001619.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1621/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001620.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1622/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001621.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1623/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001622.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1624/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001623.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1625/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001624.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1626/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001625.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1627/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001626.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1628/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001627.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1629/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001628.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1630/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001629.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1631/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001630.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1632/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001631.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1633/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001632.jpg: 384x640 1 driveable, 11.2ms\n", + "image 1634/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001633.jpg: 384x640 1 driveable, 11.2ms\n", + "image 1635/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001634.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1636/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001635.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1637/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001636.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1638/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001637.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1639/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001638.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1640/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001639.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1641/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001640.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1642/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001641.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1643/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001642.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1644/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001643.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1645/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001644.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1646/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001645.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1647/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001646.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1648/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001647.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1649/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001648.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1650/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001649.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1651/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001650.jpg: 384x640 1 driveable, 11.4ms\n", + "image 1652/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001651.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1653/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001652.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1654/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001653.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1655/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001654.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1656/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001655.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1657/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001656.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1658/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001657.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1659/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001658.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1660/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001659.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1661/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001660.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1662/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001661.jpg: 384x640 1 driveable, 11.8ms\n", + "image 1663/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001662.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1664/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001663.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1665/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001664.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1666/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001665.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1667/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001666.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1668/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001667.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1669/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001668.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1670/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001669.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1671/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001670.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1672/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001671.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1673/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001672.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1674/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001673.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1675/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001674.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1676/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001675.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1677/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001676.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1678/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001677.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1679/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001678.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1680/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001679.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1681/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001680.jpg: 384x640 1 driveable, 11.1ms\n", + "image 1682/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001681.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1683/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001682.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1684/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001683.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1685/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001684.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1686/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001685.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1687/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001686.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1688/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001687.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1689/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001688.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1690/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001689.jpg: 384x640 1 driveable, 11.6ms\n", + "image 1691/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001690.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1692/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001691.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1693/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001692.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1694/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001693.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1695/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001694.jpg: 384x640 1 driveable, 13.1ms\n", + "image 1696/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001695.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1697/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001696.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1698/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001697.jpg: 384x640 1 driveable, 11.0ms\n", + "image 1699/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001698.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1700/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001699.jpg: 384x640 1 driveable, 10.9ms\n", + "image 1701/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001700.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1702/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001701.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1703/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001702.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1704/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001703.jpg: 384x640 1 driveable, 11.4ms\n", + "image 1705/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001704.jpg: 384x640 1 driveable, 11.4ms\n", + "image 1706/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001705.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1707/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001706.jpg: 384x640 1 driveable, 11.4ms\n", + "image 1708/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001707.jpg: 384x640 1 driveable, 12.8ms\n", + "image 1709/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001708.jpg: 384x640 1 driveable, 11.4ms\n", + "image 1710/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001709.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1711/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001710.jpg: 384x640 1 driveable, 11.4ms\n", + "image 1712/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001711.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1713/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001712.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1714/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001713.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1715/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001714.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1716/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001715.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1717/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001716.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1718/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001717.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1719/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001718.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1720/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001719.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1721/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001720.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1722/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001721.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1723/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001722.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1724/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001723.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1725/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001724.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1726/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001725.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1727/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001726.jpg: 384x640 1 driveable, 11.8ms\n", + "image 1728/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001727.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1729/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001728.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1730/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001729.jpg: 384x640 1 driveable, 11.6ms\n", + "image 1731/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001730.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1732/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001731.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1733/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001732.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1734/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001733.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1735/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001734.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1736/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001735.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1737/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001736.jpg: 384x640 1 driveable, 11.7ms\n", + "image 1738/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001737.jpg: 384x640 1 driveable, 11.8ms\n", + "image 1739/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001738.jpg: 384x640 1 driveable, 12.5ms\n", + "image 1740/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001739.jpg: 384x640 1 driveable, 18.2ms\n", + "image 1741/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001740.jpg: 384x640 1 driveable, 13.2ms\n", + "image 1742/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001741.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1743/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001742.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1744/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001743.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1745/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001744.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1746/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001745.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1747/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001746.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1748/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001747.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1749/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001748.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1750/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001749.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1751/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001750.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1752/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001751.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1753/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001752.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1754/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001753.jpg: 384x640 1 driveable, 12.1ms\n", + "image 1755/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001754.jpg: 384x640 1 driveable, 13.9ms\n", + "image 1756/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001755.jpg: 384x640 1 driveable, 13.4ms\n", + "image 1757/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001756.jpg: 384x640 1 driveable, 13.4ms\n", + "image 1758/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001757.jpg: 384x640 1 driveable, 13.9ms\n", + "image 1759/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001758.jpg: 384x640 1 driveable, 12.2ms\n", + "image 1760/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001759.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1761/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001760.jpg: 384x640 1 driveable, 13.0ms\n", + "image 1762/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001761.jpg: 384x640 1 driveable, 12.2ms\n", + "image 1763/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001762.jpg: 384x640 1 driveable, 13.4ms\n", + "image 1764/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001763.jpg: 384x640 1 driveable, 25.2ms\n", + "image 1765/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001764.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1766/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001765.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1767/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001766.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1768/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001767.jpg: 384x640 1 driveable, 18.2ms\n", + "image 1769/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001768.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1770/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001769.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1771/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001770.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1772/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001771.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1773/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001772.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1774/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001773.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1775/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001774.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1776/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001775.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1777/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001776.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1778/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001777.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1779/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001778.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1780/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001779.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1781/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001780.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1782/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001781.jpg: 384x640 1 driveable, 13.5ms\n", + "image 1783/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001782.jpg: 384x640 1 driveable, 13.1ms\n", + "image 1784/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001783.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1785/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001784.jpg: 384x640 1 driveable, 13.2ms\n", + "image 1786/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001785.jpg: 384x640 1 driveable, 14.0ms\n", + "image 1787/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001786.jpg: 384x640 1 driveable, 16.7ms\n", + "image 1788/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001787.jpg: 384x640 1 driveable, 13.2ms\n", + "image 1789/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001788.jpg: 384x640 1 driveable, 15.6ms\n", + "image 1790/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001789.jpg: 384x640 1 driveable, 15.6ms\n", + "image 1791/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001790.jpg: 384x640 1 driveable, 15.2ms\n", + "image 1792/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001791.jpg: 384x640 1 driveable, 13.9ms\n", + "image 1793/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001792.jpg: 384x640 1 driveable, 13.3ms\n", + "image 1794/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001793.jpg: 384x640 1 driveable, 20.6ms\n", + "image 1795/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001794.jpg: 384x640 1 driveable, 13.4ms\n", + "image 1796/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001795.jpg: 384x640 1 driveable, 13.5ms\n", + "image 1797/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001796.jpg: 384x640 1 driveable, 13.5ms\n", + "image 1798/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001797.jpg: 384x640 1 driveable, 14.6ms\n", + "image 1799/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001798.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1800/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001799.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1801/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001800.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1802/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001801.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1803/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001802.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1804/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001803.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1805/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001804.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1806/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001805.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1807/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001806.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1808/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001807.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1809/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001808.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1810/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001809.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1811/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001810.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1812/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001811.jpg: 384x640 1 driveable, 15.5ms\n", + "image 1813/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001812.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1814/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001813.jpg: 384x640 1 driveable, 14.9ms\n", + "image 1815/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001814.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1816/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001815.jpg: 384x640 1 driveable, 18.4ms\n", + "image 1817/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001816.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1818/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001817.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1819/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001818.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1820/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001819.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1821/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001820.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1822/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001821.jpg: 384x640 1 driveable, 14.4ms\n", + "image 1823/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001822.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1824/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001823.jpg: 384x640 1 driveable, 15.4ms\n", + "image 1825/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001824.jpg: 384x640 1 driveable, 14.1ms\n", + "image 1826/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001825.jpg: 384x640 1 driveable, 16.5ms\n", + "image 1827/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001826.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1828/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001827.jpg: 384x640 1 driveable, 14.2ms\n", + "image 1829/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001828.jpg: 384x640 1 driveable, 16.3ms\n", + "image 1830/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001829.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1831/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001830.jpg: 384x640 1 driveable, 16.3ms\n", + "image 1832/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001831.jpg: 384x640 1 driveable, 17.8ms\n", + "image 1833/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001832.jpg: 384x640 1 driveable, 19.4ms\n", + "image 1834/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001833.jpg: 384x640 1 driveable, 14.2ms\n", + "image 1835/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001834.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1836/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001835.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1837/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001836.jpg: 384x640 1 driveable, 13.9ms\n", + "image 1838/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001837.jpg: 384x640 1 driveable, 20.6ms\n", + "image 1839/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001838.jpg: 384x640 1 driveable, 14.4ms\n", + "image 1840/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001839.jpg: 384x640 1 driveable, 18.3ms\n", + "image 1841/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001840.jpg: 384x640 1 driveable, 14.5ms\n", + "image 1842/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001841.jpg: 384x640 1 driveable, 14.0ms\n", + "image 1843/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001842.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1844/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001843.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1845/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001844.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1846/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001845.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1847/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001846.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1848/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001847.jpg: 384x640 1 driveable, 13.8ms\n", + "image 1849/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001848.jpg: 384x640 1 driveable, 13.7ms\n", + "image 1850/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001849.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1851/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001850.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1852/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001851.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1853/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001852.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1854/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001853.jpg: 384x640 1 driveable, 13.0ms\n", + "image 1855/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001854.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1856/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001855.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1857/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001856.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1858/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001857.jpg: 384x640 1 driveable, 15.9ms\n", + "image 1859/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001858.jpg: 384x640 1 driveable, 13.0ms\n", + "image 1860/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001859.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1861/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001860.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1862/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001861.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1863/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001862.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1864/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001863.jpg: 384x640 1 driveable, 13.0ms\n", + "image 1865/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001864.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1866/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001865.jpg: 384x640 1 driveable, 13.5ms\n", + "image 1867/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001866.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1868/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001867.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1869/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001868.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1870/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001869.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1871/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001870.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1872/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001871.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1873/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001872.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1874/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001873.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1875/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001874.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1876/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001875.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1877/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001876.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1878/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001877.jpg: 384x640 1 driveable, 12.9ms\n", + "image 1879/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001878.jpg: 384x640 1 driveable, 13.0ms\n", + "image 1880/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001879.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1881/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001880.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1882/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001881.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1883/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001882.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1884/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001883.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1885/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001884.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1886/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001885.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1887/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001886.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1888/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001887.jpg: 384x640 1 driveable, 17.7ms\n", + "image 1889/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001888.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1890/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001889.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1891/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001890.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1892/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001891.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1893/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001892.jpg: 384x640 1 driveable, 13.2ms\n", + "image 1894/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001893.jpg: 384x640 1 driveable, 16.7ms\n", + "image 1895/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001894.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1896/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001895.jpg: 384x640 1 driveable, 13.1ms\n", + "image 1897/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001896.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1898/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001897.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1899/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001898.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1900/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001899.jpg: 384x640 1 driveable, 12.7ms\n", + "image 1901/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001900.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1902/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001901.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1903/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001902.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1904/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001903.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1905/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001904.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1906/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001905.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1907/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001906.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1908/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001907.jpg: 384x640 1 driveable, 12.3ms\n", + "image 1909/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001908.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1910/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001909.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1911/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001910.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1912/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001911.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1913/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001912.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1914/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001913.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1915/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001914.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1916/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001915.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1917/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001916.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1918/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001917.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1919/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001918.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1920/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001919.jpg: 384x640 1 driveable, 12.2ms\n", + "image 1921/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001920.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1922/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001921.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1923/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001922.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1924/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001923.jpg: 384x640 1 driveable, 12.3ms\n", + "image 1925/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001924.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1926/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001925.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1927/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001926.jpg: 384x640 1 driveable, 12.3ms\n", + "image 1928/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001927.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1929/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001928.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1930/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001929.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1931/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001930.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1932/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001931.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1933/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001932.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1934/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001933.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1935/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001934.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1936/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001935.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1937/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001936.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1938/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001937.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1939/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001938.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1940/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001939.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1941/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001940.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1942/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001941.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1943/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001942.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1944/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001943.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1945/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001944.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1946/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001945.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1947/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001946.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1948/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001947.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1949/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001948.jpg: 384x640 1 driveable, 12.1ms\n", + "image 1950/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001949.jpg: 384x640 1 driveable, 13.2ms\n", + "image 1951/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001950.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1952/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001951.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1953/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001952.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1954/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001953.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1955/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001954.jpg: 384x640 1 driveable, 16.1ms\n", + "image 1956/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001955.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1957/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001956.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1958/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001957.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1959/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001958.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1960/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001959.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1961/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001960.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1962/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001961.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1963/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001962.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1964/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001963.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1965/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001964.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1966/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001965.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1967/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001966.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1968/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001967.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1969/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001968.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1970/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001969.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1971/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001970.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1972/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001971.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1973/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001972.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1974/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001973.jpg: 384x640 1 driveable, 12.4ms\n", + "image 1975/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001974.jpg: 384x640 1 driveable, 12.5ms\n", + "image 1976/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001975.jpg: 384x640 1 driveable, 12.3ms\n", + "image 1977/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001976.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1978/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001977.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1979/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001978.jpg: 384x640 1 driveable, 11.6ms\n", + "image 1980/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001979.jpg: 384x640 1 driveable, 11.6ms\n", + "image 1981/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001980.jpg: 384x640 1 driveable, 12.2ms\n", + "image 1982/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001981.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1983/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001982.jpg: 384x640 1 driveable, 11.6ms\n", + "image 1984/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001983.jpg: 384x640 1 driveable, 11.6ms\n", + "image 1985/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001984.jpg: 384x640 1 driveable, 12.3ms\n", + "image 1986/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001985.jpg: 384x640 1 driveable, 12.0ms\n", + "image 1987/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001986.jpg: 384x640 1 driveable, 11.9ms\n", + "image 1988/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001987.jpg: 384x640 1 driveable, 11.6ms\n", + "image 1989/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001988.jpg: 384x640 1 driveable, 11.6ms\n", + "image 1990/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001989.jpg: 384x640 1 driveable, 11.6ms\n", + "image 1991/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001990.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1992/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001991.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1993/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001992.jpg: 384x640 1 driveable, 11.8ms\n", + "image 1994/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001993.jpg: 384x640 1 driveable, 11.5ms\n", + "image 1995/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001994.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1996/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001995.jpg: 384x640 1 driveable, 12.6ms\n", + "image 1997/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001996.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1998/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001997.jpg: 384x640 1 driveable, 11.3ms\n", + "image 1999/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001998.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2000/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_001999.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2001/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002000.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2002/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002001.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2003/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002002.jpg: 384x640 1 driveable, 11.4ms\n", + "image 2004/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002003.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2005/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002004.jpg: 384x640 1 driveable, 11.4ms\n", + "image 2006/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002005.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2007/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002006.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2008/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002007.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2009/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002008.jpg: 384x640 1 driveable, 11.4ms\n", + "image 2010/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002009.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2011/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002010.jpg: 384x640 1 driveable, 11.4ms\n", + "image 2012/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002011.jpg: 384x640 1 driveable, 11.8ms\n", + "image 2013/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002012.jpg: 384x640 1 driveable, 11.9ms\n", + "image 2014/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002013.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2015/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002014.jpg: 384x640 1 driveable, 11.5ms\n", + "image 2016/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002015.jpg: 384x640 1 driveable, 11.7ms\n", + "image 2017/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002016.jpg: 384x640 1 driveable, 11.8ms\n", + "image 2018/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002017.jpg: 384x640 1 driveable, 11.4ms\n", + "image 2019/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002018.jpg: 384x640 1 driveable, 11.4ms\n", + "image 2020/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002019.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2021/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002020.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2022/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002021.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2023/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002022.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2024/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002023.jpg: 384x640 1 driveable, 11.4ms\n", + "image 2025/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002024.jpg: 384x640 1 driveable, 11.4ms\n", + "image 2026/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002025.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2027/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002026.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2028/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002027.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2029/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002028.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2030/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002029.jpg: 384x640 1 driveable, 11.8ms\n", + "image 2031/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002030.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2032/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002031.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2033/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002032.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2034/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002033.jpg: 384x640 1 driveable, 11.5ms\n", + "image 2035/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002034.jpg: 384x640 1 driveable, 11.4ms\n", + "image 2036/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002035.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2037/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002036.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2038/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002037.jpg: 384x640 1 driveable, 11.4ms\n", + "image 2039/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002038.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2040/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002039.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2041/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002040.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2042/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002041.jpg: 384x640 1 driveable, 11.3ms\n", + "image 2043/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002042.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2044/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002043.jpg: 384x640 1 driveable, 11.5ms\n", + "image 2045/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002044.jpg: 384x640 1 driveable, 11.7ms\n", + "image 2046/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002045.jpg: 384x640 1 driveable, 11.6ms\n", + "image 2047/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002046.jpg: 384x640 1 driveable, 11.4ms\n", + "image 2048/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002047.jpg: 384x640 1 driveable, 11.8ms\n", + "image 2049/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002048.jpg: 384x640 1 driveable, 11.7ms\n", + "image 2050/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002049.jpg: 384x640 1 driveable, 11.8ms\n", + "image 2051/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002050.jpg: 384x640 1 driveable, 11.7ms\n", + "image 2052/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002051.jpg: 384x640 1 driveable, 11.8ms\n", + "image 2053/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002052.jpg: 384x640 1 driveable, 11.7ms\n", + "image 2054/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002053.jpg: 384x640 1 driveable, 12.0ms\n", + "image 2055/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002054.jpg: 384x640 1 driveable, 12.0ms\n", + "image 2056/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002055.jpg: 384x640 1 driveable, 12.0ms\n", + "image 2057/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002056.jpg: 384x640 1 driveable, 12.0ms\n", + "image 2058/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002057.jpg: 384x640 1 driveable, 12.0ms\n", + "image 2059/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002058.jpg: 384x640 1 driveable, 11.9ms\n", + "image 2060/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002059.jpg: 384x640 1 driveable, 11.9ms\n", + "image 2061/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002060.jpg: 384x640 1 driveable, 11.9ms\n", + "image 2062/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002061.jpg: 384x640 1 driveable, 11.9ms\n", + "image 2063/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002062.jpg: 384x640 1 driveable, 11.9ms\n", + "image 2064/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002063.jpg: 384x640 1 driveable, 11.9ms\n", + "image 2065/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002064.jpg: 384x640 1 driveable, 12.2ms\n", + "image 2066/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002065.jpg: 384x640 1 driveable, 12.1ms\n", + "image 2067/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002066.jpg: 384x640 1 driveable, 12.2ms\n", + "image 2068/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002067.jpg: 384x640 1 driveable, 12.1ms\n", + "image 2069/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002068.jpg: 384x640 1 driveable, 12.2ms\n", + "image 2070/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002069.jpg: 384x640 1 driveable, 12.2ms\n", + "image 2071/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002070.jpg: 384x640 1 driveable, 12.2ms\n", + "image 2072/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002071.jpg: 384x640 1 driveable, 14.8ms\n", + "image 2073/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002072.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2074/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002073.jpg: 384x640 1 driveable, 12.2ms\n", + "image 2075/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002074.jpg: 384x640 1 driveable, 12.2ms\n", + "image 2076/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002075.jpg: 384x640 1 driveable, 12.1ms\n", + "image 2077/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002076.jpg: 384x640 1 driveable, 12.1ms\n", + "image 2078/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002077.jpg: 384x640 1 driveable, 12.2ms\n", + "image 2079/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002078.jpg: 384x640 1 driveable, 12.1ms\n", + "image 2080/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002079.jpg: 384x640 1 driveable, 12.2ms\n", + "image 2081/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002080.jpg: 384x640 1 driveable, 12.2ms\n", + "image 2082/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002081.jpg: 384x640 1 driveable, 12.3ms\n", + "image 2083/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002082.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2084/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002083.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2085/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002084.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2086/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002085.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2087/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002086.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2088/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002087.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2089/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002088.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2090/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002089.jpg: 384x640 1 driveable, 12.5ms\n", + "image 2091/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002090.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2092/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002091.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2093/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002092.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2094/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002093.jpg: 384x640 1 driveable, 12.7ms\n", + "image 2095/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002094.jpg: 384x640 1 driveable, 12.7ms\n", + "image 2096/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002095.jpg: 384x640 1 driveable, 14.7ms\n", + "image 2097/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002096.jpg: 384x640 1 driveable, 13.0ms\n", + "image 2098/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002097.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2099/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002098.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2100/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002099.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2101/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002100.jpg: 384x640 1 driveable, 14.7ms\n", + "image 2102/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002101.jpg: 384x640 1 driveable, 12.7ms\n", + "image 2103/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002102.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2104/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002103.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2105/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002104.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2106/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002105.jpg: 384x640 1 driveable, 12.7ms\n", + "image 2107/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002106.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2108/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002107.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2109/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002108.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2110/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002109.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2111/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002110.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2112/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002111.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2113/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002112.jpg: 384x640 1 driveable, 12.7ms\n", + "image 2114/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002113.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2115/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002114.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2116/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002115.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2117/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002116.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2118/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002117.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2119/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002118.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2120/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002119.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2121/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002120.jpg: 384x640 1 driveable, 12.7ms\n", + "image 2122/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002121.jpg: 384x640 1 driveable, 13.0ms\n", + "image 2123/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002122.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2124/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002123.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2125/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002124.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2126/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002125.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2127/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002126.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2128/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002127.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2129/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002128.jpg: 384x640 1 driveable, 13.5ms\n", + "image 2130/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002129.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2131/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002130.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2132/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002131.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2133/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002132.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2134/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002133.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2135/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002134.jpg: 384x640 1 driveable, 14.5ms\n", + "image 2136/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002135.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2137/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002136.jpg: 384x640 1 driveable, 14.0ms\n", + "image 2138/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002137.jpg: 384x640 1 driveable, 13.3ms\n", + "image 2139/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002138.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2140/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002139.jpg: 384x640 1 driveable, 13.2ms\n", + "image 2141/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002140.jpg: 384x640 1 driveable, 14.1ms\n", + "image 2142/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002141.jpg: 384x640 1 driveable, 13.5ms\n", + "image 2143/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002142.jpg: 384x640 1 driveable, 16.9ms\n", + "image 2144/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002143.jpg: 384x640 1 driveable, 14.6ms\n", + "image 2145/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002144.jpg: 384x640 1 driveable, 14.2ms\n", + "image 2146/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002145.jpg: 384x640 1 driveable, 13.4ms\n", + "image 2147/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002146.jpg: 384x640 1 driveable, 13.6ms\n", + "image 2148/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002147.jpg: 384x640 1 driveable, 13.5ms\n", + "image 2149/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002148.jpg: 384x640 1 driveable, 13.5ms\n", + "image 2150/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002149.jpg: 384x640 1 driveable, 13.5ms\n", + "image 2151/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002150.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2152/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002151.jpg: 384x640 1 driveable, 14.2ms\n", + "image 2153/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002152.jpg: 384x640 1 driveable, 18.3ms\n", + "image 2154/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002153.jpg: 384x640 1 driveable, 14.4ms\n", + "image 2155/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002154.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2156/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002155.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2157/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002156.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2158/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002157.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2159/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002158.jpg: 384x640 1 driveable, 14.3ms\n", + "image 2160/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002159.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2161/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002160.jpg: 384x640 1 driveable, 13.9ms\n", + "image 2162/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002161.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2163/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002162.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2164/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002163.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2165/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002164.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2166/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002165.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2167/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002166.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2168/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002167.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2169/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002168.jpg: 384x640 1 driveable, 14.2ms\n", + "image 2170/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002169.jpg: 384x640 1 driveable, 16.2ms\n", + "image 2171/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002170.jpg: 384x640 1 driveable, 20.7ms\n", + "image 2172/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002171.jpg: 384x640 1 driveable, 14.1ms\n", + "image 2173/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002172.jpg: 384x640 1 driveable, 14.8ms\n", + "image 2174/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002173.jpg: 384x640 1 driveable, 23.9ms\n", + "image 2175/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002174.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2176/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002175.jpg: 384x640 1 driveable, 15.8ms\n", + "image 2177/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002176.jpg: 384x640 1 driveable, 14.8ms\n", + "image 2178/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002177.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2179/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002178.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2180/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002179.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2181/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002180.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2182/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002181.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2183/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002182.jpg: 384x640 1 driveable, 13.9ms\n", + "image 2184/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002183.jpg: 384x640 1 driveable, 14.1ms\n", + "image 2185/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002184.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2186/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002185.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2187/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002186.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2188/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002187.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2189/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002188.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2190/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002189.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2191/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002190.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2192/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002191.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2193/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002192.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2194/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002193.jpg: 384x640 1 driveable, 18.9ms\n", + "image 2195/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002194.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2196/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002195.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2197/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002196.jpg: 384x640 1 driveable, 14.5ms\n", + "image 2198/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002197.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2199/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002198.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2200/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002199.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2201/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002200.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2202/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002201.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2203/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002202.jpg: 384x640 1 driveable, 13.9ms\n", + "image 2204/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002203.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2205/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002204.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2206/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002205.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2207/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002206.jpg: 384x640 1 driveable, 17.6ms\n", + "image 2208/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002207.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2209/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002208.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2210/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002209.jpg: 384x640 1 driveable, 15.6ms\n", + "image 2211/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002210.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2212/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002211.jpg: 384x640 1 driveable, 16.2ms\n", + "image 2213/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002212.jpg: 384x640 1 driveable, 17.2ms\n", + "image 2214/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002213.jpg: 384x640 1 driveable, 14.2ms\n", + "image 2215/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002214.jpg: 384x640 1 driveable, 14.9ms\n", + "image 2216/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002215.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2217/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002216.jpg: 384x640 1 driveable, 15.4ms\n", + "image 2218/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002217.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2219/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002218.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2220/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002219.jpg: 384x640 1 driveable, 14.4ms\n", + "image 2221/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002220.jpg: 384x640 1 driveable, 14.8ms\n", + "image 2222/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002221.jpg: 384x640 1 driveable, 14.5ms\n", + "image 2223/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002222.jpg: 384x640 1 driveable, 14.6ms\n", + "image 2224/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002223.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2225/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002224.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2226/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002225.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2227/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002226.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2228/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002227.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2229/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002228.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2230/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002229.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2231/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002230.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2232/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002231.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2233/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002232.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2234/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002233.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2235/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002234.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2236/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002235.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2237/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002236.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2238/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002237.jpg: 384x640 1 driveable, 14.2ms\n", + "image 2239/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002238.jpg: 384x640 1 driveable, 15.0ms\n", + "image 2240/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002239.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2241/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002240.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2242/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002241.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2243/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002242.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2244/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002243.jpg: 384x640 1 driveable, 15.5ms\n", + "image 2245/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002244.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2246/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002245.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2247/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002246.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2248/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002247.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2249/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002248.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2250/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002249.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2251/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002250.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2252/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002251.jpg: 384x640 1 driveable, 14.8ms\n", + "image 2253/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002252.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2254/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002253.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2255/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002254.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2256/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002255.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2257/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002256.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2258/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002257.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2259/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002258.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2260/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002259.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2261/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002260.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2262/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002261.jpg: 384x640 1 driveable, 13.4ms\n", + "image 2263/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002262.jpg: 384x640 1 driveable, 13.5ms\n", + "image 2264/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002263.jpg: 384x640 1 driveable, 14.8ms\n", + "image 2265/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002264.jpg: 384x640 1 driveable, 13.4ms\n", + "image 2266/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002265.jpg: 384x640 1 driveable, 13.4ms\n", + "image 2267/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002266.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2268/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002267.jpg: 384x640 1 driveable, 13.4ms\n", + "image 2269/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002268.jpg: 384x640 1 driveable, 13.4ms\n", + "image 2270/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002269.jpg: 384x640 1 driveable, 13.4ms\n", + "image 2271/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002270.jpg: 384x640 1 driveable, 13.4ms\n", + "image 2272/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002271.jpg: 384x640 1 driveable, 13.4ms\n", + "image 2273/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002272.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2274/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002273.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2275/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002274.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2276/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002275.jpg: 384x640 1 driveable, 14.4ms\n", + "image 2277/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002276.jpg: 384x640 1 driveable, 13.6ms\n", + "image 2278/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002277.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2279/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002278.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2280/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002279.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2281/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002280.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2282/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002281.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2283/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002282.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2284/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002283.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2285/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002284.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2286/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002285.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2287/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002286.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2288/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002287.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2289/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002288.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2290/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002289.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2291/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002290.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2292/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002291.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2293/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002292.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2294/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002293.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2295/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002294.jpg: 384x640 1 driveable, 13.0ms\n", + "image 2296/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002295.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2297/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002296.jpg: 384x640 1 driveable, 13.0ms\n", + "image 2298/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002297.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2299/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002298.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2300/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002299.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2301/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002300.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2302/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002301.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2303/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002302.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2304/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002303.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2305/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002304.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2306/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002305.jpg: 384x640 1 driveable, 13.5ms\n", + "image 2307/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002306.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2308/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002307.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2309/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002308.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2310/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002309.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2311/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002310.jpg: 384x640 1 driveable, 12.7ms\n", + "image 2312/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002311.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2313/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002312.jpg: 384x640 1 driveable, 12.7ms\n", + "image 2314/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002313.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2315/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002314.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2316/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002315.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2317/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002316.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2318/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002317.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2319/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002318.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2320/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002319.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2321/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002320.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2322/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002321.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2323/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002322.jpg: 384x640 1 driveable, 12.7ms\n", + "image 2324/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002323.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2325/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002324.jpg: 384x640 1 driveable, 12.7ms\n", + "image 2326/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002325.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2327/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002326.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2328/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002327.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2329/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002328.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2330/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002329.jpg: 384x640 1 driveable, 13.2ms\n", + "image 2331/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002330.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2332/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002331.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2333/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002332.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2334/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002333.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2335/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002334.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2336/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002335.jpg: 384x640 1 driveable, 14.0ms\n", + "image 2337/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002336.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2338/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002337.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2339/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002338.jpg: 384x640 1 driveable, 12.5ms\n", + "image 2340/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002339.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2341/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002340.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2342/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002341.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2343/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002342.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2344/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002343.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2345/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002344.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2346/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002345.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2347/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002346.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2348/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002347.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2349/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002348.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2350/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002349.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2351/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002350.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2352/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002351.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2353/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002352.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2354/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002353.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2355/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002354.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2356/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002355.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2357/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002356.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2358/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002357.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2359/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002358.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2360/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002359.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2361/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002360.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2362/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002361.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2363/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002362.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2364/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002363.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2365/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002364.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2366/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002365.jpg: 384x640 1 driveable, 12.3ms\n", + "image 2367/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002366.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2368/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002367.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2369/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002368.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2370/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002369.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2371/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002370.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2372/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002371.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2373/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002372.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2374/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002373.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2375/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002374.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2376/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002375.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2377/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002376.jpg: 384x640 1 driveable, 12.3ms\n", + "image 2378/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002377.jpg: 384x640 2 driveables, 12.4ms\n", + "image 2379/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002378.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2380/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002379.jpg: 384x640 1 driveable, 12.4ms\n", + "image 2381/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002380.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2382/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002381.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2383/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002382.jpg: 384x640 1 driveable, 12.7ms\n", + "image 2384/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002383.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2385/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002384.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2386/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002385.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2387/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002386.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2388/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002387.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2389/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002388.jpg: 384x640 1 driveable, 12.7ms\n", + "image 2390/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002389.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2391/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002390.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2392/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002391.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2393/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002392.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2394/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002393.jpg: 384x640 1 driveable, 13.1ms\n", + "image 2395/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002394.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2396/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002395.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2397/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002396.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2398/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002397.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2399/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002398.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2400/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002399.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2401/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002400.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2402/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002401.jpg: 384x640 1 driveable, 12.7ms\n", + "image 2403/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002402.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2404/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002403.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2405/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002404.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2406/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002405.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2407/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002406.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2408/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002407.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2409/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002408.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2410/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002409.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2411/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002410.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2412/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002411.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2413/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002412.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2414/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002413.jpg: 384x640 1 driveable, 12.6ms\n", + "image 2415/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002414.jpg: 384x640 1 driveable, 12.7ms\n", + "image 2416/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002415.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2417/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002416.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2418/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002417.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2419/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002418.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2420/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002419.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2421/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002420.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2422/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002421.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2423/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002422.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2424/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002423.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2425/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002424.jpg: 384x640 1 driveable, 12.8ms\n", + "image 2426/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002425.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2427/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002426.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2428/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002427.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2429/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002428.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2430/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002429.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2431/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002430.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2432/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002431.jpg: 384x640 1 driveable, 13.1ms\n", + "image 2433/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002432.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2434/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002433.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2435/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002434.jpg: 384x640 1 driveable, 12.8ms\n", + "image 2436/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002435.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2437/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002436.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2438/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002437.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2439/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002438.jpg: 384x640 2 driveables, 12.9ms\n", + "image 2440/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002439.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2441/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002440.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2442/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002441.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2443/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002442.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2444/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002443.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2445/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002444.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2446/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002445.jpg: 384x640 1 driveable, 13.1ms\n", + "image 2447/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002446.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2448/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002447.jpg: 384x640 1 driveable, 12.8ms\n", + "image 2449/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002448.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2450/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002449.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2451/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002450.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2452/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002451.jpg: 384x640 1 driveable, 13.0ms\n", + "image 2453/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002452.jpg: 384x640 1 driveable, 12.9ms\n", + "image 2454/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002453.jpg: 384x640 1 driveable, 13.2ms\n", + "image 2455/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002454.jpg: 384x640 1 driveable, 13.1ms\n", + "image 2456/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002455.jpg: 384x640 1 driveable, 13.1ms\n", + "image 2457/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002456.jpg: 384x640 1 driveable, 13.1ms\n", + "image 2458/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002457.jpg: 384x640 1 driveable, 13.1ms\n", + "image 2459/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002458.jpg: 384x640 1 driveable, 13.1ms\n", + "image 2460/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002459.jpg: 384x640 1 driveable, 13.1ms\n", + "image 2461/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002460.jpg: 384x640 1 driveable, 13.1ms\n", + "image 2462/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002461.jpg: 384x640 1 driveable, 13.2ms\n", + "image 2463/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002462.jpg: 384x640 1 driveable, 13.5ms\n", + "image 2464/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002463.jpg: 384x640 1 driveable, 13.4ms\n", + "image 2465/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002464.jpg: 384x640 1 driveable, 13.4ms\n", + "image 2466/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002465.jpg: 384x640 1 driveable, 13.4ms\n", + "image 2467/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002466.jpg: 384x640 2 driveables, 13.5ms\n", + "image 2468/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002467.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2469/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002468.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2470/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002469.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2471/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002470.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2472/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002471.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2473/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002472.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2474/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002473.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2475/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002474.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2476/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002475.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2477/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002476.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2478/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002477.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2479/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002478.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2480/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002479.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2481/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002480.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2482/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002481.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2483/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002482.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2484/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002483.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2485/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002484.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2486/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002485.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2487/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002486.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2488/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002487.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2489/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002488.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2490/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002489.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2491/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002490.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2492/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002491.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2493/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002492.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2494/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002493.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2495/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002494.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2496/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002495.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2497/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002496.jpg: 384x640 1 driveable, 13.7ms\n", + "image 2498/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002497.jpg: 384x640 1 driveable, 16.6ms\n", + "image 2499/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002498.jpg: 384x640 1 driveable, 16.1ms\n", + "image 2500/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002499.jpg: 384x640 1 driveable, 15.5ms\n", + "image 2501/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002500.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2502/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002501.jpg: 384x640 1 driveable, 14.6ms\n", + "image 2503/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002502.jpg: 384x640 1 driveable, 14.2ms\n", + "image 2504/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002503.jpg: 384x640 1 driveable, 14.2ms\n", + "image 2505/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002504.jpg: 384x640 1 driveable, 14.0ms\n", + "image 2506/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002505.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2507/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002506.jpg: 384x640 1 driveable, 13.9ms\n", + "image 2508/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002507.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2509/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002508.jpg: 384x640 1 driveable, 14.4ms\n", + "image 2510/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002509.jpg: 384x640 1 driveable, 14.1ms\n", + "image 2511/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002510.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2512/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002511.jpg: 384x640 1 driveable, 14.2ms\n", + "image 2513/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002512.jpg: 384x640 1 driveable, 16.1ms\n", + "image 2514/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002513.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2515/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002514.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2516/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002515.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2517/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002516.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2518/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002517.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2519/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002518.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2520/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002519.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2521/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002520.jpg: 384x640 1 driveable, 13.9ms\n", + "image 2522/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002521.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2523/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002522.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2524/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002523.jpg: 384x640 1 driveable, 14.1ms\n", + "image 2525/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002524.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2526/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002525.jpg: 384x640 1 driveable, 14.0ms\n", + "image 2527/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002526.jpg: 384x640 1 driveable, 15.1ms\n", + "image 2528/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002527.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2529/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002528.jpg: 384x640 1 driveable, 20.0ms\n", + "image 2530/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002529.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2531/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002530.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2532/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002531.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2533/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002532.jpg: 384x640 1 driveable, 13.9ms\n", + "image 2534/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002533.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2535/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002534.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2536/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002535.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2537/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002536.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2538/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002537.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2539/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002538.jpg: 384x640 1 driveable, 15.7ms\n", + "image 2540/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002539.jpg: 384x640 1 driveable, 13.8ms\n", + "image 2541/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002540.jpg: 384x640 1 driveable, 15.7ms\n", + "image 2542/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002541.jpg: 384x640 1 driveable, 18.9ms\n", + "image 2543/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002542.jpg: 384x640 1 driveable, 28.0ms\n", + "image 2544/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002543.jpg: 384x640 1 driveable, 14.0ms\n", + "image 2545/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002544.jpg: 384x640 1 driveable, 17.2ms\n", + "image 2546/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002545.jpg: 384x640 1 driveable, 13.9ms\n", + "image 2547/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002546.jpg: 384x640 1 driveable, 16.9ms\n", + "image 2548/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002547.jpg: 384x640 1 driveable, 2459.9ms\n", + "image 2549/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002548.jpg: 384x640 1 driveable, 960.5ms\n", + "image 2550/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002549.jpg: 384x640 1 driveable, 786.1ms\n", + "image 2551/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002550.jpg: 384x640 1 driveable, 947.9ms\n", + "image 2552/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002551.jpg: 384x640 1 driveable, 936.5ms\n", + "WARNING ⚠️ NMS time limit 2.050s exceeded\n", + "image 2553/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002552.jpg: 384x640 1 driveable, 1235.8ms\n", + "image 2554/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002553.jpg: 384x640 1 driveable, 2066.4ms\n", + "image 2555/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002554.jpg: 384x640 1 driveable, 1117.7ms\n", + "image 2556/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002555.jpg: 384x640 1 driveable, 2952.3ms\n", + "image 2557/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002556.jpg: 384x640 2 driveables, 1272.0ms\n", + "image 2558/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002557.jpg: 384x640 2 driveables, 2384.0ms\n", + "image 2559/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002558.jpg: 384x640 2 driveables, 1697.0ms\n", + "image 2560/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002559.jpg: 384x640 2 driveables, 989.2ms\n", + "image 2561/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002560.jpg: 384x640 2 driveables, 2898.4ms\n", + "image 2562/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002561.jpg: 384x640 1 driveable, 2192.7ms\n", + "image 2563/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002562.jpg: 384x640 1 driveable, 2276.9ms\n", + "WARNING ⚠️ NMS time limit 2.050s exceeded\n", + "image 2564/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002563.jpg: 384x640 1 driveable, 45806.9ms\n", + "WARNING ⚠️ NMS time limit 2.050s exceeded\n", + "image 2565/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002564.jpg: 384x640 1 driveable, 1616.0ms\n", + "WARNING ⚠️ NMS time limit 2.050s exceeded\n", + "image 2566/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002565.jpg: 384x640 1 driveable, 19704.7ms\n", + "image 2567/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002566.jpg: 384x640 1 driveable, 23199.7ms\n", + "image 2568/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002567.jpg: 384x640 1 driveable, 559.1ms\n", + "image 2569/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002568.jpg: 384x640 1 driveable, 419.5ms\n", + "image 2570/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002569.jpg: 384x640 1 driveable, 100.2ms\n", + "image 2571/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002570.jpg: 384x640 1 driveable, 14.8ms\n", + "image 2572/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002571.jpg: 384x640 1 driveable, 18.1ms\n", + "image 2573/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002572.jpg: 384x640 1 driveable, 20.4ms\n", + "image 2574/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002573.jpg: 384x640 1 driveable, 35.1ms\n", + "image 2575/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002574.jpg: 384x640 1 driveable, 972.0ms\n", + "image 2576/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002575.jpg: 384x640 1 driveable, 748.3ms\n", + "image 2577/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002576.jpg: 384x640 1 driveable, 577.1ms\n", + "image 2578/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002577.jpg: 384x640 1 driveable, 372.2ms\n", + "image 2579/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002578.jpg: 384x640 1 driveable, 103.8ms\n", + "image 2580/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002579.jpg: 384x640 1 driveable, 14.5ms\n", + "image 2581/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002580.jpg: 384x640 1 driveable, 14.6ms\n", + "image 2582/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002581.jpg: 384x640 1 driveable, 24.5ms\n", + "image 2583/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002582.jpg: 384x640 1 driveable, 45.6ms\n", + "image 2584/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002583.jpg: 384x640 1 driveable, 783.5ms\n", + "image 2585/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002584.jpg: 384x640 1 driveable, 576.4ms\n", + "image 2586/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002585.jpg: 384x640 1 driveable, 637.6ms\n", + "image 2587/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002586.jpg: 384x640 1 driveable, 518.7ms\n", + "image 2588/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002587.jpg: 384x640 1 driveable, 666.5ms\n", + "image 2589/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002588.jpg: 384x640 1 driveable, 609.4ms\n", + "image 2590/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002589.jpg: 384x640 1 driveable, 537.3ms\n", + "image 2591/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002590.jpg: 384x640 1 driveable, 781.7ms\n", + "image 2592/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002591.jpg: 384x640 1 driveable, 532.7ms\n", + "image 2593/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002592.jpg: 384x640 1 driveable, 719.5ms\n", + "image 2594/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002593.jpg: 384x640 1 driveable, 1004.2ms\n", + "image 2595/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002594.jpg: 384x640 1 driveable, 838.8ms\n", + "image 2596/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002595.jpg: 384x640 1 driveable, 618.0ms\n", + "image 2597/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002596.jpg: 384x640 1 driveable, 868.6ms\n", + "image 2598/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002597.jpg: 384x640 1 driveable, 703.7ms\n", + "image 2599/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002598.jpg: 384x640 1 driveable, 636.4ms\n", + "image 2600/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002599.jpg: 384x640 1 driveable, 487.4ms\n", + "image 2601/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002600.jpg: 384x640 1 driveable, 2391.7ms\n", + "image 2602/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002601.jpg: 384x640 1 driveable, 1789.2ms\n", + "image 2603/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002602.jpg: 384x640 1 driveable, 2173.5ms\n", + "image 2604/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002603.jpg: 384x640 1 driveable, 2279.3ms\n", + "image 2605/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002604.jpg: 384x640 1 driveable, 2596.9ms\n", + "image 2606/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002605.jpg: 384x640 1 driveable, 1998.0ms\n", + "image 2607/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002606.jpg: 384x640 1 driveable, 2096.1ms\n", + "image 2608/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002607.jpg: 384x640 1 driveable, 2029.5ms\n", + "image 2609/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002608.jpg: 384x640 1 driveable, 3473.6ms\n", + "image 2610/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002609.jpg: 384x640 1 driveable, 679.3ms\n", + "image 2611/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002610.jpg: 384x640 1 driveable, 1849.5ms\n", + "image 2612/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002611.jpg: 384x640 1 driveable, 2303.4ms\n", + "image 2613/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002612.jpg: 384x640 1 driveable, 1845.6ms\n", + "image 2614/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002613.jpg: 384x640 1 driveable, 3734.6ms\n", + "image 2615/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002614.jpg: 384x640 1 driveable, 654.2ms\n", + "image 2616/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002615.jpg: 384x640 1 driveable, 2207.2ms\n", + "image 2617/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002616.jpg: 384x640 1 driveable, 1623.7ms\n", + "image 2618/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002617.jpg: 384x640 1 driveable, 1897.2ms\n", + "image 2619/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002618.jpg: 384x640 1 driveable, 2108.1ms\n", + "image 2620/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002619.jpg: 384x640 1 driveable, 1471.1ms\n", + "image 2621/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002620.jpg: 384x640 1 driveable, 1811.6ms\n", + "image 2622/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002621.jpg: 384x640 1 driveable, 3702.1ms\n", + "image 2623/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002622.jpg: 384x640 1 driveable, 918.8ms\n", + "image 2624/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002623.jpg: 384x640 1 driveable, 2293.7ms\n", + "image 2625/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002624.jpg: 384x640 1 driveable, 1971.2ms\n", + "image 2626/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002625.jpg: 384x640 1 driveable, 707.0ms\n", + "image 2627/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002626.jpg: 384x640 1 driveable, 1063.4ms\n", + "image 2628/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002627.jpg: 384x640 1 driveable, 730.5ms\n", + "image 2629/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002628.jpg: 384x640 1 driveable, 1561.0ms\n", + "image 2630/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002629.jpg: 384x640 1 driveable, 785.0ms\n", + "image 2631/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002630.jpg: 384x640 1 driveable, 956.4ms\n", + "image 2632/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002631.jpg: 384x640 1 driveable, 1291.7ms\n", + "image 2633/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002632.jpg: 384x640 1 driveable, 1400.8ms\n", + "image 2634/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002633.jpg: 384x640 1 driveable, 1182.0ms\n", + "image 2635/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002634.jpg: 384x640 1 driveable, 2084.1ms\n", + "image 2636/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002635.jpg: 384x640 1 driveable, 1542.7ms\n", + "image 2637/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002636.jpg: 384x640 1 driveable, 1754.3ms\n", + "image 2638/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002637.jpg: 384x640 1 driveable, 1571.1ms\n", + "image 2639/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002638.jpg: 384x640 1 driveable, 1924.4ms\n", + "image 2640/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002639.jpg: 384x640 1 driveable, 882.4ms\n", + "image 2641/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002640.jpg: 384x640 1 driveable, 1031.7ms\n", + "image 2642/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002641.jpg: 384x640 1 driveable, 703.2ms\n", + "image 2643/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002642.jpg: 384x640 1 driveable, 3244.3ms\n", + "image 2644/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002643.jpg: 384x640 1 driveable, 2514.9ms\n", + "image 2645/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002644.jpg: 384x640 1 driveable, 2576.2ms\n", + "image 2646/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002645.jpg: 384x640 1 driveable, 2516.5ms\n", + "image 2647/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002646.jpg: 384x640 1 driveable, 2207.4ms\n", + "image 2648/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002647.jpg: 384x640 1 driveable, 2141.9ms\n", + "WARNING ⚠️ NMS time limit 2.050s exceeded\n", + "image 2649/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002648.jpg: 384x640 1 driveable, 4674.0ms\n", + "image 2650/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002649.jpg: 384x640 1 driveable, 1902.4ms\n", + "image 2651/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002650.jpg: 384x640 1 driveable, 945.1ms\n", + "image 2652/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002651.jpg: 384x640 1 driveable, 628.3ms\n", + "image 2653/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002652.jpg: 384x640 1 driveable, 760.6ms\n", + "image 2654/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002653.jpg: 384x640 1 driveable, 857.1ms\n", + "image 2655/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002654.jpg: 384x640 1 driveable, 1950.1ms\n", + "image 2656/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002655.jpg: 384x640 1 driveable, 1988.8ms\n", + "image 2657/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002656.jpg: 384x640 1 driveable, 2460.3ms\n", + "image 2658/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002657.jpg: 384x640 1 driveable, 910.5ms\n", + "image 2659/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002658.jpg: 384x640 1 driveable, 917.0ms\n", + "image 2660/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002659.jpg: 384x640 1 driveable, 3694.6ms\n", + "image 2661/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002660.jpg: 384x640 1 driveable, 2233.8ms\n", + "image 2662/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002661.jpg: 384x640 1 driveable, 1113.4ms\n", + "image 2663/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002662.jpg: 384x640 1 driveable, 3992.9ms\n", + "image 2664/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002663.jpg: 384x640 1 driveable, 1056.2ms\n", + "image 2665/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002664.jpg: 384x640 1 driveable, 3539.1ms\n", + "image 2666/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002665.jpg: 384x640 1 driveable, 1186.9ms\n", + "image 2667/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002666.jpg: 384x640 1 driveable, 2431.9ms\n", + "image 2668/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002667.jpg: 384x640 1 driveable, 863.9ms\n", + "image 2669/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002668.jpg: 384x640 1 driveable, 3200.4ms\n", + "image 2670/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002669.jpg: 384x640 1 driveable, 5731.7ms\n", + "image 2671/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002670.jpg: 384x640 1 driveable, 1489.7ms\n", + "image 2672/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002671.jpg: 384x640 1 driveable, 2226.2ms\n", + "image 2673/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002672.jpg: 384x640 1 driveable, 847.0ms\n", + "image 2674/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002673.jpg: 384x640 1 driveable, 1626.5ms\n", + "image 2675/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002674.jpg: 384x640 1 driveable, 1629.5ms\n", + "WARNING ⚠️ NMS time limit 2.050s exceeded\n", + "image 2676/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002675.jpg: 384x640 1 driveable, 1812.7ms\n", + "image 2677/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002676.jpg: 384x640 1 driveable, 921.4ms\n", + "image 2678/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002677.jpg: 384x640 1 driveable, 998.2ms\n", + "image 2679/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002678.jpg: 384x640 1 driveable, 3442.8ms\n", + "image 2680/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002679.jpg: 384x640 1 driveable, 13444.7ms\n", + "image 2681/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002680.jpg: 384x640 1 driveable, 2463.2ms\n", + "WARNING ⚠️ NMS time limit 2.050s exceeded\n", + "image 2682/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002681.jpg: 384x640 1 driveable, 1069.1ms\n", + "image 2683/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002682.jpg: 384x640 1 driveable, 1013.1ms\n", + "image 2684/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002683.jpg: 384x640 1 driveable, 3322.3ms\n", + "image 2685/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002684.jpg: 384x640 1 driveable, 2140.5ms\n", + "image 2686/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002685.jpg: 384x640 1 driveable, 2210.5ms\n", + "image 2687/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002686.jpg: 384x640 1 driveable, 2201.4ms\n", + "WARNING ⚠️ NMS time limit 2.050s exceeded\n", + "image 2688/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002687.jpg: 384x640 1 driveable, 1849.3ms\n", + "image 2689/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002688.jpg: 384x640 1 driveable, 956.9ms\n", + "image 2690/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002689.jpg: 384x640 1 driveable, 3170.7ms\n", + "image 2691/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002690.jpg: 384x640 1 driveable, 2031.6ms\n", + "image 2692/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002691.jpg: 384x640 1 driveable, 973.8ms\n", + "image 2693/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002692.jpg: 384x640 1 driveable, 920.5ms\n", + "image 2694/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002693.jpg: 384x640 1 driveable, 1513.4ms\n", + "image 2695/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002694.jpg: 384x640 1 driveable, 3783.6ms\n", + "image 2696/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002695.jpg: 384x640 1 driveable, 978.2ms\n", + "image 2697/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002696.jpg: 384x640 1 driveable, 3105.2ms\n", + "image 2698/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002697.jpg: 384x640 1 driveable, 3781.0ms\n", + "image 2699/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002698.jpg: 384x640 1 driveable, 2522.5ms\n", + "image 2700/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002699.jpg: 384x640 1 driveable, 1115.9ms\n", + "image 2701/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002700.jpg: 384x640 1 driveable, 2350.8ms\n", + "WARNING ⚠️ NMS time limit 2.050s exceeded\n", + "image 2702/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002701.jpg: 384x640 1 driveable, 4738.3ms\n", + "image 2703/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002702.jpg: 384x640 1 driveable, 2051.0ms\n", + "image 2704/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002703.jpg: 384x640 1 driveable, 1142.7ms\n", + "image 2705/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002704.jpg: 384x640 1 driveable, 3852.0ms\n", + "image 2706/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002705.jpg: 384x640 1 driveable, 1876.6ms\n", + "image 2707/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002706.jpg: 384x640 1 driveable, 1364.3ms\n", + "image 2708/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002707.jpg: 384x640 1 driveable, 2015.2ms\n", + "image 2709/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002708.jpg: 384x640 2 driveables, 1224.9ms\n", + "image 2710/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002709.jpg: 384x640 1 driveable, 2217.1ms\n", + "image 2711/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002710.jpg: 384x640 1 driveable, 2210.4ms\n", + "image 2712/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002711.jpg: 384x640 1 driveable, 805.1ms\n", + "image 2713/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002712.jpg: 384x640 1 driveable, 792.5ms\n", + "image 2714/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002713.jpg: 384x640 1 driveable, 3183.1ms\n", + "image 2715/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002714.jpg: 384x640 1 driveable, 1760.3ms\n", + "image 2716/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002715.jpg: 384x640 1 driveable, 1743.6ms\n", + "image 2717/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002716.jpg: 384x640 1 driveable, 890.1ms\n", + "image 2718/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002717.jpg: 384x640 1 driveable, 2935.3ms\n", + "image 2719/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002718.jpg: 384x640 1 driveable, 838.7ms\n", + "image 2720/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002719.jpg: 384x640 1 driveable, 9119.3ms\n", + "image 2721/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002720.jpg: 384x640 1 driveable, 1537.0ms\n", + "image 2722/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002721.jpg: 384x640 1 driveable, 1798.0ms\n", + "image 2723/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002722.jpg: 384x640 1 driveable, 4265.0ms\n", + "image 2724/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002723.jpg: 384x640 1 driveable, 1485.2ms\n", + "image 2725/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002724.jpg: 384x640 1 driveable, 6030.4ms\n", + "image 2726/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002725.jpg: 384x640 1 driveable, 1441.4ms\n", + "image 2727/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002726.jpg: 384x640 1 driveable, 2124.0ms\n", + "image 2728/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002727.jpg: 384x640 1 driveable, 2576.2ms\n", + "image 2729/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002728.jpg: 384x640 1 driveable, 998.2ms\n", + "image 2730/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002729.jpg: 384x640 1 driveable, 2774.4ms\n", + "image 2731/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002730.jpg: 384x640 1 driveable, 986.9ms\n", + "image 2732/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002731.jpg: 384x640 1 driveable, 2483.8ms\n", + "image 2733/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002732.jpg: 384x640 1 driveable, 885.3ms\n", + "image 2734/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002733.jpg: 384x640 1 driveable, 3231.8ms\n", + "image 2735/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002734.jpg: 384x640 1 driveable, 3089.9ms\n", + "image 2736/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002735.jpg: 384x640 1 driveable, 1076.9ms\n", + "image 2737/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002736.jpg: 384x640 1 driveable, 4024.9ms\n", + "image 2738/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002737.jpg: 384x640 1 driveable, 1264.5ms\n", + "image 2739/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002738.jpg: 384x640 1 driveable, 948.2ms\n", + "image 2740/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002739.jpg: 384x640 1 driveable, 2392.3ms\n", + "image 2741/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002740.jpg: 384x640 1 driveable, 1173.6ms\n", + "image 2742/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002741.jpg: 384x640 1 driveable, 3472.9ms\n", + "image 2743/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002742.jpg: 384x640 1 driveable, 2656.3ms\n", + "image 2744/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002743.jpg: 384x640 1 driveable, 2026.0ms\n", + "image 2745/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002744.jpg: 384x640 1 driveable, 2079.1ms\n", + "image 2746/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002745.jpg: 384x640 1 driveable, 1827.0ms\n", + "image 2747/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002746.jpg: 384x640 1 driveable, 2128.2ms\n", + "image 2748/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002747.jpg: 384x640 1 driveable, 1587.4ms\n", + "image 2749/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002748.jpg: 384x640 1 driveable, 3826.6ms\n", + "WARNING ⚠️ NMS time limit 2.050s exceeded\n", + "image 2750/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002749.jpg: 384x640 1 driveable, 1949.4ms\n", + "image 2751/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002750.jpg: 384x640 1 driveable, 1517.5ms\n", + "image 2752/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002751.jpg: 384x640 1 driveable, 2019.2ms\n", + "image 2753/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002752.jpg: 384x640 1 driveable, 2095.2ms\n", + "image 2754/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002753.jpg: 384x640 1 driveable, 2034.4ms\n", + "image 2755/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002754.jpg: 384x640 1 driveable, 1060.9ms\n", + "image 2756/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002755.jpg: 384x640 1 driveable, 2237.4ms\n", + "image 2757/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002756.jpg: 384x640 1 driveable, 4147.0ms\n", + "WARNING ⚠️ NMS time limit 2.050s exceeded\n", + "image 2758/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002757.jpg: 384x640 1 driveable, 861.6ms\n", + "image 2759/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002758.jpg: 384x640 1 driveable, 9705.2ms\n", + "image 2760/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002759.jpg: 384x640 1 driveable, 2911.9ms\n", + "image 2761/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002760.jpg: 384x640 1 driveable, 785.2ms\n", + "image 2762/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002761.jpg: 384x640 1 driveable, 1084.2ms\n", + "image 2763/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002762.jpg: 384x640 1 driveable, 2846.7ms\n", + "image 2764/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002763.jpg: 384x640 1 driveable, 841.2ms\n", + "image 2765/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002764.jpg: 384x640 1 driveable, 952.2ms\n", + "image 2766/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002765.jpg: 384x640 1 driveable, 2320.1ms\n", + "image 2767/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002766.jpg: 384x640 1 driveable, 4385.2ms\n", + "image 2768/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002767.jpg: 384x640 1 driveable, 2508.2ms\n", + "image 2769/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002768.jpg: 384x640 1 driveable, 1952.2ms\n", + "image 2770/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002769.jpg: 384x640 1 driveable, 2082.4ms\n", + "image 2771/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002770.jpg: 384x640 1 driveable, 921.5ms\n", + "image 2772/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002771.jpg: 384x640 1 driveable, 838.9ms\n", + "image 2773/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002772.jpg: 384x640 1 driveable, 617.2ms\n", + "image 2774/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002773.jpg: 384x640 1 driveable, 2854.7ms\n", + "image 2775/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002774.jpg: 384x640 1 driveable, 2600.1ms\n", + "image 2776/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002775.jpg: 384x640 1 driveable, 2070.5ms\n", + "image 2777/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002776.jpg: 384x640 1 driveable, 1379.7ms\n", + "image 2778/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002777.jpg: 384x640 1 driveable, 671.5ms\n", + "image 2779/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002778.jpg: 384x640 1 driveable, 548.4ms\n", + "image 2780/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002779.jpg: 384x640 1 driveable, 1626.5ms\n", + "image 2781/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002780.jpg: 384x640 1 driveable, 2088.6ms\n", + "image 2782/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002781.jpg: 384x640 1 driveable, 681.4ms\n", + "image 2783/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002782.jpg: 384x640 1 driveable, 621.8ms\n", + "image 2784/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002783.jpg: 384x640 1 driveable, 1622.1ms\n", + "image 2785/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002784.jpg: 384x640 1 driveable, 826.4ms\n", + "image 2786/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002785.jpg: 384x640 1 driveable, 1247.0ms\n", + "image 2787/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002786.jpg: 384x640 1 driveable, 2331.9ms\n", + "image 2788/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002787.jpg: 384x640 1 driveable, 2068.2ms\n", + "image 2789/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002788.jpg: 384x640 1 driveable, 829.9ms\n", + "image 2790/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002789.jpg: 384x640 1 driveable, 1400.3ms\n", + "image 2791/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002790.jpg: 384x640 1 driveable, 2293.4ms\n", + "image 2792/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002791.jpg: 384x640 1 driveable, 2458.0ms\n", + "image 2793/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002792.jpg: 384x640 1 driveable, 1297.9ms\n", + "image 2794/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002793.jpg: 384x640 1 driveable, 1716.7ms\n", + "image 2795/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002794.jpg: 384x640 1 driveable, 654.5ms\n", + "image 2796/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002795.jpg: 384x640 1 driveable, 624.4ms\n", + "image 2797/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002796.jpg: 384x640 1 driveable, 912.8ms\n", + "image 2798/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002797.jpg: 384x640 1 driveable, 839.9ms\n", + "image 2799/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002798.jpg: 384x640 1 driveable, 638.9ms\n", + "image 2800/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002799.jpg: 384x640 1 driveable, 1489.6ms\n", + "image 2801/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002800.jpg: 384x640 1 driveable, 1385.5ms\n", + "image 2802/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002801.jpg: 384x640 1 driveable, 7473.8ms\n", + "image 2803/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002802.jpg: 384x640 1 driveable, 1137.0ms\n", + "image 2804/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002803.jpg: 384x640 1 driveable, 791.3ms\n", + "image 2805/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002804.jpg: 384x640 1 driveable, 892.6ms\n", + "image 2806/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002805.jpg: 384x640 1 driveable, 752.0ms\n", + "image 2807/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002806.jpg: 384x640 1 driveable, 2045.6ms\n", + "image 2808/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002807.jpg: 384x640 1 driveable, 2417.9ms\n", + "image 2809/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002808.jpg: 384x640 1 driveable, 673.2ms\n", + "image 2810/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002809.jpg: 384x640 1 driveable, 659.2ms\n", + "image 2811/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002810.jpg: 384x640 1 driveable, 1695.7ms\n", + "image 2812/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002811.jpg: 384x640 1 driveable, 660.2ms\n", + "image 2813/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002812.jpg: 384x640 1 driveable, 2510.9ms\n", + "image 2814/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002813.jpg: 384x640 1 driveable, 671.8ms\n", + "image 2815/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002814.jpg: 384x640 1 driveable, 2828.5ms\n", + "image 2816/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002815.jpg: 384x640 1 driveable, 1178.5ms\n", + "image 2817/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002816.jpg: 384x640 1 driveable, 2188.0ms\n", + "image 2818/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002817.jpg: 384x640 1 driveable, 1888.8ms\n", + "image 2819/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002818.jpg: 384x640 1 driveable, 2050.8ms\n", + "image 2820/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002819.jpg: 384x640 1 driveable, 2439.2ms\n", + "image 2821/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002820.jpg: 384x640 1 driveable, 3982.4ms\n", + "image 2822/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002821.jpg: 384x640 1 driveable, 940.6ms\n", + "image 2823/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002822.jpg: 384x640 1 driveable, 778.0ms\n", + "image 2824/2824 /content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data/frame_002823.jpg: 384x640 1 driveable, 684.2ms\n", + "Speed: 38.9ms preprocess, 218.0ms inference, 139.9ms postprocess per image at shape (1, 3, 384, 640)\n", + "YOLO_soft_labeled_data/label/000000.jpg saved\n", + "YOLO_soft_labeled_data/label/000001.jpg saved\n", + "YOLO_soft_labeled_data/label/000002.jpg saved\n", + "YOLO_soft_labeled_data/label/000003.jpg saved\n", + "YOLO_soft_labeled_data/label/000004.jpg saved\n", + "YOLO_soft_labeled_data/label/000005.jpg saved\n", + "YOLO_soft_labeled_data/label/000006.jpg saved\n", + "YOLO_soft_labeled_data/label/000007.jpg saved\n", + "YOLO_soft_labeled_data/label/000008.jpg saved\n", + "YOLO_soft_labeled_data/label/000009.jpg saved\n", + "YOLO_soft_labeled_data/label/000010.jpg saved\n", + "YOLO_soft_labeled_data/label/000011.jpg saved\n", + "YOLO_soft_labeled_data/label/000012.jpg saved\n", + "YOLO_soft_labeled_data/label/000013.jpg saved\n", + "YOLO_soft_labeled_data/label/000014.jpg saved\n", + "YOLO_soft_labeled_data/label/000015.jpg saved\n", + "YOLO_soft_labeled_data/label/000016.jpg saved\n", + "YOLO_soft_labeled_data/label/000017.jpg saved\n", + "YOLO_soft_labeled_data/label/000018.jpg saved\n", + "YOLO_soft_labeled_data/label/000019.jpg saved\n", + "YOLO_soft_labeled_data/label/000020.jpg saved\n", + "YOLO_soft_labeled_data/label/000021.jpg saved\n", + "YOLO_soft_labeled_data/label/000022.jpg saved\n", + "YOLO_soft_labeled_data/label/000023.jpg saved\n", + "YOLO_soft_labeled_data/label/000024.jpg saved\n", + "YOLO_soft_labeled_data/label/000025.jpg saved\n", + "YOLO_soft_labeled_data/label/000026.jpg saved\n", + "YOLO_soft_labeled_data/label/000027.jpg saved\n", + "YOLO_soft_labeled_data/label/000028.jpg saved\n", + "YOLO_soft_labeled_data/label/000029.jpg saved\n", + "YOLO_soft_labeled_data/label/000030.jpg saved\n", + "YOLO_soft_labeled_data/label/000031.jpg saved\n", + "YOLO_soft_labeled_data/label/000032.jpg saved\n", + "YOLO_soft_labeled_data/label/000033.jpg saved\n", + "YOLO_soft_labeled_data/label/000034.jpg saved\n", + "YOLO_soft_labeled_data/label/000035.jpg saved\n", + "YOLO_soft_labeled_data/label/000036.jpg saved\n", + "YOLO_soft_labeled_data/label/000037.jpg saved\n", + "YOLO_soft_labeled_data/label/000038.jpg saved\n", + "YOLO_soft_labeled_data/label/000039.jpg saved\n", + "YOLO_soft_labeled_data/label/000040.jpg saved\n", + "YOLO_soft_labeled_data/label/000041.jpg saved\n", + "YOLO_soft_labeled_data/label/000042.jpg saved\n", + "YOLO_soft_labeled_data/label/000043.jpg saved\n", + "YOLO_soft_labeled_data/label/000044.jpg saved\n", + "YOLO_soft_labeled_data/label/000045.jpg saved\n", + "YOLO_soft_labeled_data/label/000046.jpg saved\n", + "YOLO_soft_labeled_data/label/000047.jpg saved\n", + "YOLO_soft_labeled_data/label/000048.jpg saved\n", + "YOLO_soft_labeled_data/label/000049.jpg saved\n", + "YOLO_soft_labeled_data/label/000050.jpg saved\n", + "YOLO_soft_labeled_data/label/000051.jpg saved\n", + "YOLO_soft_labeled_data/label/000052.jpg saved\n", + "YOLO_soft_labeled_data/label/000053.jpg saved\n", + "YOLO_soft_labeled_data/label/000054.jpg saved\n", + "YOLO_soft_labeled_data/label/000055.jpg saved\n", + "YOLO_soft_labeled_data/label/000056.jpg saved\n", + "YOLO_soft_labeled_data/label/000057.jpg saved\n", + "YOLO_soft_labeled_data/label/000058.jpg saved\n", + "YOLO_soft_labeled_data/label/000059.jpg saved\n", + "YOLO_soft_labeled_data/label/000060.jpg saved\n", + "YOLO_soft_labeled_data/label/000061.jpg saved\n", + "YOLO_soft_labeled_data/label/000062.jpg saved\n", + "YOLO_soft_labeled_data/label/000063.jpg saved\n", + "YOLO_soft_labeled_data/label/000064.jpg saved\n", + "YOLO_soft_labeled_data/label/000065.jpg saved\n", + "YOLO_soft_labeled_data/label/000066.jpg saved\n", + "YOLO_soft_labeled_data/label/000067.jpg saved\n", + "YOLO_soft_labeled_data/label/000068.jpg saved\n", + "YOLO_soft_labeled_data/label/000069.jpg saved\n", + "YOLO_soft_labeled_data/label/000070.jpg saved\n", + "YOLO_soft_labeled_data/label/000071.jpg saved\n", + "YOLO_soft_labeled_data/label/000072.jpg saved\n", + "YOLO_soft_labeled_data/label/000073.jpg saved\n", + "YOLO_soft_labeled_data/label/000074.jpg saved\n", + "YOLO_soft_labeled_data/label/000075.jpg saved\n", + "YOLO_soft_labeled_data/label/000076.jpg saved\n", + "YOLO_soft_labeled_data/label/000077.jpg saved\n", + "YOLO_soft_labeled_data/label/000078.jpg saved\n", + "YOLO_soft_labeled_data/label/000079.jpg saved\n", + "YOLO_soft_labeled_data/label/000080.jpg saved\n", + "YOLO_soft_labeled_data/label/000081.jpg saved\n", + "YOLO_soft_labeled_data/label/000082.jpg saved\n", + "YOLO_soft_labeled_data/label/000083.jpg saved\n", + "YOLO_soft_labeled_data/label/000084.jpg saved\n", + "YOLO_soft_labeled_data/label/000085.jpg saved\n", + "YOLO_soft_labeled_data/label/000086.jpg saved\n", + "YOLO_soft_labeled_data/label/000087.jpg saved\n", + "YOLO_soft_labeled_data/label/000088.jpg saved\n", + "YOLO_soft_labeled_data/label/000089.jpg saved\n", + "YOLO_soft_labeled_data/label/000090.jpg saved\n", + "YOLO_soft_labeled_data/label/000091.jpg saved\n", + "YOLO_soft_labeled_data/label/000092.jpg saved\n", + "YOLO_soft_labeled_data/label/000093.jpg saved\n", + "YOLO_soft_labeled_data/label/000094.jpg saved\n", + "YOLO_soft_labeled_data/label/000095.jpg saved\n", + "YOLO_soft_labeled_data/label/000096.jpg saved\n", + "YOLO_soft_labeled_data/label/000097.jpg saved\n", + "YOLO_soft_labeled_data/label/000098.jpg saved\n", + "YOLO_soft_labeled_data/label/000099.jpg saved\n", + "YOLO_soft_labeled_data/label/000100.jpg saved\n", + "YOLO_soft_labeled_data/label/000101.jpg saved\n", + "YOLO_soft_labeled_data/label/000102.jpg saved\n", + "YOLO_soft_labeled_data/label/000103.jpg saved\n", + "YOLO_soft_labeled_data/label/000104.jpg saved\n", + "YOLO_soft_labeled_data/label/000105.jpg saved\n", + "YOLO_soft_labeled_data/label/000106.jpg saved\n", + "YOLO_soft_labeled_data/label/000107.jpg saved\n", + "YOLO_soft_labeled_data/label/000108.jpg saved\n", + "YOLO_soft_labeled_data/label/000109.jpg saved\n", + "YOLO_soft_labeled_data/label/000110.jpg saved\n", + "YOLO_soft_labeled_data/label/000111.jpg saved\n", + "YOLO_soft_labeled_data/label/000112.jpg saved\n", + "YOLO_soft_labeled_data/label/000113.jpg saved\n", + "YOLO_soft_labeled_data/label/000114.jpg saved\n", + "YOLO_soft_labeled_data/label/000115.jpg saved\n", + "YOLO_soft_labeled_data/label/000116.jpg saved\n", + "YOLO_soft_labeled_data/label/000117.jpg saved\n", + "YOLO_soft_labeled_data/label/000118.jpg saved\n", + "YOLO_soft_labeled_data/label/000119.jpg saved\n", + "YOLO_soft_labeled_data/label/000120.jpg saved\n", + "YOLO_soft_labeled_data/label/000121.jpg saved\n", + "YOLO_soft_labeled_data/label/000122.jpg saved\n", + "YOLO_soft_labeled_data/label/000123.jpg saved\n", + "YOLO_soft_labeled_data/label/000124.jpg saved\n", + "YOLO_soft_labeled_data/label/000125.jpg saved\n", + "YOLO_soft_labeled_data/label/000126.jpg saved\n", + "YOLO_soft_labeled_data/label/000127.jpg saved\n", + "YOLO_soft_labeled_data/label/000128.jpg saved\n", + "YOLO_soft_labeled_data/label/000129.jpg saved\n", + "YOLO_soft_labeled_data/label/000130.jpg saved\n", + "YOLO_soft_labeled_data/label/000131.jpg saved\n", + "YOLO_soft_labeled_data/label/000132.jpg saved\n", + "YOLO_soft_labeled_data/label/000133.jpg saved\n", + "YOLO_soft_labeled_data/label/000134.jpg saved\n", + "YOLO_soft_labeled_data/label/000135.jpg saved\n", + "YOLO_soft_labeled_data/label/000136.jpg saved\n", + "YOLO_soft_labeled_data/label/000137.jpg saved\n", + "YOLO_soft_labeled_data/label/000138.jpg saved\n", + "YOLO_soft_labeled_data/label/000139.jpg saved\n", + "YOLO_soft_labeled_data/label/000140.jpg saved\n", + "YOLO_soft_labeled_data/label/000141.jpg saved\n", + "YOLO_soft_labeled_data/label/000142.jpg saved\n", + "YOLO_soft_labeled_data/label/000143.jpg saved\n", + "YOLO_soft_labeled_data/label/000144.jpg saved\n", + "YOLO_soft_labeled_data/label/000145.jpg saved\n", + "YOLO_soft_labeled_data/label/000146.jpg saved\n", + "YOLO_soft_labeled_data/label/000147.jpg saved\n", + "YOLO_soft_labeled_data/label/000148.jpg saved\n", + "YOLO_soft_labeled_data/label/000149.jpg saved\n", + "YOLO_soft_labeled_data/label/000150.jpg saved\n", + "YOLO_soft_labeled_data/label/000151.jpg saved\n", + "YOLO_soft_labeled_data/label/000152.jpg saved\n", + "YOLO_soft_labeled_data/label/000153.jpg saved\n", + "YOLO_soft_labeled_data/label/000154.jpg saved\n", + "YOLO_soft_labeled_data/label/000155.jpg saved\n", + "YOLO_soft_labeled_data/label/000156.jpg saved\n", + "YOLO_soft_labeled_data/label/000157.jpg saved\n", + "YOLO_soft_labeled_data/label/000158.jpg saved\n", + "YOLO_soft_labeled_data/label/000159.jpg saved\n", + "YOLO_soft_labeled_data/label/000160.jpg saved\n", + "YOLO_soft_labeled_data/label/000161.jpg saved\n", + "YOLO_soft_labeled_data/label/000162.jpg saved\n", + "YOLO_soft_labeled_data/label/000163.jpg saved\n", + "YOLO_soft_labeled_data/label/000164.jpg saved\n", + "YOLO_soft_labeled_data/label/000165.jpg saved\n", + "YOLO_soft_labeled_data/label/000166.jpg saved\n", + "YOLO_soft_labeled_data/label/000167.jpg saved\n", + "YOLO_soft_labeled_data/label/000168.jpg saved\n", + "YOLO_soft_labeled_data/label/000169.jpg saved\n", + "YOLO_soft_labeled_data/label/000170.jpg saved\n", + "YOLO_soft_labeled_data/label/000171.jpg saved\n", + "YOLO_soft_labeled_data/label/000172.jpg saved\n", + "YOLO_soft_labeled_data/label/000173.jpg saved\n", + "YOLO_soft_labeled_data/label/000174.jpg saved\n", + "YOLO_soft_labeled_data/label/000175.jpg saved\n", + "YOLO_soft_labeled_data/label/000176.jpg saved\n", + "YOLO_soft_labeled_data/label/000177.jpg saved\n", + "YOLO_soft_labeled_data/label/000178.jpg saved\n", + "YOLO_soft_labeled_data/label/000179.jpg saved\n", + "YOLO_soft_labeled_data/label/000180.jpg saved\n", + "YOLO_soft_labeled_data/label/000181.jpg saved\n", + "YOLO_soft_labeled_data/label/000182.jpg saved\n", + "YOLO_soft_labeled_data/label/000183.jpg saved\n", + "YOLO_soft_labeled_data/label/000184.jpg saved\n", + "YOLO_soft_labeled_data/label/000185.jpg saved\n", + "YOLO_soft_labeled_data/label/000186.jpg saved\n", + "YOLO_soft_labeled_data/label/000187.jpg saved\n", + "YOLO_soft_labeled_data/label/000188.jpg saved\n", + "YOLO_soft_labeled_data/label/000189.jpg saved\n", + "YOLO_soft_labeled_data/label/000190.jpg saved\n", + "YOLO_soft_labeled_data/label/000191.jpg saved\n", + "YOLO_soft_labeled_data/label/000192.jpg saved\n", + "YOLO_soft_labeled_data/label/000193.jpg saved\n", + "YOLO_soft_labeled_data/label/000194.jpg saved\n", + "YOLO_soft_labeled_data/label/000195.jpg saved\n", + "YOLO_soft_labeled_data/label/000196.jpg saved\n", + "YOLO_soft_labeled_data/label/000197.jpg saved\n", + "YOLO_soft_labeled_data/label/000198.jpg saved\n", + "YOLO_soft_labeled_data/label/000199.jpg saved\n", + "YOLO_soft_labeled_data/label/000200.jpg saved\n", + "YOLO_soft_labeled_data/label/000201.jpg saved\n", + "YOLO_soft_labeled_data/label/000202.jpg saved\n", + "YOLO_soft_labeled_data/label/000203.jpg saved\n", + "YOLO_soft_labeled_data/label/000204.jpg saved\n", + "YOLO_soft_labeled_data/label/000205.jpg saved\n", + "YOLO_soft_labeled_data/label/000206.jpg saved\n", + "YOLO_soft_labeled_data/label/000207.jpg saved\n", + "YOLO_soft_labeled_data/label/000208.jpg saved\n", + "YOLO_soft_labeled_data/label/000209.jpg saved\n", + "YOLO_soft_labeled_data/label/000210.jpg saved\n", + "YOLO_soft_labeled_data/label/000211.jpg saved\n", + "YOLO_soft_labeled_data/label/000212.jpg saved\n", + "YOLO_soft_labeled_data/label/000213.jpg saved\n", + "YOLO_soft_labeled_data/label/000214.jpg saved\n", + "YOLO_soft_labeled_data/label/000215.jpg saved\n", + "YOLO_soft_labeled_data/label/000216.jpg saved\n", + "YOLO_soft_labeled_data/label/000217.jpg saved\n", + "YOLO_soft_labeled_data/label/000218.jpg saved\n", + "YOLO_soft_labeled_data/label/000219.jpg saved\n", + "YOLO_soft_labeled_data/label/000220.jpg saved\n", + "YOLO_soft_labeled_data/label/000221.jpg saved\n", + "YOLO_soft_labeled_data/label/000222.jpg saved\n", + "YOLO_soft_labeled_data/label/000223.jpg saved\n", + "YOLO_soft_labeled_data/label/000224.jpg saved\n", + "YOLO_soft_labeled_data/label/000225.jpg saved\n", + "YOLO_soft_labeled_data/label/000226.jpg saved\n", + "YOLO_soft_labeled_data/label/000227.jpg saved\n", + "YOLO_soft_labeled_data/label/000228.jpg saved\n", + "YOLO_soft_labeled_data/label/000229.jpg saved\n", + "YOLO_soft_labeled_data/label/000230.jpg saved\n", + "YOLO_soft_labeled_data/label/000231.jpg saved\n", + "YOLO_soft_labeled_data/label/000232.jpg saved\n", + "YOLO_soft_labeled_data/label/000233.jpg saved\n", + "YOLO_soft_labeled_data/label/000234.jpg saved\n", + "YOLO_soft_labeled_data/label/000235.jpg saved\n", + "YOLO_soft_labeled_data/label/000236.jpg saved\n", + "YOLO_soft_labeled_data/label/000237.jpg saved\n", + "YOLO_soft_labeled_data/label/000238.jpg saved\n", + "YOLO_soft_labeled_data/label/000239.jpg saved\n", + "YOLO_soft_labeled_data/label/000240.jpg saved\n", + "YOLO_soft_labeled_data/label/000241.jpg saved\n", + "YOLO_soft_labeled_data/label/000242.jpg saved\n", + "YOLO_soft_labeled_data/label/000243.jpg saved\n", + "YOLO_soft_labeled_data/label/000244.jpg saved\n", + "YOLO_soft_labeled_data/label/000245.jpg saved\n", + "YOLO_soft_labeled_data/label/000246.jpg saved\n", + "YOLO_soft_labeled_data/label/000247.jpg saved\n", + "YOLO_soft_labeled_data/label/000248.jpg saved\n", + "YOLO_soft_labeled_data/label/000249.jpg saved\n", + "YOLO_soft_labeled_data/label/000250.jpg saved\n", + "YOLO_soft_labeled_data/label/000251.jpg saved\n", + "YOLO_soft_labeled_data/label/000252.jpg saved\n", + "YOLO_soft_labeled_data/label/000253.jpg saved\n", + "YOLO_soft_labeled_data/label/000254.jpg saved\n", + "YOLO_soft_labeled_data/label/000255.jpg saved\n", + "YOLO_soft_labeled_data/label/000256.jpg saved\n", + "YOLO_soft_labeled_data/label/000257.jpg saved\n", + "YOLO_soft_labeled_data/label/000258.jpg saved\n", + "YOLO_soft_labeled_data/label/000259.jpg saved\n", + "YOLO_soft_labeled_data/label/000260.jpg saved\n", + "YOLO_soft_labeled_data/label/000261.jpg saved\n", + "YOLO_soft_labeled_data/label/000262.jpg saved\n", + "YOLO_soft_labeled_data/label/000263.jpg saved\n", + "YOLO_soft_labeled_data/label/000264.jpg saved\n", + "YOLO_soft_labeled_data/label/000265.jpg saved\n", + "YOLO_soft_labeled_data/label/000266.jpg saved\n", + "YOLO_soft_labeled_data/label/000267.jpg saved\n", + "YOLO_soft_labeled_data/label/000268.jpg saved\n", + "YOLO_soft_labeled_data/label/000269.jpg saved\n", + "YOLO_soft_labeled_data/label/000270.jpg saved\n", + "YOLO_soft_labeled_data/label/000271.jpg saved\n", + "YOLO_soft_labeled_data/label/000272.jpg saved\n", + "YOLO_soft_labeled_data/label/000273.jpg saved\n", + "YOLO_soft_labeled_data/label/000274.jpg saved\n", + "YOLO_soft_labeled_data/label/000275.jpg saved\n", + "YOLO_soft_labeled_data/label/000276.jpg saved\n", + "YOLO_soft_labeled_data/label/000277.jpg saved\n", + "YOLO_soft_labeled_data/label/000278.jpg saved\n", + "YOLO_soft_labeled_data/label/000279.jpg saved\n", + "YOLO_soft_labeled_data/label/000280.jpg saved\n", + "YOLO_soft_labeled_data/label/000281.jpg saved\n", + "YOLO_soft_labeled_data/label/000282.jpg saved\n", + "YOLO_soft_labeled_data/label/000283.jpg saved\n", + "YOLO_soft_labeled_data/label/000284.jpg saved\n", + "YOLO_soft_labeled_data/label/000285.jpg saved\n", + "YOLO_soft_labeled_data/label/000286.jpg saved\n", + "YOLO_soft_labeled_data/label/000287.jpg saved\n", + "YOLO_soft_labeled_data/label/000288.jpg saved\n", + "YOLO_soft_labeled_data/label/000289.jpg saved\n", + "YOLO_soft_labeled_data/label/000290.jpg saved\n", + "YOLO_soft_labeled_data/label/000291.jpg saved\n", + "YOLO_soft_labeled_data/label/000292.jpg saved\n", + "YOLO_soft_labeled_data/label/000293.jpg saved\n", + "YOLO_soft_labeled_data/label/000294.jpg saved\n", + "YOLO_soft_labeled_data/label/000295.jpg saved\n", + "YOLO_soft_labeled_data/label/000296.jpg saved\n", + "YOLO_soft_labeled_data/label/000297.jpg saved\n", + "YOLO_soft_labeled_data/label/000298.jpg saved\n", + "YOLO_soft_labeled_data/label/000299.jpg saved\n", + "YOLO_soft_labeled_data/label/000300.jpg saved\n", + "YOLO_soft_labeled_data/label/000301.jpg saved\n", + "YOLO_soft_labeled_data/label/000302.jpg saved\n", + "YOLO_soft_labeled_data/label/000303.jpg saved\n", + "YOLO_soft_labeled_data/label/000304.jpg saved\n", + "YOLO_soft_labeled_data/label/000305.jpg saved\n", + "YOLO_soft_labeled_data/label/000306.jpg saved\n", + "YOLO_soft_labeled_data/label/000307.jpg saved\n", + "YOLO_soft_labeled_data/label/000308.jpg saved\n", + "YOLO_soft_labeled_data/label/000309.jpg saved\n", + "YOLO_soft_labeled_data/label/000310.jpg saved\n", + "YOLO_soft_labeled_data/label/000311.jpg saved\n", + "YOLO_soft_labeled_data/label/000312.jpg saved\n", + "YOLO_soft_labeled_data/label/000313.jpg saved\n", + "YOLO_soft_labeled_data/label/000314.jpg saved\n", + "YOLO_soft_labeled_data/label/000315.jpg saved\n", + "YOLO_soft_labeled_data/label/000316.jpg saved\n", + "YOLO_soft_labeled_data/label/000317.jpg saved\n", + "YOLO_soft_labeled_data/label/000318.jpg saved\n", + "YOLO_soft_labeled_data/label/000319.jpg saved\n", + "YOLO_soft_labeled_data/label/000320.jpg saved\n", + "YOLO_soft_labeled_data/label/000321.jpg saved\n", + "YOLO_soft_labeled_data/label/000322.jpg saved\n", + "YOLO_soft_labeled_data/label/000323.jpg saved\n", + "YOLO_soft_labeled_data/label/000324.jpg saved\n", + "YOLO_soft_labeled_data/label/000325.jpg saved\n", + "YOLO_soft_labeled_data/label/000326.jpg saved\n", + "YOLO_soft_labeled_data/label/000327.jpg saved\n", + "YOLO_soft_labeled_data/label/000328.jpg saved\n", + "YOLO_soft_labeled_data/label/000329.jpg saved\n", + "YOLO_soft_labeled_data/label/000330.jpg saved\n", + "YOLO_soft_labeled_data/label/000331.jpg saved\n", + "YOLO_soft_labeled_data/label/000332.jpg saved\n", + "YOLO_soft_labeled_data/label/000333.jpg saved\n", + "YOLO_soft_labeled_data/label/000334.jpg saved\n", + "YOLO_soft_labeled_data/label/000335.jpg saved\n", + "YOLO_soft_labeled_data/label/000336.jpg saved\n", + "YOLO_soft_labeled_data/label/000337.jpg saved\n", + "YOLO_soft_labeled_data/label/000338.jpg saved\n", + "YOLO_soft_labeled_data/label/000339.jpg saved\n", + "YOLO_soft_labeled_data/label/000340.jpg saved\n", + "YOLO_soft_labeled_data/label/000341.jpg saved\n", + "YOLO_soft_labeled_data/label/000342.jpg saved\n", + "YOLO_soft_labeled_data/label/000343.jpg saved\n", + "YOLO_soft_labeled_data/label/000344.jpg saved\n", + "YOLO_soft_labeled_data/label/000345.jpg saved\n", + "YOLO_soft_labeled_data/label/000346.jpg saved\n", + "YOLO_soft_labeled_data/label/000347.jpg saved\n", + "YOLO_soft_labeled_data/label/000348.jpg saved\n", + "YOLO_soft_labeled_data/label/000349.jpg saved\n", + "YOLO_soft_labeled_data/label/000350.jpg saved\n", + "YOLO_soft_labeled_data/label/000351.jpg saved\n", + "YOLO_soft_labeled_data/label/000352.jpg saved\n", + "YOLO_soft_labeled_data/label/000353.jpg saved\n", + "YOLO_soft_labeled_data/label/000354.jpg saved\n", + "YOLO_soft_labeled_data/label/000355.jpg saved\n", + "YOLO_soft_labeled_data/label/000356.jpg saved\n", + "YOLO_soft_labeled_data/label/000357.jpg saved\n", + "YOLO_soft_labeled_data/label/000358.jpg saved\n", + "YOLO_soft_labeled_data/label/000359.jpg saved\n", + "YOLO_soft_labeled_data/label/000360.jpg saved\n", + "YOLO_soft_labeled_data/label/000361.jpg saved\n", + "YOLO_soft_labeled_data/label/000362.jpg saved\n", + "YOLO_soft_labeled_data/label/000363.jpg saved\n", + "YOLO_soft_labeled_data/label/000364.jpg saved\n", + "YOLO_soft_labeled_data/label/000365.jpg saved\n", + "YOLO_soft_labeled_data/label/000366.jpg saved\n", + "YOLO_soft_labeled_data/label/000367.jpg saved\n", + "YOLO_soft_labeled_data/label/000368.jpg saved\n", + "YOLO_soft_labeled_data/label/000369.jpg saved\n", + "YOLO_soft_labeled_data/label/000370.jpg saved\n", + "YOLO_soft_labeled_data/label/000371.jpg saved\n", + "YOLO_soft_labeled_data/label/000372.jpg saved\n", + "YOLO_soft_labeled_data/label/000373.jpg saved\n", + "YOLO_soft_labeled_data/label/000374.jpg saved\n", + "YOLO_soft_labeled_data/label/000375.jpg saved\n", + "YOLO_soft_labeled_data/label/000376.jpg saved\n", + "YOLO_soft_labeled_data/label/000377.jpg saved\n", + "YOLO_soft_labeled_data/label/000378.jpg saved\n", + "YOLO_soft_labeled_data/label/000379.jpg saved\n", + "YOLO_soft_labeled_data/label/000380.jpg saved\n", + "YOLO_soft_labeled_data/label/000381.jpg saved\n", + "YOLO_soft_labeled_data/label/000382.jpg saved\n", + "YOLO_soft_labeled_data/label/000383.jpg saved\n", + "YOLO_soft_labeled_data/label/000384.jpg saved\n", + "YOLO_soft_labeled_data/label/000385.jpg saved\n", + "YOLO_soft_labeled_data/label/000386.jpg saved\n", + "YOLO_soft_labeled_data/label/000387.jpg saved\n", + "YOLO_soft_labeled_data/label/000388.jpg saved\n", + "YOLO_soft_labeled_data/label/000389.jpg saved\n", + "YOLO_soft_labeled_data/label/000390.jpg saved\n", + "YOLO_soft_labeled_data/label/000391.jpg saved\n", + "YOLO_soft_labeled_data/label/000392.jpg saved\n", + "YOLO_soft_labeled_data/label/000393.jpg saved\n", + "YOLO_soft_labeled_data/label/000394.jpg saved\n", + "YOLO_soft_labeled_data/label/000395.jpg saved\n", + "YOLO_soft_labeled_data/label/000396.jpg saved\n", + "YOLO_soft_labeled_data/label/000397.jpg saved\n", + "YOLO_soft_labeled_data/label/000398.jpg saved\n", + "YOLO_soft_labeled_data/label/000399.jpg saved\n", + "YOLO_soft_labeled_data/label/000400.jpg saved\n", + "YOLO_soft_labeled_data/label/000401.jpg saved\n", + "YOLO_soft_labeled_data/label/000402.jpg saved\n", + "YOLO_soft_labeled_data/label/000403.jpg saved\n", + "YOLO_soft_labeled_data/label/000404.jpg saved\n", + "YOLO_soft_labeled_data/label/000405.jpg saved\n", + "YOLO_soft_labeled_data/label/000406.jpg saved\n", + "YOLO_soft_labeled_data/label/000407.jpg saved\n", + "YOLO_soft_labeled_data/label/000408.jpg saved\n", + "YOLO_soft_labeled_data/label/000409.jpg saved\n", + "YOLO_soft_labeled_data/label/000410.jpg saved\n", + "YOLO_soft_labeled_data/label/000411.jpg saved\n", + "YOLO_soft_labeled_data/label/000412.jpg saved\n", + "YOLO_soft_labeled_data/label/000413.jpg saved\n", + "YOLO_soft_labeled_data/label/000414.jpg saved\n", + "YOLO_soft_labeled_data/label/000415.jpg saved\n", + "YOLO_soft_labeled_data/label/000416.jpg saved\n", + "YOLO_soft_labeled_data/label/000417.jpg saved\n", + "YOLO_soft_labeled_data/label/000418.jpg saved\n", + "YOLO_soft_labeled_data/label/000419.jpg saved\n", + "YOLO_soft_labeled_data/label/000420.jpg saved\n", + "YOLO_soft_labeled_data/label/000421.jpg saved\n", + "YOLO_soft_labeled_data/label/000422.jpg saved\n", + "YOLO_soft_labeled_data/label/000423.jpg saved\n", + "YOLO_soft_labeled_data/label/000424.jpg saved\n", + "YOLO_soft_labeled_data/label/000425.jpg saved\n", + "YOLO_soft_labeled_data/label/000426.jpg saved\n", + "YOLO_soft_labeled_data/label/000427.jpg saved\n", + "YOLO_soft_labeled_data/label/000428.jpg saved\n", + "YOLO_soft_labeled_data/label/000429.jpg saved\n", + "YOLO_soft_labeled_data/label/000430.jpg saved\n", + "YOLO_soft_labeled_data/label/000431.jpg saved\n", + "YOLO_soft_labeled_data/label/000432.jpg saved\n", + "YOLO_soft_labeled_data/label/000433.jpg saved\n", + "YOLO_soft_labeled_data/label/000434.jpg saved\n", + "YOLO_soft_labeled_data/label/000435.jpg saved\n", + "YOLO_soft_labeled_data/label/000436.jpg saved\n", + "YOLO_soft_labeled_data/label/000437.jpg saved\n", + "YOLO_soft_labeled_data/label/000438.jpg saved\n", + "YOLO_soft_labeled_data/label/000439.jpg saved\n", + "YOLO_soft_labeled_data/label/000440.jpg saved\n", + "YOLO_soft_labeled_data/label/000441.jpg saved\n", + "YOLO_soft_labeled_data/label/000442.jpg saved\n", + "YOLO_soft_labeled_data/label/000443.jpg saved\n", + "YOLO_soft_labeled_data/label/000444.jpg saved\n", + "YOLO_soft_labeled_data/label/000445.jpg saved\n", + "YOLO_soft_labeled_data/label/000446.jpg saved\n", + "YOLO_soft_labeled_data/label/000447.jpg saved\n", + "YOLO_soft_labeled_data/label/000448.jpg saved\n", + "YOLO_soft_labeled_data/label/000449.jpg saved\n", + "YOLO_soft_labeled_data/label/000450.jpg saved\n", + "YOLO_soft_labeled_data/label/000451.jpg saved\n", + "YOLO_soft_labeled_data/label/000452.jpg saved\n", + "YOLO_soft_labeled_data/label/000453.jpg saved\n", + "YOLO_soft_labeled_data/label/000454.jpg saved\n", + "YOLO_soft_labeled_data/label/000455.jpg saved\n", + "YOLO_soft_labeled_data/label/000456.jpg saved\n", + "YOLO_soft_labeled_data/label/000457.jpg saved\n", + "YOLO_soft_labeled_data/label/000458.jpg saved\n", + "YOLO_soft_labeled_data/label/000459.jpg saved\n", + "YOLO_soft_labeled_data/label/000460.jpg saved\n", + "YOLO_soft_labeled_data/label/000461.jpg saved\n", + "YOLO_soft_labeled_data/label/000462.jpg saved\n", + "YOLO_soft_labeled_data/label/000463.jpg saved\n", + "YOLO_soft_labeled_data/label/000464.jpg saved\n", + "YOLO_soft_labeled_data/label/000465.jpg saved\n", + "YOLO_soft_labeled_data/label/000466.jpg saved\n", + "YOLO_soft_labeled_data/label/000467.jpg saved\n", + "YOLO_soft_labeled_data/label/000468.jpg saved\n", + "YOLO_soft_labeled_data/label/000469.jpg saved\n", + "YOLO_soft_labeled_data/label/000470.jpg saved\n", + "YOLO_soft_labeled_data/label/000471.jpg saved\n", + "YOLO_soft_labeled_data/label/000472.jpg saved\n", + "YOLO_soft_labeled_data/label/000473.jpg saved\n", + "YOLO_soft_labeled_data/label/000474.jpg saved\n", + "YOLO_soft_labeled_data/label/000475.jpg saved\n", + "YOLO_soft_labeled_data/label/000476.jpg saved\n", + "YOLO_soft_labeled_data/label/000477.jpg saved\n", + "YOLO_soft_labeled_data/label/000478.jpg saved\n", + "YOLO_soft_labeled_data/label/000479.jpg saved\n", + "YOLO_soft_labeled_data/label/000480.jpg saved\n", + "YOLO_soft_labeled_data/label/000481.jpg saved\n", + "YOLO_soft_labeled_data/label/000482.jpg saved\n", + "YOLO_soft_labeled_data/label/000483.jpg saved\n", + "YOLO_soft_labeled_data/label/000484.jpg saved\n", + "YOLO_soft_labeled_data/label/000485.jpg saved\n", + "YOLO_soft_labeled_data/label/000486.jpg saved\n", + "YOLO_soft_labeled_data/label/000487.jpg saved\n", + "YOLO_soft_labeled_data/label/000488.jpg saved\n", + "YOLO_soft_labeled_data/label/000489.jpg saved\n", + "YOLO_soft_labeled_data/label/000490.jpg saved\n", + "YOLO_soft_labeled_data/label/000491.jpg saved\n", + "YOLO_soft_labeled_data/label/000492.jpg saved\n", + "YOLO_soft_labeled_data/label/000493.jpg saved\n", + "YOLO_soft_labeled_data/label/000494.jpg saved\n", + "YOLO_soft_labeled_data/label/000495.jpg saved\n", + "YOLO_soft_labeled_data/label/000496.jpg saved\n", + "YOLO_soft_labeled_data/label/000497.jpg saved\n", + "YOLO_soft_labeled_data/label/000498.jpg saved\n", + "YOLO_soft_labeled_data/label/000499.jpg saved\n", + "YOLO_soft_labeled_data/label/000500.jpg saved\n", + "YOLO_soft_labeled_data/label/000501.jpg saved\n", + "YOLO_soft_labeled_data/label/000502.jpg saved\n", + "YOLO_soft_labeled_data/label/000503.jpg saved\n", + "YOLO_soft_labeled_data/label/000504.jpg saved\n", + "YOLO_soft_labeled_data/label/000505.jpg saved\n", + "YOLO_soft_labeled_data/label/000506.jpg saved\n", + "YOLO_soft_labeled_data/label/000507.jpg saved\n", + "YOLO_soft_labeled_data/label/000508.jpg saved\n", + "YOLO_soft_labeled_data/label/000509.jpg saved\n", + "YOLO_soft_labeled_data/label/000510.jpg saved\n", + "YOLO_soft_labeled_data/label/000511.jpg saved\n", + "YOLO_soft_labeled_data/label/000512.jpg saved\n", + "YOLO_soft_labeled_data/label/000513.jpg saved\n", + "YOLO_soft_labeled_data/label/000514.jpg saved\n", + "YOLO_soft_labeled_data/label/000515.jpg saved\n", + "YOLO_soft_labeled_data/label/000516.jpg saved\n", + "YOLO_soft_labeled_data/label/000517.jpg saved\n", + "YOLO_soft_labeled_data/label/000518.jpg saved\n", + "YOLO_soft_labeled_data/label/000519.jpg saved\n", + "YOLO_soft_labeled_data/label/000520.jpg saved\n", + "YOLO_soft_labeled_data/label/000521.jpg saved\n", + "YOLO_soft_labeled_data/label/000522.jpg saved\n", + "YOLO_soft_labeled_data/label/000523.jpg saved\n", + "YOLO_soft_labeled_data/label/000524.jpg saved\n", + "YOLO_soft_labeled_data/label/000525.jpg saved\n", + "YOLO_soft_labeled_data/label/000526.jpg saved\n", + "YOLO_soft_labeled_data/label/000527.jpg saved\n", + "YOLO_soft_labeled_data/label/000528.jpg saved\n", + "YOLO_soft_labeled_data/label/000529.jpg saved\n", + "YOLO_soft_labeled_data/label/000530.jpg saved\n", + "YOLO_soft_labeled_data/label/000531.jpg saved\n", + "YOLO_soft_labeled_data/label/000532.jpg saved\n", + "YOLO_soft_labeled_data/label/000533.jpg saved\n", + "YOLO_soft_labeled_data/label/000534.jpg saved\n", + "YOLO_soft_labeled_data/label/000535.jpg saved\n", + "YOLO_soft_labeled_data/label/000536.jpg saved\n", + "YOLO_soft_labeled_data/label/000537.jpg saved\n", + "YOLO_soft_labeled_data/label/000538.jpg saved\n", + "YOLO_soft_labeled_data/label/000539.jpg saved\n", + "YOLO_soft_labeled_data/label/000540.jpg saved\n", + "YOLO_soft_labeled_data/label/000541.jpg saved\n", + "YOLO_soft_labeled_data/label/000542.jpg saved\n", + "YOLO_soft_labeled_data/label/000543.jpg saved\n", + "YOLO_soft_labeled_data/label/000544.jpg saved\n", + "YOLO_soft_labeled_data/label/000545.jpg saved\n", + "YOLO_soft_labeled_data/label/000546.jpg saved\n", + "YOLO_soft_labeled_data/label/000547.jpg saved\n", + "YOLO_soft_labeled_data/label/000548.jpg saved\n", + "YOLO_soft_labeled_data/label/000549.jpg saved\n", + "YOLO_soft_labeled_data/label/000550.jpg saved\n", + "YOLO_soft_labeled_data/label/000551.jpg saved\n", + "YOLO_soft_labeled_data/label/000552.jpg saved\n", + "YOLO_soft_labeled_data/label/000553.jpg saved\n", + "YOLO_soft_labeled_data/label/000554.jpg saved\n", + "YOLO_soft_labeled_data/label/000555.jpg saved\n", + "YOLO_soft_labeled_data/label/000556.jpg saved\n", + "YOLO_soft_labeled_data/label/000557.jpg saved\n", + "YOLO_soft_labeled_data/label/000558.jpg saved\n", + "YOLO_soft_labeled_data/label/000559.jpg saved\n", + "YOLO_soft_labeled_data/label/000560.jpg saved\n", + "YOLO_soft_labeled_data/label/000561.jpg saved\n", + "YOLO_soft_labeled_data/label/000562.jpg saved\n", + "YOLO_soft_labeled_data/label/000563.jpg saved\n", + "YOLO_soft_labeled_data/label/000564.jpg saved\n", + "YOLO_soft_labeled_data/label/000565.jpg saved\n", + "YOLO_soft_labeled_data/label/000566.jpg saved\n", + "YOLO_soft_labeled_data/label/000567.jpg saved\n", + "YOLO_soft_labeled_data/label/000568.jpg saved\n", + "YOLO_soft_labeled_data/label/000569.jpg saved\n", + "YOLO_soft_labeled_data/label/000570.jpg saved\n", + "YOLO_soft_labeled_data/label/000571.jpg saved\n", + "YOLO_soft_labeled_data/label/000572.jpg saved\n", + "YOLO_soft_labeled_data/label/000573.jpg saved\n", + "YOLO_soft_labeled_data/label/000574.jpg saved\n", + "YOLO_soft_labeled_data/label/000575.jpg saved\n", + "YOLO_soft_labeled_data/label/000576.jpg saved\n", + "YOLO_soft_labeled_data/label/000577.jpg saved\n", + "YOLO_soft_labeled_data/label/000578.jpg saved\n", + "YOLO_soft_labeled_data/label/000579.jpg saved\n", + "YOLO_soft_labeled_data/label/000580.jpg saved\n", + "YOLO_soft_labeled_data/label/000581.jpg saved\n", + "YOLO_soft_labeled_data/label/000582.jpg saved\n", + "YOLO_soft_labeled_data/label/000583.jpg saved\n", + "YOLO_soft_labeled_data/label/000584.jpg saved\n", + "YOLO_soft_labeled_data/label/000585.jpg saved\n", + "YOLO_soft_labeled_data/label/000586.jpg saved\n", + "YOLO_soft_labeled_data/label/000587.jpg saved\n", + "YOLO_soft_labeled_data/label/000588.jpg saved\n", + "YOLO_soft_labeled_data/label/000589.jpg saved\n", + "YOLO_soft_labeled_data/label/000590.jpg saved\n", + "YOLO_soft_labeled_data/label/000591.jpg saved\n", + "YOLO_soft_labeled_data/label/000592.jpg saved\n", + "YOLO_soft_labeled_data/label/000593.jpg saved\n", + "YOLO_soft_labeled_data/label/000594.jpg saved\n", + "YOLO_soft_labeled_data/label/000595.jpg saved\n", + "YOLO_soft_labeled_data/label/000596.jpg saved\n", + "YOLO_soft_labeled_data/label/000597.jpg saved\n", + "YOLO_soft_labeled_data/label/000598.jpg saved\n", + "YOLO_soft_labeled_data/label/000599.jpg saved\n", + "YOLO_soft_labeled_data/label/000600.jpg saved\n", + "YOLO_soft_labeled_data/label/000601.jpg saved\n", + "YOLO_soft_labeled_data/label/000602.jpg saved\n", + "YOLO_soft_labeled_data/label/000603.jpg saved\n", + "YOLO_soft_labeled_data/label/000604.jpg saved\n", + "YOLO_soft_labeled_data/label/000605.jpg saved\n", + "YOLO_soft_labeled_data/label/000606.jpg saved\n", + "YOLO_soft_labeled_data/label/000607.jpg saved\n", + "YOLO_soft_labeled_data/label/000608.jpg saved\n", + "YOLO_soft_labeled_data/label/000609.jpg saved\n", + "YOLO_soft_labeled_data/label/000610.jpg saved\n", + "YOLO_soft_labeled_data/label/000611.jpg saved\n", + "YOLO_soft_labeled_data/label/000612.jpg saved\n", + "YOLO_soft_labeled_data/label/000613.jpg saved\n", + "YOLO_soft_labeled_data/label/000614.jpg saved\n", + "YOLO_soft_labeled_data/label/000615.jpg saved\n", + "YOLO_soft_labeled_data/label/000616.jpg saved\n", + "YOLO_soft_labeled_data/label/000617.jpg saved\n", + "YOLO_soft_labeled_data/label/000618.jpg saved\n", + "YOLO_soft_labeled_data/label/000619.jpg saved\n", + "YOLO_soft_labeled_data/label/000620.jpg saved\n", + "YOLO_soft_labeled_data/label/000621.jpg saved\n", + "YOLO_soft_labeled_data/label/000622.jpg saved\n", + "YOLO_soft_labeled_data/label/000623.jpg saved\n", + "YOLO_soft_labeled_data/label/000624.jpg saved\n", + "YOLO_soft_labeled_data/label/000625.jpg saved\n", + "YOLO_soft_labeled_data/label/000626.jpg saved\n", + "YOLO_soft_labeled_data/label/000627.jpg saved\n", + "YOLO_soft_labeled_data/label/000628.jpg saved\n", + "YOLO_soft_labeled_data/label/000629.jpg saved\n", + "YOLO_soft_labeled_data/label/000630.jpg saved\n", + "YOLO_soft_labeled_data/label/000631.jpg saved\n", + "YOLO_soft_labeled_data/label/000632.jpg saved\n", + "YOLO_soft_labeled_data/label/000633.jpg saved\n", + "YOLO_soft_labeled_data/label/000634.jpg saved\n", + "YOLO_soft_labeled_data/label/000635.jpg saved\n", + "YOLO_soft_labeled_data/label/000636.jpg saved\n", + "YOLO_soft_labeled_data/label/000637.jpg saved\n", + "YOLO_soft_labeled_data/label/000638.jpg saved\n", + "YOLO_soft_labeled_data/label/000639.jpg saved\n", + "YOLO_soft_labeled_data/label/000640.jpg saved\n", + "YOLO_soft_labeled_data/label/000641.jpg saved\n", + "YOLO_soft_labeled_data/label/000642.jpg saved\n", + "YOLO_soft_labeled_data/label/000643.jpg saved\n", + "YOLO_soft_labeled_data/label/000644.jpg saved\n", + "YOLO_soft_labeled_data/label/000645.jpg saved\n", + "YOLO_soft_labeled_data/label/000646.jpg saved\n", + "YOLO_soft_labeled_data/label/000647.jpg saved\n", + "YOLO_soft_labeled_data/label/000648.jpg saved\n", + "YOLO_soft_labeled_data/label/000649.jpg saved\n", + "YOLO_soft_labeled_data/label/000650.jpg saved\n", + "YOLO_soft_labeled_data/label/000651.jpg saved\n", + "YOLO_soft_labeled_data/label/000652.jpg saved\n", + "YOLO_soft_labeled_data/label/000653.jpg saved\n", + "YOLO_soft_labeled_data/label/000654.jpg saved\n", + "YOLO_soft_labeled_data/label/000655.jpg saved\n", + "YOLO_soft_labeled_data/label/000656.jpg saved\n", + "YOLO_soft_labeled_data/label/000657.jpg saved\n", + "YOLO_soft_labeled_data/label/000658.jpg saved\n", + "YOLO_soft_labeled_data/label/000659.jpg saved\n", + "YOLO_soft_labeled_data/label/000660.jpg saved\n", + "YOLO_soft_labeled_data/label/000661.jpg saved\n", + "YOLO_soft_labeled_data/label/000662.jpg saved\n", + "YOLO_soft_labeled_data/label/000663.jpg saved\n", + "YOLO_soft_labeled_data/label/000664.jpg saved\n", + "YOLO_soft_labeled_data/label/000665.jpg saved\n", + "YOLO_soft_labeled_data/label/000666.jpg saved\n", + "YOLO_soft_labeled_data/label/000667.jpg saved\n", + "YOLO_soft_labeled_data/label/000668.jpg saved\n", + "YOLO_soft_labeled_data/label/000669.jpg saved\n", + "YOLO_soft_labeled_data/label/000670.jpg saved\n", + "YOLO_soft_labeled_data/label/000671.jpg saved\n", + "YOLO_soft_labeled_data/label/000672.jpg saved\n", + "YOLO_soft_labeled_data/label/000673.jpg saved\n", + "YOLO_soft_labeled_data/label/000674.jpg saved\n", + "YOLO_soft_labeled_data/label/000675.jpg saved\n", + "YOLO_soft_labeled_data/label/000676.jpg saved\n", + "YOLO_soft_labeled_data/label/000677.jpg saved\n", + "YOLO_soft_labeled_data/label/000678.jpg saved\n", + "YOLO_soft_labeled_data/label/000679.jpg saved\n", + "YOLO_soft_labeled_data/label/000680.jpg saved\n", + "YOLO_soft_labeled_data/label/000681.jpg saved\n", + "YOLO_soft_labeled_data/label/000682.jpg saved\n", + "YOLO_soft_labeled_data/label/000683.jpg saved\n", + "YOLO_soft_labeled_data/label/000684.jpg saved\n", + "YOLO_soft_labeled_data/label/000685.jpg saved\n", + "YOLO_soft_labeled_data/label/000686.jpg saved\n", + "YOLO_soft_labeled_data/label/000687.jpg saved\n", + "YOLO_soft_labeled_data/label/000688.jpg saved\n", + "YOLO_soft_labeled_data/label/000689.jpg saved\n", + "YOLO_soft_labeled_data/label/000690.jpg saved\n", + "YOLO_soft_labeled_data/label/000691.jpg saved\n", + "YOLO_soft_labeled_data/label/000692.jpg saved\n", + "YOLO_soft_labeled_data/label/000693.jpg saved\n", + "YOLO_soft_labeled_data/label/000694.jpg saved\n", + "YOLO_soft_labeled_data/label/000695.jpg saved\n", + "YOLO_soft_labeled_data/label/000696.jpg saved\n", + "YOLO_soft_labeled_data/label/000697.jpg saved\n", + "YOLO_soft_labeled_data/label/000698.jpg saved\n", + "YOLO_soft_labeled_data/label/000699.jpg saved\n", + "YOLO_soft_labeled_data/label/000700.jpg saved\n", + "YOLO_soft_labeled_data/label/000701.jpg saved\n", + "YOLO_soft_labeled_data/label/000702.jpg saved\n", + "YOLO_soft_labeled_data/label/000703.jpg saved\n", + "YOLO_soft_labeled_data/label/000704.jpg saved\n", + "YOLO_soft_labeled_data/label/000705.jpg saved\n", + "YOLO_soft_labeled_data/label/000706.jpg saved\n", + "YOLO_soft_labeled_data/label/000707.jpg saved\n", + "YOLO_soft_labeled_data/label/000708.jpg saved\n", + "YOLO_soft_labeled_data/label/000709.jpg saved\n", + "YOLO_soft_labeled_data/label/000710.jpg saved\n", + "YOLO_soft_labeled_data/label/000711.jpg saved\n", + "YOLO_soft_labeled_data/label/000712.jpg saved\n", + "YOLO_soft_labeled_data/label/000713.jpg saved\n", + "YOLO_soft_labeled_data/label/000714.jpg saved\n", + "YOLO_soft_labeled_data/label/000715.jpg saved\n", + "YOLO_soft_labeled_data/label/000716.jpg saved\n", + "YOLO_soft_labeled_data/label/000717.jpg saved\n", + "YOLO_soft_labeled_data/label/000718.jpg saved\n", + "YOLO_soft_labeled_data/label/000719.jpg saved\n", + "YOLO_soft_labeled_data/label/000720.jpg saved\n", + "YOLO_soft_labeled_data/label/000721.jpg saved\n", + "YOLO_soft_labeled_data/label/000722.jpg saved\n", + "YOLO_soft_labeled_data/label/000723.jpg saved\n", + "YOLO_soft_labeled_data/label/000724.jpg saved\n", + "YOLO_soft_labeled_data/label/000725.jpg saved\n", + "YOLO_soft_labeled_data/label/000726.jpg saved\n", + "YOLO_soft_labeled_data/label/000727.jpg saved\n", + "YOLO_soft_labeled_data/label/000728.jpg saved\n", + "YOLO_soft_labeled_data/label/000729.jpg saved\n", + "YOLO_soft_labeled_data/label/000730.jpg saved\n", + "YOLO_soft_labeled_data/label/000731.jpg saved\n", + "YOLO_soft_labeled_data/label/000732.jpg saved\n", + "YOLO_soft_labeled_data/label/000733.jpg saved\n", + "YOLO_soft_labeled_data/label/000734.jpg saved\n", + "YOLO_soft_labeled_data/label/000735.jpg saved\n", + "YOLO_soft_labeled_data/label/000736.jpg saved\n", + "YOLO_soft_labeled_data/label/000737.jpg saved\n", + "YOLO_soft_labeled_data/label/000738.jpg saved\n", + "YOLO_soft_labeled_data/label/000739.jpg saved\n", + "YOLO_soft_labeled_data/label/000740.jpg saved\n", + "YOLO_soft_labeled_data/label/000741.jpg saved\n", + "YOLO_soft_labeled_data/label/000742.jpg saved\n", + "YOLO_soft_labeled_data/label/000743.jpg saved\n", + "YOLO_soft_labeled_data/label/000744.jpg saved\n", + "YOLO_soft_labeled_data/label/000745.jpg saved\n", + "YOLO_soft_labeled_data/label/000746.jpg saved\n", + "YOLO_soft_labeled_data/label/000747.jpg saved\n", + "YOLO_soft_labeled_data/label/000748.jpg saved\n", + "YOLO_soft_labeled_data/label/000749.jpg saved\n", + "YOLO_soft_labeled_data/label/000750.jpg saved\n", + "YOLO_soft_labeled_data/label/000751.jpg saved\n", + "YOLO_soft_labeled_data/label/000752.jpg saved\n", + "YOLO_soft_labeled_data/label/000753.jpg saved\n", + "YOLO_soft_labeled_data/label/000754.jpg saved\n", + "YOLO_soft_labeled_data/label/000755.jpg saved\n", + "YOLO_soft_labeled_data/label/000756.jpg saved\n", + "YOLO_soft_labeled_data/label/000757.jpg saved\n", + "YOLO_soft_labeled_data/label/000758.jpg saved\n", + "YOLO_soft_labeled_data/label/000759.jpg saved\n", + "YOLO_soft_labeled_data/label/000760.jpg saved\n", + "YOLO_soft_labeled_data/label/000761.jpg saved\n", + "YOLO_soft_labeled_data/label/000762.jpg saved\n", + "YOLO_soft_labeled_data/label/000763.jpg saved\n", + "YOLO_soft_labeled_data/label/000764.jpg saved\n", + "YOLO_soft_labeled_data/label/000765.jpg saved\n", + "YOLO_soft_labeled_data/label/000766.jpg saved\n", + "YOLO_soft_labeled_data/label/000767.jpg saved\n", + "YOLO_soft_labeled_data/label/000768.jpg saved\n", + "YOLO_soft_labeled_data/label/000769.jpg saved\n", + "YOLO_soft_labeled_data/label/000770.jpg saved\n", + "YOLO_soft_labeled_data/label/000771.jpg saved\n", + "YOLO_soft_labeled_data/label/000772.jpg saved\n", + "YOLO_soft_labeled_data/label/000773.jpg saved\n", + "YOLO_soft_labeled_data/label/000774.jpg saved\n", + "YOLO_soft_labeled_data/label/000775.jpg saved\n", + "YOLO_soft_labeled_data/label/000776.jpg saved\n", + "YOLO_soft_labeled_data/label/000777.jpg saved\n", + "YOLO_soft_labeled_data/label/000778.jpg saved\n", + "YOLO_soft_labeled_data/label/000779.jpg saved\n", + "YOLO_soft_labeled_data/label/000780.jpg saved\n", + "YOLO_soft_labeled_data/label/000781.jpg saved\n", + "YOLO_soft_labeled_data/label/000782.jpg saved\n", + "YOLO_soft_labeled_data/label/000783.jpg saved\n", + "YOLO_soft_labeled_data/label/000784.jpg saved\n", + "YOLO_soft_labeled_data/label/000785.jpg saved\n", + "YOLO_soft_labeled_data/label/000786.jpg saved\n", + "YOLO_soft_labeled_data/label/000787.jpg saved\n", + "YOLO_soft_labeled_data/label/000788.jpg saved\n", + "YOLO_soft_labeled_data/label/000789.jpg saved\n", + "YOLO_soft_labeled_data/label/000790.jpg saved\n", + "YOLO_soft_labeled_data/label/000791.jpg saved\n", + "YOLO_soft_labeled_data/label/000792.jpg saved\n", + "YOLO_soft_labeled_data/label/000793.jpg saved\n", + "YOLO_soft_labeled_data/label/000794.jpg saved\n", + "YOLO_soft_labeled_data/label/000795.jpg saved\n", + "YOLO_soft_labeled_data/label/000796.jpg saved\n", + "YOLO_soft_labeled_data/label/000797.jpg saved\n", + "YOLO_soft_labeled_data/label/000798.jpg saved\n", + "YOLO_soft_labeled_data/label/000799.jpg saved\n", + "YOLO_soft_labeled_data/label/000800.jpg saved\n", + "YOLO_soft_labeled_data/label/000801.jpg saved\n", + "YOLO_soft_labeled_data/label/000802.jpg saved\n", + "YOLO_soft_labeled_data/label/000803.jpg saved\n", + "YOLO_soft_labeled_data/label/000804.jpg saved\n", + "YOLO_soft_labeled_data/label/000805.jpg saved\n", + "YOLO_soft_labeled_data/label/000806.jpg saved\n", + "YOLO_soft_labeled_data/label/000807.jpg saved\n", + "YOLO_soft_labeled_data/label/000808.jpg saved\n", + "YOLO_soft_labeled_data/label/000809.jpg saved\n", + "YOLO_soft_labeled_data/label/000810.jpg saved\n", + "YOLO_soft_labeled_data/label/000811.jpg saved\n", + "YOLO_soft_labeled_data/label/000812.jpg saved\n", + "YOLO_soft_labeled_data/label/000813.jpg saved\n", + "YOLO_soft_labeled_data/label/000814.jpg saved\n", + "YOLO_soft_labeled_data/label/000815.jpg saved\n", + "YOLO_soft_labeled_data/label/000816.jpg saved\n", + "YOLO_soft_labeled_data/label/000817.jpg saved\n", + "YOLO_soft_labeled_data/label/000818.jpg saved\n", + "YOLO_soft_labeled_data/label/000819.jpg saved\n", + "YOLO_soft_labeled_data/label/000820.jpg saved\n", + "YOLO_soft_labeled_data/label/000821.jpg saved\n", + "YOLO_soft_labeled_data/label/000822.jpg saved\n", + "YOLO_soft_labeled_data/label/000823.jpg saved\n", + "YOLO_soft_labeled_data/label/000824.jpg saved\n", + "YOLO_soft_labeled_data/label/000825.jpg saved\n", + "YOLO_soft_labeled_data/label/000826.jpg saved\n", + "YOLO_soft_labeled_data/label/000827.jpg saved\n", + "YOLO_soft_labeled_data/label/000828.jpg saved\n", + "YOLO_soft_labeled_data/label/000829.jpg saved\n", + "YOLO_soft_labeled_data/label/000830.jpg saved\n", + "YOLO_soft_labeled_data/label/000831.jpg saved\n", + "YOLO_soft_labeled_data/label/000832.jpg saved\n", + "YOLO_soft_labeled_data/label/000833.jpg saved\n", + "YOLO_soft_labeled_data/label/000834.jpg saved\n", + "YOLO_soft_labeled_data/label/000835.jpg saved\n", + "YOLO_soft_labeled_data/label/000836.jpg saved\n", + "YOLO_soft_labeled_data/label/000837.jpg saved\n", + "YOLO_soft_labeled_data/label/000838.jpg saved\n", + "YOLO_soft_labeled_data/label/000839.jpg saved\n", + "YOLO_soft_labeled_data/label/000840.jpg saved\n", + "YOLO_soft_labeled_data/label/000841.jpg saved\n", + "YOLO_soft_labeled_data/label/000842.jpg saved\n", + "YOLO_soft_labeled_data/label/000843.jpg saved\n", + "YOLO_soft_labeled_data/label/000844.jpg saved\n", + "YOLO_soft_labeled_data/label/000845.jpg saved\n", + "YOLO_soft_labeled_data/label/000846.jpg saved\n", + "YOLO_soft_labeled_data/label/000847.jpg saved\n", + "YOLO_soft_labeled_data/label/000848.jpg saved\n", + "YOLO_soft_labeled_data/label/000849.jpg saved\n", + "YOLO_soft_labeled_data/label/000850.jpg saved\n", + "YOLO_soft_labeled_data/label/000851.jpg saved\n", + "YOLO_soft_labeled_data/label/000852.jpg saved\n", + "YOLO_soft_labeled_data/label/000853.jpg saved\n", + "YOLO_soft_labeled_data/label/000854.jpg saved\n", + "YOLO_soft_labeled_data/label/000855.jpg saved\n", + "YOLO_soft_labeled_data/label/000856.jpg saved\n", + "YOLO_soft_labeled_data/label/000857.jpg saved\n", + "YOLO_soft_labeled_data/label/000858.jpg saved\n", + "YOLO_soft_labeled_data/label/000859.jpg saved\n", + "YOLO_soft_labeled_data/label/000860.jpg saved\n", + "YOLO_soft_labeled_data/label/000861.jpg saved\n", + "YOLO_soft_labeled_data/label/000862.jpg saved\n", + "YOLO_soft_labeled_data/label/000863.jpg saved\n", + "YOLO_soft_labeled_data/label/000864.jpg saved\n", + "YOLO_soft_labeled_data/label/000865.jpg saved\n", + "YOLO_soft_labeled_data/label/000866.jpg saved\n", + "YOLO_soft_labeled_data/label/000867.jpg saved\n", + "YOLO_soft_labeled_data/label/000868.jpg saved\n", + "YOLO_soft_labeled_data/label/000869.jpg saved\n", + "YOLO_soft_labeled_data/label/000870.jpg saved\n", + "YOLO_soft_labeled_data/label/000871.jpg saved\n", + "YOLO_soft_labeled_data/label/000872.jpg saved\n", + "YOLO_soft_labeled_data/label/000873.jpg saved\n", + "YOLO_soft_labeled_data/label/000874.jpg saved\n", + "YOLO_soft_labeled_data/label/000875.jpg saved\n", + "YOLO_soft_labeled_data/label/000876.jpg saved\n", + "YOLO_soft_labeled_data/label/000877.jpg saved\n", + "YOLO_soft_labeled_data/label/000878.jpg saved\n", + "YOLO_soft_labeled_data/label/000879.jpg saved\n", + "YOLO_soft_labeled_data/label/000880.jpg saved\n", + "YOLO_soft_labeled_data/label/000881.jpg saved\n", + "YOLO_soft_labeled_data/label/000882.jpg saved\n", + "YOLO_soft_labeled_data/label/000883.jpg saved\n", + "YOLO_soft_labeled_data/label/000884.jpg saved\n", + "YOLO_soft_labeled_data/label/000885.jpg saved\n", + "YOLO_soft_labeled_data/label/000886.jpg saved\n", + "YOLO_soft_labeled_data/label/000887.jpg saved\n", + "YOLO_soft_labeled_data/label/000888.jpg saved\n", + "YOLO_soft_labeled_data/label/000889.jpg saved\n", + "YOLO_soft_labeled_data/label/000890.jpg saved\n", + "YOLO_soft_labeled_data/label/000891.jpg saved\n", + "YOLO_soft_labeled_data/label/000892.jpg saved\n", + "YOLO_soft_labeled_data/label/000893.jpg saved\n", + "YOLO_soft_labeled_data/label/000894.jpg saved\n", + "YOLO_soft_labeled_data/label/000895.jpg saved\n", + "YOLO_soft_labeled_data/label/000896.jpg saved\n", + "YOLO_soft_labeled_data/label/000897.jpg saved\n", + "YOLO_soft_labeled_data/label/000898.jpg saved\n", + "YOLO_soft_labeled_data/label/000899.jpg saved\n", + "YOLO_soft_labeled_data/label/000900.jpg saved\n", + "YOLO_soft_labeled_data/label/000901.jpg saved\n", + "YOLO_soft_labeled_data/label/000902.jpg saved\n", + "YOLO_soft_labeled_data/label/000903.jpg saved\n", + "YOLO_soft_labeled_data/label/000904.jpg saved\n", + "YOLO_soft_labeled_data/label/000905.jpg saved\n", + "YOLO_soft_labeled_data/label/000906.jpg saved\n", + "YOLO_soft_labeled_data/label/000907.jpg saved\n", + "YOLO_soft_labeled_data/label/000908.jpg saved\n", + "YOLO_soft_labeled_data/label/000909.jpg saved\n", + "YOLO_soft_labeled_data/label/000910.jpg saved\n", + "YOLO_soft_labeled_data/label/000911.jpg saved\n", + "YOLO_soft_labeled_data/label/000912.jpg saved\n", + "YOLO_soft_labeled_data/label/000913.jpg saved\n", + "YOLO_soft_labeled_data/label/000914.jpg saved\n", + "YOLO_soft_labeled_data/label/000915.jpg saved\n", + "YOLO_soft_labeled_data/label/000916.jpg saved\n", + "YOLO_soft_labeled_data/label/000917.jpg saved\n", + "YOLO_soft_labeled_data/label/000918.jpg saved\n", + "YOLO_soft_labeled_data/label/000919.jpg saved\n", + "YOLO_soft_labeled_data/label/000920.jpg saved\n", + "YOLO_soft_labeled_data/label/000921.jpg saved\n", + "YOLO_soft_labeled_data/label/000922.jpg saved\n", + "YOLO_soft_labeled_data/label/000923.jpg saved\n", + "YOLO_soft_labeled_data/label/000924.jpg saved\n", + "YOLO_soft_labeled_data/label/000925.jpg saved\n", + "YOLO_soft_labeled_data/label/000926.jpg saved\n", + "YOLO_soft_labeled_data/label/000927.jpg saved\n", + "YOLO_soft_labeled_data/label/000928.jpg saved\n", + "YOLO_soft_labeled_data/label/000929.jpg saved\n", + "YOLO_soft_labeled_data/label/000930.jpg saved\n", + "YOLO_soft_labeled_data/label/000931.jpg saved\n", + "YOLO_soft_labeled_data/label/000932.jpg saved\n", + "YOLO_soft_labeled_data/label/000933.jpg saved\n", + "YOLO_soft_labeled_data/label/000934.jpg saved\n", + "YOLO_soft_labeled_data/label/000935.jpg saved\n", + "YOLO_soft_labeled_data/label/000936.jpg saved\n", + "YOLO_soft_labeled_data/label/000937.jpg saved\n", + "YOLO_soft_labeled_data/label/000938.jpg saved\n", + "YOLO_soft_labeled_data/label/000939.jpg saved\n", + "YOLO_soft_labeled_data/label/000940.jpg saved\n", + "YOLO_soft_labeled_data/label/000941.jpg saved\n", + "YOLO_soft_labeled_data/label/000942.jpg saved\n", + "YOLO_soft_labeled_data/label/000943.jpg saved\n", + "YOLO_soft_labeled_data/label/000944.jpg saved\n", + "YOLO_soft_labeled_data/label/000945.jpg saved\n", + "YOLO_soft_labeled_data/label/000946.jpg saved\n", + "YOLO_soft_labeled_data/label/000947.jpg saved\n", + "YOLO_soft_labeled_data/label/000948.jpg saved\n", + "YOLO_soft_labeled_data/label/000949.jpg saved\n", + "YOLO_soft_labeled_data/label/000950.jpg saved\n", + "YOLO_soft_labeled_data/label/000951.jpg saved\n", + "YOLO_soft_labeled_data/label/000952.jpg saved\n", + "YOLO_soft_labeled_data/label/000953.jpg saved\n", + "YOLO_soft_labeled_data/label/000954.jpg saved\n", + "YOLO_soft_labeled_data/label/000955.jpg saved\n", + "YOLO_soft_labeled_data/label/000956.jpg saved\n", + "YOLO_soft_labeled_data/label/000957.jpg saved\n", + "YOLO_soft_labeled_data/label/000958.jpg saved\n", + "YOLO_soft_labeled_data/label/000959.jpg saved\n", + "YOLO_soft_labeled_data/label/000960.jpg saved\n", + "YOLO_soft_labeled_data/label/000961.jpg saved\n", + "YOLO_soft_labeled_data/label/000962.jpg saved\n", + "YOLO_soft_labeled_data/label/000963.jpg saved\n", + "YOLO_soft_labeled_data/label/000964.jpg saved\n", + "YOLO_soft_labeled_data/label/000965.jpg saved\n", + "YOLO_soft_labeled_data/label/000966.jpg saved\n", + "YOLO_soft_labeled_data/label/000967.jpg saved\n", + "YOLO_soft_labeled_data/label/000968.jpg saved\n", + "YOLO_soft_labeled_data/label/000969.jpg saved\n", + "YOLO_soft_labeled_data/label/000970.jpg saved\n", + "YOLO_soft_labeled_data/label/000971.jpg saved\n", + "YOLO_soft_labeled_data/label/000972.jpg saved\n", + "YOLO_soft_labeled_data/label/000973.jpg saved\n", + "YOLO_soft_labeled_data/label/000974.jpg saved\n", + "YOLO_soft_labeled_data/label/000975.jpg saved\n", + "YOLO_soft_labeled_data/label/000976.jpg saved\n", + "YOLO_soft_labeled_data/label/000977.jpg saved\n", + "YOLO_soft_labeled_data/label/000978.jpg saved\n", + "YOLO_soft_labeled_data/label/000979.jpg saved\n", + "YOLO_soft_labeled_data/label/000980.jpg saved\n", + "YOLO_soft_labeled_data/label/000981.jpg saved\n", + "YOLO_soft_labeled_data/label/000982.jpg saved\n", + "YOLO_soft_labeled_data/label/000983.jpg saved\n", + "YOLO_soft_labeled_data/label/000984.jpg saved\n", + "YOLO_soft_labeled_data/label/000985.jpg saved\n", + "YOLO_soft_labeled_data/label/000986.jpg saved\n", + "YOLO_soft_labeled_data/label/000987.jpg saved\n", + "YOLO_soft_labeled_data/label/000988.jpg saved\n", + "YOLO_soft_labeled_data/label/000989.jpg saved\n", + "YOLO_soft_labeled_data/label/000990.jpg saved\n", + "YOLO_soft_labeled_data/label/000991.jpg saved\n", + "YOLO_soft_labeled_data/label/000992.jpg saved\n", + "YOLO_soft_labeled_data/label/000993.jpg saved\n", + "YOLO_soft_labeled_data/label/000994.jpg saved\n", + "YOLO_soft_labeled_data/label/000995.jpg saved\n", + "YOLO_soft_labeled_data/label/000996.jpg saved\n", + "YOLO_soft_labeled_data/label/000997.jpg saved\n", + "YOLO_soft_labeled_data/label/000998.jpg saved\n", + "YOLO_soft_labeled_data/label/000999.jpg saved\n", + "YOLO_soft_labeled_data/label/001000.jpg saved\n", + "YOLO_soft_labeled_data/label/001001.jpg saved\n", + "YOLO_soft_labeled_data/label/001002.jpg saved\n", + "YOLO_soft_labeled_data/label/001003.jpg saved\n", + "YOLO_soft_labeled_data/label/001004.jpg saved\n", + "YOLO_soft_labeled_data/label/001005.jpg saved\n", + "YOLO_soft_labeled_data/label/001006.jpg saved\n", + "YOLO_soft_labeled_data/label/001007.jpg saved\n", + "YOLO_soft_labeled_data/label/001008.jpg saved\n", + "YOLO_soft_labeled_data/label/001009.jpg saved\n", + "YOLO_soft_labeled_data/label/001010.jpg saved\n", + "YOLO_soft_labeled_data/label/001011.jpg saved\n", + "YOLO_soft_labeled_data/label/001012.jpg saved\n", + "YOLO_soft_labeled_data/label/001013.jpg saved\n", + "YOLO_soft_labeled_data/label/001014.jpg saved\n", + "YOLO_soft_labeled_data/label/001015.jpg saved\n", + "YOLO_soft_labeled_data/label/001016.jpg saved\n", + "YOLO_soft_labeled_data/label/001017.jpg saved\n", + "YOLO_soft_labeled_data/label/001018.jpg saved\n", + "YOLO_soft_labeled_data/label/001019.jpg saved\n", + "YOLO_soft_labeled_data/label/001020.jpg saved\n", + "YOLO_soft_labeled_data/label/001021.jpg saved\n", + "YOLO_soft_labeled_data/label/001022.jpg saved\n", + "YOLO_soft_labeled_data/label/001023.jpg saved\n", + "YOLO_soft_labeled_data/label/001024.jpg saved\n", + "YOLO_soft_labeled_data/label/001025.jpg saved\n", + "YOLO_soft_labeled_data/label/001026.jpg saved\n", + "YOLO_soft_labeled_data/label/001027.jpg saved\n", + "YOLO_soft_labeled_data/label/001028.jpg saved\n", + "YOLO_soft_labeled_data/label/001029.jpg saved\n", + "YOLO_soft_labeled_data/label/001030.jpg saved\n", + "YOLO_soft_labeled_data/label/001031.jpg saved\n", + "YOLO_soft_labeled_data/label/001032.jpg saved\n", + "YOLO_soft_labeled_data/label/001033.jpg saved\n", + "YOLO_soft_labeled_data/label/001034.jpg saved\n", + "YOLO_soft_labeled_data/label/001035.jpg saved\n", + "YOLO_soft_labeled_data/label/001036.jpg saved\n", + "YOLO_soft_labeled_data/label/001037.jpg saved\n", + "YOLO_soft_labeled_data/label/001038.jpg saved\n", + "YOLO_soft_labeled_data/label/001039.jpg saved\n", + "YOLO_soft_labeled_data/label/001040.jpg saved\n", + "YOLO_soft_labeled_data/label/001041.jpg saved\n", + "YOLO_soft_labeled_data/label/001042.jpg saved\n", + "YOLO_soft_labeled_data/label/001043.jpg saved\n", + "YOLO_soft_labeled_data/label/001044.jpg saved\n", + "YOLO_soft_labeled_data/label/001045.jpg saved\n", + "YOLO_soft_labeled_data/label/001046.jpg saved\n", + "YOLO_soft_labeled_data/label/001047.jpg saved\n", + "YOLO_soft_labeled_data/label/001048.jpg saved\n", + "YOLO_soft_labeled_data/label/001049.jpg saved\n", + "YOLO_soft_labeled_data/label/001050.jpg saved\n", + "YOLO_soft_labeled_data/label/001051.jpg saved\n", + "YOLO_soft_labeled_data/label/001052.jpg saved\n", + "YOLO_soft_labeled_data/label/001053.jpg saved\n", + "YOLO_soft_labeled_data/label/001054.jpg saved\n", + "YOLO_soft_labeled_data/label/001055.jpg saved\n", + "YOLO_soft_labeled_data/label/001056.jpg saved\n", + "YOLO_soft_labeled_data/label/001057.jpg saved\n", + "YOLO_soft_labeled_data/label/001058.jpg saved\n", + "YOLO_soft_labeled_data/label/001059.jpg saved\n", + "YOLO_soft_labeled_data/label/001060.jpg saved\n", + "YOLO_soft_labeled_data/label/001061.jpg saved\n", + "YOLO_soft_labeled_data/label/001062.jpg saved\n", + "YOLO_soft_labeled_data/label/001063.jpg saved\n", + "YOLO_soft_labeled_data/label/001064.jpg saved\n", + "YOLO_soft_labeled_data/label/001065.jpg saved\n", + "YOLO_soft_labeled_data/label/001066.jpg saved\n", + "YOLO_soft_labeled_data/label/001067.jpg saved\n", + "YOLO_soft_labeled_data/label/001068.jpg saved\n", + "YOLO_soft_labeled_data/label/001069.jpg saved\n", + "YOLO_soft_labeled_data/label/001070.jpg saved\n", + "YOLO_soft_labeled_data/label/001071.jpg saved\n", + "YOLO_soft_labeled_data/label/001072.jpg saved\n", + "YOLO_soft_labeled_data/label/001073.jpg saved\n", + "YOLO_soft_labeled_data/label/001074.jpg saved\n", + "YOLO_soft_labeled_data/label/001075.jpg saved\n", + "YOLO_soft_labeled_data/label/001076.jpg saved\n", + "YOLO_soft_labeled_data/label/001077.jpg saved\n", + "YOLO_soft_labeled_data/label/001078.jpg saved\n", + "YOLO_soft_labeled_data/label/001079.jpg saved\n", + "YOLO_soft_labeled_data/label/001080.jpg saved\n", + "YOLO_soft_labeled_data/label/001081.jpg saved\n", + "YOLO_soft_labeled_data/label/001082.jpg saved\n", + "YOLO_soft_labeled_data/label/001083.jpg saved\n", + "YOLO_soft_labeled_data/label/001084.jpg saved\n", + "YOLO_soft_labeled_data/label/001085.jpg saved\n", + "YOLO_soft_labeled_data/label/001086.jpg saved\n", + "YOLO_soft_labeled_data/label/001087.jpg saved\n", + "YOLO_soft_labeled_data/label/001088.jpg saved\n", + "YOLO_soft_labeled_data/label/001089.jpg saved\n", + "YOLO_soft_labeled_data/label/001090.jpg saved\n", + "YOLO_soft_labeled_data/label/001091.jpg saved\n", + "YOLO_soft_labeled_data/label/001092.jpg saved\n", + "YOLO_soft_labeled_data/label/001093.jpg saved\n", + "YOLO_soft_labeled_data/label/001094.jpg saved\n", + "YOLO_soft_labeled_data/label/001095.jpg saved\n", + "YOLO_soft_labeled_data/label/001096.jpg saved\n", + "YOLO_soft_labeled_data/label/001097.jpg saved\n", + "YOLO_soft_labeled_data/label/001098.jpg saved\n", + "YOLO_soft_labeled_data/label/001099.jpg saved\n", + "YOLO_soft_labeled_data/label/001100.jpg saved\n", + "YOLO_soft_labeled_data/label/001101.jpg saved\n", + "YOLO_soft_labeled_data/label/001102.jpg saved\n", + "YOLO_soft_labeled_data/label/001103.jpg saved\n", + "YOLO_soft_labeled_data/label/001104.jpg saved\n", + "YOLO_soft_labeled_data/label/001105.jpg saved\n", + "YOLO_soft_labeled_data/label/001106.jpg saved\n", + "YOLO_soft_labeled_data/label/001107.jpg saved\n", + "YOLO_soft_labeled_data/label/001108.jpg saved\n", + "YOLO_soft_labeled_data/label/001109.jpg saved\n", + "YOLO_soft_labeled_data/label/001110.jpg saved\n", + "YOLO_soft_labeled_data/label/001111.jpg saved\n", + "YOLO_soft_labeled_data/label/001112.jpg saved\n", + "YOLO_soft_labeled_data/label/001113.jpg saved\n", + "YOLO_soft_labeled_data/label/001114.jpg saved\n", + "YOLO_soft_labeled_data/label/001115.jpg saved\n", + "YOLO_soft_labeled_data/label/001116.jpg saved\n", + "YOLO_soft_labeled_data/label/001117.jpg saved\n", + "YOLO_soft_labeled_data/label/001118.jpg saved\n", + "YOLO_soft_labeled_data/label/001119.jpg saved\n", + "YOLO_soft_labeled_data/label/001120.jpg saved\n", + "YOLO_soft_labeled_data/label/001121.jpg saved\n", + "YOLO_soft_labeled_data/label/001122.jpg saved\n", + "YOLO_soft_labeled_data/label/001123.jpg saved\n", + "YOLO_soft_labeled_data/label/001124.jpg saved\n", + "YOLO_soft_labeled_data/label/001125.jpg saved\n", + "YOLO_soft_labeled_data/label/001126.jpg saved\n", + "YOLO_soft_labeled_data/label/001127.jpg saved\n", + "YOLO_soft_labeled_data/label/001128.jpg saved\n", + "YOLO_soft_labeled_data/label/001129.jpg saved\n", + "YOLO_soft_labeled_data/label/001130.jpg saved\n", + "YOLO_soft_labeled_data/label/001131.jpg saved\n", + "YOLO_soft_labeled_data/label/001132.jpg saved\n", + "YOLO_soft_labeled_data/label/001133.jpg saved\n", + "YOLO_soft_labeled_data/label/001134.jpg saved\n", + "YOLO_soft_labeled_data/label/001135.jpg saved\n", + "YOLO_soft_labeled_data/label/001136.jpg saved\n", + "YOLO_soft_labeled_data/label/001137.jpg saved\n", + "YOLO_soft_labeled_data/label/001138.jpg saved\n", + "YOLO_soft_labeled_data/label/001139.jpg saved\n", + "YOLO_soft_labeled_data/label/001140.jpg saved\n", + "YOLO_soft_labeled_data/label/001141.jpg saved\n", + "YOLO_soft_labeled_data/label/001142.jpg saved\n", + "YOLO_soft_labeled_data/label/001143.jpg saved\n", + "YOLO_soft_labeled_data/label/001144.jpg saved\n", + "YOLO_soft_labeled_data/label/001145.jpg saved\n", + "YOLO_soft_labeled_data/label/001146.jpg saved\n", + "YOLO_soft_labeled_data/label/001147.jpg saved\n", + "YOLO_soft_labeled_data/label/001148.jpg saved\n", + "YOLO_soft_labeled_data/label/001149.jpg saved\n", + "YOLO_soft_labeled_data/label/001150.jpg saved\n", + "YOLO_soft_labeled_data/label/001151.jpg saved\n", + "YOLO_soft_labeled_data/label/001152.jpg saved\n", + "YOLO_soft_labeled_data/label/001153.jpg saved\n", + "YOLO_soft_labeled_data/label/001154.jpg saved\n", + "YOLO_soft_labeled_data/label/001155.jpg saved\n", + "YOLO_soft_labeled_data/label/001156.jpg saved\n", + "YOLO_soft_labeled_data/label/001157.jpg saved\n", + "YOLO_soft_labeled_data/label/001158.jpg saved\n", + "YOLO_soft_labeled_data/label/001159.jpg saved\n", + "YOLO_soft_labeled_data/label/001160.jpg saved\n", + "YOLO_soft_labeled_data/label/001161.jpg saved\n", + "YOLO_soft_labeled_data/label/001162.jpg saved\n", + "YOLO_soft_labeled_data/label/001163.jpg saved\n", + "YOLO_soft_labeled_data/label/001164.jpg saved\n", + "YOLO_soft_labeled_data/label/001165.jpg saved\n", + "YOLO_soft_labeled_data/label/001166.jpg saved\n", + "YOLO_soft_labeled_data/label/001167.jpg saved\n", + "YOLO_soft_labeled_data/label/001168.jpg saved\n", + "YOLO_soft_labeled_data/label/001169.jpg saved\n", + "YOLO_soft_labeled_data/label/001170.jpg saved\n", + "YOLO_soft_labeled_data/label/001171.jpg saved\n", + "YOLO_soft_labeled_data/label/001172.jpg saved\n", + "YOLO_soft_labeled_data/label/001173.jpg saved\n", + "YOLO_soft_labeled_data/label/001174.jpg saved\n", + "YOLO_soft_labeled_data/label/001175.jpg saved\n", + "YOLO_soft_labeled_data/label/001176.jpg saved\n", + "YOLO_soft_labeled_data/label/001177.jpg saved\n", + "YOLO_soft_labeled_data/label/001178.jpg saved\n", + "YOLO_soft_labeled_data/label/001179.jpg saved\n", + "YOLO_soft_labeled_data/label/001180.jpg saved\n", + "YOLO_soft_labeled_data/label/001181.jpg saved\n", + "YOLO_soft_labeled_data/label/001182.jpg saved\n", + "YOLO_soft_labeled_data/label/001183.jpg saved\n", + "YOLO_soft_labeled_data/label/001184.jpg saved\n", + "YOLO_soft_labeled_data/label/001185.jpg saved\n", + "YOLO_soft_labeled_data/label/001186.jpg saved\n", + "YOLO_soft_labeled_data/label/001187.jpg saved\n", + "YOLO_soft_labeled_data/label/001188.jpg saved\n", + "YOLO_soft_labeled_data/label/001189.jpg saved\n", + "YOLO_soft_labeled_data/label/001190.jpg saved\n", + "YOLO_soft_labeled_data/label/001191.jpg saved\n", + "YOLO_soft_labeled_data/label/001192.jpg saved\n", + "YOLO_soft_labeled_data/label/001193.jpg saved\n", + "YOLO_soft_labeled_data/label/001194.jpg saved\n", + "YOLO_soft_labeled_data/label/001195.jpg saved\n", + "YOLO_soft_labeled_data/label/001196.jpg saved\n", + "YOLO_soft_labeled_data/label/001197.jpg saved\n", + "YOLO_soft_labeled_data/label/001198.jpg saved\n", + "YOLO_soft_labeled_data/label/001199.jpg saved\n", + "YOLO_soft_labeled_data/label/001200.jpg saved\n", + "YOLO_soft_labeled_data/label/001201.jpg saved\n", + "YOLO_soft_labeled_data/label/001202.jpg saved\n", + "YOLO_soft_labeled_data/label/001203.jpg saved\n", + "YOLO_soft_labeled_data/label/001204.jpg saved\n", + "YOLO_soft_labeled_data/label/001205.jpg saved\n", + "YOLO_soft_labeled_data/label/001206.jpg saved\n", + "YOLO_soft_labeled_data/label/001207.jpg saved\n", + "YOLO_soft_labeled_data/label/001208.jpg saved\n", + "YOLO_soft_labeled_data/label/001209.jpg saved\n", + "YOLO_soft_labeled_data/label/001210.jpg saved\n", + "YOLO_soft_labeled_data/label/001211.jpg saved\n", + "YOLO_soft_labeled_data/label/001212.jpg saved\n", + "YOLO_soft_labeled_data/label/001213.jpg saved\n", + "YOLO_soft_labeled_data/label/001214.jpg saved\n", + "YOLO_soft_labeled_data/label/001215.jpg saved\n", + "YOLO_soft_labeled_data/label/001216.jpg saved\n", + "YOLO_soft_labeled_data/label/001217.jpg saved\n", + "YOLO_soft_labeled_data/label/001218.jpg saved\n", + "YOLO_soft_labeled_data/label/001219.jpg saved\n", + "YOLO_soft_labeled_data/label/001220.jpg saved\n", + "YOLO_soft_labeled_data/label/001221.jpg saved\n", + "YOLO_soft_labeled_data/label/001222.jpg saved\n", + "YOLO_soft_labeled_data/label/001223.jpg saved\n", + "YOLO_soft_labeled_data/label/001224.jpg saved\n", + "YOLO_soft_labeled_data/label/001225.jpg saved\n", + "YOLO_soft_labeled_data/label/001226.jpg saved\n", + "YOLO_soft_labeled_data/label/001227.jpg saved\n", + "YOLO_soft_labeled_data/label/001228.jpg saved\n", + "YOLO_soft_labeled_data/label/001229.jpg saved\n", + "YOLO_soft_labeled_data/label/001230.jpg saved\n", + "YOLO_soft_labeled_data/label/001231.jpg saved\n", + "YOLO_soft_labeled_data/label/001232.jpg saved\n", + "YOLO_soft_labeled_data/label/001233.jpg saved\n", + "YOLO_soft_labeled_data/label/001234.jpg saved\n", + "YOLO_soft_labeled_data/label/001235.jpg saved\n", + "YOLO_soft_labeled_data/label/001236.jpg saved\n", + "YOLO_soft_labeled_data/label/001237.jpg saved\n", + "YOLO_soft_labeled_data/label/001238.jpg saved\n", + "YOLO_soft_labeled_data/label/001239.jpg saved\n", + "YOLO_soft_labeled_data/label/001240.jpg saved\n", + "YOLO_soft_labeled_data/label/001241.jpg saved\n", + "YOLO_soft_labeled_data/label/001242.jpg saved\n", + "YOLO_soft_labeled_data/label/001243.jpg saved\n", + "YOLO_soft_labeled_data/label/001244.jpg saved\n", + "YOLO_soft_labeled_data/label/001245.jpg saved\n", + "YOLO_soft_labeled_data/label/001246.jpg saved\n", + "YOLO_soft_labeled_data/label/001247.jpg saved\n", + "YOLO_soft_labeled_data/label/001248.jpg saved\n", + "YOLO_soft_labeled_data/label/001249.jpg saved\n", + "YOLO_soft_labeled_data/label/001250.jpg saved\n", + "YOLO_soft_labeled_data/label/001251.jpg saved\n", + "YOLO_soft_labeled_data/label/001252.jpg saved\n", + "YOLO_soft_labeled_data/label/001253.jpg saved\n", + "YOLO_soft_labeled_data/label/001254.jpg saved\n", + "YOLO_soft_labeled_data/label/001255.jpg saved\n", + "YOLO_soft_labeled_data/label/001256.jpg saved\n", + "YOLO_soft_labeled_data/label/001257.jpg saved\n", + "YOLO_soft_labeled_data/label/001258.jpg saved\n", + "YOLO_soft_labeled_data/label/001259.jpg saved\n", + "YOLO_soft_labeled_data/label/001260.jpg saved\n", + "YOLO_soft_labeled_data/label/001261.jpg saved\n", + "YOLO_soft_labeled_data/label/001262.jpg saved\n", + "YOLO_soft_labeled_data/label/001263.jpg saved\n", + "YOLO_soft_labeled_data/label/001264.jpg saved\n", + "YOLO_soft_labeled_data/label/001265.jpg saved\n", + "YOLO_soft_labeled_data/label/001266.jpg saved\n", + "YOLO_soft_labeled_data/label/001267.jpg saved\n", + "YOLO_soft_labeled_data/label/001268.jpg saved\n", + "YOLO_soft_labeled_data/label/001269.jpg saved\n", + "YOLO_soft_labeled_data/label/001270.jpg saved\n", + "YOLO_soft_labeled_data/label/001271.jpg saved\n", + "YOLO_soft_labeled_data/label/001272.jpg saved\n", + "YOLO_soft_labeled_data/label/001273.jpg saved\n", + "YOLO_soft_labeled_data/label/001274.jpg saved\n", + "YOLO_soft_labeled_data/label/001275.jpg saved\n", + "YOLO_soft_labeled_data/label/001276.jpg saved\n", + "YOLO_soft_labeled_data/label/001277.jpg saved\n", + "YOLO_soft_labeled_data/label/001278.jpg saved\n", + "YOLO_soft_labeled_data/label/001279.jpg saved\n", + "YOLO_soft_labeled_data/label/001280.jpg saved\n", + "YOLO_soft_labeled_data/label/001281.jpg saved\n", + "YOLO_soft_labeled_data/label/001282.jpg saved\n", + "YOLO_soft_labeled_data/label/001283.jpg saved\n", + "YOLO_soft_labeled_data/label/001284.jpg saved\n", + "YOLO_soft_labeled_data/label/001285.jpg saved\n", + "YOLO_soft_labeled_data/label/001286.jpg saved\n", + "YOLO_soft_labeled_data/label/001287.jpg saved\n", + "YOLO_soft_labeled_data/label/001288.jpg saved\n", + "YOLO_soft_labeled_data/label/001289.jpg saved\n", + "YOLO_soft_labeled_data/label/001290.jpg saved\n", + "YOLO_soft_labeled_data/label/001291.jpg saved\n", + "YOLO_soft_labeled_data/label/001292.jpg saved\n", + "YOLO_soft_labeled_data/label/001293.jpg saved\n", + "YOLO_soft_labeled_data/label/001294.jpg saved\n", + "YOLO_soft_labeled_data/label/001295.jpg saved\n", + "YOLO_soft_labeled_data/label/001296.jpg saved\n", + "YOLO_soft_labeled_data/label/001297.jpg saved\n", + "YOLO_soft_labeled_data/label/001298.jpg saved\n", + "YOLO_soft_labeled_data/label/001299.jpg saved\n", + "YOLO_soft_labeled_data/label/001300.jpg saved\n", + "YOLO_soft_labeled_data/label/001301.jpg saved\n", + "YOLO_soft_labeled_data/label/001302.jpg saved\n", + "YOLO_soft_labeled_data/label/001303.jpg saved\n", + "YOLO_soft_labeled_data/label/001304.jpg saved\n", + "YOLO_soft_labeled_data/label/001305.jpg saved\n", + "YOLO_soft_labeled_data/label/001306.jpg saved\n", + "YOLO_soft_labeled_data/label/001307.jpg saved\n", + "YOLO_soft_labeled_data/label/001308.jpg saved\n", + "YOLO_soft_labeled_data/label/001309.jpg saved\n", + "YOLO_soft_labeled_data/label/001310.jpg saved\n", + "YOLO_soft_labeled_data/label/001311.jpg saved\n", + "YOLO_soft_labeled_data/label/001312.jpg saved\n", + "YOLO_soft_labeled_data/label/001313.jpg saved\n", + "YOLO_soft_labeled_data/label/001314.jpg saved\n", + "YOLO_soft_labeled_data/label/001315.jpg saved\n", + "YOLO_soft_labeled_data/label/001316.jpg saved\n", + "YOLO_soft_labeled_data/label/001317.jpg saved\n", + "YOLO_soft_labeled_data/label/001318.jpg saved\n", + "YOLO_soft_labeled_data/label/001319.jpg saved\n", + "YOLO_soft_labeled_data/label/001320.jpg saved\n", + "YOLO_soft_labeled_data/label/001321.jpg saved\n", + "YOLO_soft_labeled_data/label/001322.jpg saved\n", + "YOLO_soft_labeled_data/label/001323.jpg saved\n", + "YOLO_soft_labeled_data/label/001324.jpg saved\n", + "YOLO_soft_labeled_data/label/001325.jpg saved\n", + "YOLO_soft_labeled_data/label/001326.jpg saved\n", + "YOLO_soft_labeled_data/label/001327.jpg saved\n", + "YOLO_soft_labeled_data/label/001328.jpg saved\n", + "YOLO_soft_labeled_data/label/001329.jpg saved\n", + "YOLO_soft_labeled_data/label/001330.jpg saved\n", + "YOLO_soft_labeled_data/label/001331.jpg saved\n", + "YOLO_soft_labeled_data/label/001332.jpg saved\n", + "YOLO_soft_labeled_data/label/001333.jpg saved\n", + "YOLO_soft_labeled_data/label/001334.jpg saved\n", + "YOLO_soft_labeled_data/label/001335.jpg saved\n", + "YOLO_soft_labeled_data/label/001336.jpg saved\n", + "YOLO_soft_labeled_data/label/001337.jpg saved\n", + "YOLO_soft_labeled_data/label/001338.jpg saved\n", + "YOLO_soft_labeled_data/label/001339.jpg saved\n", + "YOLO_soft_labeled_data/label/001340.jpg saved\n", + "YOLO_soft_labeled_data/label/001341.jpg saved\n", + "YOLO_soft_labeled_data/label/001342.jpg saved\n", + "YOLO_soft_labeled_data/label/001343.jpg saved\n", + "YOLO_soft_labeled_data/label/001344.jpg saved\n", + "YOLO_soft_labeled_data/label/001345.jpg saved\n", + "YOLO_soft_labeled_data/label/001346.jpg saved\n", + "YOLO_soft_labeled_data/label/001347.jpg saved\n", + "YOLO_soft_labeled_data/label/001348.jpg saved\n", + "YOLO_soft_labeled_data/label/001349.jpg saved\n", + "YOLO_soft_labeled_data/label/001350.jpg saved\n", + "YOLO_soft_labeled_data/label/001351.jpg saved\n", + "YOLO_soft_labeled_data/label/001352.jpg saved\n", + "YOLO_soft_labeled_data/label/001353.jpg saved\n", + "YOLO_soft_labeled_data/label/001354.jpg saved\n", + "YOLO_soft_labeled_data/label/001355.jpg saved\n", + "YOLO_soft_labeled_data/label/001356.jpg saved\n", + "YOLO_soft_labeled_data/label/001357.jpg saved\n", + "YOLO_soft_labeled_data/label/001358.jpg saved\n", + "YOLO_soft_labeled_data/label/001359.jpg saved\n", + "YOLO_soft_labeled_data/label/001360.jpg saved\n", + "YOLO_soft_labeled_data/label/001361.jpg saved\n", + "YOLO_soft_labeled_data/label/001362.jpg saved\n", + "YOLO_soft_labeled_data/label/001363.jpg saved\n", + "YOLO_soft_labeled_data/label/001364.jpg saved\n", + "YOLO_soft_labeled_data/label/001365.jpg saved\n", + "YOLO_soft_labeled_data/label/001366.jpg saved\n", + "YOLO_soft_labeled_data/label/001367.jpg saved\n", + "YOLO_soft_labeled_data/label/001368.jpg saved\n", + "YOLO_soft_labeled_data/label/001369.jpg saved\n", + "YOLO_soft_labeled_data/label/001370.jpg saved\n", + "YOLO_soft_labeled_data/label/001371.jpg saved\n", + "YOLO_soft_labeled_data/label/001372.jpg saved\n", + "YOLO_soft_labeled_data/label/001373.jpg saved\n", + "YOLO_soft_labeled_data/label/001374.jpg saved\n", + "YOLO_soft_labeled_data/label/001375.jpg saved\n", + "YOLO_soft_labeled_data/label/001376.jpg saved\n", + "YOLO_soft_labeled_data/label/001377.jpg saved\n", + "YOLO_soft_labeled_data/label/001378.jpg saved\n", + "YOLO_soft_labeled_data/label/001379.jpg saved\n", + "YOLO_soft_labeled_data/label/001380.jpg saved\n", + "YOLO_soft_labeled_data/label/001381.jpg saved\n", + "YOLO_soft_labeled_data/label/001382.jpg saved\n", + "YOLO_soft_labeled_data/label/001383.jpg saved\n", + "YOLO_soft_labeled_data/label/001384.jpg saved\n", + "YOLO_soft_labeled_data/label/001385.jpg saved\n", + "YOLO_soft_labeled_data/label/001386.jpg saved\n", + "YOLO_soft_labeled_data/label/001387.jpg saved\n", + "YOLO_soft_labeled_data/label/001388.jpg saved\n", + "YOLO_soft_labeled_data/label/001389.jpg saved\n", + "YOLO_soft_labeled_data/label/001390.jpg saved\n", + "YOLO_soft_labeled_data/label/001391.jpg saved\n", + "YOLO_soft_labeled_data/label/001392.jpg saved\n", + "YOLO_soft_labeled_data/label/001393.jpg saved\n", + "YOLO_soft_labeled_data/label/001394.jpg saved\n", + "YOLO_soft_labeled_data/label/001395.jpg saved\n", + "YOLO_soft_labeled_data/label/001396.jpg saved\n", + "YOLO_soft_labeled_data/label/001397.jpg saved\n", + "YOLO_soft_labeled_data/label/001398.jpg saved\n", + "YOLO_soft_labeled_data/label/001399.jpg saved\n", + "YOLO_soft_labeled_data/label/001400.jpg saved\n", + "YOLO_soft_labeled_data/label/001401.jpg saved\n", + "YOLO_soft_labeled_data/label/001402.jpg saved\n", + "YOLO_soft_labeled_data/label/001403.jpg saved\n", + "YOLO_soft_labeled_data/label/001404.jpg saved\n", + "YOLO_soft_labeled_data/label/001405.jpg saved\n", + "YOLO_soft_labeled_data/label/001406.jpg saved\n", + "YOLO_soft_labeled_data/label/001407.jpg saved\n", + "YOLO_soft_labeled_data/label/001408.jpg saved\n", + "YOLO_soft_labeled_data/label/001409.jpg saved\n", + "YOLO_soft_labeled_data/label/001410.jpg saved\n", + "YOLO_soft_labeled_data/label/001411.jpg saved\n", + "YOLO_soft_labeled_data/label/001412.jpg saved\n", + "YOLO_soft_labeled_data/label/001413.jpg saved\n", + "YOLO_soft_labeled_data/label/001414.jpg saved\n", + "YOLO_soft_labeled_data/label/001415.jpg saved\n", + "YOLO_soft_labeled_data/label/001416.jpg saved\n", + "YOLO_soft_labeled_data/label/001417.jpg saved\n", + "YOLO_soft_labeled_data/label/001418.jpg saved\n", + "YOLO_soft_labeled_data/label/001419.jpg saved\n", + "YOLO_soft_labeled_data/label/001420.jpg saved\n", + "YOLO_soft_labeled_data/label/001421.jpg saved\n", + "YOLO_soft_labeled_data/label/001422.jpg saved\n", + "YOLO_soft_labeled_data/label/001423.jpg saved\n", + "YOLO_soft_labeled_data/label/001424.jpg saved\n", + "YOLO_soft_labeled_data/label/001425.jpg saved\n", + "YOLO_soft_labeled_data/label/001426.jpg saved\n", + "YOLO_soft_labeled_data/label/001427.jpg saved\n", + "YOLO_soft_labeled_data/label/001428.jpg saved\n", + "YOLO_soft_labeled_data/label/001429.jpg saved\n", + "YOLO_soft_labeled_data/label/001430.jpg saved\n", + "YOLO_soft_labeled_data/label/001431.jpg saved\n", + "YOLO_soft_labeled_data/label/001432.jpg saved\n", + "YOLO_soft_labeled_data/label/001433.jpg saved\n", + "YOLO_soft_labeled_data/label/001434.jpg saved\n", + "YOLO_soft_labeled_data/label/001435.jpg saved\n", + "YOLO_soft_labeled_data/label/001436.jpg saved\n", + "YOLO_soft_labeled_data/label/001437.jpg saved\n", + "YOLO_soft_labeled_data/label/001438.jpg saved\n", + "YOLO_soft_labeled_data/label/001439.jpg saved\n", + "YOLO_soft_labeled_data/label/001440.jpg saved\n", + "YOLO_soft_labeled_data/label/001441.jpg saved\n", + "YOLO_soft_labeled_data/label/001442.jpg saved\n", + "YOLO_soft_labeled_data/label/001443.jpg saved\n", + "YOLO_soft_labeled_data/label/001444.jpg saved\n", + "YOLO_soft_labeled_data/label/001445.jpg saved\n", + "YOLO_soft_labeled_data/label/001446.jpg saved\n", + "YOLO_soft_labeled_data/label/001447.jpg saved\n", + "YOLO_soft_labeled_data/label/001448.jpg saved\n", + "YOLO_soft_labeled_data/label/001449.jpg saved\n", + "YOLO_soft_labeled_data/label/001450.jpg saved\n", + "YOLO_soft_labeled_data/label/001451.jpg saved\n", + "YOLO_soft_labeled_data/label/001452.jpg saved\n", + "YOLO_soft_labeled_data/label/001453.jpg saved\n", + "YOLO_soft_labeled_data/label/001454.jpg saved\n", + "YOLO_soft_labeled_data/label/001455.jpg saved\n", + "YOLO_soft_labeled_data/label/001456.jpg saved\n", + "YOLO_soft_labeled_data/label/001457.jpg saved\n", + "YOLO_soft_labeled_data/label/001458.jpg saved\n", + "YOLO_soft_labeled_data/label/001459.jpg saved\n", + "YOLO_soft_labeled_data/label/001460.jpg saved\n", + "YOLO_soft_labeled_data/label/001461.jpg saved\n", + "YOLO_soft_labeled_data/label/001462.jpg saved\n", + "YOLO_soft_labeled_data/label/001463.jpg saved\n", + "YOLO_soft_labeled_data/label/001464.jpg saved\n", + "YOLO_soft_labeled_data/label/001465.jpg saved\n", + "YOLO_soft_labeled_data/label/001466.jpg saved\n", + "YOLO_soft_labeled_data/label/001467.jpg saved\n", + "YOLO_soft_labeled_data/label/001468.jpg saved\n", + "YOLO_soft_labeled_data/label/001469.jpg saved\n", + "YOLO_soft_labeled_data/label/001470.jpg saved\n", + "YOLO_soft_labeled_data/label/001471.jpg saved\n", + "YOLO_soft_labeled_data/label/001472.jpg saved\n", + "YOLO_soft_labeled_data/label/001473.jpg saved\n", + "YOLO_soft_labeled_data/label/001474.jpg saved\n", + "YOLO_soft_labeled_data/label/001475.jpg saved\n", + "YOLO_soft_labeled_data/label/001476.jpg saved\n", + "YOLO_soft_labeled_data/label/001477.jpg saved\n", + "YOLO_soft_labeled_data/label/001478.jpg saved\n", + "YOLO_soft_labeled_data/label/001479.jpg saved\n", + "YOLO_soft_labeled_data/label/001480.jpg saved\n", + "YOLO_soft_labeled_data/label/001481.jpg saved\n", + "YOLO_soft_labeled_data/label/001482.jpg saved\n", + "YOLO_soft_labeled_data/label/001483.jpg saved\n", + "YOLO_soft_labeled_data/label/001484.jpg saved\n", + "YOLO_soft_labeled_data/label/001485.jpg saved\n", + "YOLO_soft_labeled_data/label/001486.jpg saved\n", + "YOLO_soft_labeled_data/label/001487.jpg saved\n", + "YOLO_soft_labeled_data/label/001488.jpg saved\n", + "YOLO_soft_labeled_data/label/001489.jpg saved\n", + "YOLO_soft_labeled_data/label/001490.jpg saved\n", + "YOLO_soft_labeled_data/label/001491.jpg saved\n", + "YOLO_soft_labeled_data/label/001492.jpg saved\n", + "YOLO_soft_labeled_data/label/001493.jpg saved\n", + "YOLO_soft_labeled_data/label/001494.jpg saved\n", + "YOLO_soft_labeled_data/label/001495.jpg saved\n", + "YOLO_soft_labeled_data/label/001496.jpg saved\n", + "YOLO_soft_labeled_data/label/001497.jpg saved\n", + "YOLO_soft_labeled_data/label/001498.jpg saved\n", + "YOLO_soft_labeled_data/label/001499.jpg saved\n", + "YOLO_soft_labeled_data/label/001500.jpg saved\n", + "YOLO_soft_labeled_data/label/001501.jpg saved\n", + "YOLO_soft_labeled_data/label/001502.jpg saved\n", + "YOLO_soft_labeled_data/label/001503.jpg saved\n", + "YOLO_soft_labeled_data/label/001504.jpg saved\n", + "YOLO_soft_labeled_data/label/001505.jpg saved\n", + "YOLO_soft_labeled_data/label/001506.jpg saved\n", + "YOLO_soft_labeled_data/label/001507.jpg saved\n", + "YOLO_soft_labeled_data/label/001508.jpg saved\n", + "YOLO_soft_labeled_data/label/001509.jpg saved\n", + "YOLO_soft_labeled_data/label/001510.jpg saved\n", + "YOLO_soft_labeled_data/label/001511.jpg saved\n", + "YOLO_soft_labeled_data/label/001512.jpg saved\n", + "YOLO_soft_labeled_data/label/001513.jpg saved\n", + "YOLO_soft_labeled_data/label/001514.jpg saved\n", + "YOLO_soft_labeled_data/label/001515.jpg saved\n", + "YOLO_soft_labeled_data/label/001516.jpg saved\n", + "YOLO_soft_labeled_data/label/001517.jpg saved\n", + "YOLO_soft_labeled_data/label/001518.jpg saved\n", + "YOLO_soft_labeled_data/label/001519.jpg saved\n", + "YOLO_soft_labeled_data/label/001520.jpg saved\n", + "YOLO_soft_labeled_data/label/001521.jpg saved\n", + "YOLO_soft_labeled_data/label/001522.jpg saved\n", + "YOLO_soft_labeled_data/label/001523.jpg saved\n", + "YOLO_soft_labeled_data/label/001524.jpg saved\n", + "YOLO_soft_labeled_data/label/001525.jpg saved\n", + "YOLO_soft_labeled_data/label/001526.jpg saved\n", + "YOLO_soft_labeled_data/label/001527.jpg saved\n", + "YOLO_soft_labeled_data/label/001528.jpg saved\n", + "YOLO_soft_labeled_data/label/001529.jpg saved\n", + "YOLO_soft_labeled_data/label/001530.jpg saved\n", + "YOLO_soft_labeled_data/label/001531.jpg saved\n", + "YOLO_soft_labeled_data/label/001532.jpg saved\n", + "YOLO_soft_labeled_data/label/001533.jpg saved\n", + "YOLO_soft_labeled_data/label/001534.jpg saved\n", + "YOLO_soft_labeled_data/label/001535.jpg saved\n", + "YOLO_soft_labeled_data/label/001536.jpg saved\n", + "YOLO_soft_labeled_data/label/001537.jpg saved\n", + "YOLO_soft_labeled_data/label/001538.jpg saved\n", + "YOLO_soft_labeled_data/label/001539.jpg saved\n", + "YOLO_soft_labeled_data/label/001540.jpg saved\n", + "YOLO_soft_labeled_data/label/001541.jpg saved\n", + "YOLO_soft_labeled_data/label/001542.jpg saved\n", + "YOLO_soft_labeled_data/label/001543.jpg saved\n", + "YOLO_soft_labeled_data/label/001544.jpg saved\n", + "YOLO_soft_labeled_data/label/001545.jpg saved\n", + "YOLO_soft_labeled_data/label/001546.jpg saved\n", + "YOLO_soft_labeled_data/label/001547.jpg saved\n", + "YOLO_soft_labeled_data/label/001548.jpg saved\n", + "YOLO_soft_labeled_data/label/001549.jpg saved\n", + "YOLO_soft_labeled_data/label/001550.jpg saved\n", + "YOLO_soft_labeled_data/label/001551.jpg saved\n", + "YOLO_soft_labeled_data/label/001552.jpg saved\n", + "YOLO_soft_labeled_data/label/001553.jpg saved\n", + "YOLO_soft_labeled_data/label/001554.jpg saved\n", + "YOLO_soft_labeled_data/label/001555.jpg saved\n", + "YOLO_soft_labeled_data/label/001556.jpg saved\n", + "YOLO_soft_labeled_data/label/001557.jpg saved\n", + "YOLO_soft_labeled_data/label/001558.jpg saved\n", + "YOLO_soft_labeled_data/label/001559.jpg saved\n", + "YOLO_soft_labeled_data/label/001560.jpg saved\n", + "YOLO_soft_labeled_data/label/001561.jpg saved\n", + "YOLO_soft_labeled_data/label/001562.jpg saved\n", + "YOLO_soft_labeled_data/label/001563.jpg saved\n", + "YOLO_soft_labeled_data/label/001564.jpg saved\n", + "YOLO_soft_labeled_data/label/001565.jpg saved\n", + "YOLO_soft_labeled_data/label/001566.jpg saved\n", + "YOLO_soft_labeled_data/label/001567.jpg saved\n", + "YOLO_soft_labeled_data/label/001568.jpg saved\n", + "YOLO_soft_labeled_data/label/001569.jpg saved\n", + "YOLO_soft_labeled_data/label/001570.jpg saved\n", + "YOLO_soft_labeled_data/label/001571.jpg saved\n", + "YOLO_soft_labeled_data/label/001572.jpg saved\n", + "YOLO_soft_labeled_data/label/001573.jpg saved\n", + "YOLO_soft_labeled_data/label/001574.jpg saved\n", + "YOLO_soft_labeled_data/label/001575.jpg saved\n", + "YOLO_soft_labeled_data/label/001576.jpg saved\n", + "YOLO_soft_labeled_data/label/001577.jpg saved\n", + "YOLO_soft_labeled_data/label/001578.jpg saved\n", + "YOLO_soft_labeled_data/label/001579.jpg saved\n", + "YOLO_soft_labeled_data/label/001580.jpg saved\n", + "YOLO_soft_labeled_data/label/001581.jpg saved\n", + "YOLO_soft_labeled_data/label/001582.jpg saved\n", + "YOLO_soft_labeled_data/label/001583.jpg saved\n", + "YOLO_soft_labeled_data/label/001584.jpg saved\n", + "YOLO_soft_labeled_data/label/001585.jpg saved\n", + "YOLO_soft_labeled_data/label/001586.jpg saved\n", + "YOLO_soft_labeled_data/label/001587.jpg saved\n", + "YOLO_soft_labeled_data/label/001588.jpg saved\n", + "YOLO_soft_labeled_data/label/001589.jpg saved\n", + "YOLO_soft_labeled_data/label/001590.jpg saved\n", + "YOLO_soft_labeled_data/label/001591.jpg saved\n", + "YOLO_soft_labeled_data/label/001592.jpg saved\n", + "YOLO_soft_labeled_data/label/001593.jpg saved\n", + "YOLO_soft_labeled_data/label/001594.jpg saved\n", + "YOLO_soft_labeled_data/label/001595.jpg saved\n", + "YOLO_soft_labeled_data/label/001596.jpg saved\n", + "YOLO_soft_labeled_data/label/001597.jpg saved\n", + "YOLO_soft_labeled_data/label/001598.jpg saved\n", + "YOLO_soft_labeled_data/label/001599.jpg saved\n", + "YOLO_soft_labeled_data/label/001600.jpg saved\n", + "YOLO_soft_labeled_data/label/001601.jpg saved\n", + "YOLO_soft_labeled_data/label/001602.jpg saved\n", + "YOLO_soft_labeled_data/label/001603.jpg saved\n", + "YOLO_soft_labeled_data/label/001604.jpg saved\n", + "YOLO_soft_labeled_data/label/001605.jpg saved\n", + "YOLO_soft_labeled_data/label/001606.jpg saved\n", + "YOLO_soft_labeled_data/label/001607.jpg saved\n", + "YOLO_soft_labeled_data/label/001608.jpg saved\n", + "YOLO_soft_labeled_data/label/001609.jpg saved\n", + "YOLO_soft_labeled_data/label/001610.jpg saved\n", + "YOLO_soft_labeled_data/label/001611.jpg saved\n", + "YOLO_soft_labeled_data/label/001612.jpg saved\n", + "YOLO_soft_labeled_data/label/001613.jpg saved\n", + "YOLO_soft_labeled_data/label/001614.jpg saved\n", + "YOLO_soft_labeled_data/label/001615.jpg saved\n", + "YOLO_soft_labeled_data/label/001616.jpg saved\n", + "YOLO_soft_labeled_data/label/001617.jpg saved\n", + "YOLO_soft_labeled_data/label/001618.jpg saved\n", + "YOLO_soft_labeled_data/label/001619.jpg saved\n", + "YOLO_soft_labeled_data/label/001620.jpg saved\n", + "YOLO_soft_labeled_data/label/001621.jpg saved\n", + "YOLO_soft_labeled_data/label/001622.jpg saved\n", + "YOLO_soft_labeled_data/label/001623.jpg saved\n", + "YOLO_soft_labeled_data/label/001624.jpg saved\n", + "YOLO_soft_labeled_data/label/001625.jpg saved\n", + "YOLO_soft_labeled_data/label/001626.jpg saved\n", + "YOLO_soft_labeled_data/label/001627.jpg saved\n", + "YOLO_soft_labeled_data/label/001628.jpg saved\n", + "YOLO_soft_labeled_data/label/001629.jpg saved\n", + "YOLO_soft_labeled_data/label/001630.jpg saved\n", + "YOLO_soft_labeled_data/label/001631.jpg saved\n", + "YOLO_soft_labeled_data/label/001632.jpg saved\n", + "YOLO_soft_labeled_data/label/001633.jpg saved\n", + "YOLO_soft_labeled_data/label/001634.jpg saved\n", + "YOLO_soft_labeled_data/label/001635.jpg saved\n", + "YOLO_soft_labeled_data/label/001636.jpg saved\n", + "YOLO_soft_labeled_data/label/001637.jpg saved\n", + "YOLO_soft_labeled_data/label/001638.jpg saved\n", + "YOLO_soft_labeled_data/label/001639.jpg saved\n", + "YOLO_soft_labeled_data/label/001640.jpg saved\n", + "YOLO_soft_labeled_data/label/001641.jpg saved\n", + "YOLO_soft_labeled_data/label/001642.jpg saved\n", + "YOLO_soft_labeled_data/label/001643.jpg saved\n", + "YOLO_soft_labeled_data/label/001644.jpg saved\n", + "YOLO_soft_labeled_data/label/001645.jpg saved\n", + "YOLO_soft_labeled_data/label/001646.jpg saved\n", + "YOLO_soft_labeled_data/label/001647.jpg saved\n", + "YOLO_soft_labeled_data/label/001648.jpg saved\n", + "YOLO_soft_labeled_data/label/001649.jpg saved\n", + "YOLO_soft_labeled_data/label/001650.jpg saved\n", + "YOLO_soft_labeled_data/label/001651.jpg saved\n", + "YOLO_soft_labeled_data/label/001652.jpg saved\n", + "YOLO_soft_labeled_data/label/001653.jpg saved\n", + "YOLO_soft_labeled_data/label/001654.jpg saved\n", + "YOLO_soft_labeled_data/label/001655.jpg saved\n", + "YOLO_soft_labeled_data/label/001656.jpg saved\n", + "YOLO_soft_labeled_data/label/001657.jpg saved\n", + "YOLO_soft_labeled_data/label/001658.jpg saved\n", + "YOLO_soft_labeled_data/label/001659.jpg saved\n", + "YOLO_soft_labeled_data/label/001660.jpg saved\n", + "YOLO_soft_labeled_data/label/001661.jpg saved\n", + "YOLO_soft_labeled_data/label/001662.jpg saved\n", + "YOLO_soft_labeled_data/label/001663.jpg saved\n", + "YOLO_soft_labeled_data/label/001664.jpg saved\n", + "YOLO_soft_labeled_data/label/001665.jpg saved\n", + "YOLO_soft_labeled_data/label/001666.jpg saved\n", + "YOLO_soft_labeled_data/label/001667.jpg saved\n", + "YOLO_soft_labeled_data/label/001668.jpg saved\n", + "YOLO_soft_labeled_data/label/001669.jpg saved\n", + "YOLO_soft_labeled_data/label/001670.jpg saved\n", + "YOLO_soft_labeled_data/label/001671.jpg saved\n", + "YOLO_soft_labeled_data/label/001672.jpg saved\n", + "YOLO_soft_labeled_data/label/001673.jpg saved\n", + "YOLO_soft_labeled_data/label/001674.jpg saved\n", + "YOLO_soft_labeled_data/label/001675.jpg saved\n", + "YOLO_soft_labeled_data/label/001676.jpg saved\n", + "YOLO_soft_labeled_data/label/001677.jpg saved\n", + "YOLO_soft_labeled_data/label/001678.jpg saved\n", + "YOLO_soft_labeled_data/label/001679.jpg saved\n", + "YOLO_soft_labeled_data/label/001680.jpg saved\n", + "YOLO_soft_labeled_data/label/001681.jpg saved\n", + "YOLO_soft_labeled_data/label/001682.jpg saved\n", + "YOLO_soft_labeled_data/label/001683.jpg saved\n", + "YOLO_soft_labeled_data/label/001684.jpg saved\n", + "YOLO_soft_labeled_data/label/001685.jpg saved\n", + "YOLO_soft_labeled_data/label/001686.jpg saved\n", + "YOLO_soft_labeled_data/label/001687.jpg saved\n", + "YOLO_soft_labeled_data/label/001688.jpg saved\n", + "YOLO_soft_labeled_data/label/001689.jpg saved\n", + "YOLO_soft_labeled_data/label/001690.jpg saved\n", + "YOLO_soft_labeled_data/label/001691.jpg saved\n", + "YOLO_soft_labeled_data/label/001692.jpg saved\n", + "YOLO_soft_labeled_data/label/001693.jpg saved\n", + "YOLO_soft_labeled_data/label/001694.jpg saved\n", + "YOLO_soft_labeled_data/label/001695.jpg saved\n", + "YOLO_soft_labeled_data/label/001696.jpg saved\n", + "YOLO_soft_labeled_data/label/001697.jpg saved\n", + "YOLO_soft_labeled_data/label/001698.jpg saved\n", + "YOLO_soft_labeled_data/label/001699.jpg saved\n", + "YOLO_soft_labeled_data/label/001700.jpg saved\n", + "YOLO_soft_labeled_data/label/001701.jpg saved\n", + "YOLO_soft_labeled_data/label/001702.jpg saved\n", + "YOLO_soft_labeled_data/label/001703.jpg saved\n", + "YOLO_soft_labeled_data/label/001704.jpg saved\n", + "YOLO_soft_labeled_data/label/001705.jpg saved\n", + "YOLO_soft_labeled_data/label/001706.jpg saved\n", + "YOLO_soft_labeled_data/label/001707.jpg saved\n", + "YOLO_soft_labeled_data/label/001708.jpg saved\n", + "YOLO_soft_labeled_data/label/001709.jpg saved\n", + "YOLO_soft_labeled_data/label/001710.jpg saved\n", + "YOLO_soft_labeled_data/label/001711.jpg saved\n", + "YOLO_soft_labeled_data/label/001712.jpg saved\n", + "YOLO_soft_labeled_data/label/001713.jpg saved\n", + "YOLO_soft_labeled_data/label/001714.jpg saved\n", + "YOLO_soft_labeled_data/label/001715.jpg saved\n", + "YOLO_soft_labeled_data/label/001716.jpg saved\n", + "YOLO_soft_labeled_data/label/001717.jpg saved\n", + "YOLO_soft_labeled_data/label/001718.jpg saved\n", + "YOLO_soft_labeled_data/label/001719.jpg saved\n", + "YOLO_soft_labeled_data/label/001720.jpg saved\n", + "YOLO_soft_labeled_data/label/001721.jpg saved\n", + "YOLO_soft_labeled_data/label/001722.jpg saved\n", + "YOLO_soft_labeled_data/label/001723.jpg saved\n", + "YOLO_soft_labeled_data/label/001724.jpg saved\n", + "YOLO_soft_labeled_data/label/001725.jpg saved\n", + "YOLO_soft_labeled_data/label/001726.jpg saved\n", + "YOLO_soft_labeled_data/label/001727.jpg saved\n", + "YOLO_soft_labeled_data/label/001728.jpg saved\n", + "YOLO_soft_labeled_data/label/001729.jpg saved\n", + "YOLO_soft_labeled_data/label/001730.jpg saved\n", + "YOLO_soft_labeled_data/label/001731.jpg saved\n", + "YOLO_soft_labeled_data/label/001732.jpg saved\n", + "YOLO_soft_labeled_data/label/001733.jpg saved\n", + "YOLO_soft_labeled_data/label/001734.jpg saved\n", + "YOLO_soft_labeled_data/label/001735.jpg saved\n", + "YOLO_soft_labeled_data/label/001736.jpg saved\n", + "YOLO_soft_labeled_data/label/001737.jpg saved\n", + "YOLO_soft_labeled_data/label/001738.jpg saved\n", + "YOLO_soft_labeled_data/label/001739.jpg saved\n", + "YOLO_soft_labeled_data/label/001740.jpg saved\n", + "YOLO_soft_labeled_data/label/001741.jpg saved\n", + "YOLO_soft_labeled_data/label/001742.jpg saved\n", + "YOLO_soft_labeled_data/label/001743.jpg saved\n", + "YOLO_soft_labeled_data/label/001744.jpg saved\n", + "YOLO_soft_labeled_data/label/001745.jpg saved\n", + "YOLO_soft_labeled_data/label/001746.jpg saved\n", + "YOLO_soft_labeled_data/label/001747.jpg saved\n", + "YOLO_soft_labeled_data/label/001748.jpg saved\n", + "YOLO_soft_labeled_data/label/001749.jpg saved\n", + "YOLO_soft_labeled_data/label/001750.jpg saved\n", + "YOLO_soft_labeled_data/label/001751.jpg saved\n", + "YOLO_soft_labeled_data/label/001752.jpg saved\n", + "YOLO_soft_labeled_data/label/001753.jpg saved\n", + "YOLO_soft_labeled_data/label/001754.jpg saved\n", + "YOLO_soft_labeled_data/label/001755.jpg saved\n", + "YOLO_soft_labeled_data/label/001756.jpg saved\n", + "YOLO_soft_labeled_data/label/001757.jpg saved\n", + "YOLO_soft_labeled_data/label/001758.jpg saved\n", + "YOLO_soft_labeled_data/label/001759.jpg saved\n", + "YOLO_soft_labeled_data/label/001760.jpg saved\n", + "YOLO_soft_labeled_data/label/001761.jpg saved\n", + "YOLO_soft_labeled_data/label/001762.jpg saved\n", + "YOLO_soft_labeled_data/label/001763.jpg saved\n", + "YOLO_soft_labeled_data/label/001764.jpg saved\n", + "YOLO_soft_labeled_data/label/001765.jpg saved\n", + "YOLO_soft_labeled_data/label/001766.jpg saved\n", + "YOLO_soft_labeled_data/label/001767.jpg saved\n", + "YOLO_soft_labeled_data/label/001768.jpg saved\n", + "YOLO_soft_labeled_data/label/001769.jpg saved\n", + "YOLO_soft_labeled_data/label/001770.jpg saved\n", + "YOLO_soft_labeled_data/label/001771.jpg saved\n", + "YOLO_soft_labeled_data/label/001772.jpg saved\n", + "YOLO_soft_labeled_data/label/001773.jpg saved\n", + "YOLO_soft_labeled_data/label/001774.jpg saved\n", + "YOLO_soft_labeled_data/label/001775.jpg saved\n", + "YOLO_soft_labeled_data/label/001776.jpg saved\n", + "YOLO_soft_labeled_data/label/001777.jpg saved\n", + "YOLO_soft_labeled_data/label/001778.jpg saved\n", + "YOLO_soft_labeled_data/label/001779.jpg saved\n", + "YOLO_soft_labeled_data/label/001780.jpg saved\n", + "YOLO_soft_labeled_data/label/001781.jpg saved\n", + "YOLO_soft_labeled_data/label/001782.jpg saved\n", + "YOLO_soft_labeled_data/label/001783.jpg saved\n", + "YOLO_soft_labeled_data/label/001784.jpg saved\n", + "YOLO_soft_labeled_data/label/001785.jpg saved\n", + "YOLO_soft_labeled_data/label/001786.jpg saved\n", + "YOLO_soft_labeled_data/label/001787.jpg saved\n", + "YOLO_soft_labeled_data/label/001788.jpg saved\n", + "YOLO_soft_labeled_data/label/001789.jpg saved\n", + "YOLO_soft_labeled_data/label/001790.jpg saved\n", + "YOLO_soft_labeled_data/label/001791.jpg saved\n", + "YOLO_soft_labeled_data/label/001792.jpg saved\n", + "YOLO_soft_labeled_data/label/001793.jpg saved\n", + "YOLO_soft_labeled_data/label/001794.jpg saved\n", + "YOLO_soft_labeled_data/label/001795.jpg saved\n", + "YOLO_soft_labeled_data/label/001796.jpg saved\n", + "YOLO_soft_labeled_data/label/001797.jpg saved\n", + "YOLO_soft_labeled_data/label/001798.jpg saved\n", + "YOLO_soft_labeled_data/label/001799.jpg saved\n", + "YOLO_soft_labeled_data/label/001800.jpg saved\n", + "YOLO_soft_labeled_data/label/001801.jpg saved\n", + "YOLO_soft_labeled_data/label/001802.jpg saved\n", + "YOLO_soft_labeled_data/label/001803.jpg saved\n", + "YOLO_soft_labeled_data/label/001804.jpg saved\n", + "YOLO_soft_labeled_data/label/001805.jpg saved\n", + "YOLO_soft_labeled_data/label/001806.jpg saved\n", + "YOLO_soft_labeled_data/label/001807.jpg saved\n", + "YOLO_soft_labeled_data/label/001808.jpg saved\n", + "YOLO_soft_labeled_data/label/001809.jpg saved\n", + "YOLO_soft_labeled_data/label/001810.jpg saved\n", + "YOLO_soft_labeled_data/label/001811.jpg saved\n", + "YOLO_soft_labeled_data/label/001812.jpg saved\n", + "YOLO_soft_labeled_data/label/001813.jpg saved\n", + "YOLO_soft_labeled_data/label/001814.jpg saved\n", + "YOLO_soft_labeled_data/label/001815.jpg saved\n", + "YOLO_soft_labeled_data/label/001816.jpg saved\n", + "YOLO_soft_labeled_data/label/001817.jpg saved\n", + "YOLO_soft_labeled_data/label/001818.jpg saved\n", + "YOLO_soft_labeled_data/label/001819.jpg saved\n", + "YOLO_soft_labeled_data/label/001820.jpg saved\n", + "YOLO_soft_labeled_data/label/001821.jpg saved\n", + "YOLO_soft_labeled_data/label/001822.jpg saved\n", + "YOLO_soft_labeled_data/label/001823.jpg saved\n", + "YOLO_soft_labeled_data/label/001824.jpg saved\n", + "YOLO_soft_labeled_data/label/001825.jpg saved\n", + "YOLO_soft_labeled_data/label/001826.jpg saved\n", + "YOLO_soft_labeled_data/label/001827.jpg saved\n", + "YOLO_soft_labeled_data/label/001828.jpg saved\n", + "YOLO_soft_labeled_data/label/001829.jpg saved\n", + "YOLO_soft_labeled_data/label/001830.jpg saved\n", + "YOLO_soft_labeled_data/label/001831.jpg saved\n", + "YOLO_soft_labeled_data/label/001832.jpg saved\n", + "YOLO_soft_labeled_data/label/001833.jpg saved\n", + "YOLO_soft_labeled_data/label/001834.jpg saved\n", + "YOLO_soft_labeled_data/label/001835.jpg saved\n", + "YOLO_soft_labeled_data/label/001836.jpg saved\n", + "YOLO_soft_labeled_data/label/001837.jpg saved\n", + "YOLO_soft_labeled_data/label/001838.jpg saved\n", + "YOLO_soft_labeled_data/label/001839.jpg saved\n", + "YOLO_soft_labeled_data/label/001840.jpg saved\n", + "YOLO_soft_labeled_data/label/001841.jpg saved\n", + "YOLO_soft_labeled_data/label/001842.jpg saved\n", + "YOLO_soft_labeled_data/label/001843.jpg saved\n", + "YOLO_soft_labeled_data/label/001844.jpg saved\n", + "YOLO_soft_labeled_data/label/001845.jpg saved\n", + "YOLO_soft_labeled_data/label/001846.jpg saved\n", + "YOLO_soft_labeled_data/label/001847.jpg saved\n", + "YOLO_soft_labeled_data/label/001848.jpg saved\n", + "YOLO_soft_labeled_data/label/001849.jpg saved\n", + "YOLO_soft_labeled_data/label/001850.jpg saved\n", + "YOLO_soft_labeled_data/label/001851.jpg saved\n", + "YOLO_soft_labeled_data/label/001852.jpg saved\n", + "YOLO_soft_labeled_data/label/001853.jpg saved\n", + "YOLO_soft_labeled_data/label/001854.jpg saved\n", + "YOLO_soft_labeled_data/label/001855.jpg saved\n", + "YOLO_soft_labeled_data/label/001856.jpg saved\n", + "YOLO_soft_labeled_data/label/001857.jpg saved\n", + "YOLO_soft_labeled_data/label/001858.jpg saved\n", + "YOLO_soft_labeled_data/label/001859.jpg saved\n", + "YOLO_soft_labeled_data/label/001860.jpg saved\n", + "YOLO_soft_labeled_data/label/001861.jpg saved\n", + "YOLO_soft_labeled_data/label/001862.jpg saved\n", + "YOLO_soft_labeled_data/label/001863.jpg saved\n", + "YOLO_soft_labeled_data/label/001864.jpg saved\n", + "YOLO_soft_labeled_data/label/001865.jpg saved\n", + "YOLO_soft_labeled_data/label/001866.jpg saved\n", + "YOLO_soft_labeled_data/label/001867.jpg saved\n", + "YOLO_soft_labeled_data/label/001868.jpg saved\n", + "YOLO_soft_labeled_data/label/001869.jpg saved\n", + "YOLO_soft_labeled_data/label/001870.jpg saved\n", + "YOLO_soft_labeled_data/label/001871.jpg saved\n", + "YOLO_soft_labeled_data/label/001872.jpg saved\n", + "YOLO_soft_labeled_data/label/001873.jpg saved\n", + "YOLO_soft_labeled_data/label/001874.jpg saved\n", + "YOLO_soft_labeled_data/label/001875.jpg saved\n", + "YOLO_soft_labeled_data/label/001876.jpg saved\n", + "YOLO_soft_labeled_data/label/001877.jpg saved\n", + "YOLO_soft_labeled_data/label/001878.jpg saved\n", + "YOLO_soft_labeled_data/label/001879.jpg saved\n", + "YOLO_soft_labeled_data/label/001880.jpg saved\n", + "YOLO_soft_labeled_data/label/001881.jpg saved\n", + "YOLO_soft_labeled_data/label/001882.jpg saved\n", + "YOLO_soft_labeled_data/label/001883.jpg saved\n", + "YOLO_soft_labeled_data/label/001884.jpg saved\n", + "YOLO_soft_labeled_data/label/001885.jpg saved\n", + "YOLO_soft_labeled_data/label/001886.jpg saved\n", + "YOLO_soft_labeled_data/label/001887.jpg saved\n", + "YOLO_soft_labeled_data/label/001888.jpg saved\n", + "YOLO_soft_labeled_data/label/001889.jpg saved\n", + "YOLO_soft_labeled_data/label/001890.jpg saved\n", + "YOLO_soft_labeled_data/label/001891.jpg saved\n", + "YOLO_soft_labeled_data/label/001892.jpg saved\n", + "YOLO_soft_labeled_data/label/001893.jpg saved\n", + "YOLO_soft_labeled_data/label/001894.jpg saved\n", + "YOLO_soft_labeled_data/label/001895.jpg saved\n", + "YOLO_soft_labeled_data/label/001896.jpg saved\n", + "YOLO_soft_labeled_data/label/001897.jpg saved\n", + "YOLO_soft_labeled_data/label/001898.jpg saved\n", + "YOLO_soft_labeled_data/label/001899.jpg saved\n", + "YOLO_soft_labeled_data/label/001900.jpg saved\n", + "YOLO_soft_labeled_data/label/001901.jpg saved\n", + "YOLO_soft_labeled_data/label/001902.jpg saved\n", + "YOLO_soft_labeled_data/label/001903.jpg saved\n", + "YOLO_soft_labeled_data/label/001904.jpg saved\n", + "YOLO_soft_labeled_data/label/001905.jpg saved\n", + "YOLO_soft_labeled_data/label/001906.jpg saved\n", + "YOLO_soft_labeled_data/label/001907.jpg saved\n", + "YOLO_soft_labeled_data/label/001908.jpg saved\n", + "YOLO_soft_labeled_data/label/001909.jpg saved\n", + "YOLO_soft_labeled_data/label/001910.jpg saved\n", + "YOLO_soft_labeled_data/label/001911.jpg saved\n", + "YOLO_soft_labeled_data/label/001912.jpg saved\n", + "YOLO_soft_labeled_data/label/001913.jpg saved\n", + "YOLO_soft_labeled_data/label/001914.jpg saved\n", + "YOLO_soft_labeled_data/label/001915.jpg saved\n", + "YOLO_soft_labeled_data/label/001916.jpg saved\n", + "YOLO_soft_labeled_data/label/001917.jpg saved\n", + "YOLO_soft_labeled_data/label/001918.jpg saved\n", + "YOLO_soft_labeled_data/label/001919.jpg saved\n", + "YOLO_soft_labeled_data/label/001920.jpg saved\n", + "YOLO_soft_labeled_data/label/001921.jpg saved\n", + "YOLO_soft_labeled_data/label/001922.jpg saved\n", + "YOLO_soft_labeled_data/label/001923.jpg saved\n", + "YOLO_soft_labeled_data/label/001924.jpg saved\n", + "YOLO_soft_labeled_data/label/001925.jpg saved\n", + "YOLO_soft_labeled_data/label/001926.jpg saved\n", + "YOLO_soft_labeled_data/label/001927.jpg saved\n", + "YOLO_soft_labeled_data/label/001928.jpg saved\n", + "YOLO_soft_labeled_data/label/001929.jpg saved\n", + "YOLO_soft_labeled_data/label/001930.jpg saved\n", + "YOLO_soft_labeled_data/label/001931.jpg saved\n", + "YOLO_soft_labeled_data/label/001932.jpg saved\n", + "YOLO_soft_labeled_data/label/001933.jpg saved\n", + "YOLO_soft_labeled_data/label/001934.jpg saved\n", + "YOLO_soft_labeled_data/label/001935.jpg saved\n", + "YOLO_soft_labeled_data/label/001936.jpg saved\n", + "YOLO_soft_labeled_data/label/001937.jpg saved\n", + "YOLO_soft_labeled_data/label/001938.jpg saved\n", + "YOLO_soft_labeled_data/label/001939.jpg saved\n", + "YOLO_soft_labeled_data/label/001940.jpg saved\n", + "YOLO_soft_labeled_data/label/001941.jpg saved\n", + "YOLO_soft_labeled_data/label/001942.jpg saved\n", + "YOLO_soft_labeled_data/label/001943.jpg saved\n", + "YOLO_soft_labeled_data/label/001944.jpg saved\n", + "YOLO_soft_labeled_data/label/001945.jpg saved\n", + "YOLO_soft_labeled_data/label/001946.jpg saved\n", + "YOLO_soft_labeled_data/label/001947.jpg saved\n", + "YOLO_soft_labeled_data/label/001948.jpg saved\n", + "YOLO_soft_labeled_data/label/001949.jpg saved\n", + "YOLO_soft_labeled_data/label/001950.jpg saved\n", + "YOLO_soft_labeled_data/label/001951.jpg saved\n", + "YOLO_soft_labeled_data/label/001952.jpg saved\n", + "YOLO_soft_labeled_data/label/001953.jpg saved\n", + "YOLO_soft_labeled_data/label/001954.jpg saved\n", + "YOLO_soft_labeled_data/label/001955.jpg saved\n", + "YOLO_soft_labeled_data/label/001956.jpg saved\n", + "YOLO_soft_labeled_data/label/001957.jpg saved\n", + "YOLO_soft_labeled_data/label/001958.jpg saved\n", + "YOLO_soft_labeled_data/label/001959.jpg saved\n", + "YOLO_soft_labeled_data/label/001960.jpg saved\n", + "YOLO_soft_labeled_data/label/001961.jpg saved\n", + "YOLO_soft_labeled_data/label/001962.jpg saved\n", + "YOLO_soft_labeled_data/label/001963.jpg saved\n", + "YOLO_soft_labeled_data/label/001964.jpg saved\n", + "YOLO_soft_labeled_data/label/001965.jpg saved\n", + "YOLO_soft_labeled_data/label/001966.jpg saved\n", + "YOLO_soft_labeled_data/label/001967.jpg saved\n", + "YOLO_soft_labeled_data/label/001968.jpg saved\n", + "YOLO_soft_labeled_data/label/001969.jpg saved\n", + "YOLO_soft_labeled_data/label/001970.jpg saved\n", + "YOLO_soft_labeled_data/label/001971.jpg saved\n", + "YOLO_soft_labeled_data/label/001972.jpg saved\n", + "YOLO_soft_labeled_data/label/001973.jpg saved\n", + "YOLO_soft_labeled_data/label/001974.jpg saved\n", + "YOLO_soft_labeled_data/label/001975.jpg saved\n", + "YOLO_soft_labeled_data/label/001976.jpg saved\n", + "YOLO_soft_labeled_data/label/001977.jpg saved\n", + "YOLO_soft_labeled_data/label/001978.jpg saved\n", + "YOLO_soft_labeled_data/label/001979.jpg saved\n", + "YOLO_soft_labeled_data/label/001980.jpg saved\n", + "YOLO_soft_labeled_data/label/001981.jpg saved\n", + "YOLO_soft_labeled_data/label/001982.jpg saved\n", + "YOLO_soft_labeled_data/label/001983.jpg saved\n", + "YOLO_soft_labeled_data/label/001984.jpg saved\n", + "YOLO_soft_labeled_data/label/001985.jpg saved\n", + "YOLO_soft_labeled_data/label/001986.jpg saved\n", + "YOLO_soft_labeled_data/label/001987.jpg saved\n", + "YOLO_soft_labeled_data/label/001988.jpg saved\n", + "YOLO_soft_labeled_data/label/001989.jpg saved\n", + "YOLO_soft_labeled_data/label/001990.jpg saved\n", + "YOLO_soft_labeled_data/label/001991.jpg saved\n", + "YOLO_soft_labeled_data/label/001992.jpg saved\n", + "YOLO_soft_labeled_data/label/001993.jpg saved\n", + "YOLO_soft_labeled_data/label/001994.jpg saved\n", + "YOLO_soft_labeled_data/label/001995.jpg saved\n", + "YOLO_soft_labeled_data/label/001996.jpg saved\n", + "YOLO_soft_labeled_data/label/001997.jpg saved\n", + "YOLO_soft_labeled_data/label/001998.jpg saved\n", + "YOLO_soft_labeled_data/label/001999.jpg saved\n", + "YOLO_soft_labeled_data/label/002000.jpg saved\n", + "YOLO_soft_labeled_data/label/002001.jpg saved\n", + "YOLO_soft_labeled_data/label/002002.jpg saved\n", + "YOLO_soft_labeled_data/label/002003.jpg saved\n", + "YOLO_soft_labeled_data/label/002004.jpg saved\n", + "YOLO_soft_labeled_data/label/002005.jpg saved\n", + "YOLO_soft_labeled_data/label/002006.jpg saved\n", + "YOLO_soft_labeled_data/label/002007.jpg saved\n", + "YOLO_soft_labeled_data/label/002008.jpg saved\n", + "YOLO_soft_labeled_data/label/002009.jpg saved\n", + "YOLO_soft_labeled_data/label/002010.jpg saved\n", + "YOLO_soft_labeled_data/label/002011.jpg saved\n", + "YOLO_soft_labeled_data/label/002012.jpg saved\n", + "YOLO_soft_labeled_data/label/002013.jpg saved\n", + "YOLO_soft_labeled_data/label/002014.jpg saved\n", + "YOLO_soft_labeled_data/label/002015.jpg saved\n", + "YOLO_soft_labeled_data/label/002016.jpg saved\n", + "YOLO_soft_labeled_data/label/002017.jpg saved\n", + "YOLO_soft_labeled_data/label/002018.jpg saved\n", + "YOLO_soft_labeled_data/label/002019.jpg saved\n", + "YOLO_soft_labeled_data/label/002020.jpg saved\n", + "YOLO_soft_labeled_data/label/002021.jpg saved\n", + "YOLO_soft_labeled_data/label/002022.jpg saved\n", + "YOLO_soft_labeled_data/label/002023.jpg saved\n", + "YOLO_soft_labeled_data/label/002024.jpg saved\n", + "YOLO_soft_labeled_data/label/002025.jpg saved\n", + "YOLO_soft_labeled_data/label/002026.jpg saved\n", + "YOLO_soft_labeled_data/label/002027.jpg saved\n", + "YOLO_soft_labeled_data/label/002028.jpg saved\n", + "YOLO_soft_labeled_data/label/002029.jpg saved\n", + "YOLO_soft_labeled_data/label/002030.jpg saved\n", + "YOLO_soft_labeled_data/label/002031.jpg saved\n", + "YOLO_soft_labeled_data/label/002032.jpg saved\n", + "YOLO_soft_labeled_data/label/002033.jpg saved\n", + "YOLO_soft_labeled_data/label/002034.jpg saved\n", + "YOLO_soft_labeled_data/label/002035.jpg saved\n", + "YOLO_soft_labeled_data/label/002036.jpg saved\n", + "YOLO_soft_labeled_data/label/002037.jpg saved\n", + "YOLO_soft_labeled_data/label/002038.jpg saved\n", + "YOLO_soft_labeled_data/label/002039.jpg saved\n", + "YOLO_soft_labeled_data/label/002040.jpg saved\n", + "YOLO_soft_labeled_data/label/002041.jpg saved\n", + "YOLO_soft_labeled_data/label/002042.jpg saved\n", + "YOLO_soft_labeled_data/label/002043.jpg saved\n", + "YOLO_soft_labeled_data/label/002044.jpg saved\n", + "YOLO_soft_labeled_data/label/002045.jpg saved\n", + "YOLO_soft_labeled_data/label/002046.jpg saved\n", + "YOLO_soft_labeled_data/label/002047.jpg saved\n", + "YOLO_soft_labeled_data/label/002048.jpg saved\n", + "YOLO_soft_labeled_data/label/002049.jpg saved\n", + "YOLO_soft_labeled_data/label/002050.jpg saved\n", + "YOLO_soft_labeled_data/label/002051.jpg saved\n", + "YOLO_soft_labeled_data/label/002052.jpg saved\n", + "YOLO_soft_labeled_data/label/002053.jpg saved\n", + "YOLO_soft_labeled_data/label/002054.jpg saved\n", + "YOLO_soft_labeled_data/label/002055.jpg saved\n", + "YOLO_soft_labeled_data/label/002056.jpg saved\n", + "YOLO_soft_labeled_data/label/002057.jpg saved\n", + "YOLO_soft_labeled_data/label/002058.jpg saved\n", + "YOLO_soft_labeled_data/label/002059.jpg saved\n", + "YOLO_soft_labeled_data/label/002060.jpg saved\n", + "YOLO_soft_labeled_data/label/002061.jpg saved\n", + "YOLO_soft_labeled_data/label/002062.jpg saved\n", + "YOLO_soft_labeled_data/label/002063.jpg saved\n", + "YOLO_soft_labeled_data/label/002064.jpg saved\n", + "YOLO_soft_labeled_data/label/002065.jpg saved\n", + "YOLO_soft_labeled_data/label/002066.jpg saved\n", + "YOLO_soft_labeled_data/label/002067.jpg saved\n", + "YOLO_soft_labeled_data/label/002068.jpg saved\n", + "YOLO_soft_labeled_data/label/002069.jpg saved\n", + "YOLO_soft_labeled_data/label/002070.jpg saved\n", + "YOLO_soft_labeled_data/label/002071.jpg saved\n", + "YOLO_soft_labeled_data/label/002072.jpg saved\n", + "YOLO_soft_labeled_data/label/002073.jpg saved\n", + "YOLO_soft_labeled_data/label/002074.jpg saved\n", + "YOLO_soft_labeled_data/label/002075.jpg saved\n", + "YOLO_soft_labeled_data/label/002076.jpg saved\n", + "YOLO_soft_labeled_data/label/002077.jpg saved\n", + "YOLO_soft_labeled_data/label/002078.jpg saved\n", + "YOLO_soft_labeled_data/label/002079.jpg saved\n", + "YOLO_soft_labeled_data/label/002080.jpg saved\n", + "YOLO_soft_labeled_data/label/002081.jpg saved\n", + "YOLO_soft_labeled_data/label/002082.jpg saved\n", + "YOLO_soft_labeled_data/label/002083.jpg saved\n", + "YOLO_soft_labeled_data/label/002084.jpg saved\n", + "YOLO_soft_labeled_data/label/002085.jpg saved\n", + "YOLO_soft_labeled_data/label/002086.jpg saved\n", + "YOLO_soft_labeled_data/label/002087.jpg saved\n", + "YOLO_soft_labeled_data/label/002088.jpg saved\n", + "YOLO_soft_labeled_data/label/002089.jpg saved\n", + "YOLO_soft_labeled_data/label/002090.jpg saved\n", + "YOLO_soft_labeled_data/label/002091.jpg saved\n", + "YOLO_soft_labeled_data/label/002092.jpg saved\n", + "YOLO_soft_labeled_data/label/002093.jpg saved\n", + "YOLO_soft_labeled_data/label/002094.jpg saved\n", + "YOLO_soft_labeled_data/label/002095.jpg saved\n", + "YOLO_soft_labeled_data/label/002096.jpg saved\n", + "YOLO_soft_labeled_data/label/002097.jpg saved\n", + "YOLO_soft_labeled_data/label/002098.jpg saved\n", + "YOLO_soft_labeled_data/label/002099.jpg saved\n", + "YOLO_soft_labeled_data/label/002100.jpg saved\n", + "YOLO_soft_labeled_data/label/002101.jpg saved\n", + "YOLO_soft_labeled_data/label/002102.jpg saved\n", + "YOLO_soft_labeled_data/label/002103.jpg saved\n", + "YOLO_soft_labeled_data/label/002104.jpg saved\n", + "YOLO_soft_labeled_data/label/002105.jpg saved\n", + "YOLO_soft_labeled_data/label/002106.jpg saved\n", + "YOLO_soft_labeled_data/label/002107.jpg saved\n", + "YOLO_soft_labeled_data/label/002108.jpg saved\n", + "YOLO_soft_labeled_data/label/002109.jpg saved\n", + "YOLO_soft_labeled_data/label/002110.jpg saved\n", + "YOLO_soft_labeled_data/label/002111.jpg saved\n", + "YOLO_soft_labeled_data/label/002112.jpg saved\n", + "YOLO_soft_labeled_data/label/002113.jpg saved\n", + "YOLO_soft_labeled_data/label/002114.jpg saved\n", + "YOLO_soft_labeled_data/label/002115.jpg saved\n", + "YOLO_soft_labeled_data/label/002116.jpg saved\n", + "YOLO_soft_labeled_data/label/002117.jpg saved\n", + "YOLO_soft_labeled_data/label/002118.jpg saved\n", + "YOLO_soft_labeled_data/label/002119.jpg saved\n", + "YOLO_soft_labeled_data/label/002120.jpg saved\n", + "YOLO_soft_labeled_data/label/002121.jpg saved\n", + "YOLO_soft_labeled_data/label/002122.jpg saved\n", + "YOLO_soft_labeled_data/label/002123.jpg saved\n", + "YOLO_soft_labeled_data/label/002124.jpg saved\n", + "YOLO_soft_labeled_data/label/002125.jpg saved\n", + "YOLO_soft_labeled_data/label/002126.jpg saved\n", + "YOLO_soft_labeled_data/label/002127.jpg saved\n", + "YOLO_soft_labeled_data/label/002128.jpg saved\n", + "YOLO_soft_labeled_data/label/002129.jpg saved\n", + "YOLO_soft_labeled_data/label/002130.jpg saved\n", + "YOLO_soft_labeled_data/label/002131.jpg saved\n", + "YOLO_soft_labeled_data/label/002132.jpg saved\n", + "YOLO_soft_labeled_data/label/002133.jpg saved\n", + "YOLO_soft_labeled_data/label/002134.jpg saved\n", + "YOLO_soft_labeled_data/label/002135.jpg saved\n", + "YOLO_soft_labeled_data/label/002136.jpg saved\n", + "YOLO_soft_labeled_data/label/002137.jpg saved\n", + "YOLO_soft_labeled_data/label/002138.jpg saved\n", + "YOLO_soft_labeled_data/label/002139.jpg saved\n", + "YOLO_soft_labeled_data/label/002140.jpg saved\n", + "YOLO_soft_labeled_data/label/002141.jpg saved\n", + "YOLO_soft_labeled_data/label/002142.jpg saved\n", + "YOLO_soft_labeled_data/label/002143.jpg saved\n", + "YOLO_soft_labeled_data/label/002144.jpg saved\n", + "YOLO_soft_labeled_data/label/002145.jpg saved\n", + "YOLO_soft_labeled_data/label/002146.jpg saved\n", + "YOLO_soft_labeled_data/label/002147.jpg saved\n", + "YOLO_soft_labeled_data/label/002148.jpg saved\n", + "YOLO_soft_labeled_data/label/002149.jpg saved\n", + "YOLO_soft_labeled_data/label/002150.jpg saved\n", + "YOLO_soft_labeled_data/label/002151.jpg saved\n", + "YOLO_soft_labeled_data/label/002152.jpg saved\n", + "YOLO_soft_labeled_data/label/002153.jpg saved\n", + "YOLO_soft_labeled_data/label/002154.jpg saved\n", + "YOLO_soft_labeled_data/label/002155.jpg saved\n", + "YOLO_soft_labeled_data/label/002156.jpg saved\n", + "YOLO_soft_labeled_data/label/002157.jpg saved\n", + "YOLO_soft_labeled_data/label/002158.jpg saved\n", + "YOLO_soft_labeled_data/label/002159.jpg saved\n", + "YOLO_soft_labeled_data/label/002160.jpg saved\n", + "YOLO_soft_labeled_data/label/002161.jpg saved\n", + "YOLO_soft_labeled_data/label/002162.jpg saved\n", + "YOLO_soft_labeled_data/label/002163.jpg saved\n", + "YOLO_soft_labeled_data/label/002164.jpg saved\n", + "YOLO_soft_labeled_data/label/002165.jpg saved\n", + "YOLO_soft_labeled_data/label/002166.jpg saved\n", + "YOLO_soft_labeled_data/label/002167.jpg saved\n", + "YOLO_soft_labeled_data/label/002168.jpg saved\n", + "YOLO_soft_labeled_data/label/002169.jpg saved\n", + "YOLO_soft_labeled_data/label/002170.jpg saved\n", + "YOLO_soft_labeled_data/label/002171.jpg saved\n", + "YOLO_soft_labeled_data/label/002172.jpg saved\n", + "YOLO_soft_labeled_data/label/002173.jpg saved\n", + "YOLO_soft_labeled_data/label/002174.jpg saved\n", + "YOLO_soft_labeled_data/label/002175.jpg saved\n", + "YOLO_soft_labeled_data/label/002176.jpg saved\n", + "YOLO_soft_labeled_data/label/002177.jpg saved\n", + "YOLO_soft_labeled_data/label/002178.jpg saved\n", + "YOLO_soft_labeled_data/label/002179.jpg saved\n", + "YOLO_soft_labeled_data/label/002180.jpg saved\n", + "YOLO_soft_labeled_data/label/002181.jpg saved\n", + "YOLO_soft_labeled_data/label/002182.jpg saved\n", + "YOLO_soft_labeled_data/label/002183.jpg saved\n", + "YOLO_soft_labeled_data/label/002184.jpg saved\n", + "YOLO_soft_labeled_data/label/002185.jpg saved\n", + "YOLO_soft_labeled_data/label/002186.jpg saved\n", + "YOLO_soft_labeled_data/label/002187.jpg saved\n", + "YOLO_soft_labeled_data/label/002188.jpg saved\n", + "YOLO_soft_labeled_data/label/002189.jpg saved\n", + "YOLO_soft_labeled_data/label/002190.jpg saved\n", + "YOLO_soft_labeled_data/label/002191.jpg saved\n", + "YOLO_soft_labeled_data/label/002192.jpg saved\n", + "YOLO_soft_labeled_data/label/002193.jpg saved\n", + "YOLO_soft_labeled_data/label/002194.jpg saved\n", + "YOLO_soft_labeled_data/label/002195.jpg saved\n", + "YOLO_soft_labeled_data/label/002196.jpg saved\n", + "YOLO_soft_labeled_data/label/002197.jpg saved\n", + "YOLO_soft_labeled_data/label/002198.jpg saved\n", + "YOLO_soft_labeled_data/label/002199.jpg saved\n", + "YOLO_soft_labeled_data/label/002200.jpg saved\n", + "YOLO_soft_labeled_data/label/002201.jpg saved\n", + "YOLO_soft_labeled_data/label/002202.jpg saved\n", + "YOLO_soft_labeled_data/label/002203.jpg saved\n", + "YOLO_soft_labeled_data/label/002204.jpg saved\n", + "YOLO_soft_labeled_data/label/002205.jpg saved\n", + "YOLO_soft_labeled_data/label/002206.jpg saved\n", + "YOLO_soft_labeled_data/label/002207.jpg saved\n", + "YOLO_soft_labeled_data/label/002208.jpg saved\n", + "YOLO_soft_labeled_data/label/002209.jpg saved\n", + "YOLO_soft_labeled_data/label/002210.jpg saved\n", + "YOLO_soft_labeled_data/label/002211.jpg saved\n", + "YOLO_soft_labeled_data/label/002212.jpg saved\n", + "YOLO_soft_labeled_data/label/002213.jpg saved\n", + "YOLO_soft_labeled_data/label/002214.jpg saved\n", + "YOLO_soft_labeled_data/label/002215.jpg saved\n", + "YOLO_soft_labeled_data/label/002216.jpg saved\n", + "YOLO_soft_labeled_data/label/002217.jpg saved\n", + "YOLO_soft_labeled_data/label/002218.jpg saved\n", + "YOLO_soft_labeled_data/label/002219.jpg saved\n", + "YOLO_soft_labeled_data/label/002220.jpg saved\n", + "YOLO_soft_labeled_data/label/002221.jpg saved\n", + "YOLO_soft_labeled_data/label/002222.jpg saved\n", + "YOLO_soft_labeled_data/label/002223.jpg saved\n", + "YOLO_soft_labeled_data/label/002224.jpg saved\n", + "YOLO_soft_labeled_data/label/002225.jpg saved\n", + "YOLO_soft_labeled_data/label/002226.jpg saved\n", + "YOLO_soft_labeled_data/label/002227.jpg saved\n", + "YOLO_soft_labeled_data/label/002228.jpg saved\n", + "YOLO_soft_labeled_data/label/002229.jpg saved\n", + "YOLO_soft_labeled_data/label/002230.jpg saved\n", + "YOLO_soft_labeled_data/label/002231.jpg saved\n", + "YOLO_soft_labeled_data/label/002232.jpg saved\n", + "YOLO_soft_labeled_data/label/002233.jpg saved\n", + "YOLO_soft_labeled_data/label/002234.jpg saved\n", + "YOLO_soft_labeled_data/label/002235.jpg saved\n", + "YOLO_soft_labeled_data/label/002236.jpg saved\n", + "YOLO_soft_labeled_data/label/002237.jpg saved\n", + "YOLO_soft_labeled_data/label/002238.jpg saved\n", + "YOLO_soft_labeled_data/label/002239.jpg saved\n", + "YOLO_soft_labeled_data/label/002240.jpg saved\n", + "YOLO_soft_labeled_data/label/002241.jpg saved\n", + "YOLO_soft_labeled_data/label/002242.jpg saved\n", + "YOLO_soft_labeled_data/label/002243.jpg saved\n", + "YOLO_soft_labeled_data/label/002244.jpg saved\n", + "YOLO_soft_labeled_data/label/002245.jpg saved\n", + "YOLO_soft_labeled_data/label/002246.jpg saved\n", + "YOLO_soft_labeled_data/label/002247.jpg saved\n", + "YOLO_soft_labeled_data/label/002248.jpg saved\n", + "YOLO_soft_labeled_data/label/002249.jpg saved\n", + "YOLO_soft_labeled_data/label/002250.jpg saved\n", + "YOLO_soft_labeled_data/label/002251.jpg saved\n", + "YOLO_soft_labeled_data/label/002252.jpg saved\n", + "YOLO_soft_labeled_data/label/002253.jpg saved\n", + "YOLO_soft_labeled_data/label/002254.jpg saved\n", + "YOLO_soft_labeled_data/label/002255.jpg saved\n", + "YOLO_soft_labeled_data/label/002256.jpg saved\n", + "YOLO_soft_labeled_data/label/002257.jpg saved\n", + "YOLO_soft_labeled_data/label/002258.jpg saved\n", + "YOLO_soft_labeled_data/label/002259.jpg saved\n", + "YOLO_soft_labeled_data/label/002260.jpg saved\n", + "YOLO_soft_labeled_data/label/002261.jpg saved\n", + "YOLO_soft_labeled_data/label/002262.jpg saved\n", + "YOLO_soft_labeled_data/label/002263.jpg saved\n", + "YOLO_soft_labeled_data/label/002264.jpg saved\n", + "YOLO_soft_labeled_data/label/002265.jpg saved\n", + "YOLO_soft_labeled_data/label/002266.jpg saved\n", + "YOLO_soft_labeled_data/label/002267.jpg saved\n", + "YOLO_soft_labeled_data/label/002268.jpg saved\n", + "YOLO_soft_labeled_data/label/002269.jpg saved\n", + "YOLO_soft_labeled_data/label/002270.jpg saved\n", + "YOLO_soft_labeled_data/label/002271.jpg saved\n", + "YOLO_soft_labeled_data/label/002272.jpg saved\n", + "YOLO_soft_labeled_data/label/002273.jpg saved\n", + "YOLO_soft_labeled_data/label/002274.jpg saved\n", + "YOLO_soft_labeled_data/label/002275.jpg saved\n", + "YOLO_soft_labeled_data/label/002276.jpg saved\n", + "YOLO_soft_labeled_data/label/002277.jpg saved\n", + "YOLO_soft_labeled_data/label/002278.jpg saved\n", + "YOLO_soft_labeled_data/label/002279.jpg saved\n", + "YOLO_soft_labeled_data/label/002280.jpg saved\n", + "YOLO_soft_labeled_data/label/002281.jpg saved\n", + "YOLO_soft_labeled_data/label/002282.jpg saved\n", + "YOLO_soft_labeled_data/label/002283.jpg saved\n", + "YOLO_soft_labeled_data/label/002284.jpg saved\n", + "YOLO_soft_labeled_data/label/002285.jpg saved\n", + "YOLO_soft_labeled_data/label/002286.jpg saved\n", + "YOLO_soft_labeled_data/label/002287.jpg saved\n", + "YOLO_soft_labeled_data/label/002288.jpg saved\n", + "YOLO_soft_labeled_data/label/002289.jpg saved\n", + "YOLO_soft_labeled_data/label/002290.jpg saved\n", + "YOLO_soft_labeled_data/label/002291.jpg saved\n", + "YOLO_soft_labeled_data/label/002292.jpg saved\n", + "YOLO_soft_labeled_data/label/002293.jpg saved\n", + "YOLO_soft_labeled_data/label/002294.jpg saved\n", + "YOLO_soft_labeled_data/label/002295.jpg saved\n", + "YOLO_soft_labeled_data/label/002296.jpg saved\n", + "YOLO_soft_labeled_data/label/002297.jpg saved\n", + "YOLO_soft_labeled_data/label/002298.jpg saved\n", + "YOLO_soft_labeled_data/label/002299.jpg saved\n", + "YOLO_soft_labeled_data/label/002300.jpg saved\n", + "YOLO_soft_labeled_data/label/002301.jpg saved\n", + "YOLO_soft_labeled_data/label/002302.jpg saved\n", + "YOLO_soft_labeled_data/label/002303.jpg saved\n", + "YOLO_soft_labeled_data/label/002304.jpg saved\n", + "YOLO_soft_labeled_data/label/002305.jpg saved\n", + "YOLO_soft_labeled_data/label/002306.jpg saved\n", + "YOLO_soft_labeled_data/label/002307.jpg saved\n", + "YOLO_soft_labeled_data/label/002308.jpg saved\n", + "YOLO_soft_labeled_data/label/002309.jpg saved\n", + "YOLO_soft_labeled_data/label/002310.jpg saved\n", + "YOLO_soft_labeled_data/label/002311.jpg saved\n", + "YOLO_soft_labeled_data/label/002312.jpg saved\n", + "YOLO_soft_labeled_data/label/002313.jpg saved\n", + "YOLO_soft_labeled_data/label/002314.jpg saved\n", + "YOLO_soft_labeled_data/label/002315.jpg saved\n", + "YOLO_soft_labeled_data/label/002316.jpg saved\n", + "YOLO_soft_labeled_data/label/002317.jpg saved\n", + "YOLO_soft_labeled_data/label/002318.jpg saved\n", + "YOLO_soft_labeled_data/label/002319.jpg saved\n", + "YOLO_soft_labeled_data/label/002320.jpg saved\n", + "YOLO_soft_labeled_data/label/002321.jpg saved\n", + "YOLO_soft_labeled_data/label/002322.jpg saved\n", + "YOLO_soft_labeled_data/label/002323.jpg saved\n", + "YOLO_soft_labeled_data/label/002324.jpg saved\n", + "YOLO_soft_labeled_data/label/002325.jpg saved\n", + "YOLO_soft_labeled_data/label/002326.jpg saved\n", + "YOLO_soft_labeled_data/label/002327.jpg saved\n", + "YOLO_soft_labeled_data/label/002328.jpg saved\n", + "YOLO_soft_labeled_data/label/002329.jpg saved\n", + "YOLO_soft_labeled_data/label/002330.jpg saved\n", + "YOLO_soft_labeled_data/label/002331.jpg saved\n", + "YOLO_soft_labeled_data/label/002332.jpg saved\n", + "YOLO_soft_labeled_data/label/002333.jpg saved\n", + "YOLO_soft_labeled_data/label/002334.jpg saved\n", + "YOLO_soft_labeled_data/label/002335.jpg saved\n", + "YOLO_soft_labeled_data/label/002336.jpg saved\n", + "YOLO_soft_labeled_data/label/002337.jpg saved\n", + "YOLO_soft_labeled_data/label/002338.jpg saved\n", + "YOLO_soft_labeled_data/label/002339.jpg saved\n", + "YOLO_soft_labeled_data/label/002340.jpg saved\n", + "YOLO_soft_labeled_data/label/002341.jpg saved\n", + "YOLO_soft_labeled_data/label/002342.jpg saved\n", + "YOLO_soft_labeled_data/label/002343.jpg saved\n", + "YOLO_soft_labeled_data/label/002344.jpg saved\n", + "YOLO_soft_labeled_data/label/002345.jpg saved\n", + "YOLO_soft_labeled_data/label/002346.jpg saved\n", + "YOLO_soft_labeled_data/label/002347.jpg saved\n", + "YOLO_soft_labeled_data/label/002348.jpg saved\n", + "YOLO_soft_labeled_data/label/002349.jpg saved\n", + "YOLO_soft_labeled_data/label/002350.jpg saved\n", + "YOLO_soft_labeled_data/label/002351.jpg saved\n", + "YOLO_soft_labeled_data/label/002352.jpg saved\n", + "YOLO_soft_labeled_data/label/002353.jpg saved\n", + "YOLO_soft_labeled_data/label/002354.jpg saved\n", + "YOLO_soft_labeled_data/label/002355.jpg saved\n", + "YOLO_soft_labeled_data/label/002356.jpg saved\n", + "YOLO_soft_labeled_data/label/002357.jpg saved\n", + "YOLO_soft_labeled_data/label/002358.jpg saved\n", + "YOLO_soft_labeled_data/label/002359.jpg saved\n", + "YOLO_soft_labeled_data/label/002360.jpg saved\n", + "YOLO_soft_labeled_data/label/002361.jpg saved\n", + "YOLO_soft_labeled_data/label/002362.jpg saved\n", + "YOLO_soft_labeled_data/label/002363.jpg saved\n", + "YOLO_soft_labeled_data/label/002364.jpg saved\n", + "YOLO_soft_labeled_data/label/002365.jpg saved\n", + "YOLO_soft_labeled_data/label/002366.jpg saved\n", + "YOLO_soft_labeled_data/label/002367.jpg saved\n", + "YOLO_soft_labeled_data/label/002368.jpg saved\n", + "YOLO_soft_labeled_data/label/002369.jpg saved\n", + "YOLO_soft_labeled_data/label/002370.jpg saved\n", + "YOLO_soft_labeled_data/label/002371.jpg saved\n", + "YOLO_soft_labeled_data/label/002372.jpg saved\n", + "YOLO_soft_labeled_data/label/002373.jpg saved\n", + "YOLO_soft_labeled_data/label/002374.jpg saved\n", + "YOLO_soft_labeled_data/label/002375.jpg saved\n", + "YOLO_soft_labeled_data/label/002376.jpg saved\n", + "YOLO_soft_labeled_data/label/002377.jpg saved\n", + "YOLO_soft_labeled_data/label/002378.jpg saved\n", + "YOLO_soft_labeled_data/label/002379.jpg saved\n", + "YOLO_soft_labeled_data/label/002380.jpg saved\n", + "YOLO_soft_labeled_data/label/002381.jpg saved\n", + "YOLO_soft_labeled_data/label/002382.jpg saved\n", + "YOLO_soft_labeled_data/label/002383.jpg saved\n", + "YOLO_soft_labeled_data/label/002384.jpg saved\n", + "YOLO_soft_labeled_data/label/002385.jpg saved\n", + "YOLO_soft_labeled_data/label/002386.jpg saved\n", + "YOLO_soft_labeled_data/label/002387.jpg saved\n", + "YOLO_soft_labeled_data/label/002388.jpg saved\n", + "YOLO_soft_labeled_data/label/002389.jpg saved\n", + "YOLO_soft_labeled_data/label/002390.jpg saved\n", + "YOLO_soft_labeled_data/label/002391.jpg saved\n", + "YOLO_soft_labeled_data/label/002392.jpg saved\n", + "YOLO_soft_labeled_data/label/002393.jpg saved\n", + "YOLO_soft_labeled_data/label/002394.jpg saved\n", + "YOLO_soft_labeled_data/label/002395.jpg saved\n", + "YOLO_soft_labeled_data/label/002396.jpg saved\n", + "YOLO_soft_labeled_data/label/002397.jpg saved\n", + "YOLO_soft_labeled_data/label/002398.jpg saved\n", + "YOLO_soft_labeled_data/label/002399.jpg saved\n", + "YOLO_soft_labeled_data/label/002400.jpg saved\n", + "YOLO_soft_labeled_data/label/002401.jpg saved\n", + "YOLO_soft_labeled_data/label/002402.jpg saved\n", + "YOLO_soft_labeled_data/label/002403.jpg saved\n", + "YOLO_soft_labeled_data/label/002404.jpg saved\n", + "YOLO_soft_labeled_data/label/002405.jpg saved\n", + "YOLO_soft_labeled_data/label/002406.jpg saved\n", + "YOLO_soft_labeled_data/label/002407.jpg saved\n", + "YOLO_soft_labeled_data/label/002408.jpg saved\n", + "YOLO_soft_labeled_data/label/002409.jpg saved\n", + "YOLO_soft_labeled_data/label/002410.jpg saved\n", + "YOLO_soft_labeled_data/label/002411.jpg saved\n", + "YOLO_soft_labeled_data/label/002412.jpg saved\n", + "YOLO_soft_labeled_data/label/002413.jpg saved\n", + "YOLO_soft_labeled_data/label/002414.jpg saved\n", + "YOLO_soft_labeled_data/label/002415.jpg saved\n", + "YOLO_soft_labeled_data/label/002416.jpg saved\n", + "YOLO_soft_labeled_data/label/002417.jpg saved\n", + "YOLO_soft_labeled_data/label/002418.jpg saved\n", + "YOLO_soft_labeled_data/label/002419.jpg saved\n", + "YOLO_soft_labeled_data/label/002420.jpg saved\n", + "YOLO_soft_labeled_data/label/002421.jpg saved\n", + "YOLO_soft_labeled_data/label/002422.jpg saved\n", + "YOLO_soft_labeled_data/label/002423.jpg saved\n", + "YOLO_soft_labeled_data/label/002424.jpg saved\n", + "YOLO_soft_labeled_data/label/002425.jpg saved\n", + "YOLO_soft_labeled_data/label/002426.jpg saved\n", + "YOLO_soft_labeled_data/label/002427.jpg saved\n", + "YOLO_soft_labeled_data/label/002428.jpg saved\n", + "YOLO_soft_labeled_data/label/002429.jpg saved\n", + "YOLO_soft_labeled_data/label/002430.jpg saved\n", + "YOLO_soft_labeled_data/label/002431.jpg saved\n", + "YOLO_soft_labeled_data/label/002432.jpg saved\n", + "YOLO_soft_labeled_data/label/002433.jpg saved\n", + "YOLO_soft_labeled_data/label/002434.jpg saved\n", + "YOLO_soft_labeled_data/label/002435.jpg saved\n", + "YOLO_soft_labeled_data/label/002436.jpg saved\n", + "YOLO_soft_labeled_data/label/002437.jpg saved\n", + "YOLO_soft_labeled_data/label/002438.jpg saved\n", + "YOLO_soft_labeled_data/label/002439.jpg saved\n", + "YOLO_soft_labeled_data/label/002440.jpg saved\n", + "YOLO_soft_labeled_data/label/002441.jpg saved\n", + "YOLO_soft_labeled_data/label/002442.jpg saved\n", + "YOLO_soft_labeled_data/label/002443.jpg saved\n", + "YOLO_soft_labeled_data/label/002444.jpg saved\n", + "YOLO_soft_labeled_data/label/002445.jpg saved\n", + "YOLO_soft_labeled_data/label/002446.jpg saved\n", + "YOLO_soft_labeled_data/label/002447.jpg saved\n", + "YOLO_soft_labeled_data/label/002448.jpg saved\n", + "YOLO_soft_labeled_data/label/002449.jpg saved\n", + "YOLO_soft_labeled_data/label/002450.jpg saved\n", + "YOLO_soft_labeled_data/label/002451.jpg saved\n", + "YOLO_soft_labeled_data/label/002452.jpg saved\n", + "YOLO_soft_labeled_data/label/002453.jpg saved\n", + "YOLO_soft_labeled_data/label/002454.jpg saved\n", + "YOLO_soft_labeled_data/label/002455.jpg saved\n", + "YOLO_soft_labeled_data/label/002456.jpg saved\n", + "YOLO_soft_labeled_data/label/002457.jpg saved\n", + "YOLO_soft_labeled_data/label/002458.jpg saved\n", + "YOLO_soft_labeled_data/label/002459.jpg saved\n", + "YOLO_soft_labeled_data/label/002460.jpg saved\n", + "YOLO_soft_labeled_data/label/002461.jpg saved\n", + "YOLO_soft_labeled_data/label/002462.jpg saved\n", + "YOLO_soft_labeled_data/label/002463.jpg saved\n", + "YOLO_soft_labeled_data/label/002464.jpg saved\n", + "YOLO_soft_labeled_data/label/002465.jpg saved\n", + "YOLO_soft_labeled_data/label/002466.jpg saved\n", + "YOLO_soft_labeled_data/label/002467.jpg saved\n", + "YOLO_soft_labeled_data/label/002468.jpg saved\n", + "YOLO_soft_labeled_data/label/002469.jpg saved\n", + "YOLO_soft_labeled_data/label/002470.jpg saved\n", + "YOLO_soft_labeled_data/label/002471.jpg saved\n", + "YOLO_soft_labeled_data/label/002472.jpg saved\n", + "YOLO_soft_labeled_data/label/002473.jpg saved\n", + "YOLO_soft_labeled_data/label/002474.jpg saved\n", + "YOLO_soft_labeled_data/label/002475.jpg saved\n", + "YOLO_soft_labeled_data/label/002476.jpg saved\n", + "YOLO_soft_labeled_data/label/002477.jpg saved\n", + "YOLO_soft_labeled_data/label/002478.jpg saved\n", + "YOLO_soft_labeled_data/label/002479.jpg saved\n", + "YOLO_soft_labeled_data/label/002480.jpg saved\n", + "YOLO_soft_labeled_data/label/002481.jpg saved\n", + "YOLO_soft_labeled_data/label/002482.jpg saved\n", + "YOLO_soft_labeled_data/label/002483.jpg saved\n", + "YOLO_soft_labeled_data/label/002484.jpg saved\n", + "YOLO_soft_labeled_data/label/002485.jpg saved\n", + "YOLO_soft_labeled_data/label/002486.jpg saved\n", + "YOLO_soft_labeled_data/label/002487.jpg saved\n", + "YOLO_soft_labeled_data/label/002488.jpg saved\n", + "YOLO_soft_labeled_data/label/002489.jpg saved\n", + "YOLO_soft_labeled_data/label/002490.jpg saved\n", + "YOLO_soft_labeled_data/label/002491.jpg saved\n", + "YOLO_soft_labeled_data/label/002492.jpg saved\n", + "YOLO_soft_labeled_data/label/002493.jpg saved\n", + "YOLO_soft_labeled_data/label/002494.jpg saved\n", + "data saved locally in YOLO_soft_labeled_data/data\n", + "['000223.jpg', '000663.jpg', '001117.jpg', '001077.jpg', '001201.jpg', '001089.jpg', '001895.jpg', '000284.jpg', '001145.jpg', '002102.jpg', '002060.jpg', '000961.jpg', '001567.jpg', '000846.jpg', '001210.jpg', '001311.jpg', '000263.jpg', '001580.jpg', '001147.jpg', '000052.jpg', '000091.jpg', '001968.jpg', '000130.jpg', '000183.jpg', '001539.jpg', '000161.jpg', '001972.jpg', '001494.jpg', '001141.jpg', '002163.jpg', '001066.jpg', '001106.jpg', '001020.jpg', '001813.jpg', '000624.jpg', '000252.jpg', '000924.jpg', '000156.jpg', '000921.jpg', '000842.jpg', '000482.jpg', '001044.jpg', '001922.jpg', '002365.jpg', '002343.jpg', '001951.jpg', '000983.jpg', '000120.jpg', '002398.jpg', '000199.jpg', '001677.jpg', '000178.jpg', '000386.jpg', '000761.jpg', '000880.jpg', '000940.jpg', '001374.jpg', '002047.jpg', '000326.jpg', '000914.jpg', '002349.jpg', '001915.jpg', '002237.jpg', '001530.jpg', '000422.jpg', '000471.jpg', '000829.jpg', '000235.jpg', '000925.jpg', '001057.jpg', '000356.jpg', '001788.jpg', '000213.jpg', '002156.jpg', '002405.jpg', '002317.jpg', '001831.jpg', '000251.jpg', '001005.jpg', '000782.jpg', '000807.jpg', '002353.jpg', '001982.jpg', '000454.jpg', '000276.jpg', '001412.jpg', '000722.jpg', '000087.jpg', '001363.jpg', '000938.jpg', '001198.jpg', '002295.jpg', '000192.jpg', '001876.jpg', '001049.jpg', '000397.jpg', '001641.jpg', '001091.jpg', '001499.jpg', '000707.jpg', '001587.jpg', '000588.jpg', '000288.jpg', '000772.jpg', '000060.jpg', '001886.jpg', '000221.jpg', '000966.jpg', '002472.jpg', '000416.jpg', '000184.jpg', '000727.jpg', '000413.jpg', '002348.jpg', '001042.jpg', '002167.jpg', '001289.jpg', '002048.jpg', '000554.jpg', '001830.jpg', '001721.jpg', '002433.jpg', '000710.jpg', '001342.jpg', '000361.jpg', '001784.jpg', '000112.jpg', '001678.jpg', '001868.jpg', '001140.jpg', '001263.jpg', '001731.jpg', '000906.jpg', '001545.jpg', '001206.jpg', '001691.jpg', '001925.jpg', '001882.jpg', '000627.jpg', '000832.jpg', '002409.jpg', '000994.jpg', '000435.jpg', '001866.jpg', '001899.jpg', '001396.jpg', '000503.jpg', '000584.jpg', '001173.jpg', '002072.jpg', '001124.jpg', '000865.jpg', '002287.jpg', '000099.jpg', '001381.jpg', '000053.jpg', '001316.jpg', '002347.jpg', '001138.jpg', '001759.jpg', '001048.jpg', '000997.jpg', '000240.jpg', '000036.jpg', '000111.jpg', '001595.jpg', '000325.jpg', '000552.jpg', '001214.jpg', '001819.jpg', '000927.jpg', '001046.jpg', '001368.jpg', '002262.jpg', '001573.jpg', '000016.jpg', '000556.jpg', '000875.jpg', '001083.jpg', '000337.jpg', '001004.jpg', '001629.jpg', '000280.jpg', '001135.jpg', '001310.jpg', '001681.jpg', '001950.jpg', '001961.jpg', '001122.jpg', '000197.jpg', '000728.jpg', '002263.jpg', '000035.jpg', '002227.jpg', '002168.jpg', '001329.jpg', '001707.jpg', '001745.jpg', '000182.jpg', '001071.jpg', '001568.jpg', '002373.jpg', '000686.jpg', '000122.jpg', '000894.jpg', '001032.jpg', '001401.jpg', '001295.jpg', '000301.jpg', '000704.jpg', '001427.jpg', '001409.jpg', '000002.jpg', '001382.jpg', '001689.jpg', '001897.jpg', '001477.jpg', '001160.jpg', '000080.jpg', '001079.jpg', '000278.jpg', '001848.jpg', '002268.jpg', '000095.jpg', '000614.jpg', '001133.jpg', '002175.jpg', '002361.jpg', '001052.jpg', '000262.jpg', '002124.jpg', '002016.jpg', '002351.jpg', '002305.jpg', '002280.jpg', '000487.jpg', '002438.jpg', '000375.jpg', '000861.jpg', '001016.jpg', '000679.jpg', '001799.jpg', '002380.jpg', '002385.jpg', '000424.jpg', '000517.jpg', '001688.jpg', '001278.jpg', '000347.jpg', '002012.jpg', '001534.jpg', '001105.jpg', '001015.jpg', '000872.jpg', '001739.jpg', '000538.jpg', '001954.jpg', '000116.jpg', '001749.jpg', '002461.jpg', '001227.jpg', '001176.jpg', '000027.jpg', '000764.jpg', '001626.jpg', '000218.jpg', '000143.jpg', '000032.jpg', '002065.jpg', '000857.jpg', '001279.jpg', '002282.jpg', '001588.jpg', '000045.jpg', '000668.jpg', '002393.jpg', '001578.jpg', '000858.jpg', '002185.jpg', '001487.jpg', '001607.jpg', '002334.jpg', '002466.jpg', '000076.jpg', '002177.jpg', '000019.jpg', '000217.jpg', '002220.jpg', '001134.jpg', '001537.jpg', '001445.jpg', '001165.jpg', '001770.jpg', '000049.jpg', '000513.jpg', '000470.jpg', '001199.jpg', '001569.jpg', '002469.jpg', '001400.jpg', '000725.jpg', '000377.jpg', '000051.jpg', '000638.jpg', '000780.jpg', '002032.jpg', '000626.jpg', '002283.jpg', '001291.jpg', '000677.jpg', '002064.jpg', '002118.jpg', '000520.jpg', '000328.jpg', '001919.jpg', '002367.jpg', '000608.jpg', '001842.jpg', '000943.jpg', '001654.jpg', '000382.jpg', '000484.jpg', '002285.jpg', '001753.jpg', '000403.jpg', '001996.jpg', '001171.jpg', '000602.jpg', '001644.jpg', '000117.jpg', '002219.jpg', '001172.jpg', '001865.jpg', '001613.jpg', '000587.jpg', '000965.jpg', '000898.jpg', '000043.jpg', '001469.jpg', '001931.jpg', '000268.jpg', '000097.jpg', '001261.jpg', '001496.jpg', '002281.jpg', '001921.jpg', '000917.jpg', '000187.jpg', '001761.jpg', '001475.jpg', '001985.jpg', '002075.jpg', '000443.jpg', '000681.jpg', '001646.jpg', '000960.jpg', '001335.jpg', '002483.jpg', '000306.jpg', '000081.jpg', '001715.jpg', '002257.jpg', '001407.jpg', '001519.jpg', '002196.jpg', '001885.jpg', '000343.jpg', '000046.jpg', '001612.jpg', '000486.jpg', '001064.jpg', '001285.jpg', '000805.jpg', '000543.jpg', '000126.jpg', '001370.jpg', '001550.jpg', '000119.jpg', '002474.jpg', '000550.jpg', '002146.jpg', '002108.jpg', '001413.jpg', '000651.jpg', '001030.jpg', '002266.jpg', '001318.jpg', '002326.jpg', '001193.jpg', '000595.jpg', '001875.jpg', '002402.jpg', '002142.jpg', '001738.jpg', '002255.jpg', '000891.jpg', '001448.jpg', '001025.jpg', '000933.jpg', '001378.jpg', '000212.jpg', '000430.jpg', '000372.jpg', '002467.jpg', '002225.jpg', '000753.jpg', '000139.jpg', '000775.jpg', '001456.jpg', '001007.jpg', '000607.jpg', '002074.jpg', '000656.jpg', '001533.jpg', '000434.jpg', '001944.jpg', '001521.jpg', '000299.jpg', '001940.jpg', '000916.jpg', '001863.jpg', '001538.jpg', '002208.jpg', '002138.jpg', '000159.jpg', '001893.jpg', '000616.jpg', '001589.jpg', '002071.jpg', '000978.jpg', '001345.jpg', '001070.jpg', '000666.jpg', '001454.jpg', '000446.jpg', '001859.jpg', '000830.jpg', '001028.jpg', '000781.jpg', '000514.jpg', '001226.jpg', '000362.jpg', '001608.jpg', '001050.jpg', '001918.jpg', '000483.jpg', '002230.jpg', '001558.jpg', '002149.jpg', '002493.jpg', '000974.jpg', '000429.jpg', '001617.jpg', '000138.jpg', '000619.jpg', '000981.jpg', '001782.jpg', '000723.jpg', '002001.jpg', '002098.jpg', '001364.jpg', '000319.jpg', '001352.jpg', '001645.jpg', '000827.jpg', '001365.jpg', '000329.jpg', '000572.jpg', '001480.jpg', '001989.jpg', '000562.jpg', '000831.jpg', '000431.jpg', '000340.jpg', '000297.jpg', '002284.jpg', '001282.jpg', '001068.jpg', '000313.jpg', '001742.jpg', '000124.jpg', '001482.jpg', '000691.jpg', '002242.jpg', '001661.jpg', '000687.jpg', '000745.jpg', '001653.jpg', '001304.jpg', '002420.jpg', '001911.jpg', '000708.jpg', '002251.jpg', '000149.jpg', '001202.jpg', '001630.jpg', '002369.jpg', '001012.jpg', '000639.jpg', '000864.jpg', '000628.jpg', '002327.jpg', '000227.jpg', '002025.jpg', '002137.jpg', '001649.jpg', '000930.jpg', '000733.jpg', '002357.jpg', '001716.jpg', '002103.jpg', '000751.jpg', '000606.jpg', '001063.jpg', '000636.jpg', '001949.jpg', '000883.jpg', '001783.jpg', '001990.jpg', '000246.jpg', '001771.jpg', '000992.jpg', '002105.jpg', '001358.jpg', '002229.jpg', '001987.jpg', '001581.jpg', '001467.jpg', '000946.jpg', '001812.jpg', '001058.jpg', '001566.jpg', '000678.jpg', '001244.jpg', '002330.jpg', '001748.jpg', '000064.jpg', '000194.jpg', '001591.jpg', '000394.jpg', '001324.jpg', '000017.jpg', '000972.jpg', '000533.jpg', '000652.jpg', '000852.jpg', '000478.jpg', '001838.jpg', '001658.jpg', '001701.jpg', '000591.jpg', '000354.jpg', '000374.jpg', '000564.jpg', '000191.jpg', '000947.jpg', '001359.jpg', '001463.jpg', '002183.jpg', '001023.jpg', '002318.jpg', '000476.jpg', '002412.jpg', '002044.jpg', '001144.jpg', '001582.jpg', '000955.jpg', '000851.jpg', '000593.jpg', '001703.jpg', '002391.jpg', '001325.jpg', '000473.jpg', '002403.jpg', '002004.jpg', '001443.jpg', '000625.jpg', '000346.jpg', '002421.jpg', '001964.jpg', '001425.jpg', '000912.jpg', '000438.jpg', '000615.jpg', '000352.jpg', '002432.jpg', '001754.jpg', '000817.jpg', '001415.jpg', '001362.jpg', '002294.jpg', '000963.jpg', '000534.jpg', '001896.jpg', '002376.jpg', '002360.jpg', '001528.jpg', '000101.jpg', '000516.jpg', '001544.jpg', '001619.jpg', '002194.jpg', '001890.jpg', '000469.jpg', '000170.jpg', '001367.jpg', '000999.jpg', '000671.jpg', '000876.jpg', '000205.jpg', '000548.jpg', '000674.jpg', '001087.jpg', '002309.jpg', '000066.jpg', '002161.jpg', '001326.jpg', '000583.jpg', '002082.jpg', '001065.jpg', '002042.jpg', '001952.jpg', '000654.jpg', '001150.jpg', '000181.jpg', '000137.jpg', '000571.jpg', '002383.jpg', '001966.jpg', '002226.jpg', '001384.jpg', '000866.jpg', '001331.jpg', '000798.jpg', '001385.jpg', '001596.jpg', '000145.jpg', '000551.jpg', '002224.jpg', '000282.jpg', '001394.jpg', '001431.jpg', '001095.jpg', '000493.jpg', '000467.jpg', '000647.jpg', '000813.jpg', '000786.jpg', '000004.jpg', '001888.jpg', '000777.jpg', '000090.jpg', '001616.jpg', '000837.jpg', '001564.jpg', '001090.jpg', '001913.jpg', '002214.jpg', '000363.jpg', '000389.jpg', '002154.jpg', '001772.jpg', '000364.jpg', '002395.jpg', '000800.jpg', '000030.jpg', '000959.jpg', '000544.jpg', '001520.jpg', '000151.jpg', '001765.jpg', '000838.jpg', '001692.jpg', '000824.jpg', '002094.jpg', '000358.jpg', '001887.jpg', '000532.jpg', '001695.jpg', '002274.jpg', '000185.jpg', '001098.jpg', '000789.jpg', '000198.jpg', '001733.jpg', '000103.jpg', '000489.jpg', '000539.jpg', '001910.jpg', '002457.jpg', '002170.jpg', '001029.jpg', '000247.jpg', '001416.jpg', '001452.jpg', '000459.jpg', '002265.jpg', '001039.jpg', '001356.jpg', '000820.jpg', '001119.jpg', '000089.jpg', '000954.jpg', '001061.jpg', '001017.jpg', '002248.jpg', '002355.jpg', '000501.jpg', '001340.jpg', '000825.jpg', '002104.jpg', '002487.jpg', '000557.jpg', '002055.jpg', '000190.jpg', '000521.jpg', '002008.jpg', '000259.jpg', '000808.jpg', '002169.jpg', '002350.jpg', '001810.jpg', '001874.jpg', '000879.jpg', '001623.jpg', '002332.jpg', '001914.jpg', '001811.jpg', '001909.jpg', '001473.jpg', '002181.jpg', '001348.jpg', '001062.jpg', '002446.jpg', '000929.jpg', '000900.jpg', '002304.jpg', '001618.jpg', '001699.jpg', '000127.jpg', '001800.jpg', '001069.jpg', '001522.jpg', '002240.jpg', '000176.jpg', '002272.jpg', '001621.jpg', '001388.jpg', '001981.jpg', '001572.jpg', '000314.jpg', '000776.jpg', '001565.jpg', '000519.jpg', '001554.jpg', '000157.jpg', '000600.jpg', '002431.jpg', '001414.jpg', '001979.jpg', '000456.jpg', '000323.jpg', '000854.jpg', '000380.jpg', '001881.jpg', '001225.jpg', '001001.jpg', '000277.jpg', '001553.jpg', '000463.jpg', '002193.jpg', '001406.jpg', '001043.jpg', '002296.jpg', '002136.jpg', '001492.jpg', '000492.jpg', '002129.jpg', '002213.jpg', '000768.jpg', '000569.jpg', '001189.jpg', '002052.jpg', '001680.jpg', '001483.jpg', '002070.jpg', '002019.jpg', '001235.jpg', '002435.jpg', '001493.jpg', '000524.jpg', '000312.jpg', '002083.jpg', '000428.jpg', '000985.jpg', '002482.jpg', '000530.jpg', '000321.jpg', '002396.jpg', '001628.jpg', '000264.jpg', '001288.jpg', '000694.jpg', '001181.jpg', '002378.jpg', '002253.jpg', '001179.jpg', '001080.jpg', '001939.jpg', '000418.jpg', '000711.jpg', '002125.jpg', '000750.jpg', '000744.jpg', '001114.jpg', '001631.jpg', '001984.jpg', '001858.jpg', '001313.jpg', '000253.jpg', '000731.jpg', '000491.jpg', '001796.jpg', '001718.jpg', '000318.jpg', '000287.jpg', '001798.jpg', '002486.jpg', '000512.jpg', '000186.jpg', '002448.jpg', '001164.jpg', '001086.jpg', '002286.jpg', '000242.jpg', '001085.jpg', '002231.jpg', '001879.jpg', '001512.jpg', '001839.jpg', '000642.jpg', '000665.jpg', '000756.jpg', '002445.jpg', '002292.jpg', '001576.jpg', '000547.jpg', '002247.jpg', '000255.jpg', '001221.jpg', '002325.jpg', '001224.jpg', '001713.jpg', '000420.jpg', '002328.jpg', '002205.jpg', '001634.jpg', '001594.jpg', '002358.jpg', '001286.jpg', '001327.jpg', '000634.jpg', '002207.jpg', '001081.jpg', '002303.jpg', '000147.jpg', '000991.jpg', '000715.jpg', '001169.jpg', '001451.jpg', '000146.jpg', '000673.jpg', '000041.jpg', '002299.jpg', '002371.jpg', '001867.jpg', '001767.jpg', '000256.jpg', '001041.jpg', '000042.jpg', '000449.jpg', '001424.jpg', '000709.jpg', '001934.jpg', '000193.jpg', '002228.jpg', '001529.jpg', '000298.jpg', '001033.jpg', '000774.jpg', '000409.jpg', '000249.jpg', '002180.jpg', '002436.jpg', '000762.jpg', '000988.jpg', '002034.jpg', '002199.jpg', '002159.jpg', '000632.jpg', '002444.jpg', '001734.jpg', '000243.jpg', '002195.jpg', '002322.jpg', '001957.jpg', '002288.jpg', '002415.jpg', '002132.jpg', '002143.jpg', '001873.jpg', '000222.jpg', '001021.jpg', '000581.jpg', '001627.jpg', '000104.jpg', '000518.jpg', '000719.jpg', '000515.jpg', '000257.jpg', '001789.jpg', '000868.jpg', '000788.jpg', '000370.jpg', '000549.jpg', '000241.jpg', '000603.jpg', '001252.jpg', '000398.jpg', '002061.jpg', '001751.jpg', '001655.jpg', '000204.jpg', '000031.jpg', '001153.jpg', '001768.jpg', '001213.jpg', '000465.jpg', '001870.jpg', '001209.jpg', '002017.jpg', '001182.jpg', '001988.jpg', '001676.jpg', '000869.jpg', '000208.jpg', '000646.jpg', '001637.jpg', '002454.jpg', '000472.jpg', '001155.jpg', '000387.jpg', '000427.jpg', '000661.jpg', '000044.jpg', '002121.jpg', '001702.jpg', '000163.jpg', '001146.jpg', '001479.jpg', '001389.jpg', '001845.jpg', '002397.jpg', '001478.jpg', '001435.jpg', '002450.jpg', '000293.jpg', '000177.jpg', '000440.jpg', '000611.jpg', '001673.jpg', '000713.jpg', '001861.jpg', '000057.jpg', '001543.jpg', '000113.jpg', '001290.jpg', '001507.jpg', '001096.jpg', '001974.jpg', '001849.jpg', '000676.jpg', '000118.jpg', '001948.jpg', '001836.jpg', '002099.jpg', '002390.jpg', '002010.jpg', '000109.jpg', '002056.jpg', '000115.jpg', '002323.jpg', '001208.jpg', '001031.jpg', '000573.jpg', '001440.jpg', '001685.jpg', '000415.jpg', '001118.jpg', '001824.jpg', '000888.jpg', '000300.jpg', '001728.jpg', '001441.jpg', '002368.jpg', '000794.jpg', '002386.jpg', '001245.jpg', '001506.jpg', '002092.jpg', '001339.jpg', '001766.jpg', '002223.jpg', '001260.jpg', '002050.jpg', '000732.jpg', '002259.jpg', '001298.jpg', '002465.jpg', '002300.jpg', '001237.jpg', '000026.jpg', '000010.jpg', '002475.jpg', '001541.jpg', '001775.jpg', '000688.jpg', '001625.jpg', '000693.jpg', '000749.jpg', '002480.jpg', '000560.jpg', '000275.jpg', '001535.jpg', '001665.jpg', '001571.jpg', '001667.jpg', '002392.jpg', '002269.jpg', '000129.jpg', '000592.jpg', '000237.jpg', '001190.jpg', '000604.jpg', '000381.jpg', '001375.jpg', '001884.jpg', '001392.jpg', '002428.jpg', '002007.jpg', '002329.jpg', '000092.jpg', '001660.jpg', '000862.jpg', '001962.jpg', '000437.jpg', '001088.jpg', '001166.jpg', '002473.jpg', '001426.jpg', '001302.jpg', '001504.jpg', '001752.jpg', '001513.jpg', '000274.jpg', '000488.jpg', '000621.jpg', '000998.jpg', '000290.jpg', '000357.jpg', '000100.jpg', '001924.jpg', '002173.jpg', '000804.jpg', '002413.jpg', '000155.jpg', '000730.jpg', '000522.jpg', '000689.jpg', '002424.jpg', '001037.jpg', '002425.jpg', '001820.jpg', '001650.jpg', '000878.jpg', '001228.jpg', '002013.jpg', '002441.jpg', '000479.jpg', '002443.jpg', '002157.jpg', '001977.jpg', '000585.jpg', '000787.jpg', '000993.jpg', '001455.jpg', '002423.jpg', '001967.jpg', '001597.jpg', '001484.jpg', '001242.jpg', '002078.jpg', '000309.jpg', '002096.jpg', '002261.jpg', '000962.jpg', '001686.jpg', '001251.jpg', '001497.jpg', '001196.jpg', '001659.jpg', '000396.jpg', '002029.jpg', '001366.jpg', '000005.jpg', '000982.jpg', '000360.jpg', '001101.jpg', '000067.jpg', '001656.jpg', '001726.jpg', '002321.jpg', '002453.jpg', '000494.jpg', '001500.jpg', '001264.jpg', '001056.jpg', '002289.jpg', '001999.jpg', '000450.jpg', '001035.jpg', '001807.jpg', '002140.jpg', '000721.jpg', '002320.jpg', '000024.jpg', '001053.jpg', '001720.jpg', '000474.jpg', '002031.jpg', '002176.jpg', '000720.jpg', '001038.jpg', '000971.jpg', '002112.jpg', '000458.jpg', '001254.jpg', '000575.jpg', '002179.jpg', '000015.jpg', '002191.jpg', '000215.jpg', '001577.jpg', '001437.jpg', '002023.jpg', '001040.jpg', '002162.jpg', '002375.jpg', '000563.jpg', '000400.jpg', '001663.jpg', '001421.jpg', '001904.jpg', '001450.jpg', '001346.jpg', '002407.jpg', '001236.jpg', '000685.jpg', '001351.jpg', '000746.jpg', '001833.jpg', '000814.jpg', '000923.jpg', '000048.jpg', '001998.jpg', '000502.jpg', '001969.jpg', '000859.jpg', '000631.jpg', '000706.jpg', '001729.jpg', '001319.jpg', '000166.jpg', '001515.jpg', '002089.jpg', '000148.jpg', '002366.jpg', '001434.jpg', '001827.jpg', '000174.jpg', '000797.jpg', '001776.jpg', '000816.jpg', '000995.jpg', '002080.jpg', '001320.jpg', '002190.jpg', '001207.jpg', '002382.jpg', '002336.jpg', '000937.jpg', '000498.jpg', '000270.jpg', '002307.jpg', '000150.jpg', '002491.jpg', '000448.jpg', '001557.jpg', '001296.jpg', '000307.jpg', '000485.jpg', '002026.jpg', '000792.jpg', '000612.jpg', '002418.jpg', '002028.jpg', '001177.jpg', '002387.jpg', '001878.jpg', '001337.jpg', '001104.jpg', '001239.jpg', '000291.jpg', '000419.jpg', '001257.jpg', '001917.jpg', '002315.jpg', '001485.jpg', '000986.jpg', '001696.jpg', '002033.jpg', '001852.jpg', '000877.jpg', '000918.jpg', '001960.jpg', '001336.jpg', '001312.jpg', '000399.jpg', '001255.jpg', '000188.jpg', '001980.jpg', '000059.jpg', '001802.jpg', '001793.jpg', '000211.jpg', '000739.jpg', '001804.jpg', '001369.jpg', '000408.jpg', '000226.jpg', '001614.jpg', '000700.jpg', '001253.jpg', '002165.jpg', '001280.jpg', '000324.jpg', '000320.jpg', '001750.jpg', '000941.jpg', '000271.jpg', '000910.jpg', '002134.jpg', '000000.jpg', '002109.jpg', '001204.jpg', '000258.jpg', '002115.jpg', '001777.jpg', '000232.jpg', '000201.jpg', '002088.jpg', '000887.jpg', '000085.jpg', '001010.jpg', '000351.jpg', '000527.jpg', '001632.jpg', '001109.jpg', '000034.jpg', '002144.jpg', '000967.jpg', '000769.jpg', '000006.jpg', '002302.jpg', '001233.jpg', '001806.jpg', '000697.jpg', '000784.jpg', '002057.jpg', '001143.jpg', '002126.jpg', '001188.jpg', '001540.jpg', '000141.jpg', '000821.jpg', '000171.jpg', '001003.jpg', '002210.jpg', '001725.jpg', '001624.jpg', '000028.jpg', '001157.jpg', '000669.jpg', '000436.jpg', '001024.jpg', '001490.jpg', '001604.jpg', '000037.jpg', '000610.jpg', '000462.jpg', '001453.jpg', '001794.jpg', '002198.jpg', '000818.jpg', '000635.jpg', '002002.jpg', '001687.jpg', '000444.jpg', '000664.jpg', '002377.jpg', '000210.jpg', '001694.jpg', '000236.jpg', '001343.jpg', '000834.jpg', '002363.jpg', '001764.jpg', '001531.jpg', '000765.jpg', '001684.jpg', '002306.jpg', '000461.jpg', '000979.jpg', '000457.jpg', '000793.jpg', '002107.jpg', '000096.jpg', '001903.jpg', '001051.jpg', '001791.jpg', '000932.jpg', '000020.jpg', '000504.jpg', '002182.jpg', '000890.jpg', '001585.jpg', '001013.jpg', '002000.jpg', '002290.jpg', '000339.jpg', '001397.jpg', '000716.jpg', '000281.jpg', '001191.jpg', '001773.jpg', '000065.jpg', '001200.jpg', '001123.jpg', '000897.jpg', '000735.jpg', '001997.jpg', '001102.jpg', '001276.jpg', '000405.jpg', '001926.jpg', '000931.jpg', '002341.jpg', '000771.jpg', '001956.jpg', '000023.jpg', '002339.jpg', '001399.jpg', '002128.jpg', '001305.jpg', '001084.jpg', '002489.jpg', '000425.jpg', '001428.jpg', '001633.jpg', '001303.jpg', '002270.jpg', '001906.jpg', '000353.jpg', '000105.jpg', '001082.jpg', '000244.jpg', '000935.jpg', '001636.jpg', '001986.jpg', '002490.jpg', '000296.jpg', '001758.jpg', '002235.jpg', '001856.jpg', '000508.jpg', '000390.jpg', '001183.jpg', '000421.jpg', '001563.jpg', '000063.jpg', '001472.jpg', '000086.jpg', '001355.jpg', '001666.jpg', '000084.jpg', '002037.jpg', '001709.jpg', '002258.jpg', '002346.jpg', '001203.jpg', '001301.jpg', '000013.jpg', '000402.jpg', '002116.jpg', '002085.jpg', '001111.jpg', '001417.jpg', '001299.jpg', '001178.jpg', '001383.jpg', '000565.jpg', '001834.jpg', '000695.jpg', '000964.jpg', '001860.jpg', '000133.jpg', '002352.jpg', '001930.jpg', '000763.jpg', '000029.jpg', '002416.jpg', '000541.jpg', '001514.jpg', '001586.jpg', '001714.jpg', '000973.jpg', '001433.jpg', '001419.jpg', '001503.jpg', '001429.jpg', '002166.jpg', '000333.jpg', '001757.jpg', '002216.jpg', '002084.jpg', '001991.jpg', '001959.jpg', '001532.jpg', '001272.jpg', '000106.jpg', '000881.jpg', '001439.jpg', '000417.jpg', '001211.jpg', '001943.jpg', '001307.jpg', '001170.jpg', '001942.jpg', '002256.jpg', '001744.jpg', '000649.jpg', '000815.jpg', '002221.jpg', '000752.jpg', '001851.jpg', '001128.jpg', '001373.jpg', '001420.jpg', '000500.jpg', '002186.jpg', '000660.jpg', '000230.jpg', '000455.jpg', '000523.jpg', '002209.jpg', '001976.jpg', '001353.jpg', '001740.jpg', '001780.jpg', '000531.jpg', '001717.jpg', '001447.jpg', '001240.jpg', '000909.jpg', '002492.jpg', '002045.jpg', '002477.jpg', '001126.jpg', '000884.jpg', '001259.jpg', '002246.jpg', '000260.jpg', '000867.jpg', '000799.jpg', '000853.jpg', '001149.jpg', '000712.jpg', '001470.jpg', '000108.jpg', '001525.jpg', '000650.jpg', '001187.jpg', '000175.jpg', '001797.jpg', '002314.jpg', '000505.jpg', '000158.jpg', '000555.jpg', '000055.jpg', '000882.jpg', '002481.jpg', '001078.jpg', '000957.jpg', '001549.jpg', '000773.jpg', '000071.jpg', '002301.jpg', '001561.jpg', '001894.jpg', '001760.jpg', '000863.jpg', '000675.jpg', '002488.jpg', '001583.jpg', '001184.jpg', '000266.jpg', '002359.jpg', '002389.jpg', '000770.jpg', '000072.jpg', '000365.jpg', '001579.jpg', '001622.jpg', '002333.jpg', '001638.jpg', '000860.jpg', '002202.jpg', '000165.jpg', '001411.jpg', '002164.jpg', '001923.jpg', '000368.jpg', '002427.jpg', '000574.jpg', '000442.jpg', '001801.jpg', '001036.jpg', '000801.jpg', '000453.jpg', '000083.jpg', '001422.jpg', '002059.jpg', '000623.jpg', '001271.jpg', '002313.jpg', '001756.jpg', '001265.jpg', '002252.jpg', '002091.jpg', '000796.jpg', '001662.jpg', '001821.jpg', '001432.jpg', '001795.jpg', '000672.jpg', '002006.jpg', '000233.jpg', '000684.jpg', '000618.jpg', '000345.jpg', '000014.jpg', '000033.jpg', '001047.jpg', '001708.jpg', '000025.jpg', '000441.jpg', '000196.jpg', '002020.jpg', '001222.jpg', '000659.jpg', '002095.jpg', '001829.jpg', '000939.jpg', '001294.jpg', '000922.jpg', '001186.jpg', '001635.jpg', '001871.jpg', '002447.jpg', '002187.jpg', '001669.jpg', '002152.jpg', '002471.jpg', '000009.jpg', '000826.jpg', '001900.jpg', '000341.jpg', '000850.jpg', '001073.jpg', '002014.jpg', '002278.jpg', '001682.jpg', '000892.jpg', '000759.jpg', '000848.jpg', '001559.jpg', '001805.jpg', '001945.jpg', '001946.jpg', '000734.jpg', '001019.jpg', '001698.jpg', '001570.jpg', '000207.jpg', '000283.jpg', '000729.jpg', '000332.jpg', '001847.jpg', '001246.jpg', '000874.jpg', '000098.jpg', '001928.jpg', '000542.jpg', '001555.jpg', '001719.jpg', '000895.jpg', '002027.jpg', '001736.jpg', '000135.jpg', '002106.jpg', '000648.jpg', '001671.jpg', '001816.jpg', '002379.jpg', '000724.jpg', '001743.jpg', '001423.jpg', '000355.jpg', '002184.jpg', '002430.jpg', '001275.jpg', '001690.jpg', '001722.jpg', '000630.jpg', '002204.jpg', '001100.jpg', '000366.jpg', '002127.jpg', '001462.jpg', '002150.jpg', '000308.jpg', '002400.jpg', '001395.jpg', '001853.jpg', '002260.jpg', '001130.jpg', '002123.jpg', '002439.jpg', '001008.jpg', '000622.jpg', '001247.jpg', '002241.jpg', '001706.jpg', '000295.jpg', '001393.jpg', '001502.jpg', '001234.jpg', '000169.jpg', '002111.jpg', '001732.jpg', '000546.jpg', '002451.jpg', '001468.jpg', '000269.jpg', '000371.jpg', '001511.jpg', '002049.jpg', '000279.jpg', '000495.jpg', '000699.jpg', '001778.jpg', '000107.jpg', '000577.jpg', '001825.jpg', '000445.jpg', '000833.jpg', '000537.jpg', '000385.jpg', '000261.jpg', '000970.jpg', '001387.jpg', '000640.jpg', '000558.jpg', '001332.jpg', '000743.jpg', '001516.jpg', '000248.jpg', '002470.jpg', '002038.jpg', '002139.jpg', '002342.jpg', '002372.jpg', '001817.jpg', '001163.jpg', '001747.jpg', '000460.jpg', '001139.jpg', '000855.jpg', '000655.jpg', '000841.jpg', '002276.jpg', '001705.jpg', '000717.jpg', '001891.jpg', '000849.jpg', '001268.jpg', '001216.jpg', '001075.jpg', '001826.jpg', '000509.jpg', '000945.jpg', '000238.jpg', '002388.jpg', '000586.jpg', '001574.jpg', '002478.jpg', '000903.jpg', '002250.jpg', '000220.jpg', '001970.jpg', '001258.jpg', '002456.jpg', '000968.jpg', '002068.jpg', '000267.jpg', '001092.jpg', '001693.jpg', '001590.jpg', '001735.jpg', '000594.jpg', '000136.jpg', '000342.jpg', '001841.jpg', '002312.jpg', '002131.jpg', '000012.jpg', '002419.jpg', '001862.jpg', '001360.jpg', '000468.jpg', '001094.jpg', '001973.jpg', '001920.jpg', '000791.jpg', '002426.jpg', '001730.jpg', '001458.jpg', '000393.jpg', '000406.jpg', '002308.jpg', '001600.jpg', '002222.jpg', '001347.jpg', '001273.jpg', '001180.jpg', '001955.jpg', '001076.jpg', '001341.jpg', '001846.jpg', '000525.jpg', '000082.jpg', '000738.jpg', '000682.jpg', '001195.jpg', '000088.jpg', '002158.jpg', '002036.jpg', '000843.jpg', '002003.jpg', '002217.jpg', '001983.jpg', '001763.jpg', '000566.jpg', '001932.jpg', '001792.jpg', '001120.jpg', '002076.jpg', '000822.jpg', '001542.jpg', '002354.jpg', '002077.jpg', '000070.jpg', '001232.jpg', '000392.jpg', '000376.jpg', '000643.jpg', '001672.jpg', '000379.jpg', '002460.jpg', '000526.jpg', '000054.jpg', '001779.jpg', '001546.jpg', '001175.jpg', '000162.jpg', '000951.jpg', '000702.jpg', '001902.jpg', '002344.jpg', '002040.jpg', '002081.jpg', '000219.jpg', '001168.jpg', '000568.jpg', '000383.jpg', '001269.jpg', '000589.jpg', '002239.jpg', '001647.jpg', '001724.jpg', '001371.jpg', '000779.jpg', '002479.jpg', '002410.jpg', '000292.jpg', '000225.jpg', '000303.jpg', '000609.jpg', '002024.jpg', '001460.jpg', '000644.jpg', '000224.jpg', '000331.jpg', '001377.jpg', '001219.jpg', '002324.jpg', '002401.jpg', '001060.jpg', '000596.jpg', '000114.jpg', '001937.jpg', '001556.jpg', '002135.jpg', '001953.jpg', '000334.jpg', '001877.jpg', '000809.jpg', '002485.jpg', '002054.jpg', '001787.jpg', '001606.jpg', '000570.jpg', '001723.jpg', '001471.jpg', '000466.jpg', '000535.jpg', '002005.jpg', '002153.jpg', '001156.jpg', '000553.jpg', '001912.jpg', '000506.jpg', '000561.jpg', '002093.jpg', '001814.jpg', '001238.jpg', '002211.jpg', '001436.jpg', '000206.jpg', '002408.jpg', '000018.jpg', '001602.jpg', '000128.jpg', '001769.jpg', '001526.jpg', '002464.jpg', '000077.jpg', '002298.jpg', '001548.jpg', '001391.jpg', '000391.jpg', '001125.jpg', '001575.jpg', '001474.jpg', '000908.jpg', '001217.jpg', '002113.jpg', '001592.jpg', '000335.jpg', '001598.jpg', '001333.jpg', '000977.jpg', '002203.jpg', '001027.jpg', '001354.jpg', '000896.jpg', '001536.jpg', '000845.jpg', '000426.jpg', '001292.jpg', '001127.jpg', '000902.jpg', '001192.jpg', '001116.jpg', '000948.jpg', '001562.jpg', '001243.jpg', '000641.jpg', '001315.jpg', '002440.jpg', '000348.jpg', '001593.jpg', '000172.jpg', '001547.jpg', '000439.jpg', '000414.jpg', '002384.jpg', '002232.jpg', '000173.jpg', '000840.jpg', '002155.jpg', '002151.jpg', '001215.jpg', '000011.jpg', '002063.jpg', '000350.jpg', '001992.jpg', '000496.jpg', '001103.jpg', '000705.jpg', '001488.jpg', '000327.jpg', '001283.jpg', '002338.jpg', '001697.jpg', '000599.jpg', '001611.jpg', '001464.jpg', '001835.jpg', '000344.jpg', '001129.jpg', '001277.jpg', '002319.jpg', '001110.jpg', '000885.jpg', '000040.jpg', '000203.jpg', '002043.jpg', '001781.jpg', '000209.jpg', '001901.jpg', '000121.jpg', '001230.jpg', '001330.jpg', '000950.jpg', '000701.jpg', '000338.jpg', '002429.jpg', '002370.jpg', '000062.jpg', '002356.jpg', '001524.jpg', '002097.jpg', '001963.jpg', '002145.jpg', '001408.jpg', '000579.jpg', '001855.jpg', '000760.jpg', '000926.jpg', '002069.jpg', '001844.jpg', '000847.jpg', '002442.jpg', '001405.jpg', '000401.jpg', '000336.jpg', '000952.jpg', '001935.jpg', '001978.jpg', '000407.jpg', '000304.jpg', '001476.jpg', '001300.jpg', '001148.jpg', '002449.jpg', '002249.jpg', '000528.jpg', '000411.jpg', '000410.jpg', '000907.jpg', '001205.jpg', '001683.jpg', '000653.jpg', '001151.jpg', '000757.jpg', '002101.jpg', '001737.jpg', '001115.jpg', '001675.jpg', '002114.jpg', '001059.jpg', '000590.jpg', '001674.jpg', '001489.jpg', '002244.jpg', '000802.jpg', '002021.jpg', '001481.jpg', '000302.jpg', '001774.jpg', '001284.jpg', '001034.jpg', '000007.jpg', '001832.jpg', '000168.jpg', '000068.jpg', '000475.jpg', '001317.jpg', '000905.jpg', '002218.jpg', '002273.jpg', '000216.jpg', '002264.jpg', '000714.jpg', '000969.jpg', '000755.jpg', '001603.jpg', '000131.jpg', '001045.jpg', '000835.jpg', '002046.jpg', '002188.jpg', '000452.jpg', '002171.jpg', '002160.jpg', '001009.jpg', '000736.jpg', '002206.jpg', '001657.jpg', '000286.jpg', '000404.jpg', '000545.jpg', '000322.jpg', '000758.jpg', '001197.jpg', '000823.jpg', '000559.jpg', '001712.jpg', '001815.jpg', '001670.jpg', '001854.jpg', '001398.jpg', '001167.jpg', '000073.jpg', '001498.jpg', '000195.jpg', '000273.jpg', '000540.jpg', '000911.jpg', '000254.jpg', '001026.jpg', '001266.jpg', '000740.jpg', '000384.jpg', '000658.jpg', '002133.jpg', '001908.jpg', '000481.jpg', '002458.jpg', '000229.jpg', '001864.jpg', '000102.jpg', '001762.jpg', '000803.jpg', '000806.jpg', '000164.jpg', '001808.jpg', '002053.jpg', '002340.jpg', '001220.jpg', '002399.jpg', '001438.jpg', '000976.jpg', '001152.jpg', '002434.jpg', '001338.jpg', '001402.jpg', '000464.jpg', '000153.jpg', '000330.jpg', '000228.jpg', '002362.jpg', '002015.jpg', '002411.jpg', '002073.jpg', '000433.jpg', '001495.jpg', '002090.jpg', '001898.jpg', '002058.jpg', '000576.jpg', '000179.jpg', '000767.jpg', '002041.jpg', '001958.jpg', '001231.jpg', '002197.jpg', '000692.jpg', '000123.jpg', '001281.jpg', '000737.jpg', '001323.jpg', '002291.jpg', '001249.jpg', '000511.jpg', '001185.jpg', '000008.jpg', '000144.jpg', '000432.jpg', '000003.jpg', '002035.jpg', '000742.jpg', '002238.jpg', '000001.jpg', '002310.jpg', '001975.jpg', '000093.jpg', '000958.jpg', '001250.jpg', '001803.jpg', '000373.jpg', '001869.jpg', '001229.jpg', '000451.jpg', '001552.jpg', '000934.jpg', '000294.jpg', '001710.jpg', '000856.jpg', '002062.jpg', '001711.jpg', '000305.jpg', '000645.jpg', '001306.jpg', '002067.jpg', '001444.jpg', '001993.jpg', '001093.jpg', '000620.jpg', '001872.jpg', '001639.jpg', '002374.jpg', '000167.jpg', '001947.jpg', '000447.jpg', '000944.jpg', '000582.jpg', '000477.jpg', '000766.jpg', '002243.jpg', '000953.jpg', '001640.jpg', '001018.jpg', '001404.jpg', '000499.jpg', '000828.jpg', '000633.jpg', '001907.jpg', '000989.jpg', '000778.jpg', '001322.jpg', '001755.jpg', '000920.jpg', '000075.jpg', '000928.jpg', '001818.jpg', '001099.jpg', '001159.jpg', '001350.jpg', '001361.jpg', '000936.jpg', '001837.jpg', '000134.jpg', '002201.jpg', '001551.jpg', '001442.jpg', '001014.jpg', '001809.jpg', '002215.jpg', '000310.jpg', '001461.jpg', '002331.jpg', '000811.jpg', '002404.jpg', '001840.jpg', '002192.jpg', '001194.jpg', '001136.jpg', '002345.jpg', '001372.jpg', '000783.jpg', '002484.jpg', '001107.jpg', '001823.jpg', '002267.jpg', '002364.jpg', '000810.jpg', '001256.jpg', '001509.jpg', '001889.jpg', '000987.jpg', '000094.jpg', '000996.jpg', '001002.jpg', '000904.jpg', '002117.jpg', '000039.jpg', '001523.jpg', '002254.jpg', '000079.jpg', '002245.jpg', '001916.jpg', '000613.jpg', '000189.jpg', '000480.jpg', '000239.jpg', '002009.jpg', '001994.jpg', '002459.jpg', '001022.jpg', '001905.jpg', '000140.jpg', '000893.jpg', '000598.jpg', '001380.jpg', '000507.jpg', '002468.jpg', '001704.jpg', '000844.jpg', '002234.jpg', '002337.jpg', '001609.jpg', '000696.jpg', '001379.jpg', '002174.jpg', '001142.jpg', '001971.jpg', '000110.jpg', '001113.jpg', '000703.jpg', '002066.jpg', '001158.jpg', '000942.jpg', '001466.jpg', '002279.jpg', '000154.jpg', '001121.jpg', '000200.jpg', '001892.jpg', '002297.jpg', '001006.jpg', '000265.jpg', '000919.jpg', '002148.jpg', '001491.jpg', '000956.jpg', '000315.jpg', '000423.jpg', '001449.jpg', '002120.jpg', '000395.jpg', '002463.jpg', '000580.jpg', '001501.jpg', '001162.jpg', '000359.jpg', '001486.jpg', '002233.jpg', '001927.jpg', '000629.jpg', '002437.jpg', '000657.jpg', '001267.jpg', '000061.jpg', '001741.jpg', '000285.jpg', '000250.jpg', '000022.jpg', '000785.jpg', '002018.jpg', '000975.jpg', '001518.jpg', '001132.jpg', '000839.jpg', '000142.jpg', '002022.jpg', '000038.jpg', '001828.jpg', '001822.jpg', '001933.jpg', '000132.jpg', '000078.jpg', '001599.jpg', '001746.jpg', '001054.jpg', '001154.jpg', '001293.jpg', '001446.jpg', '000741.jpg', '000058.jpg', '002079.jpg', '000069.jpg', '001857.jpg', '001328.jpg', '002417.jpg', '001297.jpg', '000490.jpg', '001668.jpg', '000231.jpg', '001517.jpg', '001651.jpg', '000272.jpg', '000790.jpg', '000497.jpg', '002476.jpg', '000871.jpg', '001218.jpg', '001652.jpg', '000754.jpg', '000202.jpg', '001074.jpg', '000670.jpg', '000369.jpg', '000378.jpg', '000819.jpg', '002178.jpg', '001643.jpg', '000984.jpg', '002011.jpg', '001642.jpg', '000289.jpg', '000180.jpg', '002236.jpg', '001679.jpg', '001137.jpg', '000690.jpg', '000915.jpg', '000899.jpg', '000074.jpg', '001011.jpg', '000317.jpg', '000748.jpg', '001376.jpg', '001108.jpg', '002381.jpg', '001615.jpg', '002311.jpg', '001174.jpg', '002275.jpg', '000536.jpg', '001410.jpg', '000747.jpg', '001664.jpg', '000601.jpg', '001270.jpg', '001334.jpg', '001727.jpg', '001560.jpg', '000873.jpg', '000637.jpg', '001505.jpg', '000990.jpg', '001308.jpg', '002422.jpg', '001321.jpg', '001527.jpg', '000367.jpg', '002051.jpg', '000214.jpg', '000388.jpg', '002462.jpg', '000836.jpg', '002455.jpg', '001386.jpg', '001390.jpg', '002271.jpg', '001605.jpg', '001457.jpg', '001212.jpg', '001936.jpg', '000726.jpg', '001248.jpg', '000680.jpg', '001510.jpg', '002119.jpg', '002147.jpg', '002110.jpg', '001941.jpg', '002100.jpg', '002172.jpg', '002406.jpg', '000901.jpg', '000047.jpg', '000152.jpg', '000529.jpg', '002277.jpg', '002494.jpg', '000949.jpg', '001995.jpg', '000125.jpg', '001349.jpg', '000913.jpg', '002200.jpg', '001601.jpg', '001314.jpg', '002087.jpg', '001357.jpg', '001508.jpg', '002316.jpg', '001344.jpg', '002335.jpg', '001241.jpg', '002452.jpg', '000605.jpg', '000597.jpg', '001786.jpg', '001097.jpg', '001843.jpg', '000567.jpg', '000667.jpg', '001131.jpg', '001620.jpg', '002130.jpg', '001938.jpg', '001465.jpg', '001403.jpg', '000349.jpg', '001112.jpg', '000316.jpg', '001880.jpg', '000056.jpg', '001929.jpg', '000510.jpg', '002212.jpg', '001965.jpg', '001648.jpg', '002189.jpg', '001459.jpg', '000412.jpg', '001287.jpg', '000245.jpg', '000870.jpg', '000578.jpg', '001850.jpg', '001161.jpg', '001584.jpg', '001223.jpg', '001785.jpg', '001610.jpg', '000050.jpg', '000234.jpg', '000980.jpg', '002086.jpg', '002030.jpg', '002394.jpg', '000311.jpg', '000795.jpg', '000662.jpg', '002414.jpg', '000886.jpg', '002122.jpg', '001262.jpg', '002039.jpg', '000683.jpg', '002141.jpg', '002293.jpg', '000021.jpg', '001418.jpg', '001883.jpg', '001000.jpg', '001430.jpg', '000160.jpg', '000617.jpg', '001790.jpg', '001072.jpg', '001700.jpg', '001055.jpg', '000889.jpg', '001309.jpg', '000698.jpg', '000718.jpg', '000812.jpg', '001274.jpg', '001067.jpg']\n", + "000223.jpg\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:dropbox:Unable to refresh access token without refresh token and app key\n" + ] + }, + { + "output_type": "error", + "ename": "AuthError", + "evalue": "AuthError('909ed31e8fbc4506a0ed5ee8e6eecde0', AuthError('expired_access_token', None))", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAuthError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mrun_pipeline\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvideo_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mimg_dataset_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mmain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36mmain\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mmodel_path\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"/content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/Current Best model/Potholes and Driveable Area seperated/bestDriveableArea.pt\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mimg_dataset_path\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"/content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mrun_pipeline\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvideo_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mimg_dataset_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0mmain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mrun_pipeline\u001b[0;34m(model_wts_path, video_path, img_dataset_path)\u001b[0m\n\u001b[1;32m 107\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"data saved locally in {data_dir}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 108\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 109\u001b[0;31m \u001b[0mupload_dataset_to_dropbox\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"YOLO_soft_labeled_data\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mDBX_TOKEN\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 110\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"dataset uploaded to dropbox\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mupload_dataset_to_dropbox\u001b[0;34m(dataset_name, dbx_access_token, dataset_type)\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misfile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mfile\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 31\u001b[0;31m \u001b[0mdbx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfiles_upload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdropbox_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdropbox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfiles\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mWriteMode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"overwrite\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 32\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"Uploaded {filename} to Dropbox.\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 33\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/dropbox/base.py\u001b[0m in \u001b[0;36mfiles_upload\u001b[0;34m(self, f, path, mode, autorename, client_modified, mute, property_groups, strict_conflict, content_hash)\u001b[0m\n\u001b[1;32m 3212\u001b[0m \u001b[0mstrict_conflict\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3213\u001b[0m content_hash)\n\u001b[0;32m-> 3214\u001b[0;31m r = self.request(\n\u001b[0m\u001b[1;32m 3215\u001b[0m \u001b[0mfiles\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupload\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3216\u001b[0m \u001b[0;34m'files'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/dropbox/dropbox_client.py\u001b[0m in \u001b[0;36mrequest\u001b[0;34m(self, route, namespace, request_arg, request_binary, timeout)\u001b[0m\n\u001b[1;32m 324\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrequest_arg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtimeout\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m90\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 325\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 326\u001b[0;31m res = self.request_json_string_with_retry(host,\n\u001b[0m\u001b[1;32m 327\u001b[0m \u001b[0mroute_name\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[0mroute_style\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/dropbox/dropbox_client.py\u001b[0m in \u001b[0;36mrequest_json_string_with_retry\u001b[0;34m(self, host, route_name, route_style, request_json_arg, auth_type, request_binary, timeout)\u001b[0m\n\u001b[1;32m 474\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_logger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Request to %s'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mroute_name\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 475\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 476\u001b[0;31m return self.request_json_string(host,\n\u001b[0m\u001b[1;32m 477\u001b[0m \u001b[0mroute_name\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 478\u001b[0m \u001b[0mroute_style\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/dropbox/dropbox_client.py\u001b[0m in \u001b[0;36mrequest_json_string\u001b[0;34m(self, host, func_name, route_style, request_json_arg, auth_type, request_binary, timeout)\u001b[0m\n\u001b[1;32m 593\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 594\u001b[0m )\n\u001b[0;32m--> 595\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mraise_dropbox_error_for_resp\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 596\u001b[0m \u001b[0mrequest_id\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mheaders\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'x-dropbox-request-id'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 597\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstatus_code\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m403\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m404\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m409\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.11/dist-packages/dropbox/dropbox_client.py\u001b[0m in \u001b[0;36mraise_dropbox_error_for_resp\u001b[0;34m(self, res)\u001b[0m\n\u001b[1;32m 636\u001b[0m err = stone_serializers.json_compat_obj_decode(\n\u001b[1;32m 637\u001b[0m AuthError_validator, res.json()['error'])\n\u001b[0;32m--> 638\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mAuthError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrequest_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 639\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstatus_code\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mHTTP_STATUS_INVALID_PATH_ROOT\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 640\u001b[0m err = stone_serializers.json_compat_obj_decode(\n", + "\u001b[0;31mAuthError\u001b[0m: AuthError('909ed31e8fbc4506a0ed5ee8e6eecde0', AuthError('expired_access_token', None))" + ] + } + ], + "source": [ + "# Main Function\n", + "\n", + "def main():\n", + " # Modify paths as required\n", + " video_path = \"/content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/videos/comp23_2 (1).mp4\"\n", + " model_path = \"/content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/Current Best model/Potholes and Driveable Area seperated/bestDriveableArea.pt\"\n", + " img_dataset_path = \"/content/drive/Shareddrives/STUDENT-Robotics | UMARV/2024 - 2025/Computer Vision/YOLO_test_data\"\n", + " run_pipeline(model_path, video_path, img_dataset_path)\n", + "\n", + "main()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "i9QMX4RRuvev" + }, + "source": [ + "Import Libraries" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "6YXxEdBDMFwU" + }, + "outputs": [], + "source": [ + "import os\n", + "import sys\n", + "from getpass import getpass\n", + "import torch.optim as optim\n", + "!pip install dropbox > /dev/null" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gkT8lfNzuvev" + }, + "source": [ + "Configure Environment" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ybVjyhDKuvew" + }, + "outputs": [], + "source": [ + "os.environ[\"ENVIRONMENT\"] = \"colab\"\n", + "os.environ[\"REPO_DIR\"] = \"/content/UMARV-CV-ScenePerception\"\n", + "os.environ[\"ROOT_DIR\"] = \"/content\"\n", + "os.environ[\"MODEL_ID\"] = \"32offjns\"\n", + "os.environ[\"MODEL_DIR\"] = f\"{os.getenv('REPO_DIR')}/models/model_{os.getenv('MODEL_ID')}\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TWu7wpa8IRD1" + }, + "source": [ + "Configure git" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "EXXt5L25_kb6", + "outputId": "9acce5fe-84b8-47ea-b60d-394676067c1b", + "collapsed": true + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Cloning into 'UMARV-CV-ScenePerception'...\n", + "remote: Enumerating objects: 3772, done.\u001b[K\n", + "remote: Counting objects: 100% (35/35), done.\u001b[K\n", + "remote: Compressing objects: 100% (21/21), done.\u001b[K\n", + "remote: Total 3772 (delta 20), reused 16 (delta 14), pack-reused 3737 (from 1)\u001b[K\n", + "Receiving objects: 100% (3772/3772), 206.48 MiB | 20.42 MiB/s, done.\n", + "Resolving deltas: 100% (1184/1184), done.\n", + "Updating files: 100% (278/278), done.\n", + "/content/UMARV-CV-ScenePerception\n" + ] + } + ], + "source": [ + "# Fill in branch\n", + "git_branch = \"SemiSupervisedLearning\"\n", + "\n", + "while not git_branch:\n", + " git_branch = input(\"Enter your branch: \")\n", + "\n", + "git_repo_url = \"https://github.com/umigv/UMARV-CV-ScenePerception.git\"\n", + "!git clone -b $git_branch $git_repo_url\n", + "%cd \"{os.getenv('REPO_DIR')}\"" + ] + }, + { + "cell_type": "code", + "source": [ + "!git pull" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Crt7BTSfDDxL", + "outputId": "9c656db7-db39-4adc-aec3-f281c8de6645" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Already up to date.\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xSweYiWWuvex" + }, + "source": [ + "Import Repository Resources" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "CEdtcERFuvex" + }, + "outputs": [], + "source": [ + "sys.path.insert(0, f\"{os.getenv('REPO_DIR')}/src/scripts\")\n", + "from helpers import *\n", + "\n", + "sys.path.insert(0, f\"{os.getenv('MODEL_DIR')}/src\")\n", + "from methods import *\n", + "from architecture import *\n", + "from dataset import *" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "k-KAwzyXuvex" + }, + "source": [ + "Download Datasets" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "F6_-eP8quvex", + "outputId": "250e04c8-e37f-4266-a90c-b48cb51cb559" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Enter your DropBox access token: ··········\n" + ] + } + ], + "source": [ + "dbx_access_token = getpass(\"Enter your DropBox access token: \")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mGZ0j_T0uvex", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 883, + "referenced_widgets": [ + "4a9bbc41a3d242b2bc3449e75b8a75d2", + "c00a246584bc4a168c12b2d377a1da6a", + "dbfb286a7b574f5e8df2ed1d6c46906a", + "305f9855c2f94ec2b5e57bad32c5888c", + "1dfec75c1d1c4b7697f903d0f0aa2be5", + "5abe78542d8145818bf2a015ea3640c6", + "321a408d2444490baec8e44360e350c1", + "9ae60db0827a4d5b8a21b9cddb658380", + "e0204cc162484e5ca8692f06c6d46989", + "ea0232825343456ab6d3c893d051eb92", + "0e1f108295c14df59a826cdda7cfd718", + "01639fe8ebf645ccb5592a4398a57513", + "fca40378b2ad4b8f8db43dd8253579d4", + "a440eacac2314b1795480a3f5a582bc4", + "888b7adc921b4d7fb9472f242b24b0c0", + "b59b25de69cd4795960654e88888418a", + "58b1a126732848439de8d6c0a220e8c3", + "8de823d4171a49b3bace60b0849045db", + "54bb9a34c8664366bed359cd854125c2", + "ab0383256aaf47f5a4b9b10da10ac4c6", + "4cc6e77faab04000aae4a2e391c0f40b", + "2a66d575c08946ef89735073c37e56aa", + "80b8f02c65c8447284de688e3592470d", + "fea915cf5e524bf6ba5df2ef98c1be22", + "dfce39112a5e4300acb652d493f636b6", + "0d9b4e60c67f4ed6b6ca5071391534a6", + "ca89bafee2d64b51ad3a25c7e1696dbe", + "9438f03d012b4424bcc2452f84b6e42a", + "ab0a3d152d6544999ad0e0c0597a7114", + "69d10daf38b6410a840427c2b79849da", + "e5447b1b159d441bafa64e7a839cdcc0", + "73ab0c6dcf6f4b8fb6d2202654b5b501", + "a510c6443a924be28121594b8ec60085", + "2aa49bf2f39f4da5aa9d0a9c5883ea38", + "07cd64bda61d464aaee964a6a3b76579", + "18888f06c871404aa65dd22d873c1145", + "87e2871f05534fbf88b0676131b14632", + "fb90fc68c3d848da8f2d0d120842f29c", + "d21acf1336244ce9a232879226f501ed", + "14025b3e2803455d9af495f475df45da", + "5c4412ecd9f6420389d7935e9e9b7d44", + "dcc61bd19d4b4a81bf744377bb933437", + "8811737a5be44e2fa776316ffb43a649", + "83a174c5b425485695a7ee6a980be4a3", + "2238e9f621f347679bf771cbee23d8f7", + "4769a9b6e82b4ab99b5b64279f53fa71", + "4e2bac366ce842cebbf2269fd7c0a175", + "81e88cb51c1a471ab6c800718502262f", + "ff4a462cb3744ea2b766ac6ae879cfc7", + "afdffa0249314e5c89ef644af870294f", + "aae6dab6943e4469a1e341e9ceb5ac5d", + "e1181befe6de4519945b43ab9a9ca652", + "b4455eb1f3bb402fb60ad4b8c9051d0d", + "033118afa29c4e199fdb11c30906f4a8", + "fb02cabda27b4d60a287a0b4b34a4d6c", + "bda6c7a71b7a47e299235ef97d57605a", + "a5777459779c49219d353900280b721e", + "a4c336018f79456a98571dc8782099c0", + "24e7b8528fe742cc883b69bf615e222e", + "8a98bed10ba44720acc0e115ff77861f", + "0f18911716f343b4bac8dfaa9dbe11e4", + "873c1aa0f2e143b297fa2709d9c56184", + "557f15887f3a436193261597567b5f0d", + "664b2c542b0f4953a1387b804738ba96", + "7cea37a70b1d44df84e4155b0781c505", + "af76fffc1b2d497086f7f2b5d4ba3ae3", + "65a6b2db867048ffa791eba82f15228f", + "4c8363fc1f8546c783cb60da8209a24e", + "8c339467d5a945429b4c72032a7ac4d6", + "f657a5fbd4cb45228c0c908e25044275", + "50621f8ddd204614a7771a25069e96f5", + "a6c458994bc241efb427e9bdb070a6e6", + "5adcdbc1829b498b87db47133fcd82ee", + "e9688082c2ea4f02aae17c2021924ba3", + "12ba0c7a03724d4bb651e7f1c6c74525", + "8f621137d3e74768a67e0d694e838d47", + "1268e9d91c164e7e8c726b4d880097d4" + ] + }, + "outputId": "109afb52-e3b0-4c40-fa05-3df1137562f2" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading /UMARV/ComputerVision/ScenePerception/datasets/YOLO_soft_labeled_data :: 0%| | 0/2 [00:…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "4a9bbc41a3d242b2bc3449e75b8a75d2" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading /UMARV/ComputerVision/ScenePerception/datasets/YOLO_soft_labeled_data/label :: 0%| | 0/…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "01639fe8ebf645ccb5592a4398a57513" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading /UMARV/ComputerVision/ScenePerception/datasets/YOLO_soft_labeled_data/label/background :: 0 image …" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "80b8f02c65c8447284de688e3592470d" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading /UMARV/ComputerVision/ScenePerception/datasets/YOLO_soft_labeled_data/label/cones :: 0 image [00:0…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "2aa49bf2f39f4da5aa9d0a9c5883ea38" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading /UMARV/ComputerVision/ScenePerception/datasets/YOLO_soft_labeled_data/label/lane_lines :: 0 image …" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "2238e9f621f347679bf771cbee23d8f7" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading /UMARV/ComputerVision/ScenePerception/datasets/YOLO_soft_labeled_data/data :: 0%| | 0/2…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "bda6c7a71b7a47e299235ef97d57605a" + } + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading /UMARV/ComputerVision/ScenePerception/datasets/YOLO_soft_labeled_data/label/drivable_area :: 0%|…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "65a6b2db867048ffa791eba82f15228f" + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n", + "WARNING:urllib3.connectionpool:Connection pool is full, discarding connection: api.dropboxapi.com. Connection pool size: 8\n" + ] + } + ], + "source": [ + "download_datasets_from_dropbox(\n", + " dbx_access_token = dbx_access_token,\n", + " include_all_datasets = False,\n", + " use_thread = True,\n", + " datasets=[\"YOLO_soft_labeled_data\"]\n", + ")\n", + "\n", + "# upload_datasets_to_google_drive()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "XVw4h3mEuvex" + }, + "outputs": [], + "source": [ + "# get_datasets_from_google_drive()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xh4-Gg6vL2R3" + }, + "source": [ + "Code" + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "torch.cuda.empty_cache()" + ], + "metadata": { + "id": "IpjMjmjUmi01" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0t0BM_lS_6yq" + }, + "outputs": [], + "source": [ + "num_epochs = 100\n", + "batch_size = 8\n", + "val_size = 50" + ] + }, + { + "cell_type": "code", + "source": [ + "import gc\n", + "gc.collect()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RNUUE4C01SGa", + "outputId": "8957e93e-0f67-4d06-a7b9-a80f60b34abc" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "72" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9LuKgYstuvey", + "outputId": "a91a2472-c1f5-4ec0-bfaa-4f3fb3a1b473" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Using GPU!\n", + "Downloaded model weights from Dropbox.\n", + "/content/datasets\n", + "[{'dataset': 'YOLO_soft_labeled_data', 'idx': 179}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2433}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 152}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1155}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2461}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2407}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 301}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2064}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1392}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1437}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 441}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 586}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 58}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2018}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2290}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2112}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 379}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2159}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 549}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2457}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 722}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 388}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 274}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1961}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1286}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 993}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 729}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1769}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1163}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1978}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 112}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 960}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 728}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2076}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1789}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1029}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 67}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2399}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 713}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 843}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1469}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1979}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1929}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1999}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1037}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1938}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1428}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 419}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1886}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2056}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2449}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1797}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1827}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1569}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1734}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 727}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 990}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 114}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 905}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2178}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 425}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1465}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1206}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 108}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 163}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1460}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1604}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2162}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 17}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1044}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 350}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1888}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1139}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 331}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1140}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 256}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 643}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 197}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2030}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 900}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1964}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2102}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 797}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1587}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 374}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 676}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1273}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 745}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1321}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1968}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2065}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1803}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2106}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1320}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1610}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 311}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1061}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 440}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 70}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1872}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2061}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 150}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 242}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1562}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1966}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2259}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1405}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 712}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2218}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2305}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1239}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 552}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1052}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 488}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 149}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2287}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 751}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 944}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1120}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 181}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2382}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 233}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1877}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 542}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1937}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 702}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1170}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1238}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 847}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 202}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 438}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1485}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 271}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 882}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1721}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 255}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2358}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 137}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 624}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1256}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1376}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1426}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 612}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1207}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2381}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 575}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 725}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1993}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1775}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 207}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2301}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1057}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 844}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1146}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1354}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2169}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 258}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2278}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1930}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1191}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1277}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 23}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 125}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 42}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1668}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 652}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 436}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2437}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2092}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1126}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 260}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1629}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 387}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 362}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 235}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1645}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1989}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1611}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 810}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 777}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 887}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1912}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1324}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1079}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 433}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1481}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 495}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1636}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1278}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 161}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1387}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 808}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1969}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1235}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1280}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 781}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1308}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 208}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2391}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 321}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 898}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 718}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 537}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 876}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 323}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 62}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 748}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 455}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 459}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 817}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1510}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1603}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2263}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 674}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 482}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 531}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2116}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1980}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1453}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2227}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1500}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2182}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 567}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1258}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 610}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1438}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 380}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1594}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1884}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1143}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 474}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 410}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 335}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1664}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 291}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 211}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 322}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 555}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1487}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1226}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 509}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2401}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 206}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1463}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 907}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1148}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2279}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2357}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1302}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2441}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 950}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1754}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1440}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 663}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1842}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 845}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 99}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 105}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1494}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1073}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1477}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1807}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 215}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 635}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1907}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1759}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1373}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2395}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 370}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2082}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 526}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2376}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 81}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2135}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1541}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1871}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 606}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1631}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1379}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2036}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1165}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1458}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1623}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1771}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1083}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2416}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1943}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 285}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 46}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1086}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 820}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1250}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1543}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1756}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 292}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 598}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 16}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2179}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2193}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 27}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1988}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 92}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 136}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 671}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2350}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1072}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2155}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2110}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2117}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2467}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 969}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1933}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 403}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1911}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2314}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1919}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1647}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1628}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1575}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1663}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2310}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1282}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1675}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 113}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1413}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 622}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1138}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2445}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 25}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2428}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 450}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2342}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1470}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2150}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 630}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 144}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2320}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1525}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 574}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2251}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2137}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 143}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2303}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 863}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1757}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2408}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1971}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 976}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1719}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1115}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 147}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 988}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1683}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 249}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1925}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 288}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 594}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1738}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2226}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1498}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1750}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 911}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1000}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 142}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1381}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2214}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1866}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1216}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 8}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1350}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 347}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 581}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 278}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2283}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1103}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2469}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 221}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2037}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 922}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1785}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2463}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 310}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 176}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1990}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1075}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1328}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1068}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 551}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2038}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2207}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2166}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 470}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1847}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 618}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2240}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2012}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 592}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2134}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1774}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 49}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1765}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 18}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 620}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1141}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1770}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1166}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1416}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 680}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1674}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1491}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1346}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2375}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 344}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 933}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 564}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 14}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1397}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1121}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 460}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1026}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1972}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1253}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 195}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1846}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 159}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1899}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 483}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2154}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 368}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1905}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2164}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1137}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1796}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 90}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1729}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 675}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 444}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 880}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2269}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1627}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2410}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1089}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 966}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 219}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2185}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1246}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 561}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2011}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 512}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1698}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1677}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 850}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1874}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1826}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2481}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 127}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 861}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1723}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 631}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1264}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 757}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 359}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1309}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2249}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1722}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1823}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 830}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1860}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1515}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1861}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 363}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1178}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1001}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2010}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 524}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1284}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 133}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 928}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 486}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1908}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1007}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1533}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 607}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2282}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1550}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 212}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 741}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1563}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 502}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1991}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1632}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2077}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 634}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2023}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1050}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2344}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1015}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 951}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 499}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1927}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 838}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1835}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 339}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 38}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1995}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1257}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 151}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2136}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1634}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1055}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 283}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2204}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 12}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 135}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 874}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2464}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1793}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 588}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 185}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 82}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2465}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 188}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 755}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2232}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 788}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1318}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1836}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1251}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 938}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1035}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1523}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2195}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 877}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 740}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 912}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1732}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1174}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1313}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 182}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1454}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 96}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 780}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1670}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1108}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1452}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1997}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 71}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1230}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 201}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1508}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 57}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1296}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1637}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1957}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 560}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1189}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 330}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1348}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 21}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1161}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2066}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1537}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 837}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2171}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1792}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 297}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2228}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 650}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 983}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 608}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 449}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1802}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1519}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1116}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1162}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 568}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1609}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2447}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1339}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 605}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 318}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 448}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1369}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2132}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 257}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 773}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1451}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2321}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2308}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1612}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 873}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 835}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 508}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 921}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 550}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1468}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 165}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1762}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2289}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1038}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2174}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 626}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 973}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1331}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1046}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1218}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1353}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 36}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1918}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 984}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 228}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2215}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 472}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 693}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 139}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1160}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1531}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1417}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1167}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 121}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 140}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 689}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2197}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1854}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1671}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 538}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1074}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 956}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1402}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 480}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 69}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1505}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1896}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2324}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2084}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 750}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1056}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1110}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 572}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1439}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 442}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 957}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 326}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1704}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1242}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 776}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 756}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1958}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2086}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 611}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2419}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 74}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1707}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 765}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1335}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1187}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1942}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2020}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1194}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1243}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2046}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 396}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1521}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2219}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2004}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 264}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 132}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 858}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 832}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2153}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1159}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2019}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1725}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 885}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1269}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1953}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 366}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 24}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2146}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1894}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1275}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 516}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1960}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2274}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1630}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1692}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 381}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1661}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 302}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 117}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2264}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2379}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1100}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1811}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1237}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1574}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1283}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 746}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2392}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 180}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 492}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1252}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 314}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1317}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1926}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 834}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 395}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1190}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1862}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1422}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 193}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 192}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 540}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 109}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2070}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1546}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1427}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1694}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 279}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1236}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 709}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 164}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 964}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 66}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1305}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1699}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 497}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 191}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 683}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 98}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 754}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1372}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 189}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1751}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 589}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1489}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1613}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 865}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2024}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1158}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 123}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2250}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2316}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 602}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1367}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2436}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1904}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1761}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 918}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 174}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 293}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2107}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 510}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1312}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1781}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 603}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 134}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1768}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 991}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 491}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1832}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2071}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1673}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 915}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 494}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2009}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 240}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2413}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 214}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 812}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 654}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 78}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 548}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1128}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1963}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 452}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 670}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2276}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 558}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 316}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1136}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1466}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1507}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1412}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1536}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2111}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 378}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2237}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2412}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 818}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 94}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2277}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2028}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 806}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2148}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 859}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1443}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2081}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1028}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 617}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1984}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1476}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1098}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 141}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1935}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2163}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2208}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 19}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1876}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1182}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1031}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1853}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1144}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2270}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 577}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2057}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 456}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 111}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1295}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1649}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2333}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 628}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1234}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 523}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1382}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1361}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 696}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1315}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 177}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2025}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1495}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1300}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 261}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1592}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 65}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 106}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2459}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2462}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 986}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 466}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2454}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2114}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 401}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 724}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1101}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1434}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 803}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 726}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 130}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1301}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1566}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 429}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 224}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2472}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2386}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 270}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 633}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 871}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1201}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 454}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 927}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 831}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 896}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1396}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 75}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 899}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1567}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1499}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 490}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1923}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2113}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1008}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2348}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2022}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 439}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1060}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1145}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1863}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2331}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1976}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 711}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 496}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 926}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1197}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 320}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1597}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 329}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1224}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2074}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 7}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1947}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1873}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1323}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1654}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1411}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1347}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1706}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 704}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 360}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2418}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 336}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 982}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1267}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1370}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1878}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1085}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2152}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1383}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2360}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2452}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1474}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 868}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 814}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 169}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 673}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 813}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1784}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2424}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1319}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 216}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1614}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2468}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1553}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 931}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1666}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 76}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 948}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 500}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1455}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2175}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2451}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1901}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1708}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1227}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2266}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 424}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1048}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1839}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 146}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2221}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2253}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2220}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1586}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1583}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2042}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 996}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2402}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 28}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 520}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1459}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1020}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 284}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1375}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1404}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 739}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 717}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2450}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1133}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 251}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 281}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1343}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1715}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 324}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 962}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 39}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1809}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1742}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1095}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1473}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1714}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2338}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 175}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1406}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 73}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 703}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 447}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2293}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1512}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2286}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2362}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2431}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 833}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2494}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1818}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 919}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 485}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2318}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1903}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1004}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1658}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 203}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 517}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 980}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1532}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1322}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 431}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 794}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2423}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2295}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 841}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 33}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1840}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2258}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 695}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 688}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 467}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 458}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1058}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2001}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 872}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2234}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1033}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1414}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2435}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1340}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2275}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1378}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1786}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1132}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 104}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2176}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2252}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1198}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 220}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 498}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 348}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1659}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1248}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1185}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2105}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 681}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1091}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1374}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 309}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 107}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 154}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 823}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 644}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2302}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1274}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1996}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2432}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1790}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 89}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2406}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 406}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 679}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 569}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1357}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 932}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2411}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1728}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 759}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1461}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 578}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1345}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2059}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1787}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1106}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 655}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1994}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 239}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1059}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 978}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 518}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 949}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 238}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1172}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2090}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2345}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 411}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 881}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2347}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 731}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2128}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1391}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2052}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 183}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 864}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 343}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1407}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 764}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1131}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1998}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1906}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1153}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 939}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2206}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2487}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 10}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1618}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 855}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 536}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 705}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1688}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 805}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 304}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 723}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 694}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 547}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 521}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2047}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1310}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2377}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 752}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1069}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1254}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 31}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 742}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2427}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1949}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 768}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1600}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2393}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1467}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 178}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1399}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2095}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 667}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2138}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 952}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 277}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2271}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 276}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 253}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 265}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 619}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1122}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1223}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1691}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1578}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2313}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 616}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1018}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1856}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1801}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1244}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1188}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 126}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 846}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 156}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 422}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1779}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1695}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1070}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2492}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2473}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 719}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1633}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2255}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2072}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1924}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 744}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 632}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2439}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2016}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2121}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 942}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1753}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2482}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 822}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 968}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1099}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1954}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2272}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1891}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2355}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1208}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1824}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 639}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1181}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 369}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 698}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2093}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2201}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1299}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1776}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1027}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1152}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 168}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 190}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 893}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 946}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 714}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 853}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 761}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 660}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 760}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2156}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 457}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1114}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 878}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2053}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1090}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1590}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 50}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 30}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1087}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1828}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 41}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 167}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2048}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2126}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 386}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1551}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 116}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1192}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 597}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1006}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 894}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 160}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2008}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1409}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 809}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2080}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 162}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 267}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1260}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1271}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1680}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 317}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 218}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2223}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1390}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 930}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1432}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1724}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 625}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 275}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 414}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 227}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2389}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2100}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 204}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 784}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 34}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1210}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2336}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 566}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 870}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2078}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1526}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1565}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2479}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1559}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 487}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2306}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1430}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1916}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 669}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 929}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1588}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1171}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1368}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2317}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1516}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2422}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1799}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2034}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 972}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1739}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1076}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2143}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 977}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1794}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2196}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1005}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2222}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 974}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 469}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2284}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 890}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1915}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 535}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 308}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 573}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1344}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1662}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1864}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 595}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 172}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 13}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2031}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 913}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1067}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1702}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 338}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1711}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 901}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 998}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2119}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1488}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1561}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 471}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 493}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 418}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1511}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1880}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 582}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1542}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 766}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 22}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 658}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1881}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 245}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 60}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1741}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1355}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2312}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 672}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1168}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1805}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1080}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 613}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1867}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 514}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 796}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2326}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1727}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2298}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2131}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1134}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 337}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1154}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 554}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2456}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1270}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1377}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 3}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1261}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 64}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 475}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1363}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 909}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 692}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1047}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1962}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 398}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2236}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 891}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1766}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 543}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1199}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 408}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 504}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1970}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 376}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 236}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 83}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2060}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2294}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1893}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 407}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 289}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 101}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1365}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 662}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1749}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 4}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 11}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2089}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2245}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1088}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1400}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 937}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 290}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2183}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2400}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 665}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 319}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 468}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2050}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2191}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 248}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1718}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 434}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 570}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1169}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1672}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 223}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1940}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1676}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2281}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 604}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 513}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1731}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2292}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1624}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1868}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1538}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2242}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1642}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1599}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2233}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2398}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1380}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1843}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2453}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1410}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 437}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1292}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 0}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1804}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 941}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1939}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 196}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 895}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1522}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2087}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 377}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1214}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 372}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 148}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2477}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2405}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 365}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2327}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1579}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 392}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1398}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2177}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 737}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 200}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1456}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2088}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1890}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1849}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 546}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1337}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1782}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1492}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2017}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1445}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 828}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2261}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2027}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 97}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 299}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2029}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 155}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 15}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1955}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1643}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 792}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1703}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1493}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 464}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1808}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1483}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 770}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 246}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 541}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 462}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 862}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2246}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1017}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 690}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1276}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1967}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 334}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 404}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 815}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1602}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1297}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1650}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1221}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 706}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 446}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 641}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 971}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 145}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 157}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2328}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1981}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1986}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 29}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2493}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2141}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2378}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1621}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1202}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1726}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 994}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 747}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 229}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1639}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 315}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2247}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 394}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1249}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1419}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 478}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1548}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 184}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 961}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1772}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2210}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 55}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1655}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1798}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1513}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 824}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1288}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2058}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 836}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 721}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1179}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1913}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1129}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2202}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1272}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 720}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1435}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1341}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1535}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1625}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 904}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1689}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1082}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 280}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 296}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1557}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 269}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1364}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1529}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 557}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1102}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1220}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 528}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1591}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1758}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2013}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 804}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1359}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1118}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 967}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1735}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1985}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1767}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1593}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1859}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 975}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2488}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 585}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2158}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1855}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2248}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 785}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 345}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 72}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2129}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2480}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1053}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 262}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 506}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 451}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1697}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2434}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1822}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2002}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 767}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2172}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 653}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 263}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1211}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 445}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1289}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1679}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 647}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2097}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 614}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2186}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2296}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1219}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1421}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1941}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2366}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 226}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1290}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1358}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 955}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1196}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1851}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2109}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 687}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1294}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1213}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2370}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 947}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2475}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 769}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 583}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2363}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1712}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1034}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1064}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2167}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 115}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 84}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1109}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1010}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1883}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 839}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 999}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1013}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 515}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2122}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2335}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2476}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 910}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 527}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 981}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2194}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1834}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2397}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 268}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1486}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1262}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 664}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 953}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 790}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1036}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 563}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1360}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1944}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2425}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 138}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 596}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1601}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1449}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 889}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1147}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1900}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1518}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 637}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1777}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2471}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1306}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2466}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1806}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2205}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1173}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2354}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 340}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 312}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2485}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1217}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2229}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 47}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1247}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 325}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2334}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 171}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1051}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1041}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1687}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 562}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 787}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 503}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2364}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 892}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1279}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 992}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 230}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 328}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 479}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 393}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 989}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 778}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1571}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1330}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2371}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 383}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1334}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1549}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1177}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2149}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1298}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 819}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1852}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 128}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1760}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1502}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1959}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1356}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 102}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1241}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1705}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 86}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 807}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 840}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1424}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1897}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1164}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2359}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1638}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1640}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 353}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1733}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 231}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 869}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1810}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1921}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 591}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2118}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1482}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 385}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 852}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1105}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 593}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1744}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1329}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 399}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 666}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 354}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1641}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 63}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1879}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 342}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1517}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1448}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1420}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1946}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2192}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1209}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1652}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2446}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 811}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1200}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2403}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1800}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 259}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2470}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1112}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2189}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2067}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 959}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 54}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1016}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 131}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1371}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2329}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1608}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1259}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2124}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 954}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 715}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 884}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 247}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1009}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2394}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 888}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1910}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2484}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1740}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2125}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1581}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2490}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2299}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 875}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1815}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 435}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1669}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 934}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1119}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2144}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2168}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 463}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1032}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1817}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1429}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 615}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1408}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1042}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1717}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2421}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2343}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 866}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 199}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1582}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 415}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1617}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 373}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1752}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 390}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2349}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2101}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 848}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 45}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2332}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1788}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 93}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2460}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 886}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2211}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1212}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2265}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2341}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 701}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 432}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 584}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1584}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 642}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1447}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 786}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2209}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1228}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 943}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 56}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1857}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2181}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1530}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2486}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 678}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 194}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 857}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1977}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2055}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1222}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1830}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2415}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2285}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1229}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2014}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 801}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1022}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1763}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 648}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2440}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1656}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 544}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 749}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1746}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2448}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 61}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1696}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 997}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1096}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 357}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1920}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 685}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1333}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1175}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 935}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 313}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1054}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2474}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 198}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 697}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1736}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 443}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 413}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2173}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 266}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2021}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1023}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1745}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 958}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1657}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1570}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 906}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 758}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 609}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 43}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1125}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 6}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1336}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 879}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1635}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1065}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 599}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2199}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 783}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2353}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 32}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1117}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1987}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 995}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1203}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2300}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 842}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 371}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 525}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 153}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2443}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2224}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 110}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1011}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 306}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1285}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 775}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1850}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 699}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 295}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2368}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2374}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1547}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1389}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1215}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 85}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2307}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2165}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 402}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 356}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 91}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1043}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2396}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1831}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 623}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1093}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 682}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 476}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2352}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1078}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2417}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 511}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1081}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1045}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2033}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 556}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2260}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1266}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1446}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1825}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 391}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 691}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 638}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2483}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1605}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 397}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1021}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1123}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 375}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1983}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1730}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1700}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2005}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1039}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2322}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 534}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 646}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1560}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 590}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 539}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1268}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2043}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 103}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2039}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 779}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2006}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2444}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2000}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1484}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 914}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 421}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 530}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2212}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1616}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 571}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 420}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2075}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2040}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 400}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1690}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 627}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 923}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 244}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2054}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1314}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1509}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2337}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2147}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2032}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2026}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 205}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 735}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1951}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1889}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1554}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1764}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1577}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 53}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 9}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1528}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 505}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 44}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 545}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2108}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1820}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1433}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 222}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2104}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 2133}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 1922}, {'dataset': 'YOLO_soft_labeled_data', 'idx': 710}]\n" + ] + } + ], + "source": [ + "lookback = {'count': 0, 'stride': 0}\n", + "device = set_device()\n", + "model = initialize_model(device=device, dbx_access_token=dbx_access_token, lookback=lookback)\n", + "\n", + "train_dataset, val_dataset = create_datasets(\n", + " lookback = lookback,\n", + " device = device,\n", + " datasets=[\"YOLO_soft_labeled_data\"]\n", + ")\n", + "\n", + "print(train_dataset.dataset_dir)\n", + "print(train_dataset.data)\n", + "\n", + "train_dataloader, val_dataloader = create_dataloaders(\n", + " train_dataset = train_dataset,\n", + " val_dataset = val_dataset,\n", + " batch_size = batch_size,\n", + " val_batch_size = val_size\n", + ")\n", + "\n", + "optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)\n", + "criterion = nn.CrossEntropyLoss()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "vQH0nDQ3uvey" + }, + "outputs": [], + "source": [ + "model, train_loss_hist, val_performance_hist, best_val_performance = training_loop(\n", + " model = model,\n", + " criterion = criterion,\n", + " optimizer = optimizer,\n", + " train_dataloader = train_dataloader,\n", + " val_dataloader = val_dataloader,\n", + " dbx_access_token = dbx_access_token,\n", + " num_epochs = num_epochs,\n", + " critiqueing_metric = \"Accuracy\",\n", + " auto_stop = False\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "KEJslQBCuvey", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "1473e36c-e404-4eec-e637-a3075138deb5" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAnQZJREFUeJztnXl8FPX9/1+zd+6TXBBIOCQgRxAk4m2NBGsVPFpEKkhbbVVabaq2eOBVv6i1lnpUWhWLN9VftdZaPKJYUQQEEQ9AQI5w5CbXJtlzfn/sfmZnZmd2Zze72U3m/Xw88lB2N7uzm2Tnta/36/1+czzP8yAIgiAIgtARhkQfAEEQBEEQxEBDAoggCIIgCN1BAoggCIIgCN1BAoggCIIgCN1BAoggCIIgCN1BAoggCIIgCN1BAoggCIIgCN1BAoggCIIgCN1BAoggCIIgCN1BAoggCELG2WefjbPPPjvRh0EQRBwhAUQQRFQcOHAAHMfhoYceSvShhGT9+vXgOA6vvvqq4vVXXXUV0tPT+/04n3zyCe666y60t7f3+74Igog/JIAIgiBkvPPOO3jnnXci+p5PPvkEd999NwkgghgkkAAiCIKQYbFYYLFYEn0Y4Hkevb29iT4MghiSkAAiCCKuNDU14ac//SkKCwths9kwdepUrFmzJuh2L7/8MqZPn46MjAxkZmZi8uTJ+POf/yxc73K5cPfdd2PcuHGw2WzIy8vD6aefjnfffTfmx6yUAXr00Udx4oknIjU1FTk5OZgxYwZefPFFAMBdd92Fm2++GQBQXl4OjuPAcRwOHDgAAHC73bj33nsxZswYWK1WlJWV4dZbb4XD4ZA8RllZGX7wgx/g7bffxowZM5CSkoK//vWvOOusszB16lTFYx0/fjxqampi+wIQhA4wJfoACIIYuvT29uLss8/G3r17sXTpUpSXl+OVV17BVVddhfb2dtxwww0AgHfffRcLFizAueeeiwceeAAAsHPnTnz88cfCbe666y6sWLECP/vZzzBz5kx0dnbis88+w7Zt23DeeeeFPZauri60tLQEXS4XIUo8+eST+NWvfoXLLrsMN9xwA/r6+rBjxw5s2rQJV1xxBS655BJ8++23eOmll/CnP/0J+fn5AIBhw4YBAH72s59hzZo1uOyyy/Cb3/wGmzZtwooVK7Bz50689tprksfavXs3FixYgJ///Oe4+uqrMX78eKSnp+Pqq6/GV199hUmTJgm33bJlC7799lvcfvvtYZ8DQRAyeIIgiCjYv38/D4D/wx/+oHqblStX8gD4559/XrjM6XTys2bN4tPT0/nOzk6e53n+hhtu4DMzM3m32616X1OnTuUvuOCCiI/zgw8+4AGE/EpLS5N8z1lnncWfddZZwr/nzp3Ln3jiiSEf5w9/+AMPgN+/f7/k8u3bt/MA+J/97GeSy2+66SYeAP/+++8Ll40aNYoHwK9bt05y2/b2dt5ms/G//e1vJZf/6le/4tPS0vju7u5wLwNBEDKoBEYQRNx46623UFRUhAULFgiXmc1m/OpXv0J3dzc+/PBDAEB2djbsdnvIclZ2dja+/vpr7NmzJ6pjWb58Od59992gr9mzZ4f93uzsbBw+fBhbtmyJ+HHfeustAEBtba3k8t/85jcAgP/85z+Sy8vLy4NKWllZWZg7dy5eeukl8DwPAPB4PFi7di3mzZuHtLS0iI+LIPQOCSCCIOLGwYMHMW7cOBgM0reaCRMmCNcDwHXXXYcTTjgB559/PkaMGIGf/OQnWLduneR77rnnHrS3t+OEE07A5MmTcfPNN2PHjh2aj2Xy5Mmorq4O+iouLg77vb/97W+Rnp6OmTNnYty4cbj++uvx8ccfa3rcgwcPwmAwYOzYsZLLi4qKkJ2dLbwGjPLycsX7WbRoEQ4dOoSPPvoIAPDee++hsbERV155pabjIAhCCgkggiASTkFBAbZv34433ngDF110ET744AOcf/75WLx4sXCbM888E/v27cPq1asxadIkPPXUUzjppJPw1FNPxf34JkyYgN27d+Pll1/G6aefjv/3//4fTj/9dNx5552a74PjOE23S0lJUby8pqYGhYWFeP755wEAzz//PIqKilBdXa35GAiCCEACiCCIuDFq1Cjs2bMHXq9XcvmuXbuE6xkWiwUXXngh/vKXv2Dfvn34+c9/jmeffRZ79+4VbpObm4slS5bgpZdeQn19PaZMmYK77rprQJ5LWloa5s+fj2eeeQaHDh3CBRdcgPvuuw99fX0A1AXOqFGj4PV6g0p3jY2NaG9vl7wGoTAajbjiiivw6quv4vjx43j99dexYMECGI3G/j0xgtApJIAIgogb3//+99HQ0IC1a9cKl7ndbjz66KNIT0/HWWedBQBobW2VfJ/BYMCUKVMABLq05LdJT0/H2LFjNXVx9Rf5Y1ssFkycOBE8z8PlcgGAkMORD0L8/ve/DwBYuXKl5PKHH34YAHDBBRdoPo4rr7wSx48fx89//nN0d3fjxz/+cSRPgyAIEdQGTxBEv6irqxNcEDHz5s3DNddcg7/+9a+46qqrsHXrVpSVleHVV1/Fxx9/jJUrVyIjIwOAr028ra0N3/ve9zBixAgcPHgQjz76KCorK4W80MSJE3H22Wdj+vTpyM3NxWeffYZXX30VS5cujftznD17NoqKinDaaaehsLAQO3fuxGOPPYYLLrhAeA7Tp08HANx22224/PLLYTabceGFF2Lq1KlYvHgx/va3v6G9vR1nnXUWNm/ejDVr1mDevHk455xzNB/HtGnTMGnSJLzyyiuYMGECTjrppLg8X4LQBYluQyMIYnDC2uDVvp577jme53m+sbGRX7JkCZ+fn89bLBZ+8uTJ/DPPPCO5r1dffZWfPXs2X1BQwFssFn7kyJH8z3/+c/7YsWPCbX7/+9/zM2fO5LOzs/mUlBS+oqKCv++++3in0xnyOFkb/CuvvKJ4/eLFi8O2wf/1r3/lzzzzTD4vL4+3Wq38mDFj+Jtvvpnv6OiQfN+9997LDx8+nDcYDJKWeJfLxd999918eXk5bzab+dLSUn7ZsmV8X1+f5PtHjRoVttX/wQcf5AHw//d//xfydgRBhIbjeX9PJUEQBJH0/PnPf8avf/1rHDhwACNHjkz04RDEoIUEEEEQxCCB53lMnToVeXl5+OCDDxJ9OAQxqKEMEEEQRJJjt9vxxhtv4IMPPsCXX36Jf/3rX4k+JIIY9JADRBAEkeQcOHAA5eXlyM7OxnXXXYf77rsv0YdEEIMeEkAEQRAEQegOmgNEEARBEITuIAFEEARBEITuoBC0Al6vF0ePHkVGRobm/T0EQRAEQSQWnufR1dWFkpKSoCXMckgAKXD06FGUlpYm+jAIgiAIgoiC+vp6jBgxIuRtSAApwEbb19fXIzMzM8FHQxAEQRCEFjo7O1FaWiqcx0NBAkgBVvbKzMwkAUQQBEEQgwwt8ZWkCEE//vjjKCsrg81mQ1VVFTZv3qzp+15++WVwHId58+ZJLr/qqqvAcZzka86cOXE4coIgCIIgBiMJF0Br165FbW0t7rzzTmzbtg1Tp05FTU0NmpqaQn7fgQMHcNNNN+GMM85QvH7OnDk4duyY8PXSSy/F4/AJgiAIghiEJFwAPfzww7j66quxZMkSTJw4EatWrUJqaipWr16t+j0ejwcLFy7E3XffjdGjRyvexmq1oqioSPjKycmJ11MgCIIgCGKQkVAB5HQ6sXXrVlRXVwuXGQwGVFdXY+PGjarfd88996CgoAA//elPVW+zfv16FBQUYPz48bj22mvR2toa02MnCIIgCGLwktAQdEtLCzweDwoLCyWXFxYWYteuXYrfs2HDBjz99NPYvn276v3OmTMHl1xyCcrLy7Fv3z7ceuutOP/887Fx40YYjcag2zscDjgcDuHfnZ2d0T0hgiAIgiAGBYOqC6yrqwtXXnklnnzySeTn56ve7vLLLxf+f/LkyZgyZQrGjBmD9evX49xzzw26/YoVK3D33XfH5ZgJgiAIgkg+EloCy8/Ph9FoRGNjo+TyxsZGFBUVBd1+3759OHDgAC688EKYTCaYTCY8++yzeOONN2AymbBv3z7Fxxk9ejTy8/Oxd+9exeuXLVuGjo4O4au+vr7/T44gCIIgiKQloQ6QxWLB9OnTUVdXJ7Sye71e1NXVYenSpUG3r6iowJdffim57Pbbb0dXVxf+/Oc/q05vPnz4MFpbW1FcXKx4vdVqhdVq7d+TIQiCIAhi0JDwElhtbS0WL16MGTNmYObMmVi5ciXsdjuWLFkCAFi0aBGGDx+OFStWwGazYdKkSZLvz87OBgDh8u7ubtx999249NJLUVRUhH379uGWW27B2LFjUVNTM6DPjSAIgiCI5CThAmj+/Plobm7G8uXL0dDQgMrKSqxbt04IRh86dCjsQjMxRqMRO3bswJo1a9De3o6SkhLMnj0b9957L7k8BEEQBEEAADie5/lEH0Sy0dnZiaysLHR0dNAqDIIgCIIYJERy/k74IESCIAiCIIiBhgSQznF5vHB5vIk+DIIgCIIYUEgA6Rivl8eFj27AnJX/g8dLlVCCIAhCPyQ8BE0kjj63B7saugAAdqcbmTZzgo+IIAiCIAYGcoB0jFvk+ng85AARBEEQ+oEEkI5xi0SPm0pgBEEQhI4gAaRj3N5A+JkyQARBEISeIAGkY8SiRyyGCIIgCGKoQwJIx4hLYOQAEQRBEHqCBJCOkTpAJIAIgiAI/UACSMdQBoggCILQKySAdIzY9XFTGzxBEAShI0gA6RjKABEEQRB6hQSQjhGLHhd1gREEQRA6ggSQjpFMgiYHiCAIgtARJIB0jFu0BZ4yQARBEISeIAGkYzzkABEEQRA6hQSQjnHTJGiCIAhCp5AA0jHkABEEQRB6hQSQjnGJM0AkgAiCIAgdQQJIx5ADRBAEQegVEkA6xk27wAiCIAidQgJIx0gdIApBEwRBEPqBBJCOoV1gBEEQhF4hAaRjxIMQKQNEEARB6AkSQDqGMkAEQRCEXiEBpGOoC4wgCILQKySAdAw5QARBEIReIQGkY8SdX9QFRhAEQegJEkA6xuUhB4ggCILQJySAdIyH2uAJgiAInUICSMdQBoggCILQKySAdAxlgAiCIAi9khQC6PHHH0dZWRlsNhuqqqqwefNmTd/38ssvg+M4zJs3T3I5z/NYvnw5iouLkZKSgurqauzZsycORz64cVMGiCAIgtApCRdAa9euRW1tLe68805s27YNU6dORU1NDZqamkJ+34EDB3DTTTfhjDPOCLruwQcfxCOPPIJVq1Zh06ZNSEtLQ01NDfr6+uL1NAYlYtHjoQwQQRAEoSMSLoAefvhhXH311ViyZAkmTpyIVatWITU1FatXr1b9Ho/Hg4ULF+Luu+/G6NGjJdfxPI+VK1fi9ttvx9y5czFlyhQ8++yzOHr0KF5//fU4P5vBhYcyQARBEIROSagAcjqd2Lp1K6qrq4XLDAYDqqursXHjRtXvu+eee1BQUICf/vSnQdft378fDQ0NkvvMyspCVVWV6n06HA50dnZKvvSA20u7wAiCIAh9klAB1NLSAo/Hg8LCQsnlhYWFaGhoUPyeDRs24Omnn8aTTz6peD37vkjuc8WKFcjKyhK+SktLI30qgxJygAiCIAi9kvASWCR0dXXhyiuvxJNPPon8/PyY3e+yZcvQ0dEhfNXX18fsvpMZ8SBE6gIjCIIg9IQpkQ+en58Po9GIxsZGyeWNjY0oKioKuv2+fftw4MABXHjhhcJlXv+J22QyYffu3cL3NTY2ori4WHKflZWVisdhtVphtVr7+3QGHeQAEQRBEHoloQ6QxWLB9OnTUVdXJ1zm9XpRV1eHWbNmBd2+oqICX375JbZv3y58XXTRRTjnnHOwfft2lJaWory8HEVFRZL77OzsxKZNmxTvU8+4aRs8QRAEoVMS6gABQG1tLRYvXowZM2Zg5syZWLlyJex2O5YsWQIAWLRoEYYPH44VK1bAZrNh0qRJku/Pzs4GAMnlN954I37/+99j3LhxKC8vxx133IGSkpKgeUF6R1z2IgeIIAiC0BMJF0Dz589Hc3Mzli9fjoaGBlRWVmLdunVCiPnQoUMwGCIzqm655RbY7XZcc801aG9vx+mnn45169bBZrPF4ykMWsSDEGkOEEEQBKEnOJ7n6cwno7OzE1lZWejo6EBmZmaiDydu/OTvW/D+Lt/AyeoJhXhq8YwEHxFBEARBRE8k5+9B1QVGxBZpBoi6wAiCIAj9QAJIx1AGiCAIgtArJIB0jCQDRAKIIAiC0BEkgHSM2PVxUwiaIAiC0BEkgHSMRABRBoggCILQESSAdIyHlqESBEEQOoUEkI4Rl70oBE0QBEHoCRJAOsZDqzAIgiAInUICSMe4aRkqQRAEoVNIAOkYN2WACIIgCJ1CAkjHeDzUBUYQBEHoExJAOkayCoPmABEEQRA6ggSQjqEMEEEQBKFXSADpGLeHMkAEQRCEPiEBpGM85AARBEEQOoUEkI5x0xwggiAIQqeQANIxHtoFRhAEQegUEkA6hed5coAIgiAI3UICSKfIBQ9lgAiCIAg9QQJIp8gFD8+TC0QQBEHoBxJAOkVJ7FAOiCAIgtALJIB0ilLJixwggiAIQi+QANIp4iGIwmUkgAiCIAidQAJIpyi5PbQPjCAIgtALJIB0CnN7LEYDOE56GUEQBEEMdUgA6RTmABkNHEwGTnIZQRAEQQx1SADpFJc/A2QycjD6BRB1gREEQRB6wZToAyASA3N7TAYOPG8A4CUHiCAIgtANJIB0ilsogRng5b2SywiCIAhiqEMCSKdIHSDKABEEQRD6ggSQTnGLQtBevwByUxs8QRAEoRNIAOkUNgjRbCQHiCAIgtAfSdEF9vjjj6OsrAw2mw1VVVXYvHmz6m3/+c9/YsaMGcjOzkZaWhoqKyvx3HPPSW5z1VVXgeM4ydecOXPi/TQGFWIHyGikLjCCIAhCXyTcAVq7di1qa2uxatUqVFVVYeXKlaipqcHu3btRUFAQdPvc3FzcdtttqKiogMViwZtvvoklS5agoKAANTU1wu3mzJmDZ555Rvi31WodkOczWAhkgAzgeellBEEQBDHUSbgD9PDDD+Pqq6/GkiVLMHHiRKxatQqpqalYvXq14u3PPvtsXHzxxZgwYQLGjBmDG264AVOmTMGGDRskt7NarSgqKhK+cnJyBuLpDBokDpAwB4gEEEEQBKEPEiqAnE4ntm7diurqauEyg8GA6upqbNy4Mez38zyPuro67N69G2eeeabkuvXr16OgoADjx4/Htddei9bWVtX7cTgc6OzslHwNdTzeQAbISJOgCYIgCJ2R0BJYS0sLPB4PCgsLJZcXFhZi165dqt/X0dGB4cOHw+FwwGg04i9/+QvOO+884fo5c+bgkksuQXl5Ofbt24dbb70V559/PjZu3Aij0Rh0fytWrMDdd98duyc2CHB5RKsw/Bkgl8KGeIIgCIIYiiQ8AxQNGRkZ2L59O7q7u1FXV4fa2lqMHj0aZ599NgDg8ssvF247efJkTJkyBWPGjMH69etx7rnnBt3fsmXLUFtbK/y7s7MTpaWlcX8eiUScAfJQBoggCILQGQkVQPn5+TAajWhsbJRc3tjYiKKiItXvMxgMGDt2LACgsrISO3fuxIoVKwQBJGf06NHIz8/H3r17FQWQ1WrVXUhanAEy8ZQBIgiCIPRFQjNAFosF06dPR11dnXCZ1+tFXV0dZs2apfl+vF4vHA6H6vWHDx9Ga2sriouL+3W8QwmWATJRBoggCILQIQkvgdXW1mLx4sWYMWMGZs6ciZUrV8Jut2PJkiUAgEWLFmH48OFYsWIFAF9eZ8aMGRgzZgwcDgfeeustPPfcc3jiiScAAN3d3bj77rtx6aWXoqioCPv27cMtt9yCsWPHStrk9Q7LAJkMHDzUBUYQBEHojIQLoPnz56O5uRnLly9HQ0MDKisrsW7dOiEYfejQIRgMAaPKbrfjuuuuw+HDh5GSkoKKigo8//zzmD9/PgDAaDRix44dWLNmDdrb21FSUoLZs2fj3nvv1V2ZKxQe0TJUo4H3X0YhaIIgCEIfcDzP08d+GZ2dncjKykJHRwcyMzMTfThx4blPD+KO17/CnBOL4HB78MHuZvzhsin44YyhHf4mCIIghi6RnL8TPgiRSAwef8u70cjB6HfYKANEEARB6IWEl8CIxOD2UgaIIAiC0C/kAOkUt2gOEFuGSg4QQRAEoRdIAOkUj8gBMpEDRBAEQegMEkA6xc1WYUjmAFEXGEEQBKEPSADpFGEQIjlABEEQhA6hELROkWSA2BwgDwkggiAIQh+QANIpggAycjB7yQEiCIIg9AWVwHSKkAEy0C4wgiAIQn+QANIplAEiCIIg9AwJIJ3i9oodIN+vgdtDXWAEQRCEPiABpFNYCcxsNJADRBAEQegOEkA6ReoAUQaIIAiC0BckgHQKZYAIgiAIPUMCSKdIHCAjTYImCIIg9AUJIJ0i7AKjDBBBEAShQ0gA6RSXJ7AMlXWBUQaIIAiC0AskgHQKK3cZKQNEEARB6BASQDolsAtM1AVGu8AIgiAInUACSKd4RCFocoAIgiAIvUECSKcwsWM2GkRzgKgLjCAIgtAHJIB0Clt7YTRwMBnJASIIgiD0BQkgneLxUhcYQRAEoV9IAOkUN2WACIIgCB1DAkinBBygwCBEcoAIgiAIvUACSKe4/Bkgk5EyQARBEIT+IAGkU5QzQNQFRhAEQegDEkA6RTEDRIMQCYIgCJ1AAkiniDNARgpBEwRBEDqDBJBOEVZhGDkKQRMEQRC6gwSQTmGDEMW7wNyUASIIgiB0AgkgnSLNAPlD0JQBIgiCIHRCUgigxx9/HGVlZbDZbKiqqsLmzZtVb/vPf/4TM2bMQHZ2NtLS0lBZWYnnnntOchue57F8+XIUFxcjJSUF1dXV2LNnT7yfxqCCMkAEQRCEnkm4AFq7di1qa2tx5513Ytu2bZg6dSpqamrQ1NSkePvc3Fzcdttt2LhxI3bs2IElS5ZgyZIlePvtt4XbPPjgg3jkkUewatUqbNq0CWlpaaipqUFfX99APa2kR3CARHOAKANEEARB6IWEC6CHH34YV199NZYsWYKJEydi1apVSE1NxerVqxVvf/bZZ+Piiy/GhAkTMGbMGNxwww2YMmUKNmzYAMDn/qxcuRK333475s6diylTpuDZZ5/F0aNH8frrrw/gM0tumNgxSzJAJIAIgiAIfZBQAeR0OrF161ZUV1cLlxkMBlRXV2Pjxo1hv5/nedTV1WH37t0488wzAQD79+9HQ0OD5D6zsrJQVVWlep8OhwOdnZ2Sr6EMz/OCABLPASIHiCAIgtALCRVALS0t8Hg8KCwslFxeWFiIhoYG1e/r6OhAeno6LBYLLrjgAjz66KM477zzAED4vkjuc8WKFcjKyhK+SktL+/O0kh6x0yPNAFEXGEEQBKEPEl4Ci4aMjAxs374dW7ZswX333Yfa2lqsX78+6vtbtmwZOjo6hK/6+vrYHWwSInZ6jEZRFxg5QARBEIROMCXywfPz82E0GtHY2Ci5vLGxEUVFRarfZzAYMHbsWABAZWUldu7ciRUrVuDss88Wvq+xsRHFxcWS+6ysrFS8P6vVCqvV2s9nM3iQOkCUASIIgiD0R0IdIIvFgunTp6Ourk64zOv1oq6uDrNmzdJ8P16vFw6HAwBQXl6OoqIiyX12dnZi06ZNEd3nUIYNQQR8AohlgHge8JIIIgiCIHRAQh0gAKitrcXixYsxY8YMzJw5EytXroTdbseSJUsAAIsWLcLw4cOxYsUKAL68zowZMzBmzBg4HA689dZbeO655/DEE08AADiOw4033ojf//73GDduHMrLy3HHHXegpKQE8+bNS9TTTCrETo/RwMHob4Nn11kMnNK3EQRBEMSQIeECaP78+Whubsby5cvR0NCAyspKrFu3TggxHzp0CAZDwKiy2+247rrrcPjwYaSkpKCiogLPP/885s+fL9zmlltugd1uxzXXXIP29nacfvrpWLduHWw224A/v2RE3AHGcQEHSHwdQRAEQQxlOJ7n6Ywno7OzE1lZWejo6EBmZmaiDyfmHGnvxWn3vw+LyYBvf38+nG4vTrj9vwCAL++ajQybOcFHSBAEQRCRE8n5e1B2gRH9g+38MvudH3KACIIgCL1BAkiHuPzzflj3l8HAgfNrIBctRCUIgiB0AAkgHSIsQjUGfvw0DZogCILQEySAdIjbEwhBM2gaNEEQBKEnSADpEMEBEgkgmgZNEARB6AkSQDqEuTwmo5IDRAKIIAiCGPqQANIhbsEBogwQQRAEoU9IAOmQkBkg6gIjCIIgdAAJIB2inAEiB4ggCILQDySAdIhiBshIXWAEQRCEfiABpEMCJTBxBoi6wAiCIAj9QAJIh7gVSmDUBUYQBEHoCRJAOkS8DZ5BGSCCIAhCT5AA0iFCBogcIIIgCEKnkADSIaF3gVEImiAIghj6kADSISwEregA0RwggiAIQgeQANIhbqUMkJG6wAiCIAj9QAJIh3gUMkDs/10kgAiCIAgdQAJIh7gVMkBGygARBEEQOoIEkA5RygCZKANEEARB6AgSQDpEKQNk7OckaK+XR0evq/8HRxAEQRADAAkgHRIqAxTtHKBf/2M7Tv79e6hv6+n/ARIEQRBEnCEBpEMUHSBj/yZBf3m4A06PF3uauvp/gASRJLg8Xuw81gmep9IwQQw1SADpECZyzAqDEKN1gHqcHgBAr5NC1MTQ4ZG6PTj/zx/hzR3HEn0oBEHEGBJAOsTlUcoA9a8LzO50AwD6XJ5+Hh1BJA8HWn0l3YOt9gQfCUEQsYYEkA6JdQaI5/mAA0QCiBhCOPy/z30ucjYJYqhBAkiHhOwCi6IN3uH2CmU1coCIoYTT4xM+Djf9XhPEUIMEkA4RlqHGyAFi7g8A9DrpREEMHRx+54ccIIIYepAA0iGhJ0FHLoDsDrfw/330SZkYQjDnhxwgghh6RCWA6uvrcfjwYeHfmzdvxo033oi//e1vMTswIn64/ba+MS4OEH1SJoYODrdX8l+CIIYOUQmgK664Ah988AEAoKGhAeeddx42b96M2267Dffcc09MD5CIPW6FElhgDlDkb/SsAwygEDQxtGDCh7JtBDH0iEoAffXVV5g5cyYA4B//+AcmTZqETz75BC+88AL+/ve/x/L4iDjgUQhB98cBEud+HHSiIIYQgRIYOUAEMdSISgC5XC5YrVYAwHvvvYeLLroIAFBRUYFjxyIfGPb444+jrKwMNpsNVVVV2Lx5s+ptn3zySZxxxhnIyclBTk4Oqqurg25/1VVXgeM4ydecOXMiPq6hilthEGJ/doGJM0DkAPWP5i4HvjzckejDIPwEQtD0e00QQ42oBNCJJ56IVatW4aOPPsK7774riIujR48iLy8vovtau3Ytamtrceedd2Lbtm2YOnUqampq0NTUpHj79evXY8GCBfjggw+wceNGlJaWYvbs2Thy5IjkdnPmzMGxY8eEr5deeimapzokUcoAmWOVAaITRb/49drtuPCxDXjn64ZEHwoBygARxFAmKgH0wAMP4K9//SvOPvtsLFiwAFOnTgUAvPHGG0JpTCsPP/wwrr76aixZsgQTJ07EqlWrkJqaitWrVyve/oUXXsB1112HyspKVFRU4KmnnoLX60VdXZ3kdlarFUVFRcJXTk5ONE91SKLUBs8yQEwcRYIkA0Rt8P2i/rhv8vC9//mGXIckgJXAqA2eIIYeUQmgs88+Gy0tLWhpaZEIlWuuuQarVq3SfD9OpxNbt25FdXV14IAMBlRXV2Pjxo2a7qOnpwculwu5ubmSy9evX4+CggKMHz8e1157LVpbWzUf11BHaRBiv7rAHIETdR99Uu4XTPTUt/XiqY++S/DR6Bue50UOEIlRghhqRCWAent74XA4BFfl4MGDWLlyJXbv3o2CggLN99PS0gKPx4PCwkLJ5YWFhWho0FYC+O1vf4uSkhKJiJozZw6effZZ1NXV4YEHHsCHH36I888/Hx6P8puYw+FAZ2en5GsoIzhARoVJ0NFkgEQOUB85QP1C7DQ8/sE+HOvoTeDR6Bu3lwdbAu8gB4gghhxRCaC5c+fi2WefBQC0t7ejqqoKf/zjHzFv3jw88cQTMT3AUNx///14+eWX8dprr8FmswmXX3755bjoooswefJkzJs3D2+++Sa2bNmC9evXK97PihUrkJWVJXyVlpYO0DNIDG4PK4HFZhs8ZYBiB3OARuWlotflwYq3diX4iPSLOPdDDhBBDD2iEkDbtm3DGWecAQB49dVXUVhYiIMHD+LZZ5/FI488ovl+8vPzYTQa0djYKLm8sbERRUVFIb/3oYcewv3334933nkHU6ZMCXnb0aNHIz8/H3v37lW8ftmyZejo6BC+6uvrNT+HwYhbYRmqMAk6il1gkknQJICiRlxyueuiE8FxwBtfHMXm/W0JPjJ9Ih7pQA4QQQw9ohJAPT09yMjIAAC88847uOSSS2AwGHDKKafg4MGDmu/HYrFg+vTpkgAzCzTPmjVL9fsefPBB3HvvvVi3bh1mzJgR9nEOHz6M1tZWFBcXK15vtVqRmZkp+RrKxDwDRA5QTBA7DjNG5eDyk31O5F1vfB1VaZLoH+KfB614IYihR1QCaOzYsXj99ddRX1+Pt99+G7NnzwYANDU1RSweamtr8eSTT2LNmjXYuXMnrr32WtjtdixZsgQAsGjRIixbtky4/QMPPIA77rgDq1evRllZGRoaGtDQ0IDu7m4AQHd3N26++WZ8+umnOHDgAOrq6jB37lyMHTsWNTU10TzdIYdyBij6SdA9TnKAYoHYZbCZjbhp9nhk2Ez45lgnXt5yKIFHpk/EAsjl4UmEEsQQIyoBtHz5ctx0000oKyvDzJkzBbfmnXfewbRp0yK6r/nz5+Ohhx7C8uXLUVlZie3bt2PdunVCMPrQoUOS4YpPPPEEnE4nLrvsMhQXFwtfDz30EADAaDRix44duOiii3DCCSfgpz/9KaZPn46PPvpIGN6odxQzQMbYOEAuDx9VKz0RcBmMBg5mowF56VbccO44AMDaLUO7LJuMyHM/lAMiiKGFKZpvuuyyy3D66afj2LFjwgwgADj33HNx8cUXR3x/S5cuxdKlSxWvkweXDxw4EPK+UlJS8Pbbb0d8DHpCcQ5QjCZBA75W+HRjVNpa1zD3zGYKvHbTR/k6LVu7nQk5Jj0jz/04XF6kWhJ0MARBxJyoBBAAYcAg2wo/YsSIiIcgEonB5Y3fNnjANwwx3Rr1r5ZuYSUXq9koXJaZYgYAdPa5EnJMekY+/ZlyQAQxtIjqY7rX68U999yDrKwsjBo1CqNGjUJ2djbuvfdeeKPIkBADS+gMUP/mAAGUA4oWJQcoyy+Auvrc/c6gNHc50Nrt6Nd96ImgEhh1ghHEkCKqj+m33XYbnn76adx///047bTTAAAbNmzAXXfdhb6+Ptx3330xPUgitrAMkDFWc4Ac0hNFKAHE8zw4jlO9Xs+wIYg2sQNkMwv/393nRlaqOej7tOBwe1Cz8n8wGThsXHauxP0jlHGSA0QQQ5qoBNCaNWvw1FNPCVvgAWDKlCkYPnw4rrvuOhJASY5yBij6LjC5A6TWCv/UR9/hsQ/2Yu01szC+KCPixxnqMOEoLoFZTAakmI3odXnQ0euKWgAdPt6LNrsvR9QfIaUn5CUwcoAIYmgRVQmsra0NFRUVQZdXVFSgrY2GtiU7wiBEozgD5PtVcEc4CNHj5QXnItt/UlVbiLp+dzPae1z47CD9jighZIBM0j/LzBTf55T+5IAOHw+s1OiWCVZCmeAuMBJABDGUiEoATZ06FY899ljQ5Y899ljYqcxE4nGHdIAiE0DiGUB5ab4WGbWFqN3+bjHaGK+MkAEyS/8sWQ6os7c/AqhH+H951x6hjNzxoWwbQQwtoiqBPfjgg7jgggvw3nvvCTOANm7ciPr6erz11lsxPUAi9niUMkDG6AQQEzMGDshOtQCwqwocJpZIACkTEEBGyeUsB9TRLwEkcoBIAGkiqARGDhBBDCmicoDOOussfPvtt7j44ovR3t6O9vZ2XHLJJfj666/x3HPPxfoYiRij5ABFG4K2+8VMmsWEFP+JW+2Tst0flu6hT9KKMOfMZpIKoKwYtMKLBRA5QNqQl8DIASKIoUXUw1pKSkqCws5ffPEFnn76afztb3/r94ER8UOpDT6QAYrsUy47maZajYJzoXaiIAcoNA4hBC3PAPXfAToiKoF195EA0kLQIERygAhiSEHjenWI0iBEY5QOUI/YAbL4BJBaF5jgAFEIVxFHOAeoN/rXjUpgkRM0CJEcIIIYUpAA0hleLw/er3GUdoFFmgFiLfApFqMwwE9JADndXjj97pJ8cjThQy0EnWnzGbXROkB9Lg+augIDEKkEpg3qAiOIoQ0JIJ0hdnhi4gA5gh2gPgWBIy570SdpZVRD0P3MAB1t75X8204CVBPkABHE0CaiDNAll1wS8vr29vb+HAsxAIgdHrMxOAQdrQOUajUGQtAKn5TFwxLJAVKGzVOyqgigaB0gcfkLoBKYVuSToMkBIoihRUQCKCsrK+z1ixYt6tcBEfHFLZr0rOwARfYm3+M/maZZTMKJWynkLC67kABShpVcggYh2vo3B+iI3AEiAaQJJng4DuD54JIYQRCDm4gE0DPPPBOv4yAGCPGkZ0kGyP//EQ9C9JcFUi0BB0gpAyQuu1AXmDJKu8CAQAg6egeoR/JvcoC0wQRPps2Mjl4XrcIgiCEGZYB0hjjjI96H2e8MkNWEFH94Vykr0SN2gFx0AlZCNQQtrMKI7nVjJbCRuakAyAHSChM87PUnB4gghhYkgHSGeBGqeCs7ywDxvK9TTCtCBsgSeg6Q1AGiT9JKhB2E2M8M0AmFvgW0bBwBERpWAmMlyD5ygAhiSEECSGcoLUIFAKPo35G4QBIHKMQcILHr0EtzgBQJNwjR4fZG1YnESmATin0CiEpg2mCOT5bw+pNwJIihBAkgncEyQOL8j+/fAQEUSQ5I2QEK0wXm8oDnIyu16QE1ByjdYhLKlZG2wjvcgRlA44uYA0QCSAvkABHE0IYEkM5g7o64A0z+70g6wcSToG0husB6RGUXX0cNnUzkOFTmABkMHDKi7AQ71t4HngdSzEYhA0QOkDZYBogcIIIYmpAA0hkehUWovn8bgm6jBeYmpIi6wJQzQNKTLrXCB6MWggbEnWCRiReW/xmek4I0qy/MSwJIG0IXmD8ETQ4QQUQOz/O4/sVtWPHWzkQfShAkgHSGWgZIrIciygAxB8gapg1edtJV2xemZ4RBiLISGCDqBIvQAWL5nxE5KUj3CyC7w00lSA3IS2DkABFE5Bw+3ov/7DiG1R/vT/ShBEECSGcEHCDpj57juKimQQcyQCakWNTb4OXrFygIHQw7wYZygCLNADEHaITIAfLy5GZogU2CFkLo9JoRRMSw9zWXh4fLk1x/QySAdIbLo5wBEl8WiQPUK8oAMedCyd3pcVAJLBxqgxCBgAsR6TBENgV6RE4qUkX3S2Ww8DAHiInPPnKACCJixB+2km2fHgkgnaGWAQIAs9E/DdoTeQYo1WoMLEN1eYNKLHIHiASQFJ7nhROsvA0eiH4dhrgEZjBwSPP/jKgTLDzyDBA5QAQROeKGl2RznkkA6QyWAQrlALk0doHxPC/pAksROQzyLq+gDBAJIAlOjxdMMyo5QFmp0TlAQgg6OwUAKAitEY+XF9xSwQFKsk+vBDEYEGfnku1viASQzhAcIGPwjz7SDJDT4xXKZalWo+TELRc45ACFRiwY5ctQASDTxkLQ2oWL0+1FQ2cfAF8JDIAkCE2oI94EHwhBJ9enV4IYDIid02RrJCABpDPcIUpgQgZIYwlMPNsn1WyE0cDB4hdW8hwQywBZTMrX6x32yYjjILyGYqJZiHqsoxc87xNU+ekWAEC6X0jJxxIQUsRv1OJJ3NQ9RxCRIf5bSrY1SCSAdIY7RAg6UgeInUStJoPgKNlUFqIyx2dYuhUAdYHJYZ+SbCajZEcbIzOKLrAjog4wdp9pFlYCIwEaCub2mAwcUi3qpV2CIEIjyQCRA0QkEo838MYuh+0D0zoJmoka8QnCpjILiGVO8vxOBJXApIQagghEJ4ACLfCpwmVCBijKzfJ6gQlSi8kgmctEQWiCiAwHdYERyYJQAjMqOUD+LjCtDpAjMAOIEegEkztAvtsyB4gEkJRQQxCB6NrgWQfY8JwU4bJ0K3WBaYHZ9laTAWYjJwwKTbYMA0EkO9IQdHJ9gCABpDPUBiECkc8BEk+BZgjToEW1XqfbK3TU5LMSWJJ9Ekg0oYYgAqJBiBGEoMVDEBnUBaYNZttb/SVJJkypBEYQkUFzgIikIdQgxEgzQIESWMABsirsA+sR5X3yM3wlMGqDlxJqCCIgWoXR54JX489HqQRGXWDaEASQOXS2jSCI0EhC0En295MUAujxxx9HWVkZbDYbqqqqsHnzZtXbPvnkkzjjjDOQk5ODnJwcVFdXB92e53ksX74cxcXFSElJQXV1Nfbs2RPvpzEoCJkBitgB8p1EpQ5QcJdXt6gDjG01pxKYFHZitaoJIP/rxvNAt8YAeWAKdLADRF1goRGXwHz/JQeIIKJB/DfjIAEkZe3ataitrcWdd96Jbdu2YerUqaipqUFTU5Pi7devX48FCxbggw8+wMaNG1FaWorZs2fjyJEjwm0efPBBPPLII1i1ahU2bdqEtLQ01NTUoK+vb6CeVtLCxE1oB0jbm7zdEewAKS1EZWIn3WoSXU8nYDF9shOuHJvZKFzX0RM+B+TyeHGsI1QJLLneiJINcQkMIAeIIKKFJkGH4OGHH8bVV1+NJUuWYOLEiVi1ahVSU1OxevVqxdu/8MILuO6661BZWYmKigo89dRT8Hq9qKurA+Bzf1auXInbb78dc+fOxZQpU/Dss8/i6NGjeP311wfwmSUnrLxlVpg1E/EcIOYAKXSBiZV+ICwdWJdBDpAUR5gSGBDZQtSGjj54eZ/rlp9mFS6nELQ2HEIonRwggugP4nNBsn2ASKgAcjqd2Lp1K6qrq4XLDAYDqqursXHjRk330dPTA5fLhdzcXADA/v370dDQILnPrKwsVFVVqd6nw+FAZ2en5GuoEnoOUKRdYH4HyKrNAUqzmISWeRJAUpgDZFNxgIBAK7yWTrB6tgMs27cDjEEhaG04ZHvZyAEiiOgQuz6UARLR0tICj8eDwsJCyeWFhYVoaGjQdB+//e1vUVJSIgge9n2R3OeKFSuQlZUlfJWWlkb6VAYN7nhkgMQOkCW4C6xbtDA1VaVNXu+EC0EDka3DYEMQxS3wAIWgtSIvgZEDRBDRQW3wceL+++/Hyy+/jNdeew02my3q+1m2bBk6OjqEr/r6+hgeZXIRMgNkjG4SdPgMkO92vgyQyX8ZCSAx4QYhAuJW+PAOkFIHGEACSCsBAeQvgZEDRBBRkcyToE3hbxI/8vPzYTQa0djYKLm8sbERRUVFIb/3oYcewv3334/33nsPU6ZMES5n39fY2Iji4mLJfVZWVirel9VqhdVqVbxuqOHxqA9CjNgBEkLQ4gxQ8InCLrpdiuAQJdcfQqJhdXK1QYhAZNOgWQB6eLb0gwGVwLTBfh4WygARRL+QhqCT630/oQ6QxWLB9OnThQAzACHQPGvWLNXve/DBB3Hvvfdi3bp1mDFjhuS68vJyFBUVSe6zs7MTmzZtCnmfesEdYhBipF1gwhwghQyQ0hwgaQZo4E/A//isHr986fOk+yMEAm8SWhwgLRmg4/5OsZw0i+Ty9AESQN81d2PNJwckW9UHE+QAEURsEJfAkm2VTEIdIACora3F4sWLMWPGDMycORMrV66E3W7HkiVLAACLFi3C8OHDsWLFCgDAAw88gOXLl+PFF19EWVmZkOtJT09Heno6OI7DjTfeiN///vcYN24cysvLcccdd6CkpATz5s1L1NNMGjwh2+B9b/JaHSB7iC4w6RwgJpSMgkAa6BLYcbsTy//1FfpcXsydWoLqiYXhv2kACZTAQmWAtJfAmEhioonBHKA+lxduj1dYYhtr/u+tnXhvZxOKsmyoOTG0m5uMOOVt8OQAEURUJHMIOuECaP78+Whubsby5cvR0NCAyspKrFu3TggxHzp0CAaRW/HEE0/A6XTisssuk9zPnXfeibvuugsAcMstt8But+Oaa65Be3s7Tj/9dKxbt65fOaGhgkvLMlTNbfDBc4BsSg6Qgw1MDDhADrcXXi8v6VCKJ2s/qxf+EI/6y0PJhJYQdKANPrx706kqgAL3b3d6kJUSHwF0rMM3c6u12xmX+483ag5Qsn2CJYhkRxqCJgEUxNKlS7F06VLF69avXy/594EDB8LeH8dxuOeee3DPPffE4OiGFiwDZFRchhpZBsjuUJoEzRygwInCLmmDD/zK9bo8giMRT9weL57beFD4N+uQSibCDUIEAuswtJTA2v0lsOwUaQnMajLCbOTg8vCwO9xBAilWsMdPRKkzFgS1wfsdoGQLcRJEskPb4ImkgYkbc4hlqBFngJS2wTuDM0CpFqPkBD9QZbD3djYJayEASP4/WRAG72lxgPpRAgNE6zDimANix5hsb3haCWqDJweIIKKCJkETSUPoDFD/d4EJXWBucRdYoARmMHCijfEDc3L8+yf7AQDjCtIBAEeTUABpGoRo0xaCdrg9Qq1dUQBZ4huEdnm86PLf92AddyCfBE0OEEFEh6QElmR/PySAdEboQYj+SdAaM0CsvT1NIQMkFjfC7fzOg9AJNgD7wHYe68Sn37XBaODwm9njASSnA6QpBK2xDZ4JJI4DMmzBJcbALKD4vBmJHapBK4Dky1DJASKIqBC7Pn1J9n5AAkhnuGOUAfJ4ecFlEM8BCjUIkXWLDeQsoDWfHAAAzJlUhBllOQCApi5H0rVn98kcByW0tsEzAZJpMyuGzNNt8XWA2kXHN+hLYGbWBRbsbBIEER6pA5Rc77skgHSGR5gDpD4IUcskaLHACdcFZpdlhVIHSAAdtzvx2udHAABLTi1DXpoFVpMBPO9bFppMBOYAhXeA+lxeyZuKnFD5HyD+GaD2nqHgAPl+HhYjc4DYkt/kegMniGSG53kahEgkD1oGIWpxgJirw3HS4X2BQYiiLjBZt9hAzQJ6eUs9HG4vJg3PxPRROeA4DsOzfbuxkq0M5tBQAsuwmsD5dWuofWBCB1iqsgASNsLHqUOrozfQ+j5oBRCbzC1bhhpKeBIEIcXl4cGLTid9Lg94XlvEYiAgAaQzBAdIaRWGUXsXWI8o/8NxgfsSyluiX3RxCFp8m544fhrwtb4fAABcdWq5cIwlSSqAtOwCMxg4ZPhfw1A5oLAOkN+J69IwTygaxA5Qsn3i04rqMlRygAhCM/IPDF4ecHqS52+IBJDOcPl/+frbBWYXtbaLYQ6Gx8v71T8vuABpQgnM99/eOM6IefebRhzt6ENemgU/mBLYCcccoGTrBOvTUAIDAmWwUDkgJkAyk6IENjjnADnlgxBN5AARRKQotb0nUys8CSCdEToDZJDcJhSCqJENMhQ7GH1uD5weryCoUq0DF4J+5uMDAIAFM0dKRIXgACXZMMQ+l7TrSA0t6zCYOMpWEUDx3gjfPgS7wGwKpV2CIELD/o4sJoNQvnckkStMAkhnxCoDxE6ecgfIYjSAaas+p0fSap3qP4mw/8arBPbVkQ5sPtAGk4HDlbNGSa4r8W9HT7Z1GFpC0IC2TjCtIejuOLXBd/QEMkADUQKrb+vBxX/5GOu+Ohaz+5R3gZEDRBCRI7yvmQyK+dBEQwJIZ4TMALEuMA1zgORlLQbHcZJWeCaUbGaDsHgz3g7Q3/2t79+fXIzCTOn+t+E5yZcBcnm8ws+FDdxTg63DCLUPLJwAEkLQQ8QBeuebRnx+qB1rt9TH7D7lu8DIASKIyBFPuBf+hpLoQ0RS7AIjBg42CLHfGSDmAFmDT9g2sxF2p0dyskhTWJcRj5NjS7cDb2w/CgC46rSyoOvFGSCe5yUB7kQhdkmsIULQgLZ1GEIJTKULTMgAxSmfI84ADcSsp+Yuh+9xNawI0YpDVpIkB4ggIof9vdjMBuGD9UBtANACOUBDBJfHiwMt9rC3Y4MQQ88B0tAFpuIAAaJp0C5PICwtEkqpZpPkPmLJS5sOwenxYmppNk4amRN0fVGWDRzn+yTfZk+OTeVioRjLDFD4EtgAOEAD0Pba0u0TQB09MRRA8kGI5AARRMQEBrwaFWfEJRoSQEOEe9/8Bmc/tB4f7WkOeTu3sAusv3OAgqdAM8QlLqEFXiSU2PfE+g/B5fHiuU99W99/ouD+AL4/xGHpVgDJUwYTB27DOVJZGtZhtPszOGpdYBlxDkGLM0CsGzCeMAco3IRsrYiHtwmDEEUOUDLNMSGIZEb83mYVSmDJ8yGCBNAQ4asjHQCArQePh7xd6DlAvl8Ht6YMkHIIGhAtRHV5gvaAAeISWGxPwG99eQxNXQ4UZFhx/qRi1duxHFCytMKzT0nhAtCAtjb4Dv+QxOwUi+L1aXHeBSYvRcXb8haXwGIhTsRzSlhJkr15e3nEXdARxFBBnKVLEZ0XkgUSQEOExk7fSeBQa0/I27lDtMGbI8oA+R0ga3AJLEVkdSoJpXhNgmbh5x+fMgqWEKUk1gp/OEla4bUMQWQEMkDK4pHneaE8lhUmAxSPEpjXyweJs3gvvWUlMI+Xj8lzEo/ul2eAfNcnzxs4QSQz4oGiVAIj4gLP82jq8u22OtgWRgCFGIQYWQZIuuBUjDQDFJwViscusO317fj8UDssRgMWzBwZ8rYjhCB0cuwDC9jEWhwg3+uo5gD1ujyCgxFuDlC3wx3zck5Xn1sYfc9EQzwdII+XR6soy9UegxyQeNqzvAQGSAUSQRDqOEQf7kgAEXHheI9LsOUPhnGAPKHmABkjmQQtXXAqxqbQBq9cAovdH8LfP94PALhwagmGZVhD3jawDiP0azVQBEpgEThAKhkgJoxMBk6xPAkEdrJ5vHzMT+bt/j1gKWajcKzxbIU/3uOUDO6MRQ6ICUhxJovjOEEEJdMbOEEkM30SB4j9/STPBwgSQEMA5v4AvnJAqHBrIATdz0nQsgWnYsQDr5RuJ6zCiOGJpG5nEwBg4Smh3R8gIICSzQHSlAGyhc4AiTvA1ALVYjcu1mUwcQt+qmgvXLxg5S/54/cHeQs8IxCETp43cIJIZsRLhckBIoLo6HGhPkzZKhws/8M4FOL+mLgxK4Sgo9sFFjoDpOQUxboE1uv0oMt/Ih9XkB729sm2EV5wgDSUwMRzgJTKV6wEpJb/AXxLVdnPINadYMLjp5iRIux8i98bHgtAyx+/P8hb4BnJ+AZOEMmMOASdjKMkSAAlmCue+hTn/vHDoDfySGjslDoZB1vV5wGFGoQYyABFsgssdBu8UlbIZo6sC+zT71rx6XetqtczF8BmNgj5llAwAdRmdybFUK4+0aekcLAuMC+v7N6EmwHEiFcQul3BAYpnCSxIAPX2f7aTfAo0g/18yAEiCG1IQtCm+DvCkUICKIF4vDx2NXTB6fFiT1NX1PcjPwmEygEFBiHGahdYsOCwitoduxXa4CMpjfS5PLjqmc1YvHqzqlhp8j///HSrpsnOmSkmQSglw04w8bCwcFhNBiGYq7QOQ6sASo9TKzybAZSdYhGtRIlfF5i8BBabELRyCYy9gZMDRBDaEE+CtlEbPCFGHOA81o88CnOAmIMTqhMsdAZIexdYb4hJ0OJdYMoZIN//uzw8XJ7Qj3Wsow99Li8cbm+Q08VgJ8H89NDhZwbHccJS1GTYCi9+kwgHx3GBWUAKJ3t2mVoHGCMtTvvAmADJTjWLnMD4OSZy8R+TDJBbWZCSA0QQkeFQmASdTGMkSAAlEPGbd4PKyV0LTBicWJIJIPQsoNAZIO2DEFm2J0VpErTSKgyFXWBA+PKIWPQ0qZQJmQAK1/0lRrwTLNFEMggREC9EVRBAETpA8SqBZUlKYPFzgNjfEHu+7T2xK4HJZ0kxB8iRRJ9gCSKZEU+Cpm3whATxCf1YP0oxLAR9clkuAOBg20BkgNS7wGySQYjBWSGL0SA8Vjg7VCqAlEVic1dkDhAgboVPBgGk3QECQi9EZRkY7SWwODlA4hJYHDNALd2+5zvWH36PjQOk0gVGDhBBRERgGzyVwAgZYgeoPyUwdj9MAB053gunypu0ljlA4QSQ0+0V5g6F7gLzCg6DuFTGcZzmadBNog63ps4wDlC68uoHJdg6jKQQQBEMQgSAnFTf82xVWObK1mBkpYZ+LeIVgu7wCzBxCawnjm947Hefdf/FchBiUBeY4ACRAIqUPpcHX9S3w6vhwxUxdBCXk61mCkETIiQCqCM6AeT1BqZATxqeCZvZAC+vfGLn+cBiylAOULgQtLikobgLTNwFphCCBrTvA9NSAmOvYzQlsKTIAEUwCBEAirN8+SWl8l2kXWCxDkG3izJI8Zj4LafZL35j6wCF7gLrS6IMw2Dh4Xe/xdzHP8ZbXx1L9KEQA4g0BJ18TQQkgBKI1gzQi5sO4cqnNylmPo73OAVRU5Bhw6jcNADKrfBiXaO0C8yksQTG8j8WkwFmY/CvkI2tQJBkgKRCSevJsVH0GqmNCmBlkGhKYMnQBSa8SWh0gAT3SkG8sS4s7Rmg2GxQZ4gzQPEugbk8XhzvkZbAYuEAOVVKYOQARc/epm4AwP5m9fI8MfQQd7hSBoiQIM60tNmdqsr4r//bh4/2tODD3c0K9+ETBXlpFlhMBozMSwWgPAzRLeruUtwGLzhAoX9Bhc4ulVULzN2RZoBkDpDGEpiWDJDQBRaFA3SsvU9T5imeRBqCHpHj+xkfDuEAZYcYhAgESpLdcXOALMIgxHiVwNrsTvC87/e2PN8n/GM7B0i5CyyZPsEOFtjvZVccFvASyYs4T0cZIEKC3NFoUCiDuT1e4ZP+gZbgT09MIBRk+soio3J9J0elWUDiE73yHCBtqzBC7QEDAuKmvccl3JdcAGmdBdQkEkBqDpBQAovAASrIsMJo4OD28v0aQhkLIhmECIQu32kvgcW+DZ7neUkGKN4lsGaR+M9J82We+lzefr/BBiZBy1dhGCXXE9ph3XlKwX1i6CL+W6ISGCGhWTbETSkHdKyjT8jk7Fcoa7FgcIHf/RiVpy6AXKL29n5lgELsAQMCTkarPfD8UmTuRoqGkyPP85I1H0oZoB6nW3CRInGATEYDivyiMdFBaKELTGMJbIS/BNbQ2Qe3aI6S18tHMQgxdgKox+kRfseyxSWwOA1CbBbNf8qwmoTf3/6eZMN1gSXTG/hgQXCAFIZ3EkMXyRwgE5XACBHN/pM7OxE3dAafiMVCZn8IB6gw03fyH5nnKwUcUmiFlzpAIXaBhZkD1BPGAWICiJ0MU8zGIMGVYjZJ7kuJLodb4hC12Z1B3W0tXU7/YxpUS3JqJMtOMDXHQY1h6VZYjAZ4vLwkO9btdAs5r0SswmD5H4vRN/MjJc6rMMThd47jArOA+iuAVCZzkwMUHT5n0PczUcoxEkMXxUnQSdREkHAB9Pjjj6OsrAw2mw1VVVXYvHmz6m2//vprXHrppSgrKwPHcVi5cmXQbe666y5wHCf5qqioiOMziA7xAs8pI7IAKG8nF2d5lAQQc0UKFUpg8pZTlu0xcL6FmHJYLihcBkgt2MyQD0eUl7/E3xuqC4yVvzKsJmFwo3z1QXO37zbsJBgJLEyc6GGIgTlA2gScwaA8yZpNgRYvHlRDcIBiOKSQlTmyUn2b6AeqBMa6/7KFYYj9dYBUBiGSAxQVYmeQHCB90acwCTqZ/n4SKoDWrl2L2tpa3Hnnndi2bRumTp2KmpoaNDU1Kd6+p6cHo0ePxv3334+ioiLV+z3xxBNx7Ngx4WvDhg3xegpRw07kVpMB4wp9HSxKGSDxUMP2HheOy2a/yDNAw3NSYDRwcLi9QSWjUDOAxJeHywCxY1AL2srLXUqlMi0nR1b+KsqyCR1e8ufU3BV5BxgjWdZhRBqCBpTnGGktfwFAui32bfDyNRwpcZ77IV+BkhmjadCqJTBygKJC7Mh1kQOkK6Qh6EAJjOeTYx5UQgXQww8/jKuvvhpLlizBxIkTsWrVKqSmpmL16tWKtz/55JPxhz/8AZdffjmsVvUTnslkQlFRkfCVn58fr6cQNU2iT6/FWf6OJAUBVC/r5pLngFibOMsAmY0GobQjb4V3h5gBJL48XAYoXNu5fJ6N4rBEDSHoQHnPJjy/Jtm4gEj3gIkZnu1zyxLuAKmccEPBfsaHjwcLoHAdYIC4Cyz2JTD2+ANZAhM/br9LYCpzgGzCJOjk+QQ7GBDvrCMHSF9ItsGLzgvJ8iEiYQLI6XRi69atqK6uDhyMwYDq6mps3LixX/e9Z88elJSUYPTo0Vi4cCEOHToU8vYOhwOdnZ2Sr3jT7G/pLsiwCk6E0joMlgFi4kQ+R6NZJBIYQhBaJp7cggOkLIDY5TyPkBNbw4kOeZhXKZujpQ2eOUAFmVYMy/A9v2AHKPIhiIzibG0h6H9sqccne1sivn+tOKJxgPzi7YiCANLkAMUhBM1KT1kpvo4sJnz7BrgEphSC7nV68Ou127FOwyA+tUnQ1iQMcQ4GxKMJSADpC6UuMCB5ymAJE0AtLS3weDwoLCyUXF5YWIiGhoao77eqqgp///vfsW7dOjzxxBPYv38/zjjjDHR1dal+z4oVK5CVlSV8lZaWRv34WhG/eRdl+rt6ZA4Qz/PCYtPpI3MASHNAvinQLAMUEAAj/Tkg+VJUtuXdqDADSH55KBconOgwGDjJp+dQGaDQJTCRA5SpXALrjwPE2ubbFFZKMA619uCW/7cDP39+q6TjKpZEsg2eoVQCkwuQULCyZI/TE7M5SHIHKlW0CiMelnfgZ2/xP67vv0oZoA+/bcJrnx/Byvf2hL1ftRIYOUDRIXaAel0euOL0d0QkF26PV3hvsZmMMEt2QCbH70DCQ9Cx5vzzz8cPf/hDTJkyBTU1NXjrrbfQ3t6Of/zjH6rfs2zZMnR0dAhf9fX1cT/OZkkJzOdEtMqGIbb3uISg9BnjfGU8cQmsrccJt5cHx0kFQHgHSC0DFBBAoU6KWkSHWO0rZYC0DMljgw8LM6xCCay5S7kEFskeMEauf3bM8R6n6gmaTYru6nPjyyMdET+GFoQMkMY2eCDQCh9tBkgsSmMVhGaf9JkTw34HPF4ezjic9Jpl5d9AF1iwoGWlwsPHe8OKMXasahmgZHnzHizI15N0kwukC/pEZS7W4ZqSZEHohAmg/Px8GI1GNDY2Si5vbGwMGXCOlOzsbJxwwgnYu3ev6m2sVisyMzMlX/FGyACl25CdahY+XYonH7MOsMJMKyYU+45JXAJjt81Ls0hWUoxUWYfBMkBqJTBxNihUJ1ggA6QuOsRBaKUMUMABUn8zZI6YLwPkL4F1xq4ExgSQy8OrTqgVu0OfftcW8WNoIdJBiIC0hZ+VK7Vuggd8J3f2exCrMpgQgpY5QEDsO8H6XB50+k+kw9JtksdVcoBYh2W3wx12X5haG7yNtsFHhTyTRWUwfeAQiRyL//yUbK3wCRNAFosF06dPR11dnXCZ1+tFXV0dZs2aFbPH6e7uxr59+1BcXByz+4wFwqfXTF/7tlIQmjk4I3NTUT7MJ2r2t9iFT7BNwifgQP4HUB+GyBwgtRC02BlSc4B4ntckOsSt8EoZIC2ToAMZIFEIOqgEFn0XmM1sFI6jrVu5DCbeuL7xu9aIHyMcbo9X+LlE4gAVZdlg4ACn2yu4YJ0RhKA5jhMtRA2ckFweb9QlCqEE5y9FmY0GYXxBrDvB2M/FYjQgM8X3PJjwUxI44qD74TBdf2EnQSfJp9fBglyQ0iwgfSCMkzAahLEr7G8onguSIyGhJbDa2lo8+eSTWLNmDXbu3Ilrr70WdrsdS5YsAQAsWrQIy5YtE27vdDqxfft2bN++HU6nE0eOHMH27dsl7s5NN92EDz/8EAcOHMAnn3yCiy++GEajEQsWLBjw5xeKZqF04ztxC8MQRQKoXhBAaSjNSYWB851ImDBokg1BZLAMUEevS1J/ZxkgpT1ggG8+EEMtA9TZ5xZKBKFER7gMkC1MCJrnA1vuCzOtogyQSgksCgcICLhAbSqt02Jh9NmBtpjnF8RuQiQhaLNokjXbCRZJCQwQL0T1/Qx6nR7Me/xjnHb/+1F1h8lLYED4n3O0MBGen24R5j+FcoDEDQbhQu/hM0DkAEWCXJCSA6QPlLopA7O0kuNvKKECaP78+XjooYewfPlyVFZWYvv27Vi3bp0QjD506BCOHQt0bRw9ehTTpk3DtGnTcOzYMTz00EOYNm0afvaznwm3OXz4MBYsWIDx48fjRz/6EfLy8vDpp59i2LBhA/78QiF3UVhHkng7OSthjcxNhcVkQKlf2LAgNBNC4g4wwCc42P2K5wiFK4FxHBd2IzwTHBlWU8gTtsQBiiIEfbzHJQxPG5ZhFVyulm6ncGx2h2gNRhQOECASQCoOUJtonUeP04Mdh2ObAxLXwiNpgwcCS1FZJ1ggBK1NAMn3gf3xnd34+mgnmroc2FHfHtGxqD1+JMMQXR4vrnjyU/z071vC5nSUXEgW/lZygI6IhoyGm/uk1gYfyAAlx6fXwUKHLJNFs4D0gfBBQnSeEBZlJ0kJTHmXwQCydOlSLF26VPG69evXS/5dVlYW9o3x5ZdfjtWhxQ2vaAEnczZYEFrsALEMECtpleen4WBrD/a32DFrTF5gCKKC+zEqNxXNXQ4cbO3BlBHZAMIPQgQgLAhVc4C0Zm6kGSD1EpiaM8CeW26aBVaTEfnpHDjO9xza7E4My7AKYizFbFQUWVoQBJBKJ1ir7PJPv2vF9FE5UT2WEn0KNrFWhuekAAcCjobgAGkogQFiB8iNzw604emP9wvX7WrowqljI5ufpTSHyJf/cmgqgW3e34ZP9vnKjIeP9wqCXwmlIH7AAZL+zBxuj2SCeFgHSHUVRmwdoOc+PYgNe5rxyIJpQY81lJA7cvF2gI609+JHqzbiiqqRuP6csXF9LEKdwBRokQOUZGXkIdcFNhho73UJAiMvzV8CU8gAsTZ2diIoz2c5oG4AogyQzAECgJF+0SRepREuAwQE3CGPyj4wrW3nki4wpUGIYXaBycWdyWhAnl+ssDJYf8tfAJCbGqYE5hdA00ZmA/AJoFgSTQCaId8KH2kJjInG1m4nbn51B3g+IEx3N6iPjVCjXZgEHQjHR1ICe/ebQENEuI47JSEuzAHqc0scTPl4ifAOkFoJzCi5vr888cFevP11Izbvj0+4Pllgv5dMcMfbAdqwpxlH2nux7qvox6kQ/ceh8N5mi/N0+EghAZQA2Jt3TqpZ2DdUInOAHG4PjvlFgNgBAoD9LT5R06QwBJExSqETzB0mAwSIp0Erf8ptYdmLjNBt5ylmbSUwtXJCk0J5Tz4MUZwDiZZwDhC7/ILJvhD9ZweOBy1k7Q/RDEFksFlAh4/7fh86IiyBsRPSI3V7sL/FjsJMK26/YCIAYFdjZAKoz+UR3tSyUpVKYKE/9fM8328BlCl63uJhiHLHJ3wGKLQD5PLw/Z6dxPM8Wvy/W4lexRJvmDBmoxvi7QCxD32xnHJORI7S3xFlgAjBwRC/eRdlSadB++aV+E4gzPmQO0CBDJBCCcwvmg6IOsHCrcIAfE4LoJ4Bkoe31RCf0FMV5wAFlqEqlTXlW+6BgBvU7H/ezf3oAGPk+sVTa5gusFNG5yE3zYJelwc7DrdH/Xhy+qIYgsgQt8J7vIFW/uwIHSC2UX7FJZMxszwXAPBtQ1fIaeBymOAwcL58GENLtx8A7DzWJREmX4URQEpOpNloEESduPWatcAzoaxZAJmVHSDfbfr3Cdbu9AhCOtGrWOINc4CYk602ciJW1Lex2V2UNUokSlk6K80BIpoV2tdZG3xLtxMOt0f4FDMyN1XocmEC6FBbD5xuryBG5G3wQKAEdkA0OZqJGnOYDBCg3gXWonH5aIpF1AUWYheYl1fOVDR2BbtbgVZ433X9mQHEYCWw4wolMJ7nhcWveekWnDLaJw427otdGUzYBB9FBkQYhni8VxL8zYzQAQKAS08age9VFKIszxe473V5JOXTcLSLym/iLJPWEhhzf5io++pIR8i8n9rPXqkV/phfYMwY5fv5tdmd6FFxpMTTa4ND0IF/iz/Bfn7oOC58dENE5VFx6P7wEBZALo9XcGICDlB8hQn7ve2kbrOEojThPkW0EDUZIAGUAJTevHNSzcIbbFOnQ8j/jBQFQUuyUmAxGeDy8PjySDs8whTo4BLQ+MIMmI0cmrocQtdYRBmgMF1g+WFEh/iErhiCFn2aVuoQEs8AYrDAOHv9+rMGg8FKYPKwMwB09rqF1yw3zYJZo/MAAJ/uj50ACuydivxPscQvFuzOgFhJsxglQzFDkeHfCF+YacXyH/hKXyajAeMK0gH4gtBaEfI/qdLfRa1dYO/u9OU1fnHWaJgMHI73uHBUYTkwo1kl/6UUhGadlRXFGYI7pea6iCdWy0tgBgMnDHQTO0Cvbj2ML4904LVtR0I8Qymtou7CoewAiUuRTNzGW5iwkrDT7aW1JQmkT6GZIFACS46fCwmgBKAkgHzDEP2t8O29QR1ggO8NuMz/bzaVOD/dKpStxKRZTUI54/1dTQBEXWAaMkBq8260lsDEbfDpChkgk9EgnEyU1mEI+aYMcQlMmgEK5JGiF0B56SwD5Ai6jp2k0q0mWE1GnOIXQJ8dOB6zN9b+OEA2s1EQf18f9ZWM5AIkFBdPG47zJhbiLwtPkuR2xhdlAIgsCM0Ehzx/pEUAHW3vxVdHOsFxwJxJxTih0Pf4X4YYOSD87NOVBVCHJAPk+10qyUoR5aaURYdD9MnUojCWgH1IEX+C3dPoK0kfVVhmrIY4cxauJDeYYc5ghs0k/G7GMwNkd7iF4ajxfiwiNErNBLYkGyVBAigBNMl2GDFYDqihs0+Y4jxS1grMymDMblfK/zDOGV8AAPjAL4CYqAnlAJnDZIC0io5wGSAgIJJCOUDsNQECglEIQWsUY6HIYSUwe7Atz05SzCUaW5CO/HQLHG4vvqiPzTwgVv6LJgQNBILQXx/tBKC9/AUAo4el48lFMzDdXxpiTCjyrV3Z3dip+b7aVaZQCyWwEG947+30lb9OGpmDYRlWTBrue3wm6uTYHW7Y/b8zQQ5QSvBCVFYCK8lOkeSmlGA/D7ORU/w7sco6wXiex7dNPqF4LIRjJUecOWvo6IvZQtpko120HoU5jvEsgcmFLQmgxBFwt8UOEAkg3aOWXxCvwxCmQOelSW5Tnu8rT2w9eByAcv6H8b0KnwDatL8V3Q63aA6Qli6w4Ddknuc17QEDwrfBA4F6sFwAeby8IG5CZYACbfDRd4GxMQTdDneQq9MqE0Acx6HK7wLFKgckOEBRlMAAYIT/hP6NXwBlpfR/tBdzgHYd0+4ACXvAonCAWP7nvIm+AaiTh2cBUO8Ek8x/kpVXmQBkJ16e54USU0m2TRCMap1XgU+tyoJU7gC12p3CYx1tD79olSEuubo8gblgQw1hPUuKRSSA4idK5Lk1CkInDqUQtDAIkTJA+kXNuVAqgckdoNF+B4iFSkM5QOX5aRiVlwqXh8fHe1vCboP3XaeeAers1bYGA5C2waeouBupok4wMa12BzxeHgYOQgccAMlCVJ7nNQeyQ5GZYhJEn9wFYg6Q+BhYDmjjdy1RP6YYYQ5QlIPwWLB0V4NPAIln8ERLhV8AHWi1a/6kJqzBCMoA+U56agKos88luJlMAE3yCyC1IHQghxZYg8EQMkD+4+nsDbhFYgdItQTGBlOqTOUW1mH4X5dvReMCepwedPZqO7nLS65H2rUHzhNJV58L1z6/Ff/ZcSz8jSFd0Jtp889pCrOMtj/UBwkgcoAShVIIWvgAkSTZLBJACYDlWwoylQXQl0c60OvywMAFgoOMsnypIxTKAeI4TlIGY6LGqGkOUPCJhwm3DFvoNRhAoAsszWJUnXAstMLLTrJsBpA838ReL4fbi4bOPqG1uj8CiOM4oQzWKjspyUtgAIQc0LZD7TGxcftUWq61whwN9olK6wygUAzLsCI3zQIvH8i3hENtDUdKmBLYh7ub4fLwGD0sDWOG+dzNCcWZMBo4tHQ7hVKoGMFBVfi5Z8u6wFipKzfNApvZGHCA1EpgCtNrxQgLUf0/t71N0tdHaw5IHroXr+pIZj7Y3Yz/ftWAv6zfG/7GEC/INQ+IA1R/nBygZEE5BE3LUHVNn8sjdEEMS5eKFzYNmoU/i/1dX2LKZQJIaQiiGFYG+2B3k5ABClUCCzhAwRZlSwSZGxZ2Sw2xokKtPNKoMuDRZjYKb6Ks5JNqiX4NBiNPZRgiy2nkisp9Y4alYViGFU63F58fau/X4wL9G4QIBAtkrWswQsFxHMb7g8jMWQqHWgYoJcwgRHn5C/C9FqwTTakMFmr8gRCC9p942VytEv+uPfn0bDlqU6AZVlkXi1wgHtMogNjvGvvA0Z9hiF4vj4Otds3lt/7AOqzk07XVENajpJiR4XeAel2emC8VZsgdIGqFTxyKIWiWAUqShcIkgAYYJiIsRgMyZXkN5gAx90XcAcbIT7dIBs0p7QETM7M8FylmIxo7HcLJJFQIWnCAFFZhNEfQdWXzn/jkGQ0xKRbldRgNKlvugcDzZaHf/rg/DLVp0KxMIS6BcRyHU8f4XKC1Ww71+7GFQYhRlsCYo8GIhQMEiHJAGjvBOnqUBVConW8ujxcf7PYF9GeLBBAAnFgSKIPJCTUAky1EZYJMyP/4P1yw16uxq09xorfaFGiGTeYAsRIY+5M6qtHJYb9rTOj1pxX+/97aibP+sF4ySTteMKHWandq6oQUO4PswwsAdMdJmLAhiOzvgEpgiSP0JGhygHSJ+NOrPL9QnCV1POT5H8B3Ai4fFnCBwjlANrMRp/mXWrJusFCDEFk+SCkDFIkDNL4wA1aTAVNLs1Vvk+L/Y5BPCVaaAcRgJT/mAPVnCCJDTQAFQtDSx/jJaeXgOOD17Ufx8d7+ZYH6swsMUHCAYiSAKiJshe8QhV3FpITY/bPpuzZ09bmRn25BZal0wexkfyeYogDS4ACxtnyhBd7/OuWnWWExGcDzyi5GYIO1NgeIlcDYwmGtDhBzF6eMyPIfZ3QC6Ljdiec+PQgg0BgRT8TH2aRQnpQjXpBrNhqEE2A8hAnP80J28sSSTP/jUAksUSjNOGPvB7QMVac0hXjzzk2zSEpeIxUcIAAoyxMLoPACgJXBmB0cbQYoMHgwfNC2JDsFn91ejT/9qFL1NoGArPTNMDADSEEA+Z/vN8eYA9T/0K+6AxQcggaAqaXZWHTKKADA7a9/1a9PM6xOHq0DlGEzS0SP3IGJlopi3wlEqwMkhF1VS2DBrxFzf86tKAxyJSePUO8ECyWA5JOg5SUwg4ETOucOKwSPnQqdK2LEDlBrt0MQyWeO833IOKbRAWJ5s8l+4RStA/Ti5kPCJ+2BmCckLtWxUnUo5MKYlcE64yBMWu1O9Lo84LiAg0kOUOIQQtBKJTDqAtMnod68xcMQAWUHCAjkgAwckKfBjTmnYpjk3yEzQEb1LrBmleFzamTYzKoBaEC8D0wtA6ReAmOf9OLpACmFoBm/qRmPggwr9rfY8Zf1+4Kud3u82F7fHnZxqqOfbfCA1AWKlQN0QmE6OM4nepnwDUV7mDZ4pRIY+xkysSNmQnEmDJzvA0OT7ETbHGICeMABcsla4AOvUahW+HAlMLEDtMfv/pTmpmC0P8CtJQTd43QLJwDW8h9NBsjl8eLZjQeEf8d7ojTP8xKR1aBBADEnjo0nyIxjEJr9PhVl2oQPLf11gDbvbwu7l45Qpk9xDpCy658oSAANMOH2VxWJyj5so7uc0f4SWH66NWSeh1GclSKUNACNGSBFB8j3ZhYL0QEE1mEEh6CDZwAx5F1v8coA8TwfNAdITKbNjDsvPBEAsGr9Pkk30L7mbly6aiPmPf4xHn1/T8jH7u8gRECaA4qVAEq1mAQBHq4M5vZ4hROavA0+xex3+RTe8FpU1lmwx2ddYV/JBiK2hCqB+Z0Gt5dHj9MjZHLYjC0AIYchhusCEztATACNK8gQPrhoGYbIyl8WkwEnFPqeY5fDHbEr8taXx9DY6RD+ZrXmj6KlvcclEbJagtDycDxzgOJRmmIB6NLcVNHjRC+02uxOLHzqU1z59KYBCZgPNZRC0FaaBK1v1KZAM7Q4QDPKcmEzG4RVF1pgZTCg/11gsRAdgLo7wAYdyscEKF0WSwEkbk0Wb+vOUymzfX9yEc4ZPwxOjxe3vfYlPF4ez3y8H9//80f4or4dAMIGU/s7CBGQOkCxmAPEqNAYhBZ32mTapMH+UCWwcI5iYB5QoBPt7a8bBOEizz8BvteRlZHb7E7BpRDfNlQnmNYMkMPlwV5/AHpcQbrgMB3r6At7shSXVlMtJuT4xUGkLtAzHx8AACysGglAPdgdK+SCUUsJrDNIAMXPARIEUE6q8Djd/dg8v+tYJ1weHsd7XJLVKoQ2lEPQJIB0TTgHqNj/RpqVYlZtaR6enYKtt5+HRy6fpvlxJQIoxLLMkHOAYrB7SwzrFBO7Ay6PV3CalBwg+esWyxLYcZEAYtu6bWaDkFWSw3Ec7pk7CTazAZv2t+G8P32Iu//9DRxurzAwcVdDV8gSUl+YycNaGBEHBwgAxrOVGGFa4VmZI8NmCvrdEg+7FAsD31Tx0B8GJskmQn/b2IXatdsBAFedWqb4+8FxnFCG+7axCx4vD5OBk/yehJoFJAxCVPkbsZkDDtC3/hb4sQXpKMy0geN8GSKlxbpi5KXVcNOpldh26Di217fDYjTgl98bJwS7tYiSaJEPj2wIE4LmeT5oPlRmXB0g3/GV5qaIskbRCyDxkEstZWBCSshJ0NQGr0/C7a9iDpCa+8NIs5pC5mvkVJZmC29CoR0g5S4wnucF6z6eJTAmskwGDrkKiz0HqgTWKrTAh77/0txU3Fh9AgDgu2Y7UsxG3DtvEl68ukpwUNikYyWEEHQ/HCAmgDgOklbj/qK1E0xtBhAQeMPz8tJN692OQA5G7Wc4WTQRuqPHhWue/Qx2pwezRufhtgsmqB4P+z1nnYKFmTZJ2TdkCSxcBshkEG7HSmAnFGbAYjIIzyNcEJqdTFl+j7XoR7JMdfWG/QCAuZUlGJZhDbvjLBaw+2bisDFMCczu9AgfpAIh6Dg6QMcD0/NjsXdsj6is3dwVWtQOFN82duGBdbsGhSMVyDeKHCD/34/T7YU3CfbfkQAaYJr9n9DURMTpY/NRkGHFRVNLYvq4JqMB54z3haHVHA1AfQ6QeA2GvCsqWlKFOUCBN0P2CbYgw6oo8OQlsP4sQmWw53O8xyn8UYYKQMv56enluGBKMaonFOC/N5yBK08ZBY7jhPEDH+9VF0CBkkt/HCCfWM5OCR06jxRhK7zfSVFju38gpJJYFK9BEQtd5vKlWYyCSJIzsSQTHOcrK/3s2S040NqD4dkpeOyKacLSXiWYENvpd67kpTLmuBxr7wt6E3aEGUvA3swbOvoEITPGP8unhK2yCSNk5N2FkTpAxzp68d+vGgAAS04r9z12dmCNTrxgx8eW1YYLQTNn0GIKtL8LwqQfpSk1DkkyQP0XWmIBlCwO0KPv78UT6/fhjS+OJvpQwuJQmHIvFkPJsA4jdh8XibDwfGDJp9KMG8C3oXvTrecGzQiKBTfVjMfI3FT8cMYI1duo7QKLZA2GVpS6wELNAAKADKsJNrMh4B70YxEqgwV3vbyvbTcnzRIyAC3HbDTg8StOCrr81DF5eHrDfmzcpz4rqL9t8IBv5slPTivH+KL0qO9DibK8NFhNvtf6UFtP0BRywFfLf+JDXxec0u+V2WiA2cjB5fGFkrP9xma4UjAApFtNKM9Pw3fNdmw5cBw2swF/WzQ9bOcjG4a407/MlYkDRpHfEXJ6vGjudkhKaUq2vRh2OSvLDc9OQbp/MGlxVgq+ONwhbJ9XI6gEFqF78+zGg/B4eZwyOhcT/fNuwk24jgVsX9n0UTnYdqgdDZ2+vJPaexVzKbJSzMJt4hWCdnm8QgB9ZG6qkIWK9nF4nseeJCyBMdetOY6lzlghfJhQaIMHfO99Cib/gEIO0ADS0euCy++shJpfEw/xA/icgtrZ40OWjdQyQFpOWJGSqpABYgFotflGHMcJZbA0izGkm6UVi8kgfGJkwkdtBlAkzCzPhdHA4UBrj+rJrb+DEAHfa7L8womYf/LIqO9DCaOBwwmFrAymnAN6/tODaO5yYHh2Cn44vVTxNkrDELUG6ieVBFrkH7xsqjAhOhTMATrQagcQyNUxTEaD0G0pz7WEb4P3Xc5+nuMKA6KzOFtbJ5hcXEcigHqdHry02TeB/Cd+9wcItPlHUkaLFHZ800b6hlY63V4h46NEh8JoBPZ3FusVFcfa++Dx8rCYDBiWbhUep8/ljWrtRqvdieOi55YsAoiV5tt6kqMkFwqlvyWjgRNKqMkQhCYBNIAwEZGVYu5X6DWesDlAbtmbRqw7wADRidHvAB1t78WGPT63pCjEhGsmwmIVxgaC94FFUgJTI8NmFib9qk2MjoUDFE9CrcTocbqxyu/+/Orcsaob1JU6wUK1wIupObEIHAf86ntjNZeF2QmXZa5LFLrFAlvhpcMQw+4Ck13OVlkA4ixPaAEkF9eCeNEggDYfaEN7jwvFWTacOyGwPqREEFHxcwaYu1Senyb8XYQqgyllw2LRnq4Ey/+U5qTAYOAEVy7ax5LveGPv3YmG/e4cDyE8kwU1N1U+TT2RkAAaQMK1wCcDLAQtd4AiWYOhFXZibOjow4/+uhGn3v8+3vG3jSuVWxjs9YvlseTIBJDSItRoOG2MLwe0cZ9yDkiYltoPByiesCD0v7YfRavsU/BzGw+ipduJkbmpuOQk9bJqqsLON61DNS+YUoxv7p6D2tnjNR+zPIw9PDtYTKt1ginlFsQEC6DAfC3BAQojZIIcIP+xNHU5wraxs3UXp4zOUw52ywRdpHx9tEPxxNTjdAsn3eE5KULZMJQAEpfAGLEIJyshzv8APpePOczRPNaeJqngZ5m1ROL2eIWfwfEwnYbJQJ9CCFr872QYhpic77pDlHiUkWKNUS0DFJcSWCAQuXl/GwBf2ej+Sybjx/5VE0owARRLNyrYAQpehBoNbHHqx3tbFOfD9HcbfLyZWzkcRZk27G+x48qnNwtljW6H2P0ZFzKUzJw+cdhdqwMEQDUkrYZ8FIB4CCJDLTMTdhmq7OckKYFlBWYBhaJV6ALz/W7lpVlg9bexh9sl9vkhnwA6aZR0d9pwwUUKP4dIjX9uO4wLHtmA+/+7K+g69jpl2EzItJlR5C9Rh+oEC7TAB/6G4tUFxmYAibtn+/NYzAFigyqToQQmdn3kU+uTDbfHK3yIln9oCCxETXwrPAmgAWQwCCCTSgYokj1gWinLT8Wk4ZmYWJyJ386pwMe/+x7+8fNZuHzmyJCzik7wuxJjC2IX+s0VdYIB4hJY/35WJ43KgcVkQFOXA/ua7ZLrPF5e6KxTK7kkmmEZVrxwdRXy0y345lgnFj2zGV19Lqz55ACO97gwOj8N8ypDl6bYJ3GxsxDpWpVIyJIlKxVLYGoOUJhJ0PLLxb+DTIQ0dPaF7JoLlMB8z53jOE05II+Xx+f+jrvpI6UCqMjfgdbr8oTM5YTi758cAAD8b09z0HWHZcMn2eOFLoH5nqfYkYvXHKBDoiGIjP7sHWMOEJvn1ZIEJTCx6Dme5Bkg8cgLuZsqTFNPAgeIusAGkAybCROLMzE6P7bdOrHEaFSeBM0s4FiesKwmI9785RkRf9+PZpSiPD8NJ8lOAv2BlcBY6SuSLrBQ2MxGzBiVg0/2teKTfS2SE6ZD1AaarA4QAIwZlo7nf1aFy//2Kb6ob8dP/r5FGAJ4Q/W4kGIVUO72axZ+n2LfBiIO3aZbTUHTqYHA7KRgB8h3jGp5JvHPqTjLJpxkAZ9YNBk4uL08mrscgkgQ0+fyCK+DuLw6PCcF37XYQ3ZxfdvYhW6HG2kWo5DNEh9XfroVLd0OHGnvFX6ftfLN0U7sOOzrbPuu2Y7OPpcgVoDA68ReN1YCCzV4sTNkCSzWGaDAEMRYPBZzgGaNyccaf6k3VMfbQMAC0ABw3O5K+PGEwiFyd+RDRQPDEBMvgJLzY+cQ5fKZI/HWDWfghupxiT4UVdQcoGRyr8xGA04dkx9T0RAogfm7LGLQBcZg84A+kc0DElvAySyAAKCiKBPP/aQKGVYTthw4jo5eF8YWpOMHU8IHkwMlMFEIOo6/T2LHoTjLpniSEDsu4pKR1kGIADCuUCpCjAZOEAZq3VhMWJuNHDJEQV0hQB0ixLzNX/6qHJmtuM+PZZ2iGYb4j8/qJf+WLwA9Ilsqy5oUQu0DExbkKoSge5yeoEaL/lAvywCJHytSAdTa7UCr3QmOA04Z7Vs35PR4Y965FimtohyS0+OFXWG9TLLA/o5MBi7oA5JN2AdGJTAiyTCqTIKORxdYMsFKXW09LtVP6dEyy58D2vhdq+R1ZW6D2chpWmqbaCaPyMLff3KyUNK6sXqcpuOWl8DE87Di8fsk3oemVP4SX97jlJaMws0BEgvVcQolWGEpqoqQYStWctMsEmEWKMmph5hZAFpe/pLfR6TDEPtcHrz2+REAgfETzA1iMAeICcdCoQSmXhqSr8EApJPK+7OnS4zd4RY+sJQqZoAiK4GxxcYjclKQnWoRhGqic0Dy3E8yB6H7FGYAMVhJTGk/4EBDAoiQwBwgl2gStHhvUyxbz5OJ3DTfm3Sb3aH6KT1apgzPQrrVhI5el7CeAUj+Fnglpo/KxT+vOxWPLJiGCyYXa/oeeQmsy+EWup3i4QCJT7hqAoiVjACpYxJuErTEAVISQGFa2lkZQ54tK8kO7wCx/M+0UcoCKOAiRSaA3v66AR29LpRk2bBoVhkAYMfhdslthAW0OVIHKFQJTKkLzGwMTIWWOzOfHWjDDx79SGiI0Aprgc9ONUvKdplRlsC+9Qsg1uHH3vMS3Qov3zGXzDkg9kFCydkWFqJSCYxINtgb8Ud7mgWLWusAx8GM4AB1O1U/pUeLyWhAVbnPSv9ENBU6FkMQE0FFUSYumlqi+bVJMUvb4NmJxDfVO/biL8NmAju0EoUcDoOdzPc1B2a+OCPoApOXwMSPp1oC61YurYYLQbd2O7C/xReiP6lURQBpEFFKrN3iK3/9cEYpppVmAwjvADEB1GZ3SrJsYjqEOUDS58pEinyf1f/bdgRfHenE/9t6OKLjP9QaHIAGAiWwSJ2mvf4J0KzDj73nJdoBko+hSOZOsFDztFLMVAIjkpQfTClGXpoFh4/34j9fHgMQ+MPPtJmSdoBjfxEyQD1O1U/p/eFUthdMNA8oYBMPzdeUIS+BsfxPvNxEg4ETXAc1BwgIjCgQ51/ClcBSRS35Sl2IYUtgLFuWri6AlNrYt/ndn3EF6chSWDoLBATd4QgcoEOtPfhkXys4zrfKZJJ/cOfh473CCdfp9qLRP6GdPUZ2qlkIijeplMHYLrBs2VgCtXDy/hafED3YJu2WDAcLQMsXSLNhiJGWwPbIHCDmUia6EyyoBDYIHCClHYc2GoQY4PHHH0dZWRlsNhuqqqqwefNm1dt+/fXXuPTSS1FWVgaO47By5cp+3ychxWY24qpTywAAqz78zpfX8G9CHqrlLyDQBdbn8gqfwmO19BUInGy37G8THJCATZzwP8O4EiiB+U54zXEYqimH3ffIvFTV2/z4lFEwcL5ltd/6P/UHltMq/0yyUy249uwxuLlmfNC8ISBQAlOb56PWXViUZQPH+cSG0tA9FoAO1fk4PIKJ0gwm/k4fm48ROanItJkxephvCOkOfxC6oaMPPO/rjMsXte6HKoO5RCFd+euktg+MOVwHWiIb5sgC0CNypWI32rUbrMORlThZqTTRwxDFpXkAaLMn7zToUOMkmIuaDG3wCX3nXbt2LWpra3HnnXdi27ZtmDp1KmpqatDU1KR4+56eHowePRr3338/ioqKYnKfRDBXzhqFVIsRO4914n97WgbkhJVo0ixG4RMta4Htbwu8mPGFGRiRk4Jelwfn//kj/O/bZtVJqUMNeRdYwAGKXzn1nrmTcMuc8ZihkpcBfIKh5kTf+wibgROuCwwAfjunAtefM1bxunDrMNQGbFpMBhRmqHdxCQHoEM+HuV3NXQ7VspQYt8eLV/3lpvknB/a4TRnuc4G+9JfBDvuD2cOzfWsmGEUhpkGLy1uZGhwgu8MtLEJu6OyLKCCrNATR9ziRd4EdtzsFx3tskABKjhIYm5I/WEPQNAnaz8MPP4yrr74aS5YswcSJE7Fq1SqkpqZi9erVirc/+eST8Yc//AGXX345rFblk3Gk90kEk51qweX+xZqr1u+Le8kiGeA4Drn+rALrAomlADIYOPx9yckYX5iBlm4HFq3ejL+s901STtYhiLEiqATm/yQdT0E9a0werjt7bNicEnM7/7ntMDp6XGFLYOFg6zBaupXXWoQasMm21ssdHJfHK4SS5ROgxeSkmgU3Ua0EJ+Z/e5rR0NmHnFQzzpsY2Cs2ZUQ2gEAQWp7/YQidYApij3WAZdpMQZ2CSsMQ2eJaBhtsqAWlIYhAdF1ge/15sOHZKUjzl9CSRQCx3x0mzAZtCcxEk6DhdDqxdetWVFdXBw7GYEB1dTU2btw4oPfpcDjQ2dkp+dI7PzujHCYDh43fteL9XT73bCg7QEBA8DABFMsSGACMLcjAv5aehh+f4hOXrNtlyDtAsi6weE6BjpSZ5bmoKMpAn8uLl7ccEkSL2iDEcOSlWWDxr7VQKg2FGrA53H8Clw9D3HmsE30uL7JSzBgdYkeeeKK0ljIYCz9fPG2ExPGaWupzgL443AGe5wMdYDIBJKzDUHSAfM9TKa+k5ADJy15yQaSG2+PFQX8IWr4/MJpBiN/KAtBAIATdnMASmMfLC8tlxw4bDAIohAOkMBk+USRMALW0tMDj8aCwsFByeWFhIRoaGgb0PlesWIGsrCzhq7S0VPW2eqEkOwUX+VccbPBvMk+GIYjxhAVTmaUfixlAcmxmI34/bzJW/fgkoU03Q2FS8VAiqAQWwR6weMNxHJacVgYAWP3xfuHyaB0gjuOEILSSCFELQQMBB0heAmPlr5NGZktKUEqUaFipAfhcpQ92+VZe/HCGdJHtxOIsGA0cmrscaOx0BBygHJkDlKk+C0joAEsJfp6CMBF1Z7EANOOgRgFUf7wXTo8XNrMhSKBFs3Zjjyz/AwSc70SGoI/3OMHzAMcBo/0CKLm7wNRLycIgxDCLfweCoe29a2TZsmXo6OgQvurr68N/kw74+ZljJP8eqi3wjBxZu26sHSAxcyYV4783nomrzyjHL7+XvJPBYwFbess+8cVzCGI0zK0cjuxUs5BBAfrXmSd0gimUhlq71R2gEf4TeL2s/KMl/8MYrrEVfn+LHU6PF+lWEypkazVSLEZBAHxxuF3dAfI/T6WFqEpToBlKIej9fgeIlfAOtGorge3xOzZjhqUHicNoHCDm/opHHDDnu7nbEfWi2f7Cfm+yU8zC383xpA5BqzcTCBkgPQ9CzM/Ph9FoRGNjo+TyxsZG1YBzvO7TarUiMzNT8kUA44sy8L2KAuHfyXLCihfyk1Is2+CVGJ6dgtsumIhJ/tDpUEVeAku2TJnNbMSCmSOFf3NcoNMmGgJB6OA9Y2wmTb7C7xY76dbtasKT//tOuJwNQNSy+y7gAIUWEOJSj1JOaqooByQfgsgIFYIWMkAKnXJK3VnMATp1jG9chFYHiGV2lEYSRLN2Q3hdxA6Q/33P6fZKXKuBhI3myEu3IocNbY1zCYznebz3TSOaQgy7VKMvRJaOiVwtQf14kzABZLFYMH36dNTV1QmXeb1e1NXVYdasWUlzn3rnF2cFXKChLoDkjk8sQ9B6RlwC800V94egk0QAAb6WeBbWtZoM/RqAyYLQ8iAyK1mYDBwyU4LLnlXlufjJaeUAgPve2onfv/kNjrb34kh7LwwcMNU/pDAUWh2gbxt8J/oTCoKHOQK+tScA8EV9h/A8gkLQIgEkd0YCJbBQDpBYAPkEzznjhwHQ3grPHBuWi5E+TmRrNzp6XGjqknaAAT4Bz2YKJaoM1ibKjrH3peN2Z1wdqf/tacHPnv0Mt772VcTfy9rglfKNgUGIOhZAAFBbW4snn3wSa9aswc6dO3HttdfCbrdjyZIlAIBFixZh2bJlwu2dTie2b9+O7du3w+l04siRI9i+fTv27t2r+T6JyDi5LAeXnDQclaXZQRuohxryDdrxLIHpCdYF1ut0o7PXDaf/03gyvb6+lnhfdrC/gymLs5RnAbEyRo7KhHGO43DHDybg1u9XAACe2rAfi1f7ZphNKM4UupJCUaIxBM1m3Zyg8jfNHKDN+9vg9Hhh4BC03Z4JIKfbK9mnBoinQIcKQftu097jxHH/9591gs9xPtrRq8khEASQggMUau2G4n01+0RhSZZNEGmMwDToxORuxBPEWane7eXj6kjtbvA1AzFXLBJChqCTaBJ0QtOX8+fPR3NzM5YvX46GhgZUVlZi3bp1Qoj50KFDMBgCL+DRo0cxbdo04d8PPfQQHnroIZx11llYv369pvskIoPjODz8o8pEH8aAID4hG0XThIn+IQgglwfN3T43IdMWnzUY/WHJaeV468sGYSFotATa2ZUdoFDCj+M4XHPmGAzLsOLmV3YIU4m1lL+A4InSak4WO6mdUBgsHABf+dtiNAhitSjTBrNsq7fFZEBemgWtdqevnV70vNgUaKW/IXk2h7k/hZlWlOamIN1qQrfDjfq2XkVhw+B5HvuEzI7y7TJsZvS5HOjUEIRmonCswoqT/HQrDrT2JKwVXtw9aDMbkWI2otflQbvdJdl/Fkvq23wi+mh7LzxePqKFzaFC0NYkmgSd8PaTpUuXYunSpYrXMVHDKCsr02T5hbpPglBDXPLKSTWH7bghtMHaXr08cMQvCpIl/yPm5LJcvPCzKhT089jUHKC2EC3wci6eNgJ5aVb84vmt6HF6MNO/Sy4cbKK0w+1Fq92pWLbuc3mENvPxCid7wCduJhRn4Av/MER5/odRmGkTBNCE4kB2MlQXmLw7ix1LWV4aOI7DqLxUfH20Ewdb7SEF0LGOPtidHpgMHEblKY8HyLCZ0Nzl0OQAKXWAMRI9C6hNlAECfL9DR9p70dbjDDntnOFwe+D1BvJ4WjjsXzLr9vJo7OwLuVZG6fEAGoRIEIMG8YmJ8j+xI1Xk9Bzyn+ySdabUaWPzFZecRgILQR/vcUk6XdjJU+vv1pknDMO/rj8Nv583Cd+fXKzpeywmgyDg1Mpg3zXb4eV97kyoHBYbiAgE538YzC2Td4KxmTVa5gDtb/b9TrAVHGV+MROuE4yVv0blpQa5U4HH0j4Nek9TcACawaaWJ2ojvNw9ZEFoLdOgvV4ecx/7GNUPfxjRSIB60TyqcGMV5LDylmIXmCl5SmAkgAjCDwmg+GAyGmDxn6DY1N5kdIBiRWaKSfj9+fS7wPJbdhKLpJlgXGGGJKCthXA5IFb+Gl+YETLszYLQgLoDxHJB8k6wDn+mR7kEJu3O2u8XOkz4jPI7GuE6wfaEyP8wMiOYBh2qnJZoB6hFNj6B5YC0zALa09SNXQ1dONLei7e/bgx7e8BXXmQOEADJ/2tB2HOoUAJjLpTud4ERRDKRnWoBOx/kxbkFXm+wMCoTQMnqAMUCjuNw8bThAIDnPz0oXB5JCaw/MAF0+HhoAaSWm2FMlThAymWWQpWFqFpC0ICvO4u1wLNJzpE6QONUOtnEjxWuC6yrzyXsbxs7LPj+mFPGFkMPNPIBmkInmIZW+M8Otgn///rnRzQ9Xku3U+LQHG6LzAEKPQfInwHScxs8QSQbRgMntO2SAxRb2DDEQ/430mRqgY8HC6t8c4Xe390kDDYMtQYjlowI0wovOEBhujrHFqQLLcuqDhBrhReVwHg+sLZBKQNkNhqE++3qcwslMCaAtDpA+zQ4QBlWbSWwff5jGJZhVSzbJdoBCpTAfMcRiQO09cBx4f8/2deiaa6P3PGJtASmZRK0y8Nrns8UL0gAEYQIdnIiARRbWCcYEwNDfar46GHpOGNcPngeeHHzIQDausBiQfgSWHjnBPB9IPjp6eWYWpqtOoVaWIgqmqLd7XDD4/U1q6h1UjJnZl9zN+xODzgOQpi3zC+EDh/vhSvECTLUEET544TrAgu4Scr31V8B1NTVF1U7OeDbA8acHnkJ7HhP+NLeFr8DlGYxwssDb3xxNOz31MvcQzU3UQ0tIWgg8eswSAARhAj2CUtpVxMRPexNj5UihroDBPiGKwK+paMOt2fAS2DySdQA0ON0C2VItRZ4MTfVjMe/rj9NGAQop0ihBMbKXxZTYA6PHCZMvvR3mY3ISRHcgoIMK2xmAzxePmgxLKO124E2uxMc51uDoUa6xnUYLACtJqaGiQRQNMMHf/L3LbjgkY+C1pxoQbwHLCeVOdTaQtBNnX2ob/MN0rzunLEAgNe3hy+DseMcLpRTIztuIQStIIDElyW6FZ4EEEGIOPOEfKRZjJgxSlvbMaGNVFn77VCfKg4A51YUoDjLhja7E//9skFwD+ItroWlqgrigTkd+ekWoaW6PzAB1GZ3wuH2YH+LHcv++SUA38laLWTNgtCszb5M1MbOcZzw7/0qZTD2PIZnp4Rs7dbaBbYvnAPk7wLrc3k1TZUW09jZh6+OdMLl4fHF4faIvhcIOIfZKWaY/M0EbOZSuHUYn/n3yI0vysTlJ5fCZODw1ZFO4fVTgzk+p4zOA+Arp3q9ysKvbmcj9jZJ3S0hBK0w68tg4AQRRAKIIJKIpd8bhy/unI2JJbQPLpbIT1J6EEAmowFX+HeMPfPxfuEkHO+A/cjcVBg4X+ZInqPZ3cBavWMz1T071QyL/2R297+/Qc2f/oeP9rTAYjTger/joARzgHb4BcHofOkcHyEH1KIigDSUv8SPE64LjHWUjVG5v1SLSRDxkU6D3rw/EEJmeadIUFqgm8tKYGEcoC0HfI99clkO8tKtOPME36qRf4VxgZjjM6MsB0YDB6fHKywxFvPVkQ78dM1nuO6FbZLLQ5XAgOSZBk0CiCBkmFRmihDRkyL7JKiXEuP8mb5P3czpGIgJ4xk2M04b61sq+sZ2ad6DnehjtdaG4zjBBXpx0yE4PV6cMS4fb//6TCyaVab6fWwYItu9VSYTQOE6wdjQQqUdYNLHCV8C63N5hJJPKGEYbQ7oswMBAfSdiqALhbAIVSScczR2gW31O0AswzW3sgSArwwWqpTHHKCyvDTh56tUBvu8vh2AL1cmdsYcwhwgZXfOliTToOmdniCIuCMugWWlmPu9b2uwUJBhw5xJRcK/B2rC+EVTfSe6f31xVHKiExwgDfkfrTDxUpxlwxMLT8KzP5kpdHSpIW6FBxB0e3afap1g+5pDr8AIPI506rQS4sGQocL5LLcW6ULUzaIurGgEkLwFHhC3wbtUhYzd4cbXR337vGaU+Ur6sycWIc1iRH1bL7YdOq74fV5R9qo0NwUjctTHKrB9YYB0Z5gjxDZ4QOwAkQAiCGKIk2IJnPD0EIAWc6U/DA0MXHdhzaQiWEwG7G3qxs5jgRPTHtEQxFhx90Un4v8unoz3as/C+ZOLQw5XZIQTQIFWeGUHKNQSVKXHCeUAsXLauIL0kMceWIiqXQB19LqwSyQSvmvujjhErVQCY/OVPF4enSrP7Yv6dni8PEqybEKYOcViRM2JPkH++ufK3WBNXQ44PV4YDT53b0SO72ehLIC6FP9fmAOkIoBSqARGEIReEDtAQ70FXs7M8lyh42qgBFCmzYxzK3yb1f/1hS/vIR721991H2LK89NwRdVITdvqGeJt62YjF7Rqg5XA6o/3BM2K6epz4ViIoYVKjxNSAGkcDMlKYM0RZIC2HTwOnveFtTnOdxyRZogCJbDA747VZESa/29KLQfEAtDTy6QNHXP9Qzrf3HFUccxAvb/UVZJtg8loEGZAyQUQz/PYpSaAQoSggUBpjBwggiCGPOIM0LAMWwKPZODhON88HSC2zks4WBns39uPwuvlhfk/RZm2uOeQwiF2gEpzU4Nyd0WZNlhMBrg8vCB2GOGGFio9jng2kRwhAB0mTxRNBoiFkE8dkyeIvP0RlsECJTCpcxquE0wcgBZz2pg85KdbcbzHhf992xz0fSzrM8I//TtQApO6ccc6+iTCkjldXi8PpydMCYx1gSV4GjQJIIIg4k6Kjh0gAPjRjFL8v2tPxc1zKgbsMc+pKECG1YSjHX347OBxofwVy/xPtIgdIHkHGOBrlR6V6zsBH5DlgITyVxjB4nsc6doNJYQhiGHEab6wDiNyAXRyWS5G+4/3u+bQLehylEpg4n8rOUAeL4/PD7UDQNAQS5PRgAun+pbr/ufLY0HfW98WyP8AAQEkH6vAHB/WBbi7oQs8HxA/QKgQtH8jvJMEEEEQQxxpCUxfGSDA5wJNH5WjOlAwHtjMRtT4A9j/2n4Eu/0C6IQBdKHUEAsT8QwgMaNUOsG05n8AX6mInaCVgtAuj1dwZMLd37AIM0B9Lg++qPd1/51cnisIvUgdoFaVCeKh1mHsbuhCt8ONdKsJFUXBIz3OrSgEAGz6ri3oOsEB8md/mBN0pL1Xkl9i5a+zThgGA+cLZDd3OYQOMCBUCJo5QJQBIghiiCMtgelPACUK1vb8ny+PCR1BA1mGU0MsgMqHKQugMpVZQHvDTG2WE6oV/mBrD9xeHmkWI0qyQpdmIy2B7TjcAafHi/x0K8ryUjHa/zz3RTgLSK0EFmohKluAOm1kNowKXYcnjcqGycDhSHtvUGlL7gAVZdlg4Hy5HvEsINYBVlmaLYTYdzZ0CWUtAweYVDoe2ftBojfCkwAiCCLuiEtgQ3kTfLIxa7Qv79He4xIG8iVDCSxTVAJTa5kflR/aAVKb2iwnVBCaiakxYTrAAHEbvLYQMyt/zSzPAcdxGJ3vL4G1aC+BKe0BYwQcoGBn6zN/673aRPtUiwknDs+SHCfjcLvUAbKYDKJZQIEyGHOAxhdmCC7T7oZOwQGymY2qrym1wRMEoRtSddwGn0hMRgN+MKVYclksO8CiReIAqQigMoWt8H0uj7DLTKsDFAhCBwuFSMppzAHqdXlg17AOgwkLJkKY03WoNbizTY12/x4wILAHjMH+3a7kALHHLlNeYgsAVeW+4xJPqnZ7vDja7gudl/oFEAChE4zlgFwerzCLaXxRhjBYc1dDV9gp0IAoA0QCiCCIoY64BKbHDFAiuchfBgN87dgDmUNSo9DfiTY8OwWFKl2BLBt0sK0H/9x2GJ8fOo4dhzvg5X2iRquQDjULaI/gJoUXhWlWk/B7HK4M5vHy2Op3YWb6hUZxpg02swFuLx+0bV0Nlv/JTjUHdcoJXWCyDNDR9l4c7eiD0cChsjRb9b5n+tvjN4kEUENnHzxeHhajAQWi11c+C2h/ix0uD490qwkjclIEAbS7oUs0BFF92GlZXiqmj8pBUVaK6m0GgsT/JRAEMeQRl8D0sgYjWZhWmo3S3BTUt/XGbAVGf7GZjXiv9iyYjZzqZOziLBvSLEbYnR7U/uMLyXVjNZSsGBlWn1OiNDBQWKmh0U3Kz7Cgvq0XLd0OIaStxO6GLnT5Q8gTin3lIYPBt+R1V0MX9rd0h52WDQQ6wOQBaEA9A8Tm/0wszgw5m+nkslxwnG8SdnOXA8MyrEL+Z3hOiuTnIm+FZ+WvEwp9P4cK/+/VnqZuwR2zmtX9latOK8dVp5WrXj9QkANEEETcYZNrh2VYYaZdawMKx3G4/GTfUlbmRiQDwzKsyE5VF8MmowGrrpyOK6pGYtboPCGHAgCn+3edaUFtIarHywdWamgVQOmBVnin24s3dxzFlU9vwpJnNqOxMzCviJW/ThqVIwkhjxFa4bUFoYUAtMICXbUusI37WgGELn8BQFaqWQjEs+MNdIBJnRk2w+hIu08gsQD0eH/2pzQnFakWI5xur7ASI1QJLFkgB4ggiLgzOj8Nvzu/QtPsFiL2XHvWGMwak4fJ/uDrYOGMccNwxrhhwr/tDjdau51BJ+hQqIWgjxzvhcPthcVkQGluqtK3BsEE0NMb9uP217+STHW+8NEN+NuiGagszcZmNv9HNoMn0k4wNgVaaYK4eB8Yw+vl8d7ORgDA2eMLwt5/VXkudjV0YfP+Nnx/crFQmhuRI3095CUwNgOIOT8GA4dxhRn4or4d2/2t/2pToJOJ5JdoBEEMejiOwy/OGoPqiYWJPhRdYjBwOGlkzqB339KsJozMS41ooWy6igO0t9l3Eh+dn6bYKq4EE0BbDhxHS7cTBRlWXHf2GJxQmI6mLgd+9NeN+Oe2w9jiz9WcLHPcyoVZQNo6wYQSmELZOCctEIL2+qdcf3G4Hc1dDqRbTThldHi3b2Z5HoBADuiwP2DOWuAZ4hKYeAWGuKQ6wf//Ow63AyAHiCAIgiASitocoEjzPwAw+8RC/PerY5g6IhtXVI3EuRUFMBkNuO6csbjx5e14b2ejkFcyG4NDyKOjLoEFC6DsFN9lXh7o7HMhO9WCd75h7s+wkCFkxsnlPodqV0MnOnpcgsMjd4CKs23gON/y0kNtPcLtKkQCiIkhtlxWy+MnmuSXaARBEAQRJWpdYHsj6ABjnDO+ANuXz8aan8xEzYlFQmdWutWEv105Hb/83ljhtlNGZAeVgZgD1NTlUF3NIYYJIKUSmMVkQIY/5Mxu965fAJ2n0WktyLBhdH4aeN43PJEtQi2VlRitJqPQFfb+riYAQGGmNMPFBBBr2x8MDlDyHyFBEARBREkgAyQtge2JYAaQFgwGDr+ZPR6PX3ESxgxLw6JZo4Juk5ViFnbh7dfgArF2e/kUaEaOqBPsu+Zu7G3qhsnAacr/MFgwfsPeFjT4g9xyB0h8Wd1OnwAaL1uxIV+5EaoLLFlI/iMkCIIgiChRcoB4nhctQY1tMP+CKcWo+83ZmFs5XPH6SCZChyqBAeJZQC7B/Zk1Jg9ZKWbF2yvBBNC/vzgGnvft6VJaWMxyQJv2+7rMKmQjFXLTLJLZTDYqgREEQRBE4lDqAjvW0YduhxtG/2yegYSVwbTkgIQSmMrsrFz/eInjdmfE5S8GE0DMbRqRk6o4Y4m1wrs8vhqX0k45sSgiB4ggCIIgEghzgDpFJbBH398DwDcs0DLAWRXWCv9dmK3wHi+PNpU9YAzmAO1t7sbWQ74BiNUTIhNAI3JSBXEDBOd/xLcTU1EcLIDEoohC0ARBEASRQAK7wNzwenls2NOClzbXAwBuv2DCgB+P1lZ48R6wXJWBkWwY4mufHwHPA5OHZ6EkO/L1EuIBmUr5H9/lgfs1GjjF7FRFcSAHRCFogiAIgkggbPM8zwPN3Q789v/tAAAsnjUKVaPzBvx4WCv8/mY7eKZwRHT0uPD21w14YN0uAMp7wBjMGWru8pWvIi1/McQCSD4DiDFcJIDK89MUHR5JCWwQCCCaA0QQBEEMWawmA8xGDi4Pj9te+wpH2nsxIicFt8ypSMjxjMxNhdHAwe70oKnLgUL/io9/bjuM1R/vx9dHOyHWRROLM1XuKeAAMWafGJ0AOrlMJIBUHCBxmUxtp9zYgnQYON9sIitNgtbG448/jrKyMthsNlRVVWHz5s0hb//KK6+goqICNpsNkydPxltvvSW5/qqrrgLHcZKvOXPmxPMpEARBEEkIx3FCEJqtiXjg0ikhF4XGE4vJIORs9jV3w+H2YNk/v0TtP77AV0d84mfMsDRcecooPLHwJDy1eIbqfeWmBbq9SnNTFIPJWhgzLA3FWT4hpjYWwGY2Cl1eFSqPYzMbUeYv8ZEDpIG1a9eitrYWq1atQlVVFVauXImamhrs3r0bBQXBsww++eQTLFiwACtWrMAPfvADvPjii5g3bx62bduGSZMmCbebM2cOnnnmGeHfVqvyHAWCIAhiaJNhMwkdVQtmjsRpESxTjQejh6XjQGsPPtnbigfW7cYX9e3gOOBX3xuHK6pGCq5QOMQO0HkTihS7t7TAcRyeWjwDR473YlwIETV2WDqauxyYIptwLaayNBvfNdslLfHJCscrFSEHkKqqKpx88sl47LHHAABerxelpaX45S9/id/97ndBt58/fz7sdjvefPNN4bJTTjkFlZWVWLVqFQCfA9Te3o7XX389qmPq7OxEVlYWOjo6kJmpbj8SBEEQyc8PHv0IXx3pREmWDW//+kzBEUoU9775DZ7esF/4d1aKGX++vDKiAYYAsKexC+f96X8AgJevOQWnxDnTdKDFjs/rj2Ne5XBVsdXa7cDm/W2onliYkN1zkZy/E+pROZ1ObN26FdXV1cJlBoMB1dXV2Lhxo+L3bNy4UXJ7AKipqQm6/fr161FQUIDx48fj2muvRWtra+yfAEEQBJH0VJZmw2Iy4P5LpyRc/ACBVnjAl/H599LTIxY/gC+YnJtmQXl+GmbINs/Hg7L8NFw8bURIpykv3YrzJxcPisW7CS2BtbS0wOPxoLBQGtwqLCzErl27FL+noaFB8fYNDQ3Cv+fMmYNLLrkE5eXl2LdvH2699Vacf/752LhxI4zG4GCWw+GAw+EQ/t3Z2dmfp0UQBEEkEffOnYSbayoimpAcT84eX4CyvFScMjoPd154IlIs0QWGUy0mvPPrM2EycKqdYoQ6Cc8AxYPLL79c+P/JkydjypQpGDNmDNavX49zzz036PYrVqzA3XffPZCHSBAEQQwQHMcljfgBfB1V628+Jyb3la+yJ4wIT0IlY35+PoxGIxobGyWXNzY2oqioSPF7ioqKIro9AIwePRr5+fnYu3ev4vXLli1DR0eH8FVfXx/hMyEIgiAIYjCRUAFksVgwffp01NXVCZd5vV7U1dVh1qxZit8za9Ysye0B4N1331W9PQAcPnwYra2tKC4uVrzearUiMzNT8kUQBEEQxNAl4UXD2tpaPPnkk1izZg127tyJa6+9Fna7HUuWLAEALFq0CMuWLRNuf8MNN2DdunX44x//iF27duGuu+7CZ599hqVLlwIAuru7cfPNN+PTTz/FgQMHUFdXh7lz52Ls2LGoqalJyHMkCIIgCCK5SHgGaP78+Whubsby5cvR0NCAyspKrFu3Tgg6Hzp0CAZDQKedeuqpePHFF3H77bfj1ltvxbhx4/D6668LM4CMRiN27NiBNWvWoL29HSUlJZg9ezbuvfdemgVEEARBEASAJJgDlIzQHCCCIAiCGHwMmjlABEEQBEEQiYAEEEEQBEEQuoMEEEEQBEEQuoMEEEEQBEEQuoMEEEEQBEEQuoMEEEEQBEEQuoMEEEEQBEEQuoMEEEEQBEEQuoMEEEEQBEEQuiPhqzCSETYcu7OzM8FHQhAEQRCEVth5W8uSCxJACnR1dQEASktLE3wkBEEQBEFESldXF7KyskLehnaBKeD1enH06FFkZGSA47iY3ndnZydKS0tRX19Pe8biDL3WAwe91gMHvdYDB73WA0esXmue59HV1YWSkhLJInUlyAFSwGAwYMSIEXF9jMzMTPqDGiDotR446LUeOOi1HjjotR44YvFah3N+GBSCJgiCIAhCd5AAIgiCIAhCd5AAGmCsVivuvPNOWK3WRB/KkIde64GDXuuBg17rgYNe64EjEa81haAJgiAIgtAd5AARBEEQBKE7SAARBEEQBKE7SAARBEEQBKE7SAARBEEQBKE7SAANII8//jjKyspgs9lQVVWFzZs3J/qQBj0rVqzAySefjIyMDBQUFGDevHnYvXu35DZ9fX24/vrrkZeXh/T0dFx66aVobGxM0BEPHe6//35wHIcbb7xRuIxe69hx5MgR/PjHP0ZeXh5SUlIwefJkfPbZZ8L1PM9j+fLlKC4uRkpKCqqrq7Fnz54EHvHgxOPx4I477kB5eTlSUlIwZswY3HvvvZJdUvRaR8f//vc/XHjhhSgpKQHHcXj99dcl12t5Xdva2rBw4UJkZmYiOzsbP/3pT9Hd3R2T4yMBNECsXbsWtbW1uPPOO7Ft2zZMnToVNTU1aGpqSvShDWo+/PBDXH/99fj000/x7rvvwuVyYfbs2bDb7cJtfv3rX+Pf//43XnnlFXz44Yc4evQoLrnkkgQe9eBny5Yt+Otf/4opU6ZILqfXOjYcP34cp512GsxmM/773//im2++wR//+Efk5OQIt3nwwQfxyCOPYNWqVdi0aRPS0tJQU1ODvr6+BB754OOBBx7AE088gcceeww7d+7EAw88gAcffBCPPvqocBt6raPDbrdj6tSpePzxxxWv1/K6Lly4EF9//TXeffddvPnmm/jf//6Ha665JjYHyBMDwsyZM/nrr79e+LfH4+FLSkr4FStWJPCohh5NTU08AP7DDz/keZ7n29vbebPZzL/yyivCbXbu3MkD4Ddu3JiowxzUdHV18ePGjePfffdd/qyzzuJvuOEGnufptY4lv/3tb/nTTz9d9Xqv18sXFRXxf/jDH4TL2tvbeavVyr/00ksDcYhDhgsuuID/yU9+Irnskksu4RcuXMjzPL3WsQIA/9prrwn/1vK6fvPNNzwAfsuWLcJt/vvf//Icx/FHjhzp9zGRAzQAOJ1ObN26FdXV1cJlBoMB1dXV2LhxYwKPbOjR0dEBAMjNzQUAbN26FS6XS/LaV1RUYOTIkfTaR8n111+PCy64QPKaAvRax5I33ngDM2bMwA9/+EMUFBRg2rRpePLJJ4Xr9+/fj4aGBslrnZWVhaqqKnqtI+TUU09FXV0dvv32WwDAF198gQ0bNuD8888HQK91vNDyum7cuBHZ2dmYMWOGcJvq6moYDAZs2rSp38dAy1AHgJaWFng8HhQWFkouLywsxK5duxJ0VEMPr9eLG2+8EaeddhomTZoEAGhoaIDFYkF2drbktoWFhWhoaEjAUQ5uXn75ZWzbtg1btmwJuo5e69jx3Xff4YknnkBtbS1uvfVWbNmyBb/61a9gsViwePFi4fVUek+h1zoyfve736GzsxMVFRUwGo3weDy47777sHDhQgCg1zpOaHldGxoaUFBQILneZDIhNzc3Jq89CSBiyHD99dfjq6++woYNGxJ9KEOS+vp63HDDDXj33Xdhs9kSfThDGq/XixkzZuD//u//AADTpk3DV199hVWrVmHx4sUJPrqhxT/+8Q+88MILePHFF3HiiSdi+/btuPHGG1FSUkKv9RCHSmADQH5+PoxGY1A3TGNjI4qKihJ0VEOLpUuX4s0338QHH3yAESNGCJcXFRXB6XSivb1dcnt67SNn69ataGpqwkknnQSTyQSTyYQPP/wQjzzyCEwmEwoLC+m1jhHFxcWYOHGi5LIJEybg0KFDACC8nvSe0n9uvvlm/O53v8Pll1+OyZMn48orr8Svf/1rrFixAgC91vFCy+taVFQU1CjkdrvR1tYWk9eeBNAAYLFYMH36dNTV1QmXeb1e1NXVYdasWQk8ssEPz/NYunQpXnvtNbz//vsoLy+XXD99+nSYzWbJa797924cOnSIXvsIOffcc/Hll19i+/btwteMGTOwcOFC4f/ptY4Np512WtA4h2+//RajRo0CAJSXl6OoqEjyWnd2dmLTpk30WkdIT08PDAbpqdBoNMLr9QKg1zpeaHldZ82ahfb2dmzdulW4zfvvvw+v14uqqqr+H0S/Y9SEJl5++WXearXyf//73/lvvvmGv+aaa/js7Gy+oaEh0Yc2qLn22mv5rKwsfv369fyxY8eEr56eHuE2v/jFL/iRI0fy77//Pv/ZZ5/xs2bN4mfNmpXAox46iLvAeJ5e61ixefNm3mQy8ffddx+/Z88e/oUXXuBTU1P5559/XrjN/fffz2dnZ/P/+te/+B07dvBz587ly8vL+d7e3gQe+eBj8eLF/PDhw/k333yT379/P//Pf/6Tz8/P52+55RbhNvRaR0dXVxf/+eef859//jkPgH/44Yf5zz//nD948CDP89pe1zlz5vDTpk3jN23axG/YsIEfN24cv2DBgpgcHwmgAeTRRx/lR44cyVssFn7mzJn8p59+muhDGvQAUPx65plnhNv09vby1113HZ+Tk8OnpqbyF198MX/s2LHEHfQQQi6A6LWOHf/+97/5SZMm8Varla+oqOD/9re/Sa73er38HXfcwRcWFvJWq5U/99xz+d27dyfoaAcvnZ2d/A033MCPHDmSt9ls/OjRo/nbbruNdzgcwm3otY6ODz74QPH9efHixTzPa3tdW1tb+QULFvDp6el8ZmYmv2TJEr6rqysmx8fxvGjcJUEQBEEQhA6gDBBBEARBELqDBBBBEARBELqDBBBBEARBELqDBBBBEARBELqDBBBBEARBELqDBBBBEARBELqDBBBBEARBELqDBBBBEIQGOI7D66+/nujDIAgiRpAAIggi6bnqqqvAcVzQ15w5cxJ9aARBDFJMiT4AgiAILcyZMwfPPPOM5DKr1ZqgoyEIYrBDDhBBEIMCq9WKoqIiyVdOTg4AX3nqiSeewPnnn4+UlBSMHj0ar776quT7v/zyS3zve99DSkoK8vLycM0116C7u1tym9WrV+PEE0+E1WpFcXExli5dKrm+paUFF198MVJTUzFu3Di88cYb8X3SBEHEDRJABEEMCe644w5ceuml+OKLL7Bw4UJcfvnl2LlzJwDAbrejpqYGOTk52LJlC1555RW89957EoHzxBNP4Prrr8c111yDL7/8Em+88QbGjh0reYy7774bP/rRj7Bjxw58//vfx8KFC9HW1jagz5MgiBgRk5WqBEEQcWTx4sW80Wjk09LSJF/33Xcfz/M8D4D/xS9+Ifmeqqoq/tprr+V5nuf/9re/8Tk5OXx3d7dw/X/+8x/eYDDwDQ0NPM/zfElJCX/bbbepHgMA/vbbbxf+3d3dzQPg//vf/8bseRIEMXBQBoggiEHBOeecgyeeeEJyWW5urvD/s2bNklw3a9YsbN++HQCwc+dOTJ06FWlpacL1p512GrxeL3bv3g2O43D06FGce+65IY9hypQpwv+npaUhMzMTTU1N0T4lgiASCAkggiAGBWlpaUElqViRkpKi6XZms1nyb47j4PV643FIBEHEGcoAEQQxJPj000+D/j1hwgQAwIQJE/DFF1/AbrcL13/88ccwGAwYP348MjIyUFZWhrq6ugE9ZoIgEgc5QARBDAocDgcaGhokl5lMJuTn5wMAXnnlFcyYMQOnn346XnjhBWzevBlPP/00AGDhwoW48847sXjxYtx1111obm7GL3/5S1x55ZUoLCwEANx11134xS9+gYKCApx//vno6urCxx9/jF/+8pcD+0QJghgQSAARBDEoWLduHYqLiyWXjR8/Hrt27QLg69B6+eWXcd1116G4uBgvvfQSJk6cCABITU3F22+/jRtuuAEnn3wyUlNTcemll+Lhhx8W7mvx4sXo6+vDn/70J9x0003Iz8/HZZddNnBPkCCIAYXjeZ5P9EEQBEH0B47j8Nprr2HevHmJPhSCIAYJlAEiCIIgCEJ3kAAiCIIgCEJ3UAaIIIhBD1XyCYKIFHKACIIgCILQHSSACIIgCILQHSSACIIgCILQHSSACIIgCILQHSSACIIgCILQHSSACIIgCILQHSSACIIgCILQHSSACIIgCILQHSSACIIgCILQHf8fuoc+GQMxuYgAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAtopJREFUeJzsnXmYFOW1/7/V++z7wrANuIAoi4IgLnGbixqXmIgol4gSgyZKYkJufkQTAWNuWELQuAS8GIxJQIiJRKMJiixRIxEFcRcRhMGB2Zmte3qv3x/d71tLV+9b9cz5PM88Snd1V/VWdd7v+Z5zBFEURRAEQRAEQRAcQ7YPgCAIgiAIQm9QgEQQBEEQBKGCAiSCIAiCIAgVFCARBEEQBEGooACJIAiCIAhCBQVIBEEQBEEQKihAIgiCIAiCUEEBEkEQBEEQhAoKkAiCIAiCIFRQgEQQhCZHjhyBIAj4/e9/n+1DITS47bbbUF9fn+3DIIgBCwVIBDEAuO6665Cfn4/e3t6w28yZMwcWiwUdHR1pO45//OMfEAQBdXV18Pv9advPQIMFo6tWrdK8f+nSpRAEAe3t7Unt5+OPP8bSpUtx5MiRpJ6HIAYDFCARxABgzpw56O/vx5YtWzTvdzgceP7553HllVeioqIibcexYcMG1NfX48SJE9ixY0fa9kMA69atw4EDB+J6zMcff4wHHniAAiSCiAEKkAhiAHDdddehqKgIGzdu1Lz/+eefh91ux5w5c9J2DHa7Hc8//zwWLlyIs88+Gxs2bEjbvpLFbrdn+xCSxmw2w2q1ZvswAAQCcIIYaFCARBADgLy8PHzjG9/A9u3b0draGnL/xo0bUVRUhOuuuw6dnZ34n//5H4wfPx6FhYUoLi7GVVddhffeey+pY9iyZQv6+/tx44034uabb8Zzzz0Hp9MZsp3T6cTSpUtx+umnw2azYciQIfjGN76BQ4cO8W38fj9+85vfYPz48bDZbKiqqsKVV16Jd955B0Bkf5QgCFi6dCn/N0tPffzxx/jv//5vlJWV4cILLwQAvP/++7jtttswevRo2Gw21NbW4lvf+pZmGrKpqQm333476urqYLVaMWrUKHz3u9+F2+3G4cOHIQgCHnrooZDHvfnmmxAEAc8880y8b2lEtDxImzZtwuTJk1FUVITi4mKMHz8ev/nNbwAAv//973HjjTcCAC699FIIggBBELBr1y7++N/+9rc488wzYbVaUVdXh7vvvhtdXV2KfVxyySU466yzsHfvXnzlK19Bfn4+7rvvPtx6662orKyEx+MJOdYZM2ZgzJgxKX39BJFuKEAiiAHCnDlz4PV68ec//1lxe2dnJ15++WV8/etfR15eHg4fPoy//e1vuOaaa7B69Wr8+Mc/xgcffICLL74Yx48fT3j/GzZswKWXXora2lrcfPPN6O3txd///nfFNj6fD9dccw0eeOABTJ48Gb/+9a9xzz33oLu7Gx9++CHf7vbbb8cPfvADDB8+HCtWrMBPfvIT2Gw2/Oc//0n4+G688UY4HA788pe/xPz58wEA27Ztw+HDhzFv3jw8+uijuPnmm7Fp0yZ89atfhSiK/LHHjx/H1KlTsWnTJtx000145JFHcMstt+Bf//oXHA4HRo8ejQsuuEBTNduwYQOKiorwta99LeoxOhwOtLe3h/zFotBs27YNs2fPRllZGVasWIHly5fjkksuwb///W8AwFe+8hV8//vfBwDcd999+OMf/4g//vGPOOOMMwAEAsm7774bdXV1+PWvf40bbrgBTzzxBGbMmBES9HR0dOCqq67CpEmT8PDDD+PSSy/FLbfcgo6ODrz88suKbZubm7Fjxw5885vfjPoaCEJXiARBDAi8Xq84ZMgQcfr06Yrb165dKwIQX375ZVEURdHpdIo+n0+xzRdffCFarVbx5z//ueI2AOJTTz0Vdd8tLS2iyWQS161bx287//zzxa997WuK7davXy8CEFevXh3yHH6/XxRFUdyxY4cIQPz+978fdptIxwZAXLJkCf/3kiVLRADi7NmzQ7Z1OBwhtz3zzDMiAPG1117jt82dO1c0GAzi22+/HfaYnnjiCRGA+Mknn/D73G63WFlZKd56660hj5PDXk+0v7a2Nv6YW2+9VRw5ciT/9z333CMWFxeLXq837H6effZZEYC4c+dOxe2tra2ixWIRZ8yYofhuPPbYYyIAcf369fy2iy++WAQgrl27VvEcPp9PHDZsmHjTTTcpbl+9erUoCIJ4+PDhiO8BQegNUpAIYoBgNBpx8803Y/fu3QoT7saNG1FTU4PLL78cAGC1WmEwBH76Pp8PHR0dKCwsxJgxY7Bv376E9r1p0yYYDAbccMMN/LbZs2fjn//8J06ePMlv++tf/4rKykp873vfC3kOQRD4NoIgYMmSJWG3SYTvfOc7Ibfl5eXx/3c6nWhvb8d5550HAPy98Pv9+Nvf/oZrr70WU6ZMCXtMs2bNgs1mU6hIL7/8Mtrb22NWT+644w5s27Yt5O+WW26J+tjS0lLY7XZs27Ytpn3JefXVV+F2u/GDH/yAfzcAYP78+SguLsZLL72k2N5qtWLevHmK2wwGA+bMmYMXXnhBUU25YcMGnH/++Rg1alTcx0UQ2YQCJIIYQDATNjNrf/nll3j99ddx8803w2g0Aghc8B966CGcdtppsFqtqKysRFVVFd5//310d3cntN8//elPmDp1Kjo6OvD555/j888/x9lnnw23241nn32Wb3fo0CGMGTMGJpMp7HMdOnQIdXV1KC8vT+hYwqF1ge7s7MQ999yDmpoa5OXloaqqim/H3ou2tjb09PTgrLPOivj8paWluPbaaxVG+Q0bNmDo0KG47LLLYjrG0047DQ0NDSF/o0ePjvrYu+66C6effjquuuoqDBs2DN/61rewdevWmPZ79OhRAAjxCVksFowePZrfzxg6dCgsFkvI88ydO1dRTXngwAHs3bs3pgCPIPQGBUgEMYCYPHkyxo4dyw3BzzzzDERRVFSv/fKXv8TChQvxla98BX/605/w8ssvY9u2bTjzzDMT6l108OBBvP3223jjjTdw2mmn8T9mhE5HNVs4Jcnn84V9jFwtYsyaNQvr1q3Dd77zHTz33HN45ZVXeFCRyHsxd+5cHD58GG+++SZ6e3vxwgsvYPbs2QpVJl1UV1dj//79eOGFF3Dddddh586duOqqq3DrrbemfF9a7yUAjBs3DpMnT8af/vQnAIHA2WKxYNasWSk/BoJIN+GXcQRB5CRz5szB/fffj/fffx8bN27EaaedhnPPPZff/5e//AWXXnopfve73yke19XVhcrKyrj3t2HDBpjNZvzxj3/kKhXjjTfewCOPPILGxkaMGDECp5xyCt566y14PB6YzWbN5zvllFPw8ssvo7OzM6yKVFZWxo9ZjlrpiMTJkyexfft2PPDAA1i8eDG//eDBg4rtqqqqUFxcrDCRh+PKK69EVVUVNmzYgGnTpsHhcGRUPbFYLLj22mtx7bXXwu/346677sITTzyB+++/H6eeemrYwHLkyJEAAoqPXK1yu9344osv0NDQEPMxzJ07FwsXLsSJEyewceNGXH311fzzIohcghQkghhgMLVo8eLF2L9/f0jvI6PRqKjQAoBnn30WTU1NCe1vw4YNuOiii3DTTTdh5syZir8f//jHAMAVrRtuuAHt7e147LHHQp6HHdMNN9wAURTxwAMPhN2muLgYlZWVeO211xT3//a3v435uFkwp34vHn74YcW/DQYDrr/+evz973/nbQa0jgkATCYTZs+ejT//+c/4/e9/j/Hjx2PChAkxH1MyqFsTGAwGvm+XywUAKCgoABAaWDY0NMBiseCRRx5RvJ7f/e536O7uxtVXXx3zccyePRuCIOCee+7B4cOHqXqNyFlIQSKIAcaoUaNw/vnn4/nnnweAkADpmmuuwc9//nPMmzcP559/Pj744ANs2LAhJp+Lmrfeeguff/45FixYoHn/0KFDcc4552DDhg1YtGgR5s6diz/84Q9YuHAh9uzZg4suugh2ux2vvvoq7rrrLnzta1/jJeOPPPIIDh48iCuvvBJ+vx+vv/46Lr30Ur6vb3/721i+fDm+/e1vY8qUKXjttdfw2WefxXzsxcXF+MpXvoKVK1fC4/Fg6NCheOWVV/DFF1+EbPvLX/4Sr7zyCi6++GLccccdOOOMM3DixAk8++yzeOONN1BaWsq3nTt3Lh555BHs3LkTK1asiO8NTYJvf/vb6OzsxGWXXYZhw4bh6NGjePTRRzFp0iReyj9p0iQYjUasWLEC3d3dsFqtuOyyy1BdXY17770XDzzwAK688kpcd911OHDgAH7729/i3HPPjSvIYT2rnn32WZSWlsYVXBGErsheAR1BEOni8ccfFwGIU6dODbnP6XSKP/rRj8QhQ4aIeXl54gUXXCDu3r1bvPjii8WLL76YbxdLmf/3vvc9EYB46NChsNssXbpUBCC+9957oigGSut/+tOfiqNGjRLNZrNYW1srzpw5U/EcXq9X/NWvfiWOHTtWtFgsYlVVlXjVVVeJe/fu5ds4HA7x9ttvF0tKSsSioiJx1qxZYmtra9gyf3mJPOPLL78Uv/71r4ulpaViSUmJeOONN4rHjx8PeQ5RFMWjR4+Kc+fOFauqqkSr1SqOHj1avPvuu0WXyxXyvGeeeaZoMBjEL7/8Muz7Ioe917/61a8079d6Deoy/7/85S/ijBkzxOrqatFisYgjRowQ77zzTvHEiROK51q3bp04evRo0Wg0hpT8P/bYY+LYsWNFs9ks1tTUiN/97nfFkydPKh5/8cUXi2eeeWbE1/PnP/9ZBCDecccdMb1+gtAjgiiq9GWCIAgiKc4++2yUl5dj+/bt2T6UrPD888/j+uuvx2uvvYaLLroo24dDEAlBHiSCIIgU8s4772D//v2YO3dutg8la6xbtw6jR4/mlYwEkYuQB4kgCCIFfPjhh9i7dy9+/etfY8iQIbjpppuyfUgZZ9OmTXj//ffx0ksv4Te/+U1SjT0JIttQgEQQBJEC/vKXv+DnP/85xowZg2eeeQY2my3bh5RxZs+ejcLCQtx+++246667sn04BJEU5EEiCIIgCIJQQR4kgiAIgiAIFRQgEQRBEARBqCAPUoL4/X4cP34cRUVFZEQkCIIgiBxBFEX09vairq4u4pxECpAS5Pjx4xg+fHi2D4MgCIIgiAQ4duwYhg0bFvZ+CpASpKioCEDgDS4uLs7y0RAEQRAEEQs9PT0YPnw4v46HgwKkBGFpteLiYgqQCIIgCCLHiGaPIZM2QRAEQRCECgqQCIIgCIIgVFCARBAEQRAEoYICJIIgCIIgCBUUIBEEQRAEQaigAIkgCIIgCEIFBUgEQRAEQRAqKEAiCIIgCIJQQQESQRAEQRCECgqQCIIgCIIgVFCARBAEQRAEoYICJIIgCIIgCBUUIBEDln63L9uHQBAEQeQoFCAROYnX5494/x92H8FZS1/Gzk9bM3REBEEQxECCAiQi5/jNqwcx4YFX8MmJnrDbvPl5B3x+EfsaT2bwyAiCIIiBAgVIRM6x40ArHG4f9nzRGXabtj4XAKC735OpwyIIgiAGEBQgETlHc3c/AKC11xl2G3ZfDwVIBEEQRAJQgETkFF6fH229AXWotceluY0oivw+UpAIgiCIRKAAicgp2vpc8IuB/2/p1Q6Qel1euLwBE3eP05upQyMIgiAGEBQgETlFc7eUVmvt0U6xyZUlSrERBEEQiUABEpFTyAOktjAKktybRCk2giAIIhEoQCJyimaZatRhd8Oj0Q9JHjj1OClAIgiCIOKHAiQip5ArSIC2iiS/zenxw+WljtoEQRBEfFCAROQUzSrfUatGgKS+raefjNoEQRBEfFCAROQUJ1QKkpZRW60qUZqNIIjBwvZPWvD//vIenB5SzpOFAiQip2gJBkRl+ebAvzUVJGXQREZtgiAGC4/u+Bx/fudLvH6wPduHkvNQgETkDKIocgVp/LBSAECbhoKkbiBJpf4EQQwW+lwBS0G4Kl8idihAInKGLocH7mADyPFDiwFE9iBVFloAkIJEEMTgod8dSK112ilAShYKkIicgalHFQUWDCvLBxAaILm8Ph4QnVJVCIC6aRMEMXhg3qMOuzvLR5L7UIBE5AzMf1RTbENNsVVxG4PJyhajAcPLA0EUpdgIghgssACpkwKkpKEAicgZmII0pMSG6iIbgFAFif27qsiK0ryAkZsCJIIgBgOiKKKfAqSUQQESkTOwHkg1JTZUFwUUpI4+F3xsei0kBamqyIpiFiBRmT9BEIMAt8/Ph3l39FGAlCwUIBE5Q3N3PwBgSLENFYVWGATALwaCJAZTkKqLrCgJBkhk0iYIYjDgdEujl0hBSh4KkIicoTlYvl9TYoPRIKCykPmQpACJlf0HFCQTAOqkTRDE4KBf1hyy0+6GKIoRtiaiQQESkTNwBakk4D+qDhq15Y0h2/qYgmQjBYkgiEGFPEBy+/y8JxKRGLoIkB5//HHU19fDZrNh2rRp2LNnT9ht161bh4suughlZWUoKytDQ0NDyPZLly7F2LFjUVBQwLd56623FNt0dnZizpw5KC4uRmlpKW6//Xb09fWl5fURqYENqq0tDgZIGkZt1iSyutiKYht5kAiCGDywHkgMSrMlR9YDpM2bN2PhwoVYsmQJ9u3bh4kTJ+KKK65Aa2ur5va7du3C7NmzsXPnTuzevRvDhw/HjBkz0NTUxLc5/fTT8dhjj+GDDz7AG2+8gfr6esyYMQNtbW18mzlz5uCjjz7Ctm3b8OKLL+K1117DHXfckfbXSySGw+3l/YxqmYJUFFrqz6vYCiWTNilIBEEMBvpV89eoF1JyZD1AWr16NebPn4958+Zh3LhxWLt2LfLz87F+/XrN7Tds2IC77roLkyZNwtixY/Hkk0/C7/dj+/btfJv//u//RkNDA0aPHo0zzzwTq1evRk9PD95//30AwCeffIKtW7fiySefxLRp03DhhRfi0UcfxaZNm3D8+PGMvG4iPph6VGAxoiioDFUXhypIrIqtulgyaff0eygXTxDEgEc9oLaTKtmSIqsBktvtxt69e9HQ0MBvMxgMaGhowO7du2N6DofDAY/Hg/Ly8rD7+L//+z+UlJRg4sSJAIDdu3ejtLQUU6ZM4ds1NDTAYDCEpOIYLpcLPT09ij8ic/D0WlA9AiQFiaXV/H4R7TIPEkux+UXA7qbJ1gRBDGzUAVIHjRtJiqwGSO3t7fD5fKipqVHcXlNTg+bm5pieY9GiRairq1MEWQDw4osvorCwEDabDQ899BC2bduGyspKAEBzczOqq6sV25tMJpSXl4fd77Jly1BSUsL/hg8fHuvLJFIA64GkFSC1BU3anQ43vH4RggBUFFpgMxtgMQa+4pRmIwhioEMpttSS9RRbMixfvhybNm3Cli1bYLPZFPddeuml2L9/P958801ceeWVmDVrVlhfUyzce++96O7u5n/Hjh1L9vCJODjBDdp5/DaWYmNl/iy9Vp5vgdlogCAIslJ/CpAIghjYhJi0KcWWFFkNkCorK2E0GtHS0qK4vaWlBbW1tREfu2rVKixfvhyvvPIKJkyYEHJ/QUEBTj31VJx33nn43e9+B5PJhN/97ncAgNra2pBgyev1orOzM+x+rVYriouLFX9E5mjhCpKV38bmsbX3ueD3i4oxIwwyahMEMVgI8SCRgpQUWQ2QLBYLJk+erDBYM8P19OnTwz5u5cqVePDBB7F161aFjygSfr8fLlfgAjp9+nR0dXVh7969/P4dO3bA7/dj2rRpCb4aIp1wBalEUpAqC60QBMDrF9HpcKM1GEQxZQmAVOpPARJBEAMclmIThMC/KcWWHKZsH8DChQtx6623YsqUKZg6dSoefvhh2O12zJs3DwAwd+5cDB06FMuWLQMArFixAosXL8bGjRtRX1/PPUOFhYUoLCyE3W7H//7v/+K6667DkCFD0N7ejscffxxNTU248cYbAQBnnHEGrrzySsyfPx9r166Fx+PBggULcPPNN6Ouri47bwQREaYgDZEFP2ajAeX5FnTY3WjtcfEmkVWFoQoSaxFAEAQxUOkPjhqpKbKhucdJClKSZD1Auummm9DW1obFixejubkZkyZNwtatW7lxu7GxEQaDJHStWbMGbrcbM2fOVDzPkiVLsHTpUhiNRnz66ad4+umn0d7ejoqKCpx77rl4/fXXceaZZ/LtN2zYgAULFuDyyy+HwWDADTfcgEceeSQzL5qImxMaVWxAIJ3WYXejpdepaBLJoG7aBEEMFpiCNLQsjwKkFJD1AAkAFixYgAULFmjet2vXLsW/jxw5EvG5bDYbnnvuuaj7LC8vx8aNG2M9RCKLeHx+Xr6vDpBqim34tLkXbT0uqQeS3INkI5M2QRCDA+ZBGlqah71HT1KZf5LkdBUbMTho7XVBFAGzUUB5vkVxH++F1OvkM9nkJm1SkAiCGCywKrahZQGvptPjh8NN9oJEoQCJ0D2sSWRNsQ0Gg6C4j6XTWhQKksyknUfz2AiCGBywFFtFgQVWU+Dy3kGl/glDARKhe9RDauXU8HEjTl7mX62hIFGKjSCIXOfZd45h8fMfwu/XHp3EUmx5FiMqCgJqO/mQEocCJEL3aHXRZrBg6Ei7A46gvKzog8TL/ElmJggit1n58gH8YfdRfNKsPeqKKUh5ZiPKCylAShYKkAjd09zdD0BbQaoKptM+b+sDEBhmW2CVag94J21KsREEkcOIooiTwWCnN0zbEqc8QCoILBSpF1LiUIBE6J7mHu0KNkBSkHxByblaFUSRSZsgiIGA3e2DN3ies7u0AySmINkUKTaqZEsUCpAI3cMVJK0ASdbzCFCm1wDqpE0QxMDgpEwJsqtmrjFYFVtAQQoESKQgJQ4FSITuYR6kIRoBktVkRGm+mf9bHSAxBcnu9sHj86fxKAmCINKHXAV3hFGQnJ7AOU4eINHA2sShAInQNaIooqU7IBHXaHiQAGXVWrUqQCqySX6kcHl7giAIvdPlkAKkvmgpNjNVsaUCCpAIXdNpd8Pt80MQlP2N5MhvV29jMhpQGDRtkw+JIIhcpatfCnQclGLLCBQgEbqGzWCrKLDCYtL+usp9SOoUG0DjRgiCyH3kCpKWSVsURZlJ24CKQhYgkUk7UShAInQN645dUxwa+DCUCpJGgETdtAmCyHHkCrhdY3yIyyt5LOVl/uRBShwKkAhdw/LnTC7WQuFB0gikiqnUnyCIHKfLIatic4Wm2FgPJCDgQWLnTLvbp7iPiB0KkAhdczJ4UijLjxAgFctN2qE+JeqmTRBErhMtxcbSa2ajALPRgGKbCWZjYHYlGbUTgwIkQtewACmSgsSq20wGAaV55pD7qVkkQRC5Tpe8zF/DpM0M2jazEQAgCAJfWGYzQOpzebHk+Q+x54vOrB1DolCAROiaTnvgpBBJQTq9ughFNhPOGVEGg0EIuZ/GjRAEket0Rynzl89hY+ihkm3np614evdRPLL9YNaOIVFM0TchiOzB8u5lBaHKEKMk34w3f3IZXzmpoW7aBEHkOsoy/9AAic9hs0jnwYrC7I8bYQvTXEzzUYBE6Br2o4qkIAFAkS1CAEUpNoIgchylB0krxSZ10WbwgbVZrGRjqb9cVPApxUbomlg8SNGQyvzJpE0QRO4hiqLCg6RV5s9SbFZZgKSHbto8QMrBBSoFSISuORlcNcnnrcULKUgEQeQyTo8fblmfI4eWgsQ9SNJlXQ8BkiN4XL0uL/x+MWvHkQgUIBG6RRRFPsE6KQUp2Em7lwIkgiByELn/CADcPmXABABOt4ZJuzD7Jm2mIIki0KehfOkZCpAI3dLn8sIbXHFE8yBFoiSfFCSCIHKXLg0lXW3Udno1TNo6UJD6ZS0Jci3NRgESoVtOBkv888zGsBVqscCr2JweiGJuSbwEQRAsQKoosMAanEmpLvVX90ECJJO2HlJsQO4166UAidAtnSkwaAOSSdvjE+H0+KNsTRAEoS+6gym20nwLCqwBy4C6WWTEPkh92SvzVyhIOVbJRgESoVtYBVsyBm0AKLAYYQw2kKQ0G0EQuQZPseWZUWANBEAhCpJGgMRSbD1OLzy+7CwO+z3SccaTYvuwqRv/OdyB9iwGdxQgEbolFQZtINBynxm1c20FQxAEwUr8S/LNKLAEFSRVJRs3acs8SCV5Zr44PJmlNJtDoSDFnmJbs+sQbv6//+CF/cfTcVgxQQESoVtY3rw0CYM2g0r9CYLIVSQFyYL8YACk7oXEFCS5B8lgEFAWVOCzVcmWqEm7tdcJQDmMPNNQgEToFnZSKE8yxQbImkVSgDQo+ffn7Tjvl9ux89PWbB8KQcSN5EEycw+SPSTFFkihqQtayrNcydbvScyD1NobSK1VF9lSfkyxQgESoVs6+Rw2UpCI5PjXZ21o7nFi5wEKkIjcQ17mz1JsdrVJW6MPEiAFSNny8shTbL0xpthEUURrDwuQSEEiiBD4oNoUpNhoYO3ghg3ydHpCOxAThN5hAVJJXngFSRpWq7ysV2S51D+RFFufy8uVJ0qxEYQGfFBtChSk4jxm0s6tPhxEamAXj35q80DkIMykHSjzDyhEjhiq2IDspthEUUwoxcbSa4VWE/KDilk20EWA9Pjjj6O+vh42mw3Tpk3Dnj17wm67bt06XHTRRSgrK0NZWRkaGhoU23s8HixatAjjx49HQUEB6urqMHfuXBw/rnTCf/bZZ/ja176GyspKFBcX48ILL8TOnTvT9hqJ+GGNIstS6EGiFNvghPW/6neTgkTkHt2s5UmemQcM6hSbU8OkDch6IWUhQHL7/PDJ5q/F2ihSD+k1QAcB0ubNm7Fw4UIsWbIE+/btw8SJE3HFFVegtVXbK7Br1y7Mnj0bO3fuxO7duzF8+HDMmDEDTU1NAACHw4F9+/bh/vvvx759+/Dcc8/hwIEDuO666xTPc80118Dr9WLHjh3Yu3cvJk6ciGuuuQbNzc1pf81EbJykFBuRIijFRuQykoJkRmFQQQo1aWsrSBXBeWydfZkPkNQLktgVpEAFW9VgD5BWr16N+fPnY968eRg3bhzWrl2L/Px8rF+/XnP7DRs24K677sKkSZMwduxYPPnkk/D7/di+fTsAoKSkBNu2bcOsWbMwZswYnHfeeXjsscewd+9eNDY2AgDa29tx8OBB/OQnP8GECRNw2mmnYfny5XA4HPjwww8z9tqJ8IiiyAOkZPsgAWTSHuw4g4M9+ylAInIMl9fHjc6BMv8wCpJGHyQguyk29e8t1gCpjVWwFWevgg3IcoDkdruxd+9eNDQ08NsMBgMaGhqwe/fumJ7D4XDA4/GgvLw87Dbd3d0QBAGlpaUAgIqKCowZMwZ/+MMfYLfb4fV68cQTT6C6uhqTJ09O6jURqcHu9sHjS35QLYOX+VOjyEEJ9yBRio3IMdiiziAARTYTCsOW+Uf2IHXYM1/Fph6HEnOKrVcfKbbsuZ8QUHJ8Ph9qamoUt9fU1ODTTz+N6TkWLVqEuro6RZAlx+l0YtGiRZg9ezaKi4sBBDorv/rqq7j++utRVFQEg8GA6upqbN26FWVlZZrP43K54HJJX7Cenp6Yjo9IDNb11WY2hKyIEqGE90Eik/ZgxEUpNiJH6ZZVsBkMAvKjpNjUHiRWxXbSkfnFIVuQGA0CfH4RvU4P/H4RhmB373C09gSbRA72FFsyLF++HJs2bcKWLVtgs4VKcR6PB7NmzYIoilizZg2/XRRF3H333aiursbrr7+OPXv24Prrr8e1116LEydOaO5r2bJlKCkp4X/Dhw9P2+siJDm4PAXqEQA+aoRSbIMTbtKmAInIMeQVbAA0h9X6/dIgbvWCsqwgsDjscrgVhulMwEv1g4GOXwztAK4FV5CyWOIPZDlAqqyshNFoREtLi+L2lpYW1NbWRnzsqlWrsHz5crzyyiuYMGFCyP0sODp69Ci2bdvG1SMA2LFjB1588UVs2rQJF1xwAc455xz89re/RV5eHp5++mnN/d17773o7u7mf8eOHUvgFROxIg2qTVGAJPMgtfe54HB7IYqZPVkQ2cPpZWX+FCARuYW8BxIAqVGkTEFyeaX2FWoFiVkU/GLmF4jcO5VvgcUYCDdiabXSwhWkQexBslgsmDx5MjdYA+CG6+nTp4d93MqVK/Hggw9i69atmDJlSsj9LDg6ePAgXn31VVRUVCjudzgcAAJ+JzkGgwF+v3afFKvViuLiYsUfkT5SadAGpJNLn8uLKb94FeMWv4zR9/0DZ//8Fez4tCXKo4lchzxIRCrotLux54vOjC6uuhzSmBEAmrPY5IG/zaS8rpmNBq6gZ9qo3R88xnyLUepFF0OQphcPUtZTbAsXLsS6devw9NNP45NPPsF3v/td2O12zJs3DwAwd+5c3HvvvXz7FStW4P7778f69etRX1+P5uZmNDc3o6+vD0AgOJo5cybeeecdbNiwAT6fj2/jdge+HNOnT0dZWRluvfVWvPfee/jss8/w4x//GF988QWuvvrqzL8JRAisB1JpCnogAUBFgQUzxtXwkwsAiGIgL//S+9TaYaDD0g8urx/+DKcZiIHDj599D7Oe2I13j3VlbJ9M9SkNLvIkk7YUFLEAyWI0wGQMvayzhSZbeGYKdlz5FmPMrVacHh8fSZJtBSmrJm0AuOmmm9DW1obFixejubkZkyZNwtatW7lxu7GxUaH0rFmzBm63GzNnzlQ8z5IlS7B06VI0NTXhhRdeAABMmjRJsc3OnTtxySWXoLKyElu3bsVPf/pTXHbZZfB4PDjzzDPx/PPPY+LEiel9wURMpFpBEgQB/zc3oDb6/SKcXh/+/PYxLP37x1mbUURkDrk52+n1ZbU7L5G7fNbaCwD48mQ/zhmhXdCTaqQ5bIFzITdpB20CgiDImkRqax7lBRYc6XBkXEFyyObDFfFK4sgpNtYk0mIycNUpW+jiLLFgwQIsWLBA875du3Yp/n3kyJGIz1VfXx+T/DllyhS8/PLLsR4ikWH4mJEUeZDkGAwC8i0mjKwsACD13CAGJqIoKjwa/W4KkIj4kQ9Q7Y/BaBwvf3/vOJweH26coiwA6uoPnAtLVAqSKAYUmnyLSRpUG6biN1u9kNhxBRSk2FJsrElkdZEVghC52i3d0FmC0CVs1ZSKMSPhqCoM5LfbSEEa0MiDI4CM2kRi9Di9/Luk7u+TLD6/iB89+x7cXj++cnoVamQNEiUFKXAutJmMEIRAgGR3BQIkZ5geSAy20MxWgJRnMaLYH1svOuY/qslyk0hABx4kgtAilYNqw8Ha2HfaM1/+SmQOde8j6oVEJEJbUNkAUh8gub1+uIPB18cnlD32uvuVAZLBICA/GAg5gkpWuB5IjPLguJGTmU6x8cDNJPMgRUux6aMHEkABEqFTUjmHLRzlBRYIQmD1lmnzIpE5mEGb0e/WrlQliEi09EhKc6qrId0ylfNAc6/iPq4g5UnnQtYLqS9Y6h81xZZlBUlRxRajgkQBEkGEIdUmbS3MRgMPwMiHNHBRK0aUYiMSoTWNCpLLJz3fpyoFiZ0LS2R2A3WzyHBjRhhMie/M8EKQKVx5cVSxtepkDhtAARKhQ0RR5GX+6UyxAZIPiSrZBi6sSSSDAiQiEVrlCpIntSZtl0zl/FSlIHU7lGX+AFAQrGRjClI0D1JFQXZSbP2su7fZGPM8TBYgVZGCRBChONw+uH2BH1Y6TdqA9CMkBWngEppiowCJiJ9W2Tki5R4kn/QdPdTWx1NuHp8fvcEgSD5VgFVhOlzKBqjhPEhlfGBtFhtF8io28iARRMKwPLnVZAi7IkoVFCANfMikTaQCeYAkb9KYCuQeJI9PxOH2QONjeTqKBRgAUKDqps2UmrAm7fwsmbTlVWwxKkht3INEKTaCCEFu0E53H4zKYHUHpdgGLuRBIlIBUzaA1KfY3KpWFJ+eCKTZ2KDaIptJ0SG7wKqcx8Y9SBbtSzpTkOxuX0YXCHJvFPcgRQiQPD4/V7myPagWoACJ0CEnHZnxHwGkIA0G1Ck2UpCIRGhLY4pN3auL+ZDUPZAYbGAtOw5XFA9Ssc0Ek0FQPGcmkKrYTCjJi55iYwtVk0Hgqlc2oQCJ0B1MBi4vSK//CJAFSKQgDVhcZNImUoA8xZbOMn8A+LQ5UMnWHeyiLS/xBzTK/KMESIIgyHxImTvXSSk2A1eQep2esPMQmRG+stAKgyG7XbQBCpAIHXKST69O/wqiklWx9VIfpIFKiAeJTNpEnNhdXh6MAOkwaQeezxgMCg5EU5CCVWwOVR8kW5g+SIDch5RBBUneKDLoQfKLkndKjVTin/30GkABEqFDuIKUgQCJFKSBT0gVGylIRJy0qlLw6eikDQCnVRcCAE50O9HlcPMAqSRPHSAxBSm2PkiAbB5bBnshyRtFWk0GWII+qnADa+Vz2PQABUiE7mA/4Ix4kAqlcSMeH3VYHoioAyIKkIh4YQZt5uNJ9bBa5kEqL7BgWFkegIAPqas/nAdJOWokWh8k9twA0JmhxaAoiopGkYIgSN20wzSLZCm2Kh1UsAEUIBE65GQGBtUyyvItXNbu6KM020AkpIqNRo0QccIUpBHl+QACM8ZEMXXzG1mAZDEZMLa2CEAgzdbt0PYgsT5IdnUn7QgptrKgp7MzQyZtt88PZjVixxWtm7aexowAFCAROkQyaadfQTIYBN5llkr9ByYsxWY2CsF/k4JExAe7cI+sCARIohhaeZYMLMVmMRowtrYYQMCoHVZBUpf5BwMlqymSghQIOjLVC0luZGfDdYt4LyRtBY4NBCYPEkGEgTWKzIRJG6BS/2zxzJ5GLNi4L6SCJ9WwgIh9nyjFRsQL88aMrCjgt9ldqUuzsWDLajZi7JCAgvTJid4IHiSj4hj4SI+IJu2ggpShAIn5tCxGA+/hJHXTjqYgUYqNIDRhJ4VM9cGgACk7rP3XIbz4/gm823gyrfthZf5slhWNGiHipS3ojakptsFqClw2U2nUVipIgQDps5besBW9XEGKw4PEB9ZmOECymaUwI1o3beZBohQbQWggiqLMpJ1+DxIglfpTJVtmYeMauqNM904WlmIrIwWJSBC5NyY/qNKk8nvklnmQ6isKYDEZ4HD7eLl/2EaRwd9QPCbtkxmqYmPHxPxSgNyDFKq++f0itzlQio0gNOj3+PjJoowUpAENO4GmP0BiKTaz4t8EESstPZI3Jl/VxToVsD5IVlMgHcXK/VnqrVSVYssPmcUWedQIIAVImRpY65CV+DNYFVuvhoLU6XDD6xchCNKiNdtQgEToCib/WkwGxQ8rnVSRgpRxRFHkJ/Vwhs1UwQIiUpCIRGEKUk2xjZ+XHCks9XcFVU6WvmNGbUaJSkEqDKbYnB4/vD6/1CgyFgXJ7k5pBV442PsjP6ZI89hYeq083wKzUR+hiT6OgiCCsC6vZfnmtA+qZVQWsW7aFCBlCrfPD1+wBjicYTNVsBRbaQF5kIj4cXp8XOVUpNhSqiBJKTYAOCNo1GaoTdr5VinosLt8XGmK6EEKLhC8fhG9KTSYh0NKsckVpPApNmaEr9KJ/wigAInQGSw/nqn0GkAKUjZwynoRpT3F5iUFiUgclnq3mAwoyTPzSrF0mbQBYEytFCAFulArAx+rycjbVrTLZqtFqmKzmY28wWQmSv2lOWxyBSlYxaalIPExI/qoYAMoQCJ0BguQMtEDiUEepMwjD1LCVbSkCsmkTR4kIn7Yhbuq0ApBELgHKaUKEi/zD02xqf1HDHYc8ga3tgh9kADIBtbGHyB5fX6sfuUAVmz9lKu/keABkllDQdL4zbfprEkkAJiib0IQmYOtbLKhIPU6vXB6fBHz+ERqUARIGnJ7KnGp+iB5fCI8Pr9ufA6EvlE3L8xTGaRTgUulIFUVWVFRYEGH3Y2SMOfCAosR3f0edASVb6vJAIMhsi2hvMCCL0/2x60geX1+/GDzfrz4/gkAgZTfdy4+JeJjNFNsEarY2DgXPQVIdIYgdAVrg5+pEn8gUFnBTkzUTTszyA2u6fcgKVNs8tsIIhrq8ResK3QqU2zSqBEpmGANI8MpSKwXEjtnxbKwKw/TC8nvF/E/z76Hn/z1fRzv6lfc5/H5cc+mQHDEbKG/fuUAPviyO+K+pBSbpMOU5MWQYqMAiSC04WNGMqggCYJAabYM48xkii148SnJM/MTPPmQiFiRmhcGvDHpNGmzKjZASrOpeyAx8nmAFDhnRjJoM9h5VR0gfXyiB3/Z+yU2vX0Ml/16F1a/cgB2lzcYHL2Llz44AbNRwLpbpuDKM2vh8Ym4Z/O7ESv5NFNsslls6ko68iARRBTCdY5NN5WFgf1RgJQZ5ANjM6Ug2cwGfrJ20sBaIkZaVKmfvHT0QQoWElhkAdKVZ9Wi2GbCpWOqNR9TGKxk6wiatCMZtBm8m7aqWeQnJ3oAAEaDAKfHj0d2fI5LV+3C3N/twT8+aIbFaMDab05Gw7gaLPvGeNQUW3G4zY5fvPRJ2H1FqmLzi9KgXQarYiMFiSDCkA2TNiAZtdv7Eqvu+LS5J+1KyEBCruCks4pNFEVZgGTkARIpSESsSMpGMMXGO2mnwYMkC5DOrS/He0tmYNa5wzUfozZpx5NiU3uQPjkR6Ng9d/pIrJlzDkaU56O114XdhztgMRrwxC2TcfkZNQACQdbqWZMAABvfasQrHzVr7oupS/LAzWoy8Oo7+cJIFMUQpU4PUIBE6AZRFHGiK7CKCCcrp4tkUmwfH+/BlQ+/jh9s2p/ioxq4yKV5u9sHry89io7HJ4IV3NhMRn4RoQCJiBV16ic/nWX+JuUlOVIvuEKVBynPHP1yHs6DxBSkM4YU46rxQ7Bt4Vdw31fHYsrIMjx56xRcOlapYl1waiXu+MpoAMBPnvuAG6zlaHXSFgRBs1lkj9PLg0S9jBkBKEAidMRbX3TicLsdFpMBE4aVZnTfUi+k0B96NA62BlZfHzRFNi0SEmqTdG+aummzHkhAoIQ6Lw3+EWJg06ZK/aRl1Ig31IMUDRZ4MAUpphSbhgdJFEV80hwIkMYNKQ4ehxF3fOUU/OW75+Mrp1dpPtePZpyOcUOK0Wl3Y82/DoXcH24+nFazSPYeF9lMuqoipgCJ0A3/99phAMDMycMynmKTumnHn2Jjabm2XhdVR8WIOkBJV5qNfR6CELj4cA8SfU5EDHh9ft4zKJ0mbVcCAZK6ii0mkzYfWCv93pp7nOhyeGA0CDg1OAMuFqwmI7553kgAwLFOR8j9Wo0iAVmzSNlv/vNWOwCgriQv5v1nAgqQCF3wWUsvdnzaCkEA5l80OuP7T6abdqesk626RJbQpt+jTKmly78ln3ElCAJ5kIi4aO9zQxQD5uWKYHCRjj5IUift2NWTAgsrmQ+deRYOPrBWdp77NOg/Gl1ZELd6w4pbtLybUopN2W5Rq1nkvz5rBQBMP6Uirv2nG10ESI8//jjq6+ths9kwbdo07NmzJ+y269atw0UXXYSysjKUlZWhoaFBsb3H48GiRYswfvx4FBQUoK6uDnPnzsXx48dDnuull17CtGnTkJeXh7KyMlx//fXpeHlEDDD16IpxtRhVWZDx/SfjQZJ3sv3yJAVIsdCvurikq1mk3KANADYLKUhE7LDKqspCC2/CmIlZbLFQYFUGM/EoSD3OQAk/ECjxBwL+o3ipKGTFLaHnzX6NMn9AWeoPBFJ8uw60AQAuHqOdzssWWQ+QNm/ejIULF2LJkiXYt28fJk6ciCuuuAKtra2a2+/atQuzZ8/Gzp07sXv3bgwfPhwzZsxAU1MTAMDhcGDfvn24//77sW/fPjz33HM4cOAArrvuOsXz/PWvf8Utt9yCefPm4b333sO///1v/Pd//3faXy8RSnO3E8/vD3x+d1ycefUIACoj/NCjIW/bTwFSbKgVnPSl2AIXATaCgRlZSUEiYkGrsiqdJu1EUmyMWDxI8l5gXcE02ydJBEhMQerQUJDYbywkxZanVL4+a+nDiW4nrCYDpo/Wl4KU9VEjq1evxvz58zFv3jwAwNq1a/HSSy9h/fr1+MlPfhKy/YYNGxT/fvLJJ/HXv/4V27dvx9y5c1FSUoJt27YptnnssccwdepUNDY2YsSIEfB6vbjnnnvwq1/9Crfffjvfbty4cWl4hUQ0nnrzC3h8IqbWl+OcEWVZOQamIDncPthd3pCTTyTkcnVTV2gunghFHaCkK8XGTNq2YGDEU2xk0iZioEWjN0+eOfUmbZdGH6Ro5KsCj1jSY0aDgLJ8Czrtbpx0uFFVZJUFSEVRHh0KW1j2e3xwuL2KdJpWFRsQqiDtOhAQQ84bXaErgzaQZQXJ7XZj7969aGho4LcZDAY0NDRg9+7dMT2Hw+GAx+NBeXl52G26u7shCAJKS0sBAPv27UNTUxMMBgPOPvtsDBkyBFdddRU+/PDDsM/hcrnQ09Oj+COSp9fpwcb/NAIALxvNBgVWE/8hx5tm6yQFKW76VY0a09UsUp1iy6MUGxEHXEGSlZ5LKbbUpIX9fhEeX6AXRVwpNpW3J9bggg1t7uhzw+nx4Yv2gEF6XAIKUr7FyBcfahWJvT9hq9icLEAKpNcu0Vl6DchygNTe3g6fz4eamhrF7TU1NWhu1m4+pWbRokWoq6tTBFlynE4nFi1ahNmzZ6O4OPAFOHw44HdZunQpfvazn+HFF19EWVkZLrnkEnR2dmo+z7Jly1BSUsL/hg/Xbt5FxMczexrR6/LilKoCXDZWu2Nspkg0zUYepPhhTfZMQV9HulNsVuZBIpM2EQfSfDCNFJvHFzIuIxHcsh5gSaXYYgyQpEo2Nw4098IvAhUFFq6ix4MgCKgoCD1viqLIf2OhChKrYvOiz+XFO0cD19xLwnQMzyZZ9yAlw/Lly7Fp0yZs2bIFNlto902Px4NZs2ZBFEWsWbOG3+73B76QP/3pT3HDDTdg8uTJeOqppyAIAp599lnNfd17773o7u7mf8eOHUvPixpEuL1+rH/jCADgzq+cEnUSdbpJxKjt8vrQ65JWkl+epBRbLLAUF0tdpC3FxhQkkzrFRqNGiOjwHkhyBSkYmIiiVJ6fDPIAKTmTdmyPlTeLZOm1sUOKIjaljISWD8nl9fMGraEeJElB+vfn7fD4RNRX5GelOCcaWQ2QKisrYTQa0dLSori9paUFtbW1ER+7atUqLF++HK+88gomTJgQcj8Ljo4ePYpt27Zx9QgAhgwZAkDpObJarRg9ejQaGxs192e1WlFcXKz4IxLnRHc/5v/hHTT3OFFdZMXXzq7L9iElVOqv7kjb2uvifgIiPGx1WVMSWNgkU8X2aXMPlr7wkabyF5JiIwWJiAMtBUmu1KTCh+SStbywGNNr0gaUAdKnzYES/zNqE7+esUq2Dlm7E7nHL2wVm9MjS6/pTz0CshwgWSwWTJ48Gdu3b+e3+f1+bN++HdOnTw/7uJUrV+LBBx/E1q1bMWXKlJD7WXB08OBBvPrqq6ioUDrjJ0+eDKvVigMHDigec+TIEYwcOTIFr4wIhyiKePadY5jx0Gv412dtsJgMWHLtmbCasm/O4/PY4lCQ2KqpusiKPLMRogg+LoUID+uDVBsc35BMiu2Jfx3G7988guf3h7bycAZX+NykTR4kIg6kKjZJQTIaBJ4KizTNPlZ4ib/REJeKk7gHSQqQkinxZ7D+UPJeSGwBYjEaYFIFfayKrbvfww3aeivvZ2S9im3hwoW49dZbMWXKFEydOhUPP/ww7HY7r2qbO3cuhg4dimXLlgEAVqxYgcWLF2Pjxo2or6/nXqXCwkIUFhbC4/Fg5syZ2LdvH1588UX4fD6+TXl5OSwWC4qLi/Gd73wHS5YswfDhwzFy5Ej86le/AgDceOONWXgXBgctPU7c+9wH2PFp4EcxaXgpVt04Ma7uremkMgEFiZX4VxRaUZxnxuetffjyZD/qdSgXq3nvWBde/qgZ37/8tIxXjziDK8yaYICUTIrtRHfA96UewAkALnUfJKpiI2LE7xf5uUA9HyzfYoTL60+JgpRIiT+QWB8kQDvFllSApOHdDNdFG5AUpC9P9kMUocvyfkbWA6SbbroJbW1tWLx4MZqbmzFp0iRs3bqVG7cbGxthMEhfnDVr1sDtdmPmzJmK51myZAmWLl2KpqYmvPDCCwCASZMmKbbZuXMnLrnkEgDAr371K5hMJtxyyy3o7+/HtGnTsGPHDpSVZafMfDDw3T/txb7GLliMBiyccTq+feGokNVFNknEg8RK/CsLLTAahGCAlBs+pNXbPsO/PmvD2CHFuG5iZlOcjqBJmwdISShILA3SqxFkSR4kSrER8dFhd8PnFyEI0uKJkW8x4aTDk9IAKR7/ETsGOfGm2D483o1epxdmY3wjRtRoeZDCNYkEJA8S87frsbyfkfUACQAWLFiABQsWaN63a9cuxb+PHDkS8bnq6+tjqiwwm81YtWoVVq1aFethEknyYVNgtfLMHdMweWT4tgzZIrEAKXBSKC+woChYndGUI+NGWForGwEdM0nXBFfm3Ul4kNjn1aMx8JY3igym2KiKjYgV1kW7PN8Cs2ohl8ebRSafYkukBxIQSPXZzAb+HY9VQSoLBkiH2wLl/adUFca9bzmVWh6kMBVsgKQgMfRY3s/Qz/KdGNC4vX6eaz+1Kv6GZJkg0lyhcPAUW4EVw8ryAeROqT9TV5q7M++ZYvuuTTLF5vT40BsMjCIqSLwPkkFxO0GEgymTWuXvqRw3kqiCBACFMqN2rCpMeb5yEHgi/Y/kVGgoSCxw1FK1bGYDzEbJa6VXgzZAARKRIeQrrVil4EwjV5Bi7W/CUmwVhRYMLQ1Mos6VFBtb5Z3IcIAk75HCqtjcXn9CQYtc7dNUkIKr85A+SORBIqLQGbzgq9NrgKTWZNODBCjTbDEHSAXKAGlsAh205Uh9kEJTbFoKkiAIXEUaqdPyfgYFSERGsLulqoZk5Nx0wk6Ebp8/5rLzTq4gWTCsjAVIg0tBOt7Vjwf+/hE+b+2LaXu3zw9fsElKZYEVrP1VIj6kVnmApPF4dYqNPEhErHQFv0+l+eaQ+1KpILmSUJDkpf7xepAYyRi0AUl577S74A/+rlngGC5oYz6kS3WsHgEUIBEZwhFspphv1ad6BAR+zMxH1NYXW9DQLqtiYym2lh4nXxXqGXZyT1ZB2vhWI5769xHM/d1bMfm3nLImjflWI4psytED8SDfX6+mB0ll0qYyfyJGuiMFSFY2jy0VHiSpzD9eCmRBUawepHyLURGMJRsgMU+TX5SCykgeJAA4pSqgGl1xZuR+h9mGAiQiIzAFSd27Q29IabbYfEidQWNieYEFlYUWWE0G+MXs+Hrihakr7X2upAK6lp7Aaz3e7cR3/7Q36nOxk6fZKMBsNKAkuJpMxKgtb8mg7UFiCpKqio1SbEQUuh2Bc0BpniXkvnyWYktBoM28mYn0gsuXK0gxBkiB8SCB11RVZNVMIcaD2WjgQSQr9ZdSbNrn+2XfmIC/fvd8TD9Fn+X9DAqQiIzAFSSd+o8Y8XbT7uA+BQsEQcDQstzwIXl9fsWIAxbkJIK8m/g7R09iyQsfRvRw9auM06xxXCIptjbZcfe5vFziZ7AKIa0UWyrmaBEDl1hSbA5Xtk3a0vk0Hg8TaxaZrHrEkJpFBs6b0VJsVUVWTB6p/5Y6FCARGYEpSPnWXFGQogdI/W4fPxGwvH6uVLI5VSpPcxIBEqvkmz11OAQBeGbPMfzxP0fDbu9QTfkuTibFJgtk/SJgV6U81FVstuCFzS8qZ2ARhJouR+D7yBROOXkWlmJLhQcpsTJ/QFJobGZDXLMs2fnqjCQN2gw+biS4YIyWYssVKEAiMgK7KBbo/AcTT4DE+n5YTAZebsuN2jrvhaROMSXjQ2IK0g3nDMP/u2IsAOCBv3+MNw+1a27PghbmB2IXoIQUJNXnpPYhhTNpA0ovFEGoYQqSVoDETdqeFIwaSUGZf6zpNcY5QfXm4tNT04OoigdILMWWGxmDaFCANEBweX3odqRnInoqsLsi56T1QqVG2/xwsNVSRYGFz1AaliMpNrVJubk78YCOBUjlBRZ85+LR+NqkOvj8Ir638V1NMzRrEqlWkBKZx9YaNUBSmrTNRgNMwZU2VbIRkeAepHwNDxJvFJntMn+lty5WfthwGt5bPAPnn1IZ9z614L2QgueCaCm2XIECpAHCzf/3H1y4YkdSM63SCVOQCnVcxQbEpyDxEv9C6QQq9ULSuYLkSY2C5PL60Bf0l1UUWCEIAlbcMAEFFiM67G7NruL9KgWJe5A0qtCiof6c1N9/dR8kgEr9idiIVMWWp5MAiZX52+JUagRBQInG60oUdS8kSrERuuKjph70urz4slOfF2auIA0gDxJTmdjJAZA8SE16D5BUJ/ZETdosSDQZBB7o2MxGvurWKr1Xe5ASTbH5/SL/DFgvFnUlmzrFBkgXE6pkI8Lh94tSgBQpxZbKPkhJlPnbEqiASyVSN211FRsFSESWcXl93HCair4c6SBnPEhxVLF1yJpEMoYHU2zNPU54dWwCTpWCxNKMZbI0IwDeTyrS+A+eYstLLMXW3e+BxxeoRBtdWRjcX2STtny/pCAR4eh1ecEKIou1TNrm1PVBYufuhEzazIOU5fOqNKYptiq2XIECpAGA/KJg1+mq2M5Ne/pWkKqLJLOhzx+5DFwrxVZZaIXFZIDPL2Z8hEc8sMCBFb4k2rdJK0gE5AFS6AWET/q2KD1I8aaHmf+oLN/Mq3LUKpRL1QcJkAIkahapf175qBkHW3ozvl/m58wzGzUv8gXWdKTY4g8mxtQEqtBOrylM+jiSgVex2dUpNn2f76NBAdIAoE8eILl0qiAFU2wFOvcglRdYIAiBMvCTjsjNItlqqVyWYjMYhJzwIbHgYHh5ICXY2utKSPGSN8qUw7pjaylI/arp41KKLb7vbptsmCgLyOQ+Jp9f5Ktzmyk0xUYBkr450NyLO/64F9975t2M77urnxm0tX06qTRpJzNqZOLwUvzn3svxi+vHJ30cycAWSLzMn1JshF7oc+k/QMoVBclkNPBp19F8SFoKEpAblWxshTesLA8mgwCfX1QMm4wVdkIMDZAiKUjKSd/MuxRvio2Ng6kqsvI0iHx/rL8MoFaQAqc9SrHpGzbb70iHPeNNPSP1QALkKbbs9kECgNoSG4xx9EBKB0xB6nN54fT44Ai2P6AUG5F15KmJVPxg0wE7Lr0rSEDsRm15F205LEDSquDSC6zUvsBiQk2xDQBwIoFS/84oKTatyrR+tQcp0RRbT+DzqS6yyfYnPQczaANhPEg6/a0QAY4Hfz9Ojx+9GV74dUfogQTITdqp64OUSBWbXii2mbjJvMPu5ucXUpCIrKNIsenUpN3nyg0FCYg9QJL6/yhnGeVCN235uI/akkCAlIgPKdx7EDnFpjRwyqvY4lEKlCm2UAXJKZv5Jl9h08Da3EC+wGDBcKaINGYEkKXYUjCyJplGkXpBEARFJRs1iiR0g/yikIrZQOmAe5ByIUCKoZJNFEVZmb9SPZE8SPpNsckryWq5ghR/gMRMmeWF2gpSn2aKTbm6ZOkxv6hMF0eDfT5VhVYUa1TNqZtEMmxUxZYTHJcHSL2ZLXiINKgWkIJsUZQ8RImSTJm/nqiQVbI5VL3OcpXc/kQIACoPkk4VJO5ByqEUW3sEBcnu9vETW3gPko4VJFklGVeQEuiFFDbFZo3gQfIoPUhWk4FfHOJpFhldQQqmLlQ+CCnFpt82DARwXJbyjaUvWSphHqTwCpK00EvW1jAQFCRA6gfX1OUEE9Xi7fCtN3L7EyEA5IZJm3uQckBBqoxBQeoM+o/yzMaQtCFLsTV367cXkjzNNaQkcQVJPmZEDg9YXBopNlWPFEEQuIoUT7NIVuZfXSQpSPLHsy7a8iaRAPVByhWOd0nfx2yl2MJ1mzYaBB7QJNsLiVVaJlLmryfYQvHLTkk5zwVLRSQoQBoAyI2puu2D5MqdnHQsHqT2YHm7Wj0CAhdss1GA1y+iJcMr31iRG6UlD1L8ildHmDRjxCo2lUkbSKySLVYPkrqShjxI+qff7ePBN5D5FFu0KjYgdd20B4JJG5AWlseC1gKLyZD16rpkye1PhACg9Hk4dKggeX1+no4q0PmoESC2AKmzTzu1BAR6IdUxH1KnPn1ITp5iMySsIHl8fp4SC98HSStACq1w4ZVsMQZILq+PB1OBMv9QD5JLY8xI4N9UxaZ31BWV6qHE6aaHjxnR9iABkhqe7KI02TJ/vcDOhceC465yPb0GJBAg1dfX4+c//zkaGxvTcTxEAui9k7ZDtlLPqTL/CCm2Dq4gWTXvrysJBEh67aatVJACx9rS44Q/SvdwOSeDK3xBCJ14HmnUSL9qFhsgq2SL0YPEgleL0YCSPDMPyOxuH09rhjNpU4pN/8jTa0A2UmyRG0UC8oG1SabYBoiCxM6FrDglF7IF0Yj7E/nBD36A5557DqNHj8Z//dd/YdOmTXC59JlGGCzIPUh6nMXGKthMBiEnKjVYFVuXw8NPXmrawzRIZJQVJNbbJ1PI00/VRVYIAuDxibwqLRbYtmX5lhApPZY+SPIJ5PHOY5On1wRB4PsDpN+D5EHSTrFRgKRfWAUbC2YHQ4ot1xUk1g/uJBvTMlgDpP3792PPnj0444wz8L3vfQ9DhgzBggULsG/fvnQcIxGFPp2X+dtlPTHkA031SkmeGabgBZ8pRWrCddFmFFnDp5j0QL+sDNdsNPCgMJ5eSOEM2oCUYnN7/YqO1oBUPabwIGmYrCPBAqTKoNpnNhr487H33BkmxUaz2PQP64E0flgJgMym2ERRjNoHCZC+R0lXsSUxrFZPVKrU9EGZYmOcc845eOSRR3D8+HEsWbIETz75JM4991xMmjQJ69evz3hr+MGMXKWIp49MppDmsOnffwQEPES8ki3MiTmcOZlRFOcFPx6cHl/SyhTzAbH0k+RDit2o3REhQCqUfdbqINHJB1lqpdhiDJBkPZAY7D1nKhTbj7rMnzxI+ocpSGcPLwUQ+A5lKqB1evxc1VGnjuWkSkFiXrlcUNcjoV4sDsoUG8Pj8eDPf/4zrrvuOvzoRz/ClClT8OSTT+KGG27Afffdhzlz5qTyOAc1a3Ydwm93fR72fmWKTX8nfXsOdlWNZtSWpthre5CK4/TUxMPMtW/iohU7Nf09seKU9UECwCvZWuLohdQZIUg0GgQeJMkDJFEUw1SxxZdi42NGikMDpBAFKaRRJM1i0zusB9LpNUX888qUD4n5j4wGAQURzlmshD1ZW4PLp92vK9dQL5TycrzEHwDifgX79u3DU089hWeeeQYGgwFz587FQw89hLFjx/Jtvv71r+Pcc89N6YEOVhxuL1Zs/RQAcMt5I3nqQo66UaQoirpKZbETSK4oSEAMAVJflBSbxmywVOD3i/joeA9EEfjkRC+mjipP6HnU4z6GJGAqj5RiAwLvQZ/Lqwjk3D4/fEEjuE2zii1Gk7amgqQcbyL5rKgPUq7BTNpDy/JQXWRDY6cDrb1OjKjIT/u+u3kFmznieTRPNm4kUURRlDxIOa4gWU1GFNlMfIGSZ87t1wMkoCCde+65OHjwINasWYOmpiasWrVKERwBwKhRo3DzzTen7CAHM3JF6KQ99GIriqJqha4c0qkH7K7QlIreYRfe9jCVbJ3RFKQIZe7J0Ovy8i61h9v6En4etYqTyDy2jjBdtBlavZCcsu7V2lVs8Zu0GUyF4gpSFJO2U4dqKxE4pzEP0tDSPFQHP+NM+ZC4QTuC/whITYrN45OsKLnuQQKUPqRcbxIJJKAgHT58GCNHjoy4TUFBAZ566qmED4qQkP/4uvrdGAHlCsrpkVbkDLvbq6sKAq4g5dAPprIocNHXUpBEUZSV+WfWgyR/vkNJBEjqFFsivZCiK0ihA2tZYGY2CjDLVsysj1Gs75e8i7a0P6VqF64PEilI+qbD7obb64cgADXFNp5GbU1gFE4i8DEjESrYAHmKLfHvkbyAIdfL/IHAYumLdjuAQVrF1trairfeeivk9rfeegvvvPNOSg6KkJD/gFj5pBx28TEI0olfb+NGuIKUSym2CONGepxevvKLJzhIBXKF5XCbPeHnUStINcXxz2OTBtVqq2hapf7q1B4j3kaR7VoKUogHiYbV5iLMoF1dZIXFZEB1UeC7mSkFqZv3QApv0AYkBSkZD5K8jUiup9gA5YIxP8c9VUACAdLdd9+NY8eOhdze1NSEu+++O6GDePzxx1FfXw+bzYZp06Zhz549Ybddt24dLrroIpSVlaGsrAwNDQ2K7T0eDxYtWoTx48ejoKAAdXV1mDt3Lo4fP675fC6XC5MmTYIgCNi/f39Cx59O5AM1uxyhPWp6g8FQodXEPT52nZX6s4AtkuFRb1QFT8paChJTTgqtppALPUPq7JzaYFXu0TncnliA5PH54Q2qjnlmtYLUH3MFarhBtQytbtoOjSaRQHyNIkVR1E6xhfUghRs14o+rMSaRGViAxLrRV2UpxRZdQUq+zJ+V+JuNAgw5PpYDUKbYBqWC9PHHH+Occ84Juf3ss8/Gxx9/HPcBbN68GQsXLsSSJUuwb98+TJw4EVdccQVaW1s1t9+1axdmz56NnTt3Yvfu3Rg+fDhmzJiBpqYmAIDD4cC+fftw//33Y9++fXjuuedw4MABXHfddZrP9//+3/9DXV1d3MedKZwyBUmrwof1QCqymXmXar01i2TdvXMpJx3JpM1L/MOk1wCZIpJGBamx0xG2kWUk5MqJzRI4BTAFyenxx1xJFq0XlFTFJhsg61Gm9hjMP9Tn8kYd8NvT7+UXlkqNMn8WREbrgwSAj8Ah9ENT0KDNAqSMe5CC3//iKAFSXgoCpIFS4s+oGOwBktVqRUtLS8jtJ06cgMkU/wVw9erVmD9/PubNm4dx48Zh7dq1yM/Px/r16zW337BhA+666y5MmjQJY8eOxZNPPgm/34/t27cDAEpKSrBt2zbMmjULY8aMwXnnnYfHHnsMe/fuDRmP8s9//hOvvPIKVq1aFfdxZ4r+KCZttjovtJpSNhso1UhVbLnzg4kYIEXx3gBSgCTvqZIK5Ckon19EYwKz3liQYhCkE7PNbOSvJxYfks8v4qQj8vvAUl7yRqZaTSIBKDphR1PdWFflkjyzQh3iipUrqCB5I/dBAijNpkeOywzaAFAdDN4z5UHqjqFJJJAak7Z7gJT4MyoHe4ptxowZuPfee9Hd3c1v6+rqwn333Yf/+q//iuu53G439u7di4aGBumADAY0NDRg9+7dMT2Hw+GAx+NBeXn4cufu7m4IgoDS0lJ+W0tLC+bPn48//vGPyM+PXjrqcrnQ09Oj+MsE8uZorD+HnL7gxaDIZpIUJL16kHJIQWI/dLvbF6LI8RL/MBVsAFCouOCnTkVSp6ASqWRzyoIUeRlzbXHslWxdDjevpisL49XQqmLrD6MgmY0GnoKNprpppdeA0LRmuBSb0SDwiiEKkPQHT7EF077VMQyPTiXdMabY8szJ90EaKCX+DPk5cVAqSKtWrcKxY8cwcuRIXHrppbj00ksxatQoNDc349e//nVcz9Xe3g6fz4eamhrF7TU1NWhubo7pORYtWoS6ujpFkCXH6XRi0aJFmD17NoqLiwEEPAy33XYbvvOd72DKlCkx7WfZsmUoKSnhf8OHD4/pcckiP4F3a5i02QWz0GbiAYheFaTCHFKQAv6iwM+jvVcZmEbrog2Eb5SYLGoTcyI+pHBG6Xgq2Vh6rSTPrKhGk6NWdIDwHiQg9maRWj2QAGm8Sw/vpM0aRYYeX94A76a992in5vkiF1B7kFiA1GF3wxMl/ZoKuuI2aSdTxTYwxoww5On2gdAoMu5PZejQoXj//fexcuVKjBs3DpMnT8ZvfvMbfPDBBxkLGhjLly/Hpk2bsGXLFthstpD7PR4PZs2aBVEUsWbNGn77o48+it7eXtx7770x74upZuxPy6ieDlyynkYnNUzaWh4k3VWx5aAHSRAEKc3WpwwYOqJ4bxjpaBbJnosNhz3UGr+CFC5AknohRR83Eq0HEhCmD5JGF21GrM0iWUdltYIU2klb+3XK9z8Q57G9dbgDN6zZjUV/fT/bh5IQag9SWb6Fz0YM15cslcTdBymJ7xCrUh4oAdJAS7EldMUqKCjAHXfckfTOKysrYTQaQzxNLS0tqK2tjfjYVatWYfny5Xj11VcxYcKEkPtZcHT06FHs2LGDq0cAsGPHDuzevRtWq/IEO2XKFMyZMwdPP/10yPNZrdaQ7TNBvyLFpmHSllWxsdWVXWcmbZbyyyUPEhBQKI519odI+1KAFPn7UGQz4UR3qhWkwHONrS3CR8d7ElOQ3NpprkQUpEg+rCJbaGUa27dNQ34viVNBqg4JkJT7Y6tzzQDJMnADpL2NJwEAX3bF70/LNk6PjwdBzINkMAQWKye6nWjtcfGu7+ki1iq2eEzaL75/HOX5Fpx/aqXidpZiGwg9kICBl2JLeEn/8ccfo7GxEW63UtUIVy2mhcViweTJk7F9+3Zcf/31AMAN1wsWLAj7uJUrV+J///d/8fLLL2umyFhwdPDgQezcuRMVFRWK+x955BH84he/4P8+fvw4rrjiCmzevBnTpk2L+fgzgTNKio35W4psJv5jc+itzD8HFSQgvFG70x49xQaElp2nAqYgTRpeGgiQEvEghVFxaoMXnuYeJ/rdPrT1utDW54RfBCaPKFOUIcdiVJcUHXmjyMB3VGt1yZtFJu1BijxqJHDbwO2FdLAl8J3IxfQh87/lmY0Kk3Q1C5Ay4ENiAXpJlACJFcVE83y+8lEzFmx8FyV5Zry3ZIbiPvcAS7GV5JlhNAjw+cXBGSAdPnwYX//61/HBBx9AEATeM4WZPX2++H6UCxcuxK233oopU6Zg6tSpePjhh2G32zFv3jwAwNy5czF06FAsW7YMALBixQosXrwYGzduRH19PfcqFRYWorCwEB6PBzNnzsS+ffvw4osvwufz8W3Ky8thsVgwYsQIxTEUFhYCAE455RQMGzYs3rckrchP4JoptuCPs8hqQr8hsK3uFKQcrGIDZAFSn/J9PxFMAcScYotxvlgsMH/NxGGl2PBWI046PDhpd6MsSrAmR2tYLCApSK8fbMcZi7cq7ls5cwJmTZFS6J1RZtEBYUzazIOkcfKMtVlkuACJKUgurx8ury9Kii1o0s7BICIaB5p7AeTma5P8RzZFAUGgL1k3r2BMFx6fn59TY/YgeXxh51/2ubxY8sJHAAKBl8vrg1XWuJRVsQ0Uk7bBIGBkeT4Ot9tDFN5cJO5P5Z577sGoUaPQ2tqK/Px8fPTRR3jttdcwZcoU7Nq1K+4DuOmmm7Bq1SosXrwYkyZNwv79+7F161Zu3G5sbMSJEyf49mvWrIHb7cbMmTMxZMgQ/sdK9ZuamvDCCy/gyy+/xKRJkxTbvPnmm3EfX7aRz1Xr7veENLaTm7RZo0jdKUg5WMUGSD125ArSgeZeHG63w2wUMH5oScTHF8c5XywW2OddU2LjVT6H2+NTkcKlucbWFimCJqvJwFfRuw4o+5IxFS2WVgdao0ZiMWn7/CLW7DqEbz75FvYe7eTbsYsk67DMKJR1au91emUm7fAptoGmIPn8Ij4PqorJDFHNFk0qgzZDGjeSXgVJHpwX2yKfr9h3SBTD99Na9fIBRcpanW7nfZAGiIIEAGtvmYyn5p2LYWXpHyycbuK+Yu3evRs7duxAZWUlDAYDDAYDLrzwQixbtgzf//738e6778Z9EAsWLAibUlMHXUeOHIn4XPX19TF3Ak7mMZlCnmLzi4EfmNw8KDdpM3SrIOVYgKSVYnvu3S8BAJeNrY66wtQatZEs7ARebDNhdFUhjnc7cajNjskjw7e5UCMFKcqTckWhFf/+yWXocrhRVWRFodWEt4+cxKwndmPPFycVq2QpxRZ+lchev9Pjh8fnh9loCGsQB5QBZXufCz/cvB+vH2wHALx5qB3fveQU3HP56WEVJKNBQJHVhF6XFz39Htmw2vBVbAPNg3S0w87TNrmpIAWCiaGqAIlVLKY7xcZ8nkU2E0xRVB35gs/h9oV8p/cf68LTu48AAAQhEEj1Or2K5qa8D5JGEJ+rnF5ThNNrirJ9GCkh7rDV5/OhqCjw4isrK/kIj5EjR+LAgQOpPToi5ASu7oUkN2nzRpE6qmLz+0VuYszPtRSbah6bzy/ib+8GOrZ//ezoqdh0zGNjalRxnhmnVBUAiH9obaRKsvICC0ZXFaLIZoYgCJgwrAQWowHtfS4c6ZBMv9HGjAChig4gNYrM10yxBbbfd7QLX/3N63j9YDvyzEZcNrYafhF4fOchfP23/+YzCdUBEiAFZZ12qU+TVhM+2wAt8/+sRfouuLyhg6z1jrrEn8EUpLY0p9i4QTtKBRug7Kel7oXk8flx73MfQBSBr589FDVBtVN9LhhoJu2BRtyfyllnnYX33nsPADBt2jSsXLkS//73v/Hzn/8co0ePTvkBDnbUKYAulVFbbtJmAYie+iDJjz9XFSQ2GHX3oQ609LhQkmfGpWOroj6+WGMWWTL4/SIPiIttZoyuCnjn4h1aG27chxY2sxEThwdSiW9/IaW5YqliMxkNPBBi39N+T3gPEkvnfXyiB629LpxWXYgXFlyA9bedi9/OOQel+WZ8dDzQoNVkEDSrjFhQKlf9IilI/Z7099VJJV+edOBbv38brx9s07z/s5Zexb9zLYV4vDtMgJShgbV8UG1ebJ6+cN2017/xBT450YPSfDN+dvUZPHDvU50LBppJe6AR96fys5/9DH5/4EP9+c9/ji+++AIXXXQR/vGPf+CRRx5J+QEOdtQKktqoLaXYZB4kHaXYWLpPELQvVHpGMmm7IIoiT69dM2FITJK4ZNJOjYLU6/JyVaTIZsLooIIUbyUbu2jGKuufWx9I3+05IgVIsVSxseME5ApS+BSb/Lm+cc5QPL/gApwWlOq/On4IXvnBV3Dx6YHAdGRFvuZwT7Y/diEVBG0DbK56kP7xwQns+LQVj+34XPP+kABJR4ulWGiSmbTl8HlsafYg8R5IUSrYGKwaU17qf6zTgYde/QwAcN9Xz0BFoTVsup31QSIFSZ/EvaS/4oor+P+feuqp+PTTT9HZ2YmysjJNFz+RHOoVrrpHTK8sxcZMqXoyabNjKbCYcu77wbwCbq8fLT0ubP0wUA35jXOGxvR45qlJlYLEAi2ryQCb2cgVpMZOB7w+f1TPBIPPQ4uxDPfcUeXArkN4Oxgg+f1i1EG1jEKrCS1w8dRgJJP2BadW4rbz63H2iFJ8bVLoe1xdbMPv552LnQdaMaK8QHN/7D1nCpLNZNT83uWqB4m9rv3HuuD2+kOUh4MtymA5lwIkURRD5rAxWIqtvc8Fv1/UDI5TAS/xjyHFBmj3Qlq97TM4PX6cN7ocN04OpOILw6TbSUHSN3F9Kh6PByaTCR9++KHi9vLy8py7+OUK8sGigDLFJk+5FNnMXO7Vk0mbHYuW50Tv2MxGvvLb8NZRONw+jKzIxzkjymJ6fKo7acv9RwAwpNgGm9kAj0/EsZPRu18zIgUpWkweWQaDABztcKC1x4kep4d7W6IrSMogkfdB0vg+2MxGLL3uTM3giCEIAi4bW4NTqwvD7C/wnvMAKYxqmasepPZgewWX148Pj3cr7vP4/LyikZ0vHB79nAuicdLh4Ys81tWdUVlohSAAXr+ITo12J6ki1iaRDGbUZqq90+PDKx8FFlI/vmIsvy7yFJvKH+oaYGX+A424PhWz2YwRI0bE3euISBwWILEcvDzFFui/Efh/eYrNriMFiR1LgTW3/EcMlmb743+OAgCunzQ05sVAsUYfoGh83tqHI2G6Y7PnYc9rMAgYVcl8SLGn2SKZtLUotplxxpBAJ/o9Rzp5eq3QaoqapgtNsYWfxZYKeIDUxwIk7f3kaopNPmpD7gkDgCPtdnh8IgosRt5tOpcCQKYeVRVZQ75XZqMB5cGq0XSm2ZiCFItJGwidx/baZ22wu32oK7HhnBGlfLtw54KBWOY/kIj7U/npT3+K++67D52dndE3JpKGXczYikquIDG51mQQYDVJ09Dtbq9u2hbYc7RJJINVsrH3/etnx5ZeA2SND2NUkJweH65//N/4xpo34dUYyslL/GWr21O4Dyl2o3akcR/h4D6kLzpjMmgz1L2QeJl/mhRFtj/WKylsgJSjnbTl5vO3j5xU3Hcg6D86raaI/95yKUAK1wOJwRYr6WwW2eVIzqT9z2Aa/sqzhigWUuEqWgdimf9AIu4A6bHHHsNrr72Guro6jBkzBuecc47ij0gt7AQ+hAdIkoIkN2gLgoD8oEojisoGk9nEkaNNIhnyUvJzRpSivlLb+6KFPL0US8Da3O1En8uLTrtbM43Q45Qq2BjMhxRPqX+8KTYAmDpKCpA6+mIPkNTVO9z/lDYFSelBCmd+5R6kHAogACnFBgB7j3YqGseyEv/Tawr5JPVwAaAoilj9ygH884MTmvdnA8l/FDp4HAh40ID0VrJ1xelBkqfYXF4fXv04MFf06gnKWaKs5YVaQSIPkr6J+6rFZqYRmYEFOjXBk4N8YC03aAcvQvL5Vna3VxezcLiCpINjSQR5U7evnxPfGBo2G8znF9Hv8UUNEuXpk/Zed0in6JQpSAkESExBOtDSiyMdgX1Fm0UHyFJsLsmjEe++44HtjwUS4RQkWw6m2Hx+kXcwF4SAZ+dQWx+v9PssOGLk9JoiNHYGelaFG6T60fEePLLjc1iMBpw1tATDy7Pf9ZgFSOGG0VaHmY2YSuKtYsuTjRt542A7el1e1BRbcfZwpU9R/TtgUICkb+IOkJYsWZKO4yDCwFa4QzRTbGwOW+DHbDAIyLcY4XD7AsqNto81o7BBjvk57kEyGwVcM35IXI/NMxv54Maefm8MAZJb9v+hFwFu0paNQBjNPEhxjBuR+iDFflKuKrJiVGUBvmi3Y1twlRybgiSlFkRR5AFJukz7LHhkJvJwJu1cTLGddLjhFwPB0ZSRZXj7yEm8feSkFCC1SgHSm4c6AIRPsTGvjdvnx0PbPsPqmyal/wVEgXXRDpdik0r905diY4uQ2E3aUortHx8E0mtXnTUkpMpOXazAYGX+FCDpE/pUdA4bl1AbIcVWKLtgsouwXirZWNPKXFWQxtUFzMlfHT8kroGwQKDiSjJnRvchKRQkrQApOPRWriCNCipI7X3ukBYQ4YjUiygS59YHVsX7GgPel/IoJf6ActyK2yd1dk6XB6nIpgxCo3qQcijFxr4TZfkWTB9dAQB4J9h6wenx4Wiw0/kY2Uy9cAGgvNv+lv1N+ORET9qOO1a4B6kkTIqtKP3jRrq4STu23zpTkHr6Pdj2cSBA+qrGQkpKsVEn7Vwi7k/FYDDAaDSG/SNSh9fnh8cXuKAw2VmRYmNdtGXqDDNn6mXciIOX+eemgnTJ6VXYctf5WHHDhIQeXxSHUTtqgMQVJClAKrSaUBtMv8ZaycaC7njTXCzNxuxUsaXYpJWz0y354tKVYlMPGNUaVAtIylIu9UFq7w0sjioLLZiiat55uM0On19Esc2E6iKrZn8eOfLbRRFYufXTdB56TJwI00WbkW4Pkt8vSibtWD1I5sD37dVPWtHj9KKqyIrJI0PbgBSH66TtowBJz8R91dqyZYvi3x6PB++++y6efvppPPDAAyk7MAJwyiZEsxRbd7+HN0qTeiBpKUj6OPFLZf65GTwLgoCzY+x7pEU8A2s7FCk2DZM29yApf7ajqwrQ3OPE4TZ7TMfKjNLxKkjMqM2INKiWUSRT0JiaYTIIMKep74t8aDMQQx+kXAqQgkFzZaEVZ48ohUEAvjzZjxPd/TgoS68JgiBL/Wh/79i5Y2xtET5v7cPOA21463AHpgWVqUzj8fl54BM1xZamKrY+txfM8x5zJ+3g+8zUryvPrIVRs8O7doqNe5CoD5IuiTtA+trXvhZy28yZM3HmmWdi8+bNuP3221NyYIRS/mdeGFEMKAml+Rb+Y5On2AqDgYiDFCRdwEv9Y0h/JaIgAYEA6c1DHTFXsiVqlB5Rno/qIiu/kMVl0nZ6JXN4GtOt6vcmah8knSwkYkEeIBXZzBhXV4wPm3rwzpGTOMAM2rUBP1K0FBv7XY4bUozJI8uw4a1GLN/6KZ777vlZafrb3O2EKAYChXDfKz6PrScw+ifVx9kd9HfazIaYFw/q7/JV42s1tysMk2p3sRRbjo1hGiyk7FM577zzsH379lQ9HQHpQsZ+sGy1woza3KQtuyjoTkHKcQ9SsqgbJUZCGSBpKUihHiRAZtSOoZJNbpSON1ARBCEwdiRIvH2QHGluEgnE70HSSzuMWGiTBUgAMGVk4LN4+0inVOIf7DAeLcXGlN18qxH3XH4a8sxGvNvYhVeCBvxMc6I7oArVltjCjhFh40ZcXn9Mimy8xFvBBiiV8YoCC6aN0lbg2PfS7vZxHx4gV5AG5/lR76QkQOrv78cjjzyCoUNjb6JHREe90i8LGgeZD6nPFfhvoYYHSS8Da3O9ii1Z4pnHpkixafgstKrYAGBUsDfT0WBpdyQ8PlFW4RX/SXlqfXwBkjxAdGZAQcq3GBUpjnArc/abcvv8mk059Qj3IBUF3nfmCXv7yEk+pJYpSOGmzDMcvP2GCdXFNnzrwnoAwK9ePpCV94P5j4aEMWgDytE/bWlIs/Eu2jE2iQSAPLP0W7ziLO30GqAM3OXjRqjMX9/EfdVSD6UVRRG9vb3Iz8/Hn/70p5Qe3GCHrW7Zhawkz4ymrn4+bqTXGcGDpJNxI5KCNDgDpHjmsbVFrWIL7YMEBCbbA8DRDnvU1IM85ZKIknOuLECKNqgWkIJ3h9vHv6/pVJAEQUCRzcTVgHAmbXmQ5vT6UZgDHpB2lYLEqgo/bZYq0E6viS3Fxn6X7Hxx58WnYMNbjfi8tQ9bP2rGNRPq0vAKwtMUZkitmuoiK3qdXrT2uHBqdVFKj6GrP3BejbVJJKBsV/HVs8K3AbGajLCYDHB7/eh1erhK5aIASdfEfdV66KGHFCdgg8GAqqoqTJs2DWVliZtZiVDUDf1YZQXLlWuZtPm4kRR6kJLJ93MPUo6atJMl3IgBNU6PT6Eyddjdiqnlfr/Im8ypfTbDyvJhEAJBSFufK6TBpHo/AGA0CDAb4/9Mx9YW4RvnDEW+xRiTr0ye/mUN/tLdwFQRIIUJxuRVQw63V6HC6hX2/rHxN9XFNoysyOfl/eUFFh485VmkwFQLpuwyxbnYZsa1E+rwx/8cxYdNPRkPkE4EeyANCdNFm1FdZMOhNntaKtniHVQLSCpqeYEF540uj7htkdWEDq9b8Tt3UZm/ron7rHDbbbel4TAILdjFzKpKsakVpEKrzIPEBtamKMXm9Pjw1UdeR0WBBatnTYq74y4bNTJYFSSWDmP+oXCw+WassaTPL6Kr38NPwH1ur2IwsRyLyYChZXk41tmPox2OiAESS7nkmY0JBb0Gg4DVsybFvL3FZIDVZIDLK1UppVNBAljj1IAiEa6KTRAElOab0eXw4KTdE/E90wtqBQkI+JBYgHR6jdQZNlqKTa0gAeBjdBo7Y+/KniqkFFtkBam+sgC7D3fg9YPtuD6OuYixEO+gWgA4s64YD37tTJwxpBimKCpkkc2EDrtblWKjRpF6Ju5P5amnnsKzzz4bcvuzzz6Lp59+OiUHRQSQFKTAx8SkX8mkHeyDpKhiC64cU5RiO9Jhx+E2O94+chJffeR1vPxRc1yPz/VhtcmiHtYaDuniZ+EnaHmajaXXrCbtCpv6isDF7Uh75IsbHxab5iBFDlORWAfkdAdI8jYIkV7nsLLAxfhYDN6tbOP3i+iwKz1IADB1lKTas/QaEEOKzRX6uxwZXPwcac/8+yF10Y4cqN507nAAwN/fO66Zhk4GqQdS7B4kQRBwy/R63pcqElpqMuuDRGX++iTuT2XZsmWorKwMub26uhq//OUvU3JQRACn6mJWxlJs/coUmzw9wFaOqVOQJMNmr9OLO/+4F7948WN4YjRy2ge7gpQXWxWbXB1gZc7KAEm7go3BA6SO2AKkeMaMJAtT0ZiClK4u2gx5Wi+cggQAw8sCAcGxk/oPkLr6PdxcXyHrPyW/MCsCJEvkYg0tb2B9ZeD9aOx0xDRcOZUcj9IkkjFpeCkmDS+F2+fHM281pvQYEqliiwf1wFpRFKnMX+fE/ak0NjZi1KhRIbePHDkSjY2p/cIOdtRVbKy6gqXY+jRM2gVRvAeJHsPIinx8+8LA5/7kG19g1hO7uRcqHKIo8kBtsHuQopm0WVl/ZaGVp1Dkpf7hKtgYzKh9pCPyxZ4H3WHMy+mgSBUg5ac7xSZ7jyK9TpYuPtbZn9bjSQUsWC7JMyvSMaMrC3iPNDYWB4g+SkWqLpXen2Fl+RCEwMKLpXwzQb/bx4OTaCk2AJh3QT0A4I//ORrzQi0W2MIzXQGSuuWH1y/ytLmVyvx1SdwBUnV1Nd5///2Q29977z1UVGSnC+tAJaSKTZZi8/lFvgpU9EFK8agRdkEttJrws2vG4YlbJqPIZsK7jV3Y9HbkgNjp8fMTwGBVkGLtg8QugBWFFlQGL3jyUv9wFWwMpiAdjaIgZaLUXg1PsQVLs9O972KFghQhQGIpthxQkNh3oVJVOSgIAn475xz84vqzcPbwUn479yCFbRQZqiDZzEY+tiZaoJ1KmHpUYDGGXQDIueqsIagKNiz954fxpfwj0ZWAByke1N203bJJCeRB0idxfyqzZ8/G97//fezcuRM+nw8+nw87duzAPffcg5tvvjkdxzhoUftF5H2Q5EY/RR+kFA+rVQdpV5xZi9vOrwcQGHMQCfkxpNt3oldi7aTNeiBVFVp5lZIixebUrmBjsPTI0fbI6ZFEx4wkA1eQejJj0pZfZCOlLoZxBUn/AZK6SaScc+vL8c3zRipM91EbRYbxBjIlMpNG7RPcf5QXU+GAxWTAnGkjAAC///cXKTuObkf8fZDioUjVTZsCJP0T96fy4IMPYtq0abj88suRl5eHvLw8zJgxA5dddhl5kFKMvJM2IK1suhxu/iOzmgyKHxdbOabKpO0KVlnIy1CZpN8WpdSWHUO+xRi2O+5AR95BN1IDPrkHiakEWibtcAoSS4/0RkmPqFtHZAL2HjC/RbqDs6KYFaRAMPDlyf6Me27ihadgi6LPvwOkz9fl9cPvD31t0m9TqdiMLGdKZAYVpGAPpCFR/Edy/nvaCJiNAvY1duH9L7tSchwd9sDvLX0KklJNZr8Hk0EI22CSyC5xB0gWiwWbN2/GgQMHsGHDBjz33HM4dOgQ1q9fD4slPZH3YEV9MSuTpdi0eiABQEGKy/xdntCLGlM42qJUkdgH+Rw2QHmx7ouQ9lSk2BLwINnMRtQF/RuR0iPZCZCUF5xM9EFiRPIgsSq2PpeX+0/0Cvt+VGkoSFrIf3PqNJvb6+fVUwWq/k8jeNPRzKfY6iJ00VZTXWTjvZp+/+aRpI+h1+nhv7d4W5nECvtesvMAddHWPwl/MqeddhpuvPFGXHPNNRg5cmQqj4kIog5OSoLSb4/Tw+VgdYO7ghSX+Tu9ShULiENBGuQl/kDg5Mfeu0g+pA6ZSbtCK8UWpYoNUHbUDofTnQ0PkvI7mp9uD1JebFVsNrORf5f1btQO50EKh/x1q9Ns8so29WcRq5ctlfAmkTEYtOWwVP+L752Iei6KhrzZZvqq2JRl/m4f9UDSO3F/MjfccANWrFgRcvvKlStx4403puSgiAD9qosZ++GKotSaX706L5CV+acibaBV9SQPkCLtwx5Gxh9sFMdQyaaVYuvQVJAiBUis1D+6gpSNPkiM9KfYYuuDBOSOUVurSWQkBEGQDeRVBkisuMNiMsCs6r8jeZBifz92HWjFi+8fj3l7NVKJf3zNOicOL8XZI4Il/3uSq6Bm7THqK9KjHgHysUPKFBv1QNIvcX8yr732Gr761a+G3H7VVVfhtddeS8lBEQGcKv+PxWTgihEzSKsVJNZJ2y+mZlI5ew6r7ELDTtL9Hh8/2WohDcQcvAoSIDsxhumm7fOL3DdUKUuxtfVJAajkQQofbNbHoCBl04PESHsn7Rg9SIC81F/vAZKkMMZKfhijNh8zovG7ZCm29j53xJQww+8XcfeGffj+M+/iZIKtAZgHKVoPJC2YivTbXZ9j5dZPEz4G1mCVdRNPBzzFpgqQqAeSfon7k+nr69P0GpnNZvT09Gg8gkgUtYIESCoSO6EXRrj4pMKHpDaKA4E0Hju5RpK2uYKUA3Ou0km0eWwnHW74RUAQAhI/U+jcXj+fv5YyBYl/pzLfKJKR/gBJriBFfp250iySK0gxmrSB8M0itcaMMIptZj7eJpY0m93thd3tg1/UHrDMeGZPI3787HshfYtEUcSJbpZii3/cy1VnDcEFp1bA6fHjt7sO4aKVO7F622dxe8q+CHYPH1WRzgApeB5wKavYSEHSL3F/MuPHj8fmzZtDbt+0aRPGjRuXkoMiAjhZ1Y8svcUqLNgJXb06NxokaT0VPiSuIKnMrrH4kEhBCsA8MT1hPEjswlKWb4HJGBglwpRB5j2JxYPES/0jeZCyoCDJZwUC6fcglQfbYViMhpDvrZrh5WzciH49SKIoyjxqsRfChBs3oh5Uq2ZEUFVrjMGoLQ9EIqWQf/PqQTy790u88Xm74vaefi9XuOL1IAEBVf1Pt0/DurlTcMaQYvS5vHhk+0FctGIHNrx1NGabAU+xZUBBUvdBsmSwaSsRH3EHSPfffz8efPBB3HrrrXj66afx9NNPY+7cufjFL36B+++/P6GDePzxx1FfXw+bzYZp06Zhz549Ybddt24dLrroIpSVlaGsrAwNDQ2K7T0eDxYtWoTx48ejoKAAdXV1mDt3Lo4fl3LkR44cwe23345Ro0YhLy8Pp5xyCpYsWQK3O3PdY2NBy1DLeiGxFFuRhjqTyko2l4ZJGwAf7hlRQYqwUh1MqPufqGnvDXzv2IgRALJS/8B90arYAOnC1uXw8LlSatTjazKBOohP96iRsgILfnH9WVgxc3zU8ulcUJB6+r286iyRFJu6m3a032V9jF3Z2bExIqk2rPv/u0dPKm5n/qPyAkvChQOCIOC/xtXgpe9diDVzzsHpNYXocXrx0y0fYt7v3+YzACPBUmyjMpRiE0WRB0hWMmnrlrg/mWuvvRZ/+9vf8Pnnn+Ouu+7Cj370IzQ1NWHHjh049dRT4z6AzZs3Y+HChViyZAn27duHiRMn4oorrkBra6vm9rt27cLs2bOxc+dO7N69G8OHD8eMGTPQ1NQEAHA4HNi3bx/uv/9+7Nu3D8899xwOHDiA6667jj/Hp59+Cr/fjyeeeAIfffQRHnroIaxduxb33Xdf3MefTrQqyFg3bSZLqw2wgLQyDDeHKa5j0CjzB+QKUviTj4PPihvcKySpWaT258H6r8gvfupKtmh9kIDABa+mOPC4cGXa2TFpZzbFBgDfPG8kvn72sKjbDZP1QtLqFwQg6z2SWDuNIqsprs8tXLNIu8YMRzkjgmmmWJpFyoOicAGS0+Pjfpt31AES64GUQHpNjcEg4KrxQ/DPe76C+68ZB4vJgF0H2jDj4dcimsh7nB4+CHhkWk3agd+u1y/C6fFLJm0KkHRLQp/M1VdfjX//+9+w2+04fPgwZs2ahf/5n//BxIkT436u1atXY/78+Zg3bx7GjRuHtWvXIj8/H+vXr9fcfsOGDbjrrrswadIkjB07Fk8++ST8fj+2b98OACgpKcG2bdswa9YsjBkzBueddx4ee+wx7N27l8+Ku/LKK/HUU09hxowZGD16NK677jr8z//8D5577rlE3o60wVZ+8pMi64XEBleqPUiAtDK0pyLFxoI01Y+YB0gRfAd8pTrIPUjFURQkpsLJ/SXyZpF+v8i9SJE8SIDch6R9cesPBrxZ7YOko67qQ0ptMAiBdIeWh+bHz76H6ct2hFXkMkEi/iMgfIpN6k+m/TmMLI+9F5I8rRZuASDvIr//WJeiYerx7sRK/CNhNAi4/cJReOl7F+KsocXocniwYOO7uG/LB5rB7tGg/6iy0KK54EwV+WYjWKPwXqeHl/mTgqRfEv5kXnvtNdx6662oq6vDr3/9a1x22WX4z3/+E9dzuN1u7N27Fw0NDdIBGQxoaGjA7t27Y3oOh8MBj8eD8vLysNt0d3dDEASUlpZG3CbSc2QDSUGSeZBUbfC1VoG81D8F89hcYRQHFiCx8RFakAcpQLR5bCyNpkyxSc0i+9xePtNOrcaoqY/S6G8w9EGKB7PRwC/O6jSb0+PD3/Y3obnHiQ+bsleAIpX4x9eIly2U1Ck25k1UN4lkSF62+DxI4RQk+e0Otw+fNvfyf5/oSqzEPxZOqynClrsuwPcvPw0GAdj4ViO+aA9dOHzBS/zTl14DAgoXO1/3OL1k0s4B4vpkmpubsXz5ct4ksri4GC6XC3/729+wfPlynHvuuXHtvL29HT6fDzU1NYrba2pq0Nwc2xDCRYsWoa6uThFkyXE6nVi0aBFmz56N4uJizW0+//xzPProo7jzzjvD7sflcqGnp0fxl27Y3Cz5ilvdBl/rgpnPPUipM2mHBEgxdNPuoz5IAOQmbe0LSAfrkqxQkKQUG1uBW02GqCmW6ApS5k3aNrNRcRFItwcpXsIZtd871gWPLxCZRqrQSjdSk8j4FCT2XQlJsUVRkEYEx40c7+7nHsRwyNWhcPMG1YHTvkYpzcasAomU+MeC2WjAwv86HWePKAMAvKcxliQTJf4MpgD3uaQAicr89UvMn8y1116LMWPG4P3338fDDz+M48eP49FHH03nsUVl+fLl2LRpE7Zs2QKbLXQF4vF4MGvWLIiiiDVr1mg+R1NTE6688krceOONmD9/fth9LVu2DCUlJfxv+PDhKXsd4dBSb0rzlatIrQCpMKUeJG0ZOKYqtijVMoOF6ApSqELA0intva6YKtgYUidk/XiQAOX3VE8pNkBm1Fb1QpL7ZbIaICXQAwmQmbTVVWzuyApSZaEF+RYjRDH6QOqeOBUkANgre1+bUuhBisSEYSUAgPeOdYfclwmDNoMpSL1ODzWKzAFi/mT++c9/4vbbb8cDDzyAq6++GkZj8ie5yspKGI1GtLS0KG5vaWlBbW1txMeuWrUKy5cvxyuvvIIJEyaE3M+Co6NHj2Lbtm2a6tHx48dx6aWX4vzzz8f//d//Rdzfvffei+7ubv537NixGF5hcmit9kvz1ApS6EUzlR6kcANGYwmQaBZbgGidtKUUm3QBrJJ5kGKpYGNEGzei1VsrE7AAyWQQQro3ZxveLFKVYnvnSCf//44EGxCmgni7aDOkKjZVHyRXZAVJEASuREbrhSRvXREuQOoKjkVixSbyAOkE76KdHgWJMWl4KQBtBYml2NJp0GbIF0tk0tY/MX8yb7zxBnp7ezF58mRMmzYNjz32GNrb26M/MAIWiwWTJ0/mBmsA3HA9ffr0sI9buXIlHnzwQWzduhVTpkwJuZ8FRwcPHsSrr76KioqKkG2amppwySWXYPLkyXjqqadgMER+K6xWK4qLixV/6cTj88MbNGLLq9jUKbZIHqSUKkhmbQWpw+7mhnE10kpVX4pBppEaRYapYtMw4VbIPEixVLAxRso6IWuZwrPRBwmQ3oNMB2axoJVi8/tFxYW8I6sKEvt+xOdBsoXrgxT8XYarYgNiN2rH0geJbTN9dAUMQkCVaulxwu8X0ZxEk8h4mDCsFADw8fGekGaVPMWWZg8SoCz1p2G1+ifmT+a8887DunXrcOLECdx5553YtGkT6urq4Pf7sW3bNvT29kZ/Eg0WLlyIdevW4emnn8Ynn3yC7373u7Db7Zg3bx4AYO7cubj33nv59itWrMD999+P9evXo76+Hs3NzWhubkZfXx+AQHA0c+ZMvPPOO9iwYQN8Ph/fhvU5YsHRiBEjsGrVKrS1tfFt9IJ8flKkFJvWSY57kFJZxaa6oJYXWCAIgWq6k2EqfKSV6iBXkPLCV7GJohjFpO3iq/RoFWxAIBBhqTqti1s2PEiB4zJlZb+xMEyjF9LB1j6FOiKfi5dp2pJMsak9SH0x/C5HRjH7M5QpNu0FAAuQ6krzMKY2sLDcd/Qk2u0ueHwiDAJQU5zeAKm+Ih/FNhNcXj8OyEzi3Q4PTgYVrkx4kIpkajIfNUKNInVL3KFrQUEBvvWtb+GNN97ABx98gB/96EdYvnw5qqurFb2GYuWmm27CqlWrsHjxYkyaNAn79+/H1q1buXG7sbERJ06c4NuvWbMGbrcbM2fOxJAhQ/jfqlWrAASCnxdeeAFffvklJk2apNjmzTffBABs27YNn3/+ObZv345hw4YpttELzBwtCEr/j1pB0rpoprKKjZu0VT9is9HAOxaHS7NxBWmQB0hFEfog9bqkJoBVGmX+DrcPLcFGd7EoSABk6RHlxU0URZkHKbOrVh4g6VFBCgZIJ7qdvAT97WB6zRRsNNmezRRbgibtcI0ieXVpBGU31hRbdxwm7ZI8MyaPLAUQSLMd7wp8r6uLbGlPuwqCgIkaaTZWzFBVZI2oqKWKQlmKjRQk/ZPUJzNmzBisXLkSX375JZ555pmEn2fBggU4evQoXC4X3nrrLUybNo3ft2vXLvz+97/n/z5y5AhEUQz5W7p0KQCgvr5e835RFHHJJZcAAG677baw2+gF3vHYZIQgSN2A1R4krZMc9yClMcUGRPchcQVp0KfYAp+H2+cPmazOLn6FqiaAhVYTD4wPtwVO4rF4kABp9a+uZHP7/LxdQKYryXiKTYcKUnWRFRaTAT6/NBeMpdemnxJIz2crxRZQGINVjglWsYX0QYqhupQrSFGG+Cr7IGkHSD2KAClQTfbO0ZO8xH9IGkr8tWBG7fdlRm32G0nnDDY5cg8S64NEJm39kpJPxmg04vrrr8cLL7yQiqcjoD0kFgBMRgMfL5JvMcKk8eNiKyG1tJ4IrjBl/kDkAEkURVKQghRaTLxBnNqnwdNrqh43giBwxeBweyB9HKuCxLwUR1Q9X5xuyXuRtRSbDhUkg0HAsFJlLySmIF15VqBYJFsptj6XZOaN14PEAiD1eSCW/mRsbM2xTkdYjyGgVJB6XV7NbRUK0ohAr7mPjndzc3RdCptERmJi0IckV5C+4CX+6TdoA/Iyfw+V+ecA9MnolEheETZuJJwkzBSbZFNsfr/I0z/qTtpA5F5IbpnJfLArSPIGcWqjdkeECiVm2pYUpFhTbNr+EfadykYlGQvq9aggAcCwYEDwZWc/mrud+PJkPwwC8F9nBFL9/R5fSooe4oUF0PkWY9xevrCz2JiCFCGlVFeaB7NRgMcn8kozLdRpYy2fnTxAGl6eh8pCKzw+ES9/1BLcV2YUJJZi+6yll3+WbBExMkMKkvw8QGX++oc+GZ0SrkEjIA2s1RozAkiKTbIKEvsBhzuOSAqSQ2YQz9fpRTGTSPPY1ApS+C7JlUHTdjevYovtAlkfpllktgzagL5TbAAwvExSkN45GlCPzhhSjKoiK1dxs6EiJVriD0SqYouuIBkNAvdmNYYxaru9fv7cTCHVKvWXB0iCIGBKMM323rEuAKkdMxKJmmIbaoqt8IvAR8cDjX6/CL62TPRAAlQpNhpWq3vok9EpkRr6MaN2uLlBbOWYrAcpXCUdI1KAxPZtMxs004CDjXDNItt4ik1DQVLdFquCxAKk1l6XQvXgs/2ykOY6e0QpTAYBZ48ozfi+Y2G4LKX0zpGA/+jc+nIIgsD7U2WjWaRk0I4vvQZEUJCiNIpkjOBeNu0AiaWLBSHg4wIiB0gsRcx8SIxMKUiALM0WDM6OZmjMCIO3/HCRSTsXoE9Gp4TzIAFSqX9RmBNcAS/zTzJACpb4m40CjAYh5P6IChL5jxQUh+mFFDnFprwoxupBKsk38yD6SLt0ccumgjSlvhzvL52BBZedlvF9xwLvpn2ynytI7EIuDQ7OLQUpT6Mfmsfn5xfmaL9N3pW9U7uSjQU+hVYTnxGpVakpV5AA4BxVgJQpBQmArJKtG10ON29imSkPkryTNrMvUJm/fqEASafwhn4aq31WyRZucCnvf5JkHySW5gv3A+YBksbKmirYlLD0WKhJm1UoaaTYQhSk2INNljI41NbHb8tWk0iGnvthDQum2D5v7cPHwfTLlPrAhZype9moZOM9kIoSCJA0Umzyc0I0wzwzaodLscmr01jwo1aQnB4fT9Uz7+RZQ4sVvpt0d9GWwxSk97/s4gbtmmJrxr6bik7aHlKQ9A59MjpFXuavpiyKSbuQD6v1JtW6wOUNr2IBkqzeGuzTI4cUJCVSN+1wVWwxpNhiVJAA4PTqIgCBhoeMbKbY9A5LsXX3e+AXgaGleVzZYA08szFuJBkFiS2UnB4//MGCCZb6thgNUS/MTFUJl2LjqTObmX831QESC6IMQqCaEwgsuMYHS+4tRoOiQWq6Yfs92uHA/mCaLVPpNUCuJHvg8pFJW+/QJ6NTIl3Mrp5Qh2mjynHD5GGaj2XVKX5RabSOl6gKUmHAO9Dj9Ib094k272mwwdQfdQoiYootQQ8SAJxWUwgAONgidQ3mvjZasYZQlm9WmJbPrZfSQBWF2fcgVSWiIMleD/vsWbotFmV3RHkgcGjssGsutFin8ZI8c1iFVO4/MsjS9Cx9WVtiU9yebkryzBgdVFef338cQGYDJKYgOT1+PiOPFCT9Qp+MTnF6tTtYA8CY2iJsvnM6zhsdOmMOUKZQkvEhRfJBAYG0EVv9qC8edt6tlxQkILqCpFnFprotXEpVi9NrAgrSZxoBkh57EWUbQRC4igQAk+vL+f+zzyGbVWxaKdhoyM8d7LNnJf6xKLtsPprd7ePGbjny6spwKTa1/4hx4amVAKTvaSZhDSO5gpShCjZAWXnMvk9UxaZf6JPRKdLU9fg/IqNB4EFSMvPYnBEq6YDARSWcUVvq1ksXY0AKbuTzvZweH5+LFS3FZjEZwn4OWjAF6UiHg6dKs+1B0jtsJhugVJDY59Bhz4KClOAcNiDQf4v7kILnE3sMY0YYBVYTV9W0CjHkHqRwbSyYCVodIF10WiX+ePtULL9hfMyvJ1WwwbWMURkyaAOBEU1swdkZnGFJCpJ+oU9Gp/AhsQlWOLATYDKl/pF6MTEqwwRIUq8VUpAAyT8kV5CYOmAxGjQN2CV5Zj4LLJ70GgDUFttQZDXB5xe5GZUCpMgMLw94jopsJu7hAqQu57nWBwmQ1EK1ghSrKZn9vrXSiz0yD1K8CpIgCLjotKqEX1cysEo2RiYVJEBSk1nWkgIk/UKfjE5xupNLhxTwcSOJB0hMeYgkAYfrps1mWsVjLB7IaClI8vSafN4ew2AQ+MU51iaRDEEQZD6kgFG7PzhqhEza2oyuCrxfU+vLFb4YqQ9SZgMkp8fHix3KE0ixAVIwzJ4nlkG1cvjvW0tBckavYgsXIGWTM+uK+cIDAEaWZzhAUtkOqMxfv9DyXqfEot5Egg+sTSLFFmkOGyNcim33oQ4AoU3hBitaKQhmwNVKrzEqC61o6XHFrSABAX/HvsYubtTOZh+kXODGycPQZXfjukl1ituZB6nT7oLfL2bMVHwymIIxGYSwPc+ika/qhRSvghSp15ncgM0WQj2qPl96DJBsZiPG1Bbho+M9qC22ZdyTp/YSkgdJv9Ano1MiddKOhQKNJnHx4oxS5g9on0Db+1z4tDlwUT7/FG0j+WCDnRSbTvZj28ct8PtF7mmJ1CWZpSASUeJO40btgIJEKbbI2MxGfO/y00LmcpUFy9D9ItAVZmJ9OugMthUozddWGGMhj5f6qxSkGIOCyggVfKwiU64gqT1IegyQAMmHlKkGkXLUExAoxaZfSEHSKdEqyKKRbw1VkNxeP7r63aguiq21f6ReTAytAImpR2NriyKqI4OJUZUFKLKZ0Ov0Yv4f3sGp1YW8SiiSD4On2OKoYGOcVh1IGX3WGlSQkkzbDlbMRgNK883ocnjQ0edCeYb69py0B4KL8oLEgwt1ii2WQbVyYlOQwlex9eg0QPrq+Fo8s6cRl4ypzvi+1f3rqA+SfqFPRqckmw4pUM1j63f7cMOaNzF92Q4+fygavA9SpBSbhgfpzWCAdP4plfEf+AClNN+C7T+6GN+95BQUWU34vLUPrx9sBxA5xcaC2UQuMKyE+miwki1ZVXIww5oZanWNTxcsxcaGUyeCNG5EqSCFazKrpjJGDxLvg9TvUfRM0quCdNFpVXh/6QzccdHojO87JMWW4CKYSD/0yeiUWPw/kZB7kERRxH1bPsAHTd3w+UU+yToaTEGKlCOvLg49gb55KHDhv+BUSq/JqS6yYdGVY/Hvey/DT64ayzuRnzEkfC+YmZOHouGMatx87oi491dTbEWRTapkIw9S4kjjRjJn1E5FgJSvSrGxBVOs7TeqIlSxdWtUsXn9Ig/G5NvoLUACAsedySaVjJAUGylIuoVSbDol2YtZoVXyIP1h91FsebeJ3xdrR+BYjOLyKhdRFNHU1Y+jHQ4YDQKmjioP+7jBTLHNjO9cfArmXVCPY50OnBKsntLi1OoiPHnruQntRxAEnF5ThL1HT+Kzlr6k07aDGalZZOYUJOZBKksipZdnZtWs8TeKBMKn2ERRVKTP8sxGmI0CPD4RPU4Pr6LVc4CULeTNIg0CYKIASbfQJ6NTuHqTpAfpzUMdePDFjwHIDJcacrkW0WaxAdIJ1OX1o9fl5em1CcNKQlZKhBKryYhTq4sSNuDGwumykSPcg0QKUtywUv9MzmNjTRaT8iAFG81KAVJ8Q6RZYNje51akzvpcXgTHu6E4zwxBEHilpdyHJK90IwLI/YRU4q9vKEDSKanyIO09ehJev4irJwzBN88LpGnaYkwTxKIg2cxGnlNv7XHhzc+D6TXyH+mCU6ulkSPcg0Qm7biRqrkyFyBxBSmpFBub/cU8SPEpSOx1u31+xRxBVs4v7/DOjdqO0ACJFCQJuQeJKtj0DX06OiVVfZCAQDXTyhsmRPQTaB4D7+Yd+WvCnre11ykzaJP/SA+cLmsWSWX+iVORhRRbSkzaZinVDsTvQbKZjVzxaOtz8ttZECTvz1Wk6oXk9Pj4sOySfAqQGHJlnQIkfUOfjk5J9mJWGjwhFVlNeOKWySiwmiJWpGjhirHqifmQ/nO4E629LlhMBpxDDSJ1AatkO9JhR3dQAaAAKX64BymDKTYWICXTViCkio15kOJoPCmNE5Jeu1TBJj2PutSfeZQMAlBII4c48gpCMmjrG/rW6pRog2KjMePMWnzrgh5cPaGWj1CI1PRN+xhYmX9sCtIL+wNG8Ckjy6iUXCdUF1lRbDOhx+nlnzv1QYofqYotgwpSsA9SaRLqS7gqtngCpKpCKw632RUtDrS8RepmkfJtslEtplfkKTYq8dc39OnoEI/PD2/QAZl4FZsJi68dh8kjpUqyKlmAJDdchiOWRpGAFCAd6XAAAC44lfxHeoFVsskhBSl+WB+kTJb5Mw9SUgpSyCw25kGK/TugNZBaqwEkS8WxwKiL/EeaKFJspCDpGvp0dAgLTIDUrjAqiyzB5/fDLutVEg7mH4iaYitSNjok/5G+YENrGaTuxQ9TkHpdXsXvM104PVJjz6TK/FUptj5exRafggQolWd5DySGOsXGfEoUIClRKEjkQdI19OnoEHZiFITU/oDyLSa+coyl1D/WVgNVsk7QRVYTxg8tSeIoiVRzWrVKQaIUW9wU20wwGwNpos4M+JBSMagWUKbYPD4/3MFFTzwKklYvJGbELtFKsTmVKTYKkJRQFVvuQJ+ODuFdtE3GlPfI4XJ5DF4KaVht7ArStNHl1PhMZ6hTbNGqEolQBEHgvZBi9fAlQyoG1QLSb9fh9ik6XOfHYZqu0iju6JHNYWMUR/AgERJ5ZiOMQU8W9UHSN3Sm1CG8B1IaVvrxNIt0ygK1SMgDpOnU/0h3nC5LsZmNAgWwCSKV+qdfQUpFk0hACoT63T5e6m82CnEpF1rtQbQ8SCEpNlKQNBEEgVeykYKkb+jT0SGSOTr1H4/UGTeFKTZZgETz1/RHVZGVX6TIf5Q4FXFWgSaDXEFKBpZi6/f4pDEjcabstFJsWh4k9v+soSQFSOFhaTYyaesbKvPXIWwkRDo6HvNeSDGsgmMdmFtVaMX1k+rgF4ExqnQOkX0EQcBp1YV45+hJqmBLgkz2QuI9kJIMkOSNIpmCFGsXbQY7Z3TY3fD7RRgMgqwPUngFSUtlIgIEKtn6qcxf51CApEOc3thSW4kQay8kv1+E28eOI/KPWBAEPHzz2ak5QCItnFZTFAiQyKCdMJUZ7IXEeiAlU8EGSGl6p8ePPmd8XbQZLLXo84s46XCjotAauQ+SyqRdSgFSCKQg5Qb06egQPlQ0DRezcNO51bASf4DSMgMB5kMiBSlxMtkLSRozkqwHSfq8mfIVT4k/AJiNBn4crLiDpdEUfZCChm2HO1AxRym28BSRBykn0MWn8/jjj6O+vh42mw3Tpk3Dnj17wm67bt06XHTRRSgrK0NZWRkaGhoU23s8HixatAjjx49HQUEB6urqMHfuXBw/flzxPJ2dnZgzZw6Ki4tRWlqK22+/HX19fWl7jfHg4tVj6fAgxaYgyXu9UICU+0wdFWgYWl9RkOUjyV24BykDKbZUNIkElCo0WxTFU+LP4Ebt4LgRLQ+SvAFid7+HAqQIcAWJAiRdk/VPZ/PmzVi4cCGWLFmCffv2YeLEibjiiivQ2tqquf2uXbswe/Zs7Ny5E7t378bw4cMxY8YMNDUFxlw4HA7s27cP999/P/bt24fnnnsOBw4cwHXXXad4njlz5uCjjz7Ctm3b8OKLL+K1117DHXfckfbXGwtcQUpDYFJVFJtJm5X4m40CL0klcpcz60qw838uwcM3T8r2oeQsmRxYm4pBtQBgMAh8odVhDxx3PCX+DK489znh9vp5pa08+DEaBH7h75EFSFTmHwp7T6jMX99k3YO0evVqzJ8/H/PmzQMArF27Fi+99BLWr1+Pn/zkJyHbb9iwQfHvJ598En/961+xfft2zJ07FyUlJdi2bZtim8ceewxTp05FY2MjRowYgU8++QRbt27F22+/jSlTpgAAHn30UXz1q1/FqlWrUFdXl6ZXGxtS9Vg6y/wjr4L5HDb6AQ8YRlWSepQMlQXMg5TBFFuSZf5AICByetz8N19gjf83LR90zTxGAFBoU15Cim1m9Dq9pCBF4WuThuLTE724ZsKQbB8KEYGsKkhutxt79+5FQ0MDv81gMKChoQG7d++O6TkcDgc8Hg/Ky8vDbtPd3Q1BEFBaWgoA2L17N0pLS3lwBAANDQ0wGAx46623NJ/D5XKhp6dH8Zcu+oPBSToUJHaiC5T9esNuJw3LzbrISBC6gCtI9thmGSYDN2knqSAB0nmEqcbxlvkD8nEjbl6dVmQzhajLLBhq7XVxH2NJkj6qgcjkkWX483em4yyaOqBrsnr1a29vh8/nQ01NjeL2mpoaNDc3x/QcixYtQl1dnSLIkuN0OrFo0SLMnj0bxcXFAIDm5mZUV1crtjOZTCgvLw+732XLlqGkpIT/DR8+PKbjS4R0BicFVhM3bkYyarOTGylIBBGA+YE8PpGblNMFL/NP0oMESMUezDuViAdJPrBWy3/EYAHSsc7A4GqDABQmkNIjCD2Q0/LA8uXLsWnTJmzZsgU2my3kfo/Hg1mzZkEURaxZsyapfd17773o7u7mf8eOHUvq+SLBAqR0VRzFYtQmBYkglNjMRl591G5Pnw/J6ZHGgiTbKBKQKtlY9/yEPEiKFFtoBRuDVbKxAKk4zwwDeRiJHCWroX1lZSWMRiNaWloUt7e0tKC2tjbiY1etWoXly5fj1VdfxYQJE0LuZ8HR0aNHsWPHDq4eAUBtbW2ICdzr9aKzszPsfq1WK6xWq+Z9qUYKTtIVIFnQ2OmIMUAiBYkgGBWFFvS6vOjoc+OUqvTsg6lHRoOAYlvyp2hbSIotiSq2PpmClBd6bCxoagwGSOQ/InKZrMoDFosFkydPxvbt2/ltfr8f27dvx/Tp08M+buXKlXjwwQexdetWhY+IwYKjgwcP4tVXX0VFhXL8xfTp09HV1YW9e/fy23bs2AG/349p06al4JUlR3/aA6To3bQlkzYpSATBqMhAs0i5/ygVw6qZgsTS5okoSAqTdgTzNUu7HTvZH3YbgsgVsp4cXrhwIW699VZMmTIFU6dOxcMPPwy73c6r2ubOnYuhQ4di2bJlAIAVK1Zg8eLF2LhxI+rr67lnqLCwEIWFhfB4PJg5cyb27duHF198ET6fj29TXl4Oi8WCM844A1deeSXmz5+PtWvXwuPxYMGCBbj55puzXsEGyIbEpitA4j1NInmQSEEiCDV8lmEaeyGlqkkkQ52qT0ZB6nS4eY+mWDxIFCARuUzWA6SbbroJbW1tWLx4MZqbmzFp0iRs3bqVG7cbGxthMEgqxpo1a+B2uzFz5kzF8yxZsgRLly5FU1MTXnjhBQDApEmTFNvs3LkTl1xyCYBAu4AFCxbg8ssvh8FgwA033IBHHnkkfS80Dvoz5EFqi7AKjnUOG0EMJjKhILEAJNkxIwx1R/54Z7EBAbO4QQD8InCk3Q5Au78Rq1hjahX1QCJymawHSACwYMECLFiwQPO+Xbt2Kf595MiRiM9VX18fUwlueXk5Nm7cGOshZpR0G6SrYlCQnGns5k0QuUplBsaNdKVoUC1DPXstkTJ/o0FAeYEV7X0uHGoLTByIlGJjkIJE5DJ09dMh6a5iqyqM3k2bB2lU5k8QHK4gpbGKrZMPqk1Pii3eYbUMtrA61BZUkDQM5OqAiAIkIpehAEmHpN2DJGv6Fu0Y0tHNmyBylQq+uMiEBylVKTZlIJOIggRI/qu+YINZrQaQ6pQaBUhELkMBkg7JVBVbLAoSVbERhARLIfU642sU+d6xLvzoz++htccZddtUNokEQhWjZBUkhrZJ26T6NwVIRO5CVz8dkm4PEqtic7jDjxtJt4pFELkIU18ijenR4ql/f4G/7vsSf9vfFHVbbtJOlYKkrmJLsLO1OkDSbhRJChIxcKAASYdwD1KCK71oFFiMPPgKpyK5yKRNECEUJhggseaKkcb7MFI5qBbQqGJLMMXGumkztCrUyKRNDCTo6qdDuHqTJoO0IAiKzrgRj4EUJILgsB5CfXEGSHZXYMERS/VbKgfVAsqUmtkowJJg2jwWBclmNirS8hQgEbkMBUg6pD/NChIg74yrfcLmZf7kQSIIDlOQXF4/vD5/zI9jAVUsDSZT7UGSp9gS6aLNCFGQNDxIgDIoogCJyGXo6qczPD4/fP5AH6d0lthHM2q7aBYbQYQgDzCYKhQLLECK1mAy1YNqAeVCqyCJRVelTEGyGA1h0+/y1JtWpRtB5AoUIOkMph4BgM2Svo9HPltJC6nMn74iBMGwmAywGAO/iT537Gk2Ow+QIitIXY5Aei1Vg2oBlYKUoP8IUCpIxXmmsHPimGpkEIDCJBQrgsg2dPXTGcygLQjgJ+J0EK1ZJDWKJAhtmA8pHqM2V5Dsroid/uUVbKkYVAsoVa9kFKSSPDNMhsAxRRohwgKk4jwzDIbUvAaCyAYUIOkMpzug3OSZjSk7QWoRzaTNZilRio0glLAqsFiN2l6fn/+ePD4RPf3hH9eV4kG1gNKknYwHyWAQuPIczn8UuC+wD/IfEbkOBUg6Q5qBlt7AJFo3bd4oklJsBKEg3lJ/tVepPcKYkk5HagfVAspzSaIl/gy2sIoU/LD7KEAich26+umMfnd657AxKqOV+WcoUCOIXCPeZpFqr1IkH9JJe2oH1QJKBYmlBxOFjRuJJcVGARKR61CApDMypdzEatImDxJBKJFSbLFVsfU51QFSeAXppCO1g2qB1JX5A3IFKfzzsIG+FSlUwQgiG1CApDN4D6S0p9gCJy+H2weHRjUOpdgIQpvCOE3aaq9SpF5IqR4zAgS8Q6x5YzImbQAYP6wUADC2tjjsNtdNrMO3LxyF715yalL7IohsQzWYOiNTHawLrSZYTQa4vH6097oxokL5VXBRJ22C0ITNMovVpK0OpNojjBtJdZNIRr7FCJfXn1SZPwB8c9oIXHJ6FYaV5YXdpqzAgp9dMy6p/RCEHiB5QGc4M6QgyceNtKkkf79fhNvHUmz0FSEIOfF6kNTbdUQwabMUW6qaRDJYai1ZBUkQBAwvz09rhS1B6AW6+ukM3n8oA6mtcN20WUly4DhIQSIIOfFWsamVpphM2in0IAHS+STZKjaCGExQgKQz+jM44iOcUdsp6+ZtJQWJIBTEa9JmgRRrshgpQEqHBwmQKUhJVrERxGCCrn46I1MeJACoKtLups1K/E0GAaY0dvMmiFwkUZM28+1E6oMkNYpMbYA0tDQv+N/8lD4vQQxkSG/VGZmqYgPCp9gyGaQRRK7BPUgxzmJjStOIigIc6XCEVZCcHh/swT5oqWwUCQD/+/WzMHf6SJxbX5bS5yWIgQwFSDrDlUEPEh830qs8YWfSB0UQuUa8o0aY0jSyPKDedPd74Pb6YVGlr9MxqJZRUWjF+adao29IEASHroA6Qw8KEjNpW6lJJEGEEP+okcB2Q8vyYAz6kDo1eiGdlM1hoyoxgsg+FCDpDKlBYyY8SIEAqaXXqXkMpCARRChSmX+MnbSDAVKh1cT7G2mN+DmZJoM2QRCJQSk2nXH/NeNwT8PpKExyJEAs1BbbAAAtPS6IoshXrc4MVtIRRK7BTNoxp9iCXqUimwkVBRa09brQoaEgpWNQLUEQiUMBks4osplRZMvMkMfq4oCC5Pb6cdLh4atbZtKmEn+CCEXeKFK+sAgHm8VWYDEF09q9mvPY+By2fBryShB6gK6AgxiryciDouZuKc3m8pKCRBDhYAGS1y8qmqqGgylNBVYTn4GoVckmNYkkBYkg9AAFSIOcGp5mkwVIVOZPEGEpkKW/YzFqM69SodXEJ91r9UI60d0PAKgqpGozgtADFCANcoaUBAKkZlmA5PSSSZsgwmE0CLzKNBajtp0rSEZUBBUkdWsNAPi8tQ8AcEp1YaoOlSCIJKAr4CCHKUjyFBs3aVOZP0FoEmsvJFEUuUm70GpCZUFAHdIaWHuozQ4AOKWKAiSC0AMUIA1yajVSbNykTSk2gtCEjxuJ0k273+ODXww+xmbiCpLag9Rpd/PeSBQgEYQ+yHqA9Pjjj6O+vh42mw3Tpk3Dnj17wm67bt06XHTRRSgrK0NZWRkaGhpCtn/uuecwY8YMVFRUQBAE7N+/P+R5mpubccstt6C2thYFBQU455xz8Ne//jXVLy0nqC0JrGgVKTbWi4mq2AhCk1gVJHa/QQg0f2UeJHUV26G2QHptaGke8iy0MCEIPZDVK+DmzZuxcOFCLFmyBPv27cPEiRNxxRVXoLW1VXP7Xbt2Yfbs2di5cyd2796N4cOHY8aMGWhqauLb2O12XHjhhVixYkXY/c6dOxcHDhzACy+8gA8++ADf+MY3MGvWLLz77rspf416RzvFRiZtgohEQYzdtOUl/oIgoII1irS7IYoi3475j04l/xFB6IasBkirV6/G/PnzMW/ePIwbNw5r165Ffn4+1q9fr7n9hg0bcNddd2HSpEkYO3YsnnzySfj9fmzfvp1vc8stt2Dx4sVoaGgIu98333wT3/ve9zB16lSMHj0aP/vZz1BaWoq9e/em/DXqnVoNk7aLTNoEEZFYx40wEzcLqNh4H7fXr1CfDjGDNqXXCEI3ZO0K6Ha7sXfvXkUgYzAY0NDQgN27d8f0HA6HAx6PB+Xl5XHt+/zzz8fmzZvR2dkJv9+PTZs2wel04pJLLonreQYCzIPU5fDw1BopSAQRGSnFFrmKrU9WwQYAeRYjCoIptHaZD+nzNlKQCEJvZC1Aam9vh8/nQ01NjeL2mpoaNDc3x/QcixYtQl1dXUS1SIs///nP8Hg8qKiogNVqxZ133oktW7bg1FNPDfsYl8uFnp4exd9AoCTPzL1GzKjNy/zJg0QQmnCTdlQFSapgY2j5kJgH6ZSqgpQeJ0EQiZOzV8Dly5dj06ZN2LJlC2w2W1yPvf/++9HV1YVXX30V77zzDhYuXIhZs2bhgw8+CPuYZcuWoaSkhP8NHz482ZegCwRBkNJsQR+SK4MDcwkiF2HNIqMGSKzE3yYPkNjA2oCC5PT48OXJQJNIUpAIQj9kLUCqrKyE0WhES0uL4vaWlhbU1tZGfOyqVauwfPlyvPLKK5gwYUJc+z106BAee+wxrF+/HpdffjkmTpyIJUuWYMqUKXj88cfDPu7ee+9Fd3c3/zt27Fhc+9UzLM3GfEhSii1n42eCSCvxVrHJu29XqHohHW6zQxSB0nwzjRkhCB2RtSugxWLB5MmTFQZrZriePn162MetXLkSDz74ILZu3YopU6bEvV+HwwEg4HeSYzQa4feHn6tktVpRXFys+BsoMAWJp9ioUSRBRCRWkzarYpOn2NTz2Lj/qKow6uBbgiAyhyn6Julj4cKFuPXWWzFlyhRMnToVDz/8MOx2O+bNmwcgUI4/dOhQLFu2DACwYsUKLF68GBs3bkR9fT33KhUWFqKwMCBNd3Z2orGxEcePHwcAHDhwAABQW1uL2tpajB07FqeeeiruvPNOrFq1ChUVFfjb3/6Gbdu24cUXX8z0W6ALuILUHVjRsgGcZNImCG1iNWnbZYNqGVKzyMDvjSrYCEKfZDWHctNNN2HVqlVYvHgxJk2ahP3792Pr1q3cuN3Y2IgTJ07w7desWQO3242ZM2diyJAh/G/VqlV8mxdeeAFnn302rr76agDAzTffjLPPPhtr164FAJjNZvzjH/9AVVUVrr32WkyYMAF/+MMf8PTTT+OrX/1qBl+9flAPrOWNIinFRhCaFMRo0u5TlfkDUql/u1pBIv8RQeiKrCpIALBgwQIsWLBA875du3Yp/n3kyJGoz3fbbbfhtttui7jNaaedNmg7Z2uh7oUkDaslBYkgtGApM0eUUSNSFZv0W6rgAZJKQaqmCjaC0BMkERAh3bT5LDYq8ycITWI2abs1PEhBI3aH3Q2fX8Th9sCQ2lOritJxqARBJAhdAQmFSdvvFyWTNilIBKGJZNJOxIMk9UFqOtkPt9cPq8mAoWV5aTpagiASgQIkAtVFVggC4PWL6LC74aJO2gQRkXhnsRVqmLRPOjz4tDnQcHZUZQGMBqpgIwg9QQESAbPRwHuznOjuh9sXDJAoxUYQmnCTtturGDqrpk9DQSrLt4DFQu8cPQmADNoEoUfoCkgAAIYE02yNnQ5+GylIBKENU4T8ItDvCZ9mY5205QGS0SDwhpBvHe4AQCX+BKFHKEAiAEhG7aMdUoBEJm2C0CbPbOQqUCSjNvMoyVNsgNRN+4OmbgCkIBGEHqErIAEAqC0JnLCPBCtqTAYBJiN9PQhCC0EQZPPYwitILHiSz2IDJB+SP5idIwWJIPQHXQEJAFI3baYgUXqNICITzajt8fnhDnalL7SoAyQr/39BAEZXUQ8kgtAbFCARAKQU25GOgIJEg2oJIjLMqB0uxSYPnAqsygVHhWwo7bCyPFqQEIQOoasgAUDqhdTaG+jua6VBtQQRkWgDa3uDJf5WkyEkXc0G1gKBIbUEQegPCpAIAFKKjUEKEkFEJlo3bbtGF22GPMVG/iOC0Cd0FSQAADUl6gCJFCSCiERBlG7aWl20GZWyAIkq2AhCn1CARAAAiqwm5FukoIhK/AkiMtFSbH1hSvwBqYoNAE6hAIkgdAldBQkAgbLlWpmKRAoSQUQmVpO2VoBUWSBTkCjFRhC6JPSXSwxaaottONzGqtgoQCKISEQr85fGjIT+loaW5WHqqHKU51tQJqtoIwhCP1CARHDkRm0yaRNEZFhvI2bGVsMG1Wp5kIwGAX++c3r6Do4giKShqyDBkRu1bVTmTxARkarYIpu0tVJsBEHoHwqQCI5cQbKSgkQQEYlq0tYYVEsQRO5AV0GCUyMPkEhBIoiIRO2DRAoSQeQ0FCARHKpiI4jYYebrcAqSPUKZP0EQ+ocCJIJDJm2CiJ3ofZAoxUYQuQxdBQlOZaEFBiHw/6QgEURk8i2RTdpSFRv9lggiF6EAieCYjAZUFwVUJBt10iaIiERTkCLNYiMIQv/QVZBQwEr9raQgEUREmDLU7/HB5xdD7qcUG0HkNhQgEQrOG10Ok0HAuCHF2T4UgtA18sBHq1kkVbERRG5Dv1xCwU+uHIsFl56KIps524dCELrGajLAZBDg9Yuwu7woVv1mqIqNIHIbUpAIBYIgUHBEEDEgCELYeWx+v8hVJUqxEURuQgESQRBEghSGGTfi8PggisptCILILShAIgiCSJBwzSLZvw0C9RQjiFyFfrkEQRAJEm7ciLyCTRCEjB8XQRDJQwESQRBEgoTrhcT+XUTpNYLIWShAIgiCSJACi3aARD2QCCL3yXqA9Pjjj6O+vh42mw3Tpk3Dnj17wm67bt06XHTRRSgrK0NZWRkaGhpCtn/uuecwY8YMVFRUQBAE7N+/X/O5du/ejcsuuwwFBQUoLi7GV77yFfT396fypREEMcApCGPSZiX+FCARRO6S1QBp8+bNWLhwIZYsWYJ9+/Zh4sSJuOKKK9Da2qq5/a5duzB79mzs3LkTu3fvxvDhwzFjxgw0NTXxbex2Oy688EKsWLEi7H53796NK6+8EjNmzMCePXvw9ttvY8GCBTAYsh4vEgSRQxRGMWlTBRtB5C5Z/fWuXr0a8+fPx7x58wAAa9euxUsvvYT169fjJz/5Scj2GzZsUPz7ySefxF//+lds374dc+fOBQDccsstAIAjR46E3e8Pf/hDfP/731fsY8yYMcm+HIIgBhnhTNq9LhpUSxC5TtYkE7fbjb1796KhoUE6GIMBDQ0N2L17d0zP4XA44PF4UF5eHvN+W1tb8dZbb6G6uhrnn38+ampqcPHFF+ONN96I+DiXy4Wenh7FH0EQg5twjSLt5EEiiJwnawFSe3s7fD4fampqFLfX1NSgubk5pudYtGgR6urqFEFWNA4fPgwAWLp0KebPn4+tW7finHPOweWXX46DBw+GfdyyZctQUlLC/4YPHx7zPgmCGJjwKjY3VbERxEAjZ003y5cvx6ZNm7BlyxbYbLaYH+f3+wEAd955J+bNm4ezzz4bDz30EMaMGYP169eHfdy9996L7u5u/nfs2LGkXwNBELlNOJM2VbERRO6TtV9vZWUljEYjWlpaFLe3tLSgtrY24mNXrVqF5cuX49VXX8WECRPi2u+QIUMAAOPGjVPcfsYZZ6CxsTHs46xWK6xWa1z7IghiYBPNpE0BEkHkLllTkCwWCyZPnozt27fz2/x+P7Zv347p06eHfdzKlSvx4IMPYuvWrZgyZUrc+62vr0ddXR0OHDiguP2zzz7DyJEj434+giAGL+E9SAFFiarYCCJ3yeqvd+HChbj11lsxZcoUTJ06FQ8//DDsdjuvaps7dy6GDh2KZcuWAQBWrFiBxYsXY+PGjaivr+depcLCQhQWFgIAOjs70djYiOPHjwMAD4Rqa2tRW1sLQRDw4x//GEuWLMHEiRMxadIkPP300/j000/xl7/8JdNvAUEQOUz0KjYKkAgiV8nqr/emm25CW1sbFi9ejObmZkyaNAlbt27lxu3GxkZFb6I1a9bA7XZj5syZiudZsmQJli5dCgB44YUXeIAFADfffHPINj/4wQ/gdDrxwx/+EJ2dnZg4cSK2bduGU045JY2vliCIgQZTiBxudaNI1geJyvwJIlcRRFEUs30QuUhPTw9KSkrQ3d2N4uLibB8OQRBZoKmrHxcs3wGLyYDPfnEVv/3Kh1/Dp829+NPt03DhaZVZPEKCINTEev3O2So2giCIbFMYnMXm9vrh8fn57X3UKJIgch4KkAiCIBJEHgDJjdo0aoQgch8KkAiCIBLEZDTAagqcRvsUARINqyWIXIcCJIIgiCTg3bSDQZHL64M7mG6jAIkgchcKkAiCIJJAXepvl3XVLrCQB4kgchVa3hAEQSQBC5C2f9KCnn4PXN6AepRnNsJkpDUoQeQqFCARBEEkQVm+GQDw212HABzit1N6jSByG/oFEwRBJMGPZpyO8n8fQZfDg65+N7ocHvT0e/CNc4Zm+9AIgkgCCpAIgiCSYPLIckweWZ7twyAIIsVQgpwgCIIgCEIFBUgEQRAEQRAqKEAiCIIgCIJQQQESQRAEQRCECgqQCIIgCIIgVFCARBAEQRAEoYICJIIgCIIgCBUUIBEEQRAEQaigAIkgCIIgCEIFBUgEQRAEQRAqKEAiCIIgCIJQQQESQRAEQRCECgqQCIIgCIIgVFCARBAEQRAEocKU7QPIVURRBAD09PRk+UgIgiAIgogVdt1m1/FwUICUIL29vQCA4cOHZ/lICIIgCIKIl97eXpSUlIS9XxCjhVCEJn6/H8ePH0dRUREEQUjZ8/b09GD48OE4duwYiouLU/a8hDb0fmcOeq8zB73XmYPe68yRqvdaFEX09vairq4OBkN4pxEpSAliMBgwbNiwtD1/cXEx/dgyCL3fmYPe68xB73XmoPc6c6TivY6kHDHIpE0QBEEQBKGCAiSCIAiCIAgVFCDpDKvViiVLlsBqtWb7UAYF9H5nDnqvMwe915mD3uvMken3mkzaBEEQBEEQKkhBIgiCIAiCUEEBEkEQBEEQhAoKkAiCIAiCIFRQgEQQBEEQBKGCAiSd8fjjj6O+vh42mw3Tpk3Dnj17sn1IOc+yZctw7rnnoqioCNXV1bj++utx4MABxTZOpxN33303KioqUFhYiBtuuAEtLS1ZOuKBw/LlyyEIAn7wgx/w2+i9Th1NTU345je/iYqKCuTl5WH8+PF45513+P2iKGLx4sUYMmQI8vLy0NDQgIMHD2bxiHMTn8+H+++/H6NGjUJeXh5OOeUUPPjgg4pZXvReJ8Zrr72Ga6+9FnV1dRAEAX/7298U98fyvnZ2dmLOnDkoLi5GaWkpbr/9dvT19SV9bBQg6YjNmzdj4cKFWLJkCfbt24eJEyfiiiuuQGtra7YPLaf517/+hbvvvhv/+c9/sG3bNng8HsyYMQN2u51v88Mf/hB///vf8eyzz+Jf//oXjh8/jm984xtZPOrc5+2338YTTzyBCRMmKG6n9zo1nDx5EhdccAHMZjP++c9/4uOPP8avf/1rlJWV8W1WrlyJRx55BGvXrsVbb72FgoICXHHFFXA6nVk88txjxYoVWLNmDR577DF88sknWLFiBVauXIlHH32Ub0PvdWLY7XZMnDgRjz/+uOb9sbyvc+bMwUcffYRt27bhxRdfxGuvvYY77rgj+YMTCd0wdepU8e677+b/9vl8Yl1dnbhs2bIsHtXAo7W1VQQg/utf/xJFURS7urpEs9ksPvvss3ybTz75RAQg7t69O1uHmdP09vaKp512mrht2zbx4osvFu+55x5RFOm9TiWLFi0SL7zwwrD3+/1+sba2VvzVr37Fb+vq6hKtVqv4zDPPZOIQBwxXX321+K1vfUtx2ze+8Q1xzpw5oijSe50qAIhbtmzh/47lff34449FAOLbb7/Nt/nnP/8pCoIgNjU1JXU8pCDpBLfbjb1796KhoYHfZjAY0NDQgN27d2fxyAYe3d3dAIDy8nIAwN69e+HxeBTv/dixYzFixAh67xPk7rvvxtVXX614TwF6r1PJCy+8gClTpuDGG29EdXU1zj77bKxbt47f/8UXX6C5uVnxXpeUlGDatGn0XsfJ+eefj+3bt+Ozzz4DALz33nv4/+3dXUiT7xsH8O/c2nTrZbPRtgrLKNK0olrJsJMySDupKEIZsToRU0uLisikOrA6KqiDhVB2kCUZ2YtRUVqBkmalaWQWFBXkshfCl97I5/od/GD8ntn/j+V0ub4feGC773vuer4H82K7n62mpgZpaWkAmPVg6U+ud+7cgdlshtPp9K9ZsmQJIiIiUF9fP6Dn54/V/iHev3+P3t5e2Gw21bjNZsOTJ09CVFX4URQF+fn5SE5ORmJiIgDA5/NBr9fDbDar1tpsNvh8vhBUObyVlZXhwYMHaGho6DPHrIPn+fPn8Hq92LJlC3bu3ImGhgZs2rQJer0eHo/Hn+fPXlOY9a/ZsWMHOjs7ERcXB61Wi97eXhQVFcHtdgMAsx4k/cnV5/Nh3LhxqnmdTofo6OgBZ88Gif4qOTk5ePToEWpqakJdSlh6/fo18vLycP36dURGRoa6nLCmKAqcTif27dsHAJgzZw4ePXqEo0ePwuPxhLi68HLmzBmUlpbi1KlTSEhIQFNTE/Lz8zF+/HhmHcb4Edsfwmq1QqvV9rma5+3bt7Db7SGqKrzk5uaisrISN2/exMSJE/3jdrsd379/x6dPn1Trmf2vu3//Pjo6OjB37lzodDrodDrcvn0bhw8fhk6ng81mY9ZB4nA4MGPGDNVYfHw8Xr16BQD+PPmaMnDbtm3Djh07kJ6ejpkzZ2Lt2rXYvHkz9u/fD4BZD5b+5Gq32/tcyPTjxw98/PhxwNmzQfpD6PV6zJs3D1VVVf4xRVFQVVUFl8sVwsqGPxFBbm4uKioqUF1djdjYWNX8vHnzMGLECFX2bW1tePXqFbP/RSkpKWhpaUFTU5P/cDqdcLvd/tvMOjiSk5P7fF3F06dPMWnSJABAbGws7Ha7KuvOzk7U19cz61/0+fNnRESo/11qtVooigKAWQ+W/uTqcrnw6dMn3L9/37+muroaiqIgKSlpYAUMaIs3BVVZWZkYDAY5ceKEPH78WDIzM8VsNovP5wt1acPahg0bZMyYMXLr1i1pb2/3H58/f/avycrKkpiYGKmurpZ79+6Jy+USl8sVwqrDx3+vYhNh1sFy9+5d0el0UlRUJM+ePZPS0lIxGo1y8uRJ/5oDBw6I2WyWCxcuSHNzsyxfvlxiY2Ply5cvIax8+PF4PDJhwgSprKyUFy9eyLlz58Rqtcr27dv9a5j17+nq6pLGxkZpbGwUAHLw4EFpbGyUly9fikj/ck1NTZU5c+ZIfX291NTUyLRp0yQjI2PAtbFB+sMcOXJEYmJiRK/Xy4IFC6Suri7UJQ17AH56lJSU+Nd8+fJFsrOzxWKxiNFolJUrV0p7e3voig4jgQ0Ssw6eS5cuSWJiohgMBomLi5Pi4mLVvKIoUlhYKDabTQwGg6SkpEhbW1uIqh2+Ojs7JS8vT2JiYiQyMlKmTJkiBQUF8u3bN/8aZv17bt68+dPXZ4/HIyL9y/XDhw+SkZEhI0eOlNGjR8v69eulq6trwLVpRP7zVaBERERExD1IRERERIHYIBEREREFYINEREREFIANEhEREVEANkhEREREAdggEREREQVgg0REREQUgA0SEVGQaDQanD9/PtRlEFEQsEEiorCwbt06aDSaPkdqamqoSyOiYUgX6gKIiIIlNTUVJSUlqjGDwRCiaohoOOM7SEQUNgwGA+x2u+qwWCwA/v34y+v1Ii0tDVFRUZgyZQrOnj2renxLSwsWL16MqKgojB07FpmZmeju7latOX78OBISEmAwGOBwOJCbm6uaf//+PVauXAmj0Yhp06bh4sWLg3vSRDQo2CAR0V+jsLAQq1atwsOHD+F2u5Geno7W1lYAQE9PD5YuXQqLxYKGhgaUl5fjxo0bqgbI6/UiJycHmZmZaGlpwcWLFzF16lTVc+zduxdr1qxBc3Mzli1bBrfbjY8fPw7peRJREAz4526JiP4AHo9HtFqtmEwm1VFUVCQiIgAkKytL9ZikpCTZsGGDiIgUFxeLxWKR7u5u//zly5clIiJCfD6fiIiMHz9eCgoK/mcNAGTXrl3++93d3QJArly5ErTzJKKhwT1IRBQ2Fi1aBK/XqxqLjo7233a5XKo5l8uFpqYmAEBraytmz54Nk8nkn09OToaiKGhra4NGo8GbN2+QkpLyf2uYNWuW/7bJZMLo0aPR0dHxu6dERCHCBomIwobJZOrzkVewREVF9WvdiBEjVPc1Gg0URRmMkohoEHEPEhH9Nerq6vrcj4+PBwDEx8fj4cOH6Onp8c/X1tYiIiIC06dPx6hRozB58mRUVVUNac1EFBp8B4mIwsa3b9/g8/lUYzqdDlarFQBQXl4Op9OJhQsXorS0FHfv3sWxY8cAAG63G7t374bH48GePXvw7t07bNy4EWvXroXNZgMA7NmzB1lZWRg3bhzS0tLQ1dWF2tpabNy4cWhPlIgGHRskIgobV69ehcPhUI1Nnz4dT548AfDvFWZlZWXIzs6Gw+HA6dOnMWPGDACA0WjEtWvXkJeXh/nz58NoNGLVqlU4ePCg/295PB58/foVhw4dwtatW2G1WrF69eqhO0EiGjIaEZFQF0FENNg0Gg0qKiqwYsWKUJdCRMMA9yARERERBWCDRERERBSAe5CI6K/A3QRE9Cv4DhIRERFRADZIRERERAHYIBEREREFYINEREREFIANEhEREVEANkhEREREAdggEREREQVgg0REREQUgA0SERERUYB/AOqVQWy2taozAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9oAAATQCAYAAAAMKz2vAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvXmcHVWZ//8+td299+5sZGVJAFkkKMoPZBEmgxAGB0XBDVkEFRnA4TuDjhCXr4wyI8goIDMifAdQBB0HxJ1VkUVBQdkTsied9Hr3e2s7vz/qntP3dneAQELSod68mk7XreVU1a3u+znP83weIaWUxMTExMTExMTExMTExMTEbBOMHT2AmJiYmJiYmJiYmJiYmJhdiVhox8TExMTExMTExMTExMRsQ2KhHRMTExMTExMTExMTExOzDYmFdkxMTExMTExMTExMTEzMNiQW2jExMTExMTExMTExMTEx25BYaMfExMTExMTExMTExMTEbENioR0TExMTExMTExMTExMTsw2JhXZMTExMTExMTExMTExMzDYkFtoxMTExMTExMTExMTExMduQWGjHxMTExLBq1SqEEPzbv/3bNtvn/fffjxCC+++/f5vtMyZmV0EIwbJly7Z6O/Ws3njjjdt8TDExMTEx245YaMdw4403IoTQX8lkkpkzZ7JkyRKuvvpqisXia9rv73//e5YtW8bo6Oi2HXBMTIxGPb9//OMfd/RQYmKmHM1//373u99NeF1KyezZsxFCcMIJJ+yAEb5+1qxZw7nnnsu8efNIJBL09fVx0kkn8dBDD72u/V5zzTVvmNh/5plnWLZsGatWrXpDjhcTExOzLYiFdozmS1/6Ev/93//Ntddey2c+8xkALrjgAvbbbz+eeuqprd7f73//e774xS/GQjsmJiYmZqcmmUxy6623Tlj+wAMPsG7dOhKJxA4Y1evnoYceYr/99uP73/8+J598Mtdccw3/8A//wNNPP83hhx/Of/zHf7zmfb/RQvuLX/xiLLRjYmKmFNaOHkDMzsNxxx3HwQcfrH++5JJLuPfeeznhhBM48cQTefbZZ0mlUjtwhDExMTExMdue97znPdx+++1cffXVWNbYR6Nbb72VxYsXMzg4uANH99oYGRnhfe97H6lUioceeojdd99dv3bRRRexZMkSLrjgAhYvXsyhhx66A0caExMTs2sSR7RjXpajjz6aL3zhC6xevZqbb74ZgKeeeorTTz+dBQsWkEwmmT59OmeccQZDQ0N6u2XLlnHxxRcDMH/+fJ2ap2ajv/e973H00UfT19dHIpFgn3324dprr33Dzy8mZlfHdV0uvfRSFi9eTHt7O5lMhsMPP5z77rtvi9tceeWVzJ07l1QqxRFHHMFf//rXCes899xzvO9976Orq4tkMsnBBx/MnXfeuT1PJSZmu3HqqacyNDTEr3/9a73MdV3uuOMOTjvttEm3KZfLfPazn2X27NkkEgkWLlzIv/3bvyGlbFmvXq9z4YUX0tvbSy6X48QTT2TdunWT7nP9+vWcccYZTJs2jUQiwb777ssNN9zwms7pO9/5Dv39/VxxxRUtIhsglUpx0003IYTgS1/6kl6+bNkyhBAT9qVS7NXf8Hnz5vH000/zwAMP6L/vRx55ZMu6Dz74IOeccw7d3d20tbXx0Y9+lJGRkZb9bqlOfd68eZx++ul6f+9///sBOOqoo/TxYu+HmJiYnZ04oh3zinzkIx/hc5/7HL/61a84++yz+fWvf81LL73Exz/+caZPn87TTz/N9ddfz9NPP80jjzyCEIK///u/54UXXuD73/8+V155JT09PQD09vYCcO2117Lvvvty4oknYlkWd911F5/61KcIw5BPf/rTO/J0Y2J2KQqFAv/1X//Fqaeeytlnn02xWOS73/0uS5Ys4bHHHuPAAw9sWf///b//R7FY5NOf/jS1Wo1vfvObHH300fzlL39h2rRpADz99NP8f//f/8esWbP453/+ZzKZDD/84Q856aST+NGPfsR73/veHXCmMTGvnXnz5vHOd76T73//+xx33HEA/PznPyefz/PBD36Qq6++umV9KSUnnngi9913H2eeeSYHHnggv/zlL7n44otZv349V155pV73rLPO4uabb+a0007j0EMP5d577+X444+fMIZNmzbxjne8AyEE5513Hr29vfz85z/nzDPPpFAocMEFF2zVOd11110kk0lOOeWUSV+fP38+hx12GPfeey/VanWrMtauuuoqPvOZz5DNZvn85z8PoH8/KM477zw6OjpYtmwZzz//PNdeey2rV6/WJomvlne9612cf/75XH311Xzuc59j7733BtDfY2JiYnZaZMybnu9973sSkH/4wx+2uE57e7t861vfKqWUslKpTHj9+9//vgTkgw8+qJddccUVEpArV66csP5k+1iyZIlcsGDBaziDmJg3L6/0/Pq+L+v1esuykZEROW3aNHnGGWfoZStXrpSATKVSct26dXr5o48+KgF54YUX6mXvfve75X777SdrtZpeFoahPPTQQ+Wee+6pl913330SkPfdd9/rPc2YmO1C8/PzrW99S+ZyOf336f3vf7886qijpJRSzp07Vx5//PF6u5/85CcSkF/5ylda9ve+971PCiHk8uXLpZRS/vnPf5aA/NSnPtWy3mmnnSYBedlll+llZ555ppwxY4YcHBxsWfeDH/ygbG9v1+NSz+r3vve9lz23jo4OecABB7zsOueff74E5FNPPSWllPKyyy6Tk300VNep+e/5vvvuK4844ogtrrt48WLpuq5e/vWvf10C8n//93/1svHXQDF37lz5sY99TP98++23x79LYmJiphxx6njMqyKbzWr38eZZ71qtxuDgIO94xzsAeOKJJ17V/pr3kc/nGRwc5IgjjuCll14in89vw5HHxLy5MU0Tx3EACMOQ4eFhfN/n4IMPnvR5Pemkk5g1a5b++e1vfzuHHHIIP/vZzwAYHh7m3nvv5ZRTTqFYLDI4OMjg4CBDQ0MsWbKEF198kfXr178xJxcTsw055ZRTqFar/PSnP6VYLPLTn/50i2njP/vZzzBNk/PPP79l+Wc/+1mklPz85z/X6wET1hsfnZZS8qMf/YilS5cipdTP1eDgIEuWLCGfz7/qv6+KYrFILpd72XXU64VCYav2/Wr4xCc+gW3b+udPfvKTWJalr0lMTEzMrk6cOh7zqiiVSvT19QHRB+0vfvGL/OAHP2Dz5s0t671akfzQQw9x2WWX8fDDD1OpVCbso729fdsMPCYmhptuuol///d/57nnnsPzPL18/vz5E9bdc889Jyzba6+9+OEPfwjA8uXLkVLyhS98gS984QuTHm/z5s0tYj0mZirQ29vLMcccw6233kqlUiEIAt73vvdNuu7q1auZOXPmBCGr0plXr16tvxuGMaFGeuHChS0/DwwMMDo6yvXXX8/1118/6THH/719JXK53Cu251Svv5Igfy2M/12SzWaZMWNG7BweExPzpiEW2jGvyLp168jn8+yxxx5ANOv/+9//nosvvpgDDzyQbDZLGIb87d/+LWEYvuL+VqxYwbvf/W4WLVrEN77xDWbPno3jOPzsZz/jyiuvfFX7iImJeXXcfPPNnH766Zx00klcfPHF9PX1YZoml19+OStWrNjq/ann8x//8R9ZsmTJpOuo3xUxMVON0047jbPPPpv+/n6OO+44Ojo63pDjqufqwx/+MB/72McmXWf//fffqn3uvffe/OlPf6Jer2+xPdlTTz2FbdtaFG+pdjoIgq069uvljT5eTExMzPYgFtoxr8h///d/A7BkyRJGRka45557+OIXv8ill16q13nxxRcnbLelP9h33XUX9XqdO++8kzlz5ujlL+eCHBMT89q44447WLBgAT/+8Y9bnsnLLrts0vUne5ZfeOEF5s2bB8CCBQsAsG2bY445ZtsPOCZmB/Le976Xc845h0ceeYTbbrtti+vNnTuX3/zmNxPSs5977jn9uvoehiErVqxoiWI///zzLftTjuRBEGyz5+qEE07g4Ycf5vbbb+fDH/7whNdXrVrFb3/7W4455hhdztXZ2QnA6OhoyySDitA380qGZi+++CJHHXWU/rlUKrFx40be85736GWdnZ2Mjo62bOe6Lhs3btyqY8XExMTsjMQ12jEvy7333suXv/xl5s+fz4c+9CFM0wSY0L7kqquumrBtJpMBmPBHdLJ95PN5vve9723DkcfExMDkz9ujjz7Kww8/POn6P/nJT1pqrB977DEeffRR7cTc19fHkUceyXe+850JH4YhSoGNiZmqZLNZrr32WpYtW8bSpUu3uN573vMegiDgW9/6VsvyK6+8EiGEfl7U9/Gu5eP/Zpqmycknn8yPfvSjSdvpvZbn6pxzzqGvr4+LL76Yl156qeW1Wq3Gxz/+caSULZPmKsX9wQcf1MvK5TI33XTThP1nMpkJf9+buf7661tKVa699lp839fXRB2v+Vhqu/ER7S19noiJiYnZmYkj2jGan//85zz33HP4vs+mTZu49957+fWvf83cuXO58847SSaTJJNJ3vWud/H1r38dz/OYNWsWv/rVr1i5cuWE/S1evBiAz3/+83zwgx/Etm2WLl3K3/zN3+A4DkuXLuWcc86hVCrxn//5n/T19U36wT0mJuaVueGGG/jFL34xYfmRRx7Jj3/8Y9773vdy/PHHs3LlSq677jr22WcfSqXShPX32GMPDjvsMD75yU9Sr9e56qqr6O7u5v/8n/+j1/n2t7/NYYcdxn777cfZZ5/NggUL2LRpEw8//DDr1q3jySef3K7nGhOzPdlS6nYzS5cu5aijjuLzn/88q1at4oADDuBXv/oV//u//8sFF1ygBeuBBx7IqaeeyjXXXEM+n+fQQw/lnnvuYfny5RP2+a//+q/cd999HHLIIZx99tnss88+DA8P88QTT/Cb3/yG4eHhrTqP7u5u7rjjDo4//ngOOuggzjrrLPbZZx/6+/u58cYbWb58Od/85jc59NBD9TZ/8zd/w5w5czjzzDO5+OKLMU2TG264gd7eXtasWdOy/8WLF3Pttdfyla98hT322IO+vj6OPvpo/brrurz73e/mlFNO4fnnn+eaa67hsMMO48QTT9TrnHXWWZx77rmcfPLJHHvssTz55JP88pe/1C1BFQceeCCmafK1r32NfD5PIpHg6KOP1t4xMTExMTslO87wPGZnQbXiUF+O48jp06fLY489Vn7zm9+UhUKhZf1169bJ9773vbKjo0O2t7fL97///XLDhg2Ttun48pe/LGfNmiUNw2hpDXLnnXfK/fffXyaTSTlv3jz5ta99Td5www1bbAcWExMzOeOf3/Ffa9askV/96lfl3LlzZSKRkG9961vlT3/6U/mxj31Mzp07V+9HtQy64oor5L//+7/L2bNny0QiIQ8//HD55JNPTjjuihUr5Ec/+lE5ffp0adu2nDVrljzhhBPkHXfcodeJ23vF7Oy8mvaWUk5s7yWllMViUV544YVy5syZ0rZtueeee8orrrhChmHYsl61WpXnn3++7O7ulplMRi5dulSuXbt20r+ZmzZtkp/+9Kfl7NmzpW3bcvr06fLd7363vP766/U6r7a9V/P6Z599tpwzZ460bVv29PTIE088Uf72t7+ddP3HH39cHnLIIdJxHDlnzhz5jW98Y9L2Xv39/fL444+XuVxOArrVl1r3gQcekJ/4xCdkZ2enzGaz8kMf+pAcGhpqOVYQBPKf/umfZE9Pj0yn03LJkiVy+fLlE9p7SSnlf/7nf8oFCxZI0zTj3ysxMTFTAiHluBzgmJiYmJiYmJiYmNfAjTfeyMc//nH+8Ic/cPDBB+/o4cTExMTsMOIa7ZiYmJiYmJiYmJiYmJiYbUgstGNiYmJiYmJiYmJiYmJitiGx0I6JiYmJiYmJiYmJiYmJ2YbsUKH97W9/m3nz5pFMJjnkkEN47LHHduRwYmJiXgPxcxwTs2sQP8sx24LTTz8dKWVcnx0TE/OmZ4cJ7dtuu42LLrqIyy67jCeeeIIDDjiAJUuWsHnz5h01pJiYmK0kfo5jYnYN4mc5JiYmJiZm27LDXMcPOeQQ3va2t/Gtb30LgDAMmT17Np/5zGf453/+5x0xpJiYmK0kfo5jYnYN4mc5JiYmJiZm22LtiIO6rsvjjz/OJZdcopcZhsExxxzDww8/PGH9er1OvV7XP4dhyPDwMN3d3Qgh3pAxx8RMNaSUFItFZs6ciWFs++SVrX2OIX6WY2JeCzvbsxw/xzExW8/2fo5jYmJ2PnaI0B4cHCQIAqZNm9ayfNq0aTz33HMT1r/88sv54he/+EYNLyZml2Lt2rXstttu23y/W/scQ/wsx8S8HnaWZzl+jmNiXjvb6zmOiYnZ+dghQntrueSSS7jooov0z/l8njlz5vDpCy5ECpO5c+di2TZhGGKaJp7nYdt2yz6klGMz7SIgDASEja8GpmkghEBl0wshCMNwwgy9+tk0Tb1vtY3ERwiBYZl6neaZy+Z9G4YBat9q+6ZMfrXf5mVCCH18tX3z+NTrzceZ7HUhBCbRemEg+dn//ohaIU/ou4QyACQIEIaAEAxhsfte+3HwOw7DMCVCQBCELddWHVcdL1qmrqPEskySyRRdXV2USkVKpTKGYWAYBpZlNf4drev7PnW3jgzDsWs+7lo1XgAJIACBENE9DGU4tgoCkBjCQJgGiBBkiAwDNq7fyNDQMLadpKO9l9HRIZ559ml++eufMzQ0yAEHHMQJf3sK5XKFtx+6Dw899DtuvvlmRkZGMAwLQwiWLn0PTjJJqVikWBplzZo1gOCcc86hXC7junVeeuklNm3qJwgC0qkUubYc1WqFWqVEEAQkHJsF8+ZgSEkoTV5YvYpCqUImncFzK6xZvZKw7lEuFfCkxMlkSCaStLW147sBnucRBiG1Wh3XqxOGHq7r4/mSXC7HzsKWnuXbbruNdDq9A0cWE7PzUqlU+MAHPrDTPMvxc7xr4ds+1VwdKSTpfArLN3f0kHZJdrbnOCYmZvuzQ4R2T08PpmmyadOmluWbNm1i+vTpE9ZPJBIkEomJOxKSVCqF7Tg4jkMQBNi2jW3bWFZ0as2CM0KCCHHrPjIQmMJCGAKBaIi9SOgpgTteZI8XlRPSf0RDaJsmGGKC0B1fEm8YRoswNQyjZZ0wDCeK86ZxTCbE1QRA83lPmCxAIKRAYBCG4PpZfAIMyycMfAwRIBpjE0aAwMI0MyQTGYTp6TFIKTFNE9u29diCICAIAn1cIQS2bTNr1izWrl3L0NAQiUSCVCpFGIb4vo/v+y3XSkpJwklMOvbm/Y691jyZ0DpJ0XydbMsC0yBEYBKwcOFCQt8glIJSqUJnZzuL9t6TpX93AsPDI5TLZQyRYrc5M0il0uy//4HsscdjVKtVXnh+OalUkoMWH8yivfcm8D1q9TIjI6MEQcDs2bOxbZuOjg4cx2HVqpeoVCrIMKS7qxvXrVMuFqhWqwwPbWZ4oB9DgmE6iFBiIhBhSHsmy6KFC/nLn/6M0Zj4yLYlITTo6Ggjl2yjXq0RhAGVmku5WqRUKiAlbNo8vN1SObf2OYYtP8vpdJpMJrNdxhkTs6uwszzL8XO8a+EmPNy+gM6N7ZhJAyHj9P/tSVxeERPz5mGHCG3HcVi8eDH33HMPJ510EhAJynvuuYfzzjvvVe9nwYIFmFYyErVEojUMQy1W1VerGBYITCxLIA0JISBkYww+nh+ANFoE33gx3BwxHv+6xGgEWSXIyYQ++mc1PhU1NwwD3/dbxLWiOXreLDLHC/3xwnv8flpEOQYGBoQGK14aol6vkbJNDAGO7QDReRkyQAqLzqEA3zNIJRyCwI2upRAEQdAy5uZr3nwdATo7O6lWq9TrdcIw1JHsIAhartUrefQ1C+jGkgmZCM3XWt+3IIRQIIVBYIDr+fh+tI6TcshYCYLQx8JhfmcXfuAhpYFt28jQp3daH1+47FL++te/8sMf3M7b3n4wi/bZO5pwcGyyiQ6yuTaSiSQIqFdrDAwMUq1WsG2LXLYNy4ii85ZlkW1rI5VOE/h1BjdtRAgwLYvzzjufIIBCfpTh4c08/uQfkQZIQ2AA2XQblmmRyeTIprLkMtnog69lYJsWXuhTLBb52c9/9bLX8fWwrZ7jmJiYHUv8LL95qSddnJpNz9rORvZXTExMTMy2Yoeljl900UV87GMf4+CDD+btb387V111FeVymY9//OOveh/Vmk8qHaKkVrO4UowXfOrfUkap0ZhjQk0II+p31iS0mxkfUZ7sO0JGmc0hyIaAV0K8WXSOF4pSyhaxOX6CYPwEghrLltLax59rs0BXSEJkKDGFhSRLvmgx6nrIsBHxDhoTAA1Raok8hZEqyUyKsDGRYBjGhBT6idHmaPyrV6/GcRyy2Syu62KaJtlsliAIKJVKOgrefM2UgJ8sM2Cy+z3ZdZhQCmAA0kdKQWAIsKN1Q0JCIBSSEKh6VRCCEB/P96JosxOVArz1bQdx0NsW43ketWoVx7bBGMua8JBIP8AwbdJOklQyraP3Qejhux6WZWI6CUzTZmBjP+VymVTKZkbPbDw3AGmSzbSRSqV44skn8EIPaYJtO7zrsCOYNm0GrusTej61SgXbtvEDH8/zKZcryNT2byiwLZ7jmJiYHU/8LL/5qORqDMwdom0gp+IN5IYymEGcOh4TExOzLdhhQvsDH/gAAwMDXHrppfT393PggQfyi1/8YoIZy8sRhiFBEGgx2VxP3SxYmwWZWq7W1fXOIopyKoHXLHLVz+OFbUttthbajcipaD1Ws4hsqbGGSYXkeLE6meCc7Pjjt5ssoq4FbCPyLmWIEAZ+6BAEFkEYRmnlsnHuQiAR1FyJ7wc6Ndw0TL1/y7J0ZFsdt/maqYmEcrkcic0gIJFIUKlUorrldJpUKqXXqdfr0TGa0uDH13+/EhOi4tHcANHZ6JUaCxvXWYYEjakbQxhRnXojci8Yey8EYdgQ7YJEKqny1aN9ND6xmIaBFQosM7pOvu9jmiYSG9/3CMMgip6bJpVShXq1ju+59PVNx7YcwjCa/KmWyjz68MON+2GQcJK87eC3k87msMwEjmVGYwHqrkupVKJUKuPWa/zwxz9+xev0etgWz3FMTMyOJ36W3zz4VsDg7GHqaQ/fCRieNapfq+ZqTF/RG0e3Y2JiYrYBO9QM7bzzzttmaWnjRdWW6qKb07WbxXQQSiSNVGYhW4TxZEJYHWN8ZFmIyNDLcmxEY/9KJDcfe3yqdXM02DTNCfXX48csGqnHSjSPn0wYH+2dWEsOSIEMQ0IZYhhRdNc3QzxcjCZjMWV+huWTTCeZPXs26azD4OZBhoaGAHSE2jTNlsmP5nNW467VahiGQa1W08td16VQKOB5HpZl0dnZSXt7e1S/PDwcmX2Foa7FV+f+cpFtlQEwltYPMvJMYyz23EooGi+GjfuEJFT3haZrbUQiXCKRDZ82UzSOh8RQ7w1a6+xN08QwTSzLjLYNA1a8uJzRfBEpDdx6gCEsXNdDCEEymUBKSaVUxpAghUE6nSWZTGMIG7fuU6vVG3XwFpaTJJmGzq4e6pXSpNdlW7Mtn+OYmJgdR/ws7/pIJBv32Iyb9iZ9vZqrEZoSM4iFdkxMTMzrZUq4jr8SzVHU8WypRtpsqus2DCMyQ9PCWIKUjeinEtrmpHXazfXAQgiQPkEAdc9tBEqFFqAAlmlhW5EjujJhC8MwipA2xH1zFFjVHkcisTWa6/v+K9Zkq/ObeGFopLk3thcGGBJPSPxGBNcQUke0DQlBIBkaGmb5chdhRBHtefPmkUwmGRkZYXR0VDuIVyqVFmO3MAxJJlMkEwlKpaIWn1vKHCgWi5RKJarVKslkkjlz5iCEYHhkmEKhSCqdIvADSuVy4zxNdMgaCKXECGXkmi6jOykiHzGi3HjRuAgNwayvdSSihRG9LkIwGqZ2MpSEYYDn+4RCvT8EwojS601oTFAIhBGV/kvZOiET3beg8Z4DYZjsvfc+vHXf/Xn66adYvXo1ufYuch2dBH5ArVbj9h/eTugHkbuAYTN9+gyy2RzCsDDSdnQqIpoYqFQqkZt5tULouRPve0xMTEzMmxaBYMaKXjbPHcJN+gRO0PK6FLB+YT/TV/Ti1O0t7CUmJiYm5tWwywjt8S7hzfXP40X2eAOzaJ2xSLCUwdh+DEPXLo1P057MiEw0BJxANNKyJZ7n4XkeAoFLPYqmCoFpGA2BGInwMAijaKulWoJFkWSjkT0dijHhPt6ErDm1fLzYHm8MNvZdRXpldM6YSOlhCLOhWaPjy9DAlBLX8/BCn4auIwgCVq9eTRAEOI5DMpkknU7jui7JZBLHcSiVilSrNYYGR1j50p9JJGzeetABKEWsUvhVpNhsSrMGsG2bIAhYu3YtsiGUk6kUViKBMH0SMiSTzlCp1CJHbxm1aZMC/FBG7qmNcvwoAh25yodG1OIraEx2NO4ghJHTt2xsIJvEe3RPow8iAiXgJTKQBETbmDQmT0QkpE3RvH+joe8NwkDdAwM3kPiyzvw992bunosIQ0nd8xEymvRZu3Y9IWCYCbBMDn/XEbieD4RI6TbeJ9H7wnEcOjs7MAzJihdfJCYmJiYmphnLs+he18nA3OEJQhsBXtJn87wh+lZ349RisR0T80oIIbjssstYtmzZVm23atUq5s+fz/e+9z1OP/307TK2mB3LJKHOqUlzmnKzsVhzqraqlW4WqDrFOWxeL0DKUH8hWgXqZDXQ+jU1nnEu2Hr7xjZhEOC6LrVajXqtjlt3cV2Pes2lVq1RrdaoVevRz7Ua9XqdWq1GtVqlWq1SqVRw3ShiaRgGjuOQSCSa+lEbk5qnjbtqOvpqCBdTSgxJQ06GiMaXKaJMaTdw8cIgaj0uxsS+cg2vVCoMDAxQrVYJgigaa5ome+yxB6Vymbvuupubb74Vzxtr5dV8j9T3IAh0yy81SeF5Hp7rUvdcSuUSGzduZHBoiDAMqdVrGKbJzFm70d3Tgx+EUSTZMCLhbVkYloVhWuN6do/13A7D6D0RNt4bQRAShEHL+2X8z60TGlGKeRgE+J6HH3gEoY/vN/4d+I2a7CDKXpBRFkMQBoRSEkiJLyV+0MhukBKJJJFIcM4553LKB09j/wPfSm/fNA488K0kk6lGj/aJxnO2Y4OUVEpvTOp4TExMTMzUwvRNTN+YWD/VoJ5x2TRvkP4FA9HnmS2tGBOzk3DjjTfqz0O/+93vJrwupWT27NkIITjhhBN2wAhfP2vWrOHcc89l3rx5JBIJ+vr6OOmkk3jooYde136vueYabrzxxm0zyFfgmWeeYdmyZaxateoNOd6OZpeIaDcLyfFR7GYRp5aPd8OGKNWYcJw7tf5OJDqbtttSNFs2/azQ+0FMIv6jml6VXm5ZVss6vh+AaIhZpBa1gO49rbZrjnYDLXXmzeZvShwjBJYQyACk5+OEFqZnIFB14CEiFE3RdRvDtiLVzdj5NPfMBvSkQHSdBKtWrdZGYKZpRqZnoT/hHoyvVW++jip9XhhjEfswDCmXy40otk2lUsUwDHp7e0mlUgwODupxCCFaJiYMorRy04yEd3POQxiGeIGvU/+b09ybx9j8HoiC2yFSNtLGRZRmHjYmcaIxRJkKwjAwRfP7p/F6Y2wqmi8ie3Tmz1/AzDkzOHbJ32KYBslkmkqlNqF3ebMhYKGQZ2jzIDExMTExuzYSSWBFf0fNwCA0wxZZbPpRiVRghphB1Cfb8k2cqkPHpjY27LF50rCLm/ZwUx6r9l9P22CW9s256O+Ub8RmaTE7LclkkltvvZXDDjusZfkDDzzAunXrolaoU5CHHnqI97znPQCcddZZ7LPPPvT393PjjTdy+OGH881vfpPPfOYzr2nf11xzDT09PW9IVP2ZZ57hi1/8IkceeSTz5s3b7sfb0Ux5od0sypqZTGiPNy9rSTVv1No2b98adQ1b0rIn24eUEmE0majRarw23vnbtm1AIMPWCHRza6sgbK4JbxX7Smg1H1+ZhjVPPjSbgmkH8DCMZqhF5Iw9vS+DX69giwA/lCCFTqeHyFV83uxeejo6MKXUqdjjI+XNRm+RqJeEYZ1atYbveXR3dbHH7ruzbsNa8vnChHs5wcW96V6o4yn377F1ZCPKHB1zYGAA13UJw5CZM2fS0dHB8PAwQgjS6TSjo6P4oR/VnYdRRFvVVo+dS1QC0Hz91HVQ5znxvQi+7wEhhtlkxifGzk+EAhlITNPQbubRDhv/DmWjpMBQQ0AisWxbv+9c18c0LAxTtNxb3R5OQuAHuPX6hDHGxMTExOxaVNpq9O8+AAI6N7aR7y0RNoQ3Eqat6sZNeozMKNC9roNExSFVSpIdTmN5r9DKS0BohYxOLzA6vYAIBNNW9oy9LAXpYnI7nl1MzNbxnve8h9tvv52rr75af2YDuPXWW1m8eDGDg1MvCDEyMsL73vc+UqkUDz30ELvvvrt+7aKLLmLJkiVccMEFLF68mEMPPXQHjjRmPFM6ddxtpBS7rhulGge+TrtVkT3LskgkEqRSKVKpFI7j6MhqlHobiRrTMjFtC8uxsWwb07YwmgzTmiPOtm1PWgsdiWqQDWVlEAknGUhkQNRbWwqQBlIKwkAiw4kRdpU2Pb6vtG3b+suyrEnSl8fcyNV6k/XwBnSdtZSSAJ/2dp8F8032WCDYcz7sOT9kwRyfebu5zJkZsttuPqlUicAvQeTFrfelUr2ba+Wbrgqe51Eo5jFtQa49w6bN/cyePZvp06e3RImbxze+FEAJSBmMlQCMbacmBQLCMEAIieNYJBI2IyNDvPTScgqFPImEjWkaZLNpZsyYjmGYyDBEhESlA0GA7/n4nk/o+4R+QOBF32UQRhkPQQhBGF27INRfhBLR6CseRd1V57DmLIixyZswjCY7/CAyV/MCDz/08cLou04zp6levFGzDbRMCqn3sG3bOI6DMAw81yeIzdBiYmJidnkGZw/rVhojMwpjIhtAwKb5Q4zMiCa2h3YbpX/BAEMzRyl3VJHG1qWES1PSv8fA2FdjX+pLiq3bX0zMtubUU09laGiIX//613qZ67rccccdnHbaaZNuUy6X+exnP8vs2bNJJBIsXLiQf/u3f5vwGbter3PhhRfS29tLLpfjxBNPZN26dZPuc/369ZxxxhlMmzaNRCLBvvvuyw033PCazuk73/kO/f39XHHFFS0iGyCVSnHTTTchhOBLX/qSXr5s2bJJA5EqxV6lbs+bN4+nn36aBx54QH9GPfLII1vWffDBBznnnHPo7u6mra2Nj370o4yMjLTsVwgxaY36vHnzdKT8xhtv5P3vfz8ARx11lD7e/fff/5quy1RgSke0HdvCaUT6olZMaIMq23Z0lE+1m1LCGsYi3joCq93Hm83TmkXfWOp1c1R7Yqq6QaM/FIahfK0NhDTGeku1/H/sIVDjbI5oK9fxSFiORV2bU7Zb24uN7U/1tn65qH/DzgvDDEgmqpi4uh+0kA0XdnwCQ9KWA8MMCGQQOXfLsbE0p6a3XhOBacK+++7NzJnTSafTDAwOkkgmWbBgAfl8vmFiNrEFW8uYZfQ/GQaRK/i4iLbaDiJX7+b0bsMwCEPJ6Ohwo3+3g+fV6O3rw7Is1q9fr9P4W9K4hcAwTIxGHbcMm1qVTXI9x+5l67jVMMOGyV7zxEc0tlD3M0eAL4NIzKsIuxzfrk5lV6D3oa53lBZvMGvWHDJHJvmvW38wyThjYmJiYt6shJaknq7Tt7qb4Rn5lj9ZW4s0JaPTG9lpEmrZGqlCis7+tknXj1POY7Y38+bN453vfCff//73Oe644wD4+c9/Tj6f54Mf/CBXX311y/pSSk488UTuu+8+zjzzTA488EB++ctfcvHFF7N+/XquvPJKve5ZZ53FzTffzGmnncahhx7Kvffey/HHHz9hDJs2beId73gHQgjOO+88ent7+fnPf86ZZ55JoVDgggsu2Kpzuuuuu0gmk5xyyimTvj5//nwOO+ww7r33XqrVKqlU6lXv+6qrruIzn/kM2WyWz3/+8wBMmzatZZ3zzjuPjo4Oli1bxvPPP8+1117L6tWruf/++yfVF1viXe96F+effz5XX301n/vc59h7770B9PddkSkttL26h2VEp2CYJnYjeq1EH6Aj2s21rCryqoStqm+GsVRziML9hjAIA6nTqNW+xwv25vpnhaoJFsKapKYbmgVicxsutY8o5SVKaY/EWLSuaus1Ph29df+y6fhbTq2HKD4dSIEIJaasE01ZCAzZSCkzfJA2lhEiQy+6bkRCVKHalzUbzKlra5omnZ2d7LHHHmSzWaZNm0a9Xmfjxo14njchoj1erEf17TQiumM9wydrWzZ+wsH3fR3tHRsjlEplKpUqbW1t7LHHHoyMjDAyMqKvmRqL73kTJhDUTlqzBMQE7T1ZGvz4OnR1r6WUenzjz635PTn+XE3TbGkvp76cZJr2rmkTtomJiYmJianm6qzZZ2MU0d5W2ldALetSy7iMTitMeHnGil4s18IIBGbwCinrMTGvg9NOO41LLrlEi85bbrmFI444gpkzZ05Y98477+Tee+/lK1/5ihaan/70p3n/+9/PN7/5Tc477zx23313nnzySW6++WY+9alP8e1vf1uv96EPfYinnnqqZZ+f//znCYKAv/zlL3R3dwNw7rnncuqpp7Js2TLOOeecrRLDzzzzDAsXLnzZ+vIDDjiABx54gOXLl7Pffvu96n2fdNJJ/Mu//As9PT18+MMfnnQdx3G45557GiWvMHfuXP7P//k/3HXXXZx44omv+lgLFizg8MMP5+qrr+bYY4/VkfNdmSmdOi79gNDzCT2foO7iVmpUS2WqpTLlcpl6vU61WmV4eJiBgQEGBwcZHR2lUqnoumnLsnAcB8dxsCyrJe3asqIUbduxtWBUjtWKLQldtX/DGBOg6ntzyrcSjr7v47qurrEOw5B6vY7rudTr9QmCtFlUTRbNHv+avmYTzNhCZAj5YUl+xKZSTlOrZKhXM9R8m5pv4dXT0c9V8LxGFN0ciyqHYaidwU3TpKuri2nTptHR0cFuu+3GwoULmTVrFqZpMjg4yB/+8Acef/xxnn/+eerj6ohVWrj67nnemNN30Jqa3pyq3nxNm9dREWN1fYOG27uaaBkdHeW5555DSsmCBQvo6+sjk8no90PzOY6/tpNNdGwpaa4lBb7pXql9B0EQ3e9GGUTzNVDmaM1u8pP1R2++LkEQUvfHtW2JiXkdVLI1JBLP9vEcb0cPZ4tUszXKbdUdPYyYmJ0bEUWjt0uAubHv8V8b9trMmrdsYPO8IUodZUrtlVflZl5PudH6ja+d+fdPzM7BKaecQrVa5ac//SnFYpGf/vSnW0wb/9nPfoZpmpx//vktyz/72c8ipeTnP/+5Xg+YsN746LSUkh/96EcsXboUKSWDg4P6a8mSJeTzeZ544omtOp9isUgul3vZddTrhcLESa7Xyyc+8QktsgE++clPYlmWviYxW2ZKR7RNwxiLqopWM6nQEDoKKkTUs1q5SEspqdfrE6KL0Oo47lg2lmkixFj67vhodrPJmBACy7Yabtw03KcNwjBKl/L9QEctmyPfzRHT8eJYCKnrceU4UfdyEW3F+BTsSaPbocnIZp9KIWx0gY6MuEITkGCbJl4gqXhl9q/5KPOxhB3VvudyuchJvCGMVW14rVZj06ZNrFixYlzq85jQHy8WRfP9ZCxarFLopYwc4oVojZxPdi8nq/ceL5BVan1/fz8DAwP09fbS3dWF63kMDAzo+6Wix83jbz0nxlL8X+ZevNIyKSVhEBKKMfM9Jbqb11dlEOPv59h7U+I3ObvHxLxeQitgaLdR3KRHZjRF++DO11+33FZlYM7wFtNWY2JidjyV9hqV9hqE0D6Y1cu7NnRghK2fCeopl3J7lWJ3CT8RfW5KFhMkqtHvn2Q5QXYk88YNPmZK0NvbyzHHHMOtt95KpVIhCALe9773Tbru6tWrmTlz5gQhq9KZV69erb8bhjGhRnrhwoUtPw8MDDA6Osr111/P9ddfP+kxN2/evFXnk8vlKBaLL7uOev2VBPlrYc8992z5OZvNMmPGjDdNi67Xw5QW2sK0MCy7JUooCQgDIDAIRFTjDIBhIkRUWisj16oWodJcY6xaaAVh0BB7QaN101iUVBmkjReyQeg2hNiYkDZNq7FfkyCQ2swM0FFTJZBUWriK4iKimlyjaaKgWWDCxHRrfS0mq3UeWwMpIkM000hh2imqbo26KwkCkKFAYjfGD0hJLt1F0uxg5owZdHf3kk4lGR4eplgsUa1WdWRbRY6baRam6tq1jEvQSI0HP5SREZ2k0dM8St03DBOJROiU+xDDaBXwY7XtrYw3VmuOCgdBQOB5yCBg4/oNOLaNYVrsvWgRxUqRtWvW4XkewjMbpm8BIPW9ay49iO61iZQBQejpewFjZQvN49P3J5RReokA0RShV2Mdfz3HT/A0L4/eSx6eH7uOx2w7MqNpNs8dRhqSzGhqp+yrW8/UCeyA7Eh6Rw8lJkbT/KyUusrke0v657bBLLmhSCi+9vrlxh/QqVb+bEC+b+xaVLN1hBw7CdM3yA1lKXaXdPsygFquTi0X/X0rehVG+4oIKZj5Ql9cAx6jOe200zj77LPp7+/nuOOOo6Oj4w05rvqM9+EPf5iPfexjk66z//77b9U+9957b/70pz9Rr9e3mD7+1FNPYdu2FsVbCsSN/zy5vXmjj7ezMaWFdkOaEUU7VbQvch0XjPU5jsTHmIM4jbRnZRamaK53NU0zcg2PdgC01v8219O2RKcbvZl9fywlWG3jeR6WmdC14c21xjoi3khN1+nQhJhmI03aEJNODihhrgTs+DFNeuWkJJCSyHBURH04Q/ADCKVBEEiQDSEaCkwEnmsze7cFJJMma9euo1QsTFo/PD6CHgRBy/XS94ExA7ggCAkakxMhZiQ8DQPZqFGXUmoH7+b7Ov5abInx6fUt20VpD9H7p1EDjx/y7LPPkGnLsHDhXmza1M/Q4EhkcNcwOFPCuV6vtxjjNXaHYUbXRk0qqAmV8ZMMUVS9qY2ZHDPAU/d1S+3kmr+r89K94d/kv9xiti0b9tyMERjMeKGX0WkFhnYb3dFDmkDbYIZExWHdwk3MfWZiLV5MzBuF5/jagXt41iiVthrQmOhv+lM1kB5mcPYIM1/ow/JMLG/rP5bt9vw0Vu23fpuMe0fipselhDf+tE1/qZfN84ZwUxNTxkM7pG67IGH9wk30rerG8swJkfGYNx/vfe97Oeecc3jkkUe47bbbtrje3Llz+c1vfjMhPfu5557Tr6vvYRiyYsWKlij2888/37I/5UgeBAHHHHPMNjmXE044gYcffpjbb7990jrqVatW8dvf/pZjjjlG1353dnYCMDo62jLJoCL0zbxSduyLL77IUUcdpX8ulUps3LhR9/VWxxsdHW3ZznVdNm7cuFXH2tWY0r+JgjAglFF0EZVKzPj2UioCLXSLLhhL8x1fE6zEjNomEngTI6LN7aVaxOa415TwUfXLgI6Ej41tLDre3CZLva5FqhyLeDeboTWPuzliOj6q3dzjOpSNGm0Z9XQOgrAh8KLtbNvR10lKAylsNm4e4PE/PcmaVesoF0tAw5W7McZmQTj++qvrq748z9O1x82TDKZl6eve3H+8eTKi+Tx05P9VMF7c6mutFjbVOANUKhU29m9k+fLn6e7uZK+99qCjox21m8lqxJvfe2qZqg9XX8o7oF6v4/s+Qgh836dQKDCweTO+72sTv2QyGbXsEq0GcWNDlhPeh81fMTHbCikkgROwbu9+Sl0VpCF3uq98X4l6xt3qlkUxMa8XiaTYVabQVaLQVWL9XptYu+9G1u67UbfRmtR4rJFll+8rUup4bd4CSsTvcogozXzd3v2Tiuzx69YzLmv33cjQrFFCY/v9/ZNC6vvs23GJ1s5KNpvl2muvZdmyZSxdunSL673nPe8hCAK+9a1vtSy/8sorEUJo53L1fbxr+VVXXdXys2manHzyyfzoRz/ir3/964TjDQwMbPW5nHPOOfT19XHxxRfz0ksvtbxWq9X4+Mc/jpSSSy+9VC9XKe4PPvigXlYul7npppsm7D+TyUwQyc1cf/31eN7YM3jttdfi+76+Jup4zcdS243/jJ7JRBk8L3e8XYkpHdGWMkDKEKH6aCExhIEwZaOVllovqns1GoImaIhxVdjfHEFujrQ2vKSjGm1a64HHp0IrERiEfkt6t5RSC3whDN0iqjnlVwlzGDNHG4t+GhiND40BEtMYiwyPF1KTTTAoMarSuR3HIZfL0dbWRntnF45tE1QMLMvUEd3G1MLYOUmJkI3aY2EgA4FpS0JpIsMtu4Wrc2uevFDjVsJcid0wjPpFR2nYUTuuMAyxbbvlvCbWSgcTar1fTWS7ZZm6nlKCFveNbIEgJJ8f5amnnmT33fdk3vy55NqyrFm9NqoXV9HjcWZpUV+viXX8ChXVXrNmDatXr6ZWrlCpVBgdGaGjo4Pe3l4WL16szfrG15g3T2hMVvsthMBxnC1eh5iYfE+RTD7F8Iw86UKK7GiawVkjhGZIZjRNppAiMEOGZkW9Mv3E1PlAGZoh+Z4i7YM5Rqbl6djcRj3lUugpIaSgZ21nnGIas02opesUeqL052J3+TWnbxu+QcfAa6utHJ4xOvXSxrcjhd4SUkh613Rtv+dcQLm9ium/tiyEmDeGLaVuN7N06VKOOuooPv/5z7Nq1SoOOOAAfvWrX/G///u/XHDBBVqwHnjggZx66qlcc8015PN5Dj30UO655x6WL18+YZ//+q//yn333cchhxzC2WefzT777MPw8DBPPPEEv/nNbxgeHt6q8+ju7uaOO+7g+OOP56CDDuKss85in332ob+/nxtvvJHly5fzzW9+k0MPPVRv8zd/8zfMmTOHM888k4svvhjTNLnhhhvo7e1lzZo1LftfvHgx1157LV/5ylfYY4896Ovr4+ijj9avu67Lu9/9bk455RSef/55rrnmGg477LAWx/GzzjqLc889l5NPPpljjz2WJ598kl/+8pf09PS0HOvAAw/ENE2+9rWvkc/nSSQSHH300fT19W3VNZkqTOnfDqrmeszruZGz2zAik1LqvtiBDJGNvtCISOioSLZyFFc/K4EqEMhwLH1cieYgCFocqVsi2kY0sx1KCYZoCPzomIZpEIRj/a9VWrAvfWxhQRjV+CqhK2WAkCYyUEOIItAqEq1M3mzTAkPgN2q61TkEYZSynU6n6evro7e3l2QySaVSZuPGTWzYuAm3VsOSCUJ8QuER4oMkqtOWJqKRsC0lYAikFEgR4AeNDuGGAdLQGQXNEfbmCQfl/N2cQt4cmadxjwiCxvmP1U+rdWG827qJMkVrbpXWLGp1enWjvIBJRK9stA9Te4mEv0dIiClMGgnsrF69ms2DA+y5+x687eCDeOThx6K6+zDQ6eeCqO5dCqL/NWlgIZo+C4WSfDHPfffdxx//8Ae8eh3HcUilkviez/z581m1aiW1eo3Zs2dzxGFHIMymmvJXEcVvblUWE9OMRJIuJNk0b4hatk6lrcbI9Dw96zpxkx71TJ10MUlohhR7yrRvzmF6JoE9NbIkjMbv7TV7b8R3fNoHcrhJj2JPGREIetZ1brlFQEzMq8S3ffoXDBI4r7FMR0L7QJa2wSyBKRmcNULP+s5tO8g3KeXOCr1ru7bLcy6koG0oSyafYmjWKKPTCsx8Ma4Pn6oYhsGdd97JpZdeym233cb3vvc95s2bxxVXXMFnP/vZlnWVUL3lllv4yU9+wtFHH83dd9/N7NmzW9abNm0ajz32GF/60pf48Y9/zDXXXEN3dzf77rsvX/va117TOA8//HCeeuopvvrVr3L77bezceNG2tvbOfTQQ7nhhhs47LDDWta3bZv/+Z//4VOf+hRf+MIXmD59OhdccAGdnZ18/OMfb1n30ksvZfXq1Xz961+nWCxyxBFHtAjtb33rW9xyyy1ceumleJ7HqaeeytVXX93yWfrss89m5cqVfPe73+UXv/gFhx9+OL/+9a9597vf3XKs6dOnc91113H55Zdz5plnEgQB99133y4rtIWcLBy2k1MoFGhvb+fSL32ZdDqNcqMGodN1x7tLIwSYJq7rkkqldKRXpWyrVl+KqHbXJPRDwjBAiLF2SqoFmBLcze2XQsNvSSVuFp2GsLDEuJZRAkIR9XoWQRTltZ1IQCoxNV5wGqaJYTXqfsOG+EdqIWbbFqlUivnz5pFJZwl8n80DA6xetQrfD/A8l1Q6TbUeYGBAILnum7cxuKmO5wYgbTzPJGjUOAlpNNqcCT5yxjHst38bgS8JQ7AsA2FIxre0bq53rzdEZHPatzonlVaOEUXOo3tnYRhRFoC6tuMj5c1p5FIGRFp98j9yLW9wQRSFV28LBM0dTppT8qOygRBopNs3dLNlWbzjbYeQSKR47NHHKJfKqEkeLfnlxBRBYaiJoGhEzz//PDfccAMbN27EtET0i1pCfnSUMAhIJpNYlkWpWOLEE/6OAxa/lWw2q6Pcr0SlUuETnziLfD5PW9vO6cKsnuW77rpLpxPFbH/yPUXyfUV8JyCdT9GxKYqkbZ43RPvmHIOzR8ZWHpvHmjpRs+bxSpi2sptN84dAwG7PTsep2lPqQ3G5XGbp0qU77bP8Zn2OPcdnzVs2vObtU4UkM5b3RvtK+Nh16zW9L1fvu147csc0kJCoOExf0Yvlb7+e3RLJxj0341SdaALvZdjZn+OYmPHceOONfPzjH+cPf/gDBx988I4ezpRkSke0VZQ0EsATXbbHRzUFUdP1yRzGlWhTUddIaEdCzDDGaqphLB1aCcFWUy5l0BahhKQ+nmnol00zctFGROuYIoqWSzcyQFNjV8dTotNuMgNDShzHobOri7b2HIZh4tgOdddl/Zr15EdGKRQLOLYdpWPLECTUShVS6Qx+3adWqSHdGjY+tiPwvEZKvrqOlolpSkxb4CQsTCMFhg+oVFJBEPh6MsBxHO0+3jyBoSKxjuPg+z62bevzkkJgiLG6+TAcM3hT97K51rv5Z6Wvm9PXJ7wX1D6EEQWam9ZVy5vrrMeMyYxG2oTEaEStQz/kT3/6E0ceeQR7LdyDp//yNK7rj308Uvto+sCk53sYi5pnMhkOeutbWdPdzdp1qxkdGWXWzJnUqzWKxQKZRIqkZZN1Ujz11JOsWreG3XffnUMOOUSnkze/z2NiXjUCkqUElbYalmuyftEm/dLgnJFJ159SiNZ/b1owpH8sd1Rwqu1v/JhidilK7ZVXrht+BXzb12nno33F12TgV8lVCc0pFy/Z/jRqtvN9Rbo3dGzHwwhmvjhtu+0/JiZmajOlhXaz+VSkNYQWdc2CS9FcK2w2otu+77e4Yo93zDaEMWn9cbPxVHPtsTB1wLJVyKl1grA16m6OiWbVAkQ0HV+lYqu65jAMEUZ0nvPmzqW7s0sL/tHREYrFEYaGRqhWq410aAmhpFwqt1ybMAyxTBuvVuehB+6nVNgM2Di2jSlsCCCUUW6+tAxM28K0JOlMFGmuVMrYduSQbpiSIBA6O0Cl149PH1fn0Wxiptb1fJ9QKPM3Aylbjb6a701zNDe6Jj5Sju2vuXZeShmlcodjUemwkQVgmAZhEFJ1Xd37W93HZrd4/dVooRL1RHd57vln2XvRIvo3bGD9+k2Y5uR14mP/HjuPZDLJXnvtxZ67787g4BAbNqxj48YNvPD8C6xbvQYZhFTKZTKdXfiuy8joKG4Y0N/fz0EHHTRpXXbMrsnQzFFyQxlGZuTp2NRGoupQT7qMTi8AUW1n77qurd5vsacMQH7ay/fm3NUYmV5ACkmqkKLYU6JrfQfF7jJd/bH4jpmcUnsFu26RqDnUUy6j0wpUcjXC11lK4aV8PbFleq/Nm7bQXSa0pkZJR0xMTMybjSkttE3TxLbshjIVEyJ7E8SIqtcNQ/yG8FLGUioy3iyKCcfcuscbUSnRaNt2S8RaCIOQcIJADIIgqnduiOsxU7RW4a6jtmEQmbUJgWVHAjiTyTB37lx6p/VRd+sMDw2zatUqSqUSvhtFkGu1OkKY2LaDYUDgu5G1fBhiAELXn4Nfr/HEH//AM399ioQjqVYquHUIfIsgsAgaf7t9BJZhkUo4jOY3gujEsgw9VterY5qR+B9vEiel1O2vIjdzm2q1imVZ2sHQMAychIOv6+PH7qOK4kenEF3XWq1GGAQEjckHyzSQjIl2NWnS7AQvG5MirhLVQiAbqd4tqeLjIuFRhoJoZHxHJQqGAYEM2LSpn4UL92D+7vMYGsrjunV9zGbX+PHvP/V+CHwf6Qe0ZTK0LVzEwr0W8o63H0Lx7/6Ohx9+mLVr1zI6MspIsYBpOXijoyxevJhkMtnyntuy6I7F+FQnFJJye5WORo10/4IBkIJE1cb0TYrdJYzAIF1I4Ts+ueEMIhRTKi36DUdAub2G5VqU26vUsnVMz6RzU1tLD9+YGEWynEAAaxdtJLADAjNESIEIGllzk7mJbyWBFbJ5zhC9a7te9ftQNjquxGyZQk+RdCFJqpTc0UOJiYl5EzK1hbbhAKaOOsuG07M2NGvoLNEwSMMPG5o8UkuWaRJKGQlEGWKYJgShbrkUEuD7no46G4YJoQ8YGLaB2ai3BkkoPQxhYpqRqZkMQwxEZIpmRn2ihZC4gY9j2iSSNvVaJDhdN8A2LEzbol6vY1kGyEhUJhNJevq62XPPvchkM4yMjPDEn/7E6OgotWoV6UV14pHWMjEMG9M0qdVqekLAtm1SmTZ8P0AQYlsmnudRr1Uh9LGskND2SWYlYV0gTYnluPimxBCCRDrL7nvszrHHHkMqlWBkNI8MQywzEsFBWEfKUNcUq0yB8XXYzRFvGKvj9jwPYZpgqHR+kyAYa3HWnFFgCIFlCaRhIqWBMASGECAi8ey6LvVaHcM0MButx9Q+YMzVvTkdvzktXx0ruqYyuv+qzZuIygI8L8QIwc/7rF69lr32XISTtCmVCtF+DYEkjOr6ZdMEkD/mQB80hHIQhkhkVCsPJDNZkukMf3Pc8ZRKRf769NPMmDGDeXPnUa1VcRxHu+W/UlQ7jnpPfUan5zFCwar91kdisL+N4Zl5yo02QN3rOxiekad/9wEs12R45ihz/zoLEcaC8eXwkh6Vthpznp7Jhr02UU+7DM0cjY2oYiYQmCHDM0cjR3HACAz61nSTHU4jhaSejtKTy52vrTWXRkSu5SIUdG/oeMU+0KERMjxj7HdBzOSEVnSPkqVEPAEZE7OVnH766Zx++uk7ehhTmikttGFcii4i6q3dENo61Xp8rbaMZoFboo4y+hUc+EFkKibAwsT16hhhFPkO3Dq2ZUXtxBBRVFUGGIZqZeVDMJZmrKLVAjBMC4hcwqPINhiGaLT2CnVvaVX7PXPmTLq7e2lr6yCTTdPf38+f//xnRoaHcd1oPce2wVLHHjvPer2uU5+bo8ZBEOAFHr4yXzcM9t3vLZiGYPO6fmrVGgILw3YQlkUik8C2bbJt3ey771sa4/QplkpRhD2dxDQtbNvSQlrdExX9t227xWQOIidE1dZLTQRIAVI0kt1lqHtJq7R4JZgj07hIzDbXzqtzV8dTmQjqvquodTKZ1MvG9ztv/rfnefo9JASN6yn1MSSRUK/Xa/iBx267zWJ0eKQh5CPndCGUYZxFMpnEaFwTdT1qtZou2lZjUWM2TINMNsvb3/52neGQSqV01oAa55b6ZUevxUJ7qpMoJxCBQbKUwAgF+d5SS5ro0G6j+t9OzcapOnFU9tUgoNJRZSiM2pm1b86RKiV29KhidiLK7RV8JyBVSGIEBu2bI8NAp2pjuSb5viJSQC1bo9K+jfpYCyj0lUBERl5tQ9lJV5NIhmfk33RlH6+Vod1GyQ1nMLejKVpMTEzMZExpod1cI90suJoNtJrbSY0ZY0mkIaIItkr5lhLf9XQfZVMYWBJsJ9EQex62aWPZNr4Mo9ZfwsAPAzzPx3YiUeY3BK7veVHbLSlJ2Anq9Tp+EGBbDkhwazWqtSqGYZBMJvA8n0wmw1ve8hZmzpyObVts2LCZdWvXMTg4yPDwMIYwMC2T0I/EaeAHoCPEEsMQ+H5AIpGgVqtpV3THcXBdF8/zSDgWstET2zAtko7NIe84lMLAMKVSCdO06O7rperW8cMQx3Ew7TSe79Pe1k4YBjgJKxKeMgQRiT7btltSty3L0unh6j6pVHs1oSAb2QSWZeGHQaNlGcBYKndzynkQBJiGQeDLlnvcHJFW4ljtW5nVqUh6c7S6ub1Ya/r/uImZJnM9XXdvGBhGFEGXYcDcuXN49ulno21CiWEaOkVcIaXE8zxqtdqE8WazWRKJhH6/qtKEWq1GvV5vuYbNEfnxPgTNY25Ou4/Z8dTSdV1XPR7TNcnk0wBU2qq0DWYZnjVKLe0S2JEzuJfw8V7GfKnSXiM0JIO7jURtbZpfy9VAQrqRPpnOp0h2lqll39wt4EpdFUQo9PVWEcW+Vd1x9OtNSCgkm+cPApAsJrHrFnbd0pkOgRkwMHcYN+nhJX1EKHCq9jYfR6G3hAgElfbJo9UStvhaTExMTMzOw5QW2pFwdAiaXKK1AZZordluFiOGYWBYJtIw8BupzZZp4hgWhCG+5yH9gKrvYxkmo8UCtm2Ty+UicQtIEUbp55ZFGELYiKT7Dbdu04zSlt16Hd83kUFA4Hp41TrJZAJpGLS3t+O6dXJtGQ55x9uZOXMmYRjyzDNPs379euo1H7fqIYMQQomVsAi8KM3cNkwQYDdc1MHQ0VMV0VbC0rZtarUayWSSVNKhUi5GkXXTwvM9LEOS6ujASmewDJMQgWknMFFO7B6ZTIZyudhIpTbIpFONCKxPEPgtaeGjo6NaIGcyGR1VV9TrdTKZDI7jkM/nSSaT2IloMiCK9raKRRWhjoSzp++ziuiqc1WR3ea2aM2p482iWl2b8ensavtmse37Pr7v4yRtHQk3TACTwcEBRvPDJJMZLMuiVqthWmMTP6qG3/M8aESsm8enxHKlUqFQKGiBrV43TZNEIqFTxtXEhOu6VKvVKFW+XtfXqzk6P1mkO2bHEdgBVt2imqvRu6aLWsYFIcmOpKmnPDbNH6BzYweV9irFrnKL0VLlVaSHilBQy9Tp2tjOqresp2tDO23DWdxEtO9oHSOSj6F47b1/dzGkkAzMGSZZdsj3luKS1zcpA7OHaRvM0rM2EtWq/CI0Qwo9JfK9Jaa/1NOSqi0NST2zfSarpCnjtPCYmJhdkmXLlvHFL37xVZU4CiG47LLLWLZs2fYf2HZgSgttTVP7LvWzJEQiMBrRURHlcTdqtAWe7yOJ0qdFY5swDAldD9OyQDbMvIQg29aGROKHIaZhYJkGgYCQEN8PCUIfOxH1v0wYVrTvUCIsg2QqhSkkiUwaQ1RxkgmEMGhv72D6jBnMmz8Pw4BiscQTf3yC/k39jWhxtCxppzBtu5EabpBIWBiGIAwDTMukVnNxHJsgGOvd3RzBtW2bQqGge4eHjSi1W4+cuhO2gx9GvblNR+B7Ab4fkEqnENLA8z0wASSmYRA2xGutXieVdKjVKjod2/d9qtVqNCHR5DAO6Lri5vZeANOmTaNWq+E11UqbZiQoleB1XbdRny0JPB/LiMS6MgVT5zXe5bw5xVqJ8i0ZiDWnjStx3nwOkdP5mFiHaP/1uovvB1iWycxZM1m+fAVqfqfFFC4cm4BRIl85rzdHn5vblqljKaFfrVb1OaixmqZJe3v7BCNAy7KoVCqv+9GK2baU26uEVsCGvTbT0d9GdiSNm/QikzMDhnZrtNZ6DcHUzg3tVDqqeAmfwAmQquWPiOoU7aqF7wRk8ikM34hSVGNAQC1bp5at09nfhpeIM0HebPi2DxKGZ47St6qHetplZMZoNBmmELB+4aYt7yRmp6aWqeusoZipydNPP83ll1/Offfdx+DgIN3d3Rx11FF87nOfY999993Rw3tTsHnzZr7xjW9w9913s3LlSnzfZ7fdduPwww/nzDPP5LDDDtvRQ9zpmNJCO+pJLTHFmFiWYRh9V4FRGdUvm5YZiUnTBMtENNVuAxgiMi6TQOgHWpDW63WcZDJK+3VdAiGwsBG2SRgEWKbAtCwCQMoQSxqkU0l8P8C2LKQMCb060pBkskn2XLg33d3ddLZ1Mjg4xNo1a9m8aTPFYpFKpaKFVhAEUVsqJCE0apjBaNQtWw2hZpogpaHTsg3D0KnZal+ZTIYwDKlWq1EP7FBgGI1a31AgJQhDYhg20rYIwxp+EGKZYNkmUoDrutH5Gg0DOBFFehOJBL7v43kelmWRTqd1yzRVh51IJKhUKjq9XKU/K4Hpui5+GCB0X3IDIQwdzY6iwB5h6GMIA8OwWvaj9jXePVxFq1V5gRKwMBb9VbXR49Owm2vCQZnSSJ2poER44EPgR2nqXd1dmKtW6x7oQRBEpnhG1Iu7ef/Nzubjnc6bJ0uUY7s6t2ZU3/fxglodo1wuv84nLGZbY7sWnpCERO/DzfOGWiNiryNbudpWw3d8BuYOY1dtEmWn5XWnbhNaIUYQi+wJNK77yIwCHRvbduxYYt4wJJJidxmn4eJv+iZDs0Z067sJxNUEU5bNc4aZ95dUXBIyRfnxj3/MqaeeSldXF2eeeSbz589n1apVfPe73+WOO+7gBz/4Ae9973t39DB3aR577DGOP/54isUiH/zgBzn33HNJJBKsXLmSn/zkJ9x444088MADvOtd73rFff3Lv/wL//zP//wGjHrHM7WFNgLLNKPexgIwIoOyUEoM0RAmUiAwdFsrGKvtjlo1jbXv8j0f6fvYpqWjtMq4C9DRyLrrYgobKWm4RoOZsMdSkiUQRpHhZCJJIpVjj913Z+aMmWSybWzcsIEHH3gQhGCkkMdrmJul02nq9XqLGIv+OSYEVTRUiT1FIpEgkUhoAZhMJnUUN5VKAei6bQOwLFvXL6sIrWVZFEZGcBIJREOURr3BoxR5XwINQViv15H4JJNJHTlXpmWqDlmlPDdH0lWdsnIoD4KAWq2G1RTxFiKKECeTycgwjEjw+l6IMMci067r6nsCaBMzVZ+trpeqE1djbE4zV/dVlRwo4e26ro6Yq3uhhHtz9FlKGTnLg74WEEww4Wvut67Op/k+q+MqmtPc1fbN937sPdyaIt4crW9pLRaz3ZCvso1aspyg2FXBT0TP7cjM/DYdR7VtzJAptAICO2gZm0pDLfTGInsyMqMpAiuk0Feka2PcU3tXJ2qNBUOzRklUHNyUS/A6+2LHxMRse1asWMFHPvIRFixYwIMPPkhvb69+7R/+4R84/PDD+chHPsJTTz3FggULduBId11GRkY46aSTsCyLP//5zyxatKjl9a985Sv84Ac/0HpjS5TLZTKZjC6DfDMwpT+J24bZcPeOotFBGCINgTCbon+RvbcWQyrSKvXPkiCQeJ5PGEb12n7gUygUdKRQ1Qin02ktXIWIHMQNw8CxbYxARjXeUuLW6qRTSab39fI3x7ybvzn2WObOncvg0CAP3H8fTzzxBNVqhaGhIUrlMpVKRRtfKeGpDLDUaTRHQ+v1OsPDw1qgqfOpVCotolKZk6mvjo4OHMchmUphGIJEIkE6nW684U2kDOnu7iaRSEQmbk2vRwZgQl/DVCpFLpfTKem1Wg3P8ygWIxfUtrY2ksmkbu+lsgMqlQqJRIKhoaGoRVmjDVkmm9XC0DRNbd7WXGOtHkrVD1uJZoU6T3W/lJO72qZer7cYlI0Xwup1Ze7WHDFX118JZtu2ddZAvVbTgt+27TFDssa4mg37JqtHUdupdZRIb069V+MEdCq5Eucq2j0+JT5u7/XGMDBnmFq2zuq3bGDNvhtYtf96vIRP/+4DjMzIs2r/9azafz1r9tn4hhkYBXbIpnlDrNp/Pev36n9DjjnVqbTVqKXrO3oYMdsZicS3AgZnj7Bqv/WEZki1rRaL7F2c0ArZPG9oRw8j5jVwxRVXUKlUuP7661tENkBPTw/f+c53KJfLfP3rX295bf369Zx55pnMnDmTRCLB/Pnz+eQnP4nrjmWRjY6OcuGFFzJv3jwSiQS77bYbH/3oRxkcjEwRb7zxRoQQrFq1qmXf999/P0II7r//fr3syCOP5C1veQuPP/44hx56KKlUivnz53Pddde1bOu6LpdeeimLFy+mvb2dTCbD4Ycfzn333dey3qpVqxBC8G//9m9cf/317L777iQSCd72trfxhz/8YcJ1eu655zjllFPo7e0llUqxcOFCPv/5zwNw3333IYTgf/7nfyZsd+uttyKE4OGHH97CHYDrrruOjRs3ctVVV00Q2RB9nj711FN529veppctW7YMIQTPPPMMp512Gp2dnTq1XL3WTL1e58ILL6S3t5dcLseJJ57IunXrtjimqcKUnk6IRFOI69ZBCAIjEjIJx9H9i6NIdkN0CBFlk+uIn0kYRJXctu1AGJByEtSqVXKdOcrlcouRV+TKbVKtVTEdG8u2wJNRlBdASlJOkt7eXvbdd2/6+noYHR3lhedfYMVLL4GUVMpVTNPCMCxo1NhaRnQbRkZGyWQyLQZdUkXriczflAC3LItqtarfqKZpRmnuDYfxQqFANpvVPbWTyWQjAixw6y61mksqldIRY9OIUuxD18N2HETjeCqKigRDGGA2orFILQ5VXbYQQgtndd3UuCzLolwua6GbTqe1ME6n01TKZaSgkYKewPM8LbQt04xapzWEdXP6tvpqrgVX10RFzMc70quIthK+ap3mFluWZen66Oi9YoCPrvV3XU+3dSuVyni+RyKZIJNJU6tXoh7tYdgoSQijlnA6PVwCIipzEGMZFsIQCGlgNiaOFFGCRGsrMiEi13ypUuEbXgM6Sk4c0X6jkEbUascIBMlKgmJ3mWpbjUrbNmz781rGZcpXHW2Pie4jQHI0uYNHErO9qGZruEmPwTkjO3ooMW80IjK2i5l63HXXXcybN4/DDz980tff9a53MW/ePO6++269bMOGDbz97W9ndHSUT3ziEyxatIj169dzxx13UKlUcByHUqnE4YcfzrPPPssZZ5zBQQcdxODgIHfeeSfr1q2jp6dnq8c6MjLCe97zHk455RROPfVUfvjDH/LJT34Sx3E444wzACgUCvzXf/0Xp556KmeffTbFYpHvfve7LFmyhMcee4wDDzywZZ+33norxWKRc845ByEEX//61/n7v/97XnrpJe1/9NRTT3H44Ydj2zaf+MQnmDdvHitWrOCuu+7i//7f/8uRRx7J7NmzueWWWyak2N9yyy3svvvuvPOd73zZe5BKpfj7v//7rb4m73//+9lzzz356le/+rIBoLPOOoubb76Z0047jUMPPZR7772X448/fquPt7MxpYX2S6vWRu2nGu7hfugDklQqzYxpfVi2jRRGFImVRFHvwMcwDUzTitK/8TFtA0HY6JXtkUgktAO2in5alglEAs9yLEIBoe9rI7ZUMklvTw977LE73T09CAQvPLeC5cuXMzw8jOe7WKaF7wcEfki5WsD1fZKpFI6dbDhHR/XAluU0juuTTKaoVqs6HaNer+sU7eae0Ep0O46jBbQS60EQ4LpudE6miTAEdc+lra2dMPSRROnkpmlQrXo6HdpRaR2NaHIQ+CCiNHOjkT5uWRZdXV06Uq3Ss1UbL4jEabVa1W2/YCx1OggCXb8tBTq93HEcarUatm0gQx/TEASNlG4lslXUWV2PIIham6na72aHb7VPtUxF6ZsN03TkvrG9bdstxm3VSp1kKokpBDKQCGESBjA4OILru6Szado7OxgaGcILgqiftjJYI6qxVxF+YYhG7b2BMBp9r2UIhiAIo5RG9ftIIglkCH4YvXcNMxJQkV7XmQYyuthjPdytuGfoG4Vdt6hl63ip6L0yODv+ID9VsetT+s9izCTUUy6lzgrF7lIcuY6JmULk83k2bNjA3/3d373sevvvvz933nknxWKRXC7HJZdcQn9/P48++igHH3ywXu9LX/qSFntXXHEFf/3rX/nxj3/cIj7/5V/+5TVnBG7YsIF///d/56KLLgLgnHPO4ZBDDuGSSy7hIx/5CLZt09nZyapVqxomuxFnn302ixYt4j/+4z/47ne/27LPNWvW8OKLL9LZGXVEWLhwIX/3d3/HL3/5S0444QQAPvOZzyCl5IknnmDOnDl623/9138Fos+YH/7wh/nGN75BPp+nvT0qjxoYGOBXv/qVjnxvieeee46FCxdqYa8oFou68w1AKpUik8m0rHPAAQdw6623vuz+n3zySW6++WY+9alP8e1vfxuAT3/603zoQx/iqaeeetltd3a2echLpQM0fzWnGdRqNT796U/T3d1NNpvl5JNPZtOm1+bk2TdtJu1tHVE0GkE63U7CydLW3oOZyGI6GaRhU637CNMGbMLQQmDjuZJq1SUMJWEQ9cUOw4DA9wmD1pRdJbxUirZpmI3XJZZl0tPdzSFvfzuHHnoos2fPZmhwiPvvv5+HH36EkZHRKL1ZCiqVKkIYeJ6v+1uXS2VM08K2E7S1teP7UW13GEocJ9GSGj7e1KtUKkX1zZZFW1tk4KNSiZv7LKu0aCklruchZdQWrFarR+2oGlHrSqVMNpfR6fCO45BMJrX4tR2LRMKmVqtiGFHbMCWsleBVadBKCKs67VQq1ZLKDmPtq1QE3GykQDuOrdtZBYEPRG7vqu7c8zx9P1SUX1GtVqlWq/p11RIrmUy2pFxXq1XK5XKLgZpKRx/vOq6wbTvyA0BgGCZBECJDSbFYJJAhhgm2Y1Kt1fADP+q1bZpIIJAhQRhSc+t4gY9ERgZ3jZhjIEPl3ReJaiGQAkKkdsgPkfhBgOt7+EGgtwnCcMzIT0p9LNXT/bXyRj7LOzPyFf4DIvOk2GNnl6DYvWvVsL9Zn2P1fPpWwKZ5g4xOL8QiOyZmiqHKEXO53Muup14vFAqEYchPfvITli5d2iKyFSrr8Uc/+hEHHHDApCZq49OaXy2WZXHOOefonx3H4ZxzzmHz5s08/vjjQJTpqUR2GIYMDw/j+z4HH3wwTzzxxIR9fuADH9AiG9CR/ZdeegmIxPKDDz7IGWec0SKyx5/HRz/6Uer1OnfccYdedtttt+H7Ph/+8Idf9rxUlux4PvKRj9Db26u//umf/mnCOueee+7L7hvgZz/7GQDnn39+y/ILLrjgFbfd2dkuU/f77rsvv/nNb8YO0lTwfuGFF3L33Xdz++23097eznnnncff//3f89BDD231cV544QVybVks2yKbzRFKi9nz59Pd3Y0vAwI/YM70HhLJBG7NxQgE+XwBYTTcyZEIJEHo4bk1DGxcanhhgF8fE2nNdbC+70dma7ZJKpVm3332Ye+9F+HWXP0gRUIv0GnTIHVUWTmCJ5MpDATdM2dS96KaY1X/XSgUaGtr06Kvs7OTSqWiI7EqWpxMRpHwWq1GR0eH7qFdLpdJpVLU63W9ntq/4ziYphm9XqkTBC5+UCebziClpFyu4Pshvb29uLWqdr4GEMLQJmdKuCeTSTzPI51O6wi1Gp8S0K7r0tbWRiKR0L2iE4kEtVoNx3GoVqtRqrZpkrJs8oUijhNF6x0ngQx8nbav+nL39fURBAGlUol0Oq0j+Eo0O47TkhLe7MSuIu1BEFCv1/XEgBq71XB2VxF7VROu1pMyEtd9fX3RpEYYYJkmrltDygDTNKhUKpimSTqdxmy4qRuGoa+TmphQWQeK5lrw5lZjKuV+shrz5trsbV2X/UY9yzsroREyNGuUdD7F8KxRPGdi6yeVchyzazDtpd5XXmmK8WZ7jkMRMjwzT6EnmjTRre5i3tSEhiQwQswwLquaKigBrQT3lmgW5AMDAxQKBd7ylre87DYrVqzg5JNP3jYDbTBz5swJEd299toLiGqu3/GOdwBw00038e///u8899xzLSWq8+fPn7DP8eJZie6RkShzTgnuVzrfRYsW8ba3vY1bbrmFM888E4jSxt/xjnewxx57vOy2uVyOUmniJPSXvvQlzjvvPACOPfbYSbed7JzGs3r1agzDYPfdd29ZvnDhwlfcdmdnuwhty7KYPn36hOX5fJ7vfve73HrrrRx99NEAfO9732PvvffmkUce0W/AV0sQuHiBh5N0cD2Pto4sheIoheIoqVQSy7YZHtqM7/s4lk1bNhdFkhMWxWKRZCJJKpnC931yuSxt2Qz4AZsGBxkeHtZCx2/0eIbI3buto53Z8+ayaK+9QMLKlatYvXIVGzZs0GneSsRF4jnZENdJLapko093tVLFl0KLO/VLRQnC8W7Z6oFsdvAOgoD+/n49xlQqRRiGeJ6nxWGzYFOiMZVKUqn4JBLR9bNtm3QmQ6lUZWR4mDCI2nepVByvyXwskUjoY6uIdjqd1iYTysxLjV8JYpU+rtLcATKZjN6HF3gtRmOe65JKJki0OzrNW62vXMeVyFbbNUellWBVddlCCD0RoFJglDhVbdCUc7nKHGh2VVeR8Ww2S7FYjMR/NoNhmhhmSCqd1JF6FW0f736u7l+zUZsS0eraqQkC9XPzPWx2LG/eTp2L+jl4nRFteOOe5Z0NiaTcUaWWrVPoLVHoKdG1oYPhWaM7emgx25lNuw8w78nddvQwtilvludYIim3V6ln6+SnvfwH85g3H7VcnUJfkc7+uKvAVKG9vZ0ZM2a8YvrwU089xaxZs2hra6Na3Xamo1uKbL+ez1c333wzp59+OieddBIXX3wxfX19mKbJ5ZdfzooVKyas3xyMaea1BFY++tGP8g//8A+sW7eOer3OI488wre+9a1X3G7RokU8+eSTLZ+dIUrZfyVeyYl8V2e7TOu9+OKLzJw5kwULFvChD32INWvWAPD444/jeR7HHHOMXnfRokXMmTPnZd3u6vU6hUKh5Qtgt9mzmDt3LgsWLGDuvDlkshlSKZtcNkHCMpBeHcsQpJwEAokf1KlUiwwObqZaLTM8OMDgpo0MDw6yfv0Glr+4gjXr1lOve4QhuK4X9eA2TQxT0NvXywFvPZBD3vlO9txzL1a+tJL777ufPzz6GKtXrwEEpmlRqYw95IZhNMSnaEr7Hns4LMvEsgxo9NXN5/PaPVwJaSUklUmXSquGsVRxlZqdSqUwDIN6va5TpFV6uErjVuJU2euHQUAYBCQSSQI/oD2Xw/c9nZqdTKZIJBxt/qWi6irtWwlnJUyb26E5joPjOBiGQalUwnVdHWFWEe0gCKg1JiVCP6qzF0gcy8Bs9EpX4rJcLlOtVnX6eLlcbhGb6pdAc9q8Eu1qckJF1NPptBbFze3J1GRA87VWNfHNdd9KwCMEpjCQQtDWniWdTulzV+epJl3U9kp0N6enN7uMN/cFb3ZHJ4z6xhtCYAiBKQQGY1+mEIioxHubZDK/Uc/yzsjmuUPk+4pkRlJYnhmL7Jgpy5vlOS70lNg8f5DRWGTHxOwynHDCCaxcuZLf/e53k77+29/+llWrVul65d7eXtra2vjrX//6svvdfffdX3EdFT0eHR1tWb569epJ19+wYQPlcrll2QsvvADAvHnzALjjjjtYsGABP/7xj/nIRz7CkiVLOOaYY7Q58daiWpq90rkAfPCDH8Q0Tb7//e9zyy23YNs2H/jAB15xuxNOOIFqtTqpa/m2YO7cuYRhOGGi4fnnn98ux3sj2eZC+5BDDuHGG2/kF7/4Bddeey0rV67k8MMPp1gs0t/fj+M4dHR0tGwzbdo0+vu33ILm8ssvp729XX/Nnj0bgPb2TtpzbRBKZBBiCjBkQMo2SJgmKcfGMQwcyyBhmdiGQAY+ft3FNk0cUyBkgGkQGVxJSbVWo16vEYZBQxALcm1tvPWgt/KuIw5n0b77YBgmf3jsDzzx+J/o39iPEIauP1Y9rFWqciKRwDQtarUaYSgZHo5SPVREuF6vUatVkDLQAjWXy2Gapm6RJYTQqeClUklHc8MwJJfLkUgktFhTrbGa21Apwa3Et0rp1unJDWE5MjyKW3ep12skGgI5qluOhHCzQFZiVYlalRKdy+V0vbNK5VGRbzURAGMt00ZGRigUClrEp9NpJBLTACFDpB9Qq9aoVqs6Eq9duoXQLu1KlKr+3KruXE1YKPGsronaTyaT0aJWvd7sTq7aljULeRWZ1/XlbiT6QwGpTBLTMnUaupqQUIJZTXao46j3zVg/c1rSypuN3dQ6MgwhlIR+VB4R+L7+8j0f3/MIPL8xaTE1nuU3ildTbz2eesYliN1qY6You+Jz3Ix6dgvdJYZmjSLjrOCYlyHfU4rb+E0xLr74YlKpFOeccw5DQ60t2oaHhzn33HNJp9NcfPHFQBTgOumkk7jrrrv44x//OGF/KqBx8skn8+STT04qHtU6KpX5wQcf1K8FQcD1118/6Vh93+c73/mO/tl1Xb7zne/Q29vL4sWLgbEIdXNE+tFHH33Zyc2Xo7e3l3e9613ccMMNehJ1/Hkoenp6OO6447j55pu55ZZb+Nu//dtX5a7+yU9+kmnTpnHhhRfqiYOXO87WctxxxwFw9dVXtyy/6qqrXtd+dwa2eeq4ulgQpRQccsghzJ07lx/+8IevOX3gkksu0Q5+EBXlqz/sOk1YRnXXlgFevY5jC2QQkBCRc3jg+4QyAM8jbZlYQmDYFpV6DSvpRH2jnUTDHdsgm83Q3t7OHnvszoFvPRA/iNKAH7zvPlavXksikSBoCJlCoRC1FUskdORVRWodxxlz1ZaSrq4uXW8ciT8bQ4ydRyKR1DXLlUpF10ebpkl3d3fUt7khuA3DoL29XZt/qZptw4hqqVV7L9u2qdfrula4XC7T19fHyOAI2WwK0wJCSU9vL5EPl6BcLmsh73lRZDuRsIBIII6OjmrBqFqNKfGtemurunT1AKq652QyqYVmIpGIIsWqbjmIjOJ838dv2jYIAl2f3RxRL5VKdHR06J7nSpCqSQ+VRq/2od4zKtV8dHQUy7L0eqqXtlrfsixd597cJ1tNisiod1zU4iyZJmHZZFIpConovaTEdnMPbNd1dXRdRc2bxbw6h+a0d93GzA9aMgjG/3Jrjn6L1xnTfqOf5TcCN+XRv/sAgdXISggN2jfn8BI+7QNZjKDxKb3p0vnO60/Bj4nZUeyKz7HCt318O2DDXpuQ2yqNJ2aXJnCC2FdjirHnnnty00038aEPfYj99tuPM888k/nz57Nq1Sq++93vMjg4yPe///2W+t6vfvWr/OpXv+KII47gE5/4BHvvvTcbN27k9ttv53e/+x0dHR1cfPHF3HHHHbz//e/njDPOYPHixQwPD3PnnXdy3XXXccABB7Dvvvvyjne8g0suuYTh4WG6urr4wQ9+oD8DjmfmzJl87WtfY9WqVey1117cdttt/PnPf+b666/XmagnnHCCdjo//vjjWblyJddddx377LPPpHXQr4arr76aww47jIMOOohPfOIT+vrcfffd/PnPf25Z96Mf/Sjve9/7APjyl7/8qvbf1dXF//zP/7B06VIOOOAAPvjBD/K2t70N27ZZu3Ytt99+OzCxnvzVcuCBB3LqqadyzTXXkM/nOfTQQ7nnnntYvnz5a9rfzsR272PS0dHBXnvtxfLlyzn22GNxXZfR0dGWGfRNmzZNWj+mSCQSJBKJCctbUmqJekE7loVpCITqCx36GIAwBaYByUTkaK2jqCLEMKK65XqxhmkY9PRMZ/bs3Vi4cCHpdJrNm/t5cflyVqxYQa1Sh0aarqrnVZFTFQHNZrM6GlmpVHBdVwsjZbDlui7ZbJZSuUxAJNwcx8CyAh0pbXYlVD2qVXRTRa4rlUpLtNXzPBzHIZPJYNs2+Xxet6nKZDK69jwS0gEgqVXrCKBW83DshI5IK8GbSqUplQrUajWEQItp3/fp6OjQpmvj07WVQDRNk2w2q1tzqfMHdO00RNcr4STwGq3KlKhWKdtKlFarVfL5PIlEAt/3GRkZ0espcdtc/6wMxtTY1CSHyhRoFs6KZuM5FWludn+3bXtsEkFG7wPCyJFefdpTs5bN10Wdg9p/c0/vZldg1Utdba+Wieb+2tvJAG1LbM9n+Y0iUXXoXdPFwJxhnIqDl/Bw0y5tA1k27jFAaMWR6zc76dH0jh7CdmVXeI4DK6DcViXfV8RNe6+8QUxMzJTm/e9/P4sWLeLyyy/X4rq7u5ujjjqKz33ucxOMwGbNmsWjjz7KF77wBW655RYKhQKzZs3iuOOOI52Ofsdns1l++9vfctlll/E///M/3HTTTfT19fHud7+b3XYb8+m45ZZbOOecc/jXf/1XOjo6OPPMMznqqKMmNf/q7Ozkpptu4jOf+Qz/+Z//ybRp0/jWt77F2Wefrdc5/fTT6e/v5zvf+Q6//OUv2Weffbj55pu5/fbbuf/++1/T9TnggAN45JFH+MIXvsC1115LrVZj7ty5nHLKKRPWXbp0KZ2dnYRhyIknnviqj/HOd76Tv/71r3zjG9/g7rvv5rbbbiMMQ2bNmsVhhx3G9ddfv8Ve56+GG264gd7eXm655RZ+8pOfcPTRR3P33Xfv0IypbYGQ2/lTeqlUYs6cOSxbtoyPfexj9Pb28v3vf187/T3//PMsWrSIhx9++FUbrxQKBdrb2/n8pZeTTCYbLbcESccG6SNCiTCMqE2XEFiW3Yhoh4RhoxY5CDANAULihSFCQEd7O3vttZAFC+bT3t5OsVjkpZdeYsWKFQwMDkYRxRBsy2lps6XEpIqiqkitMgRzXVeLQqDFrCuRTFBvRDlTqZwWXEpIR+2txoSW73uYpqWj17ZtAYJaLWodptKaC4WCTutW6exjAjRyF8+lswghcb0qtmlTrdYxDUs7iycSiUYkOUutVqFcKWLbFt3d3S0tttLptO45rtLTm2uM8/k8vb29Le7djuNQKpV0tNmybUIZjbNUrZB2kpiNiK0SqpZlUSgUcBxHm4ylUilKpZKuBVfRY5UJoKLbquZaRdQBbXTX3HIMxiZwlKBW97ZWq+n7rtLRTdMkkCH7HbiQvRYtwJDwwAOPsnrNOh3hHzM2ExiG0OZ6KjLd3Otb0XzezSZphBJBq8hu/ndzTXe1UuGf/uli8vm8bv/2etiez/Jdd901walze+A5HiPTC9h1m8D2caoO5fYqUkhquVqcdhpDbjBD75qu150Rsi0pl8ssXbp0mzzLU/05Hpo5ipv0qHRsO8OjmDcXM1/oI1VKvuHH3ZbPcczOx5FHHsng4OCrqpXekfi+z8yZM1m6dOmEnt0x255tHtH+x3/8R5YuXcrcuXPZsGEDl112GaZpcuqpp9Le3s6ZZ57JRRddRFdXF21tbXzmM5/hne9852tyN5WBi0lDoNkpkI0WTaaNIQ3AwPM9al70B1kYAimhXCxjpxxcLyDh2KTTafbdZ1/mzJ4T1TwnE7zwwov85S9/wW3UMhuY1D0Xy7S1kFRRVxU9VTXL9Xq9pe2WEmvFYlG36lI1zZVqFScdOaSn0klGR0YIQkkykW70YA4xDHRate3YgKDWaBvmBVG03LSjSHEgPSqlIqlMimKhgNGImKYyCQLp4QeRAHUSJqYZRWIzqTTlcpl6rUYu1053dzf5fJ5qtUo2myUI6xgmdHZ26PTvSqXSYnKWzWa1MIVIFFarVRzHoa+vD9/39Xkrodqcdg6RUHSFS61YJtERTY6o1OvR0dEJgtr3fUZHR6lWq7S3t5NOpwmCQKeRqz7eavJD1a6rCLZpmtq0QtV3q3pyJdiVIZ2aHFCiW93zZDJFUK+w9qWV7Lv37viBx6zpM1i7ZgOBlCANDGFQc12EYSBE1C272QVdRbqjsgWzxRldtR9TxxWNEge17fhe3y1ifQs1x6+WN/JZfqMI7BApJF7CI5NPMTQzT2AFhHF/3ZgG5c4KvWu6dvQwthlT/TmWRO6OpY4KI9PzeAl/O9m4xsTExOz6/OQnP2FgYICPfvSjO3oobwq2udBet24dp556KkNDQ/T29nLYYYfxyCOP0Nsb9Sa98sorMQyDk08+mXq9zpIlS7jmmmte07Esy8QwBDIECHW6s0RSq1cbUVYPz/fINDVa990K5XKFnr5e9t57EQcfvBiBhVcPWL9+PX/+858ZGRkhJBJa9Vod27KwLRvP83VEdWRkhI6ODp3irEzGAF0rncvlqFarOs1ORWSVuAwCn0q5QjKRoDA6ilev43k+CcvGth0s08at13BsG9My8f0AGUpSCachZsvk2tup12oMj4yQSibJZLNUymWymQyObTOazzMyNIRpGHR1d2uzLdM0MIRDrVYjmUwBUbpyoVBgeHiYadOmkUgkGB4ZIJvNaOFnGIaOApumqQ3bHMdhZGSEXC7HyMiIbm6vBKu6VoZhNFL3G1H9xgSF67pUKxXa2tqwTJOhoSFmz55NuVzGsizS6TT1eh3XdXU6vnJbdxyH4eFhcrmcFvuFQoFMJkM6nda17dlsVtfOq3RzQEe2q9Vqy31UUeLBwUHd/kv1865Wq5HbrgipVkOsUCBC6GpvJ5lI4iSiaxKl3BukkinqbgXbjur2VUq867rU63UymYy+tioir2rD9eQOQl/7Zkf18dHwbcEb+SxvSwIzyhBQono8pa4K3es7GJgzTGCFcV1nzC7NVH2OATzbJ4hrsGNiYmJeN48++ihPPfUUX/7yl3nrW9/KEUccsaOH9KZgmwvtH/zgBy/7ejKZ5Nvf/jbf/va3X/exmqN5utUSUfTXcSJX6WTCpi0XRY/rvkc2m6W7K8u0WdOYN38+M2fOxPd9Vq1cyeqV61izZk2jXtohDJQTuNQ10tlsTqccZzIZXXPdHFVUNbiGYWjnbRUZVa9VKhV6enoQdUEoQwLPx3PdqG0TUC2XyfU1hF0yydDQEI7t0NHRTqlUwWvU/NbrNUYbqceGlFiGQa1cprenh9GRUaRh0t3RgTAMyuUyQwMDUe215+M6Dl1dXdr1OpvNghQtdc3FYpH29jZqtRqdnZ0Ui0Vda93W1qYjym1tbbqNWFTXnWrcB0enWasUaiXMfd/X105FdZVIVAZyhUJBp6hXq1XWr1/PnnvuCaAnN5TYbm9vZ3R0lGQySTqd1uNV13x8BoIS1SoynM1myWazOiMhl8tpQZzL5XAcR6f9VyoVbagmCZASLAkCQSYdOaG7dVfXZJdKJYLA19ejra1NR95VOroaX6VS0eemzj2VSkXRdt8DaeqaeHVdx9dzA6879fWNfJa3JeX2KtW2GtVcDSkgO5KmmquRKCcwfQMEDO02uqOHGRPzhjDVnmOJpNATGQIVu8rUs+4OHlFMTEzM1Ofaa6/l5ptv5sADD+TGG2/c0cN507DdzdC2J4HvR32uDQM11R3VXhsEoY9pWiRsE8swqHsu6XSKefPmMm/uHDp7u0kkk/T3b2L5i8vZsH4j5VKVasOIS6VIW7ZF2IjWqrpp1YNaiRoV5VSoemIpJel0mmKxqNtpKUGlaqlzuRyFQkGP27ZtLMPANC2QIfV6lUQiSTqZwkk4DA0OkUwmqZQjAZ9KpQllqF3FZRjVJ9cqVRzHxvc8qpUKCEGlXI7OQxiIRs2yavvl+wGGUaW9rUMbtSlRattZbTSm2mQlEgndw1qlwSvhqRzIVdRYRYVVrfrAwEBL+rjneVrUqmh7GIaUSiW9X+XortKq1bVUAtl1XcrlMslkklQqpScDVGq7qjlXUXk1maDSxVVqfxiGOgKuJlPUBIE6fzVZAFGv9Uw2QyoBCIEwDBzH0CngyjDNsqJa+mhSIdDCX5UaqOi0MmBT56jQr5vRI6ui4er91oyu2X6dqeNTmVJXNInhVGwyoykqbVVCK6DUVX6FLWNiYnYkwzPyjE4vxNHrmO1CZiSNXbN39DC2K9/+9re54oor6O/v54ADDuA//uM/ePvb376jh7XL81qNzN4obrzxxlhg7wCmtNA2TBMhQAioVatIVJ9hiSEEtm0Ckp6+Xjo6Oth90ULa2tpwnARDo8P8/uHHeP65F/FcN4ouN+qK29raCUOpXcUNYWhBrcy/lDmWEpMqkqvEqXLaVqJTtYaK+mlHBmojIyMkEglc19VR2FqtRnt7FO3s79/YiKxH42hra0NmZUuP7Hw+r1On1Tiy2SwDjci1MioDtNNiLpfTqdRKsGUyWYrFIsVSgXq9RltbO65Xa6RkD5HNZrVbeLlc1oK6vb0d3/ep1Wo6dV85pqu6bFUTLRttsJT5V7VaJZVK6fZoKvIdtRJL6Ii0MlirVqv09fXp7dVyKSXlclm7vavJkmKxiGFEBnFKfKsJEzUxIYSgs7OTarXK0NCQ7gOuIuTqfJUYVkJctQELwpBarUYqlSFAIA0wrMjVncbkizJRQ4bUalU8z43eY0GI1xDiyUQS2Xh/+b6PAN2fPQwDqpWo7Zxj2dpQDtDvhWbTNMXOZOb0RiKkgKgUns7+djbNGyK0Q/xE3KYrJmZnQyKRhqTSVmNo1iiB7cciO2a7UcvW8B0fyzdfeeUpyG233cZFF13EddddxyGHHMJVV13FkiVLeP755+nr69vRw4uJedMxpYV2Np1CSAPf9Uml03i+h20YmMIgnUnjJEymTetj//33p6evj7oXtTH563PP89RTf8F3PQI3YP78+Xiex2BxiM7OLh3Rbm4q77oeyv3b8zxc19WiDNCRXiUChRBR/S5oASilpK+vj02bNpFIJBqR5KhFVqlUolQqYVkWpVKZ4eFh2tvbG/W9Qrtrp9Pphlu3JAyldq7MZDKUy2VGR0dpb2/XLcKy2ayO9ELkepnP58nlohT44eHhRs14hUwmjeu6mKbAdasYBvi+q43ChoaGtJmZErbNdc3JZJJCoUAikdCiv1QqkclktIGYmhAQQuh089mzZ+ua90wmoyPLUkq9rVof0O7hKjNARYxVSrqaBGnuoV0ulxkcHNQTBoCeHFDHsm2bSqWir8/atWv1OeZyOcrlsm7hZtt2I/27isCgXgvwgwDTBMOQGIZEGCa1eh3DMiGU+F6ddDIJySQ1ZQBH1BKs1mjT5jgObZnsmBu6MtpTNeyer+v91XtRGb6NJ5S7psFXYAZ4SR+naiOkwHN8hBQEdvTsWa5FOp+i0l5l0/zB+EN7TMxOimf7+E7Axj02R72N42c1ZjuTzqd26Yj2N77xDc4++2w+/vGPA3Dddddx9913c8MNN/DP//zPr7h9GIZs2LBBB2RiYmImokprZ86cqf2mtsSUFtr1uks2k8O2kyAlqVQSwgDHtJgxYzqLFi1kt9mzCIKAocEhXlq9iqeffpqRfIlqtRqlY6cisyqVvq0crlXqtBJsKvXbNE1SqRQQRWR9f0z4qHZaSoimUikcx9ERbt/3Wbt2LblcTgskVe+bSqWwbZuRkRGdju37vhbpXV1dDAwM6Kixiiqr2uVyuTzmZF6pUKlUmD59unYIr9VqOrqtappLpRL5fJ5UKqXPUaVhZ7NZ7SyeSCTI5/N68kClVavJg+afVURa/ZzNZjEMFZmN0p9HRkb0+dbrdX0ugHYmV5MLnufR2dnJyMiITjWv1+tazKtr5ziOdj0fGBjQqeKjo6Pkcjmdtq4EuRLWKv1dlQV0dHToKLmKaKvov0o9V5kH5XIZwzAb995qpLZLkJKuzi6GRgp4DZMz3/eRmC3voyAISDgJHVmvVqu6zl1lGvgN53W/0QJO3bfmP4DNUe1mPK+1N/iuQmCFDO42Qvf6DqrZOm7Kw/IM8n2lHT20mJiYV6DUUcFzot9N1fYq1Vx9B48o5s2El/QJrQDT3fWs613X5fHHH+eSSy7RywzD4JhjjuHhhx+edBvlSaNYv349++yzz3Yfa0zMrsDatWtbeq5PxpQW2ul0qtGnODLdCvGYOW0GC+bNZ9r0GbTlOpCh5Llnn2XN2rVs2NRPpVKhXq1jGgaiUTOrUsCVG3YymdRCUYktZWpVqVQolaIP9Er4KbGtBJNqydRsUqVqhVOplK5fVgI1CAKKxaIW6UqIpdNpHW0dGhpiaGiIGTNmRC25MhltsqVEZrVa1a2gVLst1dNbSqnPM5fLMTg4iO/7TJ8+nUKhoNPklfmYakWmzLaU8Fdtp1Sddj6f11HrZoGojNLUdVQTAirirES4MgdT9clq8kKZo6lJAhXNbhbHtVqNjRs3MmfOHJLJpO5brcRyKpVieHhYTz60tbXpa6oErfpZTQZ4noeUEsdx9ASAMmxTdd9hGGrRLiW6FEC9J0zDpFwsYgpBwrapV6pRND9p6WwJlf2gJiXU8ZvT6mXD8K5arZJMJvU5qhR41R9c3Y83y+xzaIaEZsjwzDy1TB3TM6N08ZiYmJ2aUkeZwdkjBHE7vZgdRGAGhMau6V8yODhIEARMmzatZfm0adN47rnnJt3m8ssv54tf/OKE5eeffz7HHnvsdhlnTMxU59577+XKK68kl8u94rpTWmgjwPOrJByL3r4O3rLffvR0dpGwbAIpWblyFY8//jggyReLVOt1ajWXet2lvb2DWi1KeZZEQswQhk7DVaKyWq3qSKcSnUoEql7MSlx6nsf06dNZu3atjh6r9VXkWLmRK8GqvqtU8ubWTd3d3bo+uFarMWfOHIaGhujq6sJ1Xe1G7bqRK6sS8LZt6zryoaEh6vU6qVRKm3MpfN9n8+bNJJPJqJ1ZIyLc2dlJEASsWbMG13WZMWMGlmVRKBS04BZC6FT37u5uLfrVOvl8HiklGzZsoK+vj2w2S3t7u3bxDoKA4eFhUqmUrrFWkw+qvnvz5s10d3eTTqd1tDebzWrhrZzB1etSSjZv3qzbXY2MjNDT04NhGMycOZNyuYzrugQNN3nLsqjVanoyRKVfl0ol2tradL19c715KpXSGQyRMV4dwxBkMgks08IPPGQosYRJ1athmRYylAiBTi9Rwrw5PV453Td7AagxqnultlWR9fGO7vqx2MUFd2iG+I6Pl4yuSeDEtdcxMTszvu2zbuEmQjNEmrumyImZGqSLSWx3an/03ZZccsklXHTRRfrnQqHA7NmzefTRRznyyCPp6OjYcYOL2Wo8x4tK6awQu2ZhyF0vc2NHk8/nefTRR4FX93l7Sv+28T2X+fPns2jvRcybOw/CyIV6w+ZNPPvs8zz77LMIEaV6F4pFKpXIfMuyTOr1yDwtkAFDw0ORYHaSWtAALek0hUJBR7bT6bR2zlZCSKWdb9iwoaXvcSaToVarkcvldPRamYqpdGUVNW2OAjuOw9q1a3XaeVSXHUW6K5UKc+fOZcWKFVqAzpw5U0djPc9j06ZNuodzNpslnU4zPDysx6OMxjzPo7u7m7a2NgYGBkin01QqFTKZDIlEQgu/Uqmka9aDIKBcLtPV1aWjsbVaTYtHJSCDIKCjowMpJaVSCc/zdNq2isSqVHG1rKenh/Xr12uRW6vVdPS4r6+PjRs30tXVxfDwcJSdUK/z0ksvMTw8rNPT29ra6OjooL29XfcrVyn0lUqFrq4uOjo6GBkZ0SnrzS7enZ2dune32qeqe1cTIsotPpl0GunsPlKYyMDAMEx6p/dSXLWWUrmI73vYttUSqVfvAzU2ZdAWhqGuLVep/Cp6ryZClNmcutcvZ4g2lamnXOyajdGow/YSnn4tM5rWzuIxMdsSCVRzNQASFQcz2DVNk94I1HOrDAljYnY0+d4SmdE0qVJyRw9lm9PT04NpmmzatKll+aZNm5g+ffqk26gyu/E899xzPPnkk3Gv5SlGpb2KVbcREmxh8SZuPrPdeOqpp3j22Wdf9fpTWmgvftuBvGXft5DJZKnXXPo3bmLt2rU8/vjjJBKphoCxdI0roFOAHcfBdmxCGep0X8scMzNTQkatqwy/VP21bdskk0ktPlXts4pYVyoVqtWqFlOqtnt4eFjXJjuO0xKVrNfrtLW1adGkorS2bdPe3o7jOAwNDQHQ1tamzb+y2Syjo6PatMtxHJ367fs+XV1dbNy4Ufe+Vj3BVeq4MvdS6ejKJEydp2pDplLPy+WyTptXBm/r1q3T5mtqgkGZh6msABVpVmnOqle2qkNXUW6VKl2r1RgcHKSvrw/DMHRmgaqzVvcDolmllStX4vs+06ZNo6OjQ7cDUwZmhUKBTCZDpVLR96Narback6q/VzXTKishk8noMoJUKqVbvKkU9TAMKRVLZFPR5MS8efN4adVqHMfCssYi2c2oiRM1QWIYUUaFcnFXtfz1el2/rlLH1XmrqLzjONvzUXtD8W0fN+kRWiHl9iq2a2G5JgNzRkgXkhR641rsmO2HNCUb9xwAYPryXjKF1A4e0dTEt30G5gxTbavt6KHExIyx68xFT8BxHBYvXsw999zDSSedBESfM+655x7OO++8rdpXPp/nd7/7Hfvvvz+dnZ3bYbQx2xLVzjVVTGL4JmZgxCJ7O5DP53nkkUcYGRl51dtM6ZyCfffdh7a2dqrVGn/96zM89NDveeKJP+O6Udq3Su2VUpJo1DGn02mSySRdXV06rXt8zaxKs1ZCrq2tTQtYVcutDLRUBFfVcKveyGpfpVKJwcFBKg1X6Ww2C6Aj04CuW65WqwwODuI4jnYkz+VyWqCr1lSGYegaa5XWnMlkyGQyOu1Y9aWu1WqsXbtWp2tXq1WGh4d1+nJznXlzXblKAW9ra9P9ptVEgrpm1WqVTCbD8PAwnudpd3LVO7pcLuuIe3d3tx67cg1Xdcb5fF67f9u2raPGajKgOc3babqPpmnS2dnJ7NmzWbx4Mfvuuy9z5szB933++Mc/smHDBl1L7jgOmUwGIQS5XI56va5bo1WrVX3fy+WydmnPZrO6xnxwcJBaraaj6GO91KN7mU6l6N84AFIgJXR2dOjzUU7tamJC1c4D2q1dvWdUZkA6ndYCPJFItKSsK8d1NYGhavB3FXwnYGDOMIXuMpZrMrjbCCPTC4RmiJtyX3kHMTHbgl3nkXrDkI3/Ns8don/BYCyyY3ZKhmaNEhq7ZobFRRddxH/+539y00038eyzz/LJT36ScrmsXci3ht/97ne8+OKLk3Y1idl5kEiq2Toj0wsEZkhgB1E3ll15VmkHIKXkpZde4ne/+91WbTelI9q+J1mxYiW///3DuK7L8OBIQ3x1UyoVyWQyWJZNsVgkkUzqel8lAn3fx7QiN3AZRlFt5Q6uxFBPT4/uBa2Eqe/7WoB2dXXpyK8yFVPRWxUd7uzs1FbwyixNRa/Xr19PT08PgBbpqrWXEv9hGOpez+l0mkKhwF/+8pfG+Vk6RVpFxZXBmTLJSqfTjI6OkkgkqFQquqVYX1+fPs8wDBkZGSGXy+lo/R577EF/fz++79Pf36+jt6rGXEXja7WajsAqt/VarabTxlV9tIqY5/N5ksmkNlNTdehKTCaTSS1mVbRetRYrFqP7qlLqlRu7igbvvffeLQJ0dHQUx3FIJpM6Oq3c3MMw1M7qarKh2dSsp6dHu54rEaxSzdUEh2VFP4+Mjjb6gQsgxLQsstmsdrMXQhA23j+qTjydTuvsAzUBUSwWsW2bMAxbJhWUH4Cqyw+CQM8yq0mKXQWnYjNjRS8Am+cO072+g4G5wwDUsrHQjnljyA1lSJUmplTGbJlSZ4WBRaOEZrhLRw5jpjb1tMuu6p/5gQ98gIGBAS699FL6+/s58MAD+cUvfjHBIO3VUK/XufPOO9l///11i9iYnYt60qWaq1HsquAlPfJ90Rvb8kx613SRLMd/w7YVruvyy1/+kmKxuFXbTWmh/bO7f0m97pJKpnDrFZKJJKlUmlqtCgg83ycM0UIrDKUO93d0dFD36jqVWYZSCxwlPIvFonbgbm9vp6OjQ7eLUindKhqrouAqCqraZKkaYyV0VRRapaD39fXpiOmsWbN09Fm1kVIi2WoIt9HRUT2OTCaDbdts3ryZbDarW2mNjIzoKKk6v2nTpukJAOX2rdpEqZpxZQCWSqXwfZ+nn35aC1IV0VbbqEiz2j6bzbJhwwZtwpZKpbQoVv29VRRXCdrBwUEdpVWGXmq7XC6no9iJRIK2tjY98aBEuDo/FcVX6eWqHr7ZWVxF21W7NRXNTiQSZLNZ8vm8Frsqm2HTpk1a3FYqFTo7OykUCrrfNkQR6Q0bRuju7uallSuZ1tvDrFnTsC2DxQcdxJNPPalLAKgLLZhV3b2q0VfZEUrAq2us0tsty9JR8UQioR3c1deuhJuOajqlERLYIQOZ4R09pJg3ExKSZYdiT5nMaDpOHd8K6mmX0Np1Jv1iYqYi55133lanim+JP/zhDzz99NMcdNBBu9xnjamOm/AYnpmn0l7VE5sqhdw1QsodVRJlJ45sbwNUNPvBBx/c6m2ndOp4qVzArdcZGhzCNm0kkrpba/QsFpimDUIgGr2XlYlUMpmIDKoabZuUU7frumQyGW1KpSKJyWSSdDrN4OAggBZGap+q9ZKKVNZqNYrFom5D5XkehmFoAy8lfmu1mhaNqrd1Op3WKeCqNrdQKOhe2apGN5fLaaGm6pUHBwfJ5/MMDQ3p6LcyLFMiW0VRlWO467oMDg5q927Voky1tFLXQqWLK+Hb29tLe3u7bj+los9tbW2Uy2VGRkZ0VBnQ6flhGNLV1aXNzVR9drlcRgjBM88805KK7jiOTr1u7jWtxqvqrZUZXfPX+FZZqk5fTYyoFHbXdfW9VkJXRYmFEDpjQU0yqLKByL3ca6T616jUKqxctQrPczEIactlSSQcpAy1mZmqL08kEqTTaT05ovaZTqd1qrvKrFCZCSrFXU0aqFR2mPpO4+W2yLRuZFqBfG8R0zcwgin96ylmqiLBci2SxQRObUrPRb/hFHvKO3oIMTEx2xDP87jpppt29DBiJsHyTJKlBE7NRoTjPgOK6HNVub2KFFIL8JjXzq233kqttvXlUFP6k2wQhDo6GoRjKb/jRUcQBLpeGdCRz+Y6ayWQldu0ZVlarCWTSUqlEj09PcybN0+nh0spyeVyZDIZNm3aRKVSYXR0VLfsUoZVSsD19fUB6Gi3Sr0ul8vUajXtFK7aZSnRrEzEVBq5cgtXtboq7VuZlqkUbtWCLJlMUigUdA9oVfddLkcfilQUd8OGDdrhu7u7W4trFX0fGBjQkft8Pq+ds5WoV2n5KsW+t7cXKSX5fJ7C/8/enwdJct7nweCTd1Zm1n33OT33YDAAQVImqVsWFSIZ1mFzpaWCET6CIUU4rHDYtOwI/bGyY8PfMnxsOD7Z/Czbksy1RUq2ZfEQdwUd4AEJBAEQJDBDAHP3WV13VVZVVt7H/lH9/jjDA8QAM9PTQD6ICsx0VVe9mVU53c/7e47pFLZtk6SdPQdL2WYhbUtLS8jn8+Qdz+fzyGazJL9mIWbA7V7lWyXdnucRYWXeeQB0zqrVKk29TdO87X1jRJ6F2LFkb1anJggCdYYvQtRsDAaDxUYGz6Hd7WBkThAnHIysjuXl5YPNHIm81CxRnT/YAGKfYd/3qUecHavjOLThcetGAdsMYT73oy4dd7IuEiSYVixYJRue7lN9V4oU9xU84KsBattliGkNUIoUKd7iuH79+h37UlPce/Axj0Ivi1I7Dz76TqIdqAHGzQnsrIuET8n2G8GLL76Ir3/966/re4840Y4ALAhH4C+qfziOu+2jxLy3rE6KJZAv/Logws0m02xSyaqdWIgYm3yyqTSTSLOAMTblzuVyUBQFuq4jl8uh0Wggn89DkiS4rgvLstDtdmFZFmzbps5mJotmsvBbiSIjz9PplBK9HcdBrVaDqqrQdR3V6sLTyiqzVldXaSrLUs1LpRJNT1nIVxAEKJVKGA6HaDabJLnmOI785wCQz+eJ9N4qWWZTWuZ5Z2tkieiWtUiIZh7pbDZLk2JWNcb6rVmoG3svoijCeDzGbDaD4ziwbZueo1gswjAMOI6DUqlE4WVs4syk+oqiUBp7LpejDQ0WTsfOIdskqFQq5Js2DAOKoqBSqdD6fN+/repMURSUy2UAHBw3hCRnMBiY4CURnAAcP75Bye5MkeB53m1ycUaamX87SRJSS/A8j0wmQzVeTEbO3kPf92nj4ihjVp5j89E9hHJKrlMcPvxMgNbpLlzD+/4PTpEixZFD60znsJdwZOC6Lj772c/S73MpHiwkALiEgxB8G6XjFla80ZKJ4coYru4jFKNDWeNRhuM4+KM/+qPXNc0GjrhHezaboVKqYjwyoRs6TR51XYd9UBHleR5UVT0ICxMPyO6MwsZ4gb9tYsxImWVZyGQyt0mIXdcljyybMjKizqaLcRxjMpnQ9JEFdzHZNutjZsRJURRMp1Oqz2LrZR5sNi2v1WrI5/OYzWa39WDruo5Op0PPyybOr7zyCo4fPw5JklAqleC6Lq5evYp8Pg+e5+E4DqrVKhFOy7IQhiEd22g0Imm34zjo9Xqo1+twHAdRFJE/nBHsYrF4m2+cdXGz+4IgoGAwJodmnmi2qSHLMrrdLpFaNmln5Jn933VdmvSy6S9TGTAyrmkaRFGEZVlQVRU7OzsoFovQNA2Fg0RwwzDI457P52HbNnWJx3FMNWdMMm7bNqXQs7q3Rdf4YvI9t23YuoHeYIRl24aSkSErMhqNBnZ2diAs/jmkyTkj2sC3lBjs/N+aIs42iJidga2DSfFZjzYA+iyz5zwy4Ba1SilSPBDgFh3aknekf0SmSJHie0BNgw7vCDdu3MDTTz+Nn/qpnzrspbypkXAJPM2HrwaQHQmxGCOUFuSYSzjoZgaBHCJUQqiWAiESoE1VhN0s/EzwXe07vhbAzwRwdR/qXIEylyG5ItS5kvq3XwO+8Y1v4PLly6/7d+oj/lsEh/l84VF1bAcJEgS+Dy2jQRAWE+tF2veCKPm+cyCfXsi11YN0bN/3IQoiBWUBCxLP/M/sa8CCyLDEa03TSILNZMW3StK/vet5NBoROWKJ0WyqykLWmI9c13WSiDNi2+l0bpOLs40BXdeJoDEC2Gg0yFPNarHYtD2KIliWRaRYEAQKSGOVVLcmjZdKJRSLRViWBc/zkM/nafNA13WYB4nbtm0TwWYeaBagVigU4Hke2u02yuUyyaSZB5uFvDGZPfNXA7itr47J39njcrkcTNOkyTp7PyRJIt87SzlnUnrmkZ9OpxQ0N5lMqKObEfRut4tKpYI4julcsXPHSDGzD+zv70NRVUynM1SrFXzzm9/Ew488BFVVcfrMKUxnU1y+fBlIFooJ9j7IsgzbtmmDhIWj3SrLZ8fLqr8URaHqL/Z5ZISdVcwBR4xop0jxgMEuOPAGBviIx6w0R36QPewlpUiR4i5iWraQGxqHvYwjgclkgqeffhrvfOc7017te4QECTzNQ39tjFAOIXoiYiH+VsBkwsEq2IikCJEUQXIkFHo5KLaESIwhhML3fnJuYYkKlBBWcQ7RFyHdkkFSbhUg+dI9PsKjh9lshqeeegqj0esP5T3S0nHP9eF7PnieX0ybOR6SJKO136Zk6TCMMJvNyPO7t7d3MB1MMBqO4Hs+uIMpI0u+Hg6Ht1VCMVIHLCQEk8kE7XabAshGoxGFmjFvNKu9Yn7h+XxOknJGqFmXMyPng8EA0+kUuq5T2jcjVKPRCNlsFoVCgaayrK5rPp9jOBxia2sLHMehWCyC53kIgoB+vw/btonUMml8o9HAeDxGGIawLIsqpnzfx2QywWw2g6qqSJIE/X6fpuuqqqJQKABYeM09z8P6+jqSJMHa2hpWV1cpld00Ter0Zn9fWVmBYRgk07+VxDKVACOZrEOaTeVN00SSJBToNplMACzC6W4NS2Pv46Ju61s94f1+H57nodPpYG9vjzZQWODb1tYW+v0++dkLhcJt3nC2Lo7j0G63iSj3+wOIooQkXvjRr127iu3tXbRaLXA8wPHAqdMnwXOAKAjIaIuKNLZZwRQTTFXBJOEsWZ1tqqiqijAMab2sxox1n7PAN3a7dYMoRYoUd47B6hit013YaR90ihRvHnCL4D4776S+1TvAc889h5dffjndxL+HiIUEvhos/p8JEMoRYiFZ3MQYdt6Bp/kIpQhOzkV3Y4D++gjZsY5I+j6ycA5I+IReY15w6NY608X2+RZap7uY521EQoTke/z3VkGSJLh27Rqee+65N5SDdKSJtqZpkBWZpLOiKC56mA+8zQCoM5oRZpZWzQiY53koFApExth0lxEgYOHDZZ7qW4Oner0eEWhW9xVFEcm7Pc+DaZrkuc5msxiPx5jP59je3l5M1VUVw+GQAq7CMMRgMMDOzg5c10WlUqF13ppYbVkWJEkiv6+u68jn89A0jXzkbO2MJDO5dC6Xg23bUBQFrutiOp1Sh7UkScjlcuB5nuq2NE3D1tYW5vM5isUiybpfeuklmKaJbrcLYDF5Ho1GsCyLpu2iKKLT6WAymeDUqVPgeR62bdN0XlEUUgeYponl5WWa3LLNjiiKsL+/Tz713d1dOI5D62UVXyzYzHEcOI6D5tISXN+DZuio1msoVcpwXRe5XA6SJGE8HqNYLKJQKEBVVdRqNbqP2QKYxJ1J5n3fhyAIWF1dhed5mM/nCIIAx44do9e2bRdRFKO1u4/AjwAugWFo+IEf+AFwPEdy9Fsn7NPplALPmAKBJZLHcUwbK5lMBp638I2y5HuWTs9IOCPaUZj6nVOkeCMIlRChHKGyVzjspaRIkeIuwzFcWEX7sJdxZDCfz/GlL30p9WrfQ3AxR1Vd4IDvUHZzt99iIYbsSDDrE8xKd9D68G3PE0kxQiWCq3voHB9guGxiUpvddnMND5EYI+KPdvjua4XjOPjKV75CjVOvF0daOh5FIXhZBYDbZMqO40DPLoKsbp2QMpkym1CKoohSqUSESZIkaJoGYEFiGHFiU2k21WR9zJ7nwbZtkpeHYUgeWlZNxeq9giCgx7FJqyAI1C8dRRFqtRq63S5VhYmiiHa7DWAhO2cEu16vk4ScBYcx/65pmiRdZ13c+Xwe8/kcgiBgOp3ShP5WeTUjl4zgBkEA58DnDgClUgkcx9E6XNdFuVyGoiiYzWYol8vkHbZtm2Td0+mUpOZbW1twnEWNE8/z0DSNzgfP85SWrmkaisUibNtGEAS3pY6z12MbAjdv3kSlUqHNDja19zwP23u7KJbLsOZzTKwZ5tYcGVnGcDi8zcfNas5GoxEd73w+pw7rMAxRLpdpzZZlUZ0ZC467evUqVYRJkgx77mA0mqDT6WN1bQmyIqFeb6DR6GNre5see2sQH/OFcxxHKfKSJFFCO5ums2o4Vk3H1s+m+iwfIEiJdooUbxgJH2Oed1Dop7K6FCneTBB9EYqTXtd3gieffBIf+MAH8La3ve3Ih7A+iPiOmq7v+w3AuDm9iwtY/O+7eb1lW4IQCJBdCdpUXcjPPfFVfd5exkd0EMDGRzxkVwIfP/gz3iRJsLOzgyeeeOINP9eDf7SvAkmSwQs81VEpsgzdMGDkshQoxTyssiwTQWRd0JqmURq4LMsUKMZkzmyayiTULAGaTa5ZSFU+nwcAkqszwuO6LsmimbScEeiFd3xG6xBFEblcDtnswge4tLREIWEAqPuaEf9CoUDVW0xmzHzNlUoFvV4Pw+EQtm3T6ywtLSGOY5rMywekUxAECkljknc2MWc3RuyTJEGn0yGS5/s++aRZsBvzGu/v76PT6VCvtuM4KJfLdExMCs5Sx3Vdh+/7yOfztGHgeR7J58MwpMqvKIpoc4TJxUejESRJgihJ4EUB1syGIEgY9IewZjb2WvvY73Ruq+y6ceMGhsMh9vf36TgZAZ7P58jlcpT6PZ1O0ev1EIYhMpkMyd49zyOCr2kagjCA63no9Qe4ce0GnLkDgedRKObQXKrDMDQMByP43uK4WGgf+8yyqfkiaG3xDxh7byRJolo4AJBEGQBHeQTffkuRIsXdgVWw4SupHSNFijcLfC1IbSF3iCAI8Pu///tHvlL0QQQHDlzy4G5e+FoAJ+diWrHQOzZCf3WEwcoYw6UxHOP26yhBAsdwMS84GKyO0Ts2Qm99hMHqGIOVMablB1sVkSQJPvvZz5JF9Y3gSE+0NU0Dsws4joM4isBLIsBzNEWdTCaQZZn8rmwiysjWfD5HoVDAbDbDYDCgJHA2mWWVU57nwXEcmj4zssuIKZMwsyk58wuzxHNFUTAYDBCGIfL5PBF2FnjlOA729/dJBu26LsmWkyRBsViE4zjI5/P051t7rm+tIdvb20OhUCBfeb/fx3w+x/nz56nPmyWNN5tNOvb5fE6PM00Tq6urGI/H8DwPmUyGAtqOHz8OwzAwmUzI+12v12nKXygUMJ/PMZlMaAJ8axhbqVSigLNbNxCWlpbovWRrt20b2WwWhmGg3++jVquRvD6OYzSbTUpjZ4RcFAVMZjPoRh5bW9tQFBVBECFr5JEgQLxgpSTXZ5sNgiBgMBjQlJjneZL9s5R29hnIZDI0Zc7n8+A4jgLtjJwO0xzDcTzcuLGJCxcehmFoiBHj2MYaLl++jFw2B0EU4PkuTbEZ6WZqBzbtZjVwt8r7M5kMnLlzEALIA1wCQeBTcp0ixV1GwgOjpQm4hAMfcZBcCUs3aoe9rBQpUtwlJEjS9OU7wAsvvICLFy/iscceO+ylHBoSJAilCLEQA1yC0dIE8UFzimopyI40iJ4IPrmzeSaXcBB8HpH8gG5kHDTERMIikM3NeUACWEUbYnBAKZNFawcHwDE8BHII8EAkRQgyAZAsptuz8hzaVEW+l33gptxbW1t48skn78pzPVhHdodwHIfkwpPJBJ7nwTAMZA7SxJlPmslvkyShzms2KczlcrAsC0mSIJfLUQgZkxCzKicmW2Zkvdls0jTZNE2SojPprmmasCwLo9GIPOSFQgG1Wg2KopA3l01HBUGA4zhYWVkBx3EYDAbI5/NEzKfTKUnHb9y4gf39fZJcs0A0lljOwsrYsTWbTTQaDVy/fp3OUb/fR6vVwssvv0xTe8MwUK1W0W63IcsyvvGNb6DX61G9FyP+vV4PL7/8MqbTKWRZRiaTwebmJtrtNgV03bx5E4PBANlsFqVSCbIsL3zTzSYRacMwMJ/PaXp+/fp1Sk2fz+ewbRvlcpk2MdbW1hBFEWzbxqlTp7CysoLpdIq9vT1Mp1OsrKwgCALs7e5BURUkcQxdNyAIC3k4S0P3PJcm40zJwDYqNE1DtVql9yxJEgqNG4/HiKIIxWIRHMfRZ4N9BhuNxuIzgMVEv1gsQuBFvPjiJQRBBJ7noCgSfuRHfhCyLJCMnuM4qptjNWdMxs/em2w2C0mS4Ps+gMWEu1AsIJfLkYXh1gwBdkuRIsUbR3IQRMMlHEqd/GEvJ0WKFHcJw2UTnuYf9jKOFMIwxG/91m/d1g7zZkaCBDEfI+ZjWHkb49oU48YUvWNDtM500Trdg51z4RoeXMODWZti/1QPo6UJHN27owAxyRVR6OXu4dHcA3BY+LsPjt81PFilOWI+QcIn39VnHosxXMPDpDrDaMmEY7j3JGgt5hbvXcK99ueO4xif+MQn6Hf0N4ojPdH2PBeqskivlg6C0PqDAcrlEibmIs2bTbCr1Spc16XkZtd1SSJcrVapR5rJoQFQoBojQLfKcW/t12ZEmZFplvw9Go2o2otNvXVdx2QyQRRFSJKEarVu7YIGQKFjrCKMEScmJ240GpRQraoqxuMxGo0GZrMZrYn5dgeDAfm1WZe1KIqo1Wq3JVVXKhXMZjOSr7Me7W63i0wmg36/DwBUP8Zet9/vQ5IkDIdDqKqK3d1dAKDuaRY8pus6Njc36dx7nkek1TAM7O/vU2+2JEnIZrOUns3C3Jj/nMk5crkcSfiBb3mrwziG69po1BuL9O+DKrKZZaOYzdNrMh8/2wRQVZWIP6vNEkWRvOO9Xg/T6RSlUgnT6ZQ+H0xib5omsjljsYlgzVEqlrG7u4fhYIxSpQCeB2q1ClbXlnHjxhZsx4FhGBiPx7dJvm+VjDuOg0wmA9u2oWkaXNdFcqB6SGJAFCUgiunzwL43TD3aKVLcVWhTFb31IdZeXjrspaRIkeJuIB1kvy50Oh08+eST+Imf+InDXso9QyRGCOQQgRJiUpsBAEIpRCTdMsT4bp8fHogRIxES8HfouQ6UENPKgy2r/r44CFej43iVUxCJMSZVC47hoXGjCim4u7TUKs3hZF1kZuprrvK7ePEivvnNb961NRzpiTYjt6yzeiG15TA+CBgrl8tIkgS6riOKIjiOQ/Jo27bpPsdxKGCKBZUxr+6tUnKW7sz8vayeyfM8IpKu69KEM5/PI5/Po1QqUchas9kEAPr7fD5HNptFNpulwLbZbIZOpwNFUYj4l8tlACDyzELNBEGgdTICzF6TydLZpJNJtFlqOJuEsrqwVqsF0zQxHA7hui7VcrHwuFuTy6MogmmaABZEM5vNIpfLoVAoEOlUVRWZTAaqqkJVVarhYsfEjnlpaQlJksC2bdqEYMfJzjOTprPqM3YM6+vrWF1dpePJZrOIDnzoACi0zHEcOK4DQRApqI6lfrPJL9tsURQFwKI2zDAMmjJrmnabj54R7Ft974uKMncxja9UYNsuHNvDSy9dBs8L4HgOcRzi7NkzEEUBuVyOKsuYd/3W6jOmQGAd5rPZDLZt02aF47gIAp9S95n1IPVop0hx98FHPMqtwmEvI0WKFHcRo6XJHU28Uiz6hf/sz/7srnhYH0QkXAKzNkPrdBe9jSE83Yen+wtJ962J3d8FQsAjOzTABzxi8c6mqQm/kKS/KfAq5+jbH+NnFnVjdxvZoQ59rCESY3ja91cX2LaNxx9/nAZpdwNHmmiLgoTRcITJZIK5bcMPF9p/VV5MsaMoImLLCAsjR5qmESG5VUrOptdsShoEAcnPAZAXmBEbRkJlWcb29vZtHdE8z5OfWtM0zGYz3Lx5k+TWwOJN7Xa7GI1GKJfL6HQ6UFWVUreHwyH1XGcyGTSbTciyTCSbrdkwDGxtbVHN1fb2Nnmz2eRcEAQsLy9TXVSxWKQgrtlsBl3XUS6XcerUKdy8eRPXrl3DN77xDcznc0RRhOXlZeTzeZpms+c0DIPS3Hu9Hr0eI6GMrPd6Pezs7JA0nU3Wh8MhbSxsbGwAACWk67qOSqWCvb09klIzBYBt27hy5Qo6BwFn5XJ5UYOmyFAVFaqiYH9/n9K7ozACkFDSO+vVZt3nzPeuaRopDphkn3mx5/M5KQTCMDx4jwYIwwA7O3uYTGa4eWMLPAT0e334vksVZ5s3b0AUBPACh1qjhguPvA1RlMA0Jwi8GFEYgwNIYRDHMakvmBqiXC4vCH2SIIwiiLIETctAy2iQJRU8RAicCP5AGZAiRYq7h2nFwrgxhZW3ManM3lKdoilSvFnhZF3sn+wd9jKOHC5fvoznn3/+sJdxb5AAnua9LpaUHRio7BaRG+lADNyRbCLBAx2Idi/h6d49CRzVZioSPkEgf/8NjJdeegkXL168q9bLIy0d58ChUqksUsRVFeBwW70RC5BihI/neUoOZxPoIAigKAoRKzYVZGFchUIBpmnSpDOXy5FEl/Vgs+9dX18nSXm/36fEbyb/ZXJvRrqLxSKFnrHXLhQK2NjYwJUrVyiojXmZbdtGJpNBoVAg8sXSzavVKgzDwM7ODubzOQWq1Wo15PN5WJYFQRDIb+y6LjRNQ6vVQhAEdJ5YcFm9XkeSJFS5VS4vOqgLhQLG4zFM04Su61hdXcXu7i7G4zEqlQo2NjZw/fp1rK2tUcAbx3FQVRWFQgG6rqPRaOAb3/gGAGAwGKBSqVCAGjtWRmR7vR50XafnAECeeOaXZqnlmUwG8/kcEAWS4muaRpsXnu8hm80g4Rdy9EceeYTOM5vsy7KMdrsNz/NIKTGfzyHLMvb399FoNKgvfPEaEUql0oECwACQgONkek8l/SBx3rPx1aefRaVSRr6YhaIoWFtfxUsvvQzHcSFwMoBwsfMZhvB9n8LQmFzedV3M53PqAvc8H0HgQRYlSIqCMFgcl6xI4A/C3VKkSHH3EEkxItFH9/iiV1OxZai2csirSpEixRsCtwhqSnFnmEwm+OpXv4q3v/3tlA10FPHtG6aRFMGszeAfBHfdqb1gXrDh6T4SLkF2qEOdv7afEQmXYFaZI36L9FR/O1zdW3i67yI4cEAM5LtZcAleNfTQcRw8//zz6PXu7qbbkSbawEJ67XkeZEWBoipUu8Um047jwDRNlEolmqxOJhMoikKS8Pl8DkVRyAPMyA3rk2beaea3tiyLiB9LiGY3NuVkknbxwDsuCAKy2SxGoxHVZ4VhSJ5uTdMwHo8ppVyWZerrZjsrhmFQoBur+YrjmP588+ZNCIJA4WOMPDJJNktJz+fz5CdmxJ91Rbuui263S9PmarVK3nWe5zEajYjguq5LRe6lUgmZTAatVguqqsJ1XZimSencpVKJ/OOXL1+mSjSWlM42Mra2tshPniQJBce5rgvHcej9zefz9Pos6G42m0GUJERYJMHzfIQwjChBvF6rw3amkCQZlUoFTz/9NCkT2GeFSa6HwyHq9ToAUE81+5ogCKhWq/A8D5Y1g2malCDP84CiLI6/Xq8T4XddF5PJFDdu3MRj73gbeIHD0lIdFy48jNHIhG3NEYQeJEkAd1APJ4oiTfGZzYHJwVmAmuf54BKOut4XnnIBgsClYWgpUtwDcDGHzExFLMQQgnQzK0WKFG9dPPHEE/ipn/opvPOd7zyyKrpQiuDpPoRAQCiH6K+NFlNlbuGxjr9boNerIFBDBOpi4Cd7IrSZCiEQvm+yfcIlCJTgrZkbcHDMfHT3D54DB+H7eOWTJMHNmzfxxBNP3PXfnY+0dJx1Wy+8vxxGoxF834dhGERybiUszB8siiL1IDOyzQgMu49NJNnXmF/X932aPjOIokgTW0YaJUmiILAoihYBXWEIy7JozZqmLSawWGwYhGGInZ0dIrP9fh+WZWEymZAEOwgCZLNZ6s22bRu6rkPXdVy4cAHVahVRFCGXy5H/l0nY4zjG2toastks2u02giDA2toaTdFt26bgL8/z4Hketre34fs+dnd3sbOzg+FwCNM04fs+pWy7rgtBEMg7rKoqdF2nc802DwRBoA2GyWSC/f196s52HAfFYhGSJKFQKEBRFJKfMwLMOrrZZJt1j7N+bRYsxzYPkgTIZrPkyQ7DRagaUzDcmhDPpsWCIGBlZQVLS0tUUZYkCSaTCYIgQBAEpAzIZrMQBJH6142sDlmRIMuL+q39/X202210u90Df3kWc8uB7y1k4VEc4Oy5MyiXKpAkGaVSCdlbfO5MVcE+a3EcYzab0eaLaZqwbYeuBWZxYD3uKVKkuAc4mH7FYnzXd99TpEhxOAilCGb17vky3ypIkgSf+9zn4HneYS/ldYMDB18NMFwZo7c+RMZSUNktorJbhDHS73xD9RYP97Q8x2DFhJ8JXtVqFHMJrKINX32LEm0AsRAfWq99EAT4y7/8SwyHw7v+3HdMtJ988kn8zM/8DJaWlsBxHD7zmc/cdn+SJPiN3/gNNJtNZDIZvPe978W1a9due8xoNMKHP/xhCs/6yEc+Asu685S9xcRTpokxI7UsMMpxHPLYMpI6Go0giiL6/T6RVQAkC5ckCd1uFwCIUDG5uSAIKBQKt6WSM2LH+rUFQUCz2YQoiqjX6wiCANPpFI7jYDAYoFwuIwgC5HI5IqBhGNK5aDab6Ha7lJ7NAsHq9Tqy2SzG4zHG4zGq1SpyuRyWlpYo/ZuRdEaQdV3H/v4+er0eeZodx6Fu8SiK0O12sbOzg/39fbRaLQwGA9RqNVy4cAGKoqBcLlMHdjabRb1ex8rKCgRBwN7eHpKDPmrmJw6CAO12m7zVjOh6nofpdArbtqGqKgWcsQ2NpaUlmKaJJEloSs4m/Yx0rq6u3lbPZpomut0uEWBW6cam+Kq6CJMrl8vQdR2SJB+Q04X8mqXSnzt3DrlcDm9/+9upSzuXy+HkyZMol8vgeR5nz54FACLmSZJgb28Pk8mE0stnsylkWcJ0NiNP/Xw+x2w2W2yazGy88MIlTMzFZB9JDF1T8df+2g+A4zhMp1M6ljiOoes6haSxyjlGsm/9ehxHB/aIhPrko+9T7/UgXccpUhwlJHwCT/fhZwLEYozds230V0aHtp70Wk6R4o0jERKMlieYleaHvZQjh6eeegpXrlw5MgGsMZcgFCMEUohZyYKX8cHHHLRJBsVOHsZIRyzE8NQAXMwhFt+ArYBbSMn7ayNMajN4GQ+hGH7HbVpZ1FyFr8FH/GZFwieHcvxJkqDdbuNP/uRP7snz3zHRns/nePTRR/Hxj3/8u97/r//1v8Zv/uZv4rd+67fwzDPPQNd1/PRP/zRc91u7FB/+8Ifx0ksv4c///M/x+c9/Hk8++SR+5Vd+5Y4Xn9FUJAAlLWezWSKnzHutquptMmQ2VWUTV47jsLKyQhJyYFEZJQgCPM9DJpPB+vo61Vi1220AIJk4I9eMSCqKgul0itlshmvXriGfz6NWq1HtkmmatLY4jrG+vo58Pg/TNLG7u0s1XqzjuVgsYn19/Tb5d6VSoY0CNuE9ceIEHMfB+vo6FEVBqVSiGjCe56FpGrLZLPVhsyR0SZJQrVYRBAEeeughqq3a2tqCKIo0UWf+aeZNj6KI/p7L5cizbBgGHn30UbTbbVy9ehWapiGfz+PYsWM4d+4c+diz2SyGwyFNo4fDIQqFAuI4Ri6XQ7Vapd5wVpcmCAIRTNu2sbKygrW1NayurlK1mes4QBRDVhYbCbu7uzBNE7PZDGEYol5vIJfLod/vI5PJQNd19Ho9RFGEy5cvYzKZYDqdYjKZ0Nc7nQ5efPFFcBwHy7Kgqiomk0V93OrqKiXHT8wZ9lsdxNFCKTGZTJDJZCjd3LYdcBDxxJ9/EVEQIo4jRLGHcw+dQqlUhHDg5ee4RQ93r9ej883sC7PZjNLxMxkVmYyMOAkxmZiI4xiZjIYgCJF8H6L9IF3HKVIcVXiaj8aNKsS7XElyJ0iv5RQp7g4SPnnL+mPfKP7Tf/pPh72E14RACuFpHjzdg5v1IPoiFFuGPtYgeSKMsQazPsVw2cSkMYOTdfGGs8k4wNN9DJdM9I6N0D0++I7buDlZ1Ia9RafZwKLVQ53Lh/Lav//7v4/ZbHZPnptL3sAWFMdx+PSnP42f//mfBwCaTP6Tf/JP8Gu/9msAFmEJ9Xodn/jEJ/ChD30Ir7zyCh566CE899xzeOc73wkAePzxx/GBD3wAe3t7WFr6/v2k0+kU+Xwe//z/8f+EqqjgOB6O68A/SApnfmpJkhCGIRFtVsvVaDTQ6XQgSRIqlQpJpR3Hga7rKJVKMM0FcWFEtNvtEkln3mv2nGyam8vlUCqV0Ol0SO4rCAL1QrN1MYLr+z48z4Pv+xAEgVLFX3zxRWSzWZRKJQwGAxiGQR5lTdPgeR75xTOZDHK5HIbDIQzDwHA4pCk9+z/rYG40GjBNE/l8HrPZDKqqwrZt8qsPBgPk83lK2Z5Op7AsC4qiIAgCNJtN6LqO3d1dGIaBXq9HFV7Ms80qqWzbJp94JpNBJpMhMl4qlSjorFKpYHd3F41GA77vYzQakcx9Mpmg0WjAtm1Kdl/4oi1EUQRVVVEulyFJEl0go9EIkiwjSCLoWg6WtVAGcBwHnucRRi5EcJDERf1YHMfkCTdNkybGjPAzSb9z0HfN+rTZhkocxxAEnqwBzA4QBAFVmnEcR6F4YRhCNzS8970/hocfeQgJEnCQ0G718alPfRJze7Gh4XkeKSUkSSIyz4g+Q5IkQJLAsT1wnADf98DzgKxI8Hwf/+Hf/5+YTCbI5XIP3HV867X8mzv/EZlc5jV9T4oUDwwSoNDNQZnLMCbaPXuZ+XyOn/mZn3lgr+X0Ok7xZkFlp4j8IHtPnvu1XseHCXYt3ykURcE//+f/HO9+97vvwareOJhs29V9DFfGKO0XIDsSxs0JHGNBpmMxAhfzi2C8tzDhPSxIroiVVxrgk/vrat7a2sI//If/8HWpuF7LtXxXj2ZzcxOdTgfvfe976Wv5fB7vete78PTTTwMAnn76aRQKBfqBDgDvfe97wfM8nnnmme/6vGxafOsNABHd+XxOk10mxTYMg8gVI6lMdnxrnVO/36cpc6FQoBAwQVh0HE+nU4zHYyK7SZKQ35vneSiKAkmSKNmbSYZZYjVL8nZdlybEo9EIe3t75K1mJFKWZfT7fQiCAN/3cfXqVUrE9jwPiqLcdi4YkW61WtQjLYoiRFFEsVgkL/JkMsHKygocx6HJPfNBA4uu6ZWVFWSzWQRBgNXVVbiui3w+Tx3YlUqF/NDLy8vwPA/FYpEe4/s+LMtCvV6nDYtKpYL19XWqQWPnjCWEs+l0uVzGfD7HcDgEz/M0tc3lchSAxsg/C5/TdR1hGGJ2INNmUnBd1xfryuXguh5569lk+lapv2maRKR930e1WoVt2xiNRojjGL1ej95L1u3NPhvsM1MqFUmqLggCer0eZQKwDQHXdclvDSxq6S5dehmBHx48X4Jms4JHH72A3AGZZoFvAChF/9bNIhbaxuwRsrwIjWOJ+azT+0G6jl/tWk6R4kiCA8z6FPOCjeTgvwcJ9/tncooURx2T2gyBfPcrht7s8DwPv/d7v3ebUuZBg1W0ESgBtGkGvhpg5/w+phULgRoiVELEQpKmzx8iIiGGnb/7XdqvhjAM8d//+38nRfO9wF0l2p1OBwAorZmhXq/TfZ1OB7Va7bb7RVGkSfB3w8c+9jHk83m6ra6uAlhEsXu+jyheJITfmgDO/KzMAywIAhqNBjKZDFzXJVIiiiJNX5kc/NbJc5Ik2N3dBQD4vg/TNIk4+r6PIFj8g8wIN/NtM1LG/LSe5yGXy2FtbW2RgF2v0wbBrYSR+adbrRby+TxOnDhBNU3MG8x8dL7vw7ZtFAoFlEol8guXy2UUCgUKCPN9H/1+H6PRCIqiUIAaC11TFAU3btyAYRjQdR1bW1twXReNRoMC3izLwksvvYStrS30+30Mh0PEcYzpdErT+2KxiN3dXSwtLZGXmdWYNRoNZLNZqtCK4xgPPfTQYsKr6xgMBlRhpaoq8vk8yuUyBcq5rruoyTog1GwjhMnPy+UygEXP+Xg8gh8EqFQqmM0WqeA8z1NSOOvQ1jQNPM8jjmO0221cv34d9XqdQtwEQcDm5iZkWcbGxjGUSkXaqGHfN53OSO7NVAns3LFauVwuB1EUcezYMSwvL8O2HZjjCZ577vnF94kcZEXAmTOnICsKTZBGo4Xvk4W7OY6DSqVCgWcsZM8wshSWt/j8iwgPksofpOv41a7lFCmOJBKgvlkBAAyXTeye6zxQZPt+/0xOkeKoI1BD7J3tPlDX8VHB/v4+nnrqqcNexm1IsLADzAsOzMYUZmOKSXWG4eoYiZDcFlx22y3FfQcHgA/vb5PHyy+/jMuXL9/TfIEjkTr+67/+65hMJnRjxFcQBciyBE3X4Hoe4jgCkEDXtYWE+CBEy7IsIou3VkkxklsqlagDUFEUItDtdhuZTAblchn7+/uQJAnr6+s4ffo0ES3f94n43EqydV0nksjuY0FmpVKJar6GwyFUVUW9Xsd4PCbf8MbGBnRdp9TvJElQKBQgy4vwN9ZpXSqVqNv77NmzNOn9+te/Tt71EydOQBRF8lQDgG3blJyt6zpNJdgmhCAIVMfFNjHOnj2LarVKUok4jinobDAYYH9/n1K52f9ZB/nVq1dRLBbJkz0ajdBut2EYBvnOWbgbmwjv7u4im83S8bO6MLbRMZvNaLre7XYxnU4XwWzRok7rxo3ri6m5yCPwHcgCYJlT+N5iI4VJ41mQXq1WQ7/fh65rEA8+WydPnoBtz7G3t4fr129gPl+kxudyWVQqZSTJop89n89T/7ZhGOSnZ+cnk8lQAnkcxZjPHGxt7qDf7SEKPYRxgPWNVTz22Nvgui6FsDHyzCT+pmnSZ3ghn9eRJNxBrzpLQOdvS8V/kPC9ruUUKY4kOKB7fIBQjuCrAfID47BXdF+QXscp3syIhRhO9uimaB8WTNPEX/3VX8E0zcNeCgAgEiLMynOMlkz014bwMwECNUQspj78BxHJfe6zd10XTz755F3vzf523FWi3Wg0AIBSuxm63S7d12g0vuOgwjDEaDSix3w7WCL4rTcAQLLYc1ykL0fUfR1Fi2A05o9VVZUm3bcmNrMKriiKbpNjj0YjDIdDzGYzkg3ruo7JZALbtmmXX9M06slmhG04HKLZbFK1mO/7kGWZpt3z+Ry9Xg/ZbJb80GyynsvlSMLO0smDIMBsNoNlWdA0jabeqqrCsiz4vk9p4/1+H9euXSNPNOu/tiyLksPZ8QiCgHw+T5Jv1tfMcRyCIIDjOFQzFQQBisUiBoMBeJ4ntUA+n6cJLjvXnuchCAKUy2UKo5tMJvQ+M581u491jmezWWSzWZK+8zxP9WHFYpHOZbFYxPnz5wEAqqpSf7QkSVCURcp4Lp+D73mQZRn1en1BSDMKkCQo5POkVmASfdZ57roORFEgeb/jOFQBx3EclpeXIEkSJEmkSTnr8B4MBiiVShAEgSwFYRgiDEP6LLENA0PXAQA7W7t49pnn4Ng+WBvX29/+NhSLRbIBLPrAeVQqFXot9tyCsNiQEAWRfOO2bQPgyMP/IF3Hr3otp0hxhOFmPTh5F4EcHvZSbsN9/5mcIsWbARzQPTaAVbAPeyVHDs899xxefvnlQ3nt5Jb/7KyL/VM9DJdMTCoWYjFVKDzoEEIe+uT+ZXxcvXoVzzzzDNlw7xXuKtHe2NhAo9HAE088QV+bTqd45pln8J73vAcA8J73vAemaeL555+nx3zhC19AHMd417vedUevZ9sOVTqx8ChZljEeL0jSeDxGLpcj8sgICgsiS5IEHLfo3+52u/B9HxzHodfrwTAMrK2tUVc1I9vz+Zx84L1eD4IgYDQaQRAEFItFRFGE4XBIk+5ut4vxeExTYQAkaWcycc/zaPIbhiG63S729/eRJAny+Tx9CNrtNvmqWWXXYDAAx3FotVoYjUbUUV2tVul1HMehDQLf95HP59HpdLC6ukpkn3VuM9J68uRJbG5u0sZAqVRCPp8n73WxWKRpcy6XI3I5mUxI4s42H9jUOp/PYzKZUFp6NpsFz/O3pa0vLS3BMAxks4swktlsBsMwUKvV6PkHgwFkWUalUsHZs2epP/v48eM4e/YstIyGYxsbWF1bgyAIqNVq2Di2gdOnTyOTyaBQKNDGSzabxWw2O5DQqxDFBWmtVqtQVRV7e3twHAfZbJaUEOz9qlarpBpQFAWO48CyLJLWO45DRJnJ7C3Loq+LkoTr17fgOgEEQQTHc9B0De97308jCAJ6PWCxUzydTmlTgHXCCwJPnnIAkCQJwBtTPt3v6zhFijcFEiA70g97FbchvZZTpHh9iKUYTvbB9Rs/qLBtG08++eQ9S3B+NcR8gnnBhlmfondssKhglOIjot19iyMBJE8CF98f3b7nefjGN76BVqt1z1/rjj9+lmXhhRdewAsvvABgEbbywgsvYGdnBxzH4R/9o3+Ef/kv/yU+97nP4dKlS/jbf/tvY2lpiVJQz507h/e973345V/+ZTz77LN46qmn8Ku/+qv40Ic+9JqTihlY4BNL9s7lcvA8j6qt5vM5bty4QfJw5j1m6dhs2qzrOgzDgKZp4DgO1WqVZN2lUolCvERRhCRJmE6nkCQJ586do6nprUSaBXg5jkNSYubTZn42RoBZUBbz/UZRhF6vB9u2YRgGLMtCHMf0/JPJhCbdLPStUqmQVJv1bVcqFRQKBQpwEwQBp0+fpsCuc+fO4dKlS5TCzmq4+v0+xuMxLl68SK917tw5tNtteq8rlQo6nQ62t7ehaRqR/v39ffK6e55HgTmdTgeWZWE6neLs2bMUnnbx4sWDCbFEE/OrV6+SvzwMQywtLSGOY+zv7+PChQsoFovkqw+CAFeuXIGiKGg0GnAcB8PhcPH+RjEEXkCr1aLzvL29TeSYSekZsT5//jyCwKcNEpYkr+s69a3P53PaRFheXkar1aIe8Vwuh3K5TP3oACh0r1wuQ1VV1Go1lEol2vSZTefotPv4whe+jChKgATgOCBfKODChQtwXZeeg03hmd2BBcONRmM88sgjAEDnPI4j2kQ6CtdxihRvBhQ7OfTXRgiUEIEc3reaoPRaTpHi3iAW4rTu63Xgz/7sz7C5uXnferUTJItO7IqF/toIo+W0KusoIpQWgXT3GkmSYH9/H5/73Ofu+WsBwB0bOb/2ta/hJ37iJ+jvH/3oRwEAf+fv/B184hOfwD/7Z/8M8/kcv/IrvwLTNPHDP/zDePzxx2+rJPrkJz+JX/3VX8VP/uRPgud5fPCDH8Rv/uZv3vHiWcJykgAcxx9M/zh4ngvf94h8y7KMQqGA+XwOVVURhiGFmDFCpaoqCoUCgiCgCTbrK85ms0iShKqs2FRS13Wq3GLp1UmS3FbhxaTh+/v7AIDjx49jNptRKBcj+qxCajqdol6vw7ZtzOdzyLJMX1cUBYZhQJIkmiYzOfr6+jp0Xae+b3bMtVoNm5ubcF2Xqr1yuRxarRZqtRoRVpZyvby8TFJvViXFfNvHjh2jyXupVIKiKOj1eqhWqwjDEM1mk5Kw2aRXkiToB1Lp0WiE+XwO13WpE5tJpLvdLjKZDCRJguM4mEwm0DQNmUwG+/v7UFUV7XYbo9EI+Xwe6+vr5CH3fR+z6QxBGCBfKMKaW5hZc3AQcPz4cYzNEUzTpM2PcrlMx8gm+osk9iIcx4Zt23BdF5qmUfAam2oz5YSiKFhbW6PAMpZq73kLXxfzorMNFd/3qU6M4zn4wQGhT3i88I1LeORtj+DkyePgeCCjSvihH/5BbO/uYTadwBybMLIG4jiGbdvI5XIHdoU5tEwG165do+T6RZhfAE549Z8wD9J1nCLFmwHj5hRIgFFzglAJke9n78uEO72WU6S4N7BKNviIR7lVAB+nY9E7we/93u/hYx/7GIX53ktEUoTB6gh2IVUgHH3cH6L9p3/6pxiPx/f8tYA32KN9WGA9f7/69/8RMpoGNbOooOI4jmqVWP8wm1DP5/PbPMODwQCSJBEx1nWdSCsj8Ixo6rpOaeNM3h2GIU2+GXlnCd/stafTKTKZDHzfv+3rbCoZHCRjM5LWbrdx5swZDAYDqKpKYVhRFFGfdrFYhG3b4DgOlUoFk8mEiKyu62i325RGres6Tfwty4Jt2+R3ns/nyOfzNHEXhMX09/jx47Btm2Q/uq5DlmVKGS8Wi2i32yiVSlQXlsvl0O/3EccxVFWlBPZ2u03TXCa3r9frlBQeBAEFubGNh1qthqtXr4LjOKrlYtN+5oln62Y3URDBAVANDXPHA/AtGXsul4NpjlAqLVLaDTVDVVtMSs+60sfjMXRdI2INgGTaHMfRFLlWq2E4HGI6nVLlVrvdJh88APoMAgurAPPss8/ora/hOA7OnDmNX/i//xxK5TwknoMbcHj6uRfw1b96CtZkCj/0KSSOVaX5bnAQvhcgiiLkcjn4vo8oCsALHDzfx//18X9/JDo70/7dFG8KJEBuYMBXA+SGxl0j2g96/256Had4M2P1pSZkT3rDz/OgX8fA6+/R/nZwHId/82/+Dd7+9rffhVV9JxIkCOUIdt6BnXNg59x0gn2UkRz0aF9p3PNNrX6/j4985COvqzf723Hfe7TvNxZBZDIR1clkAt/3KeiKTaeZhIXneViWhfF4TJ5gVgXGyCDHcTRpBRYkiUnNmT+5VCqhWq0SSWOTbABYWVmhzmwWGqbrOk6cOIFms4lcLkcEWNd18DyP8XgM27ZRLpfJY8tSsVn3N9sI8H2f/M6macJ1XfT7ffR6Pezt7WEymSCTydDGg+M4mM1m0DQNzWaTjoVVabHQsslkQp3btm0jk8mgVqthNpuh3++j2WyiXC7DcRzyKbN+crYJoes6JEmi12fhbt1uF0mS0NR+PB5jf3+fkrSZX5557dfX1ymsjhHsZrN523vPQthUVUWlWoGu67Qm5sXv9/s0sZ/P53Adh9LoWejaqVOnSB2QzWZp8s82Ydh03nEckoF3u136uizL4HkeZ86coRA7JvVn56FYLFI4med5mM1m1Nl3a5japRcvAnEEJD4EPsLbHjmPWr2MmIvIq88m4wK/2ADwPI8+h6z6LI6P3N5ZihRvDnDAtGJBCHloE/X7Pz5FihQPPHrHhmnd1x0iSRL89m//9l2Vj1PUGZdgUrUo7Cwl2W8OqHPlnpPsJEnwu7/7u3eFZL9WHGmindEyNB2cz+cwDAM8z6PdbkNVVerBZuRyOp1iNpthdXWVJOUAKL1b0zQYhnFbuFcul4PrupQEvby8jOl0SqTSNE30ej2oqopOp4PNzU0KRBuPxzAMA0mSoNPpUJc1k6Hv7u6S37tYLMIwDKrz4nke58+fpw5l1p+8tLRE4WbFYhGapkHXdQRBgDhepK2zILTRaARd11Eul7G1tUWp4O12m+qnLMvCfD6nMDfmE2fyacdxkMlk0Gq1aIOCkXQAePjhh8FxHAWdMak064/OZDI0yWep6YIgQNd16LpO0+3pdIpcLoder4dOp0OJ461WC3EcYzAYIJfL4ebNm9jf30cYhmg0GpjNZtje2sKNGzcOzsnCU18sFnH8+HFKnW82mxBEEdlsFkEQoNPpIAgCTKdTDIdDSgZfVGYtNkhYejw7Zp7nYds21ZlpmkabB6zexnVdGIYB13VRKpVQqVTo3LIpfbVapedjgWfW3MLTTz2FzavXwCcJ+CiCIgp470/+JMrVRUe4oijIZrNkK2BKALapxELz4jgGXsWfnSJFinsHyRMhuxLsnItADhBzMULx/lWWpEiR4u7C03zsn763FUBvRrRaLXz5y19+w8/DyHUoRZjUZmid6WK4MkYoh9/qwk5xtJEAuUH2nr/M7u7ubcGf9wNHmmgnSYJsNkfeZSYlzufzmM/nB8FQC7nzeDwmf7BpmjRVZh5qFkrGfLgAUCgUKNE6k8nAcRzcuHEDHMfBtm1KMGcT0UKhQLJpRVGQyWRIos0quXK5HLrdLjRNQ61WQxiGqFQqUBQFmqahUCiQJP3atWsolUro9/uwLAtJklB9Fqv5Yutm6eq+72N/f59CvhgJKxQK0HUdHMdhZWUF58+fR6/XQxiG8DwPe3t7i47nA191HMfo9XqI45gqtFjwV5IkqFQqaDQa9IHN5XI0MWffx7q2i8Ui1YixsDoW8KXrOnK5HFVZjUYjrKyswDRN+L6PY8eOQZIkktI3m00MBgNcv34dW1tbJF9XVRWGrkMQBIiiiP39ffi+DwDwfR/b29vodDqI4xjdbhdRFNFGRbVapQA59n42m02afHueR6nt4/EYkiTh+PHjaLVamM/naDQalDjPPO3FYpE2dhj5Br4VkFYqlVAsFmkjJJ/Pw9ANbF6/Cc8OIICHkAClcgEX3nYBtm1TnRdTXXy7FD2KooU3XOCRxAmiKA1xSZHifiNQQ4ybUzgH9TKRHMFN04tTpDi64BZBTa52uN3a/+Jf/IvbbGgcx+Hs2bN0v+u6+Af/4B+gXC7DMAx88IMf/I5qv/uJ2WyGxx9//A1ND33Vh6f7mJXm6B4fYLhiwtP8BblOCfabBmIoQLHfuD3j1RAEAT796U/fN282w5Em2kCCuT2H4ywmfLa9INIsfZx1MLN+5fF4DNd1SRrNvNWs7suyLKrHYt7bwWBwQGJCFIsFkgyzMDXmm2Ykh00aWYVVHMeUTs2qmk6cOEFeYybxns1mGI/HCIIAo9EIlUqFuqXz+TziOKbea2DhnbYsCysrK8hkMrS5sLS06Hru9XrI5/OwbZvIo+u61FWdJAnVn83nc+i6jsceewwcxyGTyUAQBFQqFfozz/NYX1/HysoKhXuxYLGlpSWEYUjeYV3X4fs+er0eeJ6ngLMoihAEAbLZLG103Oo/Z/fN53Mi6WwCbhgG2u02eJ7HI488gqWlJeRyuYOe7xCZTAae58NxbAqwY+9zpVKFpmn4wR/8QYRhuCC1BxszTBnAutZLpRIkScLm5iZ2dnZoc4F1gE+nU6o8Y+FmvV4P4/EYPM9TKB7b1GAWANZBbhgG+djZZgzbEBHlDK7e3MGV65vgwYEPQ4jg8APvfCd+5Ed/GIqSQTabQz6fhyAuwuQY4Q6CgNbpOi7iKEGcEu0UKQ4Ns8oc+X4WSO5HvEuKFCnuJUIlQm99dOhk+/z582i323T7q7/6K7rvH//jf4w//uM/xv/6X/8LX/7yl7G/v4+/9bf+1iGudtFV/LWvfe2Ovy/mY/iqj8GKid76EIOVMTzdvwcrTHHYED0BxfYbzwX4frh69SpefPHFe96b/e2449TxBwnWQYq4KIpE/orFIvb3WwiCkKZ/LJCMETwWsBXHMZIkgW3bqFarKJVKcF2X/K4sEEzTtFv6lkMsL68QCVcUBf1+nxJc2SSTdUSzELRisYggCMDzPBzHoUovwzCQySzCY1iNFOtkPnXqFPb29pDL5Si5MYoiCu5itV4sSMy2bQyHQ3ieh2KxiNlsBlmWMZlMMJ/PaZI+GAwwGo3AcRyuXr2KTCaD2WyGTqeDbreLpaUl8o6zibjneTTpdhyHptKiKGJ3dxeWZZH0nPVms9A1XdcxnU6xtLSE+XyOyWQCy7KwuroKwzCgKApJx4fDIXq9HorFIizLQq1WgyiKyGQytKHBfNdhGEIQBOQKOSRxjDCJwHE8LGuKIAggSRJs2wYQYzIZo1QqwbZtrK6u0gbK7u4uJElCpVI58EB7RFxZ6F0cxyRjZ9Vls9kMmUyG6szY7da0cfZ6J0+eRLvdxtraGjqdDgXBMe/S4u8+Ek5HzPF48qmnsbG6Bk01ECccZFHC297+KAZDE9tbW5AONkricLF547p9Cs1j63EcF2GYylVTpDhMTKoWnKyL6k7psJeSIkWKN4ggEyBQQii2DO6QxqmiKKLRaHzH1yeTCX7nd34Hn/rUp/DX//pfBwD81//6X3Hu3Dl89atfxbvf/e77vVQAgGma+OpXv4q3ve1tKBQKr+l7AjnAcGnR3uBl/CM/Ekzx6jDGOoyxdk9fw/d9fO1rXyOb5/3EkSbaSZKgUCig3++jVqtRGNqiJiqiQDLmXQZAhHE2m93W1TwYDAAsiOxoNMLp06dhmiay2SxKpRLm80UCebVaxd7eHiV7F4tFLC8vo9PpkGxakiR0u116TRauxiqvmFycTXqHw+F39GZrmoadnR2SqLPe5yRJSPouCAIGg8GBrFhYTDoFAblcDsViEb1eD4IgHJDNxSYASz33PA+VSoWS1k+ePEm1XaPRCA899BC2trYwHA5pii7LMlRVxbFjxzAcDpHL5bCzs0Np7kEQYDKZYHt7G6VSCXEc49SpUzSR9n0fhmEgn89TuJfjONje3kYQBDAMA7quo9FoYDweo9Fo3JbcztYKgCbzlmUhCANEQYhas4G9dpfWmclkDoLqInje4nVqpTKpFk6dOoUgCGCaJgaDAR599FG0WnskR7+1T5vjOJw+fRrz+RzT6RSlUglRFNFmTjabRbFYpMf3ej06PpZ4zz4D2WwW/X6flBej0QjZ3EIF4AcenCTEpz/zOfzCB/9v4BQZCRIYWR2PveMxiDyPzc2bUGQFgirSBgfwrawBFo4mikf68k6R4sgjVEJEYgSraEM3M4iFBLIjHdov6SlSpHhj6B0bQgh5ZGbqoVzH165dw9LSElRVxXve8x587GMfw9raGp5//nkEQYD3vve99NizZ89ibW0NTz/99Pck2sxyyTCdTu/6mr/4xS/ife97Hx599FFqY2FgIXOu4cHL+Ej4BGZ9hlg4UOSl/1S+uZF86//36npKkgQ7Ozv4i7/4i/s+zQaO+D6RpmWox5pNKJmEVpZlmrgy+XOSJERUma9VlmUMBgNKf2ZTVCb9ZsnO3W4X/X6fSBPzGAdBgH6/Tx5rVknFpOSrq6uIooieZzabYTgcot/v04S2VCphZWUF1WoVx44dg6ZpFNR2axf1fD6nsDHHcbC6ukrJ16VSiWTRLByOhXfJskzhYqyb2zAMCi0rl8vUo12r1XDhwgUUi0WsrKzg+PHjqFQqKJfLME2TPMaFQgHiQbgYx3HY2NjA8vIyDMPAyZMnKYE7SRJsbW0hDENYloXd3V0KcxsOh3AcBw899BBKpRLK5TI2NjYQRRGtL5PJ0DH6vk/yd2AxCc7lcshlsyiXyxibY2QyKvnuGYrF4kKmr6jwfR+j0QiFQgHXr1/H/v4+hbV1u12K6q/X6xAEAYqioFgsIpvNIooiZLNZshywRHlBEEjizlLIJUmiaT4LU5tMJgcTaJeC4YJgUdEVRdFici7JECUF/eEQNzdvguOBJIkQIcbK2gpK5RLVjbHnlWUZpmlCURTUajWqZPv2H2gpUqS4/xBCHlzCoXN8gP1Th+eXTJEixV0AB3Q3Bofy0u9617vwiU98Ao8//jj+43/8j9jc3MSP/MiPkCJRluXvmBrX63V0Op3v+Zwf+9jHaPiRz+exurp619cdBAH++I//+DZCDxyEnPEJrKKN4bKJ4YqJ0dIEsRinHuy3CLiYg+SK4JJ792ZHUYQXXngBrVbrnr3Gq+FIj7yCIIQkyRSGxkKoLMuCIIhQFAXj8Rirq6sU+sVqlph8V1VVIllMhj4ej3HmzBm0Wi0Mh0PyVi88tRp6vR51V/f7fWiahkwmg/F4DE3TiCiKokheaSZRZ15jURRJkswIGVsTm4re6qtmJK1UKtEk/utf/zocxyHZMptUh2EIAPRnVhHGUrKDIKAQNUEQUCgUsLW1BVmWEYbhIsl7exvVapU2EJj3fW1tDe12G0mSkNc5CAJ885vfRKVSQS63CKdjEnY2xZdlmULUgMU//q7rYjqdYmtrC81mE3EcY2dnB0EQ0D/2bKOBvT4j3UEQkOS8Vqsh9AOoioqYEyAIIkzTxGw2QxzHCIKFn9wwdMg8j9lsBsdxUK1WMZ1OSflQqVQwGPQxHA4xmUxgGAYlsjPizGT8zMvtui5c10U+nycVAwvhY+eO2QRY1x57D9hGDrM3hGEI33XBcQkG4yGe/cbXUV6uwyjmEXALo+cjj17AKy+/hNl0hjjCgbQ9Qb1eJ2846zNnSoQUKVIcHkIlwmB1jHw3C9VSDns5KVKkeIOI+QTjxhSlzr33ld6K97///fTnRx55BO9617uwvr6O//k//ydZEO8Uv/7rv46PfvSj9PfpdHpPyPYXv/hFfPCDH8S5c+doCOCrAeZFG2ZttkgPT/GWgxDykL17p/JieVT/43/8j3vy/K8FR3qizfM8kUXmp3Zdl7y7rNt5Op3C8zySDPA8j3w+D13XyQ9dqVSQz+dpCj4ajWhK3O/34fs+FEVFkiQwDAPZbBZnz57F+vo6EXZBEMgHzoKuGIEslUrQNA2nTp3CqVOnaPItyzJJ2RlhPnXqFKrVKmzbhqqqdGyTyQS7u7tU78RxHC5cuIBTp05BFEUcO3aMErzZuajVakTUBUFAtVoFsPD5VCoVmi5zHIder4fd3V30ej1sb29jc3MTw+EQmUyGlALXrl2jvm0mLWcS+jAMYduLMLIgCCAIArrdLvVhTyYTTCYTtNtt3LhxA2EY4tSpUzQxzuVyOHnyJEnty+UyJbIz6TXz07N+b8MwEAYBBa9Z1kIxkCQJdWsvJtF5GHqOks/Pnj0Ly7LQaDSo6/vatWvI5XIol8uYzWYkEWcbG+wcMF+9qqrUj84C7fL5PGRZRrFYRKFQQBAEZC9gx+95HqVwapqGUqkEy7LAcRx0TUOpWEQ2X0SQADdubiGJY3BcAl4ASqUifv7nfvbgPebocycIAqXcK4pCqooUKVI8GJiV5hgvTQ57GSlSpHij4AGzMYFZu/sy6ztBoVDA6dOncf36dTQaDfi+D9M0b3tMt9v9rp5uBlZje+vtXuG3f/u3AW4RdDapzNBfG2HcmKYk+y2MWEgQ8/f2/f/sZz+L4XB4T1/j1XCkibYg8ETuFEUhyXSxWIQoijR5DcOQurSDIICu6xiPxxRcpWkafN8nQs6Cy9rtNqV/ZzIaVUyxKeXly5ext7cHwzCwv79PU0RZlkkOPBqNsLe3h/l8TpNrNskcjUZEuCRJwu7uLoWw3SoZZwS+VCqh2WxCURTU63WanrKp+P7+PgRBwPr6OgDg5MmTMAwDHMeh0WiA53n0+31Uq1UsLy+TF5xF3bMOcSZjXpzjxWsrikJkk+d5Cj1LkgS7u7uUeF0qleD7PmzbRr1ex4ULF1CtVsmz7HkeDMMg7/if/umfwvM8DIdDbG5u4tlnn4Vt29jZ2UGhUMBkMkGr1QLHcRgMBjh27Bg6nQ4ymQxOnTqFMAyx326T6iAIgtt+WCz8R/7iNQ42TxaT6wElp5dKJZw8eZJUAUwhUSgUbpPZs2k2I+bT6RTtdhvZbBZra2vI5/OkgKhWq/R+37x5E7ZtQ9M0Uk0wm0G1WkUcxzh58uSB3SDCaDSGomYwnzt44gtfxHAwAp/wEJCAQ4zlpSX80A++B6qq0IQ/SRKqr2ObHZNJ+kt9ihQPCmIpRiiFh72MFClS3AUkPOBlAkTC4W1oW5aFGzduoNls4h3veAckScITTzxB91+5cgU7Ozt4z3vec2hrvBWvvPIKnn3mWcwLDkZLJjzDT+Xhb3HwEQfuHhbkTKdT/Mmf/Mm9e4HXgCNNtC1rTuFmjOgpikJklvUUi6JIk2UmAWbBW3Ec05SYVXb1ej1KMWcp5ax/m/meNzc3qTObJYxnMhmaTDKpOgum2t7eRi6Xw+7uLj3fD/7gD6JUKlFdWC6Xozooz/OoKoqFgTHJc6FQwHQ6pc0BFohVKpWwubmJS5cuodFoYDAYYDwe0xQ3k8kgiiK0221MJhNMp1PYtk0yadM0aRL9jne8g459b28PnueRv5hNUE3TJO8x6/kejUbQdZ0k5bPZjI55Op3ixIkTmE6nkCQJ5XIZjz76KAzDwMrKCsrlMorFIkzThCzLuHHjBkzTxMrKCsnO2+02kdSrV68uusMPusUn0wnOnTtHXd8cx2F1dZW6pucHYWEASC7uui6d50KhQGSa4ziYponRaEQJ4cxnzvzP7Di73S52dnagqiosy8JoNCJZP/MkDQYDzGYzIsMsfZ31e29vb8O27YONGhXTqQXfD9GoL+Gpv3oa3twFF4dIogBIQpx/6BweeeQRUmHEcYxMJkPT7CAI0ol2ihQPIEI5wrg+QSAHh72UFClSvAFY5TmGKybie8kUbsGv/dqv4ctf/jK2trbwla98BX/zb/5NCIKAX/qlX0I+n8dHPvIRfPSjH8UXv/hFPP/88/h7f+/v4T3vec+hJY5/OzzPw//nD/8bRjkTsZhOsVMA6lyB7N6b/uwkSfA7v/M7hz50OtJEW5IWbw7HcRQQ5jgO9vb2MB6PUS6XwfM8EeTpdIowDGkyzb6u6zrJ0BlhYb7i69ev04RWlmVsbW0RaTVNk6Q6SZIQsbIsiwhpr9dDEATkvR6NRgCAcrmMfr9/2wcgn8/D8zyoqgpVVaHrOpaWliCKIjzPgyzLuHbtGkmqWXo2C2pj0+3xeEwVZszjPR6PsbOzA8uySFbMKqFOnToF13UP0tolCvsql8uUmj2dTpEkCYWi3SpBr9VqKJfLdMyj0YhqsVgo2dLSEur1OgaDAURRxGw2g+/7tFEyGo3g+z6CIECz2USpVMJ0OsXp06epB90wDOq/Zqnds9kMp06fRi6XQ7PRgGmaqFQq5HNvNBrY2NhYEOODVHdBELCzswNN01CtVmkzptfrkez95MmTtNmRJAnW1tYgyzIdt2EYaLVa6Pf74A983yzYrtFoIJfLQZZldDodZLNZ8k0rikIbOKIoUgJ9NpuFLMvI5QqIIwDgEQQRPM9Hvz/Ayy+9Ap4DhINbsZDD6TOnIUkSSqUSKShY4N/i3Kc92ilSPEiIhQTdYwN4WgAuPtI/flOkSAFgVp7fN+nz3t4efumXfglnzpzBL/7iL6JcLuOrX/0q/V7y7/7dv8Pf+Bt/Ax/84Afxoz/6o2g0GvijP/qj+7K214rWTgtf+eJXDnsZKR4EJPhW6vg9wO7uLi5dukQK3cPCkQ5Dy2RUhGFMndk8L4DjeFQqi5Cr0WiElZUV9Ho9dDodrKysUK2X7/s0ZWUpzaxuq1gsIkkSDIdDCIJAUvPxeEwy7Xq9jiAIYNs2MpkMptMpdSyLoki91xzHYW1tDUEQkNSYSdvH4zFJtQ3DoI0A5q3e2dnBzZs3kc/nKWX6xIkT2NzchOM45C/OZrNwHAfj8Rie56HZbNIa2ZqXl5ehKAqlszOvebVaxXA4JAl+HMfwPA8nT56kSS/zpLMNBsuysL29TUSakflSqYTZbAaO46BpGkRRpIR2VkHGzhcjhMw/znqvWZAYI7ybm5vI5/OwLIuCy0qlEsnKp9MpVEWBpunY293DmbMPYXe/Tb7u2WxGQXRBEKBUMDA68GqwLvJ6vY79/X2Sdvd6PQAL7xLzZzM5P5P6MwsCC6NjPnQmnRcEAXEck7y+XC5TSB2T3bONGsuyoBuZgxo5G7YzR6228OiPxxOUSgVsb+0gl9Xx8LmzAJcgSUI0lqtYP34Ml1+6fKDGECAIMaWhu65z/y/KFClSfG8cJOlWdosQQ+GwV5MiRYq7gNbpLlYuN8Df482zP/iDP3jV+1VVxcc//nF8/OMfv6freCOY9af4xuefx0M//hCMcvawl5PikBGLMSIxhhDd3Z+HYRjiz//8z7G/v39Xn/f14EhvqVvWHLK8IGe6bpBfdTabIZPJgOM4tNttCgu71cPKcRx5ZcvlMmRZhuu6kCTptjTqcrlMU2hd1/Hwww8jl8vB933ygzMZNJOqs0mx4zi0HjbZfeSRR1AqlTAej6njG1gEl6mqStNqllCez+cxm82wurqKd73rXchkMsjlcnjooYcAAO12G61WC61WC4qiYGNjA4qiYDQaUc94JpMhyTurHZvNZphMJrh58ybG4zEEQYDv+8hms8jn8/jSl76EVquF5eVlNJtNWv/+/j6GwyHK5TJqtRoFb7C0dybbZqFyvu/j+vXrmM/n5HOeTCaU9s7OEwtcYynpsixjbW2N1AYs4Zvneczn89tCzRIAUbzYrLh48SIFvAVBgOFwCMuykM1msbTUxGg8RqFQwMrKCvL5PHq9Hl5++WWq+hqPxxTMNhqN4HkeptMpcrlFkBr7HLHE+Hw+j3K5TH3aly9fRqvVos2JarVKKenMtgAsSD7P8yiXy2Rj6Pf7sO35beF4i/NqY7/dRr/Xh+t6SOIYCRIIfIIf+9EfRrlcguM4CHwfcRTTZonnpanjKVI8aPA0H8OVMSIxtXakSPFmQKCE2D/VQyCnGQyvBa98+SVsPn/zsJeR4gGAr4b35GfhzZs38cwzz5Al+DBxpCfa36qn0jGbzSjJ+9aqK9u2qWubTSGZxFnTNJpiS5JE02FGPAGQlBsAqtUqVYjt7u7SJJNNhCVJgqIot1U3FQoFImiVSgWj0QiyLKNWqyGOY/i+T1UHrCua1WLl83kEQQDLsnDx4kVsb29DkiScOHEClmUhCAIUCgXwPE/kikmI2fH3+32q9mJkmVWcsR5wltKezWZhWRZmsxlOnDgBURRx48YNHD9+nKrRJpMJJYxzHIe3v/3t1O+dyWSQyWSoRsz3faiqirW1NUynU6yvryObzaLf78NxHKiqiq2tLbiuS5Ns27bxzne+k4Lsbq0i03UdlmWhUqlQ2jlTJLBND8f1YR1sKJw6dQo7Ozu0icAIN88vJutG1oCiKOTnF0WRur0ZUfd9H/l8HoPBgNQKlUoFsixjb28PAOhzYNs2AMC2bZw9exaO42A4HCIIAlQqFUpGZ/3ZtVoNkiQdHNvC0z6fz1EqldDr9RCGIZIkWVTEFXJ48cVLqNeqeOThh+GHAXgO4AQBP/KjP3TgAbfACwIUUbntc5UiRYoHCBxglRb/VkieCMmVkB3rh7yoFClSvG5wgKf7sIpzFLv3t/LrKGI+muNrn/0ajv+1k9AL6b99b1lwgOQJd13dFUURLl++jJs3H4zNnCM90RZF4TsmjIIgIIoi6LqOYrGIer1OVVksoEwQBCiKQpNtnufJew0s6hAEQQDP8xQJXywW0e12aeqZy+VQr9fR6XTo+xh5lGUZoiiS5xsAJZDv7+/DsixIkkS9h3EcY3V1lYK6dF2nNOrZbAZVVXHmzBmcOXMGxWIRly9fhmVZJGO+1V/NyHYcxyRJbzabqFarNGFlBI8FjEmShOXlZaoNy2azCIIA4/EYmUwGOzs7cBwHruui2Wzi2LFjUFUVnU6HNi0ajQZUVYXneZjNZjBNkzzz1WoV+Xwe0+kUnU6HurR930cmk0E2m8XGxgZVkbXbbfA8T5J00zSJJJfLZUiShHq9jjNnzqBcLlPVmeu6iA4C8abTKZ577rkDSwFPSoNF/ZYE0xxjOByStLtWq6FSqdD/DcPAiRMnqN9cURQ0m01kMhmSgbMAtUKhgFKpBGCxGbOysoLhcIjBYLCYNAcBbSRwHEfnN4oizGYzhGGI+dyiajAWBpckCQRBOJiIRwiDGF/+0pfheh5EgQfHJeAQol4v4yf++o+hUil/Rz93ihQpHkxYJRuyI9+zIJgUKVLcX0wrc3iZVEn2WvCVT/0leje6NABK8VYFByR373fVJEnQ6XTwB3/wB4fuzWY40kQ7jhfJ0uVymcLImCS83W7DNE0Mh0MKNCsUCojjGOPxmKaPzB/MJr6M5BiGAVEUUSwWkclkiFD5vk/p5cBiCq0oChFs1mOdJAl4nkcURRiPxyR31nUdqqqSlFpRFGSzWeqF9jwPpmnShPqhhx6C4ziYTCao1+s02WWyc0mSsLS0BEVRUCwWYRgGEWSWPm1ZFm7evEmEVRAEqhHb3t6mTQdWQZYkCYrFIp0TJldnoV7b29sYj8eo1WoYDAbY2trClStXkCQJSqUS9TICiw/99vY2OI5Dt9vFZDKhNPHZbIZGo4EoiigY7tixYxgOh+h2uwjDEKIool6vU4I728RwXReXL1+mrmvm/T51+jQ0TcP6+jr5y6fT6aJyTZLQ2tsjAr/wQI8RxzERYiZNj6IItVqNqtpyuRzJwK9fv47ZbIZSqQRVVZHP5zEajeicsrR3VjvHNllY+Jlt26QKYD3fgiCi3+8vOtOThb8kl8tBVTNYWlqCLCsYDIYY9If433/4vxGFEfgkhsgnEATg5Klj2Dhx7KBiLgCStDUjRYoHHcPlMUQ/9WqnSPFmQKiECJQQyb1MeHqzIAH+v//vP0YcPRhkKMXhIJTvrnQ8SRI888wz6HQ6d+053yiONNGuVCooFIqYTCZUtcRSnVkSOSOVrDOZVUOxySsjkZIkIZ/PU++0d1AZZVkWdUjv7e1ROnkmk4HneTh37hwKhQKKxSKAxVSbTV8Nw0C/36c1bGxs4Pjx4zTNZD3WSZKQXJvjOMiyjHa7Ddd1cenSJfKF37hxA4PBABzHkcR4OBzSpkK328VsNsPS0hJ1hJfLZQwGAyL+4/EY29vbmEwmKBQKOHv2LHRdx5UrV2AYBiqVCk6fPk2Elp0LJmeXJInIoqZpRCYnkwl1U7uuiyAIYJomWq0WPM+jSTEA6tPmOA57e3tYWVnB8ePHceHCBVy6dAmKomB5eRmCIODKlSu0DjadZhsW1WoVqqqSPKTf72N3dxeiKNJ7wDz5169fR0bTkNWNA093jHw+j7W1NcxmMyLCjKQ7joObN2+iUqmgWCxif38fnueh1+tRz3qhUCDZe7PZhKZpyGazyGaz1HeeJAltrFiWRenjmUwGuq5THV3gh3AdH6IgIwxjyJIKe+5iOpnBnruolCpYXzmOYrGO8WiGzaubSCIOXBJB5EOIKo+VtWXohg6eFwHw4NKf9SlSPNAIlQi9Y8PDXkaKFCnuErobA8zzaRDpa8HFx1/AzeduHPYyUhwiEg4I1ADJXfqF1XVdfPKTn7wrz3W3cKSJNgu6YpNE13UpnZqRPUVRcPbsWfIuszopYJHQuL29TeFgLICqVCqRxHdlZYW6sYGF/1YUF9PHXq+HVqu16HI+mLZKkkTBXZcvX0Y+n6eqsM3NTWxubpJEfH9/nyTcjAhrmkbTbk3TiJh7noednR1Uq1XyZe/t7UFRFMznc+rxHo/H4DjutpTvarVKPuVSqUQyakEQsL+/T1VebAOB53l0u106R7PZDLquY3l5GeVyGfl8Ho1Gg845q7JioV+VSoWC5diGB3tPmFScKQHYxPnmzZvY2dmh5221WojjGOfOncPm5iYpEbLZLDRNA8/zqNfr6PV64DgOhmFA0zQ0m03aQGF++eXlZZw/fx6+v7ANsGT0TCaDbreLtbU11Ot1DIdDSm7XdR29Xo9quzRNw9bWFubzOXRdx9raGlWZ2bYNnufheR5NqVmQGvNg1+t1ZDIZqKqKSqVCmzes75t5v5mUnakkmJ9eOrAi+H4Ay5rjK08/jW63B4ADxy0u5PVjK/jBH3o38oUswigE+HSmnSLFgw5fDTBcHiOQA0RCjFlpjnneRiClwUopUhw5cMBwdXzYqzgSSOIEn/mX//uwl5HiEBEq4UI5fpcGQ5/61KcwHj9Y19+RDkOL40W1FMdxRGhZ8jjzqQrCwsfNSAsjuax2itV4ZTIZFItF2LaNyWSCMAxx9uxZjMdjyLKMfr9P0+9ut4tms0mkr9frUQd0LpcDz/Po9/uoVqtUR5XL5Sg0DFjUQ62trdEEnFVHaZpG4WyKopD8gfnPn3vuOeqTZuncTPp+48YNInGCIMBxHKrYUlWVps+O42BlZQXZbHYRIHZLpdl8Pken0wHHcbAsi7zdhmHQxFwQBIzHY9rEUBRl4Y8+6OeezWYQRZHk4efPn8dwOIQkSRSm5rouOp0OfuzHfgwXL14kctntdum94Hkeg8GAPM2CINBxxXGMjY0NquRipFc3cpT+Lssy9vf30e/3wXEcwiDE0nKDqthUVcVoNKLNgCiKsLFxGv1+H6VSiZLNGckXRRGSJFE/OvN8i6KI3d1dUlQkSYJ2u42VlRWS43McB1VVKY2dSeHZ5ki5XKYNCFZHxgLo2GeMwyKcr5jPot8bYXtrF41GDRB4CEkCWeZx4tQGuv0hxhMTYRpqnCLFA49QiWDWZ5jnXPAxh0AJUehmkZmph720FClSvA6EYoThkonSfh5cauJ6Vey9tIfnP/sc3vFzP3DYS0lxGEgW8vGES8C9Qa+2ZVn44he/eJcWdvdwpCfapVIJoihSNdSt4U+FQgGCIGAymZBHejqdUpI1S9fWdZ2k1YqiQNM01Go1VKtVXLt2jaaVbAIMLHzZrCprd3cXk8kE2WyWiLvjOCgUCnjkkUfQbrcxn88xGo2oEoytYW9vD4VCAbVaDZlMhjzlkiRB13VcvnwZcRwTgTcMAxsbG6hUKtRbzSbXAIgImqaJlZUVCsSyLAu5XA5ra2swTROe52Fvbw+TyQTD4RB7e3uwLAu9Xg/dbpf6uZmvulQqYXNzE51OB4VCgSTSoihie3sbzz77LIWDsY5u13Wh6zqWlpao2optfIRhiFKphJWVFXS7XXrfNjc38fDDD0PTNJoIL8jvBlRVRbPZpGT44XCIzc1NaJqGdruN4XCIfD5/W2o4m1wvzlURx44dQ6/XQ61Wo8nxrYR7bW0NL730EhRFwdraGn7hF34BhmFAVVVEUYR8Pg9JkjAYDIgAMwsA6wYfjUaUyM4q2pi3PwxDmKaJXq+HXC6H9fV1Os9BEKDVamE8HsP3fYiiiEKhQJskM8s68DJxMIwcBFHEF77wRVy/dhNRFINHAp6LAZHDo4+9Dc3lJciKct+vyRQpUrw+BGqAYicHPuIXv3DcxYCYFClS3EfwgFmfYtyYIk49XK8K25zjqU/+JVzLPeylpDgk2DkXifDGrpM4jvGJT3wC/X7/Lq3q7uFIE23LmtEkeTKZELk7f/481XoJgkC1TIqigOd5IuelUglxHJOsd2dnB6PRCN1ulyqx2DSXhWUBgCRJlLA9nU5RLBbRbDZx/vx56nyO4xhf+cpXcOzYMVSrVSiKgjiOUS6XMZvNwPM8Go0GBoMB+v0+EVUma3ddF6VSCZqmodH41hSWTV89z4PrulhaWoKu6zh27Bg0TaP1MaJnmiaFoDHJd6PRIMIsiiLW1tYoWK1cLuPixYsktWfT1fl8TtN8JgMHAMMwcPz4cSKbo9EIV69ehe/7yOVyJIfWNA35fB6KokCWZQox29nZQaFQQLlcxqlTp7C1tYVisYjl5WWoqkrTcnb+9vb2MJvN8NBDD2E6nSKTyaBarSKTyaDValEdmGVZuHr1MorFHMLAw87mTWxtXidSPxgMIIoidF2Hpmk4efIkFEXB6dOn4fs+nnrqKezt7YHjOFI1sONmGzKtVgthGKJYLJLPv9lsQlVV1Ot12nDwfR9ra2tUgWYYBnZ3dymQj/Wms/C81dVVeJ4Hx3GQzWYXqfYHXm9R5NHu7MMLQ2i6jqe/8ixcywUHDjxiCEIEzZDx197zLuQKuft9SaZIkeL1ggN66yOU9vOwsy78NL04RYqjCw4YL01g1qdpONr3wc6L23j5C9887GWkOAxwgBAIiIT4DV0nOzs7eOmllxCGD57l6kgTbXAcNE27LfgsSRJMp1OaCheLRepIZnVazL9966Sa4zgkSUIVUmxa6fs+ut0upXz7vg9FURYy5YMwqziOqeYrDEMK4DIMA67r0utlMhnqhGbyaiZbZ95wFjwGAPP5HHt7e+h0OgjD8LYU8dFohAsXLlA9VKvVoi7n+XyOfr8PnudRLBZRrVZx+vRpTCYTOkess5qFnQFAJpMBx3GoVCrQdR3T6RSGYaDT6ZDfW9d1rK6uQpIklEoluK5LnmnTNKl6q1wuQxRFIuGmaWI6naJcLiOXy1EdV6VSgaZpyGQy1FkdxzF4nkcYhhiPx7h27Rp6vR5VXbFU+XK5jMlkQvUQbHLMyG21WsFkYiIKfeSyBriD42632zh9eiERZxs10+kUcRxhOBxS8Fu/38dwOCQPtWEYRKjZ+x4EAYbDIWzbhizLGAwG9J5GUUSp9ixoTlVVmKYJwzAALKrcZrMZTfzz+Tx6vR69J0wFIMkygASyLGEymyBGAtfxYVsOvvqXT0MUJPBxDJELIQoh1tcbWFtfvc8XZIoUKd4onKwLJ59Od1KkeDNg3JwglCPMStZhL+WBxaQ7wYt/8g1Yw9lhLyXFIcDOO7BK89f9/UmS4Pnnn39gerO/HUeaaHvuwuc6Ho/B8zyR0Jdffhmj0YjIISNTjIAx0spqtJg/muM4zGYzTCYTeJ4HwzBgWRbJghlYZ/dsNsPJkyfpPiZNLxaLUBQFhUKB0rHz+TxM00S5XIYgCFhaWqIJcrvdvm0izybSmqYRIWahWJqmoVqt4uzZs1RvxXHcbX8OwxCqqkLXdYiiiCiK0Gq1YFkW9vb2MBqNqJ96e3sbo9EIzWaTyD4LWltZWYGiKDh37hw0TaOUbd/3SbLOZNftdps2D9bW1kgi/9RTTyFJEtTrdZquz+dzOg+DwQDdbpfk35VKBb1ej1LaV1ZWcPr0aZw4cYKUBIy0Mn92pVqFkTXghwF6vR6ART3W0tISOp0Ooiii7vK9vT2oqorxeEzHwrr2wjCkzRRmC2Dk3zAMRFFEioNXXnkFjUaD0urZe8neH7aZwXz6u7u7ZFFg7wkLuZNlGdVqFeVyGZVKZeHDPqhqU1WV3lOAw3QyOXiPBHhBCHM6w1e/+gy+/uzXwMUJZHAQ+RiSlODM6ZP38WpMkSLFG0XMx3CyHpAA/fURfDXAqDE57GWlSJHiDaB9sgc768GsTQ97KQ8snv/c19C53kl7td+K4IBp5fVtRCVJgp2dHfzFX/wFqY4fNBxpos2msRzHEVFkk8V6vQ5RFBEEAWRZJiLOKq+YhLdWq6FUKkGSJKysrABYJG1fvXoV+/v7AEDBVMC3qqmy2Sy9XhRFUFUVrVaL7g/DEJZloVKpUIr4eDymFGo2Da/X66jVaigUCuA4juqfWIjbxsYGNjY26FhZV7imaQjDkPzkjz32GLLZLJaXl6FpGiaTCURRxGg0ok0ENlmfTCZQVRV/62/9TVQqFeTzeezt7d22zls7um3bpvRxVVXR6XSwurqKdruNZrMJy7Lw6KOP4tixY/A8D/l8HhsbG/A8D6qqYjAYYH9/n0LqfN/HbDbDtWvX4DgO1tfXAYA89cePH6f3t91uQ9d1jEYjmKaJyWSCvb09DAYDBEFAfufxdIowjiGpCiWFTyYTaJoGQVjYBgDgbW97G+bzOQaDAZFkVr3V6XQRBAFNqhuNBgWfsWk6UxMwAm1ZFlqtFnq9HvnwwzDEjRs3kM/n0W63wXEcSdQZkWdJ6SwNvlgskmdekiQKUJtMJphOp6jX64iiCMsry8hms5AkGaKswpxaUDUD37h4Cfu9PgAeMRL4oYdCMZWOp0hxpMADkidg5XIDS1dr6G4MkB3ph72qFClSvF5wQKCGiIU4DTh8FXhzD1/8L0/At1PLzFsRkRAjlO88wTdJEmxubuLKlSv3YFV3B0eeaLN+5TiOScbMpsCMNDFzfBQt3kQ2yWRp391ul0izoiiwLIumifV6nV4LANUxLaqWfEwmE2QyGXQ6HZoAM7+yLMtUEcUIKCOLLLU6iiIIgoAgCBCGIYIgICIWhiGRt3w+j0KhgEKhgDiOSboehiF0XcdwOCQP9Xg8pmPlOA7FYpHI43w+RxRFCMMQX/rSl2kDQdd1CIKAbDYLXdeRzWbRarXw9NNPY3t7G9vb28hms4jjGMvLy3SMTFZtWRadnxdffBHb29uUZs7OCXsdFtDGNjuuXbtGaduu62J7exuqquKVV15BtVrFzZs3kclkMJ/Pbwu/293dRRzHeP7rX4ftOMjlc4gRQ80okBUJw0EfPMdhYpoQBAHFYpGq15iawbZt6gcXBAGZTAbNZpP+zoLQptMpwjAkCfnS0hJc1yX/PiPQjBizhPWlpSUoikK2AcdxKB9gPB5DVVX4vo/r169DlmXs7e1hOp1SdZppmlAUZbHZoSjYb7UxGo0wnU4wHi+UCQFizDwHly5fxdz1AY6HrCgQJOH+XYwpUqS4K3ByHvbOdWDWZ1DmMpxsKiNPkeKowy442D/dO+xlPNB49g+/is7V/XSq/VYEB5i1KSLhzsj2fD7Hf/kv/+UeLeru4EgTbTY9FEURtm1TX3Uul6MEbEVR8Mgjj1DH9a3fx9K6c7kcyYNZ+jgLQVNVFYVCAQBo0sxCrBjBnc/nRPBZ8jfP8+S59TwPzWaT6sOy2SwajQbK5TL29/exu7uLbrdL1VusQxsAVVR1Oh1sb2/TcUqShH6/D9u2Kdl8Op2S73w0GkFRFPi+T/JsFlDG+rJFUUQ+n0e5XKbebPYPXLPZRD6fv63judvtIo5jTCYTzGaLILpWq4VGowHTNDEYDAAAx44dIwk0k+CHYYhsNoudnR0EQYAoim5L9GbTfVVVyd/NVAJJklCyu2malCLPUtrDIEASx+j3+lhqNiCIPNSMDJEX4NoO7AOCzibEURShVCohm80e+PYX3udisUCfCyb3ZxVqwKJai8nnL126BMMwwPM8KpUKTevZxg/rCWcS8dFoBJ7nsbGxAUVRMJlMKKwul8vB933s7+/j9OnTFA5XrVbB8zwpEaazGTIZDbIsI04iKLIE250jRgIjV8A3Lr6MyzduIkkAhDGA+D5chSlSpLgXMOtTJGlicYoUKd5C+HTaq/3WBAdYpTmsov2af+4lSYInn3wS7Xb7Hi/ujeFIE23HsalHW5Ik5HI5uK6LXC6HIAiINLIJbyaTQRzHMAwDxWKRQryiKKJJqud5KJVKqFQqcBwHL774IsnTM5kMkSAm4WYScM/zMJlM0G63EYYhBWM9//zzsG0bu7u7JM1m1VP9fp+qwIrFIjY2NiAIAvVVsxTvpaUlcBxHMm7Wvczqu26dhjMSnsvlMJ1OUa1Woes6jh8/jkwmA9u2sbKyAtd1MZlM4DgO9vf3EQQBqtUqdUHv7OzQhkOj0YDv+6hUKqQQYNPv4XCIwWBAgW2+71OQGZuODwYDZDIZOI5DcuzV1VU6j4IgoNPpoNPp4Ad+4AfQ7/cpXI5J+9lUuFAo4N3vfjfe8Y534MSJE9B1HSsry1hfXYUiSXDnNrg4Bh8nQJIg8H2USiXaNGBT9nK5jH6/D9M00Ww2oWkaebMBoNPpoN1uw3EcAKBNADYJP3XqFIXDRVGEU6dOodFoUI95sVjEiRMnKAuASeSZnH4+n9MGBAtPO336NGzbxkMPPYT19XVMJhMsLy+TWkBVVYThYpPCPehILxaLyGgaet0BREHGXz75FQz7JuI4QcI9eOmLKVKkeO3QJxkMV8bYO/tg/yKRIkWKFHcDV5+6gle+9NJhLyPFISAWEszzDkLxtU+1f+/3fu8erujuQDzsBbwR5PMFmhzfGlTFJouu61IQlaIoEAQBuq4jCAKIokj3s+lxoVCAZVkYDoeo1+tUncXI/Hw+p0Cu+XwO3/eRyWTgeR50XacgMyYv53n+wE8rYTgcIpvNwrIs6LoOWZZx8+ZNIoGDwQAvvvgiyuUy1tfXoaoqXn75ZZRKJZimCVmWYZomTXVrtRpVX9VqNXAcR4SNJYBblkUE3LIsPPbYY7hx4wZarRYKhQIkScLy8jImkwmazSZmsxm++c1vIggCqpjieR5XrlzB2bNnqWJMlmXa0KhWq+j1euA4DrVaDcViES+++CIqlQoqlQquXr1KqeqTyQSj0QiZTAaTg1AvVVUhyzKWlpZQLBbx6U9/mib6cRyjUqlgPB5TcreiKOh0OphMJjhx4gQEQcD29jaKxSI8x4XP8zh16iT6/T6lyMuyjE6nQwF2AKiurVarQZZlCIJA8vJOp4NyuYxer4fV1VV0u12srq5iZ2eHNhG63S4eeeQRXLx4EZlMhlQJ+XyeEutZYnm5XAbP89jZ2UEul4OiKJjP59RZHkURHMfBaDQCAJLzJ0mC7e3tRTVaLofxcAQjq0OUeEiyCF0zFhJ+XYft2PCiELIs4rOf/Tw+9KFfuK1XPkWKFEcP3Y0h+IhH9AY7RlOkSJHiKCBwAzz+f/4Jzv7YQxQCnOItAm7RumHnHeQGBji8+u+wv/u7v0tK2gcZd/wpfvLJJ/EzP/MzNGX9zGc+c9v9f/fv/l0iuuz2vve977bHjEYjfPjDH0Yul0OhUMBHPvIRmtrdCSRJJKk0I9msMqtQKKBUKtF0+9akZ9blnCQJkiSB4zgwTZNSv1kPs+u68DyPwrKYpzsMQ5RKJSwtLZFXmfl4GZGKogj5fB6u66JQKBApXVpaIsnx0tISEX7HcShwbHt7G61WC6qq0tqYtJxtCoxGI/I9m6ZJEno2XZYkieTSgiBgf38fL7/8MkzTJEk2kyTPZjOYponZbIZTp05RJRgj06xuK45j6pJuNBoQRZEmvadPn0YYhuj3+yiVShBFEXt7e6jVashmsxTctra2RhVjiqKg2WyC4zjs7OzgypUrNFUuFouo1+v4oR/6IUrelmWZKslKpRKFohUKBYiiiGazCV3T4LkezLEJ3/dhGAYGgwFyuRxM04QoilQvls/nMRwOySPOrAAskK5SqdAmxpUrVxBFEa5cuYLkoNO62+3i/PnzpBRYX19HoVCg/nHLssDzPAX0iaKI7e1tXL16FbquY319HdlsFs1mE3EcQxAE+vwUCgUi7YIgYDqbwTAMSKJIyggWYLe9vQPX9TGfOzDHM+SyRTz99LMIXyWA8UG6jlOkSPFdwC1ukidC8r533kJ6LadIkeLNhL2XdvH8Z5477GWkOAzwwKg5gaf5r9qrPZ1O8eyzz5IK9UHGHRPt+XyORx99FB//+Me/52Pe9773od1u0+33f//3b7v/wx/+MF566SX8+Z//OT7/+c/jySefxK/8yq/c8eJ9PyDpLvNXR1EETdOIkE2nUxSLRURRRKScFZpLkkR/ZsQvDEPwPI/5fI52u01T0VqtRonhwEKOfmtoWhiGJElnNVm+70OSJPIEMzk165Vmnc6u66LZbKJcLlPVE5NkF4tFrKyskPSa9WYzghzHMaVs7+7uUoiXbdtEvmVZpjRyNkVOkgSyLBM5ZkFeLLH9ypUriOOY6qdeeuklmsYv5NorFOS2tLREf7YsC4PBALIso9FokG/+oYceokl+o9FAEATodDq4ePEiycQBoFwuo16vU1f1H/7hH6LVasEwDOzu7kJVVSiKQqFqZ86cwcbGBm0yTCYT7O/v3ybLBr7lw4/jGIPBgALhNjY2YFkWtra20G630WjUcfbsGZL3X7p0iQLQ2GTbcRwoikId41EUYWVlBTdu3KDHMrUDm+wzjzwLY9N1HaqqUpUbywhgafXb29sYj8fgOA77+/sLf302C00zoCgqREEkWXpGVSBLEirFItz5HJPBCNcvX8f+XvdIXMcpUqT43vB0H57+vXfN0ms5RYoUbybM+lO88P/7Oubm6+9WTnF0EUsxXMN71cd87nOfw/b29n1a0RvDHUvH3//+9+P973//qz5GURQ0Go3vet8rr7yCxx9/HM899xze+c53AgD+/b//9/jABz6Af/tv/y2WlpZe81oEgafp8ng8hiAINKVk1V6SJKHb7UKWZeTzeZKQs+RxTdNum/6yyXE2m0WpVCJyy45ra2sL9XqdZL5sypzP51GpVHDx4kVUKhXs7u5ClmVKEWcTS9bV7HkeLly4gFKpBM/zsL29TXVc5XKZpur1ep3qx3q9Hq5fv45arYb5fI7V1VWaRDMv8WAwwCOPPILr16+jVCohjmPs7OzQpsN8Pke9XqfOZ8dxkM/n0ev1oCgKkVrW48y6wRk5nEwmKBaL2N3dxc7ODqWes8evrq5iOBzi8uXLFCTX7Xap1kvXdezs7FD9mK7rmM/ntJGg6zo8z8NgMEA2m0U2m4Xv++j3++j1ejhz5gxmsxl0XUcul8NkMoF/4MO+evUqOI5DLpfDiRMncOnSJQq++/rXv47V1VXouk4y+dFoBM/zcPr0Gcjyot6NqQMEQbgt0G5/fx/nz5/HtWvXwHEcKpUKdnZ2IMsyZrMZisUiHnroIfK+8zwPWZYxHA7pcyfLMo4dO4Z8Po9Wq4X5fI5sNku2hNFohEKhAEVRyA/OQuJOnjyJzes3IMsKfvyv/yg+97nPII5jlMtlhHGE2WyySDofjyELAorlEv7yS08eies4RYoUrx/ptZwiRYo3G1758ivY/NoNPPzeRw57KSkOAdOKBSEQkB1/Z73l7u4uvva1r8H3j0YV3D0xQHzpS19CrVbDmTNn8Pf//t+nqSIAPP300ygUCvQDHQDe+973gud5PPPMM9/1+TzPw3Q6ve0GgMgb8w4bhkEBVYzAJUlCpJLneZqGNhoN5HI58txaloXpdIqTJ0+iWq3CNE30+33MZjM0m03qPF5ZWSHJ9IkTJ4hEtdttXLp0CadOnUK/3yeZdblcRpIkyGQy0DSNpNiiKKLf76PVaiEMQ1SrVaq7YqnXx48fR6lUwmw2Q7fbhWVZyGazmM/nyOfzVKtVLBaxvr6OpaUllEol8vVGUUST1Ww2i1wuR3L1wWBA8nOe56majE39WWI4qwRj0+h6vQ7LsnD16lWans9mMwwGAwwGA3zlK19Bq9VCtVqFJEnwPA/r6+tot9swDOyp2V0AAQAASURBVAOe51G9Vb1eh+u6KJVKkGWZ1sveN9d1Ua1WsbKyAs/z8Mgjj1AvN+sd39zcxGw2w9e//nWIooi3v/3tB3LqRbBdo9GAYRhE2FlInuu6yOfzWF9fR7fbRb/fR7fbRafTge/7UFUVPM+TdPvs2bOwbRu5XA6e56HVatEkWpIkaJoGVVXJegAAvV4Ptm1jMBjANE3yzjO1AZPpj8djZDIZnDx5EqVSiZQZuq6jXq9D0zS4rkvn+vHHH8fDDz+MM2fOIEkSGIaB4XC4ONdra4vNnCiCNZ09UNfxq13LKVKkuHe4Xz+TU6RIkeJuYNaf4mufeQ52OtV+SyJQQoybk+96340bN/Dyyy/f5xW9ftx1ov2+970P/+2//Tc88cQT+Ff/6l/hy1/+Mt7//vffluZcq9Vu+x5RFFEqldDpdL7rc37sYx9DPp+n2+rqKgCQ/zgMQyJPgiBA07SD2qZF6BVLDWe+WTYtZtPOJElQKBQo5GwwGKBSqZAvmIWbscdqmkZVUfv7+5jP5ygUCtA0jTzQAKBpGk2FWSUVk5uXy2XYto0oiujGwtNYkjkjnY7j0PSd53l4nkdk/MSJEwAWHjvDMAAAmUwG+XyePM2CINBkmsmTVVWlibcsy1BVlXrIDcOg+ixFUUjG7fs+9TszCXqtViNZva7rFNKWz+fx8MMPI4oizOdzCIIAjuPI+8w862tra6hUKlBVlaa7oiji2LFjiOMYL730EnmtXdcl2ff169cxGo1QKpVw8+ZNItMAsLKysuidVlUMh0PaLGCS9uFwSJsfi3R3FaIo4tq1axiNRrh06RKuXbt22/cOh0Nsbm6C4zg0Gg0oioIgCEgBUCgU0O/3MRwOKfWd+dplWUaxWITjOJhMJrh8+TJkWcbOzg56vR54nodhGLTZk81mSZ6+u7uL8XhM10nhoE/95ZdfRr/fh6IomE6nRPJZEv3EnEDkX3+P9r24jl/tWk6RIsW9wf38mZwiRYoUdwtf/YOvYLg3THu134rggFCKYOXt277c7XbxyU9+kmy/RwF3nWh/6EMfws/+7M/iwoUL+Pmf/3l8/vOfx3PPPYcvfelLr/s5f/3Xfx2TyYRuu7u7AIByuQJJkqi3mtVLMZLI8zz5sJmvmed5BEEAz/MgiiLVYTEPs+u6cF2XpOEbGxvklZVlGf1+nxK+WWgXew5N06ijmnmxmf9aVVVomobZbIbpdEp1UyylXBAEZDIZIpwnT56E7/vk61VVlbzazWYT8/kcN27cwHw+J4k681qrqkpy60qlghMnTlBA2mw2gyiKWF5eps5vFoZ2+vRpZLNZ9Ho9msCLooharUYT3W63S2Tf933k83lMJhMYhoHJZIJyuUy+9Xa7TbJ3SZIwGo1IIj8cDmGaJs6dO4cwDOnczedzrK2tIZvNolwuI5/PYzQaYXl5mSbrrE4tiiL0+30cP34cuVwOmUwGzz77LCkc2IScSdQZuWYTZdaHPhqNqHpLURQcO3YMq6urNHWP4xiWZWFpaQmTyQSZTIZeg33OWI+fruuoVCqIogj1ep063ev1+m3p6Y7jgOd58u5fvXoVs9mM6t0A0PvE8zzZIWzHAcctgvSSJEG1WkUhX0CpWESn3cF0OqVwOO9gsv6gXMfA976WU6RIcW9wP38mp0iRIsXdQhRG+Nz/69OIo/iwl5LiEJDwCcz6lOq+kiTBjRs3cOPGjUNe2Z3hnmfnHz9+HJVKBdevXwcANBoN9Hq92x4ThiFGo9H39JApioJcLnfbDQDa7TaRIDZ9DMMQHMfRFJvneRSLRSLdDLZt06SYEXUm6y0Wi0iShGS9LORrfX0dx44dQ6vVIok1m26yFPLt7W2aXANAv9/HaDTCeDwmKbmuLzwHt07SVVXFeDwmgj4YDKjPutvtwjAMbG9vo16vI5PJ4MKFC3j44YfhOA4cx8FgMEC/30c+nydJOiOn+XwejUaDJqVMvm4YBiRJgu/7lLDOuptlWQbHcbh69SpM08SlS5co7fv8+fMkHbx69SrG4zF2d3cxmUxw5coV6qSO4xi2bWNvbw8/9mM/Bl3XcebMGQDA+fPnYRgGHn/8cfKaq6qKZrOJl19+GVtbWySxr1arEEWRgt1UVaU/8zwP13Wxv79PoXCmaQIAVldXSY4fhiGKxSL29vYQhiHm8zls2z5IhS/imWeeoY70TqdD/ulWq0Vp8uwc9Pt9XLhwAaqq4uzZs4jjGMPhkILaxuMx+v0+xuMxpaizjm1WjxZFEfb29vDiiy8CAIIggG3bt3WfM4LNFAMs8b7X66LVatFU3LFtZNQMlpeXiPwHQQDcxXqvu3EdA9/7Wk6RIsX9wb38mZwiRYoUdxMvPv4Ctl/YOuxlpDgMcICv+RisjuHqHoI4wH/4D//hsFd1x7jnPdp7e3sYDodoNpsAgPe85z0wTRPPP/883vGOdwAAvvCFLyCOY7zrXe+6o+cWBJ66rRnpYr5hNtHkOA6dTgeNRoPkJyyFnJFMFkbGJNX1eh2TyYQICyPNjIzXajWoqopOp4Pd3V2SNbMea03TaErNcRyFhUmSBMdxEIYh2u02arUaHMfBeDzGaDRCsVjE5uYmqtUqcrkcSqUSbNsmH7jjOLhx4wYajQb6/T62t7ep05oFY7G08mq1iu3tbZKOO46D/f19rK+v09/Z9FNRFJrca5pGfmxFUfDud78bN27cAM/zRFyvXLmCU6dOwfM87O3twTAMPProo+h2u9jY2KBKMtZRXqvV8OSTT9Jknk2z2SbIxYsXoaoqJpMJwjDE0tISptMpwjAkmT/zorN+a8uySLa9vr6O69evI45j/OIv/iKefPJJTKdTshawdHa24RIEAcnw+/0+NC1DYXks7K3b7SKKIliWhUqlctsGRLFYxNbWFkzTpMk6S6s3TZOUCrPZjBLHd3Z2yBvP8gSY+oHJ/B3Hoc0dRVGoamw2m+HkyZOYT2eIohjgY8RxiMlkgkqlQlL4IAigqirVi7H6twf9Ok6RIsX9Q3otp0iR4qggiRN89v/4I/zjT//Tw15KikNAwgHzgo1QivCVP3iSFJ9HCXc80bYsCy+88AJeeOEFAMDm5iZeeOEF7OzswLIs/NN/+k/x1a9+FVtbW3jiiSfwcz/3czh58iR++qd/GgBw7tw5vO9978Mv//Iv49lnn8VTTz2FX/3VX8WHPvShO043HY3GCMOQEp0ZsWWSWkVREMcx4jgGdzDdY0Q4iiJMJhPq0eY4DoqikM87l8tB0zSUy2VUKhXyajMJumVZRPCZt3Zvb4+ez3Vd8s7ato04jonUs1onNklma8xkMtT7feXKFczncyLcDPl8HmEYYmdnB+PxmCa1LHmd4ziUy2WIooi1tTWq9FpaWgLP80QcmbyekTPbtuF5HuI4xtbWForFIsIwJIIZhiFM04Rpmsjlctjc3MTm5iYymQze/va3kwd9Npuh1WrReguFAgaDAWzbJj8xCxfb2NhAEAR4xzveAZ7nkclkSHXg+z6GwyHJ6Jk0/+bNm7TuUqmEbDaLq1evUrr7K6+8QkS60+ksJNSeh1OnTkGSJOpRF0UR2WyWUuObzSaliDebTQqbO3HiBMnaWZCaKIrUNR5FEZrNJjKZDARBoKT1fD6PtbU1+L6PSqUCx3HIx8+m75ZlkTKA53ny6gMgRcGJEydQKBQwm05hzS0EQQBBELC2toZyuUxrms1mtIHBQuhezcPyIF3HKVKkeP1Ir+UUKVK8mbH1jU18/Y+/dtjLSHEY4BY3V3PxuT/+7JH0698x0f7a176Gxx57DI899hgA4KMf/Sgee+wx/MZv/AYEQcDFixfxsz/7szh9+jQ+8pGP4B3veAf+8i//Eoqi0HN88pOfxNmzZ/GTP/mT+MAHPoAf/uEfxn/+z//5jhcfRRFNiFmIFvPhMgK8vLyMfD5P/dqWZZHMmfmYgyCAKIpQFAWTyQStVosmzmwyyMJiMpkMTNOE4zhoNBo0lWSBX+PxGIZhIJPJUPWY53k0/WQkfTQaEUlSFAWVSoWIURAsOlM7nQ5JpT3PQzabRRiGkGUZq6uryOVyRK4ZQZvP59TbzXzh29vbGAwGWFpaQhiG2N3dpV5p5rPO5XIULFcsFrG/v49Op0Pr/Imf+AmUSiVMp1Mismxj4vLly+RzX1lZQS6Xg+u6EEURrVYL2WwWxWIRo9EIk8kE2WyWpq4XLlyAZVmIogi2bUOWZcRxjGw2i3q9Ds/zqPqK4zhUq1XU63XIskxd5KyyjUkgNzY2UCgUYBgGNE3DuXPnkCQJ2u02+dfZ+1MsFmHbDk1/u90uTNNEpVKhGrRGo0E1cMxjHwQBhZSxNYxGI9ooKBaLmM1mtEGwvLwMRVGwtraGRx55BIPBgDIFBoMBZQBwHEdZAblcjgh5p9vFbDZDEARwHRfdbpd8/lEU0fEmSYJer4ckSV61+uBBuo5TpEjx+pFeyylSpHgzwzZtPP37TyFwg8NeSopDwmf+jz9Cb7f3/R/4AOKOpeM//uM//qo7Cn/6p3/6fZ+jVCrhU5/61J2+9HeABUKFYUiExjRNqncKwxDT6RSNRoP828zba1kWkSsWusUmqGfPnoXv+2i1Wmi1WiiVSoiiCEtLS9jd3QXP8xSkJoqLU3jixAmsra3hr/7qr2j6ffz4car6iqIIrusSoWLEkk3aTdOktHRVVYngs2NSFAW1Wo3IHcdxWF1dhSiK9Lxskuq6Lvr9PtrtNmRZpsm6IAjw/f8/e38eZNl91/fDr3O3c/d97717ZnoWSSNpRsgTbNkE/bCxIaEwVXEVwQ7lgipK8lOOSSDkIU5+hPr5gaSAIgGcVP0Skzy4IDw/jMEJDl7AxtZiaaTR7DO93777vm/nLs8fPd8PGjDYxrZGI59XVZes7jvd556+V57P9/NexvT7fXq9Ho8++qjIMJRU2+/3c+LECQzDYHNzk4ODA7LZrPy8arUqUnmHw4HH42F5efkv/cJ3+rxVON18PhcpuGEYeDwewuGwJGZfvHhRAtoSiYR0la+urjIajThz5gyZTEYSuB0OB4uLi1y/fp3JZMLBwQHT6RSn08ny8jJf/OIXJdRM0zRCoRB+v5/9/X1sNhuBQECk+gsLaRKJONvb2xiGwVvf+lZ2dnbksKZQKEjnukp6V/VejUaD7/qu72Jra4t2u83x48e5ffs29XqdeDxOPp9nbW1NOtyvXLkCIJ56wzA4ceIEdrtdAu1Uwrzb7SaRSFCtVkV67/F6KRcKOOw648kQi8VCsVgkkUiI8kApJhwOB8Fg8C4lxF/l9fQ+NjEx+btjvpdNTEze6Oxd3OXKZ17h0R88/7UfbPKGopFvsP3cbSaj+ydp/NV82z3a307UEKR6sDVNwzAMIpGI9GvX63WRPSvvtMvlwmKx4PF4xC89mUxwuVyEQiFJUh0MBng8Htm+Xr58Gb/fzxNPPEEul6Ner8sQ22g0uHbtGufOnWN7exuXy0Wj0WA6ncpQriq8AOLxuFQ7qQFJbSiVjFw9v1KpxMLCAoeHh6TTaZGmDwYD7HY7LpdLNqPqEMBms+H1emU7Ho/H5XDB7/fj8/nY29vDZrPRbDYZDoey4Z/NZuTzefFru1wutre3GQ6Hct9sNhudTgev14vX6+X69ev4fD4ajQZnzpzhs5/9LG63m9OnT7O/v0+xWGR5eRk4CrEbj8cMBgPW1tbI5/OEQiFsNhuTyYQzZ85IGnupVJJEb5WensvlePzxx3nppZfEHuByuSS8p9fryfPd2trC4/GwuLgIwOrq6p3eaqekujscDiKRiHRjj8djDg8Ppcu6VqvRarWIx+NUq1XOnj1Lt9vl4sWLRKNRisUiqVSKUChEr9fDMAyazSa3b9/G4XAwHo8JhUKSNq8Obk6cOEG1WqXX61GpVOTQxGKxyECuAtCq9RrhYIhep4vNfpRWvrOzw8HBgUjg4/G41K+53W5ara/eQWhiYmJiYmJicr/QKrW4/L9f4cR3n8Qb9t7ryzF5DXnlT15m/6W9e30Zf2e+7anj30663S4ul0tCz/r9PtFoFLfbjdvtxufzEQgEMAxDNt5KlqsGuaOh6y+H2kqlIt5eNcAqObDP5yMcDnPz5k3y+TyBQACn0ylDtRoULRaLSIyVh/zVPvJ6vU6n0yEUCtHtdmWgnU6n5HI5ms0m9Xpdgq18Pp/ImVVqNSBhXe12m+FwyCOPPEIikZCt9Xg8Fk91JBLBarVKeJc6VNA0jeXlZY4dO8ba2hput5t2u83Kygo7OzuydV9ZWaHRaGC328lkMng8HpHi3759m9FohMVi4bHHHiMcDovHvVarAWC320WiDkcqgnq9TjabFQ94p9ORELJMJiMR/n6/n1AoRLPZJJVKMZvNqFQqrK6uSpWYUjaEQiFRBSjFgvIsK8n6bDaTtHI4UkY0m0263a5skX0+Hw6HQ64HjhLk1ea+0WiQTqfRdV0C2tQBhQqB29zcxOVyiWIiEokQi8VYWFggHo/LgU4wGJRgOFWPplLnlWrB7XbLttrr9aJpGn6/H6/XK33dSoqu67ocPJmYmJiYmJiY3O+8/KmLlLYK9/oyTF5DKvtlLn7yBcaDv9kK+Xrnvh60VeiXGqbn8zlut5t+vy+bYyX5VdtuFUSmuqPj8TiaplGv12UAazQasoG22WzSu63k3P1+H5vNxuHhIe12m+l0ypkzZwiFQpTLZRYXF2m327hcLpGWK8/sdDrF6z06jVMy8kAgwOrqKna7XbaTaitdq9Xu2toq2bHX66Xb7cq1hcNhDg8PsdlspFIpSqUSo9EIOAoWs1gsaJomlV75fF427tVqVVLWLRYL5XJZAszUoUAwGJRhdzwec/XqVSqVCr1ej1qtRjgcplAoSFe0en4ul4uVlRWp6FJS7mPHjpFOp2WI7PV69Ho91tfXsdlsJJNJvF4vnU5HBtVQKCTfO5/Pize+Xq/L70YdUDSbTebzOcePHycQCNBut0UyH41GpZKsVqvR7/elM1xt70OhENFoVLzms9kMq9WKrusSXNZoNOj3+5JqrqwHmUyG9fV1Wq0W9Xqd1dVVstlDzp8/R7lcJhwOy+vIMAyq1aoE0Sk/v/rdX758mcPsIZ1OB/1OMvlwOGJ7e1vUD16vl0ajwe7uLtFoVA4W1L0yMTExMTExef3yxS9+kR/8wR8knU6jaRp/+Id/eNfX5/M5H/7whyV89cknn2Rra+uux9TrdX70R38Uv99PMBjk/e9/v7TmvBHoN/v82f/9eUb90b2+FJPXgPl8TmW/wu0v37rXl/JNcV8P2o1GQ6TSajgtlUoUi0VJclbe10ajQbfblf5kFWClNtYq7OrVwWpqkBqPxyJPV37eTqcjkmOHw0G1WqXZbFIsFvnyl79MKpXC4/GIJFgNRaPRCJfLhaZpHBwc4PF46Pf7NJtNFhcXeeCBBxiNRgyHQzqdDi6XC0CSyCuVCqVSSWrFPB6PbPMBtre32d3dJRgMylY5GAzSarUksC2TyWC1WnG5XLhcLs6fP08sFpPQsne84x08/vjjWK1WEokEPp+PYrGI0+nk4YcfJhQKceLECUnuDofDLC4uMplM2NnZke/f7/cpl8vk83my2SwHBwfcvn2bdrvNM888g8PhEI+xuv+7u7u02212d3fxeDxYrVay2axcf6vVIp/PS7WY8jfbbDZ2dnawWq2yyZ7N5uzu7qLruvwei8UixWKByWTKysqKvAYKhYJsikOhkMjFHQ6HhN4tLCxQq9XY3t6WdHnVgT4ej2k0GjidTnw+H1tbW+LTv379Ok6ni+eee55IJMLe3h6ZTIZisShd6irYz2KxcObMGamFi0QinHv0HJ12G4euo+tOGo06LpdLgvusVquEt1UqFZHDq752ExMTExMTk9cvvV6Ps2fP8hu/8Rtf9eu//Mu/zK//+q/z0Y9+lOeffx6Px8Pb3/52UeYB/OiP/ijXrl3jM5/5DJ/61Kf44he/yE/+5E++Vk/hNeH5//Es1YPKfZk+bfKNMWj1+R//8uPMpt+6qtp7wX3t0Z7P52iaJlvgwWAgm7zZbIbdbpfE8GAwKNttJQVXA63FYpEPFRo2nU6xWq243W78fj8ul0sC1RwOhwzXuq4TDodlINvf3yeVSklYldfrpd/viy9cbdRVUJnT6aTX66FpGjdv3pThV8nbQ6EQ4/FYZNoqpdzpdLK4uEgmk6HT6RCLxWi1WqRSKfr9PpPJRKTSg8FAnkur1WJ1dZVEIsGLL77IeDwmFotRLpc5ODggEAhw69YtdF3H6/VSKBQkpEzTNPb29jh+/DjXrl3D6XSysLBwx0s8keepvN+q17zX6zGbzeT3pXrFu90u8Xhc6sTsdjvlclkk+apHOxKJiGd5OBxK97d6joZhMBgM8Hq9lMtlvF6v3CNNm9PrdXA47MznM9rtjtwX5ctOJpNySLK2tsbu7q5IzVUtm9PppFQqEYlEABgOh8RiMex2O+FwmGKxKPVdaiM9HA6lesvj8eD1eplMJiwtLUn9WL/fF689QKvV4saNGxKYpw5rHn3kUTKZDH6vn3hig4ODPTkIUbL7YDBIIpHg1q37+/TPxMTExMTkO4nv//7v5/u///u/6tfm8zm/9mu/xs///M/zD//hPwTgv/23/0YikeAP//APec973sONGzf49Kc/zQsvvMD580eBYf/hP/wH3vnOd/Lv//2/f0NV9f2P//fv8sH/56fv9WWYfBuZz+fc+tJNctdzX/vBr3Pu64222jKrxGW1ZVZVR8qjWi6XMQxD6qLUcK1k1IFAQFKylRcWkNAvXdex2+0iP1e1UaFQSDzfuVyOWq2G1WolHA5LB7fD4ZCfNxqNqNfr5HI5YrEY8Xhc/MSq91vJ4aPRqAyTg8FAArXi8bjIwA8ODtA0DafTKQOoCnVTA57yc7daLdrtNsFgkH6/T61Ww+12M5vNGA6Hcn/C4bD8XKfTKYNlKBRC13W5N6p2ajgc3tkyF/F4PHelpyupdSgUuiuwS9M0kaYrmb5hGAyHQ9bW1mi329JLHgqFRH3g9/ux2+3Y7XZ0XZcUc6UQaDabrK2tiX98YWGRcDiM1WaVe6AGXkCC9KbTKclkkkQiwcHBgRxIqOC1fD4vryXlgQ4EAuLNV5J/dS+8Xq9I5dX9UM95OByyvb1Nv99naWmJeDxOIBAQ/73dbpcDFU3TGA6H4sOfz+dUq1VKpZJ8/8lkwt7enkj7R6OR+NZfXd9jYmJiYmJicv+xt7dHsVjkySeflM8FAgEef/xxnn32WQCeffZZgsGgDNkATz75JBaLheeff/5v/N6j0Uj+zqU+Xu9sPXOLG39+7V5fhsm3mT/4P3//Xl/Ct4T7etBWydFOp5PBYCD+ZJfLRSAQkMFQ9UoPh0MCgQDxeFxCxjRNk0Aym81Gr9eT4U4Nmio5ejAYyACpwrbUwO7xeGTTqsLQSqUSq6urLC8vM5/PWVpaYmlpiVQqRTgcZnNzU8LTBoOBbMZV37TD4aDVajEcDkUeXK/X6fV6zOdzSbeu1Wr4/X4JBFP3IxKJUCwWGQ6HrK6uomma3I9MJkM0GuXMmTPs7u7KJr/ZbMpmPZ1OY7fb6ff7ItcGuHz5Mj6fD4/HQ6FQIJPJyH1Qqd7K/20YhgyCx44dIxaLkc/nRa7vdDo5fvw4rVZLBtxmsyn+9VKphK7rTKdTCQOLxWJMJhO8Xi8Oh4NarYbFYsHv9zObzVhaWmIymVCv1/B43HJYcuLECQkt29jY4Pbt26RSKRqNBnt7RxtidfgSj8fln+q+BgIBSarXNI18Pk8+n+fw8BDDMOj3+7RaLQzDkJ5tpYJQIXiA1MwBkkSuhutIJEI8HpcBXL3GVNAZHIWywZEHPplMYrfbZSOvkuXV9ZuYmJiYmJjcvxSLRQASicRdn08kEvK1YrFIPB6/6+s2m00Ud38TH/nIRwgEAvKxtLT0Lb76bz3GyOAzv/mnpnz8DcznfutPqexX7vVlfEu4rwdth0OXYcJutxMMBtnb28PpdHJ4eHjnMQ4JDlOd0oVCQQZVNcSpICw1pKpwtclkIl5aNcg1Gg1u377NfD4Xn3U6ncYwDMbjMZqmMRgMxNt769Ytut0u165do1qt4vf7aTabFAoFCS2rVqviu1V+5UqlIh3hsVhMarHG4zE2m43BYMDKygrr6+sEAgHZmHc6HSaTCfv7+/h8Pjl80DQNq9VKrVZjNpvRarWoVCr0+30qlQq5XA6fz8fa2hoWi0UqzmazmfQ7RyIRHnjgAbxeL5VKhWazSSQSkeFTDfg2m416vc7Ozo7IqUejEdeuXaPf70vV2fPPP8/BwQF+v1882Eo2HYvFZDvvcrmkSqzZbDKZTFhdXcVms0lPt9rO7+7u0u128fsDdDod7DY74/FYDkO2t7fJZrMEAgGRXa+srFCv11lZWcHn84mEX0nS+/0+w+FQrj2bzYr0XT3/Y8eOiUfcMAw2NjY4duyYpM0nEglqtZp0kmezWRwOB41GQ7ICVOhes9kUW8FgMKDb7eL1eun1e7LZ7na7orRYWFgAkDDAWq0mw7yJiYmJiYmJyV/l537u56QBpdVqyd+dX9fMIXNpnxf/8Cv3+kpMvg0YQ4Ov/MHzTI3pvb6Ubwn39aA9mRwNyvV6Xfqd1Ub4+PHjjMdjSRO32+0Mh0NJ79Z1XfqZ4/G4eHptNht2u138wKPRiGQyKX3KKoHa7XYzmUzweDyUSiXK5bJUhDWbTRn8DMNgaWmJTqfD4uIimqZRLBbZ2tqiVquxsbEhw2mj0SCXy4nsfXFxkU6nI0noKmwrHA7LyWaj0ZBtvar+arVaOJ1OPB4Pq6urEgQWCATI5/P0+32RcKuh22q1srm5icVikRRs5Yt2u92srKyQy+XIZDLMZjNOnjyJz+eT30Wn06FQKNBut4nH46yvr+H1ennooYdIp9Py89Tgqus6y8vLnDp1CpfLhd/v5+TJkywsLEja+HA4lKR0tfV3uVxSnZXL5RiNRpRKJVEEKF97KpWi3W7S7w/Y3d2lVqvx/PPPs7i4yOrqqqSEK/+7Omi5ffs2zWZT/NkqLV71awPEYjESiQSpVIpTp06RSqVwOBzSB+7z+Th27BiVSoWdnR2pbpvNZjgcDubzuWyePR6PXLvX6xWpuPLtK2l7u90+OrxJJPG43YTDYXw+H9VqlWAwKCfWvV6PQCAg3nUTExMTExOT+5dkMglAqVS66/OlUkm+lkwmKZfLd339SNlXl8d8NZQt79Uf9wPtSpvLn36FQWdwry/F5FvM5//zZ8nfuP+92Yr7etD2+/20Wi3xpiqfsaZp4nFdW1vDMAzy+TzdbpdYLAYcDYZer1cGKeVnVVJeFYCmKqVUkFW73RZZ83g8xufzMRgMaDQa4vFWnmKVhK08wMp/OxgM5OuZTEZk6Ha7Hb/fL1Jhp9MpA3W/3ycQCDCdThmPx+zt7WEYBq1Wi4ODA6n6UocCrVYLXdfZ3d2l0WgQjUaZzWb4/X4WFhaIRCLy89QgriTw8/lcKtCsViuNRoNCoSDD3/b2Np/4xCdwuVxSZWa1WkXOrbrJ1fZ3MpnI70PXdXw+n1RizedzqdBqtVr4/X6pYVOe8lqtxnA4pN1uc+XKFZH2q0MNdYCiBmcViqYSuAOBIOFwWCTagUBAZNfRaFS25AcHB9JhPhgMOHfuHC6Xi+XlZQnTm06ncj2q+m0wGIhMfj6f4/F4MAwDq9VKKBQSq4Hb7WZxcZFoNMrVq1eZzWbYbDb5nXc6Hdlo+3w+IpGI1MGdOXPmTiVYj1AgyOyOlF7VwCmpuNVqlao0c9A2MTExMTG5v1lbWyOZTPK5z31OPtdut3n++ee5cOECABcuXKDZbHLx4kV5zOc//3lmsxmPP/74a37NrwXX//waO89vfe0Hmtw31LM1bn7xOqPeG6fC7b4etB2Oo+HYMAzZ/pXLZfr9Pjdu3MBqtYoP22Kx0Gw2cTgcuFwuGZpUCFe1WqVarbK4uEg2m2U6ncomsdfrUa1WZYu5urqKxWLBarWSSqWw2+3UajWcTifz+Zx0Ok0qlaJer0uQWiAQoFwuk06nmc/nLC8vUyqVeNe73onD4aDb7YrUdzqdyucikQipVAq32021WpXBy+fzEY1GGY/HMmQbhiESco/HQy6XY2VlhQcffJCLFy9KHZUKhVM+dNUX3e126Xa7kpiuSCQSEs42HA4JhUIylKsKslqtxvnz56UWLZM5JBqNUiwWpdP68uXLoiiwWq0yoOdyOer1OsPhkJ2dHQn7estb3sJgMKBSqYgUf3FxkWvXrnHt2jVisRh+v59QKMTS0pL8XlU4nsNhZ2VlRSrW1tbWcDqdcthhs9nodDoScmexWKT6LRgM8qUvfYnRaCS96evr62iaxgMPPCCe7GKxSDabxWazSRVaKBRia2uLdrtNpVKRILRyuSyJ5qdOnaLX69HpdGi1WnIf4/E4fr+faDQqCgq/30+xWMTv92O1WLHdsUksLCxgt9vJ5XJ39b2rajWn03lP3pcmJiYmJiYmXz/dbpdLly5x6dIl4CgA7dKlS2QyGTRN44Mf/CC/+Iu/yB/90R9x5coV3vve95JOp/mhH/ohAE6dOsU73vEOfuInfoKvfOUrfPnLX+bpp5/mPe95zxsqcfzVtEstXviDr9Br9O71pZh8i9i7uHvf92b/Ve7rQXtvb0+2vyo0anFxUUK2ptMpnU5H/l3JxZXn12azEYlEpEvZ5/PRaDRkS62G0XA4fJRefWeAGQ6H1Go1ms0m2WwWi8XC0tISN27cIBwOs7+/z8HBAfF4nKWlJSwWi0h6lS+83+/z4IMP8sorl2WALpfLJBIJ2Q6rYbnVagHg8/k4ceIEFouF8XgsoVerq6sEg0EsFgvb29u43W6sVivLy8sMBgNKpRJut5toNIphGGxtbcnGWEnel5eXpYbLYrHIxlYlWDebzSO/851wNIfDIdvy2WxGMpnk+vXrHBwc4HK5JG09EAhIRZrqNFdSbfW7UMntNpvtrq/t7e1JpVa328XpdErSu9vtJp1O4/P5GI1GNJtNCQnL5XKMx2NaraPnF4/HaTabsjW22WzEYjHxPislhNoIK8uBz+cjGAySy+WoVqsSXPdqT/l4PMYwDMrlMrVajYODA/b395nP58xmM06cOIHD4SCbzcrBhArwU5L/xcVFAPGoa5rGtWvXyOfzxONxSqWSSM+jsSiz6ZT9vT12dnZEWq6S0NXztNvt0sFuYmJiYmJi8vrlxRdf5JFHHuGRRx4B4EMf+hCPPPIIH/7whwH4mZ/5GT7wgQ/wkz/5kzz22GN0u10+/elP33Wg/ju/8zucPHmS7/3e7+Wd73wnb37zm/nP//k/35Pn81rxwh88T7vcMoPR3gA0Cw0+/58/y3gwvteX8i3lvh60rVarJEWraiU1vDmdR4nkSu7s8/mkPklthZWvdjab4fV6sVqtEoimhmJN08hms+zv7+NwOBiNRrJdXFtbo9/v02636XQ6LC8vy+A3Ho/J5/Ps7e2JrByQqq7xeEwmk2F7exu73Y7FYsHlcpHJZER23Gg05DqUvHt3d5fJZCIDla7r3Lx5k0qlgsfjYTabkc/n6fV6lMtlRqMRDz/8MIPBkVdZ0zT8fj9f+cpXsNvtJBIJ1tfXCYVCcn0LCwt33beDgwMJYFMVW2q4VsnpvV5P0rXVv3e7XTRNYzqdsrW1haZpIp8HxKvscrnuqmdTPutqtSpKhIWFBbnPyrN96dIlBoOBSNKtVqvIsN/ylrfg8/nuBI4d1W+1220ajQaapolfXNM06vU6hmEQDodFoXDt2jUcDocE06ktvN/vx+PxUCwW5X6r+jZV7TUcDnnwwQdZW1uj2+1SKBRYX1/HarWyuLiI0+nEYrFIJ7pKKlfJ6dPp9E492QKj0UgOiZSkfDafc2Jzk1gsJgdJt2/f5vDwELvdLgnlf1vSqImJiYmJicnrg7e97W3M5/O/9vGxj30MOGoZ+YVf+AVpkvnsZz/LiRMn7voe4XCYj3/846KU+y//5b9InekbFWNo8D9+/neZTWf3+lJMvgnm8znl3fIbbpsN9/mgresOnE6nJFP7fD6pYFLBaG63m06ng9PpZGFhAV3XpR5rOBzKAK6Sx1U4lq7rf20IqlQqHBwcUCqVcDgcTCYT+v2+dDOrgKpgMIjf7+f06dMiB97Y2MDr9dJut7FYLBKU5vF4RF5eLBblz6sOapvNJgcE6XRaBlmVdK3qG1TKtxqAlQ95NptRKBTEx6z6tNUwa7Va6Xa77O/v02q1pAPc4XBgs9mkpzoYDLK8vIzb7aZYLKLrOp1Oh36/L2nsKoRMDdfqP/CtVovFxUUJAltfX2c+nzMYDOh0OtRqNez2o2TwSqXC5uYmw+FQfM3z+RyLxUK5XKZareJ0Omm1WgSDQQ4ODohGo1gsFjY3N8Vjv7W1RbF4lOheqx1to7PZrByU1Go12RTH43GR4Lvdbtlwl8tlbt68KcFw1WqVSqUi3nFV4TWdTolEIhw7dozxeMxkMuGZZ56RYJJWqyX+fq/XKz9L2R2UQkAFsFUqFQlVUyoKdeCwt7eP2+shc3jIcDhkZWUFXddFtq7ueTAYlDwCExMTExMTE5M3Itc+e4Xc9ey9vgyTb4KpMeV3fvq37/VlfFu4rwftVwdZKdnIcDik1+sxnR7FwhuGIV5hNfA4nU6GwyGA+HrVltntdjMYDDg8PJRwqtFoRK/Xk75qNSylUikWFhZEvqtk2cVikXA4TLPZFC+tGvAXFhbkZ81mM6bTKZqmyWYyHA4zHo+xWq0A4l9ut9t4PB76/T6GYVCtVoGjU6BgMEggEGBhYYFYLEa/30fXdams2t7eZmFhgUqlIr5gi8WCw+EgHo+Ty+U4deoU4XCY0WjEyy+/LEFjjUZDvl+v16NSqYgP+PDwkFKpJM9HbXbVQYfNZmMymYhPej6fixy9UCiIxFlJqofDIY1Gg0uXLhGLxTh58iShUIjNzU10XZdOal3XCYfD9Ho9Lly4QD6fF9+8GlBrtRp//+//fd70psdJplJMJhPOnTsnr5Ner4ff7yedTuN0OvF6vfK7SKVSbGxs0G63MQxDBvDhcCjVaaVSidlsRiAQkFC1SqVCJBLBYrEQi8WkG/v8+fOMx2MWFhZYXFyUrvBQKCTycVWjViwW5SBG/Z68Xq/46f0BPxbtyCKhDn90XafdbqPrusj21eGHiYmJiYmJickblfl8zh/8n79/ry/D5Jvg5f/5Evlb+Xt9Gd8W7uui3W63RzAYpN1uy5CoBjI1aKsB5NixY1y7dk3SxZWHVtVbASLfnkwmxGIxarUaPp8Pj8cDQK1WY2FhQSS5+/v7IkN2Op2MRiMsFgvvfOc7pTc6l8uhaRrtdpsTJ04wHo/JZrNMJhOp9lI93cvLy1itVhnWbt++zXg8JhqN3tnM1mRTn88fvSCVp7nX60lSuKrkUlVcyusdDAaJx+Nks1nW1tYolUp3+qb90tk9nU7x+XzU63Wi0Sj7+/sAZDIZPB4PJ0+e5PLly7RaLc6ePSuhZsPhkHQ6zWw2o9vtcvz4cW7fvg0g/mHDMHC5XPyv//W/OHHiBIPBQPzrKsBsdXWVZDJJvV5nb29P0sPdbrccNFy/fl2G3OvXr7OwsMDCwgK3bt2i1+uRSqUIBAIcHGSYTIZsHNvAYde5dOkSJ0+epFgsSt3Z1taWyPpVb3a/3+ell16S9HV1cDAajQgEAoTDYQqFAqlUSqq7hsOhKBlcLhcPPvgg165dYzqd8uKLL3LixAmpI/N6vYxGI+nqDgQCEpwWCASo1+tomiaycWURUH3m3W4La/3oNacS5Z1OJz6fj3w+j8fjodvtSh2ZiYmJiYmJickblb2Lu1z8oxc49w8eu9eXYvJ34NO/+j/hDWqzv6832qlUkmazKRJZJeW1WCxMp1MZmtWQqoYRFfAFiDRXyaUzmQw7OzuUy2W63a4El6mgLpUgPplMRA6shtxWq8V0OuXmzZviU26322QyGQAODg64cuUKqVSKaDRKq9USX67f7yefz0vImtVqRdM0gsGgHA6oEDRN01hfX5e+abXlLhaLuFwuNjY2xHcMyLUkk0kZKnO5HFarVZLI1cDf6/Xw+XwkEgkZ2B999NG7ZONKyq7k6MeOHSMYDNLr9eSgQG3/+/2+BMOp3m0VJqd+L0pS7Xa7GY1GlMtlXC4X7XYbh8PB6uoqsViMSCTCysoKCwsLBAIBWq0WbrebWCxGq9USdUK322U6ndLtdiQgTsn/bTYbuq6TTCZJpVJ4vV4Mw8BmszEajWRjf/bsWYLB4F1VcalUSqrJgsEgLpdLus2bzSaBQID5fM7KygrVapVarUa1WsXj8ZDP52k2mzIA1+t18vk8hUJBDmuU51vTNJrNpqTdq+dmsVhot4762cfjMc1mU7zm3W5Xgt6SyaSk5puYmJiYmJiYvJHpt/q88P98xfRq34d89rf+lOL2GzdT6L7eaO/s7ALgdDqx2+20222q1arUT6m+61AoRKVSkc81m03p0FZDptrqGoaBw+HAarWKX3ZtbU2kzjdv3iSZTMqwWavVmEwm1Go1EokEgUAAXddpNBr0ej3C4TC1Wo1c7qh8Xfms1bb01dJsp9PJ8vIyt2/fPpIJ+/2USiWp3tI0jc3NTer1unR267pOJBKh1+sRCoXEe24YBna7nWazKYOk0+mkVqtJIFuv15PhfT6fy9ZZpZyrDbLyN6vNqzoEgKN+7+XlZZE8d7tdSUxvNpvE43Gq1ar0W6vDCofDQbPZPErSjkalYqvZbDK90xGtJNoPPPAA5XKZwWDAfD7n9OnTrK6uUiwWMQyDdruN3++nXC4TDofZ2NgQq4CmgTGYMBgMWFxc5Pr16zz44INS/VapVHA6nRQKBZaWluj3+3S7XarVKuFwmEqlIj53tbFW91dVgankcuXJLpVKBINBdnd3iUQiaJrGcDiUOrhqtSq/c/X7eXWVl6ZpUu+1vr4u0vLRaEQgGKDdbrCxsYbL5TqS3A8G2KxWLBYLg8GAcrlspo6bmJiYmJiYfGcwh9vP3OLiJ1/gsR9+Y/aGvxHpt/pc+dNXGPffOL3Zf5X7eqPt9/uJRCJ0Oh2pXzp58qQkN3c6HRKJBKVSiXK5LLLtcDgsXtZXh6mtrKwQCoWYzWb0+31J3VY9yWrYHQ6H0uHscrlYWlrC6/XSaDS4ceMGly9fplwuMxwO2d3dxW63Y7fbGQwGuFwuer0ehmFQqVSYTqdYrVYJHuv1ejz66KN0Oh16vR7xeFykyy6XC03TiEQiGIaB2+0mkUgwHo+p1WoA2Gw2kYGrbfnKygoAdrtdarFUuFogEJBKM5XgrobvZrOJzWbj1q1bnDp1ikQiQSwWYzKZEA6HmUwmcoihktWVAqBWqx1tYNttWq0W+Xye+XzO7du3JcHd6XTy+OOPyzCrAtVOnDiB1+vFZrNJGrpKLFdBaw6HQzblo9GIg4MDOWQoFot0u10ODzMSLqdeAyo0zjAM/uzP/owbN24wn8+JxWJsb28DsLq6ys7OjoTLJRIJ6T1XdoB4PI5hGEQiEZrNphx2qHT4QqEgvnHluT558iSz2YxqtUosFsPr9RKLxXA4HLz97W+n3+/La0OFql27dg2Px4PP55MqMXXwYbfb2d3dpdvr4XK7MO7c/3q9DiAHJiYmJiYmJiYmb2Q6lTbX//ya2at9H/HSH7/I3sXde30Z31bu60F7MByI7FulP7daLdk222w29vb2OH78OJubm3g8HsLhMP1+n1arJQFkagOtqrW8Xq94b51OJzabDU3TCIVCBINB+v0+e3t7bG9vEwwGJfis1WqxsLDAE088wbFjx2SQVb7eZDIpKebj8Rhd1zl79qzUe6nt+zPPPEOpVAIQeXksFsPtdouPOBgMMpvNKJVK0tutBlqr1UooFMLj8eB0OqnX6zz44IPcuHFDgrXUUKrS07vdLul0mlqtJvVbkUiEhYUFPB4PN27ckNA5FWbmcDjkQECpAnRdl27zwWBArVYjGAwyGAykX3o6nZLL5UgkEpI4nslk0HWdeDzO3t4eDoeDcDiMruuk02nOnTtHLBYjHA5TrVbZ29sjmUxy69YtxuMxuVwOn88nG/V+v4/T6aTb7Uq/9mQywev1sru7y/7+Pqurq0ynUyaTifj6O50O+/v70rPucDjY2tqiVCpJ8Nvq6ir1ep1Wq8Xh4SH9fp/RaMTJkycB8Hq9xONxOWA5duyY9G83Gg1WVlYkyV2Fxh0eHhKPx7FYLDLMq+T73d1dcrmc9Hyr3vfr168fHZroDjq9Hv3hgOFwSCKRYDQaYbPd14IVExMTExMTE5Ovm5f/+CKF22/MUK03GvVcnUv/62UG7cG9vpRvK/f1oD2/E2I2Ho/FfzudTiUtWtM0XC4X5XJZBkBVFTWbzXA4HCL7nc/njMdjSSCvVqsyYL/aU6zk6KlUimAwyI0bN+j3+xw/fhy3242maezs7JDNZtnb25Pts8/nIxQKkc/nCQQCUiW2tbUldU+DwYBLly6haRqnT5+WDW65XKbdbuPz+bh69apsbGu1GuFwmHQ6zerqqiRjq+cZjUbFG12tVlldXQWOpPahUEgqtDY3NwmFQmSzWQmEUx3ZKujL7XaztLTEaDRiOBxKp3e/3yebzYrMPp/P43K5SKVSLC0tkUqlZKBXYWwq3KtQKLC7u4vX65VqLFX5pTzyvV6PZ599lsPDQ6n+ms/nd6qu9qjVagQCAfEtZzIZ2fYqZYLH45EDgtOnT8uga7PZCAaD1Ot1Op0OJ06cIJ/Pi/RdWRLU0G632zEMA8MwJCVdVchlMhnK5TJut5vZbCZe6dlsxpUrVyRUL5vNMhwOiUajAFSrVTRNo1QqyWFKPB4nGAwyGo3odDrM53PpxQwGg0ynU2azGW63+0jKb7MxGB7ZAQbDIQsLCwByWGNiYmJiYmJi8kan1+jx2d/6U0a94b2+FJO/hfl8TmWvzPXPX73Xl/Jt574etEulMqPRSPyoauhRyeOqMslqtcqg0mq1sNvtstlVlV+6rjOZTJjP58znc6nXUgFemqaRTqclVAyO0rSj0Sgulwur1crCwgKz2UzC2Pr9Prdv3yYYDGKxWGg0GiwsLIg3WQ1RyWQSp9PJbDbD6/XS7XbZ2tqSwT2RSDCbzYjH4wBSSWW1WkUmPpvNpLpMbVFzuZwcFmxtbaHrOt1uV8LT/H4/7XYbTdPY29uTbanP52M+n3Pp0iXK5TJOp5P5fC6hZVarlfF4jM1mo9lsUi6XcTgc4pUeDAbU63V2d3dZWFjAZrMxm83IZrP4fD7C4TCpVEq6s+12O+VymdlsRqPRwOVyyebaarXi9/ux2+1MJhOCwSCRSERk+3DkE79w4QIul4vV1VUefvhhVldX0TSNhYUF+v2+BJddvnwZv9/P2toaw+GQ1dVV4vG4vHai0Sh+v59EIkG1WsUwDNbX13G5XEynU/b29vB4PDz00EMi47bb7Zw8eZLTp09jtVqx3vFLq9+L2vSrw59Go0Gz2aTZbIoPXnm5lfddyeZVwFoikbhTj2bF4/EQDAZZWVkhnU7TaDSYWyyEoxGsNit7e3uSwG9iYmJiYmJi8p3CS3/0Iu1yW+pcTV5/DDoDPvFv/38YQ+NeX8q3nftaW6o8sCpJ2mq1/rUB2+v1ytAUDAZl2FFbSpWWrWmahFOpRGmVGO7xeNjY2JCU5/F4TLvdFll0NBqV9O+DgwMJC4tGo5w9e1Y2pg6HQwY2h8Mhm9ZcLiee7cXFRZaXlymXy2QyGTY2NiTY7JlnnsHlcol3Wm1IVXI6wNraGs1mk9u3b8vGtVqtyvZzMpmgaZr4p9X/Vpt+5fFV/eBK4nx4eMjW1habm5tUKhUGgwELCwuEQiEMwyAcDotn2G63k0qlKBaL3Lx5U34/Ho+H7e1tUqkUs9mMXq+Hw+Hg2LFjfOlLXyIQCEhY3WQyYW1tjdlsxt7enkjgP/nJT0qw23Q6lWT3K1euYLPZSKVSvPjii0QiEZaXl7FYLITDYXZ3d/H7/UwmE4rFovy+XnrpJfFtz+dzVldXGQ6H5HI5Op2OpMmrwVeF1HU6HbESqETwQqGAz+ej1WpRLpc5ceIE6XSabrdLo9HAbrcTi8XodDqMx2M53AiHwwQCAa5duwYgYXEq9f7g4IBAIHAUxDYeorucHB4e4nC6KJVKRGOxo4C70QSXx4NmtWCMx2bquImJiYmJicl3FPPZnI994L/wz/74Z+/1pZh8FebzOdmrh+w8v32vL+U14b7eaKsqp36/j8/nw+FwYLfbCYfDuN1u5vM5brebTqeDpmlUq1VJxlZe5GKxKPLoxcVFzp8/z3Q6lcE7EAiwuLgom8vJZEKj0WA4HEqwWTabJZvNMhqNpHbr9OnTMugBImV+9XUrmbcKIlNVUr1eT65BdUmrqqtgMEgoFBKZ9ZkzZ4jH4zz66KPSSW2z2WQ7H4lERLZeLpfxer3ouk673Rb59MWLF4lGo8xmM1wul3RG67ouSd/Ly8t4vV4ZQFdWVqTDOxAIcOvWLfr9Pna7XULelBRf/Y5cLhcPPPAAxWJRKs/gqPbMbrfLILu6usp8PqfRaMi11Wo1dF3HbrdLUnw8HieVSmGxWLDb7USjUUqlEouLizidTtxut4TULS0tEY/HCYVCctBhtVo5fvw4J0+eZHFxkdlsJooA9f2Vfz0YDIqSYT6fk8/nicfjRCIR5vO5VKipqreVlRWxBKiDDuXFV4cc6XRawuO2t7dxu90sLCyId1upKmw2GwsLC/JYlaAPSOWay+UiEongcbvRHQ7W1tZEAWFiYmJiYmJi8p3C3os73P7yrXt9GSZ/A7/3Lz5+ry/hNeO+3mgnEglyuZz4qNVw3O/3SaVS1Ot1BoOBbI5Pnz7N5cuXZVjzeDySzq1pGp1ORzy/qoMaoNFo0Gq18Hg80kXt9/up1+uyEQ4EAgyHQ+mSVgOmSvRWcvVqtSqPVZVN4/EYh8PBfD7H5XLhdDrlZ3g8Hg4ODphOp5IG3mq1GN/ZWA6HQxqNBqPRiI2NDdrtNtPplNOnT3P79m2q1SqA9CwrT3oymSQajcqmXx0EKOlzoVCQg4XpdEowGKTb7Upa+Pr6Ovl8Hr/fL9VXuq4TDAZxOBwSxKUGwFarhc/nYzqdEo1GWVlZQdM0Xn75ZWq1GtPplGazSalU4tixY8DRgPnwww/TbrcJh8NS4TUajfB4PLIBn8/nHD9+nJs3b4qf+agyqyqvg9FohNfrParICgTo9/vig26323g8HtrtNuVymXq9TiwWE8+1rutUKhUZpLPZLJFIRO69YRgEAgG63S6JRAK/38/BwQGTyYRkMil1W6rCzOFwSHK9shlEIhEJpgPkOufzuRwiBQIBSuUikUiEcDhMq9U6SoG/0xlfr9cZjvqsLC1TLZU5PDx8jd+RJiYmJiYmJib3FmNk8Gf//rM8kX4z7WiXoeeoPsoytaDNNaa2I8WfbWwjVPDTifbkMfcDlqkF+8jG2Gkwt9wfEnn72Iav5uELf/IF8jdz9/pyXjPu60G7VCoRDodZWVnh0qVLMqSozaFKIFdDuNoUD4dDCU5TA6HVaqXZbOLz+bBYLMTjcfEfq82w8l0DEqDW6XSIRqM4HA56vZ54p5X8OpPJyNCk6sby+bxUbalNuUpOH4/HxGIx6dluNps4nU7ZCPt8PgzDIBQKySHB0tISxWJRurpnsxmapkk1VT6fl2GuXq9jtVplYFYJ60qyHQqFaLVadLtdSflWUnS1CVehbqPRiHw+T6/X47u+67ukD9owDGazmfisZ7MZHo+HSqWCzWajXC7LNtdisbCwsEA+n0fXdfEw2+128cPb7Xa2trbodrvy++p0Ojz88MNomsb29jbD4fAuNUOv16NcPqr0UvYAtaWu1+uS7l2tVnE6nXLflCphf39fksXVdalDlMXFRRqNBp1OR3q01QGDSjwfDAYYhsHh4SE+nw+32y22hIODA0kOVzgcDsbjMbPZ7GigLpUkDM5isVCr1YhEIoRCIdrtlsjrVQ2b2+1mMBgQjhzJ5CejMevr66/Ze9HExMTExMTk/uYN42uew9ZLt/nz/+/neeL/eAK3RZfPa8D8KA4HbQ6aMcdbcv7lY+4H5qDNNeYW572+kq8bbQ7WiYXP/fZnmIwn9/pyviV8Pe+X+3rQbjQatNtt+v0+iUSCg4MDDMNA13VJXA4EAlQqFU6cOMH29rYEn6nhdjA4Smt2uVxSlxWJROj3+zK8qSCrZDIpQ5Tanq+srEgomM1mk27lSqXCrVu3sNlshMNh6vU6oVBIqqvUAcB8PkfXdQlls1qtbG9v4/P5KBaL0uWdSCTY39/nu7/7u7l8+TKVSoVOp0Oj0aDb7fLggw/i8Xj40pe+hMVioVQq0Ww2JRH8oYceYj6f0+122d7eZj6fi1dZhbItLi5K6Nm73/1ums0m+/v7nD59GrfbzXQ65eDggFAoxNraGs8//zypVIr9/X2uXr3KeDym0WiwsbEhm2a3202pVGJpaYl6vU6z2UTXdQlqm0wm8rzL5bJ4mFUyervdxu12EwgESCaT5HI5vud7vodnn32Wr3zlKzz00EN3qtIcLC8v85WvvIDf72MymUgNVyqVEhm+CiJrtVosLy8Tj8dJp9MAvPTSS5KGrtQOp06d4oUXXqDRaIhP+sqVKySTSc6ePUu5XKbZbNJoNCRhfX9/n5MnT8ohTavVko5wlWbvdrup1Wokk0m63S4HBwc4HA45EFHhbVarFbfbza1bt44G736HQCBAu91GdzrpdLtiJbDb7fh9PrxuNwe7e+TzZsWFiYmJiYmJyddHrVa715fwLaPdbvMrv/Ir/Mqv/Mq9vhSTNyidztHfyf827utB2+v1MJkcbaVv3rwpA/TS0pLInOFoW93r9aRDezQ6kocYhiEhYb1ej/l8Lo9Rg0un08Hn89HpdDg4OMDn86HrOrPZjHa7DcCJEyfY2dmRyq5+vy9bY5vNhs1m48SJE+zv7+P3+xmPxzJAvzq0rdfr0Wg0RFo8nU6l7srn87G2tkar1aJUKrG+vk65XGYwGLC8vEypVKJWqzEejyVMTXmb7XY7V65ckc1rPB4nGo3idrtFIq4GbF3XWV5e5sqVK9Ib/cILLxCLxUgmkzKgX7x4kUQiwZUrV3A4HESjUVZXV/F6vdK53Ww2gaMTH3XQYLVapa+70Wjg9/ulP3xhYUFS2pUne3FxkWKxiN/vp9FooGkaX/jCF3A6nZw/f57PfOYzTCYG7Xabra0tZrOpyOqtViutVotCoXAksb6zbdZ1nbW1NalUG41GLC8vMx6P5WDG4XAQj8fp9Xp4vV65ThV2NplMODw8lHA0i8Uiry0lkVevIXVwU6/XCQQCslVXXe4qW2A2mzGdTslkMmiahs1mo91us7i4yObmJisrKxweHjBnTvPOpr3dbhOPxyWgr9vt4rhzONS68/o0MTExMTExMflahMNhADKZzNccIEz+ZtrtNktLSxweHuL3++/15dyXvJ7voVI0q0Xd38Y3NGh/5CMf4Q/+4A+4efMmLpeLv/f3/h6/9Eu/xObmpjxmOBzy0z/90/zu7/4uo9GIt7/97fzmb/4miURCHpPJZPipn/op/uzP/gyv18v73vc+PvKRj4gs+OulXm9IGFY8Hpd+YSXp7fV6+Hw+BoMBbrcbq9Uq22flHX61vxuQ1HIVFPbqa0qn05RKJUajEdPpVAada9euSfBXNBqVYS4SicifNwyDhYUFDg8PpULMYrHItameZ03TyGQyuN1uAKnaunr1KidPnqRYLOL1eimVSmiaRjwel8322toapVJJ0s3r9brIqVOpFC+88AJer5f5fC5J1qPRiLW1NVEDjEYjYrEYOzs7srU/deqU+KOVn1ttXQEZKq1WK5cvX5Z7HovFqNVq4mNXygEVQKdk+s1mk06nIyFgKtDNYrFweHiI1WqVejAVVgawtbV1x3t/hmKxQLfbJRqNkkgk2NvbI5vN4na7JUCu3+/T6XTk+9tsNrLZLPP5nHQ6zXw+Z29vT3zpvV6PUCgEHHmmW60W0zt+6FgsRqlUIp/Pk06n5WBkMpkQi8XY3d0VX3ssFkPTNLLZLB6Ph263y2g0YmFhAb/fz97eHqlUCqvVSrFYFD95NBolGo3SbrcZDoeUSqUj2bvVQjAQkAOSSCQi4XhWm1UsDuqg6X54L5uYmHzjmO9jExOTbyUqwFcp+Ey+Ofx+v3kfv0ler/fw6z2I+oZSx7/whS/w1FNP8dxzz/GZz3wGwzD4vu/7Pnq9njzmn/7Tf8of//Ef8/u///t84QtfIJ/P88M//MPy9el0yrve9S7G4zHPPPMMv/3bv83HPvYxPvzhD38jlwIgvdCdTueu6qpisYiu64TDYZaWlnA4HGxvb0t6t9vtZjQakclkaLVaOJ1ObDabdDOr4UwNwxaLhdlsRqFQENm32kyr5+T1emm32xSLRWw2GysrK9jtdtLpNPV6nXK5LIOhx+Oh1WqJ7B0Qf+5oNCKRSEitlvJsq+FSycYHg4H8uWQyKYOvSv5uNpvig7bb7Wxvb2OxWEQuXy6XReqt0rXVc/V6vZKcHYvFxGOugthU8Fer1WI+n8u9ODw85Pr162SzWZHij8djEomEbI9VcrphGESjUZrNpqRrZzIZstms/Ideecen0+mdDmmbpKirOi319Ugkwvr6OrPZjHK5zNLSEtFoFKvVSjAYFO9zKBSSv4R2Oh1Onz4t/vlIJEK322VpaYnRaESlUhHZ/vnz56WzPB6PizogFovJ9fT7fZLJpFgLKpUK/X6fQqFArVZjZWWFRCIhYXbz+ZxCoUC9XqdWq9FutxmPxzidTkqlEltbW7RaLUktr1QqzDk6ce72eoxGI3lt7+3t3XlMlVqtJh3x98t72cTE5BvHfB+bmJiYmJi8ftHm30TyQaVSIR6P84UvfIEnnnhCUpA//vGP8yM/8iMA3Lx5k1OnTvHss8/ypje9iT/5kz/hB37gB8jn83Ki/tGPfpSf/dmfFcnu16LdbhMIBPi3v/D/YTwek06nKRaLdLtd5vO5SHHtdjuj0Qi/30+322U6nUqv8Xg8ZjKZ4HQ6mc1mDAYDCSYbDodsbm5itVp57rnn2NjYoNFoAEeBWdFoVDq3lf84HA6Ty+WkK1nJsKfTKY1GQ7qqe70eCwsLjEYjRqOR1HoBTCYTZrMZuq6LbFoNYP1+n2azSbfb5aGHHpJ08v39febzOYPBgOl0KoOxrusycGWzWamiGgwGskVVwWp2u53x+Cg8y2azcXh4yGw2IxKJ0Gw2ZcPt9XpZWloSb3yv1yORSEhPdTweJ5vNEg6HsVqtWCwWPB4PiUSCwWDAwcEByWSS2Wwmsv1r166xsbEhKd63b9/m2LFjDIdDUqmUHEjYbDY6nQ4Wi0W+d7FYYDabE41GmEwmlEolHn74YakTU5v0zc1N2u02g8GAfr8v3+vs2bN88YtfRNd1UqkUk8mETqcj/nmn7mQ6mzKbHoXL+QN+2u02y8vL7O7uMp1ORSpeLpdZXl5mdXWVy5cvS4J8t9uVWrBWq4XFYmF1dVX6v1UKvfKAx2IxCoWCeLSVZH51dfXOwcWQ6Wx69LpqNgmHw4RCIVEpuD0uXLqTzh1Z+n/8zd+g1Wp9zdPAe/1e/vXMb+Hyu77m401MvhMZtAf8v5Z/6mu+l833sYnJ65ev9318L1Hv5dfzNd4PmPfxm+eNcg+/qR5ttTFTno6LFy9iGAZPPvmkPObkyZMsLy/z7LPPAvDss8/y4IMP3iVbe/vb3y4S7K+GqmB69QdAvV7H4XCws7NDp9O5qxpJSYNV8JaqVyoUCpRKJUnmHg6H1Ot1ut0u7Xab0WiE0+mkXC5z+/ZtotEogPhnB4MBg8GAXq/HeDwWj3elUpGh+erVq5IaXiwWZbgDZFs6Go1wu92SZq3rumzQJ5MJ7XabQqFAtVplOp3idDo5fvy4SKDr9Tq5XA63243T6ZTHtFotCfzSdZ3hcMixY8eYTCYika9Wq8RiMbrdLvF4nHA4LAP2zZs3JYm82+3i9XrlL29qUFfS6rW1NcLhMPP5nFAoRCgUIhgM4na7cbvdspne2dmRwbzb7VKpVCgUCrTbbZLJJIVCgUajQb1eF+l/s9kkl8uxv79PLpejXq/LFjwSiUj699mzD4l/XPmu1VZfDewq1O7w8JB+v8/S0hJWq5X9/X1WV1flHhwcHOB0OHHYHJx/9Dz1Wp2pMcXj9nDq5Cl8Ph/ValWCyzqdDuFwGI/HI8FuSt7udDrlMEH9TjRNI51Ok8/nabfb+Hw+Njc38fv9eL1eptMptVqNdDpNr9djMpkwGAwIBoNS1TUejzEMQ1QY6mCg0WgcefzrTeZoBMIR3D7fffNeNjEx+eYx38cmJibfDLqu86//9b9G1++jBO7XIeZ9/OZ5o9zDv/OgPZvN+OAHP8h3f/d388ADDwBQLBZFGvxqEokExWJRHvPq/0NXX1df+2p85CMfIRAIyMfS0hJw5F8ej8cSKqZqmCwWC8PhEMMwsNlsuFwu8RCr7Z8aGGezGcPhEIvFgq7rBAIB+fN+vx/DMCT9ORwOyzZyOj3q4JtOp9KLXa1W6fV6uN1uxuMx3W5Xhi5N0/B6vfh8PkajEZqmSeK5pmnUajWGwyHhcBiXyyU1ZIeHh9RqNamjWltbw2q1SqS8+h6j0Uj83qojXCWlO51O2u22/EwlkU8kEsxmM3mM6tAeDocS0Fav11leXub06dOSZq42wM1mk0AgwOHhoQS/BYNBKpXKXZVnSgIeDoelD1z95UwFnzUaDQl2azabUs8WjUY5fvw4Ho+H4XAoW/7JZMJ8fnT/1UGJ1+slFotJQvozzzzDaDRid3dXZPGFQoG/+Iu/IJ/Py4GEYRi8/PLL4s8fj8fU6zV8Ph/pdBqHw8Hh4aHUwimJuKosK5fLEoTXarVYWFg42ojfqQ1TVXDD4VAOdHK5HIPBQAbuRqOB0+kkHo/LoU0ymRTpu6pms9nt4sFXyg3l+VeHGx6Ph3w+z3D49XVCvh7eyyYmJt8c5vvYxMTkm0XXdf7Nv/k39/1wc68x7+M3zxvlHv6dB+2nnnqKq1ev8ru/+7vfyuv5qvzcz/0crVZLPtR2bzQa4nA4SCaTkiQ+m83Eq60qlBwOB4ZhyOZWDdQ2mw2Px0M0GiUQCBCNRiW92ev1ous6Dz/8sNQpdbtdisWibJ51Xcfn84nkvNvt4vf78Xg8hEIh6vX60XB0ZwirVCoyqCp/7Ww2w+fz4XA40HUdj8cjfmQV4JZKpeSxsViM9fV1rFardC2rAwYVBjefzyVBOxgMYrPZuHDhAm9729twuVwynFksFvL5PKVSSeqqVLL4dDqlXC7jdrvZ3t4mk8lweHhI845ceW9vj3Q6TaVSYXl5WbbZVquVfr9Pq9VC0zTZdLvdbqLRqATNnT17lmg0SqfT4YEHHmAymfDEE08QCATQdV2SvNXQPxgMqNfrvPLKKwD0+31u3LjOjRs3cDqdVKtVdnd3aTab9Pt9Njc3OXXqlPi0X375ZfmZm5ubpFIpPB4PXq+XTqdDv98nEAhIINzNm7eko1rJvDVNY319nUQiwe7uLhsbG2xsbDCdTkWpYLfbqdfrnDlzBofDgdvtxuFwcOLECTnw0XWdpaUl8bW3Wi3OnTtHOBym3W7jcDhE8QBHgQtOpxOXy8VoOKRWq4mnfDQa8corr8ghhHrsbDZjNBx+Xe+v18N72cTE5JvDfB+bmJiYmJi8vvg7RYo+/fTTfOpTn+KLX/wii4uL8vlkMinDyatP0NUgpx7zla985a7vpzqv1WP+Ksqz/FfpdnuEQmHy+bxsDy0Wi2y1B4MB8XhcBk/DMOSfvVeFSanE5ng8Ln5ZFRZWLpeZzWZHN+uOHH0wGFAsFllfX0fTNEqlEhaLhaWlJfr9Ph6Ph0gkQj6fx+12U6/X0XUdh8NBOByWSi3DMJjNZhweHsqwHo1GMQwDi8XC7du3icfjrK6usre3J7Vj9XpdpMXqz62vrxMMBqlWq7TbbRngq9Uq6XSal156iW63K8Ff3W4Xq9Uqadqj0Yh8Pi+VWMqLbrVaZTDM5XIShObz+STFe2Vlhe3tbTweD8FgUD7v9XrJZrMSNKd6u/1+v9RvvboS6/LlyyLn9/v9+Hw+fD4ftVoNv9/PI488wvb2Ni6XC7/fTzqdlnumOtCVRP7KlSuSUD4cDmk2mzz33HNEo1HpSleBZ7PZjEQiweLCIm7X0TZ8a2uLyWQikuzNzU0uX76M2+0mEomwuLjIzs4OkUhEPOher1cC7ZRMPRqN0mq1JPE9kUhI4vpsNmM2m0mQmgrJKxQKGIYhVoaXX34Zt9uNruu4PR4m0yMveblSkaR6m81GpVKRwx2Px8P06zgFfL28l01MTP7umO9jExMTExOT1x/f0EZ7Pp/z9NNP84lPfILPf/7zrK2t3fX1c+fOYbfb+dznPiefu3XrFplMhgsXLgBw4cIFrly5Qrlclsd85jOfwe/3c/r06W/o4icTg729PZxOJxsbGxI+pmTWo9GIarVKLpeT4brf70uyuK7rFItFSb2eTCYYhoGmaSLFDQaDOJ1OkcaVSiVJEz9+/DiNRkOqwFTy+Hw+5/DwEI/Hw8LCAslkEr/fz2g0olAo4HQ6RRrtdDoJBoOsra3J/bPb7fT7fWazGf1+n4sXL8rgV6vVqFQquFwu+UuQzWbj4OCAXC7HZDKR512tVkXerA4NLl++DCAd10tLSyKHBgiFQoTDYc6cOcNsNpPhXPVxq625usdKrqyk5CrETA30ajs+Go2Ix+OcOXOGeDyO0+lkPp+TSqUwDIPpdCpp5CdOnBB5+8HBAdPp9E69WIlIJIymaeTzeSaTqVSfNZtNSf9Wye5Op5N8Pi8haul0Wgbn3Z0dqpUKNpuNpcUlLJqFV155hZdffplOp8Pi4iLxeFz81/v7+3LQorzUKs381UF8avtutVqJRqPY7Xbcbjd+v59kMinPs9PpAOD1eimXy/LaVIF2DodDauuUBN/hcFCtVrE7HLTuKCwMw8Dn89Fut2k0GpK8ruwL98t72cTE5BvHfB+bmJiYmJi8fvmGNtpPPfUUH//4x/nkJz+Jz+cT/1YgEMDlchEIBHj/+9/Phz70IcLhMH6/nw984ANcuHCBN73pTQB83/d9H6dPn+bHfuzH+OVf/mWKxSI///M/z1NPPfUNn5D7fD407WhgVdtq+EvftKql8nq91Gq1u4bEbrcrSeTq8SrQSgXJqNoqVcVksVgIBoMMBgNCoRAej+euvu5er0cgEKBcLmO323G5XLJ5Vj3Z3W5XrjEWizEYDLDb7cxmM7a3t9E0jYWFBUlFj0ajFAoFCWVTKeF+v59OpyNS64ceekhqotTA6Xa75WDg3LlzsiGdz+ckk0nOnDnDl7/8Zfx+vxxSzOdzeUwmkyEYDMq2W8nx6/U6x44do16vs7CwQKlUwmazsb29LfemXC7j9XpxOBxsbW2xsrJCIBCQ+6Hk/Mojreu6bFHcbjfXr18X/188HqdUKoqH/Sg8zCM1WaoDu9VqSY2YSvzu9XqsrKxQr9exWq3EYjHG4/FReJyuS9I4c/B6vHIwoDbvdrv9yI/t9VBvHIW1eTweJpMJLpdLAs9UaJzP52M6nZLNZkmn00wmE3w+n3S7F4tFlpeX5XWjJPEOh0O28SpVXdXIFQoFyRFw3QlXU4oI5XNfXFyk2+1SKBSki1wdntwP72UTE5NvHPN9bGJiYmJi8vrlG9po/9Zv/RatVou3ve1tpFIp+fi93/s9ecyv/uqv8gM/8AO8+93v5oknniCZTPIHf/AH8nWr1cqnPvUprFYrFy5c4B//43/Me9/7Xn7hF37hG754NXDY7XbplbZYLBIGpmmaVFGpUCsVSqXk2dFolKWlJZFhq02kpmm0220Mw5C0bdVxrMKxPvnJT1Kv15lOp7KBViFoKgV7OBxSKpU4ODiQDaQaolSFlwrH6vV6klataRqz2YzLly9jGIb4zpWnPJfLUa1WJewtk8mQyWSoVCqMRiMJfev1enQ6HRlildTY7/ezv7/PysqKJIdbLBYSiYRsVkOhEFarlYWFBdkqx2IxdF2Xn1cqlcSPvbi4KMOpYRhyXV6vl9FoRKPROJJoLy6Kl97pdEqXdyqVYm1tjS984Qv0ej3ZeDcaDUKh0NEmendXhs7xeCzha/l8nul0SqvV4tixYyIrNwyDg4MDOfjQNA2Xy0U+l+Pg4EB87HB0cKM85SoE7/z588TjcaxWK+PxGL/fT71el2R4wzDwer1YLBbW1taYTCak02mSySSJRIJIJMLKyooEm7ndbl555RWazSadTgePx0M8Hufw8FBS7AOBAI8++ii1Wo1bt25hsVg4ffo0t27donknwM3r9bKyskKv16NYLNJoNNB1XTbfR370yH3zXjYxMfnGMd/HJiYm30p+4zd+g9XVVZxOJ48//vhfs5V8J/PFL36RH/zBHySdTqNpGn/4h39419fn8zkf/vCHSaVSuFwunnzySba2tu56TL1e50d/9Efx+/0Eg0He//73ywLuO4GPfOQjPPbYY/h8PuLxOD/0Qz/ErVu37nrMcDjkqaeeIhKJ4PV6efe73y0zjCKTyfCud70Lt9tNPB7nn//zfy7NU683vqke7XuF6lb7px/8GaxWKx6PR7aUanOs5NBqYHW5XFLppTquZ7OZdD8HAgF57HA4RNd1QqEQuVyOdDrNeDxmOBySy+UAWF9fZ21tjZdffll6qB0OB7lcTsLJnE6nJHerZHK1VS2VSoRCIQkXm06nZDIZAoEAg8FAgtbUtll1dq+trfHwww/zp3/6pyKTH4/HJBIJ/H4/29vbEsAWDodls2mz2UgkEjQaDex2O2tra3ddf7ValVqucrmMpmk8+OCD3Lx5k4WFBRqNhqRtFwoFLBYLp06dYn9/n1u3bvHmN7+ZXq8HwOOPP04mk+HFF19keXmZer0uMvbl5WWm0yn7+/vy8+x2O16vV5K3y+Uy4XBYAuCOar+OBv/9/X3W19eJx+Ps7+9jt9vp9XrS+62sAaPRiFgsxvb2Np1ORyqzkskkXq+XfD7PaDgknU5TLlfw+/wMh0Nu3bpFIBDg9OnTZDIZ0uk029vbR8O07UjKXavV5PWgqsFyuRzdbhe73Q5Ap9MhkUhgs9mk13x1dZVsNstsNsNut9NsNu/qCu/3+/h8PpHrN5tNnE6nHCjk83mOnzhGu9OWg4PRaCQqjXQ6TTabJRQK0el02Nra4mP/9f9+XXcQmv27JiZfm9d7/675PjYx+dq83t/Hv/d7v8d73/tePvrRj/L444/za7/2a/z+7/8+t27dIh6P3+vLu+f8yZ/8CV/+8pc5d+4cP/zDP8wnPvEJfuiHfki+/ku/9Et85CMf4bd/+7dZW1vjX/2rf8WVK1e4fv265Eh9//d/P4VCgf/0n/4ThmHw4z/+4zz22GN8/OMfv0fP6rXlHe94B+95z3t47LHHmEwm/Mt/+S+5evUq169fx+PxAPBTP/VT/M//+T/52Mc+RiAQ4Omnn8ZisfDlL38ZOFIEP/zwwySTSf7dv/t3FAoF3vve9/ITP/ET/F//1/91L5/eV+W+HrR/8d/+EjabjXa7LZ3DakBWAWfKb+33+6X/WZ16qFCqfr+P3++n2+2iaZp0bns8HiwWi9Qtqe5sFWxms9nEl9tqtWQIU0N8MBiUTbHyKatUcIfDIZ3Wqv5Lha6pQUxt35UX2maz4XA4eOihh7h9+zYul4tsNivBXna7XXzRzWZTqqLS6TSDwUAGuX6/TzAYvMsPfOnSJex2O6dPn2Z7e5vl5WUZ/s6ePUulUqHf74tc2eFwsLGxQb1eJ5vNygY8FArJ11XdWSgUwmazsby8TKFQELn2xsYGmUxG7mej0WA+nxONRl91UNDF4/Gyu7vDsY0Ndnd3CQSDcrChAuKULSASibC7u4vX68XldDKbzanVayTiCSrVCqFQCJ/Xh9VqIZPJ8OCDD9LvDygWisRiMYrFIktLS/j9fpxOJ7u7u+zv7xMOh1laWZJ7YLPZ5Ll6PB4ajQZXr17l9OnTtFoteW0Eg0G55/F4nEKhQKVSweFwsLCwwP7+PtPplGg0Kv7yVqtFr9fD6/VKDZ3f76ff76M7HWiWI6WG3+9ndXWVVquFrusMBgPp9wbo9Xr86q/8+9ft/6mD+Rd0E5Ovh9f7X9DN97GJydfm9f4+fvzxx3nsscf4j//xPwJHfxddWlriAx/4AP/iX/yLe3x1ry80Tbtr0J7P56TTaX76p3+af/bP/hlwpLpNJBJ87GMf4z3veQ83btzg9OnTvPDCC5w/fx6AT3/607zzne8Uu+F3GpVKhXg8zhe+8AWeeOIJWq0WsViMj3/84/zIj/wIADdv3uTUqVM8++yzvOlNb+JP/uRP+IEf+AHy+bxUUX70ox/lZ3/2Z+Xv168n/s71Xq8HlJxbhU+pdPHxeIzFYsFut8tmGBBp93Q6Rdd1XC4X7XYbt9st6deqhqvZbJLP52m1WgyHQ+r1umykl5aWJAjL6/XKENzr9VhcXMTlconXORQKMZlMaLVarK6uMh6PJYVbhaH5fD4JFXM4HHg8HhYXF1lfX8dut/PII4/g9Xqlqmtvb49qtcrVq1cJh8OSIq46U5XsR8mYPR4Pdrtd6qPG4zEbGxtyCGG322VzOhwOOXnyJPF4XO6h8l5brVZOnTrFwsICy8vL4jFW38vv95PP59F1nUajIUqCTqeD3W7nxo0bNBoNkfy3Wi0cDofI92OxGFarVaq0yuUyxUKR/b09JsaY3d1trFaNVqt1JNWfTgkFg8xnMyZ3AtXGo9FRxZrbzXhkUK/VWVtZw263E/AFiEfjzGdz5jOwWe1UKlWikSP/e7vdZmFhgb29Pfb39ykUCtI7roLhBoOBBNnt7++j6zrtdlsqvpTvPx6PS+CepmmMx2N2dnYkMO7hhx8WH/vy8jKDwYBerycJ+qlUimAwiK7rzOdzQqEQgUCAfr9PpVJhaWlJqsSazSb1ep1Op0Ov1yMWi4mX3MTExMTExMTkb2M8HnPx4kWefPJJ+ZzFYuHJJ5/k2WefvYdXdn+wt7dHsVi86/4FAgEef/xxuX/PPvsswWBQhmyAJ598EovFwvPPP/+aX/PrgVarBSDZWBcvXsQwjLvu48mTJ1leXr7rPj744IMyZAO8/e1vp91uc+3atdfw6r8+7utB+9ixYwyHQ9kqBwIB3G43o9GIZrOJ1WpF0zS63a4kT6vh0eVy3ZUyrny/y8vLzOdz2TL3ej1SqRROpxNd10kkEjSbTXRdl3RwNRgrj3Cz2WQ6nWIYhmySK5UKFy9eRNd1ORxQ16ICwfr9PrquY7Va2d3dpVwuy0DrcrnkBakC0yKRCIZhkEgksFqtnDhxgul0Si6Xo9/vk06nRbJusVgol8sEAgFOnTolqej1ep18Ps+ZM2fu2sxWKhW59lKpxNbWFpqmcf36dTRNY2tri4ODA+r1Ojdu3BBJfDwep16v43Q6WV1dpdPpsLq6SrVaZWlpiccee0wODNT2eGVlRTqzl5eXWVhYkOF/Op0wm02ZTmfMpnM2No4zn88ZDAaU7jwflbB99qGHyGQyRwN4KCSHDp1Oh3DoSIq+u7tLNpslkUgcKQoqVT772c8Si8XodrtcuXKF5eVlOaVU6ePq/oXD4aOhPRCQ4XY2m1Eul9F1XarEAAk66/V6lMtlBoOBHOw0m03sdjsrKytyENNqteS1rA5DQqEQdrudYDCIy+XC6XLx+OOPMxwOcbvddDodJpOJBPI5nU7p5rZY7uu3t4mJiYmJiclrQLVaZTqd3jW8ACQSCQlZNPmbUffob7t/xWLxr0nwlXrzO/Eez2YzPvjBD/Ld3/3dPPDAAwCyMHx1HSX89fv41e6z+trrjfv6b+LPPfcs4/FYhir1YRgGTqeTfr9/V/CZ2lqrQXoymeDxeMTXq2ka0+mUZDKJYRjM53Mmk4n0WavttNp0dzodarUaN27cYDgcEolEWFtbw+fz4XA4aDabVKtV8YafO3dOQtpU8Fq32xWZg5Kah8NhTpw4Idd+48YN4vE4b3rTm+j1eui6jsfjwefzEQwGpUv7ueeeI5/PU6vVCAQCVKtVCoUC+XyeZrNJMpmUrb9yDDgcDt71rnextbVFv99nMpkQCAS4dOmS+Inh6GTz4OCA4XAoXeILCwscO3aMpaUlnE4n29vbtFotjh8/js/nk2Fyb2+P+Xwu21l1n8PhMKPRiGKxSCaTwTAMGTgtFosM7IPBgGgkymQyY3trh36/TyQS4dFHHqHX61Eqleh0Ouzv70vA3XQ6JZVOYbPZOHXqlNgGdF3H7/fz0ksvcfz4cTRNk+2yx+PhzW9+Mw6Hg+eff17UEd1uF4/HI/YBJdE/duwYGxsbkqKuttPKZ726usri4qIoLOLxOMeOHUPTNJrNJjabjXK5TLlcptvtEgqFWF9fF0XF1atXsdvtknA/HA7xuN3cuHGDRCIhkvFXe+vtdruE7TUajXv23jQxMTExMTExMTH5ajz11FNcvXqV3/3d373Xl/Jt5Ruq93q9ceQznokk3Ov1YrVaGQ6HEnSmZMiqdkkle49GIwzDED+06rk2DIPRaITH42E0Gol/u9Pp3NmwTgEkxMtisZDNZkXyrJKpVV+2w+GgVquRSqW4fv26dEWrnuRX+7On0ylWq1USyIPBIOVyGZvNxksvvcTi4iJerxdd18nlcpIsrq53Y2ODbrcrNWLhcJhsNovL5cJisfDQQw/x8ssvMxwO8fv9HB4eEgwG+dKXvkQymSQajaLruki9HQ6HKAZms5nI869cuYLH46HZbEptVygU4saNG1QqFZGE2+32u+5pJpPB5/PJ571eL9lsVjbcs9lM+sjT6fSdwdKFy+ViOpkRCoVJp9MUSnkajYZUjiWTSfGDx+NxGXSvXb0mW3rllW80GkSjUUKhEMlkkkajIfdf9XN3u13G4/HRz51OWVxcPPJlO44C9mq1GjabDcMwyGaz4u1XqfShUEiUFVarVeq7qtUqgHjr0+m0yMvVwYfKFVADfavVIhKJyKDeH/SIJ46894lEQsLulO+/1WqRSqWONvt3DklMTExMTExMTP4motEoVqv1r6U7l0olksnkPbqq+wd1j0qlEqlUSj5fKpV4+OGH5THlcvmuPzeZTKjX699x9/jpp5/mU5/6FF/84hdZXFyUzyeTScbjMc1m866t9qtfh8lk8q+l4avX7evxPt7XG+1oNCYBUkomaxgGhmFIQNl8PsflcuHz+SiXy0wmE/kzfr//rgFFDUNOp5NarYZhGCwtLQGIxFv5alXFUyqVEom4qrEaDodSx9VsNvH7/ZIObrPZsFqtWK1WHA4Ho9FINpDz+Zz5fI5hGCwvL0uAmwoLy+fzDIdDMpkMp06dYjAY0Gg0mEwm0hmtArISiYRUcmmaRjgcZjabidRcXeNgMODw8JBms4nH45F+8ePHjyTa6kDB4/Hg8XjEi7y8vMzm5iZOp5N6vc7Ozo50Su/u7tLtdsnn81KvpoLg2u02vV5PBlHVRa1+V/1+n3a7LcFeuzu7zGdHg34oFOTgYB+71Y7daiccijCbzTGMCenUAtPJFK/HR6VcJZlIsbKyIj70fr9PtVqV+2YYBpcuXeL69esScBcKhQiHw6RSKaLRKA6H48jH320zMkbyGlEe7Wq1yt7eHsPhEIfDwXg8pt/vMxgM8Hg8GIZBsVjE4/Fgs9mwWCxyYJFMJuX3qlQJ7XabUqlEPB5H13VGoxGDwYCdnR12dnZwuVzE4jHJEVCHKaPRCPjL3ndN00ilUuagbWJiYmJiYvI1cTgcnDt3js997nPyudlsxuc+9zkuXLhwD6/s/mBtbY1kMnnX/Wu32zz//PNy/y5cuECz2eTixYvymM9//vPMZjMef/zx1/ya7wXz+Zynn36aT3ziE3z+859nbW3trq+fO3cOu91+1328desWmUzmrvt45cqVuw4tPvOZz+D3+zl9+vRr80S+Ae7rjXa73ZbhUX2oai41ELndbulE3tjY4PDwUDqcC4UCfr9ffMzNZlPCz5LJ5FG41p3NptPpZDgcEgwGJYxL1Sgpb4CSZavvr7bP4/EYQBK7AdlyK3m18o0Ph0PC4TBWq5XFxUUqlYp4kOEoXGE0GnHp0iWcTieFQoFIJEKz2WR1dZVGo8HOzg5Wq5XJZEIkEqFcLtNoNPijP/ojnE4nFouF3d1dVldXZYPd6XSIRqMUi0V5zna7XZQAjUYDh8NBIBAgl8uxubkJHP2HuNFokMlkiEQiRKNRVldXKRaLTCYTZrOZ9GYnk0mCwSDZbFYOBZR8OhKJ8NBDD/DSSy8Tjye4evUqTqeTdqdzNEin0+i6TiQSEdn57u4uzWaTyWRCLBbDZrOzsbHBlStXsFgsEl6mpNX9fl/q2lqtFslkkqWlJXq9Hu9617v40pe+hNvtxufzMZvNSKVS7O/vUywXOXfuHFarlf39fTweDydPnmR3d1d6/mq1Gna7nUqlwmQyoVgsEg6HWVtb45VXXsFms5FOp0W+rrbmhmHQ7Xa5cOECjUYDq9UqKoRwOEypVJJ09Z2dHax2K4ZxpN5QYWgej4dwOCwVbJlMhqWlJTxu9z14V5qYmJiYmJjcb3zoQx/ife97H+fPn+e7vuu7+LVf+zV6vR4//uM/fq8v7XVBt9tle3tb/n1vb49Lly4RDodZXl7mgx/8IL/4i7/I8ePHpd4rnU5L5s+pU6d4xzvewU/8xE/w0Y9+FMMwePrpp3nPe97zHZM4/tRTT/Hxj3+cT37yk/h8PvFUBwIBXC4XgUCA97///XzoQx8iHA7j9/v5wAc+wIULF3jTm94EwPd93/dx+vRpfuzHfoxf/uVfplgs8vM///M89dRT6Lp+L5/eV+W+HrTH4xG9Xo9AIIDFYhGvsvIHq17jxcVF8WbP5/M7vcwzkX5XKhVWV1c5ODjA7Xbj9/txOByyKV5aWhJf8Pb2NpPJROqxms2meK7L5TKxWEzqvXZ2dlhdXWU6neLxeAgEAjLYwlFxvUqX7nQ6UgFmt9uJxWK88sorrK2tkclk6Pf72O12Go0GFotFZO9WqxVd1wmHw8zncxqNhvi31UY1EolIGJlhGASDQamLUsFtbreb7e1t1tbWCAaDci9sNhv1ep3pdMpwOKRWq6FpGteuXWNlZYVOp0Oz2ZQeciXbj8Vi1Go1uZ5ms8nW1hbhcJjxeCzy8VqtRqFQuHMIksPr9XH9+nWpLNPQWFpaolKpMJvNyGQyxGIxUqkUyWQSq9UqCdvVapWdnZ27pPdqkz6dTiVUTNkEVL1aIBDgf//v/43H4yGbzYoU3263s7a+xuLyovzHIBqNMplM2NnZYWVlBZfLRT6fJ5lMomkaOzs7Iiv3eDy43W42NjbIZrMMh0PW1tYkNV7lC6iDIKWQyGQyUhGmkujtdjvdbpeIL0KjceRdj0QiaJpGpVKR/vVms0mn0zlSEtx5nZmYmJiYmJiY/G38o3/0j6hUKnz4wx+mWCzy8MMP8+lPf/qvBU99p/Liiy/yPd/zPfLvH/rQhwB43/vex8c+9jF+5md+hl6vx0/+5E/SbDZ585vfzKc//Wnp0Ab4nd/5HZ5++mm+93u/F4vFwrvf/W5+/dd//TV/LveK3/qt3wLgbW97212f/6//9b/yT/7JPwHgV3/1V+XejEYj3v72t/Obv/mb8lir1cqnPvUpfuqnfooLFy7g8Xh43/vexy/8wi+8Vk/jG+K+7tH+Zz/9L7BYrCIHV//0er131Xgp/6zb7abRaMjGVoVYTadTXC6XDFiJRILd3V18Ph9er1e2pt1uV3zamqZhGAZ2u53JZEIikZB6sNFoJCnldrtdpMk2m01kvmoQU/5wtVXudDoMh0OWlpZYX1+XALLhcEiv15MDAHUwoCTHFouFs2fPcuPGDfFX9/t9wuEw/X4fm80mgVqqDzyZTIrHN51O0+l05EDg2rVr2Gw2otEojUYDu91+1E3tclGtVllbW5PnkM1mRY5tt9tZW1tja2uLer1OPB6X7f5gMACOTq4mk4nInJWMXW2HC4UCDzzwANlslnw2J9L66XTKdDrlzJkzACIJV1L/QCBAp9Mhk8kwn8/Z3Nxkd3eX48eP0263KZfLJJNJ3G63hI8p+Xy5XGY8HsvvZDQaHR1eMOf4iePUajXG4zHValVS0be3t/H5fITDYZLJJKVSicFgIJLug4MDHA4HoVCIaDQqHdzlchmr1UqtVsPj8Uh9l8PhkI226nVX9WjKljCbT6k36tI1rurFXu1VV/7tZrPJb/7Gf3jddnaC2b9rYvL18Hrv3zXfxyYmX5vX+/vYxMTkW8997dH2eo/6p+fzOd1ul9lshsPhoN1uY7VaRT6sNt3j8ZhYLMaJEydwuVxYrVYASaRutVqyuXU6nVIL1u/3RQ6u6p1ms5lsD5V83el0SqK5x+ORburZbCZ+apViDVAoFMhmszJYnThxQoZR1bsMRzJzr9dLMpnE6XSysLBAPp/n1KlTbG5uSr3X9va2DPTD4ZBqtUqtVmNzcxO73c5gMCCdTnPixAkJ7EokEpw/f57ZbEav16PT6aDrOqlUSg4X5vM5w+GQSqVCpVKhXC5z7do1qf7y+XxEIhGWl5dptVpUKhWGw6F4hcPhMPV6nX6/j8Vi4eGHH8blchGPx5nNZrz1rW/lgQcekOC1ZrPJ4eEhkUhETgJ9Ph/xeByXy8XNmze5cuUK+XyeUqlEt9ul3W5L3Zr6c91ul5WVFWw2G7FYDLvdzvLyMqPRiEqlwq1bt9C0v+zlPn36tHRiq2F5PB6zt7dHOp0mHA6zsLDAdDqlVCqJ7aDVavHCCy/w8ssvS/VbJpORQ55er8fBwQH9fp9EIoHT6eTChQssLy9LIJ7yrk+nU9761reKZ1+F8c1mM1ZWVhiOhuLxn06nVCoVptMp8/mcarUqh03r6+usrq6+9m9KExMTExMTExMTE5P7e9AuFPIimw6HwyQSCam86nQ6aJqGzWaj1WqJDDqbzdJut3G5XCKLHgwGjEYjdF0Xj/ZsNqPb7cqWVtd1Tp48idfrlcEmmUySSCQ4e/asDPgqebzVaklf9mAwEBl1t9uV7agKzZpOpxSLRQKBgHiRVfCW6q9Wqdgej0d6km/fvs2lS5ew2+1EIhGGw6Fs8hOJBIlEgkqlQi6XEx+0qn1Sg5ryHQ8GAwKBgFSSjUYjkeQnk0lisRjr6+t4PB4cDgcnT56Ug4RWq8VoNKLb7eL3+8nlciwvL2O32yXAbTAYEAwGaTQaXLlyhVgshmEYnD17lv39fba3t/F6veRyOZ78+99L0B/A5zk6XEilUpw7d45z584xnU6xWCz4fD6WlpZotVrs7e1JR3qv16Pb7ZJMJrHZbJw4cYJiscjh4SHdbpeDgwM0TSMQCODxeKTybGVlhfF4zFve8hYWFxdlIE6lUlJRlsvlGA6HtNttqX4rFovi//b7/VSrVfL5vPxu4ejQJBwOi79HdZ1brVai0Sjz+VxS7geDAb1e7yhAbjyi2W7Q7XVIpOL0hz2R9qswvrNnz7K4uCgKjclkgt/v5+rVa1SrlXv8DjUxMTExMTExMTH5zuS+HrQtFivFYpHBYMDq6qqEWDWbTeLxuFR9Wa1WyuWyJIPX63VqtRqA1DGpnmflh43FYiQSCfHPDodD8SqrISoUCjGdTjEMQzadqqdZSbfV4O9wOIhEIjzwwAPE43EajQZ+v59SqUSlUqHf73N4eCgDb7vdlsAuFcCmaRqdTgebzSZ1WH6/n1qtJn/uzJkznD59WhK9o9EoqdRRn3SlUuHw8PCoNsvjwWKxkMvlxFdstVpxu90UCgWi0SiaptFut/H7/ZTLZdrttlSD+f1+Wq0WN2/exDAM8vk8lUoFr9cr4VxnzpwhGAwSi8Vwu91Mp1OCwSDj8ZjJZMLe3h5f+cpX2NnZYW1tjfF4TKfT4eWXX6bRaHDz5k18Ph8HBwdsbW1x7do17Ha7JJarjbTb7SYej3Pr1i0SiQSxWIxWqwXA7u6u+LEtFoscwAwGA6bTKX/2Z3+GzWaj1+tJarqqYMvn86ytrUmlV71ep1KpSIVbPp/H5/MRCARIpVKk02mSySRer5cHH3xQetFDoRC5XE6qzYbDIc899xzj8VisC4ZhyPC/s7PDdDrF6dQJBoOsra9RLBYpFArim7JarYxGI1588UUODg7ErmC32+n1elgsGuFw9F6+PU1MTExMTExMTEy+Y7mvB23DOPL4FotFdnd3mUwmzOdzEokELpdLtppqk+t2u3G5XCQSCUKhED6fT6TW/X5fPMCDwYBqtUq73cYwDCKRCIFAAKvVyu7uriTj9Xo9fD4f2WyW27dvY7VaJVxMydDVx+rqKjabTRILlcxZ13V0Xcfr9UpXt9frxWKxEI1GsVgs6LouQ5rL5ZJaMKfTKbJ3v99PKBRiZ2eHq1evMp/PWVhYQNM0Ll++jN/vJxwOs7S0hNvtplgs0mq1sFgshMNh2SZPp1Py+TzNZhOfz8d8PqdcLvPQQw9J+JphGFLptbq6yunTpyV4TG2Cd3d3aTQa0o29sbEhm3kl849EIlKDVqlUmM/nHD9+nOFwKNv2VqvFYDDg5s2bEgqnDgrG4zHr6+tEIhG2trbEb60qs5aXl3G73RJWN5lMCIVC0nvtdDp561vfynA4xG63c3h4KNtoTdM4fvw4xWIRp9NJOBzGYrHIYUk0GiUWi0ltGxz5FBuNBj6fj1QqJZtswzDQdZ3JZCLyeHWQoYL1IpGIHEbMZjOCwaDcb3XdDzzwAFarVRLnNU0DkIRyTdNwuVxEIke1Z/3+8J69N01MTExMTExMTEy+k7mvB22/P0AwGCQcDtNqtajVatJ/rfzFKvhK13XZbmez2TsbQydnz55F13XW19exWq24XC663S4Wi4VQKCS1XoPBgOFwSKvVIpVK4b5TnaS+vwphW1lZkZ9vtVrRNE0qt5TcWLG+vk4gEACQzby6RrvdTqlUotlsiuT81WnYXq9Xurjn8zmpVApN0+QxoVBIurGXl5dl610ul2k2m7jdbtnSd7tdbDabDLnRaBS3200oFGJjY0M2+WpYnUwmGIbBQw89hN/vp1AoSGDZK6+8Itvk+XyOzWZjd3dXfOjT6ZR0Os3zzz9PvV6n3W6j6zqxWIxCoYDNZiMYDPI93/M9JBIJCYBTvnglu1d2AJfLRTAYJBQKie9bedNzuRyZTIZoNMqjjz4qgXWxWEx6r0ulkhw+nDlzhkwmw+3btwkEAtIHrirCwuGwHCJkMhkJprNarWxublKv1+UQ4vbt2xQKBfHkl8tlarWaDNoqJb7X60mGgJKlJxKJo+144uigSOULFItF8cvbbDYGg4F49qPRKIFAgEwmQ6PRIBqNMTAHbRMTExMTExMTE5N7wn09aFssmgSeqaopm80mPmUln3a5XKRSKXmsz+cjFAqRzWbZ2dmh2WxSq9Vkwx0Oh2UQczgc0m/t9Xo5duwYxWKRXq8nA4+qyarVaqTTaZxOJ0tLS5IqqTaa0+n0ro1sPp/HYrEQj8clvKvX6zEYDEgmk6ysrMgwnUgksNvtNJtNrFYr6+vrdDodSf5WPmeV6H3x4kU6nQ6hUIhisUg0GuXUqVNYLBYSiYQkr/v9fnRd55VXXqFUKpFIJJhMJpw+fZrZbEY2myUYDAKQyWSo1Wr0ej2i0SilUond3V0ZkEejERaLRbzPcBTkdvr0aTRNk+cyHo+Jx+O43W6Wlpbwer0E/AGWl5cJ+ANsbm7y3//7f6darUoPuqrMetvb3sZ4PMbn85FMJtna2qJWqxEKhbDb7Vy8eFE8+0pOr7rA19bWJGBsNpuxtLSE1WqV/sJbt27hcrl429veRjgcFrl2s9nk6tWrdLtdCRzrdrsSnLewsCD1caurq0QiYQ4PM7zjHW/nxIkTcmhz5swZ1tfX8fn8HDt2nF6vf+cQZyiBbFarlcFgwHw+p1QuUywWpXN7OBzy0EMPsbS0JGn14XCYdrtNLpdjb2+PaCTKuUfPsbqyQjAYuCfvSxMTExMTExMTE5PvdO7rHm232yMVVkpK3e/3xR+tNtRKoq1qvlKpFO12m3g8DhyFVVksFmazGbqu0+v16PV64rcGqFar0g3tdrvF772/v08sFiMcDjMcDmk2m8xmMwlVG41GTCYT3G43DodDBnnV+zyZTCTozOfzyXa50+mQz+dFDj8YDER2rWka0+lUepTL5TJer5fhcMjy8jK7u7v4/X4qlQqFQgFN04jFYuzu7pLL5RiPxzzyyCOUSiWpl0qlUhLAFggEmE6nbG9vy8Z+a2sLv98vG+dbt24Ri8UkWGw6nRIKhej1eoRCISKRCOPxWPzxsViM6XTKwsLCXddrGAbD4ZBr164xHAwI+Pwc7O9z6tQpisUiiUSCxcVFarUa0+mUL33pS2xsbGC1Wsnlcnf6tw8laVvX9aO+6TvhcBaLBb/fT6PRkMCyWq1GNBqlWq2SSqUkKG4+nzOdTrly5Qrz+fzIHtDvEYlEsNlsOBwOZrMZ4/GYSCQCQL/f56WXXsLr9UpH+vLKIv6Aj9u3bzEcjsX7PxgM2N3dJZ1ekAC6eDwuB0TT6VR+zsHBAW6XC4eekPA0pdxYW1vjueeeE5/92toaV69exefzEYvGadSPZP/9Xu+evTdNTExMTExMTExMvpO5rzfaKjk7EAiIJDcYDDKZTESSWyqV6PV67O3tyWZ5PB5L2Fij0ZAwKuCuOjAlG+52u7JRtlgspFIpqZ3SNE22tZPJhEqlctdAGo/HCYVCRynSo5Gklqs6Kjjyaytv+Hg8luCtWq2G3W7HMAxJM3e5XOi6jtvtplarSe2YCvdSqeqxWIxQKCQy8uFwiMPhwOFw4PP5ODw8lIFdbeWVJ/jEiRM899xzdLtdGeb8fr9ImFWd2XB4JE3e2dmRzmeHw4Hf76dYLAJICNurn6PqPFc1VYlEAovFwmg04saNG+zv73N4eCgHEfP5XPzQKysreL1eyuWy9I+rFPJ6vS6HFOq10el0KJVKHBwcSNd3qVSSzb7y01utVgmxUx3aque72+3S7/dpNBpsbGxImJ2qLCuVSlSr1aPhtt+nUW9xsH+I03nklw6FQthsNpGb1+o16o06TpcLNFhcWsLpdOJ2u3G73VIp98ijjxCNRtnd3WVxcVFk/3/xF3+BzWbj4OCAer3OSy+9xHg8xm63Y7MePf/JZEosFrsH70oTExMTExMTExMTk/t60FZDX7VaxWq1Stq1CiDr9/ssLi7SbDaBIwl3Op1mPB7LhtlisaBpGn6/n8lkwvLyMsPhkH6/LwO78grXajWCwSC1Wk1k3pqm4XA4pOLKYrFQKBTE/6z81oFAgLe85S3SiR0IBLDZbKyvrzOZTGRQUpVkbrebSCQi9Vqrq6tEo1EmkwmxWEx6rWu1mgxpaiB3uVyUSiWRIKs06na7jc1mQ9d1DMNgNpuJrHowGHDu3Dnp0240GkQiEbmXDocDp9OJ0+mkXC5jtVplgFYhcHa7nbNnz4qkWfV7u91u2u22JKtbLBaRkKtk+JMnN3n44YeJxWKcOXOGhYUFkcFPJhM8Hg/xeJxut0uxWCQSifDggw+Kp30ymYi6QR2S+P1+CX57tdfZ5/PR6XRot9vk83lCoRCz2Yz5fM7SnaF3Npvx0EMPcezYMS5cuEAgEKDT6fDcc89x9epVgsEgJ06ckL72TCZDr9fDZrNRLJYYjcbM55ocfpTLZZHTD0Yj6q0WveGAVrfL9t4usViMQCBAo9Gg1WoRCoWoVo989cvLy3J/8/m8HDoEAgE5jLDb7dRqNQqFAidOnCCXy7K3t3cP350mJiYmJiYmJiYm37nc19JxlQ4dCAQwDEM6omezGRaLhX6/TzKZZG1tDavVyng8plAo4HA4JOUakJTqQCDA1atXSafT0mXcbrfRNI1kMommaeRyOflzGxsb8nVVXdW7I9f1+Xy43W6p0NJ1ndu3b0vaeK/Xk3out9vNfD5nNBoRCoUkiVp5c/f393n44Ye5fv06Pp+Pmzdv4nQ6sdlseDweWq0WnU6HSCQiaecqlVsNs6o6S6WGWywWWq2WBMaNRiPgSCVwcHAgqexer5d+vy/BWypdXA2yqq6rVCqxv7/P4uKidGJ3Oh2y2SxPPPEEuVxOErkDgQDFYlESu2OxGLVqjWazyeHhIcFgEJ/PRzwex+FwkE6n2dnZkfumUtKfe+45GZKbzSaxWIzt7W0WFhaoVqvE43EymYwchigp/2w2kz7uyWQiYW6RSIQrV67QbrfZ2dnh2LFj+AN+bt26RbPZlDo3r9dLNBrllVdeIRgM8thjj2GxWMhmc3g8bsrlKh6Pl3K5Qj6fxe128w/+wT/g2WefZWlpmf54xHA0ot//S6+7uiaVHD6bzbh+/TrBYACn00k6labVbmHRjg6GDMPA6XThcRt3FAYTEvEEzWaLTqdLOr1AoVC4N29MExMTExMTExMTk+9w7uuNdr/fl2ooj8dDo9GQyiSLxYLT6eSZZ56RELRX12N5vV5JDh+NRhJGpeS/aoubSCQA6HQ64uX1eDwygCaTSebzufQhqwHO5/OJpLjb7WIYBgcHB0wmE5rNJg6HA6vVyuHhofi4VYBbu91mNpvhdrt505veJEN6Op0mGAyysLBAKpXi/Pnz8lzUhl0lVw8GA2w2G/P5HMMwpOqs3W5jtVrl+6v0aovFwqVLlxiPx6ysrBCNRkkkEgQCAbxeLwD1ep1Op3PkH75TRXXr1i3OnTtHOBwmnU5z/fp1JpOJyN4nkwk7OztMJhN0XWd5eZlwOCxb6Olkgs/jZXFxUdLfNzc35Zq2trY4PDzEbrcTDocBJFhuaWmJcrksQWTZbBaLxUK1WqXf71MsFtF1nVAoRDKZlOE7HA6LJ1q9VmKxGJPJROrKAoEA6XQa3aHL4YmqQhuNRtRqNTY2NvB6vbz00ksSEre/f0Cn08YwRrhcTrxeHwsLi/z5n3+BaPRIieB2u5nNZ0cecjRWlpZpNBpUKhXxlfd6PZqNJrMptFtdsoc5ouEYiXgSbW5Bm1uYTeYcP7aJx+XFpbthbmE0HIv/2+/33YN3pYmJiYmJiYmJiYnJfT1oq7otj8fDYDAAjrqMVeWVGqaU19jlctHpdOh2uzIcO51OqVmazWYyADscDpLJJKFQSILIlAxcyYUbjYbUWak0ceXpPTg4AI4OAzweDx6PB03TSKVS4k+eTqfU63UqlQqDwYDNzU3a7bZ8fTQa0Ww2CYfD1Ot1Go2GbFZVv7Ta5qtqM7fbTSKRIB6PMxgMsNvtVKtVvF6vyLnL5bJs0efzOR6PR4LfHA4H+XxehvVKpSI+duUHV7L3YDAom3OfzycSeOXdPjw8ZH19HcMw0DSNxcVFdnZ2qFQqbGxsHCV0hyPcunWLg4MDqa5SsvhcLofD4aBer7O4uCi92GpDHwwGeeKJJ2ToLxQKzGYzvN6jwV1t5NPptGzQlXd8MBjg8XjEk12r1WTDPplMCIfDVCoVjIkhUn446qw2DIPDw0NyuZxUmV26dAmbzUY0GiWdTjObzXC5XMznc5rNJpPJhIODg6NNf7tNq95gOjaYTSa0my3pFg8GgwSDQVKpFMeOHWMymWCz2SSVfnV1VbznyvbgdnsolUpsbW1Jd3e1WmU4HL3Wb0kTExMTExMTExMTE+7zQXt9fV0qm9QwqLbDalgNh8P4fD4ODg4oFAq0Wi0JJFOb5kQigcvlksFXya8NwyAYDErQmsfjwTAMOp0OvV6ParXK+fPn8Xq9MvQ0Gg2cTifj8ZjRaCQhYqFQSMKuVOezOhBQ/dsq/Xw4HJLP55lOp+zv72OxWNB1XQaxer3OYDCg3W7Lc15dXSUQOOoV1zSNw8NDjh07xtLSEslkksXFRQqFAl6vl4cffphOp4Pb7WZxcZHpdCo94/P5nOXlZXRdp1wus729TSqVkiA35YnWdZ1isYjVauXWrVtUq1VarRa9Xk+S3jVNo9friZJgNBoxGo1IpVJSiaa23w6HQ/65t7fHwsKCJKsPBgNu3LjBaDRiY2MDm83Gzs4OL7zwArdu3ZJwOyW7z+fzlMtlURgYhiE95G63G03T5LH9fp9gMCjS/UKhQLlcxjAMCaubTqcSROd0OlleXha/urIpnD9/Xg5Fksmk+OdVH7rdbhdlQqvewG6xkk6lcNjs1KpVDg8PaTabcmBQqVTEh93v9xmPx1QqFS5dukS73SYQCEi1l9rIr62t8da3vhWbzcZkMqFard7jd6iJiYmJiYmJiYnJdyb3tUe7VCrhcrlkcFJDh+ot1jSNwWCAruv4fD5stqOnq2ma/NNutxOPxykUChJm5XA4mEwmjEYj6eXWNE2GU5/PR61WE2+23W5nNBpJNZby2yrZdqvVwuVySaBWqVQiEolgt9ulw7nX69FqtSRhWw2/ShIei8U4PDyUTakaGNvttvRp+/1+SchWlU9ra2ukUikymQwLCwvs7u6yuroq961er0vI1urqKhaLRZ6nkkqrMLV0Oi1VaS+//DKnTp2S4VpJvQ3DkA23SkjvdDrMZjMAZrMZV69eBWBtbY3J2CCbzdJoNEin0xQKBVKplHjZ1UHJeDzm9u3brKysyKDu8XgIBAIyzKptsxqKE4kEr7zyCleuXCEej4uUXm3f2+22+MzVwcLq6iqlUonNzU12dnYYG2O8Xq9svK1WK9VqlZWVFTkoCAaDZDIZsQtomkY0GqVQKEiOQC6Xk3A5NYj3Ol2GvQHabM758+eZzWZSLXbmzBlarbYcTsRiURYXFxmPxwwGA7EYKDWH0+nEYrFw48YN6XxXW3gTExMTExMTExMTk9eW+3qj7XI5RTqufNqqdqtcLlMsFiXwy+VyEQ6HJWRMpXtPp1NKpRKGYeByucSzO5/PZZBtNpuMRiMMw6BSqcif9Xq9zOfzu2qhVLCarusygKfTaWw2m2x4fT4fHo8Hm83G8vKyBGJpmibBYwCTyQSn04lhGLjdbqnoUgNbpVKh2WxisViw2+3M53M6nY5sYP1+P1arlX6/z40bNyR9W6W1WywW2ay73W6cTqcMdj6fD03TqFarsuGt1WoANJtNSUBXzzEcDrO8vEwoFGI+nxMOh1lbW0PXdU6ePEkgEEDXdQKBAN1uF6fTeSS/zuclYC0QCHDmzBmRwK+trdHpdGg0GhSLRQzDkAFZHQIoX/N4PBZ5tcfjwe12yz1ZWlpiaWlJnu90OqVcLks1W7vdplar0Wq1yOfzpNNpqtUq2WxWwurUAYby4N+8eRNN05jP55RKJeLxBPP5nFqtJmoGlRBvs9nw+XxyGLG7u8vKyspRjVujjma1sL+/T7lcZmFhAZfLxZUrV+h2uzSbTdxuN71ej2Aw+Ko+8IBUop09e1aUDUeS8SNLRalUvGfvTRMTExMTExMTE5PvZO7rQVvXnUQiEfr9Pl6vF5/PJ+nSuq7jdDol+EslZasaruFwKP7s4XBIr9cTf7HalgKyZVYDpNpODodDGXaV59tisYikezabySD86iFObWBVeNbBwYH4h202G+fOnaNSqRAIBBgMBvR6PbrdLoeHhxLCprbwwWCQfr/PwsKCpIbb7XZSqRTFYhGHw0G1WuX27dviNX91x3elUpHgsEgkIlv8yWRCNptlfX1dNvTj8Vgeq/691+vR6/XweDxS4+XxeMhms7zyyitMp1PS6TRra2s4nU5JDVf+eb/fj/1O7VYwGCSRiFOtVonFYuIx13VdkuUtFgtXr16VrfVsNqPf77O7uyv+er/fz4ULF1hZWZHu7M3NTdbW1ojFYtjtdnK5HP1+XyT+3W6XpaUlKpUKo9GI3d1dqVW7euWqyNBjsRh7e3s0m02sVhs+n19S6DOZAzY3N2WLr+s6a2tr4u1XUnqliBiNRvgDAbw+H6PxmMPDQ3q9HrquMxqN7gS1HVkXjl4bdg4OMnS7PVwutxz2GIZBLpej3W7j9Xp59NFHxXNutzvu5dvTxMTExMTExMTE5DuW+1o6roaQarVKJBIRibLH42E+n6PrOg6Hg3a7LQPbZDIBjmqsBoMBoVBIhke1Qe50OrKFzGQyPProo+zv78vGWfltLRYLa2trbG9vyyZZ13VsNhudToeHHnqI7e1t+bkqcTwcDnP+/Hmy2SzdbheHw4FhGFSrVUk6VwFsjUaDwWDAxsaGpKMbhoFhGLz5zW/mmWeewe/3k0gkODw8ZDwey2ZUBZcVCgWRgs9mM1ZXV9nd3ZWAM7/fLwnds9lMhlZA5Pbq4GI4HIpEezQacf78eW7fvk2n08Hr9YoveHl5WQ43Dg8PWVxcxOPxYLfbWV5exufz8fLLL+NxuclkMpTLZXnOhmFw7do1XC4Xp06d+v+z997xklR13v+7Uue+YW6cGSYzAkPUQREWVILOImExoWAWERB0AX88u+gKo+sjruwaWAXlWQWfB3BdMKKioiRRgpKDMzA53Rw7d1fV+f1Rfc7tnhnCDJcJ8H3Pq1/3dvWpqlOn6sztz/kmM4alUokFCxbQ19dnSmDNnj27yaI/OjrK7bffTnd3N8Vikblz5+I4Dvvvv78p3RWPx80zMH/+fPr6+oxFXSd327x5MwAzZszAtm0OPvhgRkZGaGlpoVqtMjoaWZaXLDmQ2bNn8cgjjzA4OGgs2j09PZTLZbq7u9m4cSP5fJ6ZM2cyMjJiLPSFQqEhS32GeDzO6tWryeVypNNpfD/KIzA2NsZrX/taAFN/fGJigv32248gCFizZg29vb309fUxOTnJvvvuy5o1a0yIhCAIgiAIgiAIu5a9WmjretaO4xi3Zh0XDZF1t6WlxZRM0gm/XNeltbWV8fFxxsbGTCyrdtPWFtfu7m4gyp49MDBAa2srXV1dzJgxgy1bttDS0sLw8LCp06yTZ2mx/+yzz5oa1TpOPJVKUSqVWLlypYm11S7Y5XLZlPHyfZ9yuWxiuXUN5/HxcVOS69FHHyWfz+O6LkNDQ8RiMdPnbDbL6tWraW1tZb/99uPhhx8mFosZF2ZtXdUeAO3t7WYsdUzyhg0bTLZ0XTqstbXVuGvHYjFzXTohWSqVYtasWcalWlvdq9Uq6XSamTNnsmLFClpaWpg1axbr161jwYIF9PT0sG7dOiYnJ8lms8TjcYrFIg888ADxeJyJiQls2zaiXSlFX18fvb295rNCocA//MM/8PDDDxtLs7b4rly50iS30xb5SqXCvHnzsCyLp59+uilxnc4aP3uf2Uzmogzsc+fOZd26dWYconrlKR577DFGR0eZM2cuc+bMoVQqGQ+AGTNmUC6XOeCAA+jp6WF0dJREIkEmk2HOnDn09/dTrVaYM2cOCxYsYHh4mGw2SyKRMCXrZsyYwfj4OIVCwdRBD4KA1atXm0WWIAiYMWMG1WrVLA5t3LhxF81EQRAEQRAEQRAa2atdx3WpLl3LWilFEAS0trYal+dSqWSsya7r4jgOSinj7t3W1kYulzMWbl32CqayTbe1tdHR0WGyU3d3d6OUMrWah4eHCYKAmTNnGuHW1dXFvHnzjLDTtah1YjQdK9zZ2WnEk65rra2u2WzWlMFKJBLsu+++JBIJLMuiVqsZt+Th4WFc1zXZzPP5PGvXriUMQ1avXs3AwACzZ882rtWAWWzQ5cS0K/XY2JhxC9eZ23VyM+1m3dHRQSKRoFAo8OSTT7J582Z83zclr/L5PLlcDohqb1erVcbGxkxM++DgIKOjoxQKBQ7Y/wDS6bS55oULF1Iul03prUKhYGLtJyYm8DyPfD7Pli1bSCQSpjSavtYHH3wQ13XZZ599aG1tZfbs2SilTBbvlpYW81w888wz/OlPfyKXyzFjxgwOPPBANm7cSF9fH9ls1ljLtSfDyMgIyWSS/fffn2q1yqGHHorneXieR0dHh4kd1/XDdQK+9vZ2xsfHGRoaIpvNcvDBB2NZlinRphQMDQ3x0EMP0draavqoY8rb29sZGRnBcRzGxsbYd999mT17thHiTzzxBOvXR67r2WyWnp4eHn/8cRNOIAiCIAiCIAjCrmWvFto6jnbu3LkAZDIZ0uk0M2bMMHWza7Ua6XTaJM/Swre3t5fe3l48zzPlkLRo0iJny5YtVKtVNm3aZGplp9NpRkdHKZfLDAwM4DgOuVyOLVu2MDw8zLp165gxY4Zxm9bxutoareOLR0ZGqFQqbNiwgXg8zty5c5uypY+Ojpr9BgYGSKVSrF+/nng8TjKZpLOzkyAIOPjgg8lkMiZWu1gsGrdvy7JwHMeIbu3OrMuH1Wo1405u2zabNm0CoiRsSikcx6FcLjM2NmbaFAoFJicn6erqYtasWeRyOZRSJqmajiHXtbm7Ortob2tn1bOrCP2Ap558klQiSUf7DMIgip3fsmWLiS0fGRnB930syzLJ7XRCMJ01XPfl2WefNbH2qVSKefPmMTY2RrlcplKpkEwmzUJLJpOhtbXVZCOfOXMmM2bMYMaMGcZ9fuXKlSbEIJNNMzQ8yPjEuMkUv2LFCtatW8emTZvIZrOUy2U2bNiIbTukUml832dsbIwFCxaY8XjmmWdobW0lkUiwfv16k+XddV3mzZtHKpVi5syZTE5OMjExQblcZt26dQwMDNDf32dK0OlkdYlEgqeeegrLspg7d64pNea6Lps2bTJx9pGrf3y3zU1BEARBEARBeDWzQ0L7iiuu4PWvfz3ZbJbu7m5OO+00Vq5c2dTmLW95i8nmrF/nnntuU5sNGzZw0kknkUql6O7u5pJLLjGx0ztCX98WnnjiCe69915s26anp4eOjg7j3jwxMWHirj3Pi0oq1V2g8/m8SQbmOI5xzR4YGDBCz3EcU+6rt7eXZDJpLKzxeNy4VR9wwAG0tbUxMTHB2NiYSXRmWZZJdtbX18fSpUuxbZt8Pk93dzdHH320SVKmy4TNmDHDuG+Xy2X+8pe/sGnTJh544AHGx8dpbW0lm81yyCGH4Ps+jz76KOPj41iWxaOPPkoYhiZeWVtGu7ujJGMbNmwwcbtve9vbiMVizJw5k1KpxBve8AYWL15Me3u7WZzYsmULk5NRiSkt5tra2liwYAGe52HbNuPj42zevNnEgHd2dtLZ2WlivX2/hus42JbFwMAA6VSauXPnUi6XyU1O8uyzz5rY9SAIzOLG5s2bKRQKjI6OMnfuXA488ECTRT2VStHS0sJ73/texsbGeOaZZxgYGEApRUdHBxs3bmTLli3Gk0B7Dfi+T19fH47j4HkeCxYsMLXPn376aSzLoq2tjWq1yuJ9F9PW1sbGDRvo7Oykvb2duXPnmgR21WqVBx54gFqtxtjYmMl6r8u66drq2jtAKcWsWbMYGBjg6aefJhaLsWHDhqYa4LqeejKZZMGCBbS1RdtWrlxJLpdj48aN5HI5Zs6cSXd3N5OTk2zcuJHXvOY1tLe3k8vljJt+S0uWlpbsXjOXBUHYcWQeC4IgCMKeyw7FaN99992cf/75vP71r8f3fT772c/ytre9jaefftpk6QY4++yz+eIXv2jeN9bzDYKAk046id7eXv785z/T19fHhz70ITzP48tf/vIOdd6ybVKpFKlUypTesm3biMNsNkuhUGDTpk0meZYWoIODgziOYzI96y8gnueZDOY6SVoYhsydO5dNmzY1JVs76KCDWLt2LaVSiZkzZ5rkVrpMmO/7JkFaMpnk4YcfNnWctTu367okEgn6+/vp7Ow0ydK0W/ABBxzAmjVrSCQSlEolk/Bq1apVpFIpurq6GBsbM1nPM5mMqYOts6qnUilGR0fp6enhNa95DStWrDDjsHLlStLpNCtXrmRiYoLZs2ebzOm2bZss7No9Wi9UlMtllFIsWbKEZ599lkQiYWLglVKmRvVkrcasmbPo7e019a1HR0dNLHZvby9tbW3MmDHDJAGbOXMm4+Pj5PN5MpkoSdj69etJpVKMj48D0NPTw1NPPUU2m6WlpcVk9R4YGGDWrFnEYjFzX4aHh2lpaSGRSDA4OIjneViWxZYtW+jt7SUejzNr1iyy2SzDw8MkEgmeeeYZRkdHaW9vN1bl0dFRc74wVIyPj5sFmlQqZazJa9euJZfL0d3dTXt7u8kCrhOi6bnS0dFhks0tXLjAZA/v6Oigo6OjnnU9KldXq9VobW1lYGCAtWvX0tfXZ8Zry5YtKKWYmJhg0aJFbNmyhWKxiOP07DVzWRCEHUfmsSAIgiDsueyQ0P7Nb37T9P7666+nu7ubhx56iDe96U1meyqVore3d7vH+N3vfsfTTz/N73//e3p6ejjssMP413/9V/7pn/6J5cuXG7fnF4NFlM17ZGSEmTNnGkGtE1plMhksyyKZTJpY2bGxMdrb29m8eTOO4xgLZrVaRSnF4sWL2bRpE4VCwYj1crlMX18fpVLJCODZs2cTBAGASa41Z84cnn76aUqlEq2trSZDuK4fPXv2bIaHh/F9n1qtxtq1a/E8j1KphOd5piZ4d3c3rusyODhIKpWivb2d3t5eNm7ciG3bplRWW1sbtVqNRCLBvHnzePDBB+no6GBiYoLXve51PP300wDMnz+fbDZrLL2LFi3ikUceiVykMxlqtZqx8tq2zdjYmIk1rlarJss5QKFQMO71vb29xGIxgiDgoYcewrIsjj/+eDzP49577428CWJx+vr6mD17NkNDQ2zatMnEiiul2Lx5M3Z9wSQej9PV1YVlWcyZM4fJyUkj2AHWr1/PvHnzTEz1qlWraG9vp6uri7/97W/EYjFmzZpFPB6no6OD/v5+U9M8n8+Tz+dpb29nwYIFbNq0iXK5TH9/VGvasizjeq6UIl/IY1lQrVbJBEG9/FgP4+PjLFq0CN+PkpEFQUCtViMWizEyMkI8Hjfx/uvWrTP5A7R3RBiGLF68mIceesiUi9MLMXqRp1gsksvl6nHxNTo7OymXy9RqNSzLYubMmeTzeRYuXMjg4CD77rsvf/vb38xCzWGHHUaxWGTDhvV7zVyesaWV1GTqhRsKwquQYn77c0nmsSDsPTzXPBYE4ZXLS8o6PjExAUQlkBq58cYbueGGG+jt7eWUU07h85//vFlBv++++zj44IPp6Zmyti1btozzzjuPp556ypQxaqRSqTQldpqcnARAoSiVSixcuJDZs2czMjJCGIbkcjmq1SodHR0mC7ROnLZ48WKTjdnzPGbNmmVco5999lk8zzPiWteH1q7ZpVLJJMJKp9MmM7mOjdWudrFYDMdx6Ovr48ADDzTWW52pW9dR7unpYc2aNSax2axZs8hkMoyOjvLmN7+ZgYEBbNumv7+f3t5e43qsr6Wvr8/U1F63bh3FYtFYVycmJjjmmGP4y1/+YkqT9fb2UigUaG1t5dhjj+Xee++lra2NDRs21GtDO0xOTprkYmEYmszk+Xze1LsuFosmW7tOnjZjxgyCICCXyzExMYHruMzdZw6rVq1iyZIlxotg2bJlPPnkk6YUV2dnJ6OjowwODpJOp02prXK5TG9vr6l1PTw8TBiGjIyM0NHRwR//+EczXuVymfnz57N69WqeeeYZ84XygAMO4IknnuA1r3kNhUIBwLjGFwoFenp6yGazDA0N0d/fTzabJZvNGsv14NAgYT2bdz6fZ//99yeZTNLa2sqjjz6GZVkm7l7XQp8xY4a539pbwvM8xsbGcF2XRYsWsWbNGhzHIQgCE4P+178+hOd5rFq1mmQyUY/dnsXQ0JApzwaw7777GoFu2zZKKe677z7mzZtHOp02OQQW7buQLX2b9pq5XGgtEj63p7sgvKqJj7y4P9W7ex63DmVJF9P0LxjC94Jt9msZyVBN1CinnztRY9eGGYz35MiMpRjrnXhR1y3sPN0bOhjvmSQ9nmSsZ3J3d+cViVt16V3XiVdwdndXBEHYxey00A7DkAsvvJC/+7u/46CDDjLbzzzzTObNm8esWbN4/PHH+ad/+idWrlzJT37yEwD6+/ub/qAD5r22Lm7NFVdcwRe+8IVtO+9EbtfZbJb169ebGOqWlhaCuhVyYmKCzZs3m1JfW7ZsMeWXRkZG2Geffejs7OSJJ54AouzPg4ODZLNZk528t7cXy7LYf//9efjhh2lpaWF0dNQIoLlz5zI4OMjQ0BDJZBLbtk1pq6GhIVPT+9BDD+Wpp55iYGAAz/N49NFHmZiYYM6cOca6q93WH3nkESOkbNvG930mJiYYHx8nm82a5GVLliwhl8sxe/ZsDj30UNasWcPBBx/M8PAwv/3tb2ltbWXLli0mdn1ycpL+/n6TlV2X1JozZ44R/j09Paxfv55sNksQBPT29mLbNrZt4zgOK1eu5KCDDmJ8fJzOzk6q1aqpW60TpU2OTzA8PExPTw/JZNJYZHXprlWrVtHT08Pxxx/P/fffz/r166nVasyYMcMsPOiyYrps2eDgoMkSv3TpUkZGRhgcHCQWi7Fo0SJWrFhBGIZMTEwQBAFPP/00c+fOZcuWLWQyGXzfJ51Os2rVKsrlMqOjo7iuSxAEdHd3m9jG7u5ubMdmv/33Y/Xq1YyPj5s62t3d3Tz11FMUCgXa2tro7Oxk1apVKKVMvL1SilgshlIKz/PYvHkzLS0tjI+PmyR0CxcuZMWKFVEc+MaNtLW10dLSwty5c9lvv/0YHR1lxYoVuK6L53nGlX/9+vV0dXWRzWaZmJjg8MMPZ2RkxJSqW7x4MU888QSe51IqFfeaudy7uqvJ1VUQhCmK+Reey3vCPNZ0r+sE1DbbLWWBFS2SPxeWsujaMANLQTInCR1fbvR4oyA5mdjd3XmFYu3uDgiCsJvYaaF9/vnn8+STT3Lvvfc2bf/EJz5hfj/44IOZOXMmxx9/PKtXr2bRokU7da5LL72Uiy++2LzXwjAejxuL7NDQkHHn1u6/Tz75pHGB1pmxh4aGjEt0LBYjDEPa29tJp6MkXU8++aRx8e3q6mLt2rW0tbWRyWRMSa729naGhoZM/O3w8DDFYpHW1lYTqzs2NmZE6uTkJHPnzuWxxx4z4rVYLJoSXslkEsC4qicSCXNcnck7lUoZ4XrooYfy0EMPUa1W6e/vZ9999yUMQ1pbWxkcHOTOO++ks7MT27ZxXZfZs2cbsTY+Po5SipGREYrFIrNmzWKfffZh3bp1bN68mdmzZzM6Okomk6Grq4vBwUEOO+wwU+d7zZo1ZDIZKpWKyZKtXbJrtZopQ5XL5ejp6aFQKPDEE08Y6+6NN95oMocvXryYBx98kHQ6TW9vrwkBGB0dxfd9E2uez+eZNWsWxxxzDE888QS2bRsRqkuprV69mtmzZxOGoRGvPT09TExMsGXLFrLZLLNmzSKdTpv45/Xr15vM48PDw9RqNWbOnEmlUmG/xfvx6KOPmnuis8/rjN6e55ma6IsXL6avrw+llCkjp38vFot0dHRw0EEHcd9991EqlXBdl1WrVpFIJMjn88ydO5dKpWLu8Z///Gey2Sye59HX14dt22aBIpVK4TgO+XzetJ+cnMSyLBKJBPfffz9BELBhw0Zyk4W9Zi7bysZWe3URBEF42bBexBf1PWEea2xl8ZziQr3w9VhK/xSBskuQ8RYEQXhZ2KlvthdccAG//OUvufPOO9lnn32et+0RRxwBwKpVqwDo7e1lYGCgqY1+/1wxZPF4nJaWlqYXwNy5cymVSuTzeebPn2/KJimlcF2XoaEhfN83SdAGBwfJ5/M4jkMikWCfffZheHiYxx57jIGBAdasWWNqR0/WM2KnUikKhQJDQ0M88cQTtLe3G+E8e/ZsIEomE4YhGzZsMFbweDyOUopKpcLhhx/O+HhUJmpkZATP80xJKp0Ju1QqYds28+bNM2JMlyPTsbg6sVlfXx+u65os1xMTEwwODrJ27VpaW1tNze5sNkupVKJWq5lSZ93d3SxYsIDx8XHmz5/Pa17zGhYtWkQ2mzUW7nw+z/j4uLGer1u3jg0bNjA6OsqMGTPwPM9kB/d938TA9/T0YNs2gwMDZLNZ4y6t3eR1ZvJ4PG5i6kulEiMjI9i2zcKFCxkZGTHCNpFIGEv6mjVrCMOQefPmGff3RCJBOp1mzpw5HHjggSYrOkRWaZ3cbvHixXR3d5NIJNiwYQOZTIbBwUFaWlqMcN68eTOWZTE0NEQmk2FsNIrDn5iYIJvNsmLFCtavX2+s17qmdSwWw7IswjDEdV1jgfc8z9yDtrY2k1VdL7L4vm8WQvSzX6vVTJZ0y7LI5/McccQR7LfffgAUi0UqlQphGFIul2lrazMJ+Lq7u8nn8xSLRVPmrrd35l4zlwVB2HlkHguCIAjCnscOWbSVUnzqU5/ipz/9KXfddRcLFix4wX0effRRAGbOjL70H3nkkfzv//2/GRwcpLu7G4Dbb7+dlpYWlixZ8qL7AbB48SK2bNnMokWLeN3rXsdvf/tbkskk+XzOuEZXq1WCIDBuyDr5WDabpbOzg8nJSZLJFD09PXVr+CiWZREEPpYVZ3BwgFgscl/r7e3lwAMP5Fe/+iWxmEe5XAEUAwP9dHR0UKv5DI8MAzTFL09MjAOKzZs3kclkaW9vp1wuoVQkFIvForGIPvLIIwCk0ylGRobJZlvI5SbrMdQuK1asoKenu56Qq8batetQSrGlbwueF7lBz5kzh0ceeYQgCNhnn9l1l+XNbNiwkaOOOopSqcSzzz6D47r09fWZbN3aVb1SKfPa176W/v4BgsAnl8sbV+goGdkkRx99DA888ACFQoFFixbx+OOPm9JWiUSCttYMudwkIyMjjIyOMDIyQjKZoFKpEoYh+XyeXC66T1osplJJenp66evbwvoNG1i6dCl+rcbq1WvI5aNa1hMTE8ybN4/+gX5q1RoTE+P1RHT7mBJuLa0ttLRkeeTRRzns0EMZHo5i94eHh0mmkjzxxBPk83nz5XDjpo309HQThiHj49HiwGQ+GvNEMkGlUiYMQw48cAmlUpnx8XE2btzEnDlzqFarjI2NmbjvIPDx/RrVagXXddi4cQPlcoW2tjaUCuns7MD1PDZv2kxHRweO47Bu3Vp6e3t5+umnAIjHE7S3t9ef9ZC1a9fiOA7xeAzHicIS5s6dy/DwMIVCgSUHLiGo14EPw7AuxhWeF2uaL3vyXC4WX5ybuyC8GtHzY+u5LPNYEPYenmseC4LwCkbtAOedd55qbW1Vd911l+rr6zOvYrGolFJq1apV6otf/KL661//qtauXat+/vOfq4ULF6o3velN5hi+76uDDjpIve1tb1OPPvqo+s1vfqO6urrUpZde+qL7sXr1akXk7CQvecnrBV4bN26UuSwveb0CXlvP5T1lHm/cuHG3j4285LW3vLb3N1kQhFcmllIvfmnNsrYfv3PdddfxkY98hI0bN/KBD3yAJ598kkKhwJw5c3jHO97Bv/zLvzS5lq1fv57zzjuPu+66i3Q6zYc//GG+8pWvGDfaF0LXL96wYQOtra0vtvsCU7F0GzduFHe/HWRvGzulFLlcjlmzZmHbzVEiMpf3fva253FPYm8bu+eay3vKPA7DkJUrV7JkyZK9Zkz3JPa253FPYm8au+f7mywIwiuTHRLaewqTk5OmTvWe/h/rnoaM3c4jYzf9yJjuPDJ2O4+M3fQjY7rzyNjtPDJ2giDsyciSmiAIgiAIgiAIgiBMIyK0BUEQBEEQBEEQBGEa2SuFdjwe5/LLLycej+/urux1yNjtPDJ204+M6c4jY7fzyNhNPzKmO4+M3c4jYycIwp7MXhmjLQiCIAiCIAiCIAh7KnulRVsQBEEQBEEQBEEQ9lREaAuCIAiCIAiCIAjCNCJCWxAEQRAEQRAEQRCmERHagiAIgiAIgiAIgjCN7JVC+9vf/jbz588nkUhwxBFH8OCDD+7uLu127rnnHk455RRmzZqFZVn87Gc/a/pcKcVll13GzJkzSSaTnHDCCTz77LNNbUZHR3n/+99PS0sLbW1tnHXWWeTz+V14FbueK664gte//vVks1m6u7s57bTTWLlyZVObcrnM+eefT0dHB5lMhne9610MDAw0tdmwYQMnnXQSqVSK7u5uLrnkEnzf35WXslcic7kZmcc7j8zl3YfM422RubzzyFwWBOGVwl4ntH/0ox9x8cUXc/nll/Pwww9z6KGHsmzZMgYHB3d313YrhUKBQw89lG9/+9vb/fyrX/0qV111Fd/5znd44IEHSKfTLFu2jHK5bNq8//3v56mnnuL222/nl7/8Jffccw+f+MQndtUl7Bbuvvtuzj//fO6//35uv/12arUab3vb2ygUCqbNRRddxK233srNN9/M3XffzZYtW3jnO99pPg+CgJNOOolqtcqf//xnfvCDH3D99ddz2WWX7Y5L2muQubwtMo93HpnLuweZx9tH5vLOI3NZEIRXDGov4w1veIM6//zzzfsgCNSsWbPUFVdcsRt7tWcBqJ/+9KfmfRiGqre3V1155ZVm2/j4uIrH4+qHP/yhUkqpp59+WgHqL3/5i2lz2223Kcuy1ObNm3dZ33c3g4ODClB33323UioaJ8/z1M0332za/O1vf1OAuu+++5RSSv36179Wtm2r/v5+0+aaa65RLS0tqlKp7NoL2IuQufz8yDx+achc3jXIPH5hZC6/NGQuC4Kwt7JXWbSr1SoPPfQQJ5xwgtlm2zYnnHAC9913327s2Z7N2rVr6e/vbxq31tZWjjjiCDNu9913H21tbRx++OGmzQknnIBt2zzwwAO7vM+7i4mJCQBmzJgBwEMPPUStVmsau/3335+5c+c2jd3BBx9MT0+PabNs2TImJyd56qmndmHv9x5kLu84Mo93DJnLLz8yj3cOmcs7hsxlQRD2VvYqoT08PEwQBE3/cQL09PTQ39+/m3q156PH5vnGrb+/n+7u7qbPXddlxowZr5qxDcOQCy+8kL/7u7/joIMOAqJxicVitLW1NbXdeuy2N7b6M2FbZC7vODKPXzwyl3cNMo93DpnLLx6Zy4Ig7M24u7sDgrCncP755/Pkk09y77337u6uCILwEpC5LAivDGQuC4KwN7NXWbQ7OztxHGebzJIDAwP09vbupl7t+eixeb5x6+3t3SZ5je/7jI6OvirG9oILLuCXv/wld955J/vss4/Z3tvbS7VaZXx8vKn91mO3vbHVnwnbInN5x5F5/OKQubzrkHm8c8hcfnHIXBYEYW9nrxLasViMpUuX8oc//MFsC8OQP/zhDxx55JG7sWd7NgsWLKC3t7dp3CYnJ3nggQfMuB155JGMj4/z0EMPmTZ33HEHYRhyxBFH7PI+7yqUUlxwwQX89Kc/5Y477mDBggVNny9duhTP85rGbuXKlWzYsKFp7J544ommL0W33347LS0tLFmyZNdcyF6GzOUdR+bx8yNzedcj83jnkLn8/MhcFgThFcNuTsa2w/z3f/+3isfj6vrrr1dPP/20+sQnPqHa2tqaMku+GsnlcuqRRx5RjzzyiALU1772NfXII4+o9evXK6WU+spXvqLa2trUz3/+c/X444+rf/iHf1ALFixQpVLJHOPv//7v1Wtf+1r1wAMPqHvvvVctXrxYnXHGGbvrknYJ5513nmptbVV33XWX6uvrM69isWjanHvuuWru3LnqjjvuUH/961/VkUceqY488kjzue/76qCDDlJve9vb1KOPPqp+85vfqK6uLnXppZfujkvaa5C5vC0yj3cemcu7B5nH20fm8s4jc1kQhFcKe53QVkqp//zP/1Rz585VsVhMveENb1D333//7u7SbufOO+9UwDavD3/4w0qpqJzI5z//edXT06Pi8bg6/vjj1cqVK5uOMTIyos444wyVyWRUS0uL+uhHP6pyudxuuJpdx/bGDFDXXXedaVMqldQnP/lJ1d7erlKplHrHO96h+vr6mo6zbt06deKJJ6pkMqk6OzvVZz7zGVWr1Xbx1ex9yFxuRubxziNzefch83hbZC7vPDKXBUF4pWAppdTLazMXBEEQBEEQBEEQhFcPe1WMtiAIgiAIgiAIgiDs6YjQFgRBEARBEARBEIRpRIS2IAiCIAiCIAiCIEwjIrQFQRAEQRAEQRAEYRoRoS0IgiAIgiAIgiAI04gIbUEQBEEQBEEQBEGYRkRoC4IgCIIgCIIgCMI0IkJbEARBEARBEARBEKYREdqCIAiCIAiCIAiCMI2I0BYEQRAEQRAEQRCEaUSEtiAIgiAIgiAIgiBMIyK0BUEQBEEQBEEQBGEaEaEtCIIgCIIgCIIgCNOICG1BEARBEARBEARBmEZEaAuCIAiCIAiCIAjCNCJCWxAEQRAEQRAEQRCmERHagiAIgiAIgiAIgjCNiNAWBEEQBEEQBEEQhGlEhLYgCIIgCIIgCIIgTCMitAVBEARBEARBEARhGhGhLQiCIAiCIAiCIAjTiAhtQRAEQRAEQRAEQZhGRGgLgiAIgiAIgiAIwjQiQlsQBEEQBEEQBEEQphER2oIgCIIgCIIgCIIwjYjQFgRBEARBEARBEIRpRIS2IAiCIAiCIAiCIEwjIrQFQRAEQRAEQRAEYRoRoS0IgiAIgiAIgiAI04gIbUEQBEEQBEEQBEGYRkRoC4IgCIIgCIIgCMI0IkJbEARBEARBEARBEKYREdqCIAiCIAiCIAiCMI2I0BYEQRAEQRAEQRCEaUSEtiAIgiAIgiAIgiBMIyK0BUEQBEEQBEEQBGEaEaEtCIIgCIIgCIIgCNOICG1BEARBEARBEARBmEZEaAuCIAiCIAiCIAjCNCJCWxAEQRAEQRAEQRCmERHagiAIgiAIgiAIgjCNiNAWBEEQBEEQBEEQhGlEhLYgCIIgCIIgCIIgTCMitAVBEARBEARBEARhGhGhLQiCIAiCIAiCIAjTiAhtQRAEQRAEQRAEQZhGRGgLgiAIgiAIgiAIwjQiQlsQBEEQBEEQBEEQphER2oIgCIIgCIIgCIIwjYjQFgRBEARBEARBEIRpRIS2IAiCIAiCIAiCIEwjIrQFQRAEQRAEQRAEYRoRoS0IgiAIgiAIgiAI04gIbUEQBEEQBEEQBEGYRkRoC4IgCIIgCIIgCMI0IkJbEARBEARBEARBEKYREdqCIAiCIAiCIAiCMI2I0BYEQRAEQRAEQRCEaUSEtiAIgiAIgiAIgiBMIyK0BUEQBEEQBEEQBGEaEaEtCIIgCIIgCIIgCNOICG1BEARBEARBEARBmEZEaAuCIAiCIAiCIAjCNCJCWxAEQRAEQRAEQRCmERHagiAIgiAIgiAIgjCNiNAWBEEQBEEQBEEQhGlEhLYgCIIgCIIgCIIgTCMitAVBEARBEARBEARhGhGhLQiCIAiCIAiCIAjTiAhtQRAEQRAEQRAEQZhGRGgLgiAIgiAIgiAIwjQiQlsQBEEQBEEQBEEQphER2oIgCIIgCIIgCIIwjYjQFgRBEARBEARBEIRpRIS2IAiCIAiCIAiCIEwjIrQFQRAE1q1bh2VZ/Pu///u0HfOuu+7CsizuuuuuaTumILxSsCyL5cuX7/B+eq5ef/31094nQRAEYfoQoS1w/fXXY1mWeSUSCWbNmsWyZcu46qqryOVyO3XcP//5zyxfvpzx8fHp7bAgCAY9f//617/u7q4Iwl5H49+/e++9d5vPlVLMmTMHy7I4+eSTd0MPXzobNmzg3HPPZf78+cTjcbq7uznttNP405/+9JKOe/XVV+8ysf/000+zfPly1q1bt0vOJwiCMB2I0BYMX/ziF/l//+//cc011/CpT30KgAsvvJCDDz6Yxx9/fIeP9+c//5kvfOELIrQFQRCEPZpEIsFNN920zfa7776bTZs2EY/Hd0OvXjp/+tOfOPjgg/nhD3/Iu971Lq6++mr+8R//kaeeeopjjjmG//zP/9zpY+9qof2FL3xBhLYgCHsV7u7ugLDncOKJJ3L44Yeb95deeil33HEHJ598Mqeeeip/+9vfSCaTu7GHgiAIgjD9vP3tb+fmm2/mqquuwnWnvhrddNNNLF26lOHh4d3Yu51jbGyMd7/73SSTSf70pz+xaNEi89nFF1/MsmXLuPDCC1m6dClHHXXUbuypIAjCKxOxaAvPy3HHHcfnP/951q9fzw033ADA448/zkc+8hEWLlxIIpGgt7eXj33sY4yMjJj9li9fziWXXALAggULjGueXo2+7rrrOO644+ju7iYej7NkyRKuueaaXX59gvBKp1qtctlll7F06VJaW1tJp9Mcc8wx3Hnnnc+5z9e//nXmzZtHMpnkzW9+M08++eQ2bVasWMG73/1uZsyYQSKR4PDDD+cXv/jFy3kpgvCyccYZZzAyMsLtt99utlWrVW655RbOPPPM7e5TKBT4zGc+w5w5c4jH4+y33378+7//O0qppnaVSoWLLrqIrq4ustksp556Kps2bdruMTdv3szHPvYxenp6iMfjHHjggXz/+9/fqWv67ne/S39/P1deeWWTyAZIJpP84Ac/wLIsvvjFL5rty5cvx7KsbY6lXez13/D58+fz1FNPcffdd5u/7295y1ua2t5zzz2cc845dHR00NLSwoc+9CHGxsaajvtccerz58/nIx/5iDnee97zHgCOPfZYcz7J/SAIwp6OWLSFF+SDH/wgn/3sZ/nd737H2Wefze23386aNWv46Ec/Sm9vL0899RTXXnstTz31FPfffz+WZfHOd76TZ555hh/+8Id8/etfp7OzE4Curi4ArrnmGg488EBOPfVUXNfl1ltv5ZOf/CRhGHL++efvzssVhFcUk5OT/Nd//RdnnHEGZ599Nrlcju9973ssW7aMBx98kMMOO6yp/f/9v/+XXC7H+eefT7lc5pvf/CbHHXccTzzxBD09PQA89dRT/N3f/R2zZ8/mn//5n0mn0/zP//wPp512Gj/+8Y95xzvesRuuVBB2nvnz53PkkUfywx/+kBNPPBGA2267jYmJCd73vvdx1VVXNbVXSnHqqady5513ctZZZ3HYYYfx29/+lksuuYTNmzfz9a9/3bT9+Mc/zg033MCZZ57JUUcdxR133MFJJ520TR8GBgZ44xvfiGVZXHDBBXR1dXHbbbdx1llnMTk5yYUXXrhD13TrrbeSSCQ4/fTTt/v5ggULOProo7njjjsolUo75LH2jW98g0996lNkMhk+97nPAZj/HzQXXHABbW1tLF++nJUrV3LNNdewfv16kyTxxfKmN72JT3/601x11VV89rOf5YADDgAwPwVBEPZYlPCq57rrrlOA+stf/vKcbVpbW9VrX/tapZRSxWJxm89/+MMfKkDdc889ZtuVV16pALV27dpt2m/vGMuWLVMLFy7ciSsQhFcvLzR/fd9XlUqladvY2Jjq6elRH/vYx8y2tWvXKkAlk0m1adMms/2BBx5QgLrooovMtuOPP14dfPDBqlwum21hGKqjjjpKLV682Gy78847FaDuvPPOl3qZgvCy0Dh/vvWtb6lsNmv+Pr3nPe9Rxx57rFJKqXnz5qmTTjrJ7Pezn/1MAepLX/pS0/He/e53K8uy1KpVq5RSSj366KMKUJ/85Ceb2p155pkKUJdffrnZdtZZZ6mZM2eq4eHhprbve9/7VGtrq+mXnqvXXXfd815bW1ubOvTQQ5+3zac//WkFqMcff1wppdTll1+utvfVUI9T49/zAw88UL35zW9+zrZLly5V1WrVbP/qV7+qAPXzn//cbNt6DDTz5s1TH/7wh837m2++Wf4vEQRhr0Ncx4UXRSaTMdnHG1e9y+Uyw8PDvPGNbwTg4YcfflHHazzGxMQEw8PDvPnNb2bNmjVMTExMY88F4dWN4zjEYjEAwjBkdHQU3/c5/PDDtztfTzvtNGbPnm3ev+ENb+CII47g17/+NQCjo6PccccdnH766eRyOYaHhxkeHmZkZIRly5bx7LPPsnnz5l1zcYIwjZx++umUSiV++ctfksvl+OUvf/mcbuO//vWvcRyHT3/6003bP/OZz6CU4rbbbjPtgG3abW2dVkrx4x//mFNOOQWllJlXw8PDLFu2jImJiRf991WTy+XIZrPP20Z/Pjk5uUPHfjF84hOfwPM88/68887DdV0zJoIgCK90xHVceFHk83m6u7uB6Iv2F77wBf77v/+bwcHBpnYvViT/6U9/4vLLL+e+++6jWCxuc4zW1tbp6bggCPzgBz/gP/7jP1ixYgW1Ws1sX7BgwTZtFy9evM2217zmNfzP//wPAKtWrUIpxec//3k+//nPb/d8g4ODTWJdEPYGurq6OOGEE7jpppsoFosEQcC73/3u7bZdv349s2bN2kbIanfm9evXm5+2bW8TI73ffvs1vR8aGmJ8fJxrr72Wa6+9drvn3Prv7QuRzWZfsDyn/vyFBPnOsPX/JZlMhpkzZ0rmcEEQXjWI0BZekE2bNjExMcG+++4LRKv+f/7zn7nkkks47LDDyGQyhGHI3//93xOG4Qseb/Xq1Rx//PHsv//+fO1rX2POnDnEYjF+/etf8/Wvf/1FHUMQhBfHDTfcwEc+8hFOO+00LrnkErq7u3EchyuuuILVq1fv8PH0/Pz//r//j2XLlm23jf6/QhD2Ns4880zOPvts+vv7OfHEE2lra9sl59Xz6gMf+AAf/vCHt9vmkEMO2aFjHnDAATzyyCNUKpXnLE/2+OOP43meEcXPFTsdBMEOnfulsqvPJwiC8HIgQlt4Qf7f//t/ACxbtoyxsTH+8Ic/8IUvfIHLLrvMtHn22We32e+5/mDfeuutVCoVfvGLXzB37lyz/fmyIAuCsHPccsstLFy4kJ/85CdNc/Lyyy/fbvvtzeVnnnmG+fPnA7Bw4UIAPM/jhBNOmP4OC8Ju5B3veAfnnHMO999/Pz/60Y+es928efP4/e9/v4179ooVK8zn+mcYhqxevbrJir1y5cqm4+mM5EEQTNu8Ovnkk7nvvvu4+eab+cAHPrDN5+vWreOPf/wjJ5xwggnnam9vB2B8fLxpkUFb6Bt5oYRmzz77LMcee6x5n8/n6evr4+1vf7vZ1t7ezvj4eNN+1WqVvr6+HTqXIAjCnojEaAvPyx133MG//uu/smDBAt7//vfjOA7ANuVLvvGNb2yzbzqdBtjmj+j2jjExMcF11103jT0XBAG2P98eeOAB7rvvvu22/9nPftYUY/3ggw/ywAMPmEzM3d3dvOUtb+G73/3uNl+GIXKBFYS9lUwmwzXXXMPy5cs55ZRTnrPd29/+doIg4Fvf+lbT9q9//etYlmXmi/65ddbyrf9mOo7Du971Ln784x9vt5zezsyrc845h+7ubi655BLWrFnT9Fm5XOajH/0oSqmmRXPt4n7PPfeYbYVCgR/84AfbHD+dTm/z972Ra6+9tilU5ZprrsH3fTMm+nyN59L7bW3Rfq7vE4IgCHsyYtEWDLfddhsrVqzA930GBga44447uP3225k3bx6/+MUvSCQSJBIJ3vSmN/HVr36VWq3G7Nmz+d3vfsfatWu3Od7SpUsB+NznPsf73vc+PM/jlFNO4W1vexuxWIxTTjmFc845h3w+z//5P/+H7u7u7X5xFwThhfn+97/Pb37zm222v+Utb+EnP/kJ73jHOzjppJNYu3Yt3/nOd1iyZAn5fH6b9vvuuy9HH3005513HpVKhW984xt0dHTwv/7X/zJtvv3tb3P00Udz8MEHc/bZZ7Nw4UIGBga477772LRpE4899tjLeq2C8HLyXK7bjZxyyikce+yxfO5zn2PdunUceuih/O53v+PnP/85F154oRGshx12GGeccQZXX301ExMTHHXUUfzhD39g1apV2xzzK1/5CnfeeSdHHHEEZ599NkuWLGF0dJSHH36Y3//+94yOju7QdXR0dHDLLbdw0kkn8brXvY6Pf/zjLFmyhP7+fq6//npWrVrFN7/5TY466iizz9ve9jbmzp3LWWedxSWXXILjOHz/+9+nq6uLDRs2NB1/6dKlXHPNNXzpS19i3333pbu7m+OOO858Xq1WOf744zn99NNZuXIlV199NUcffTSnnnqqafPxj3+cc889l3e961289a1v5bHHHuO3v/2tKQmqOeyww3Ach3/7t39jYmKCeDzOcccdZ3LHCIIg7JHsvoTnwp6CLsWhX7FYTPX29qq3vvWt6pvf/KaanJxsar9p0yb1jne8Q7W1tanW1lb1nve8R23ZsmW7ZTr+9V//Vc2ePVvZtt1UGuQXv/iFOuSQQ1QikVDz589X//Zv/6a+//3vP2c5MEEQts/W83fr14YNG9SXv/xlNW/ePBWPx9VrX/ta9ctf/lJ9+MMfVvPmzTPH0SWDrrzySvUf//Efas6cOSoej6tjjjlGPfbYY9ucd/Xq1epDH/qQ6u3tVZ7nqdmzZ6uTTz5Z3XLLLaaNlPcS9nReTHlLpbYt76WUUrlcTl100UVq1qxZyvM8tXjxYnXllVeqMAyb2pVKJfXpT39adXR0qHQ6rU455RS1cePG7f7NHBgYUOeff76aM2eO8jxP9fb2quOPP15de+21ps2LLe/V2P7ss89Wc+fOVZ7nqc7OTnXqqaeqP/7xj9tt/9BDD6kjjjhCxWIxNXfuXPW1r31tu+W9+vv71UknnaSy2awCTKkv3fbuu+9Wn/jEJ1R7e7vKZDLq/e9/vxoZGWk6VxAE6p/+6Z9UZ2enSqVSatmyZWrVqlXblPdSSqn/83/+j1q4cKFyHEf+XxEEYa/AUmorH2BBEARBEARB2Amuv/56PvrRj/KXv/yFww8/fHd3RxAEYbchMdqCIAiCIAiCIAiCMI2I0BYEQRAEQRAEQRCEaUSEtiAIgiAIgiAIgiBMIxKjLQiCIAiCIAiCIAjTyG61aH/7299m/vz5JBIJjjjiCB588MHd2R1BEHYCmceC8MpA5rIgCIIgTB+7TWj/6Ec/4uKLL+byyy/n4Ycf5tBDD2XZsmUMDg7uri4JgrCDyDwWhFcGMpcFQRAEYXrZba7jRxxxBK9//ev51re+BUAYhsyZM4dPfepT/PM///Pz7huGIVu2bCGbzWJZ1q7oriDsdSilyOVyzJo1C9t+edbUXso81u1lLgvC87Onz2WZx4LwwuyKeSwIwp6FuztOWq1Weeihh7j00kvNNtu2OeGEE7jvvvu2aV+pVKhUKub95s2bWbJkyS7pqyDs7WzcuJF99tln2o+7o/MYZC4LwkthT5nLMo8FYed5ueaxIAh7HrtFaA8PDxMEAT09PU3be3p6WLFixTbtr7jiCr7whS9ss335v36JRCIBgGXbhEGAZVnYjoNlO9iWjW3ZWJaFVf+plMK2LfO7ZUc/lXKIx5MoFRLUqtRqPjhgW0Co8IMAx3GwbYtGH4DGY4WhYmsHAdu2wArNdtt2UCpa2awSo61nLkNrV+K5IcqycF0Hy7IBRRCE+IGPBfVrsLBsG20vUEph1d9ZloXv+/i1ENeN4zg2lXIFrBALC8t1cVynvt/U/phjR1+spvppY9u2Oa9SCsuyqNVq5nelFI7jmPcWYGNF+1pTq7WhCusnDLDtaAwsy4uOEeprVKAs/uv7NzA6MoFSine+5+0sWrQw6n/Ddeq+hxZYCuzGbSjKNtQch+9d9Z9sXrOBea8/nLd94P3sW62RsGu4roOyLPwA7rp3FSue7mPBrATHLjsUz0k0WWT0eETPiDJjgh6XsH5tlhUN7FbWnMbx0wRBlTvuuJM3vP4YZnS0UCiOs3njABs3b6Cnp5OBgQHe/Oa30N83QCKRoq21teGAAUqFTfdEn1spUKEe95BCMcdn/vF8stksLwc7Oo/huefyj370I1Kp1MvST0HY2ykWi7z3ve/dY+ayzGNB2HFe7nksCMKex24R2jvKpZdeysUXX2zeT05OMmfOHJLJJPG60LZtmzCMBEgsFiPmuIRKEYY2WHZdi0SiSAspx7axLQvbdrBtl3LNJwwUnmMTd+Mo28IPAmq+jxWGOI5DLBZr6lskviOBGgQBQRAYMab7o/CBuhAMIR6PowDbj9He3kNppB/PDrHroixqGxIEIUEYYFu2EcmO7aBQoMWyFV2PbSt8P8S2XCzLJQwV3d1JSqUSYRiirGhRIQxDI6KDIGi6Fv2ZFnHNQjx6ZTJZs28YhuaagyAApbAU0aJG/Tj6XLZto0KfMPSjcQkVYRhgOQ7xeALbAt8PqdV8bMclDENSyTTJRGobsap/D5xIaBMqwIoWTQAv7vKbP/6Zvg0bWfrGI1j41uPIJBJkHRvHidfviY2qlZk3fwazezvYd14H6bYUgd+8UNJ47WZBoUHY623aDaxx3BoXLXSb6LnwOe74N+HYCaq1IvF4jCUHHsR++78G17OpVMqARW/vTCzLJpFImOMq/GjcGvqlzx2GChVGY4AK8cNq0/O+J/BcczmVSpFOp3djzwRhz2dPmcsyjwVh59lT5rEgCC8/u0Vod3Z24jgOAwMDTdsHBgbo7e3dpn08Hicej2/nSDZgEanOqf+4wjAktFQkOIzBTzVZJZVSOLYNlkUYBuQLBbAiQegAoVKoIBLmruvg1i23W1usteDUL22tViqMrNlYYDn1PiocC8KaT2A7pFs72Lx+LZYKwLKMtTw6R2Rl1pZcjLFURdujD1FoERiC5aAsCAmxbJtq4OPF4ygVUiyV8JxowSFUASoI6//Za2t8ZHWv1WpNlm2YEoyO45iFBM/ziMfj1Gq1pj8ajmXXravRPr5ft8hjEapowcGtL05YlgVOdK5Qged61Go1AGKeh+t6OI5j+mDOU//dAbAVjuOiQghRYIFruxyw+DUcePFnqLke7YcdQoeyiY8MUapV6pZoG9t1OWD/uQz1D1ELi4RB0pxve2wtsvWiix4/PYbRzYo8EiwsgrqnhX72HNcmncmgQosgqI+1FeB6No4zJazBQYVTz24YhiimxL0f+ARBgAq1h4GF57lYOGCFjVPiZWFH5zE831wWBGF3MX1/kwVBEARB0OyWbAyxWIylS5fyhz/8wWwLw5A//OEPHHnkkS/6OEEQopSFbbu4rovjuNi2QxhCpRZQrQXUajV8v4Y2AWuREo/HCZWiUCxSKJVQKMLQJwhq1MKA0AJVF1VW3R3acZwmK67+3fcjK22EA9g4jodluZEbuAKUhaUc4q6HYzlUfRc33UolP4oKq9RqFarVCkoFQAiEKBWiVEAY+igVuQyHYYAKw0gshwEq8An9GkGoCIFAKQIVECifarVCsVTCdlzS6SxBGKKsEMu1CO0wWkzYauGgUXQDTRZT/V4pRblcZnJykmq1iuM4kfBOJnATsUgEOw6OEy1Q2JaFbVm4joeNQ+ArQqWgbmEPw6gvfhDgOjYqhJaWDLFYnDAIUWEYuaVbFk79Pji2HS1QBD4qqGE33N+Na9aQH+jDcaBaLjO2bj21sTEmJycpl8uUy2WqtTKVYo2JkQk8zyGdzaLwqdVq5p5u/drail8qlcyrUqlMtQtrBEENywrBihZGorujCFVArVaNxiAMsSy77n5fIwx9fL+21YLN1D2KnsFokcP1XNyYhxePEYvHcV2vHnZA5F6OQr3MSnu65rEgCLsXmcuCIAiCMP3sNtfxiy++mA9/+MMcfvjhvOENb+Ab3/gGhUKBj370oy/6GGEYQt1KaNsOkXUWQDVZAhtja9PptIln1q7TjW7BToPlutGCqdnajbhxO4BS265dmPbUFwcsh2xrN7VKlXjKxfa1iA63EVZbuyJP9ckyFm6gLjzrFnRU3UVZYVtQLBRIJRJks1lGJ8dQfg3PidzLA79mFhG2doFudHduFOR6W6PbuFIKjxie55FMRi7r2jpuAbZj47oulmVRrdUI65ZYu9H1WVvZrZBkOoFSAdVqpek+6L66rouNhbLsuot9jdCyCFDM7OlhZm8PxUIRazyHW/GJ1XyseBzP1osHDmFgkUwmcRwLP6g2XdvW973xHuj7NLW4QtMYWaEW2BbRoollPBD0cadcv6nfqylPhsZzhmHzc4ZSKEvh2M5UHH04FWqw9XP6cjMd81gQhN2PzGVBEARBmF52m9B+73vfy9DQEJdddhn9/f0cdthh/OY3v9kmGcvz0RgL7fuBiVvW7rlaEDmOQzweJxaLUSqVjMBuFEowJZa02H6h825PFGuhNPU56I7pfFk1ZZNMZtgyuIGE5dcTkTmEfkC1WsW2I1HaGAvdHBcMYOHU3a4dx8GLxbBwUEAYBgRBiOfZ5hor5QKunaK1vYP85ASlXAHXdVFKUalUqFarRljHYjEzBo0iXJ9fL0ho4azHUilFtVbFsiOxnUgkTHZa27bx64I8ijWOjhWEobEEo3Rce2TRTmeSTXHjWtxXq9Woby44jo3reFi2Q6jqbvUqxFaQSibJpNKR20YQCXHCYOp66iEFQRAtctRqNVQ45TreKFb1NettjWK7cXyixlPJ5KaeIy3UQyw7cnHHslBol3K3/vnUYcJ6CH3zsxi5ptdqPsqqL7JMpcczz9+uqto3HfNYEITdj8xlQRAEQZhedmsytAsuuIALLrhgp/d3bAfLjlyzwyAAbCzLJgiiGGmdJVwL1tHRUSzbqmcih6Duhg06YXRD9mqzXRmha5KoNcQY6yRoU4JsyuW6UbBrgRxgEXgxlB0Qd3zCWhUHx7RvPK92YdYiGKz69bhYloPnubhuZJ2PThPFgjuOi2NbBEENz3MJgpBELEa55uNbNp0d3VQTRcrlIoEKiSdiWCpTF+nR+bXwDILI1TmyOtet5baN7Vu4buSyH/hBPXt7NKaWFVBVUCjk8eJxkukU5UqFWq2+aICF7USJ6KxA1V3RK2zZ0kcylSSTbaG7q5NkIhFle6v3p3H8ASxbocKQalAFbLDtKDkckWhXOPhWgGNFCdq0x0OUHT5AhfXEbVbUh+haGpOYNVqEFUHgR32o61nHcUkkohCEsL54oyKfb2xLx56HJouAfi70IoMFWEoRqBAVBlFudduO4vItIiu3HnMtoImOH4U61J8tK3JLV6GO8Y/O5Qf+jk6pneKlzmNBEPYMZC4LgiAIwvSxV2Qdfy6UUqhQmVJLth2Vx1IKYrGoTFO1Wo7irmu1SGD5NZN4zLYdLBuq1Qq+H2BbUVxxtVo1grNRfOvM5rFYjFgs1uQuPFX2qoYuz+U4biRKXQsrhMBX1GwHN5FibGIUv1iKXJkdCxuLEGUsodqdOpFImORYQdCc5VqpEN/XibBqKFUjCPx6fLRLEPjUavU46ABCyyYolfCLJTKZNHYsRrk4iaVCXGUT4tQztQd1y3YcpXxAC7vIVR8VEirwqz5BbcoFGsvCsWxCNRXj7dcs8n4kQhOxOBYYD4TAD6OM4RYkU2lmz53DmR88M0raBqCak6A1/h4J3qkYegX17OMKRUgAUbZ2ywYTRhDd08jFWrvhq2hxxFIEfhC522uBXbeQ60WY6J5EYwGKMAgph1Wo91cbqrGsyMMCwLEJ6wnMqCetsyOlHcWc17utLIWlLKwwjK7GgqkUCqqe9I6mRHOEOtY9rCfGUyilwxSay9AJgiAIgiAI049lWVx++eUsX758h/Zbt24dCxYs4LrrruMjH/nIy9I3YfeyW5KhTReN8dKNArS1taVuyQ3qsauBcXV2XBfXdYxQtaxIzLa0tJDOpPFiHp7nGTEdi8WIx+MkEomm37VbsGVFll3Pi/aLrK2qnpzNBhUS+H6UpAxF1bKohTaFiXGou02Xy2Wq1WpTEq7G+OfIYl0XkSoSibYduY5r9+1GIRmGIdVqpekYoYoSqNmWIgxqjI+N4douqVQWhUtAPdM6WyfhUiaRF1oA1lVwJOSrVCr1/vs+QeATJXEL62NfIwx8/FqNSrmE71eByIre0tKC67qE9djiRDxBIh7Dcx1TT3zrOHiTrVxvwzYLLVY96ZrJ0h0E+DW/KbZdKW3dbvYa8Gt+/feaiTkHZcY1DIMoEV39mdGLC45tYanIsq6v2aJeOs62I4ncGC8d1q3fkWk9SvamorH0GzLYq1Btpw9hk8u6sYpbDpblYNuOKUHnxTx2QYi2IAiCIAjCbuf6668337fuvffebT5XSjFnzhwsy+Lkk0/eDT186WzYsIFzzz2X+fPnE4/H6e7u5rTTTuNPf/rTSzru1VdfzfXXXz89nXwBnn76aZYvX866det2yfl2N3u1RVtj2zbxeJxkMmlcxBtrRPu+b8SV7URWysb47KkEaM11kBuTkWkLs23b+L5vrM6NvzdavaHBGu6H1EKfXL5MKZal1SmTGxsm7ULVrxD3oiRirhvdDu22rWN/p+KAQREQhAFBtRa5ztevy/f97VxPY1I3iLzsdd8UE+PjtHZ04sahVi5GwkzX/tZJ5VRo9tEYwWs7TaJve14A9aPUPw/wgwArtPCDGsWgSMyJ09XVRT6fn8p2bk1ZxPVx9GKCqU2uE4/VTc4mElqF5h5E/Wkur6XHtzkWXce0RyXLGp+BRhprpBvBr8CxrMiyXMec27LArYv6MMS1HWw3Vnfr9+vWfUVkcqcu5KPM6tEQhs/Zl8Yxqa+voMu8mUUHe69eRxMEQRAEQdghEokEN910E0cffXTT9rvvvptNmzbttaUJ//SnP/H2t78dgI9//OMsWbKE/v5+rr/+eo455hi++c1v8qlPfWqnjn311VfT2dm5S6zqTz/9NF/4whd4y1vewvz581/28+1u9mqhrYWtbdtUq1VKpVJD0iyfciXKWB1laFbYtlMX4KpJiESCLDRut1snO2sUdY2u4mEYibNarWYsy5Got4zwBrDqMbZuMknPPvtCJYedjhG3HJJOipg7Jai3rkvdWKPbdrTAso2oMnG621kc0O8j0VcfM6JSWpFbNYyODDOjp5eSbVEp5LGYsqRqh4ftZa8OggCn3o+thX1jeTCIyqQpFCr0o/LO9ZhppWx8HEZHR4l5Htl0mkqlQkBg4sOfr661uc4mzwbq1mU9Trap/934zDSOteNE5d50srXGMWz0mtjamh7Wy45ZW21vFPShX1fBQUigavXxjER1TC+w2A5YUYZ4myjnQOQZ0Czet5flXi+KaE+EyPIe1p/FqcUmQRAEQRCEVzpvf/vbufnmm7nqqquMAQvgpptuYunSpQwPD+/G3u0cY2NjvPvd7yaZTPKnP/2JRYsWmc8uvvhili1bxoUXXsjSpUs56qijdmNPha3Zq01eyVSaWCxOrVajVC7Wa1GXqVTLBKGP5zl4XhSHHdUwjuKNbTtys43EnkUYRImktHc0RKJF18fe2lqrX8VikcnJSYrFIoVCgVwuR6lUolqtNvXTtiIx5Wbayba3Uy3mSMZcbBtcu7lslbZsNyZcm7KYa0txVFu75lcJVSSmdHugqc/Gst/gCh5l2QoJVQ3bVgwP9pNKpoinMvihwkbhWFEMMZZFPYQZqx5bbBFlSdfiTo+bbdk4tm3eW1iRazUKVJR4Tmm36DAEFeD7FcKwRs2vMDE5RqCiBG7xeJyWlhZsOxKdtmVhU08UpgIswigo2q7HZIchtaBesk33qZ7Ru9Har8cyFouZxZEwVFQqNcrlKGFbEEwlGmu0zmuXfn1PXNfF1gsB9fHeepHBVqCCgDCI+hiqKC7dCqFarpDPF8jXn5tKtULNr2EB8XicVCpFPBbDc108143uh7LQnvxKhVGZNO3yX38OLNuuhwFIkLYgCIIgCK8ezjjjDEZGRrj99tvNtmq1yi233MKZZ5653X0KhQKf+cxnmDNnDvF4nP32249///d/38ajsFKpcNFFF9HV1UU2m+XUU09l06ZN2z3m5s2b+djHPkZPTw/xeJwDDzyQ73//+zt1Td/97nfp7+/nyiuvbBLZAMlkkh/84AdYlsUXv/hFs3358uXbNZRpF3vtuj1//nyeeuop7r77bqNv3vKWtzS1veeeezjnnHPo6OigpaWFD33oQ4yNjTUd17Ks7caoz58/31jKr7/+et7znvcAcOyxx5rz3XXXXTs1LnsDe7VFu1Kp1IVNGLlFmwkxZc3dup5wlCRMl0GqZywPFY6jrdVWU+ZvpRSxWGybetKe59HW1gZsGyuuicRxlIm75vtkZ86kWMqjKsVImKkQlylxvHU5qa0TganQAksZ92gTu4uFa2vRGDYdQxMJxQDLsaNyUCoSk4GqYTsew4ODJNJZMi3tFCZGcEIFVg3LiqykruuaZGhGwlngWlEisK0t/6YPgO2AFUYices2SkXu5KGq1+au1KjWajiOS7VaJR53SaeTlEtVglpYz75dT35GSFhPAa5dt23bMqHkYRgY63/jPdp6fJVqzDpv4fsh0SKoZUIDLMsy7kZ6nBsXX9RWY6B/Bn50fdq93XWjeu9WfREgDAJCOyBUYDsOtVpIqMMGsLCsenI8y8Z2bJyYS+QOX8MPalESNCtafFEKrHrm+ih5nVi0BUEQBEF49TB//nyOPPJIfvjDH3LiiScCcNtttzExMcH73vc+rrrqqqb2SilOPfVU7rzzTs466ywOO+wwfvvb33LJJZewefNmvv71r5u2H//4x7nhhhs488wzOeqoo7jjjjs46aSTtunDwMAAb3zjG7EsiwsuuICuri5uu+02zjrrLCYnJ7nwwgt36JpuvfVWEokEp59++nY/X7BgAUcffTR33HEHpVKJZDL5oo/9jW98g0996lNkMhk+97nPAWxT1vGCCy6gra2N5cuXs3LlSq655hrWr1/PXXfdtV0x/1y86U1v4tOf/jRXXXUVn/3sZznggAMAzM9XInu10K7VynUX2RqOu21ssI7F1YJKJ0SLRElzDHCj0G1sD9vGPOt9GmN1G8+jhZjv+4RBQLlSphB4dLd1sWXzszhE2aI9z4usnL7fVJO6Kf64jv49VM31vsEypaS2FruN7tKWZWHZlsn6HW2vu5aryMpcnBinraubdHsX5YkJrLAMgW/KozVemx69yA19W/dyIzTrydgaE8dt7Wa+dR3qMAzw/aA+hlF/M6ksLe1tjI+PU6tFx/JVEFX1smwsFQlsP/BxHX1PrXpStan7qgWyLpmmx31rET4V1z41tno8G70NpvrcvDjT+Jy4jmOyjGuvguiZcXBcF+UqwrpviRVaUcI0kyht6+eYujcGOG5UH17ZNkEQiWtdY1zV9xcEQRAEQXg1ceaZZ3LppZca0XnjjTfy5je/mVmzZm3T9he/+AV33HEHX/rSl4zQPP/883nPe97DN7/5TS644AIWLVrEY489xg033MAnP/lJvv3tb5t273//+3n88cebjvm5z32OIAh44okn6OjoAODcc8/ljDPOYPny5Zxzzjk7JIaffvpp9ttvv+eNLz/00EO5++67WbVqFQcffPCLPvZpp53Gv/zLv9DZ2ckHPvCB7baJxWL84Q9/wPM8AObNm8f/+l//i1tvvZVTTz31RZ9r4cKFHHPMMVx11VW89a1vNZbzVzJ7tet4EAYopgQn0CRwGuNstZjTbsR2ZAI3x9Ju1o2CCTDxvVuLsEY37cZ99e/6ve04eMkUrTP3IbAU5bHhKD9WXQg3xplrt+PGV9N56jHZjYmw9LU0ij+r4dimr3XRqMepMfZbhQE2PnEXxocGcGyHWCZL6Hj4oUVQXzRoXlxotuRrN3vN1kJUj6nOqt7Yh60t8Nq6HFnRo+vN5yfZuHE9QVAjHvcAhWt7xJw4oV8Xln4UNz7lhh+jsZa5pnGBZHtx5Xr8Gq+p8dr0IkqtVjPZ4hvHvlGYNz6D2r+7aVv9eKoWoPwA1fisNYyhHjc/iEIGan6Uk2BsbIzc+CS1coWwWiPueqTiCVKJJHHXe77pIwiCIAiC8Irj9NNPp1Qq8ctf/pJcLscvf/nL53Qb//Wvf43jOHz6059u2v6Zz3wGpRS33XabaQds025r67RSih//+MeccsopKKUYHh42r2XLljExMcHDDz+8Q9eTy+XIZrPP20Z/Pjk5uUPHfjF84hOfMCIb4LzzzsN1XTMmwnOzV1u0rXpdYWi2Tmu2rkk9lbE6srSqMEqYpdtqkby1xbLR9Vhv0xZGLdAaLb5a3FlW5NJcDi0yrW0UiuNkPAf8an2BILLuWs6U1bXJHblBSOuST9GiQliPL1dNok5f3/aOESURVyamuFHs2baNFQS4KFzPZmx4gPSMTtLtnRTGRglrpXqsdYPLtG2hdDKw+nhvL+v49jwAGgWofq8XQiKrsfYqmLqPKIVlK0rlIqVSkWQqieskqNV8Uokkvl+j4lfqfZzKtL6950Lfs62zyk95M+j2zQsajcdoXHBpXGhpfE70c1CtVgnCMIowrwtu27Gxtdu3zuquAKvRQwKwmXLbpx6fX8+SrhO9hUFAteGaXNcFi6iMmCAIgiAIwquIrq4uTjjhBG666SaKxSJBEPDud797u23Xr1/PrFmzthGy2p15/fr15qdt29vESO+3335N74eGhhgfH+faa6/l2muv3e45BwcHd+h6stksuVzuedvoz19IkO8MixcvbnqfyWSYOXPmq6ZE10thrxbaSimwGsVEs+s3TMXTNrpbR7G7UZK0xnJc2lW80eLpuq5xM44swyEWdl2g10szgRHzjhNZWy3LIlA+lu0Sy3TgplsprPsbnqpG+axCFYmv+nkarea6HzrztiYyTNsoLLNIsLXbe6OY1RiLK/ZUGSoLlA1hUMWzPbAtQkJsbDzbIjc6RMuMLlo6uxnavIm4Y2GpAIWF7XiRkFNBpA3DZnFt3MsbhLYWgPrzRu8Bz/MaFi1A1bNzKxWNhV+tEtQi93ovFsO2LPxalVKhQhgqnnx8Nclkkn333ZdEMkGxVCFEYQNWqLCxoqRk9QUZLVy3XwYtKgmm7+HWVnr9fDRarvU11mq1pjHQlnXXdYm5Lo4VlYOrVSrYRJnxlR1FbAdKezcoHMdDhQ2Zy+vPiW3b0UJJoIxFPRbziCcSBP7UeAZBAJZFTbKOC4IgCLsB/ffWotmzrZqoUWwpEbghpWz5BY+TzMWZsaVtu8faVTzXtQh7NmeeeSZnn302/f39nHjiiSav0suN/i72gQ98gA9/+MPbbXPIIYfs0DEPOOAAHnnkESqVynO6jz/++ON4nmdE8XPFTge72Aizq8+3p7H3C+2t2DpuurHt1EOncBwbvxaYMk/aJcJxnCaLdOMDEm1T6FRqWrg3WreDIMSyIxul47rkq4CXpjgxCqWJKE5a98uKfm+0sG5tHd36/M0u5VaTUG90P2+MEzd9NMeYsjxr9+hEPEGtVsO2QvwwxPNcihMj2O1dzJyzgP4tm3Bsm8Av41ihEa9R6TC7SWg39rXRgl2tVpvGqtHt3GTxti30JZsFiHrbWCxWX1yJFhpsO7I+77f/YgYHB/nrQw/Skm2ld+ZMEukUWDZKW+K14Hem+qqfjylXfC2qp0Ru41huHTPfuJigf290VddhB0EQEAYBMdcjmUjQ1tIaZaf3q9SC6P74tdBY4lU45SHRGI4QHZMpFwKisfNcZZ7bpvrwUkdbEARB2A2M7DNGdiQT5R0B3JqDHdooFOPdOQIv4MXo1kqqykR3nu51HcRKzeFQXsXFwsJ3A5ygnqtlGlAoavGpaiX9i4awA5vudR1N5xX2bN7xjndwzjnncP/99/OjH/3oOdvNmzeP3//+99u4Z69YscJ8rn+GYcjq1aubrNgrV65sOp7OSB4EASeccMK0XMvJJ5/Mfffdx80337zdOOp169bxxz/+kRNOOMHEfre3twMwPj7etMigLfSNvFBCs2effZZjjz3WvM/n8/T19Zm63vp84+PjTftVq1X6+vp26FyvNPbqb+KNya22jm3eehtMuVLrLM6NgkuXbpoSzEGTeJpy7VZGwAaBT7VabYrrdhyXMAixLAXKIoxl6Jq9AFXKE7eUOZ4u4aUFlO7D1u7qjde5tesyYPqsRdbW46BrCDbGA+tzNrps+4FfdytXuJ6LhcIjYHJshPHcBLPnL8COp1G2h4pM8pFVHRriv6fuy9aW9kZXfG2h1YnIdE1yHe9cLpeb7odtO8RiMSCKVS6Xy3WLtE0s5hGLecydO4dDDz0Ex7F4ZsUKHnnoIf62cgVPPP00I2OjTExMmPJX+ri1Ws1krt86XnxrN/itXci3XgBpjNPW97cp3MCyCMKA8dwkQ6MjVIMarueRSCTq54heTt1y7XmeEc+uG5U78zzP9MN1XZLJJPF4nCAMmhZnbDv6wuHu3dNbEARB2MsI7ZBSpoyyoNBWZOOSPjYe2MfwPmNMzshTSVVJ5uMvSmQDde87xcDCYTYe2Df1WtJHrqPA5Iw8AwuHGO+epNBSMrsVWovGEl3Mlgmt6PdKsorvRn+/azGfaqI21e90ub5vyfR744F91BI+lXTVvJ/ozjE5I8/kjDy+NyXIK8kqkzPyKEtKa+4JZDIZrrnmGpYvX84pp5zynO3e/va3EwQB3/rWt5q2f/3rX8eyLJO5XP/cOmv5N77xjab3juPwrne9ix//+Mc8+eST25xvaGhoh6/lnHPOobu7m0suuYQ1a9Y0fVYul/noRz+KUorLLrvMbNcu7vfcc4/ZVigU+MEPfrDN8dPp9DYiuZFrr73WeG0CXHPNNfi+b8ZEn6/xXHq/rS3a6XQa4HnP90pir7ZoayECzYKoUXA2CiRt3VVKUQmqBH5gBK8+jra4auEYBEFTAgDbttBGQy2iarocU4Pbehj6uLaDiqWxLAcqxag2sz3lJu55XpM4auxDo7DW713XNYLOb8hU3mg1brRqapGtVFRKzLKj7Nee5xl3eBPXHYT4KrJkhyoqA2aFCo8axdwYSoXM6OqlmEtRGB1CqQq2CuvifFt3/e3FuG997+LxOJYVlc3SE7FSqVCtVqlUKqZN3PPqZdim7mvkSm1FCxpE2+Nxj0ULF1DqLTGem6QcKhzXxfE8/EqVdCoFjk2lUjF90mMU9dNGqcAkHtPPRiNbJzJrFN2N1mx9D3TityAICCzAsvBch5rvU/N9HCd63lDR4k+025Tgb7yfjuPoxARbxZyDmjJkR/1C1xIXBEEQhJeXfFuBYkuZ0FFUklUsBbXklAjNdRbIdRam74QWDM0bNW/LmSp2zSY9EVnzCm0l0uPR76WWMol8HCu0qKSquDUHp+bgx3xCRxEreYSOopqsksjHKbSVnnchYGSfcfN7cjKBW42+J1RSVarJGqVsBUtBZixFKvfiM0sL089zuW43csopp3Dsscfyuc99jnXr1nHooYfyu9/9jp///OdceOGFRrAedthhnHHGGVx99dVMTExw1FFH8Yc//IFVq1Ztc8yvfOUr3HnnnRxxxBGcffbZLFmyhNHRUR5++GF+//vfMzo6us0+z0dHRwe33HILJ510Eq973ev4+Mc/zpIlS+jv7+f6669n1apVfPOb3+Soo44y+7ztbW9j7ty5nHXWWVxyySU4jsP3v/99urq62LBhQ9Pxly5dyjXXXMOXvvQl9t13X7q7uznuuOPM59VqleOPP57TTz+dlStXcvXVV3P00Uc3ZRz/+Mc/zrnnnsu73vUu3vrWt/LYY4/x29/+ls7OzqZzHXbYYTiOw7/9278xMTFBPB7nuOOOo7u7e4fGZG9hrxbaWyfbanRLbhRISkUlkfxaFaUs/JofuW+rKRGrs2pr8dro/qvrEtePFgmtemKwZDJJpVIxAjiy9gbYFhSqisSMdiYH+qjlJrAsm6BSIZFIGLHcKJgaLcGN7uswlelau1k3flapVPA8D8/zcF3XuIM3upT7fmCspTAVF62vz1IKX7tpe1H5qDBQOFi4tk0hN0a5VGHW7AWEWBTH+ghrZRzA9WL1Cwjrgt4laKg/3dinyD08GvNSqYTrulQqFRO/7TiR9VqPjVL1uHQVGutz3UBMqGxsvbASKlzXoebXSGfSpLJpfNshJIq5toKQQrmA63n09HaRmyxQKpXq7vRB3bpfz6Zu23gxr54kfMoyb1uNmeqjpHpR6EG0r74PJqbasoz7tu04hPVj1QI/alcX6JZlk0rH64slIX4Q1BOnoQ3dkZtaGMXVYxOV/gpDjJ5W9brwtt5FoXh1x8UIgiAILx8KBRaUsmWG5o4Ruru3pGTohU1ivvH3/Iyi+b1KrWm/Srpqfq8lfHaEUsu2ceb5jui8xdYSth99F01PJImv2qu/cr9isW2bX/ziF1x22WX86Ec/4rrrrmP+/PlceeWVfOYzn2lqq4XqjTfeyM9+9jOOO+44fvWrXzFnzpymdj09PTz44IN88Ytf5Cc/+QlXX301HR0dHHjggfzbv/3bTvXzmGOO4fHHH+fLX/4yN998M319fbS2tnLUUUfx/e9/n6OPPrqpved5/PSnP+WTn/wkn//85+nt7eXCCy+kvb2dj370o01tL7vsMtavX89Xv/pVcrkcb37zm5uE9re+9S1uvPFGLrvsMmq1GmeccQZXXXVVkxHt7LPPZu3atXzve9/jN7/5Dccccwy33347xx9/fNO5ent7+c53vsMVV1zBWWedRRAE3Hnnna9YoW2p7QU67+FMTk7S2trKF798BYlEwmzfOhO0yTYeWDiOSxBE/4GWy2Uj+HzfJxaLykDVarUmK7EWu1Gt6aCeMXrKCux5HqVSqSlLeRgEOHaIwqHgttE+70CqY5uoDKwhVBahX2mylDa6XDdaxBsXEXzfNzEXje7tev8wjERoOp02Zakas5jr3wMUoaVM3W2IFhIqlQq2WUdQWK5DaIFr2cRsh1oQECoHlEMpcNnnNftSK0+QGxnAQ2ErhYNNqHz8MAAcVBg0Wfn12DYuMGgRrt1RtPuz53nUajXi8XiUNK5Sw/drJJMpgsAnFouEuxeL4XpR4jAVaAOuwq4nuVOuTU2FdZEaRjWn632xLYfOjm5qfo2xsRFsp15jPMrGBnWRrMuqoRSO5eDUFzn8cMqi7ftVLMumWi2b51ELab9WM0nMyrXIi0C728e9GNTLl4WACkNs140WK6gnIUdFnhBBXWw7IYromizVmNxNEQYWoaXQS0ylcoGLL/pHJiYmaGlpeYmz7uVBz+Vbb73VuBMJgtBMoVDglFNO2WPnsszjVw8KRTU5JVS3LB4kdMIX7wr+akVBabLEp+edt8fOY0HYmuuvv56PfvSj/OUvf+Hwww/f3d3ZK9mrl9caaxdDc9xy4ypLZE1V2HaU/CudTjclMtMvnWxrqrySMsfDisStbdlNx9WWWC3sHSckVIqq7ZDpnknNL9K/cTUz4grHslD1BGRBEBhRv3Wt58YYZu2arMWzFqO1Wq3JIu15nnGNbxSrWuzatk1IZAUNwqDJIh6J9+jcjj1VMioIQwIFjlJ4dt0dHJ/Na1bTPrOXZHs3pfFRYmENP6ihLLAsh5jrUa01JxHTlt6t48z1+1KpZCze+roAXNfGDh0sS+H7FWOJTyaTNKwNYNsuSkXtg7AaLVQEYeRXbVu4lk21VDYiGttieKgfz/OIuy5BGCUsc+tCNwyi5GR1n/VonPCxrSiMwCJEAbZjofyQsG6ljvqjKJfLWIBfq00l5lNReTWrbpGuqSqoqZAG27YJG+q8ay8KFQSgond2aOG6DioMTXI7ff8U9WfWtkGXYRMEQRCEaWKyK8/wPmO7XlgrSI+nqCaroCxiZZdSpkKs7FHOVkBBy3BmWk6Vby9Ov3W+sRaqIAivGvZqod0YD9souLWVWMfHhqEiFktQrZabrMaAcVPW+22dudu2barVKtQTmRVKRWKxmBHmiUQCnTnbsiyCWg3fsimHNq4dI6Fq2LUSxOKEShGLxUwSLu3WrWOVt3Yj12IaoFgskkwmzXn0ooDuZ7FYJJVKGbdzbS3WArdSqeAmYlgqNK7cjfu7rgtKEfiRqHc8F4J6/HHgY9shlhWQ8FxCv8rwli10dHfS1bsPG599lkTMIgwDYl4cv1Y196TRYr11CTBdOk3Hi2uLt+d5DZZ7hes5uO5ULH6hUCAMQ+KJhFmUiHkeYRg0uHYTWYvDqGSZ7UCqbvG3LJue7m4SyaRZUPG8KItoIpmo/z4ldlUYiVw/iK7J9338ugt7qBS+Hy1oOHY0nbTHQlRnXNfltnDsyE1crwFFJd6iZ8ev+ZSKRQqFQhSnXqvWrzPAdl2qtSpKhaCcKMWZ40RW/foCS5Qxpi68VVA/r/xVFwRBEHae0FIMzR0xIrHQVtxlgtH2bbKjaQI3IDWRJDWZpJqoYako83c5XcWruFRSket3Ziw1LdnAUxNJqskqo7MnXvKxBEF4dbNXC213q2RojYnQtOU3SnRm193FbeMqrcWQFlo6A7fv1+oW0qk4aM/zCEKfUCm8WJQN2g8CSqUSlUqFWCxmajPblkegLGKJFmw7xtjAGpKuQy5XIpFIMDE+QjabNZbZrTOLb22h19brMAzJ5XKkUilTMkoL6jAMm1zoGy3sOqkYgAoVtZpPGIRGyCYSich1nshabtXbhWFI6Pt4lo0T9wjrhl07DElaCkspCiMj2KHD4gNfy8q/PUbM9bAtB4KqsZrrvqJUFPvseWBZ2HZkxdeZxrXLtl5ccL0oe7vtKGzbJXIJd1Ao4vF4dG3VKul0io6ODjpmzCCbTdPa2oZFvX61Y4NjoxSUCkUqlQrFYpSUrlgsUC4ViWKttfUaU5/adR0TE66x69Z2AF8F9TrWMabi9h3joUB9ESPwfarVSpTlninXf4jc9i3HiVzWg+i5TafTxGIx2tPtzNlnH5L1xYBkOkEqlSTwA5MlvlQqk8vlKBQKTE7myOdKlCplLBS1aqVp4UYQBEEQdhRLwYy+Via68kz05ECBpfOFbI3ClPMym+wojpsQetd0MbBgePuf10nk43RuiMoSWVjYvg2Wwg6iE8YbSnwl83EsZRGrTG0znmDW1HGt0NohAZ6eTJLMJUhNJBmdPU6xdSoO2wrBDmxmr+wx2wI3ZMviwaZjJHMJOje1ARDaimJbic2ZEoIgvLrYq4V2tRoCOpN4GFn9QkU8HsP3A1zPw6+FBHW3Xm011sKzsSxXqBRBGLka254bWSvDkMCvJ7ayHQgC/LpLdZQBPMrS7fs+frlMLBajHPjUvARupgtVylEZ6SPmWCQSMRxLkclkiMVi21hxbds2IlML8MaYcy3MtbjTiduMkAUSiXot7LrA1sfW5yIMiVtOVJZLWSgsHBX9AQqCAMeysbTrtrII7ciyOzmZx3VdMqmMcSl3LQcrLDPSt4GqX2Wf/fdnaNMmqrUKnpoqlaXCELceoxyEQVRHPLRQOJTKVYIQHC8GgR95dDs2tmdhu+A4Nsm4F1n8bYdsSyvz586jJZOJXOsdt279rVGt1BgdGaNvywCjo6N1kTyVKE/H5cNUNvbGpHPauwCas77HYjEqlUpTXHnk4RD1NQgVthMl1ot7MWL15ywIAwI/MEnsgKZnMB6Pk8tNNIUwBEFgyh3osILGbPLRdodqtYrneWQyGRKJBJlMhq6OTubukySZShGPxSgU8/QPNNcuFARBEIQdoZqsESt5xEsx4vkYtbhP+0ALE905nKoD1lQysVjJY/YzPYS2ohavgYURoG2DLTiBzcxVXebYylb07dtc6qicrrDpgP4X3b+W4Qytg1ncmkMt5lPKllG2YqI7R1B3/+7Y3EaiEMcObKzAwg5s/LiPW3Wakp/Zvo2lwPEdCm0lBueNbHO+9v5WErk4gdfsWt54XREWlrJwag59+w6ibEU85yEIexMf+chH+MhHPrK7u7FXs1cLbdeNyj/p2siNCcYsayq7dqPVWrtdNwpZnRHbtm0c28GybcIgxK1bQy3AsWz8oEYyHlmOHdumWPMJaj5hEBB33chaCtiZLuKpDINrV+AFVQLAdT2KhQJePE6hUDAu4O3t7cb1XAvmxkzq+noaM6Nrwa2vRR9Lj8OUVXbq9jqOQzwWp1ar4fv+VGKwatVYtqEhIRsWKgywbJvOjs56n2t4rouyowzXgQrIJBPkJoeIZxIsmDef/MgAuaFS02KGW7fwEkbHderu065tEdoWNlHsslIKx3NpyWaYNWsWLS1Z0qkkrS2tlCsVxscnmczl2bB2PUNDQ+a+RdccEARRFviovnbMjKl+NnRMf2Pt8kqlYp6PrV3cdWk3HSZQrY9VPB4HW9chjxYqajWfaqVCrS6CG5PV6fvSWDt9yho+5T2h+6Briuv7BpiFk1otsrpr67zu79bhDrFYPEpELgiCIAg7SSlbJlbyyI6myY6mGe2doJyu4JU9UpMJQic0QjuRjzPZGdXKbszyDTDeO8l47+QLn3AH/25VUlUG54/Uy3IViZViFNuaLce6HJdXdnGrDl7Fo9BWJDmZNBnCAeKFGChIFONMdOW225fRWS/enTw1niSZj5MZS9MykqFQmMbyZoIg7BXs1UK7UqkCU7WsG7N5N2YfB4yw1DHBnucZ8aVFlGvbkRhUUVkr27LrGafBcxzCuqu6drF2bRvPcXBjsUhsx+NMFMvEY204tkOtNEncUiTiCRwsMpkM+bo40ufW/dZCy/d9EomEscCaut91F/CWlhbj0lytVqfcwhtczwGTSV2fSx9DJ0nTx9cxvuVy2cRG6/HTyb2MmzpRLT3XdYl5LmEQYKkqKc+mOD7CaLFErZIHxwK/+R6Y2tf1LNtBUMW2IJtOksvl6enpZr/99iebzdLSkqZYLLNly2bW9g8QhiGTk3mzQOE5HuVy2YQBpFIpXNfDcVS9f45JEBaLxUilUti2TaFQMF4EOuZdu6431krXY+b7PrlczngTNLt8W/UxsSgVS3j1MmWN+zcm1WsMC9D3t/F+6bZbJ8BrjP+PyqE5xhKv2zTG6zcuJlSqO1amRBCmg0JLCTuwKbQX6djUNi0xk69GRmaNUUv4JHIJvML2/HQF4aWjUAwsGIl8xIHOje24NdfM47bB5uzYbYNZtuw7SCVT3aa01WR3fpf1W6NFvv7px5/bPbuW8KklfEpEf6sbRXbTsTLVbfbdGYptJRKFGBPdOVpGpidRmyAIexd7tdBuTFYWi8WahAfQZFksl8smtldb/nR2bi14yqUSqXiSYrEUtQ1t4l6UvCyo+aggpFKtkUgmKZdKxL0YoQqplCsoVRdNySxtnfvg10pkYg5OFQIVRi5Eth3VVa4LoUKhQDKZNJZpx3HMgkAikSCVSpHP53Ech9bWVorFYlPMtb4uLRILhYIR8IBxR9bXWS6XjdXWqS8a6IzX8XhUxzmVSpmEY67rRrWm62LPcRxSdcv3ZC5HPOHiOlECuHxhEDvVShj4JONOVLfbccCOYpNd1yXwA+MGXyoVmTVrFgcfchCZTBrbcpiczPO3v/2NoeERarUaxUKRyfxUGYxELIkXjzMxMVFPMBbS0tKK7/uUSiVSqRQQLTpoUT0xMUF7ezvxeNy42muX8CAITFI6vaihnwuA1tZWSqWSGcdGz4FKuYLjOnUrPYR+dAyd7E4vMGiLui5rZlkW+XzeHFPfg63rqus+NCY8i+LzfeOF0VgGTu9fLpcjS34YUiju+i89guDHfRzfppKqvHBj4TkpZSrM6Guj0FbEI767uyO8QulfNER2OMPQvFFmbGnFqTkETmhioTcvHqB3Tadpv/k1g9QStec6nLAV4905nMAmtKUKiCBoli9fzhe+8IUXlUvIsiwuv/xyli9f/vJ37GVgrxbaruuQSCRw69ZEXdpKWyxLpUgwA00xzl4sZsoulYOoPWFIIpEENZWJXFsWK5VKU7Zyv142C8BzPVQYkkimCZVFLdaOFU9SGtmE8qs4toONRaVSIR6PU61nHLdtm46ODhL1zNmNsdZhGBrBpBcS8vk8M2bMMFmpW1paKBaLJu5XH1+7wFerVXMNut63FndBENDS0tI0btVq1bhS65hmXR5MH0ePZagUmWwW14GgVsVzXDpaE1TKUbmqalWRSCSp1qpRzHt97Fpasriuw2GHHsaMGR2USiWGhgd47NHHGBkZoVaLrj9yAw+wbYe21jaCwMe2o5jlcrlUF51RXXF9nfreR/e4WvdSqJlnYXJysqlupb5Wz/NIJBJR8rR6QrtGN3IdX60XcMrlMvl8nmQqiULVvR6CKJN43bOiVCoxY8YMyuVotV8L6mq1alz39YKGjrUHoqzyQZSsTlEv3RZMuaA3hha4bvQlyHEw9456rP369ev54733ECj5MiTsepyqgxPYzHqmh1KmIiVtdpLQCVGWonUoS43psbAJwta4VZdia4k5f+ulmvAptZTpW9QcN73ukM3NO8mcftGEXkjohgzPGcNb7bzwDsJz8tRTT3HFFVdw5513Mjw8TEdHB8ceeyyf/exnOfDAA3d3914VDA4O8rWvfY1f/epXrF27Ft/32WeffTjmmGM466yzOProo3d3F/c49mqh3ZhdXFtxtbBMp9PGlVe71ppa2Shc2zElnGKuS9n3qdXjYhvdb13XNYJUW3wbBXA8HsexHUKlyJV9WubMoeJXqeRGwPchFiXXwLKwHcdkkdbWT72ao5Ns6W3xeNycJ5FIYNs2pVLJiLNSaco9Sgt1bUVtjFXX1mh9DTpD+uTkpHEp17HH+nwmczZRfWudZG1ycpJ0Oh1ZyF2foG4BVpbCVpHHuFKgAqiqGo7jUquVaJ/RzsIFC5k3by7JZJJnn32WdevWs379euNCre9dNC4e+XwlEq9h5MJfq1ZQYVC3SAdRqSugWCyRzWYBGkqfxc3iQGOW+WKxSLVaJZFI0NbWZq6z0ctBW4jT6TSlUqlJwGsXc8uyCPyARCJhFjv02IdhaBLe6QWVxvra2n1cx9jr52BiIkcy6UVWcgsc5eDY0Utb03WOgTBUuO6Uy3ksFjd9TKfTLFiwgOHhIdasffZlmnmC8NxkJlLk24qMzpyIYjLlS/lO07/vEJmRNJmRxAs3FoSdIF6M4XsBQ3PGtoltFqYJCyrJKtV2qQSys/zkJz/hjDPOYMaMGZx11lksWLCAdevW8b3vfY9bbrmF//7v/+Yd73jH7u7mK5oHH3yQk046iVwux/ve9z7OPfdc4vE4a9eu5Wc/+xnXX389d999N29605te8Fj/8i//wj//8z/vgl7vfvZyoY0RN1pou67LxMQEyWTSZG4ulUpGDEWlkQJinouql1TSsc5aSGuBpbdpN+NGi2ej27Vt24SBohxaJFQSSkUK46OkXGjJZqlUKpTLZWN5tCyLZDJJuVwmkUgY4aUFmc5CrhNieZ5nhL52A9fbtBtxuVymUCjQ0tJiRJyOywZMAjTbto2ltTGmV3sC6PHUCw3lejZ1ncFcL2RoV2XHcXDqIjbwAzwvcoEPfZ/29jYOPfoo2lrbaGlp4amnnmTduvUMDg4SjyfI5/NNmb/1PdRZvmu1GolEglKpRCwWIwxDxsbGSCQSRnTqfukyaPp+6FcymaRYLJLNZk1cd7VaZXBwkGw2a9zjG637vu8b13N97/XYa2HcmIDPcRw8zyOXy5mx1PvrZyUej5PP55vcwx3HMfcqqtlN/T5H1xLzYlFSunr7RCIxNeb1BQCdb2BqoSAS369b+jpmzurlySef3GXzUXj1oEvobI9iawnfC8h15kVkvxRUFC9bTlefd7wFYUfRz9NkV56RWeMoR56vl5tqqobfKl5mO8N/INbxAAEAAElEQVTq1av54Ac/yMKFC7nnnnvo6prK8P6P//iPHHPMMXzwgx/k8ccfZ+HChbuxp69cxsbGOO2003Bdl0cffZT999+/6fMvfelL/Pd//zfJZPJ5j1MoFEin08aI+Wpgr86wooWg7/vmpQWxFkGNWaNrdbdtz3WN63ipVDJiZ6qEkmtKbWnLpBZ02qKtBaKO7a5WA3rm7ovjutRyI6hakVjMYWxkmOHhIRNzrV248/m8cenWJZ1yuZwR14BJljY0NGQSoOk62vl8niAIKBaLJo43k8mYUl568SAWi5la2YAR2Y7j1JOIucb9WlvFtfB1XZe2tramElRaqDcuMvi1yBLueg6uZ7PPPjM56e3LOOH4Y+nq6mL16tX86Ec/4q9/fZgtW/qoVmtmMUML13Q6bYS2vgcanVk+Fosxc+ZMwjCkUqmYxQltFW9paWlK4AYwPj5uEoxp13e9iDA5OcnGjRup1WrUajXjRaDvRT6fN2PVWCpNu4Dre6UXJ7T41+EGgInX3trzolwumz5GnwUm27s+XqMLvz6fXpDQLu86fntqTkQu7tlMC3PnzH9J80sQnovR2eNsXNLHxiV9rDtkMxsO7KOcrrD+4M0Mzh1lrHfClNYRdp7RWePk2ws7VO5IELZHaCl8N8B3A9YftIV1h2xmZPaYiOxdSGMpMeHFc+WVV1IsFrn22mubRDZAZ2cn3/3udykUCnz1q19t+mzz5s2cddZZzJo1i3g8zoIFCzjvvPOavmePj49z0UUXMX/+fOLxOPvssw8f+tCHGB6O6r1ff/31WJbFunXrmo591113YVkWd911l9n2lre8hYMOOoiHHnqIo446imQyyYIFC/jOd77TtG+1WuWyyy5j6dKltLa2kk6nOeaYY7jzzjub2q1btw7Lsvj3f/93rr32WhYtWkQ8Huf1r389f/nLX7YZpxUrVnD66afT1dVFMplkv/3243Of+xwAd955J5Zl8dOf/nSb/W666SYsy+K+++57jjsA3/nOd+jr6+Mb3/jGNiIbou/VZ5xxBq9//evNtuXLl2NZFk8//TRnnnkm7e3txrVcf9ZIpVLhoosuoquri2w2y6mnnsqmTZues097C3v1coLjRq7YrudSrdStxUTCqFAoRJmgy2Vcx6FWrZKIx3FsG8u28eIuKExGai00dVKtRCJhxG0ymTQlmbT4bqxx7LoeWDbKcUkloOTniccdapUKM3t7CLEYGBg0gkjHUgdBYCzvQT1rubYYa4FWLpdJp9MmRlhbXbUQ1e7kjcm3tAW4sVSUvk7ttq5LRHmeRzabNdnPK5UKmUzGLFxo8ee60XhZlk0mkzGx3DXfx425pNNp5s2by5ID9icIQoq5PA/99a+sXbuOMIzc0qtVn2KxRCwWiWEtHDOZTFOceKOlutHNujEeu/E/Su1yr2lcTGhra6NarVIsFs21N7rgt7W1USpFcd/6XuiFGcdxyOVy+L5PW1ubsVKn0+mmutu69JpeuNHj3JjtHTDj3rgA1BiWUK0oQkLCUBnvgUQiHtWEr3sbaNFeq0UZ9xtrcPu+z/DwEN3d3dHxqrJ6Lrw8uBWXtv4WLKJkP8l8goEFIwReSGoiQegoyp4kQ3tJWBC6kQhKTorruLDzhJZirHeC8ZkvoryWIOxh3HrrrcyfP59jjjlmu5+/6U1vYv78+fzqV78y27Zs2cIb3vAGxsfH+cQnPsH+++/P5s2bueWWWygWi8RiMfL5PMcccwx/+9vf+NjHPsbrXvc6hoeH+cUvfsGmTZvo7Ozc7vmej7GxMd7+9rdz+umnc8YZZ/A///M/nHfeecRiMT72sY8BMDk5yX/9139xxhlncPbZZ5PL5fje977HsmXLePDBBznssMOajnnTTTeRy+U455xzsCyLr371q7zzne9kzZo1xrj0+OOPc8wxx+B5Hp/4xCeYP38+q1ev5tZbb+V//+//zVve8hbmzJnDjTfeuI2L/Y033siiRYs48sgjn/ceJJNJ3vnOd+7wmLznPe9h8eLFfPnLX37e5Gcf//jHueGGGzjzzDM56qijuOOOOzjppJN2+Hx7Gnu10K7VagTxAL88FVtsY2Er8OoJzloyWfzAp1IqE/oBnutSrVQoBaFxwbVt22TdLpfL5HI5XNclkUhQrVaNu3YqlWJiYoJMJmOElHZXrikY2rIZNTRIeWQzcRVguS6jYxPYdUt5PB5vSrTWaDl2HIfJyUlzPo12UQaMi7MW7EEQNPVRC7dGoarjrgFjBdaiXScBA6Ys4J5HpVQiVArXi2p+xz2PsBYSBCHxRIJ8voBtQyzmMbO7m/kL59HT20NbtpW+TZtZtWo1A/2DxtKsFyNqNZ9YzMO2LeNirfvaaPlNpVKmPzoOvlGUQuROr4V5IpEwmcb177ZtUywWzT3WLuB6/GEqhl2fW1uqdYK6xnum3dm1C7i+D7pfnudFddQb7p0W9I3J5PQ5tSdBpVIhmUzWF0l8bMfCcSzK5UqUoR6bMAwIgsiLIh5PEI/H6s+ERRhGSeMsC/TioHZxd11JvCK8PLg1h6G5o7QMZXFqDhPdOfNZsbX8PHsKO0OuU+rvCjvHZEdU13qyS6pQCHsfExMTbNmyhX/4h3943naHHHIIv/jFL8jlcmSzWS699FL6+/t54IEHOPzww027L37xi0bsXXnllTz55JP85Cc/aRKf//Iv//KismFvjy1btvAf//EfXHzxxQCcc845HHHEEVx66aV88IMfxPM82tvbWbduXZOB6Oyzz2b//ffnP//zP/ne977XdMwNGzbw7LPP0t7eDsB+++3HP/zDP/Db3/6Wk08+GYBPfepTKKV4+OGHmTt3rtn3K1/5ChBZnD/wgQ/wta99jYmJCVpbWwEYGhrid7/7nbF8PxcrVqxgv/3226YUbi6Xayptm0wmSafTTW0OPfRQbrrppuc9/mOPPcYNN9zAJz/5Sb797W8DcP755/P+97+fxx9//Hn33dOZdtdx7Q7Q+Gp0MyiXy5x//vl0dHSQyWR417vexcDAwE6dy3VcPNfDcz1sKxKVibqYSSWShEFIsVCgWo4shrVqlWq5gmM7JvmXFlc6cRVgLJs6w7R20dY1pLVg1aKsWq2SSSdIhUX80c24YZWY50UCsh7vq+s5F4vFpuOVSiUTv61FsJ7gtVqNtrY24/rcaNWEyEKayWRMPWhtmdaWdn1N2mJu2zbZbJZsNksmkzHXra+xUqlQrVSiMmG2TaVSxver9Yzainjcw3FsPM+lq7uTo/7uDfzd3x3BIQcdRCGX57Zf/Zr773uA1atWMzQ0RK1WM1nStRuOUqFxvfc8j87OTiNS9XWPjo4a93QdJ61jtfWYmcR29QULoCmZmR6bVCpFoVAw7ubalVwLYIC2tjYTM6IXXABTYzuZTOJ5HrFYzMSrA0aAa6+BRiu37oP+XC8q6OvWLv5Tsd7RIkOhWGwKY9Au7ToG23UdSqVSvY+q/p9e5GXheR6zZs1qKlX2UtiVc1nYM1Av8l+xpUzghhTaipREWO/RyDx+daFQ9C8cYvPiATYvHmBk9piIbGGvJZeLFnF10tvnQn8+OTlJGIb87Gc/45RTTmkS2Rr93ejHP/4xhx566HaTqO3s9yfXdTnnnHPM+1gsxjnnnMPg4CAPPfQQgDH+QGQYGR0dxfd9Dj/8cB5++OFtjvne977XiGzAWPbXrFkDRGL5nnvu4WMf+1iTyN76Oj70oQ9RqVS45ZZbzLYf/ehH+L7PBz7wgee9rsnJSTKZbWvBf/CDH6Srq8u8/umf/mmbNueee+7zHhvg17/+NQCf/vSnm7ZfeOGFL7jvns7LEqN94IEH0tfXZ1733nuv+eyiiy7i1ltv5eabb+buu+9my5YtO+WKAODaFo5l4dp29LPuFgwYAaatvlqk6hjnTCZDa2urEbe1Wq0pWZYWn1p0N1o+p6y00flCpejbvIk4VdpiUCsWyefyxkKtraGjo6O0t7c3xZWn02lSqRSOE5Uq6+3tja7Ndent7WV0dHQbt2qYEpU6AZfODO77Pvl83ljldd/1OGgr9+joKPF6TepcLkc6nY5cuYkWGkZHRxkZHSKdSeG4Nr5fpaUlSzqT4sS3L+Odp53KPr29lAo5rvve9dx9xz1s2dxnYq+DIGBkZMRYe+PxuEnelkqlTNz1+Ph4lPir7qqdSqVIpVK0tLSQyWRMlvPJyUlzrI6ODizLoqWlxZTp0u7l2iKu78/o6KgRxzobOEyJaD1m+pnR5/B9n0wmY0S37/vmP3KdmE3XLddu7dpKrcuA6evSNLq76wUTnRFeW+bTdWu+ZVlgYcIHEomEqbnueZ4R4npRRS8ENH5u2y89E9WumsvCnkH/wmEKrSU2HdDPpgP6WXfIJtYeGr0KrSXWH7yZtYduYrIjSnRWTUl4wt6AzONXNgpFLeZTi/lmDpezFcrZigk/EIS9Ef29Swvu56JRkA8NDTE5OclBBx30vPusXr36BdvsKLNmzdrGovua17wGoCnO+wc/+AGHHHIIiUSCjo4Ourq6+NWvfsXExMQ2x9xaPGvRPTY2BkwJ7he6lv3335/Xv/713HjjjWbbjTfeyBvf+Eb23Xff5903m82avEWNfPGLX+T222/n9ttvf859FyxY8LzHBli/fj22bbNo0aKm7fvtt98L7run87K4jmuRuDUTExN873vf46abbuK4444D4LrrruOAAw7g/vvv541vfOMOnSf0Q/xqFDdtOw4hCoKQsJ6RWVsttQuv67pGHGnLr94ehiGJRMIkKWuMpdVZvUulEl1dXSaGWluBbcfFi8ep+YrxyYJJ8OUHkcW8o6PDCKaxsTETD6wt0LoEVa1WI5/PGwumTnKm+9yYfEuXn9Ix27ZtMzk5SSqVIplMGlcOfe2AEX/ahTqfz5NKpUyMcaVSwbYsvHSaWCxGpjUTxYgnkyxcuJDF+y1m7ry5jI6MsHbNGp58/En6B/oJ/CjWPZVMMTExTjKZNOJWZ0dPJBJR3Hx97MbGxkwZNl1qTF+jXlQo1q27QRCQzWYpFAoNbtaBEdcQuXhPTk4Sj8fJZrNGgOqs7o3u2/p3baHW4+x5nim/pmuZx2IxxsfHcRyHkZER4zqeyWTMfdAx2VrkBkFAa2sr+XzeuLLDlNDWCx/a6yB6Vqdi902GfCxKxbK5Ru2Wrt3N9TH0mOmM6Y0Z9l8qu2ouC3sGmbEUk115utd2UEvWyLcVKbRHi5cDi4Z3c++EnUXm8SuXcrpCNV5jaN6oZPkXXnG0trYyc+bMF3Qffvzxx5k9ezYtLS1N5W9fKs/1PUobYXaGG264gY985COcdtppXHLJJXR3d+M4DldccQWrV6/epr02rGzNzri3f+hDH+If//Ef2bRpE5VKhfvvv59vfetbL7jf/vvvz2OPPdZUIQkil/0X4oUykb/SeVks2s8++yyzZs1i4cKFvP/972fDhg0APPTQQ9RqNU444QTTdv/992fu3LnPm+2uUqkwOTnZ9IKpCaCToFlK4ToO+XyeYrFo6kbrDOTaDVm78OrJqMXmxMSEcRnXCa/0g6yzPGtrthbylmXhuZEltqYglc0STyRIJCMrui4rpV3GJyYmTHZsLST18bWFVls7dX/0ubSI0+fX7sTaBb7RHVy7FzfGPmtRn0ylsGybWtVHhSGlYpHJiXGqlQrpVIog8EkkYmQzKV5/+Gs55k1H89a/fys9Pd089Je/8rvf/o57//hnxsdz+LUQsLBtx1jlLatuna2PoY5N1j8TiQQ9PT0kk8mmbOCNZdC0K7njOLS0tBhRq9vE43HjgaDFZiwWI5lMmgzd8XjcjI92NdfZvnXGbr1d33dt6db1spPJJI4TuWtrN3893q7rmpJdegFDJ3hrLK+mk9LpmPjGuPHW1ta6yI8RBCEqhJgbQ4WKwJ+qLx6VslPUaj627VAqlQnD6PjVaq3+POhM9T6+HxCGL92SsavmsrBnoGxF61CGQnuRgfkjWEq+ub8SkHn8yqSUKTM4b4Sh+SKyhVcuJ598MmvXrm3yxGnkj3/8I+vWrTPxyl1dXbS0tLxgedNFixa9YBttPdbVgTTr16/fbvstW7ZQKDTn1HjmmWcAmD9/PgC33HILCxcu5Cc/+Qkf/OAHWbZsGSeccIJJ5Luj6JJmL6ac6/ve9z4cx+GHP/whN954I57n8d73vvcF9zv55JMplUrbzVo+HcybN48wDLdZaFi5cuXLcr5dybQL7SOOOILrr7+e3/zmN1xzzTWsXbuWY445hlwuR39/P7FYjLa2tqZ9enp66O9/7vIlV1xxBa2treY1Z84c85kWodHFWPWEUXEjbBvdtBsFk46JTqVSJrO0jinWlli9iqTjnLVLdKlUYnBw0IjvIAgIajV8v4xfrVAul0y2cp2ka2xsjDAMmT17tnFTT6fT1Go1kxFbC2ydRVxv0xZYLbLj8bixBuukbDpTuHaH167xut6yUiqKQ66vRPm+j2s7pJMp2ttaiXkxWltaiMVclAro6enmxL9fxuteexiL9t2Xv61YwW9+81vWr1tHbmKCWjXqN0Rxw7VaJI57e2cat3DAiOZyuWxc6HVJsmKxaMagVCoRj8dNXHUqlTLCWo/B+Pi4yQivrbvaPVvHRmuxm8lkzHna29tx67W+teiNxWL09vZSqcekW5ZlLMq6jrZeDNEx4Vpc637p0nD6/mm3eIi+iKZSKbM4EovFmJycNDW59fPWmKBOH2NyModtOea+ZrNZY9lvTG4XPZNuPWzAN2I7qqsdNpX92hvmsvDy8GLjrhWKfHuRsd5JJus1sPMziru7+8JLRObxKwuFon/BEJv262dw/oiUjBJe8VxyySUkk0nOOeccRkZGmj4bHR3l3HPPJZVKcckllwDRd/bTTjuNW2+9lb/+9a/bHE8b0N71rnfx2GOPbVc86jbalfmee+4xnwVBwLXXXrvdvvq+z3e/+13zvlqt8t3vfpeuri6WLl0KTFmoGy3SDzzwwPMubj4fXV1dvOlNb+L73/++WUTd+jo0nZ2dnHjiidxwww3ceOON/P3f//2Lyq5+3nnn0dPTw0UXXWQWDp7vPDvKiSeeCMBVV13VtP0b3/jGSzrunsC0u47rwYLIpeCII45g3rx5/M///M9Ouw9ceumlJoMfREH5c+bMabLsQnNZp5aWlqb4Wo2uNz00NEQ8HieXyxmBpWN4x8fHGR8fp62tzVjBdUKxQqFAKpVi//33Z2hoKKqjXS6DZRFLJbCwTLmqZDLJ4OCgien1PI/JyUmT3EsLNC26dD91WSkd56F/lkol2traGB8fNzHLM2bMMG7imUyG4eHhutBSTExMGPd3vYjg2DblUinar1yjVCpTqZYiC3Y2wz777MPhhx9OJhO5jU+MT3DPPbexZcsWbMvGsW0KhRIHHDCfLVv6AEzZLd/36e/vNy7SWhBblkU2m6VUKhkX7c2bNxOPx9m0aRMtLS20trYaz4OWlhYKhQK5XM7EnutM2qVSycSJ9Pb2msUIbYnWcdLFYpFU6v9n78+DbLvr+1D0s6a91tprz2P37vnMOhqRBJJifG0wBNsJKd8QJ6ZcZTuhTOpW8K2YOHmXvOeBcp7JdG2HBIKd2IZbxtjBL9hgbIwjG4RAErKQEJLO1Ke7Tw97nvdee81rvT92f7/0AYQ1n3Ok9aFOIfWw9+o9HPXn95mSrGJT2RkVxCmKgt3dXRiGgeFwiF6vxxnofr+PdDqNTCZz1euDDjbo/oB5boVy8L7vQ9M0ZDIZVtvH4zGXqVFGnqILRNzpdQwAicT8kIJyOvSeEUWJX0dHd91pyo7cA6Ssy/LVE2gvBK/keznGywdP87F/pgHJkxCKESpXinB1F6EUYlI0UdzPw0458FQfVtqOlbFXGeL38asDkTDPYfdrI5g5K36fxnjN4OTJk/jYxz6GH//xH8ett96Kd73rXdjY2MDOzg5+67d+C91uF5/4xCeuyvf+yq/8Cj7/+c/j+77v+/Dud78bN910ExqNBj75yU/iwQcfRC6Xw7/8l/8Sf/iHf4gf/dEfxT/5J/8Ed911F/r9Pj796U/jIx/5CG6//XbcfPPNuPfee/G+970P/X4fhUIBv//7v/+sQkatVsO/+3f/Djs7Ozh16hT+4A/+AE888QR+8zd/ky3Xf/fv/l1uOv87f+fvYHt7Gx/5yEdw9uzZ75iDfi744Ac/iDe+8Y2488478e53v5sfn89+9rN44oknrvran/iJn8A/+Af/AADwy7/8y8/p9guFAj71qU/h7W9/O26//Xb82I/9GF7/+tdDURTs7e3hk5/8JIBvz5M/V9xxxx145zvfiQ9/+MMYjUb4W3/rb+H+++/H5ubmC7q96wkv+7xXLpfDqVOnsLm5ibe+9a1wXZdJLKHVan3H/BhBVVW2Fx8FKb1E5o7ONR3duSYFEABnmkl1FQSBP0a5XCoXo9ujvWn63Hg8ZsJGquPMmiGdzsA6JM/AvAmQir+oFOtosZmqqnBdF4qisJptWRYMw7hKCaVMMjDP1AVBwPvPs9mMb6fX6yGZTLKFnBR7z/Og6zo6nQ5y2ey8HE6SYYUOZFlCqVSEkUri9a9/PVaWlzEeT3Dx4kWcO3ce29vbKOSKUBUNggBEEaDrSeztHVzVIE62aNrXpm1oVVWZKJOKncvlUCwW+TCBHl96DI7ObJFlnn4WIqSCIGA0GjFpJps5kXnKyTuOw8SXWsHpL7tisYh6vY5EInEVOY+iiK2QdG3kKKAG8WQyydEB0zQ5DkCvJ7Kz0/NIU2OWZfFrkmbN6HSTlHRRFLj9nJ5fQRCZUB9tNidyT68t2oMHwO3oLxVezvdyjJcXsiujfKWAWdZCd6WP6nYJ2kzFND9De6P3N99AjFcN4vfxjQU76cDVPARKgP7StxclxYjxWsCP/uiP4syZM/jABz7A5LpYLOJNb3oT/vW//tffVgS2tLSERx55BD//8z+Pj3/84xiPx1haWsIP/dAPsfMwlUrhS1/6En7xF38Rn/rUp/Cxj30MlUoFP/ADP4Dl5WW+rY9//OP4p//0n+Lf/tt/i1wuh3e9611405vehLe+9a3fdp35fB4f+9jH8DM/8zP4b//tv6FareK//Jf/gp/+6Z/mr/mpn/opNJtN/MZv/Ab+/M//HGfPnsXv/u7v4pOf/CS+8IUvvKDH5/bbb8fDDz+Mn//5n8d//a//FbZtY21tDf/wH/7Db/vat7/97cjn8wjDEH/v7/2953wf9913H5566in86q/+Kj772c/iD/7gD9ip+8Y3vhG/+Zu/+axb588Fv/3bv41yuYyPf/zj+KM/+iO8+c1vxmc/+9kb/hBXiF6s3v83YDqdYnV1Fb/0S7+En/zJn0S5XMYnPvEJvOMd7wAw99+fOXMGDz300HMuXhmPx8hms/jFX/g3PIVEOeSju9NEkOhrjirYRJKpMZoUWQBsAaayNABXzT7Nc7HzLC69YWeWBUGRMB6NYRgGF4IR4aRJKUmSuAlb1/WrSrqoFEzTNCbmRKbCMGTySc3etIdNFmeyK6dSKW4dP1rspmkaLNOELB5a4iUZa+urOHZsDQuLFWiahr29A+xe2cXFi5fgOIfzZbbHWWTLspDJZA6vL2QCSgVkR23wmqbxfRPpJDIehiF/3LIsVCoVVopJxSZCSs8plZtR4/fR7DU9Z1RgRvdHDd5ERo9uaBP5p8fXNE0+GKADACpN03Udtm3zNVARHl0j/aw0tUZOBV3X5830h/dFrzfKjwNgFV6WZUwmE4iiwLvt9DhR/poy6fRap8MJuh7qH9D1efncL/ziv+ZegBeLl/O9/JnPfObbmjpjvDQIpBDj0gSeOn/ta6aKhK3A0V30loaIpLiV+HqHNbbwf67+Hy/Jezl+H984sJMO2ms9eHpsD3814KV8H8e4/vD93//96Ha7zykrfS3h+z5qtRre/va3f9tmd4yXHi+5ov1zP/dzePvb3461tTXU63X84i/+IiRJwjvf+U5ks1m8613vwnvf+14UCgVkMhn8zM/8DO67774X1G5K6t7RKS4qP/M8j4vEiIgfVRFJBSYcJaVUoHWUSA2HQxQKBbTbbb4fIZorzLKawHA8P2leWVlBr9fjrPDS0hJvSBNRozIuQRBQKBR4NzqTyTARowbtUqnEu4CUJSaL/NEdPiKcZJWeE1oXYRhBVTUIUYAoCGDbM2iaikKhgO/7vv8N+UIesixh5rj4i7/8K7QOWhj251loURBgmSaCIIRtz1AoFJBOG4dFbWP4vodCoYBischqMOWfKQevqirb7sl5QGpwp9NhyzORzmw2i8lkwqo0ta7TDBZZ7InY0yHGaDRipdq2bf58JpNhpZis5JS5TqVSmE6nXFxG9nQi2zRLRv+eTqfR7Xa55I5eX3SfNJdG15rJZK5S9umAhJrT58VlHv9iSgcx89eAh3RaOmyg/2ZTObkvKN9Ohyx0kBBF0eFhhwRBeHEVDK/keznGywcpEJHppuAnAkRChM5aHxGi+b/HJPtVj/h9fGMhQoRIAOqnWvCVAEHihbcbx4gRI8a34o/+6I/Q6XTwEz/xE9f6Ul4TeMmJ9v7+Pt75znei1+uhXC7jjW98Ix5++GGUy2UAwK/92q9BFEW84x3vgOM4eNvb3oYPf/jDL+i+xuMxMpnMVSSZMqo0K0Wq5tHWcbIJE5mjnWYi47lcjokhCf6qqmIwGGBtbQ2j0QjWzEI+l4MXBrBcB9lsFgCwubnJc140JUVkMYoi5HI5/hiVaZGdeTAYIJfLsY0amO/kEXGk0i8iZvSzAt9Uan3fR7FYBDAviZjbrh1oCQWmOcXy8jJOnTqJm266CaqqYDKd4umnn8aT33gGg+EQoRcgk5rvEKZSBj9u1J4+mUyQzWaRShl8Lb1eD4qiYDgcolgsot/v8+NHijEpvtPpFMViEa7rIpfL8eNLhwlE2MlmHoYhKpUKptMpCoUCb5OTjZoIcSqVQi6Xw3g8ZsWZHhPKp9PMGFkeLctihZyy+WRzp4w6WfBd10WpVOLMOxXo0euJbOlHDzvoYITIbz6fv2pajWbjbNtGoVCA53kol8ucJR8MBpwttyyLd9HpNUp5bdoSpzbzVCp1uK394t7er+R7OcYLR4QIru7NM9hSiEiMIAYihAgQfRGAgFFlgsHCkWboON/5mkH8Pr4xQO/jUWWCSeGwtTh+n8aIEeMlwiOPPIInn3wSv/zLv4zXve51+L7v+75rfUmvCbzs1vGXA2RTe/8v/QqTT9u2WaUcj8dMTInI0uY0NUGbpslEUNM0Vhlt24au61e1j5OyTVNPtm0j8AOIgoAgChFJIquVALiwzHEctnGnUikmeaS+EqEkkkRff5SMUfY5l8uh0+lweZaqqhgOh1BVle3JZFnOZrNIJBLodDpwXQdJw8DyYhWlUhFnzpyBYaRgmiaefvppHBzUMRqN5up3EMJzvcPrMA7JmnKomlpMAMkeTT8v5ZSJsAqCwIQ1l8sx8SVSSYSR7OGUq0+n00yG6XCBDhyOWvtJxY6iiK+JLPzJZJKnZ4zDPXDa5D66n00OiKOZa5r3Irv70bZ3uj8A/Jog6zbl/alNnqz05IzQdZ0bz4/GFcgGDoCVf2pfB755EECPL21yE6Gn1yWBXkP0c/m+h//3/+f/dV3b1GLL6YuHLwc4ON1Eupe6imjbhgPNTACRgOFiPL90I+N6t5zG7+MXBzM7g6t5cQb7VY7r/X0c48XhereO/9RP/RR+93d/F3fccQc++tGPfluuPcbLg5e9DO3lBE1tkVJMpWFkA6bsLQC2jxNBymQyrFaSMnjUtk1qK5Hyb20Cd10XSV2HLCuYWPM97NlshkqlwlNeZJM+OlFFG8yUTz46G0aqL+WHJUli8nX58mUuZCMLPD0GRxu3p9Mpk1bDMJDOGLj55rNYWVpEqVSC74d45plncOHCBWxubnH5l2Xah83WMrLZLIbDIfL5HBd+UUb9aKYZAFvtifSRykyHF2TNNk0TiUSCs8mUcSeFOJFIQJIkpNNptkJTeRh9ju7/qGWeytLooIMy7TTnlU6nAYAdD9QgTjl7IuLU1k6vB7o2AKxSW5YF0zQ59z23dUdXuROAb+bqqdGXcuupVIqfM/o62gM3TRO6riOZTKLdbnMLO5W7UfM9/RzkiqAGcnrtU5mcIAiwrBe2yRjjxgPNXUdChOJ+HmZuhuHCGHbaubYXFiNGjGeFo7kYLoxhpW0ESnitLyfGqwQf+tCH8B/+w39As9nE7bffjv/8n/8z3vCGN1zry3rV44UWmb1S+OhHP4qPfvSj1/oyXnO4oYl2GIZIp9Ns7SW7caFQgKLIiCLwv0fRPNNN5VtEUMm2TQ3WlUoFrVaL1eadnR1UKpWr8t2yLCMIA2i6jok5RXBY4kXWaNu2ue2biCE1mFuWxdZy2o8mtZyyyaSS0vU6joNyuYzd3V1omgZN05DUkxgOh3CdQ2UUlDFW4HouzJmJW2+9Gffe+4a5wun76HY6eOihR9DvDyCJMrLZ3NxeLius9M9mM4xGI6RSKYRheHh9YPJKj9m3WqSr1SrPY00mE7ZdU2EckVwqHEun06zSAuCm8n6/D1mWcezYMSafpFwTkQTmmXpSnEmlpkOJQqGA6XSKdDqNvb09fryJfGuahnw+z7nqedO3iEwmw4c0nU6H75deY/RzUCEaNbnT/jU5C2hy62gjfi6XY7s4XXsul+MJNl3XEQQBuxjI0k6vH8pnA998LobDIdvEAfChCB3I+EFcoPNaQcKWEYkRdFPF/pkmQjnOdcaIcT0iEiJEQoT6yTb8hB8T7BgvKf7gD/4A733ve/GRj3wE99xzD379138db3vb23DhwgVUKpVrfXkxYrzmcEMTbSJnR7dABUGALMtIJpPzSSWZWp41+L7Ldl5SV0nFpO+bTCZIp9Po9XpQVRVnz57FwcEB37Zt21haWoLv+5hMJ/ACH8mkjuWlJezv76NUKqFer1/VCg2AM8LFYvEw/5xihROY56ld10WlUsFsNuOCL7q2g4MDeIGPrKYhDEL0u33k8jkYh4TechyEUYhqtQpNV/D6N9yNQqGIIAjQHwxx8elz2N7eQr3eRBTO95llWUYxX4Cu62g0GtB1HaIo8OMpCCIEQYQoClhfX8dkMmESTTvgsiyjXC5zlvxb57AoT03PBwBWqsnyv7i4iFarxU3l1A4PzA9KqPGbCuxUVcVsNuOGcVL3qeQuiiLOPS8uLiKKIvT7/aty3OPxGOVyGbPZjO3YlImeTqdYXFzEYDC4yppO1nh6Lfi+D8Mw2DZOTeNUqEa5e1Kpj9riy+Uyq9We57GDgoi6bdusrM9mM3ZqHJ2ho9330WgEwzD4muh6/EOFPcarB67qIZRCKI4CT5s/v4EcIBIBP+FjWD20iMfZzhgxrjuEYohebYhx+XArN36fxniJ8au/+qv46Z/+afzjf/yPAQAf+chH8NnPfha//du/jf/r//q/rvHVxYjx2sMNTbRpK5ks4EQ+JElCt9tllXg0nGBhoQbXtdl6Swohqc00v0UKMpHAXq/HM1wAsLa2hm63y6RQhgLvsMQriiI0Gg0m2aQs0rQWTYaRMkxWaFVVmWCOx2NEUcRE/6iyWSwU5plu38PK6hJGoxFsZ67OB6GH48eP48SJEzhx4hiiKMR4NMalzct4/PEnAH9eTpbNZOH78xbsRqOBXC7HZWZkvSZLta7r8DwPiUQCBwcHSCaT3BhuWRZ83+dsczKZxHg8RiKR4CwxKb+0S023RdZpcgf0ej3OJmcyGZ6rojI5y7I4Y08ZfGoqp+eJGttpuo3U9ul0iiiK2Irtui7CMGSLOxWIUVkZFcxNJhPOm9MmOx0kaJrGJXsAeF+dYgV0PRQNoFhCJpNBEARIJpPcpE7FffR6EgQBg8EAiUQCyWQSlmXBtm3e6AbAUQYqSCM1nK6D7PwxXj3wFR+e6mNYmcDK2Ej1k5iUzGt9WTFixHgOMLMzuKoPX/W/SbJjxHiJ4bouHnvsMbzvfe/jj4miiLe85S146KGHvuP3OI7Dbjlg7hTt9/soFovx7xExYjwLoijCZDJBrVZjp+2z4YYm2kettZqmcSMz2ZXJeixLCVb6KGvsui4KhQKA+UQX/TM1RRO5JkJMhVn9fp+JuWmaEGQJpm1hOpmw0pjL5WCaJk93kfK4u7uL48ePs8pN5JKIHynFpAaTlZgIt2XOW7hVLYF+v4d0Og3XdVAo5HDn3XehVC7PyV4Uor63jy9/5SsY9MfwPe+wyA18iEB74kT0Hcfhx4hIXbvdvooYj0YjVozp0ICUZbJPU9GZ4zhMBKn0g8h3Pp/nybNqtcrt6EQe5zvQc5KfzWZZ+aWMMt03tc7PZjMMBgOkUik+BCCrN9m9ibDSJBZNgVGemQ5ZqISNMtCTyYRnt0jBJrJN30s/09EpL1LiDcNgJZxs60ct79QbMJ1OuTuAVHpJkvggCQD/bPTzH30tK4rCr32KQ/xNb/4YNw68RID2ah/RYdlZTLJjxLgxYGYsdFYG8UxXjJcd3W4XQRCgWq1e9fFqtYrz589/x+/5wAc+gPe///2vxOXFiPGqw97eHpaXl7/r19zQRNt1vznfRWqeIAiHU13zk7ggCCCJEZJJHZqm8gQYqYikWJNiS0oiWZUFQUC/32dSSiokTVsFUQg/DGBbc+V6Y2MD9Xod2WwWYRgin8/D930Mh0MAQLPZhGEYWF5eRr1e58IzyglPJpPDrLOIMJwrwES8E4cZatdxkEwlYRg67rnnbqysrCCZmueIO+0WHvvqo9jc3ITn+shmi3ACF6PRBFH0TcKXSqW4SIvs3mEYwvM8pFIpiKLIZWB06BCGIRqNBtueVVXF0tISOp0OE/T9/X1uJSfSR3ZqIqJ7e3ucq242m+h0OlhZWYHv+1haWkK73QYAZDIZbilPJBJMUMluTiVh+XwexWIRvV4P4/GYre80OUbN4vT6OFpsRw3pkiQxcR+Px2y/psMbUpVp4sx1XdRqNW6on0wmKBQKbJWnlnLDMNg+To3zgiBA0zQ+3CBXBQA+nBiPx5ybp7b7o7vhpLzTiTMdklCGfv6YK6/k2zHGywh1psAY6RiXpkCE2HIaI8Z1jFAMEYoR9s80EUkhwnivPsZ1ive9731473vfy/8+Go2wurqKu+66Cz/7sz/L07UxYsSYYzwe4z/9p/+Er371q1y4/N1wQxNt3w8410rWYCKEojgvz/LcAKViBtPpBP1+D5qmsW14MBgAwFUKted5yGQyTLRqtRqTRGq/7vV6cF0X2WwW0+EQjuvAMAxouo6ZaUJNJDAzTejJJLTDqaZioYByqYSpNZsTzHYLfhggjEKYk8ncFp3JzInZcAgjlUY2X8Cw14NjHzZqSwIKpTxUTcGxYxu49957IYqA5wWYDMf4+hNP4muPfw2u40LXNRi5NMbj0aEtXTn8+VxWQono5XI5Vu4FQUCv14MgzHPZ/X4fk8kEsixD0zSUy2Um5rZtY3t7m5VsSZKQTCaxv7+PpaUliKIIXdcxGAwQRRGm0ykymQwWFxfZrhRFERYWFtiq/fTTT2N1dZWV2maziWKxiMFgwDvoyWQSk8kEURTh4OAA6XQarVaLlV1SfdvtNlvvKZtN29VEbsmlUCgUmETTz0KFajTJ1e12mTDncjkMBgMMh0MEQYDBYMCvkUQigfCwIE9RFCbYyWSSbd6krFP+m6IPrutysd5R9wRZ0UkBJ0VdURS2uieTyatmzyzbupZvzxjPA6EYwjYcJGwFfiJAKIaQXRmRECGUQyCab2HnG1mMKpP5x2LEiHFdgd7HFPGID8RivJIolUqQJAmtVuuqj7daLSwsLHzH71FVlSdFj2JzcxOXLl2Kt5ZjxPgWfO1rX8OlS5cA4DnFK25ooi3L0lVTTlSCRq3OpPJRZpoKpWgCyzu0VBMRo4mu4XDI819XrlzhzOtsNkO5XEYURVyMRqVqqUwaCUXB7u4eSqUiE8lQliFEETzHgSCKmE1NFJZzGAyGUJUEojBCOp2eq+eHimQURlAVBePhEKIAqAkF5UoZjmPh+IljOHHiOJaWaodFWRYunL+EC+c30e10oakafM9HoVBEo9EAALZO12o1VmMNw2DlVpZl2LaNfD6PTqfDyv54PC9WyuVyTECprEtVVSQSCXS7XZTLZW5tdxwHuVyOFW9SmUVRRD6fRzqdZvcAlb1tbGwwcazVamzfJ6s2AM43k12bDgnmrwMZhmFgOByy0kvWaiLUlH0HwHl4ap+nVvFsNsu2cXIxUAEbNcBTdp0axFVV5QMbRVHY+j8cDnkHm1RrKjZTVRXZbBYHBwcQBIFfj1SO57ouP94A+DAJAB+Q0AwZPXek1NO8lyiKEIXYOn6jIBIj2CkHtuFiXJ4gOdLh6t68SXyiIhQjQAAGtXhnN0aM6xV+IkDjZOdaX0aM1ygSiQTuuusu3H///fiRH/kRAPOI5f3334/3vOc9z+u2RqMRHnzwQdx2223I5/Mvw9XGiHHjYTQa4eGHH+bf+58LbmiiretJzrEC84ZqaocmEkaEj0hPEARsFaZssePMFWmalnIch0vM6DZJOZzNZsjl5rNY3W6XJ6Hq+/NmcsMw4DouREGE68zbzhVJhu35MKcTlItFeI4L49DefLTsK18sYjQaQZZEdNst5HI5KKoC1w1QyGdwy23fg4WFBciSgiCIcP78eZw79wyMZBrdTpcPHYjclUolLv9KpVJs6Q6CgFvQj2aPaY4riiKcPHkSTz75JOeD2+021tbW+PFNpVLcmD2bzZj80v2T+j+dTqHrOs940WEH3d90OuUNa9qNJoX9KDEFDrfLj8ymGYbBhyBHSTeVpFGkgNrpaQqLlONKpcL2fU3TMBwO5wT18HtTqRQTXpr5ms1mHD0guzcp7UR6ifAC4D10ep3Rhvd0OuXnx/M8jEajq8g1PVeU4aefTxRFbnwn9wEp7qSGU8Y9jGLV80aB6IvIN7LorPYRyCFc3YNjzMv2hEDgf44RI8b1gwjzA7LBwvxQOhLjv3NjXFu8973vxU/+5E/i7rvvxhve8Ab8+q//OkzT5Bby54MHH3wQb33rW3H33XfHnS8xXvOIoghbW1t48MEHn9f33dBE23Vd3lkGwMSM1EMqQxuPx0in00in00ymwzBEoVBAoVDgFud0Oo1Go4F8Pg9JkpDNZqFpGvr9PquSRIx0XecdZF3TkM/moCgKLl68iPX1dQRhAENPYtjtIZPNQpFkRGGEYX/AduRUOjW3Bx/mm8ejEYrFImzLRCKXRjqVgigIuPWW+3Dy5EkIyrz9utef4K/+8ovo9boIwwCT8RWUy2V02m0mxpTjjaJofo26jmaziVwux3nn48ePM2Gjx01RFFahVVU93CCPsL6+zgR7MplgPB5jMpkglUpxWRwRPt/30Ww2kU6nUSqVuFSN7M+UnaayN/peysQ3Gg3e2k6lUphOp1eR72q1yoSWZskoFy3LMhetUe78aFFYFEVsna/X61c1gauqit3dXaTTaaysrKDb7bLa7TgOer0ekskkNE3jgxoizPSYBEHArxvKwyvK3LafSqX4gIHs977vzw9XDi3fpMYfzeaTM4P+XxRFpFIpnjOjwjYqW3McB6Zpcit6jOsfnurj4HQLuVYGsitfRaydVPw8xohxvSAUIoRSCAgRDk63EEghojiDHeM6wT/6R/8InU4Hv/ALv4Bms4k77rgDn/vc576tIO25wHEcfPrTn8Ztt93GYkmMGK9VuK6LP//zP+f54eeKG5poG0YSqqqxjdtIpTAeDeF6LvK5PJPwRCLBOd4wDFGpVJiEW5bF81PUth0EAfr9PpNBmpwicmcYBg4ODlAqlQAAruvBc1woCQWVSgXpdAqj4QjDwQB+MC9f63Y7yGZz0JI6F6l12vMJsnQ2A8+x4QUBPMdBQpaRSRm46aabcMdtt0KWJQRhiE6/h3PnzuHKlQOMx1PMTBvpdAq5XAKdTofJLGWR6XCgWCwinU6j0+kwKaNCNyr7ommsRCIBx3Gwvb3NFmjahNZ1nUktlakBQK1Ww8HBAaIo4ow8TUPs7e1xozu9OKk4zTRNbGxscHM5tYLncjn4vs8FcaqqsuocBAF6vR7HAfL5PB8ckIpuGAbPj6XTaUwOM/DUDE4FetRMrygKdnd3oSgKNjY2IAgCdnd3eb+bWtapEfyotZuy2NQuTs3piqIgnU4jiiIm+6TaUwYb+ObEGU2JUW6bCs3otmj6azgc8s8rSRJGoxEfKIiiyG33dN0xbgyIoQDZldBfGl7rS4kRI8Z3gZWx0DzevdaXESPGs+I973nP87aKPxseffRRPP3007jzzjvjua8Yr1mQmv3AAw887++9oYm263oQhLlS6XkeXM+HltTg+x4sa76LTLvYRABzuRw6nXmGiogUKYqU76Xt5aPN0UTMjrZKO47DDdf9fh8pMQVBEjEcjyEnFGjGXCX1PA9yIoHheISNYp7br9Pp9PwaZhZE+Mgkk7BdB7fdejM21pZRLlfnf7GFAS5euoDHn3h6nguIBHiOC1EQEIURPNeFrmmHc18uN2pTlpxUZlKeFxcXuUU7mUxiOBxyGzsR1oWFBd4Rn06nTN663S6rslT0RaVgVEhH6iq1klN53NFcOE1edbtdFItFaJrGjetE/Gmzmwg2KbykSFNumfatKTtNim4qlUImk8FwOOTyNlVVOfdtmiYsy0KhUICqqpBlmTPQhUKBDwBoTgsAk2vP85j8qqrK7ej0GtJ1HZ1Ohx8jeg0R+aXyMpriSqfTmE7n+6p0AEKlbEEQYDQascpNH6MyN3qs6dpt2+am9RjXF8yMhYStwMzNkGsfzt4hwqg8heRJALxre4ExYsT4jhgXp/BUD57qX+tLiRHjFYPnefjYxz6GO++881pfSowY1xS/93u/B9u2n/f33dBEm9TqOfmQ54r2ZABBELkwak7kSjg4OIBhGPz1YRii3W6zdTyTyaBYLPLt0tQWWYVposkwDNTrdf4az/MwmUxQLBbn9u/xGIPBALVaDdVqFYPBgFVG13XR6XSgado8f63IGAz6SBsGtISG1dUFnLnpDErFAmRZROAHGA6neOKJb2B79wrq9SYymQwymSwSiXkeu9frcfkbWYdpk5v2wJPJJFqtFh8a0CFBp9OBYRioVCqsKFMGmizdhUKBDxxoe5oIMynaZL2mA41isciZaNoVp2wztXKTPZoayYlga5qGK1euIJ1Os93bsiw+OCAyOZ1OWTU3zfmmMJF4UuAnkwl6vR6AeUlILpfjAjuyfqfTaVabwzC8qqzs8uXLTModx+HnUlVVrK6uotfrsR2ecu+0Mx6GIbLZLOfDqfCO3qQ333wzLl++zI/pcDiEaZqIogipVAqLi4toNBqskBMJp9fndDplBTwMQ7aYk/uCFO8Y1w8sw0ZntQ8pEOElfIRSCDEQYeZmsA03biiOEeM6Q4QITtJFb3kIV3MRyrFLKMZrD5ubm3jwwQfxvd/7vdf6UmLEuCb4+te/jq997Wsv6HtvaKJ9dKO52+3Adh3MZhOIooAowKHqqHPJlSAIGAwGPM21v7+PdruNhYUFJnDdbhcLCwtsMZdlGf1+H2EYcqFaqVTi9m1SzYkQjsdjbs4mZXxtbQ2TyQQLCwsYDPpzkufYMIwk0mkDlWIRp46t4czZU/NdZ9/D2LTw+ONfx/5+C73BCKZtIYIIVU2iXm8cbm0LXGjmOA5KpRJGoxE3XxOhvnz5Mk+WUaM3qfmWZWF7exvr6+swTZM3xHO5HK5cuQJZltnOXCwWIYoiRqMRW5oHgwFvWVPWnTbDiYD3+33+2o2NDVbO9/f3OacsCMK8VK5eR6VSQS6Xw3A4ZBIOgDP0nudhbW0Ntm3zhJdhGFftnqdSKVaYAXBOezweo9/vwzAMtpJT7tmyLGQyGYxGIwwGA97GLhQKbEMnUt3r9dhWT9l1UpV1XZ/vnR++zqgFvNfrIYoiVu+pSE8URUyn06u2wjudDr/m6BCD1PzxeIxUKsVuDWpWJzeGrut8mBHj+kEoh4jECGEUorJTROtYd76JHXfMxIhx3cGXAxycbiJQ5u/bGDFeq7BtG3/8x3+M173udbyOEiPGawWWZeF//s//+YLUbOAGJ9q2YzOxWllZRbvTZsuvqqhMcIhk+b7PO9BBEGB5eRnj8Zgzy8PhEIZhcOY7DEMmnURkyDKcz+cxHo/R6XSY9MiyjFwuh2w2i62trfnsVyqF0Wh0qDr6mM1M/vrVlSWsr63hxNoaUroKCCLM6RQ7e/t48qmn0W710O72UCpXIEoKHNvEZDKFbTtMiEnVliQJ4/GY7caDwQALCwu830x560QiwWooEcgwDNFsNgHMW9B1XUe/3+efczabYTQaodls8uSVbdsoFovwPA9LS0swDAOz2QyTyQSapqHdbiOKIrRaLWSzWeTzeRQKBbRaLSQSCX4cKatMtvZisciElUrjaJJsMBjwHBmRel3XkclkMJlMMJvNmGRSdpns567rcnkdAD6IoOeYJt3Ibk32+fF4zISZvp8s6JQlTyaTqFar2NnZYbJrGAZbx0VRRKPR4Nv2fR/ZbBYAOOueTqe5kdy2bYzHY+i6zjNedIjgeR6r/dR0ThZ3+hi1pscZ7esPybGG5EhHe6M3V7BjFTtGjOsKgRTAytgYVibw1fiwMkYMALh8+TIeeughvPWtb73WlxIjxiuKxx9/HOfPn3/Bv1Pf0EQ7PMwDy7KMmWWiXC5BU1WEQYQwmKuBrjtXNHVd57kpQRB4/5kKt2j6ifK0ZElOJpNcrEXzBkTCKUdLxCsMQ6yurh5aspNMrvVkEn7gwQ896EkVi7Uq1tZWcNPJk8imUkAQIIhC7GztYXNzE612F6OpCSmRAAQBjuvA9T2k0ylMpxP+WSi7TIR+eXkZnU6HG7up8M1xHP7adDqNbDbL5NU0TWSzWRQKBSZxtG8NzCfTSN23bRue53E2mKakZrMZALBiWywWkclkOIdOjzuRQbKzD4dDPh2l7PF0OmULtmVZ0HWdS+qq1SouXryIVCp11ZQZ4WhWu1gsot/v8+QYEXZN0+B5HizL4ueQbOnFYpELzYIgYFVdlmV+3RxtuE8mk9B1Hfl8HleuXEEQBEilUrAsC7PZDJVKhYlyFEWoVCpczCYdbqYfnZsjp0EURWw79zyPX18A2L0AgKfIKN5Ac2ZUWKLrcUvoKwkv4WNYmc/8iKGAdC8FT/WRHGvo14ZwdQ+zrI1pYXaNrzRGjBjfCf2FEVzdhZm3rvWlxIhxXWE0GuGhhx7C3XffHe9qx3jNYDKZ4Mtf/jL6/f4Lvo0b2rSYSMyzuAsLCygVS8hmMhgMBlBk5bDcSkG5XD7MQ89brgeDAWzbRjabxWg0QjabxXg85kkr3/dx+fJlAMD6+jpUVZ1PcB2SccMweCah1WpB0zQurzJNk4vFVldXsby8DEVR0Gw1IEqA41hYXl7CD/zAm/G6O25DLpeBiAjT6QR/+YUv4LHHnsD29h5ESYYkS9ja3oIkS8jlsigXi8hmMzhx4jgqlTJqtRoGgwE6nQ5kWUY+n8f+/j7ng6kULJlMolKpsNp7tLU7DEPk8/Nytul0imw2y3by8XjM6v9oNEIqlUKxWOQsOhFoIvDj8RiWZbFdm1RZ27b5L+XFxUVu+u50Okwyk8kkq8uJRALZbJZL0KihnJ6/bDaLarXKmfdsNgtJkpDJZGAYBlZWVljRp8MPKsGr1+vcum4YBtLpNDfMp9NpdLtdPkQRRRGXLl1iUgyAW+glSUKlUuGG9slkwlvXg8GAc9ekpJNa3W63oSgKUqkU2u02N6vTbaqqyo8VtdxXKhUAuGoTnFRweg6p6I0azKkd33HiWahXEpIvQgCguDImhRmaxztwDAfdlQGG1Qlm2RdmO4oRI8bLi2nOxN6ZBgYLo5hkx4jxLHj00UfxzDPPxG65GK8JRFGES5cu4dFHH31R5cI3tKKtqiqGwyEEQTgsBZurfWEYQteTAMAWaNu2kUqlWKUuFosYDAasmpLF27ZtJnH1eh2CICCXy3H+2TRNXL58GYuLi6yCU2v10YKvTqcLTVOxtraGCAFURcIP/MBbsLG+wS3g47GJzXPnsbl5Ge3+ENbMgawoOLjYgJFJ8yyXbdusHlOBGTVjk/I8GAzQ6/WwtrZ2VaFXo9HA4uIiDMNgFXo4HKJUKnGWmqbNptMput0uoihCrVbDZDKBqqrwfR+NRoNV3EKhgHq9jkQiAQCYTqcQRRFhGHIenqzkmUwGFy9e5LmxXq+H9fV1zjuTddz3faRSKS5j830fpVKJM8dkS19aWuI8NW2kk/07kUig1+tB0zRWkfP5PDzPQ71eh2maOHHiBH+Noij8eSK8nuexsk/WeiqHIwV7OByyNZ1s36Io4tixYxgMBvB9n3e3yd5NpWq0k62qKpLJJCv9dOBAr2t6vKjEjsroyGFAZN40TS6Yo6mybDZ7SL7jXxhfSXiqD9mVkW2noY812Kk5yQYQW8RjxLgO4SU8RCLg6h7cZNz4HyPGd4NpmvjCF76A2267Del0+lpfTowYLyssy8JXvvIVdLsvbs7xhibak8kY+XwB3W6XM8uSJCGXy8HzfOTzeW6KBr5pLSYCqigKN2JbloXFxUWeUgrDkO3XhUKBiZVhGNA0DaZpss0YmFusqWjM9310Oh2USnMr8umTJ3DPvXcjnU5BFubXXW+08dSTT+Hgyi7yhTIy2QIcrwfX91EolTGZjlEoFA7Vzw46nQ5nkekadnd3WWkm4r23t4fl5WXOP89mMwwGA4RhyHnlXC6HVqsFwzCgKAq3kfd6PRQKBQiCwLlgXdeZNFNhXL/fRxAEsG2biWc+n4eiKLwz7bouFEWBZVlIJBK8XU4/U6vVYns15afJ0h1FEVzXRbvdhud5GA6HXHhGmWmyW+dyOVbUfd/nxnVVVTGZTNBqtbid2zAMbvamJvPxeMz3Wy6XYVkWUqkU73frug7XnSvDhmFgNBqxLZ7mxXZ2dvj/Ke9P5FiWZXYdkNWbDgrG4zHS6TQfWJCKTc9dsViEaZqsqkuSBM/zkM1m2bFAVvIwDJHJzOeiSCG3beeVfDu+5iF5EsRAxKRoorc0iBuKY8S4TuGqHuyUg/7iCEEizmHHiPFc8cADD+CHf/iHcccdd8S72jFetYiiCLu7u7j//vtf9G3d0ETbsmzous1krdMZcglVsVhCv9/n7Wfac6Y5pvF4zKVe5XIZAFgdDoKAiZGu6/B9D6PR8JDICIgiIJfLIwwDVtRntgVJlpFKpRCGAYAI997zBpw8eQKVch5B4EIQAMf38fS5C3jssa9jNBxAFhUMJhNEgghREuFaLiRFOmyNDjGbWWw/prZqakGnPHC/30cul0MikeAit16vh2q1iqXD3HbKMNDtdplAbqxvoNVuQVEULpDLZrPcDO77PrrdLmRZ5g1tx3H4cKJeryOfz0PXdViWxW18uVwOjuNwQRe1cFPZmqIoODg44Cmw4XDIxV+GYXBGOZVKcTs4lb6ZpsmEnNRnUtapgAyYK+xkXy+VSkdcDjpPjFHbOQBuFD9K8qkdnJwKRLpnsxmGwyGr2IqiQJIkpNNpPkCgw5yjRWZkL9c0jUvmaLKLDmto95ws9BQDIHu+oihsDdc0jUvlyDJOhw+DwQDZbBayfEO/va87+HKAWdZCppdCf2GEdN+AbTgIpRBO0kWgBLE9PEaM6xy+HKCz1oedig8iY8R4vvA8D5/4xCdw2223xROiMV61iKIIf/zHf8wFyi8GN/Rv4pQXJgUznc4gkUiwRZwsvwsLC2yvHY1GkGWZbcCu66LZbCKVSiGXy6HdbnNeGMAh4dKZ1B47dhybm1uYzSzMZiZEUeBCL8u2sFirYnl5EXfccRsqlTJEQYDvO/A9Dw8/8gj2Gx20mh2MRhNsbGyg3W7D8f25XdjzkVAT6Ha7WF5eRhAErN5SMRYVgZXLZezu7qJarfJk1erqKqvYRMyH4xE0XUO/359nlhFhLb+GdrvNSn4mk8F4PGZyt7u7y7lpVVWxvb3N9ud+v8/zUlEUcS6dyOZgMEC5XIbv+7AsC+l0Gs1mk63a3W4XKysryGQybIknhZ6s6Y1GA67rclkdkWqyWFerVSQSCRwcHPDONJW+kZpM10hb3rQ1TgcrZDsXBAGlUgnA/D8gqqryZBnl7QuFAgCg3W7zCS6p+dQGblkWk95qtcrzZ5lMBo7jMFGn0jeyrc8jBGNWpsmOTpvvyWQSoijyRFo2m+XnklT40WjEBXOTyYQPP+ggIcZLAykQkRxr6C0OoZkqAjmAnXKQa6UxWBjHyliMGNchIkQc3Wit9ZBrp2OSHSPGi8ATTzyBJ598Eq973euu9aXEeJkQSAGEUIQQAcLhX6ARIozLc4HIzFiIpGd37YmBAGOQRHKsH/bXvDLuh1AM4SsBZE+CGL7wGrKdnR088MADL8k13dBEm+y0NGekqio0TeNsLO0UB0HA01TFYpGt0q1WC5Zlse252WwiCAL4vo9EYk54K5XKoSV4np3tdNpw3XkpVblcgCxL8AMf+Vway0sLcF0L//v//veByIcgRHAcB+1WB9vbW9jauQJdTyOfLyKKBOzu7h5OVM3ntyiXW6lUmKhRcVutVsOlS5eQzWbZvk07y6ScNhoNWJaFU6dOYXt7m3e/gyBAoVCYN3EfFnplMxk0W00m16SwGoaBQqGAdrsNwzDQaDT4Pmn+isrTPM/DbDbD2bNn2crseR6efPJJlMtlFItFzGYzLC4uotfrYW9vD5VKhUvaEokEyuUy586BeekXKckAeC6Lys5s28ZsNoPjOEilUvzcdTodJBIJ2LYNwzCQyWRQKBR4m1pRFFQqFS4im0wmCIIAmUwGuq7za4a+n9rV6fvpQCCfzyMMQ/R6PT5MyOfzGI1GyOfzPN1GajeVpKmqitFoxI32rVaLDzOIjMuyzCo22cvp0IR+XmrGJ3v5ZDLh1w7ZzDVNQzqdxmQyuZZvz1cdIgDjoolpwcSoMoHsyvA0D+PS9FpfWowYMb4DIkSwMjYaxzv8MTMft/7HiPFi4Ps+PvKRj+DDH/5wrGq/yhBhTp6HC2Ok+gZmGRtSIECbaJA9CaEYYbAwQiRG3717JgKstANjaCNhKfzhhK1Am6qAAMzSNoxhEsIhX4+ECGIk8jUwBECIBERCBBwSf/pnCICju7DSczfhLGvBVwJkuilIvoTkWIMYiBAiAUI0v+BQiADM7+s7IQxDfPSjH+V46IvFDU20aR5qMpmgVCox4SSiNJ1OoaoqK4ikatfrdSYu5XIZoijyRvPa2hr29vYQRRGOHTuGVqsFSZKQShmsZi4tLULVNAAhut0OTpw4gePH1nHy1AaSySw8z4UkihgMhjh37gLOX7gEx3YQRREmYweZTA6SJCObzWI4HPIMV61WQ6fT4awuqZ2lUgndbheWZTFJJVWeSFilUmGS9tRTT6FarSIIAwiYZ4Ud30N/NIQ5M7GzvY3FSpUnpIgMa5qGZrPJ82GTyYSVfCLWtLM9GAxQKpUgiiJmsxmTVNqXpgMPug9d13H69Gl0Oh1MJhO2aQvC3BFAz1epVOKNb2otL5VKnPmm1vJyucwFbmTPzmQyV7kAaN7LMAyeIaPXiCAI/HyORqO5/f+Q1NJmOs2K0WuIiCwdNJRKJQRBgE6nw2p5Pp/nHXFRFHnGi1RtsqTTRBddK5XJybLMFncqr5tMJryFnkgkoGkaH6IMBgMm3YlEApIkwfd9TKdTJNTEtXprvirhJ3xMCyYyvRRGpSmSYw0jPS5QihHjeoRtOHCSLnpLg7iMMEaMlxjNZhMPPPAA3vSmN13rS4nxEiCQAniaD1/x4akBLMPBLGPB1XwIoQDFlSGEAiBEfzPJBgBhTpyn+RlwZA1O9iRIh4Q9kkJYh2RbDAWMS1NkOml4modQjKDOFPiJAJ7qQ59osNI2FEeG7Mqw0jYStgJX8zCqjBEeVdcFoF8bQfJFjEsShEiAOkvAGMwFvUlxikAOkGtlobjz6zmquD/55JN46qmnXrLH9oYm2lRgRsT6aKY4kUhc1c4cBAHvDVNDcxAEyOfz6Ha7qNVqsCwLqqrCNE0mMZZloVAoYDgcIJlMIgh95PLlw6ywg1tuOYtjGxtIp5KQ5QCeb8OczfDE176BZqODRqOBIIxYmW61WnCdAAlVxtLSEhzH5SK1QqHA9uKlpSXs7OxgYWFhvhN+2OA9HA6RTCaxtLSEvb09mKYJWZbR6/Wg6zoqlQpvT6uqir2DfXieh9rKCnq93uHHE/B8H8VSEZPJ3MJOreZU5kUEk3bEyZoNgDebR6MRRFFEqVTCYDBAFEUQRZEJL82J0Wa1ZVkoFouQJAn1eh2Li4uHW+cudF1nFZZcBclkkgvgPM/jzfQwDDGZTPhzZN8ejUbc3E0HEYqiYDQasSKvKArvibuui+l0Ctd1Dw9TUmg0GmyRr9VqqNVqGI1GmE6nKJfLaDQaCMMQS0tL6Pf7bNl2XZet3gcHB5wbJ5WaXoOSJPEBEZXypdNp3iCnx/ioMl4ul+G6LrfJe57HzepU3EaFbmRnp8c9xksH2ZOQ7qUwLk0RJAKMqrFjIEaM6w2BFKK70oeju/D0OD4TI8bLgclkgs9//vO48847kc1mr/XlxHgBiDAnzZ7qY1yczm3h34FAR1IE94WKCt9ye34igH8kZjcpmZiUTP73aeE7O44GeJ5ZaQEIlBCBMo8B2ykXo8rV7sNZzkZypEGfaBBCAcmxBmfi4HOf+xzG4/Hzu7/vghuaaJfLZfR6PaiqCsMwcObMGW7APjg44HxuKpVCs9m8amc4n89DlmVomopisYBWq4VsNoNGo45isYhSqYTxeIzJZAxZllGtLkBLyBAlEbs7O9DPnMK9970epXIRQhRBCAO4toepO8MXv/Ag+r0xphMTheJ8FmxO1oc4c+YM71ILgsgK6ng8xv7+PueaiZxRYRvlshVFwWQywYULF1CtVrGzs8NkSxAEDIdD/pn7/T5qizW0um3MTBuO7cGxXZw8eQpiBHjBnMxub2+zql0ulxGGIbLZLNrtNlzX5cfsaNs5TYslEgns7e0hnU6z3ZsOA6hVXNd1XLlyhZvRAXDWmLLwlmVxDCCKIia2ZK8n8jibzWAYBmfWwzCE4zgwTROZTIZt1VQM5/s+q8imaeINb3gDnnrqKdi2jVwuxyP01OZOGXgi9Ts7O/x8kM3esiwMh0OeFZtOp0ilUjwBFgQBTNOEJEk4ODi4yuo9Go2gaRqSySRn2x3HQT6f523xKIp4HxyYt5FTcz7tcJumCd/3+bmhQ5LhcIhcLgsjpSNC/Evm84WVsnmSKxQjCCHmp7eHCMUIofLC9xRjxIjx0sM2HLTWDydYBFz1i1yMGDFeHpw/fx6PPfYY3vzmN1/rS4nxPOBoLlzdQyTMCbSdcuDq7mvS+TPL2vMS2whIDZLY/JOLePLJJ1/Ubva34oYm2kSIaHe41+vxNrTjONz+TIRGkiQsLy8zcXEcG3t7NpdwjcdjVoj39uY242KpCNuyMBj2oIgClpYX8H3f/7fwutfdDlmRECFAGEWwzBkub23hz//XX2I6sZHL5hFFwOXLm9D1JBO57e1t1Go1uK6Lc+fOYW1tDaIocqt2Pp9HNptFr9dDpVLB/v4+stks28a73S40TeONaSLGnU4H2WwWpVKJldFKpYJur4fJZApRUpHJZKGqc4W3XChCTnxzBzqdTrMqLEkSxuMxT2odHBxgYWGBrekLCwucZ7csC5VKBcA3VWRZliEIAqvGgiAgn89zaRtNXNVqNbRaLdj2vDmeJsdEUeSt742NDTiOwz8/EX+yYlP+mZwL1WoVrVYLg8EAo9GIfy7KWu/v7/PBTL/f51I8+nqyZK+srPB8Fm1j7+zsQJIkFAoF5HI57O3tIZlMIp/Pw3Ecbn6n1xptstMsGB0yBEGAyWTC5W1U0Ect4q7r8gxZJpOB7/t8CNFsNtmZQfNpYRiyoj53JPhwXQd+EP+y+XyRsBSU9vJIWAl0VvtIWAoGtRffOhkjRoyXB3bSgZ104Kvx33cxYrySGI1GePjhh3HnnXcil8td68uJ8Sw4mnm2Uw76tRFcba5QR2J0lZjwLDfwTXwnMv4s3y4eFsgKoYBADiB7MkIphG04COQQxXoOiv3CaWh3eQBP87/zdX2naxK+y+cATD0TT37lSbTb7Rd8Td8JNzTRJussFZkRacpkMpwbJuKkqioKhQJ6vR5/jCarKLsdBAEqlQrGk3nbdCabgiAIWF1bga6rOHPyOE6ePoZEQoGsyAjCAI7j4vHHn8DO9j7CIETKyGA6diEIIkxzethk3uFpLrKtLy8vAwBM02SSqKoqzzRZlsWN06RWUj47m81iPB4jmUzy15D1O4qieZO546BYLHIZWr/XP7RiL0A15nZwRU3w7NVgMGDVmB5DsoZXq1XOWRPh1XWd27ZlWeaN7cFgwI89WZ5932f1mSaoKFs/Go34sEAURT4coa3oXC7HeerhcD7fRnl6wzCY0NI1d7tdzn7TwUG5XMZsNkOhUODHqd/v8/54q9VCFEU8dUYOArpuAKyIk2JNTeGUzRYEgZ0J9NgEh0SXVGr6Zyoss20boihC0zRW33Vd50MXyokrisK5bDrIoCb1xcVF7O/v82tkfmA0gpJIQLDjqannCzvloHm8i0wnBcWRY5IdI8Z1juaxbtz4HyPGNcL999+Pt771rbj77rvjXe3rFKEYobPeg6O78BMBhFD49pz1vB8MYiR8818PCbjkixADEYEczjPa9Lkj3y+7MmR/Xi5W2i3AzM2Q7aS/jdQeLSWjMrNIiBDN49/zz/0NvJ+wcn4R/cURzNzsm4Q7mjeeS74ExZ1T3EgAXM395oFCBCi2Mi9eEyIEcgBfDtB/qIu//Iv7X1I1G7jBiTaVVdFEFZGuwWAAWZYhyzJKpRLOnz8Px5mXkRWLRSaGrjsnrv1+H4VCAYqiHOZfVcxmPgqFPFIpA/fccw9y+RSyaQN+4CMMIji2i68++tfodPq4fHkLKysbUFUZFy9toVZbYbKk6zqKxSJvPxP5JCt7pVJBo9Fgok95c7IwJ5PJebHVoVK6sbGByWSC2WzG2Wjals7n85hMJigUCmw139regmVZWFndQDaTxZUrOyjmsphNTSSN5OHud4hcLofZbIZkMskEu1wuI5vNwjRNbsEmpTufz3M52mg0wsrKChRFgWma6PV6KBaLcF0XqVQKiUQCOzs7TDar1SrPdamqygS8UCiwQntwcMDP1c7ODsIwxOrqKivBvu+j3W6zxZ1K0hKJBOei0+k0qtUqt6l3Oh0sLS3xrFi320UymbyqHK1arWIwGDCpJos6tX3TYcBsNuNdbZrkIqWbWtGz2Sy63S5s28bi4iK7JsrlMpfO0aQX5ampcE2SJJ5PI8s6NbXT9UZRhEajAQAQBIFL1wQBcA6JeIwXBpqwiBEjxvWFUIjQ3ujy72KhHEc5YsS4VoiiCJ/+9Kdx6623QtO0a305Mb4FESKESoDKThGD6hjTggnZleEnAsiuhECel6CJgYDUwEDCUuDq8zIyMzfPSyeHSSiuNI/kCPPiNCttI5TnfwsLESC7EmRvHnccVuf55u7y4NuuxxgmkbAUCJGAUAxhpxz4CZ8PAPSpCsVWIB3eViRGECIBfmJOpIVQmH9OiA4z2P43iTsAIQRSAwPqLAHFmf8OHEgRrOyRzqIIKNRzgBDBTjmYZmcQPA9//adfRa/Xe2mfANzgRHswGCCdTiOfz3PBFqmHuVwOyWQS7XYb+Xye1eJkMolvfONpVColJBIJzhWHYYAIISKEsGcz3HrrrXj96+9GPp+DJImQZCAMAniuj8lkhgcffBC7u3WYM3t+P63OoT24iIsXL0GWJQARVlfXMJvNS6oMw0Cv18Py8jIef/xxlMtlbt8WRZFzzlTctr+/f5UtezgcYmdnB0tLS6hWq7Btmxupl5aWMJ1OIQgCNE3D/v4+Ll26BEmWUavV0O91ocgyyqUiDE1D2jAwPCwPI0W0WCyi3W7DNE2srq6i2Wzi/Pnz2NjYwMHBAXK5HGRZhiRJnE9eWFjgv1z39/cBgH8GUrMPDg6uItaPPvoo1tbWUCgUcOXKFQRBgMXFRZimySdJxWIRvV4PrusinU5DkiTs7u5iZWWFr29rawvpdBqVSoVL3dLpNJ566qnDojmHs9TD4ZCnxYbDIW+EZ7NZPmgwTZOjCJqmYTgcYjQaIZPJQBAELqAjxZ52t2ezGdbX11mhJys3lbypqoqdnR1uE2+1WiiXy3wflmVBEARIksSb2GSJB8AknxwRsizzTjZ9vSjOm/XnzekphJGP/uDb/5J7rcPRXZhZC9lOCvWTbUQCkO4ZcAwHdspBFB/Ix4hxXSIUIkRiiMaJDpzkazNPGCPG9Ygvf/nLuHDhAm677bZY1b5GiIQIgRQCiCCG4ly1FuZE1VcCyI6MXCsDzVRh5mcIpRAJW4GnCvA0f76ZHQpwki5mGfsqS/m3TiJGiK7a0I5EwE47z+k6fSVgYixEAqyUPZ/qEgFEgJmzIAYCEtZ8NSeSQiAU4BgugLkdPWEpiMQQnuoz+WcIwDQ/m7edP+uDNf+jWgloUxWlSR5723v4sz/7s+f0MzxfPO817wceeABvf/vbUavVIAgC/uiP/uiqz0dRhF/4hV/A4uIidF3HW97yFly6dOmqr+n3+/jxH/9xZDIZ5HI5vOtd78J0+vwVJF3XuESq1+shk8mgXC6jWq0yGalUKkwKoyjEYNDHLbfchnQ6A8NIQZZlLCyWASGAnlRxbG0F7/yxf4gf/uG/jWI5DSUByIoE3w/R7HTxv+5/AJ/4/T/Ezs4BkskMwgAQBRnD4QhBEKLfG+LEieNIJBJIpdI4d+4cF55RBrnf72NpaQmmaWJvb4+t4v1+H81mE7ZtQ9M0tjHTjJYoilhYWAAwJ97Uat3v99Hv92HbNhRFwXA4RK1Ww/Hjx7G+voaEmkA+l0ZCFjAZjdBqtSAeWq83NzcRhiFOnjyJ0WjE+eVOp8PZ6maziUKhwDnh2WyGer0O0zQxHo8RBAH29vZw/Phx5HI5rK6uwrIsLunKZDI4c+YMcrkcbNvG6dOneZv7LW95C7LZLLeHp9NpVnDJIk972YVCAQcHBxAEAb1eD5Ik8V46Wd2//vWvs0uBptPIOTCdTjGbzbhojJThyWSC/f19JBIJ9Pt9VtUNw2DrNm1mp1IpVCoVZDIZ2LbN6v/29jYfDJA1PgiCq5wKkiQhm82iUCggCALU63UAwMbGBjKZDCvvYRginU4DAOfgicDTdaiqBkGSUCwXEUQhBElCEEVQdQWCBMiHu+E3wvv4lcT8JNfHzm0HkHwJpf0cXN2DmbMQKGGsjsW44fBqfy9HiDBLW+gvDbBz20FMsmPEuA7xG7/xG9f6El6zCIUIZsbCYGGM7sqA89eBEsBXfYjBnOqJoQAhAnzFh6t7GJensDL2XKU+XFKZlEwEiWD+u5AAQJi7ho7+ieTnMO/1LLDTDqyMDStjY5a15oSdmOjhfflqgFnOwixnwUo7sLI237ev+vOPZw57Ob7lOiLx26/3O/1xkx6stA3ZkyD6In7/934fk8nLsyTzvIm2aZq4/fbb8aEPfeg7fv7f//t/jw9+8IP4yEc+gkceeQSGYeBtb3sb7CN50R//8R/H008/jb/4i7/An/zJn+CBBx7Au9/97ud98el0BmEYIp/Pcy43CAKePiICSxlmytuGgQ/TnML3XciyBNOcolQu4g1vuBt/+2+/FRsbSxClELIkQxQTqB808eCXvoI/+ZM/w/lzm0jqWWhaGp1OF6PRCPV6HdlsFolEgmcOarUaisUiW5onkwlbu6nx3HVdlEolVqapgRoAF2t5nodms4npdMrFXpVKBfV6HYVCgQvDisUif962bZ4DI7U2n8uzkptKpdDr9SAIAhYWFrCwsIBz587xNVFumR5LUn9d10WtVpvn1zMZAPMd6OFwyPbwfr+P0WgE13URBAE3oAPzyarl5WUkEgkUCgXIsoxLly7xxjURVs/zOLeeyWTQaDTQ6XTgui7nxWm6bTgccq6ZWtBpeowIL6m/sizD933+mcbjMS5fvowgCFh1psMKmgyrVqtMtH3fh+u6sG0brVYLmqYhk8kgnU4jlUohmUxCEASMx2Nks1lomoZ0Oo1SqYS1tTVW66nNnWICVCxXqVSuyqdT8ZumaUilUigWi8hkMvPiNDUBz/UOVW4FmpaAIABBEPIm+Wj07Pni6+l9/ErC07z5lIQAKI6MxokOpkUz/sU9xg2LV+t72dFd9BeH6C+O0DjRmU+zHP7iFyNGjOsL29vbeOSRR671ZbwmEYkhhgtjiKGAQj0HxZXRON5B/UQbzY0OGsc72DvbwN7ZBtrrPVhp5zX/96iTdA+z4RGuXLmCr3zlKy/bfQkRBWdfyDcLAj71qU/hR37kRwDMT85rtRr+xb/4F/i5n/s5APNWwmq1io9+9KP4sR/7MZw7dw5nz57Fo48+irvvvhsA8LnPfQ4//MM/jP39fdRqtb/xfonI/Mr/999DkmQmapVKBVEUMfElqzKRbVmWIMsyRFFCt9fGbDbFnXfeiTvvvBWLSzUosgJNViDJPnwIsC0ff/ann0e3O8DOzhWsr61D11OwbQf7+/uYzUxY1gzFYhHAvDCr0+lgdXUVkiRxizhtXFOx2Xg8hqIoWFxcRBiGqNfrrJJubm4ebnrPYNsOHySoqopWq8VW5Fwudzg/NuHG6aOkneagzNkMKxtrmAznyqs5nSJlpDiPTgVyNJNFdmQi7UT4DMPghnJq6w7DkNvPRVFEIpHAZDK5qhztzJkzGI/HKBaLrMq2Wi1Wo6nkjG6PtrZpy7vf70NVVZ7hOnv2LBqNBhRFQT6f5wZ53/dhmiZnslVV5dks27Y58zydTqEoCsIw5Nz70Zy7JEmcvR4MBshms2yBp11uALzFTX0A9JySik+t4IlEArquo9VqQVEURFEE3/dRKpVgWRaOHTuG7e1tLrfzfR+KovB9UnabHAXlchmtVguO6yIIQrieDU1TkclkMB6PYdsWvzdnsxn+8wd/ne3v19v7+Oh7+TOf+QwMw3hO3/OdED3H9oxQiuAkHQwWR7BT7gu+vxgxXklYYwv/5+r/cd2+l1+q9zEwfy8HSoD6iQ68F7rdGiPGdYjn+j6+lqD38gvB2bNn8R//43+Ms9qvIOjvSzNrIVACTArm3zxv+Bon2QCACNBMFUZDxwff9+v44v1fxAuhw8/lvfy8Fe3vhu3tbTSbTbzlLW/hj2WzWdxzzz146KGHAAAPPfQQcrkc/wcdAN7ylrdAFMVnPQ1zHAfj8fiqP8Bcvcvn8/B9H/l8HltbW+j3+2y/9TwP/V5vbsMuFrjASlUVLCxU8NM//S68/e/9HSyvLENNKJAVEUHowzRt/Nmf/gUe+spXce7cRbSaXaSMDK5c2cN4MsZ4MkIyqeH06VPI5XIIggDVahWJRALr6+sYDodwHAe9Xg8XLlzAaDTCwcEBHMeBYRhYWVlh+/N0OoXneRiPx2g0GgiCAIPBAFE0J3OpVAqz2QwXLlxAFEXY29vD3t4erly5gm63y0TccRxcvnyZM7+KoqBUKkHTVOzt7QHAofI/b2un9uzJZIJ2u82K+mw244bzyWSChYUFeJ6HXq8H27Z5r3o4HLLSOp1OYVkWBoMBq86DwQCiKEJVVdx0003Y3d2FoihslbdtmxvTU6kUhsMhVFXF6uoq+v0+6vX63Na/sMCqMM2KkWJL9mvKLpfLZbTbbb6WIAjYCk7EnSzpNPc1Ho+RSCTQ6XTY8TCbzVghJ+UcAJrNJlRVRSIxz44cHBzw58naTiq1YRisdrvunNCVSiV2DViWhWw2i4sXLzKh1zQNtVoNmqbxn0wmg2KxiCiK0O12r3I2UGP5/HmZwvNcJHUdQRDwQcL19D7+bu/lF4thdQwr7eDgVAvj0hQ7tx18xz+7N9fR2ujBTsYkO8arH6/0f5NfDEIhgi8HqJ9sY++mRkyyY8S4wVCv1/HlL3/5Wl/GqxoRIoRChFAMYaVsTAomOqt9dFcGGCyOv2mn/m5/YgDC3EJ/4RvnceHpCy+IZD9XvKRlaM1mE8C8VfooqtUqf67ZbH5bdlSWZRQKBf6ab8UHPvABvP/97/+2j08mY0ynU5imCUmaN4wHQYgoEjCbmfMdaF2H5Tso5pdQEAQUClmsrizi1ltvhiQJACK4rg/Pi2AOTNQbdTz26NdgzhwkFA2BH0FRZOQLeSwu1bB9ZQeB50NLqGg0GlhfX8fBwQFbmymHK4oizpw5w2QwmUxyXpxa0lutFlZXV1nx9jwPpVIJruuiXC7DcRxsbW1hY2ODG9RpJ7pUKqHT6XBRGBV9BUHAn0ulUrBcB6rjQFM1pI0UVg/bwVutFgAgkUhwSzbNTk0mEywtLWF3dxfdbheyLHPDO1nTqbxsd3cXoiiiUCiws4AONCgXffnyZbbz53I5biOXJAlnz57F448/jnw+DwCQpHnTIM22kVpObeiSJOHUqVPo9/vwPA+e57F6S+Vy1IhOJLRQKMDzPOzv76NQKLC1/eabb0aj0YBpmmxxJ2s42bzT6TRGoxESiQRWVlbQ7XaRzWa5kTyRSGA6nbIKTocFR/ex6fvH4zF832d3QKPRQBiG3HhPpL3f7yObzbIbo1arodlsIpFIYDgczq3qRgozawbLdiCKAk/dBb6PlGHMHxPru5RBXIP3MfDs7+UXi3wri/3TTbiah3FpCtmV4Kn+VYUdMWK81vBK/zf5hSBChFnGhp2yMVx4eTJyMWLEePkxHA7x4IMP4q677op3tV8meAkf4/IUgRLANg5zyjFeEGzHwRe+9MWXfDf7W/GSKtovF973vvdhNBrxH1JofT/guSnDSB5OL1mYTuc2XlVLoD8aIVMoIpRl3P76u/GmN38vXve6WyBJh03jUQTfD/D440/goYe+is/+yefg+RECHxiNxgjDELIi46B+gINGA0nDgChJyOfzKJfL2N3dZcXS8zzkcjm2YVO5GOWRCYIgQJZlnDp1CpZlIZfLsaJLLeqj0Yh/AZpOpyiVSrzPTNbqRCKBra0tnvuiTWwq8Gq325AEEaViEaIo4LHHHmOCTZlfat4m5ZgmrEzTRDab5SIyUm1VVYWu6zg4OICmadyCnUqluPCLWrRpcxuY2yva7TbPfUVRhGazeVV5meM4bIOnBm1yJpBCO51O+WcmVZhavuv1OsIw5D1xevzJhl2tVvkAQ5ZlfOMb30Cr1WKrFJFVAOwIoOdS0zS4rstK8mQygaIokGUZuq6j0+lwjpva0wuFAreYk01+NpthPB4fFpqpvIlNRWfD4ZBfH4ZhQJZltFotzGYztmPR7VuWjURC5Zby8XiMyXiKwWAIVdUgitffqMCzvZdfLMzsDMZQR76ZgTHSYYz0qyYfYsSI8dLhpXofzzIWektDNI91YpIdI8arAI8++iieeeaZa30ZrwpE3/K/7tIAzeNdjMoTTAuzmGS/SGw9dRlf++JjCIKX93F8SX8Tp0bsVquFxcVF/nir1cIdd9zBX/Otpwe+76Pf7/P3fytUVeWpo6MIggCKonBrtes50HQNelKHKEWwbRvrp47hda9/A0RVRS5jwEgqEKUQiGQEfoQvP/QIDvb3IYjSvO5d1eDYLgRBRK22BM9z8Y2nvoEgCuH2B1jf2IDv+xAEAd1uF6dPn8bm5iYAYGVlBZIkodvtYn9/H6qqckaYGqspd6vrOk970QzU6uoqOp0OptMpt3KbpglZltFoNCBJ84w5kcl0Oo2trS1sb29jaWmJb7/ZbMIwDKRSKbTbbRjJJNSEyrNUe3t7TKQnkwkr7Zqm8YbzeDzmx52yzUSyjxaQ0Z739vY2qtUqW7GDIIAkSWg0GrAsC+l0mlVtQRCQSqXQ7/fRarWQy+VQLpeRSCRw4cIF6LqOcrmMVCqF8XgMQRBQKpVw5coVJpXUzK7rOnRdxy233MJlBq7rIpfLYWVlBZ7n4fLly/yxzc1NzrOPRiNEUcSlagDYkWBZFj9Ga2trfHDi+z56vR5SqRQ0TUO/34coiiiVSoii6LDdfj7XJggC57Kn0ynK5TIMw4BhGGi320z46aAhk8mg1+txrn88HuPMmTPY39/nKTFd17G9vY1sNgdRFKEoMjRNhSzbsG0bsqZAnEno94dIfIf3zLV8H3+39/KLhZW2YaWcq/YW4wbxGK91vNL/TX6uCKQAzeMdeIkAwd+UJ4wRI8YNg9lshgceeAC33norr6fEeH6IMJ/WCsUIvaUBzNy8eycSX3jbd4yr4VouLnzpHDrbL6+aDbzEivbGxgYWFhZw//3388fG4zEeeeQR3HfffQCA++67D8PhEI899hh/zV/+5V8iDEPcc889z+v+NE1li7Hre9hvHiBbymM0HaG6uIA3/m/fi7/7d96G4xuL2KiVUElpSGo6ZqaNra0r+MM//GM8+tWvIQxEmFMLvd4AqpqEbXtwHBdPPfUULl++jOXlZVQWqrjjrjuhahqiKEIURdB1Hf1+HydPnsQdd9zB1upsNouTJ0/i9ttvx2g0wvb2Ns6ePcsb34qisDpdqVSwtraGarWKCxcu4PLlyygWi9jb2+PZKlVVmaATGe50OhgOh8jlcqjVagjDEM1mEzs7O7j99tvnDdXpNJZrS5hNTUynU6yurmJlZQULCws4duwY0uk0lpaWIIrzl8H29ja3jpOC63kel5+5rotOp4MoilCpVFAul1Gr1biIjgrYOp0OX1OlUjksopur3oPBAP1+H/v7+2zBVlWVVWlJklAqleB5Hjdxe56HnZ0dCIKAWq0G0zSvKttYWFjA7u4uT29FUQTLsnDx4kVuNfc8j6e1brnlFhiGwSpzp9NBNpvFsWPHMBqNMJlM0Ol00G63cXBwAMuyrpoV6/V6aDQanKkn9Z4ON1KpFN+GLMtc1tbpdKDrOreee57H9vNjx45hMBiwgl4qlXjX3PM8yLKMKIowm80OlXIgjEI+1JnPlE3h+wEKhSIkSYbrPrddw2v9Pn6u8OUAXsJHKITwEj68hI/oMNcJAK7uIdfKIFBCBEpMsmPEuJ7ey0fft3s3NWGn3Jhkx4jxKsTnP/95bG9vv6y511cjIkTwEvP42/7pFnZvrmNamCGSDnerY5L9kiCKInS22/jCf/9LPMce3ReF561oT6dTVnCBOTl74oknUCgUsLq6in/+z/85/s2/+Tc4efIkNjY28PM///Oo1WrcgnrTTTfhB3/wB/HTP/3T+MhHPgLP8/Ce97wHP/ZjP/acm4oJs5l1aMuWkMtmkdDnM0dvevP34/jxjXlRme9ClAVEfgDBD7C/38VDD30VFy9uIZspIAoFdLsDWJaFbreDhYUFSJIM07SwsrKC2WzeZP31p5/CsRMncfHCRVTyBfiezzNa+/v70HWdW6zL5TI8z0O73UaxWMTrX/96dDodOI4DVVWv2mAmG/hcpcxy+ZgsyxgMBryVTbZjIq2KonBO2LIslEol3oh+8MEHUavV4LkuBMxn0ErpFDY3N9HpdJgQiqLIOedkMolqtYowDHH27FmcP3+e1exKpcJE0/d9FItFDAYDtnfv7+9jaWmJ96lrtRoajQZKpRLa7TY3j1PhGBFTmj/zPI/J+vd8z/eg2+1iPB6j3W5D0zRuNg+CAN1uF5IkYXFxEcvLy7h48SIT0OXlZSiKgnPnznFOm3LvALC7uwvLsrjJezAYsH2e2s8rlQpc10U2m0W5XMZ0OmVLviRJfEChKAoGgwG/BnK5HLa2tqAoCjRNw/r6OlzXRa/Xw+LiIlqtFmzbZncDWeQFQUC73cbKygo3pbuuyw6DoxM8ZEsni78fBEgZSTiOjTCIUCgUgVCAIIjIpLNXfe/1/D5+rmiv9SAFImRPwrA6gT5WUdoroL3eg+iLgAC0jnVflvuOEeN6xY3wXjazM9hJF8PFl6b8MEaMGNc3fvd3fxcf+MAHuHcnxrMjFEPM0jYCJcA0P4OdfmEiSYznhiiM8JVPPIhx55X579HzJtp//dd/jTe96U387+9973sBAD/5kz+Jj370o/hX/+pfwTRNvPvd78ZwOMQb3/hGfO5zn7tKgfz4xz+O97znPfiBH/gBiKKId7zjHfjgBz/4vC9e0xIQRSBCgDvuuAXlShlLK0vIptMIwwCh4yASAAQCnvrGOTQOmvNpKFmD781ntcjqm8vloOtJSJKMXC4HwzDQ6bSRTqfx13/9GPwowrmnnkG5UMRybQnDbg+6psE4zDCLosj7yDQDValUMBqNoGkagiBAPp9nsmpZFpLJJHZ2dpBMJpHNZmEYBizLYqWTLNfdbhe33347er0eZ5nJJk62ZbL4kWV5PB7DcZx5u3YYQk4ocByHi9oajQaq1SqrxE8++SQ2Dm3xBwcHbNGezWZMzKMoQjKZxN7eHtuyDcNApVJBsVjEeDyGaZrcep7L5VjlH41GyOfzsKz54Ui73eYyN8uy2CpO5WRU0gbgcLbKRhAEKBaLPPvVarW4eVtRFGxtbfFjSbZuav2mubFcLodSqcTPAbV4K4oCy7J4y1wURX4OdF3ndnW6XcqykzthMpkgnU7DcRwoioJ6vY5cLodiscjFajTppes6W+zpOex0OuxcoI/R40/t7plMBgcHB/y5KIqQTKUQBiFmpsVt7pSpn82ePfN4Pb2Pnyuy3RQSVgK7t9SRHOpI2DKGC2M4RtwgHuO1i+v9vTwuTtFdHsTFhDFivIbw2GOP4etf/zruvPPOa30p1y0iIYKju5hlLYyLJgI5iFXrVwCj9ggP/j8PvGL396J2tK8VqLzqt/7bb0OUI9x73+tRyBeQTs5nvRABvhdBEAQ0Oh38z099CqlUBt3uYD4FlstyWZgoSuj1epBkGQk1AVEQceddd+LKzg6WlpfwpQcewMaxY/j6N57C+vo6VldXMR4M4ZgzeIGP2eFGd7Vaxf7+PmRZxsmTJ9FoNCDLMs9mVatVdDodJnmNRgO+72NtbQ2JRALZbBaXLl1COp3GysoKLl++jL29PSwvLyOTyTCxvnTpEqvKo9EItm2jWq2iUqlga2sLALC4uMhzYqdPn0YymWRbeDKZhGmaWFpagmmaEASBs9SVSgWLi4uo1+tIp9NMiDOZDOr1OtbX1xFFES5evIhMJgPDMFAsFvHpT38at956K9/eeDzGxsYGjh07hmeeeYZnvsiWLkkSk0hStInYa5rGxDyKIkiShOl0ynZ92rmmrWnKstMWN7WO+74PWZZhWRaq1So8z0Oj0UA2m0U6ncZkMmGVmqzovV4PKysr3MAuCPO/8SgX3+l0sLKyAl3Xsbe3x9NkjuNgMBhgaWkJjuPwYcmJEyd4f3t7exuyLMNx5tvodEBAW+tUFEfqfCqV4q1027YhCAIymQwf3Hiex/dNrfFRFCEIAsiyfHjbU/z7//ArN8Rm53PZ340QoX6yDQgRtKmGUXkS//Ie4zWB631/9+j7OGkkEYnz92okRPATPkI5fp/GiHG9v4+BF7ej/a04c+YMPvShD/HvUq91REd8yq2NLlzNRyiFCKUw/l3mFUIURfjoP/stfOX3HnxJbu+5vJevv1ri54FbbjmNk6eOQZIAREAUUIt4iPHIxFNPPYWnzl3AmdO34InHn8B0as0VQlXFzs4Osrkcmu0WTp8+Dd/3EUYRHMfBI1/96jyH22pCS+q4eOkSBEFgctpqtVAtltBvDbC0vIzd3V2Uy2WIoojBYIBLly5hNBphZWUFKysruHDhArLZLGq1GlRVxWg0wvHjx+G6LlRVZYKeSqWwurqKzc1NGIaBe++9F6Zp4sqVK9jY2ECz2cTKygoSiQRc18VgMEAmk+Em65tuugmmaXLBGf3l9vWvf51nwKjh2nVd7O3toVKp4OTJk+j1eqxkC4KAy5cv8z74+fPnIQgCms0mK8M0NTUajVAoFLC7u4t8Ps/qr6qq3Eze6/U4kyxJEiaTCZPNXq/Hs1a0j10qlZBOp9lmTdvUxWIRpVIJDz/8MM6ePYswDLnER1EUJBIJWJaFer2ObDaLZrOJbDaLfr+PEydOcMO4dpiz1zQNw+EQk8kEnuchn8+j2+1y6VitVsPly5cxGAywtraGyWQC0zRRLpchSRJb53u9Hhea+b6PMAxx6tQpdis0Gg2e/lpcXOS8tiAISCaTTKKBeXM9EWoi5TSF1uv1AADtdpsPdqhArVQqQVVVTKdTSJJ0uL9uXpP35YtBhAie5vO/y44MX/Uh+SLaq33Yqbmlyjbc+OQ3RozrDIEUoHWsCytlo7ifR2e9f60vKUaMGNcIBwcH+OIXv4jv//7vv9aXcs0RIeJJrnHJhJ2ywcMo8e8yrxialxp45q+efkXv84aY93o2LC1UIUFA4IWIAgGeL2B3r4lPf+bP8JHf+m1s7e0DkHBl6wpEQYSsCLj5ltPwvLmy6/k+CuUSruzv4dylizCtGbL5PIqVMgqlEmQ1AUGWUVlcwNLSEnzfR6vVYlKtazp6vR5UVcUTTzyBbreLWq0GWZaxtLTEluXV1VW0221Mp1NWuAeDAWRZRr1ehyiK2NnZ4bkwaht/8skncenSJVZQZVlGu91Gv9+HIAg8r1Wr1aDrOtrtNoIgwGQyQSKRQDKZRKvVYksyEUjasl5ZWYEsy9ja2oJhGFhdXYVlWdjf32f7MymqpCwTBoMBgLkdenFxEeVyGUEQwDAMJqBXrlzh76cSMMdx0O/3kcvlkM1msbi4iGq1iuPHj2NxcRG6rmN/f59t4ZTHVlUVk8kEmqZx8ZrrulzKpmkaRqMRUqkUyuUy28cNw4CmaWi32xAEAbquc9s3AGiaxsR0NBpxrluWZZw/fx6iKMIwDFbTZ7MZzp8/jzAMMRgMEEURZ9nz+Tyy2SxKpRKeeuopVusTiQQymQxEUUS9Xsd0OoWiKBBFEel0movmKKtOP2cQBNB1nQvTgiDg/PZ4PEYmk4Gmacjn83wwAQCWZSEIgpd9suClhpWyMSma6NWGaG10MayMMS5PsHdTA+21HnzVn/8Hif7EiBHjuoKZs2DmLIRyFJPsGDFeYvzSL/0Sx/Hoz5kzZ/jztm3jn/2zf4ZisYhUKoV3vOMdPOl6LTCZTPC5z33uqt8dX2sI5ACO7mJamOHgZButYz1YGRuRiPh3mVcYvuvjL3/jf2HyCmWzCTc00Q6iABBEyIqGerONP/3zv8An//CP8LnP/y9YloMgmCvUtmsjwpwI1esN+I4HUZR4aqlcKiOfy8HzPJjTKURBhCAA0/EUmVQGvuejUCgwWRqNRrAsC7WlGkqlEiu4tB9NrdOCIODxxx9nhTmZTDJZU1WVZ7IMw0A2m0Wv10MikeB5q2QyyRbiUqmEjY0NaJqGTCbDjeOkMPd6Pezv77MNem9vD4PBAKIoIgjme+N0nVEUoVgsspKr6zor7cPhEIuLi6hUKlhdXcV0OoXrukzker0eTNNEoVBgy/ny8jJSqRSXhr3+9a/nPDMlE/b393kWLZvNzh9r00Sv14OmaZwpJ1u8JEms6h4cHLDqTfvTVOR2lJAPh0Pk83lMp1POsSuKwqqwoiioVqsAwIV01LA+Go14qzyXy/H8GBWSXbp0CdZhTIDs9qo6n0yjDfKDgwOk02kkEgkUCgWYpsmknsrPaPqLSvDG4zF2dnZ45o1m24jsz2YzWJaFXq/HDgWymEdRxB8jgk5N9b7vI5F46We0Xk6MS1MEcgDFlWEMkoAA9BdHgADMsjZc3bvWlxgjRowYMWJcM9x88828etJoNPDgg9+0wP7sz/4sPvOZz+CTn/wkvvjFL6Jer+Pv//2/fw2vFrh48SL++q//+ppewyuNCPM1lFnaRnd5gPZaby4WHHHrxXjlceWJHVz8ygUE/isrQt3QRDsCEIQiHn30cdx//wP46lf/GrbjIJfLo1wqw/d8zKwZRuMR+oM+XNeFZVnI5XJzMhIECIP59JOmaqgt1hBFEcIggK7p2NjYgCRJKOTnpHJ/fx+GYcD3PYRhiJ3tHQyHQ9x0001YWVnB+vo6zp8/zzliWZaxsrLCiqzneUwWdV3n7HI6nYYgCIiiCNvb28jn80wAFxcXMRqNWBm2bRvD4RCu62JtbQ2CIGAwGHDD9c7ODgaDARYXF7GxscGFW/feey96vR6KxSJWVlYwmUwwmUz4evL5PCqVCm677Tbe0Y6iiNVny7IwHA5ZZa1Wq1z61mg00O12oes6Go0GvvrVr8L3fd6mrtVquPnmmzmXTaRXVVUcO3YMnudha2sLvV6PDwjIDQAA+XwepmlyuVwYhtjb24Pv+xiPx9jf3wcwz1KTvbpSqXDZ2Wg0QqvVQhRF6Ha70DQNrVYLxWKRFW46zBgOh6jX63Ach4vfXNdFFEW4fPkywjBk18CpU6dgGAZ6vR5GoxFOnz7Nzw81hFNOfDQaXdWc3m63uXiNSsxEUUSlUuEDByLdvu9zQdv89TfPn5N6ThltRVHQ7/eRzWZ5Ku1GghAJGJdMjEtTjMsTTIpmnFuKEeNGQqzOxIjxskKWZSwsLPAfWlUZjUb4rd/6Lfzqr/4q3vzmN+Ouu+7C7/zO7+ArX/kKHn744Wt2vcPhEA8//DD/PvhawGBxjPZ6D53VPqaFGdykF//deI3hOR6e+aun0LrUfMXv+4bOaH/hC1/G9vY+VpZX4bkhSqXSYdFWgEKhgHq9zg3VN998MyzLgm3b8D0PgiJjappYX19HNpvF+fPnMZ1O4fs+7113Oh0MBgPk83kUCgUcHBwgm81ClufW6MFwgLvf8HpcuXKFy7Fe97rX4YknnsB0OsWpU6dg2zYODg5QLBahKAqazSYXf4VhyBni4XCIYrGIpaUlXLlyBbfeeitPTk2nUySTSSQSCZ7aSiaT+PznP49jx46xqgrMM75UotVqtZBIJHDLLbdgPB6jWCzCNE1uHS8UCvzPlmXB932cO3cON910E7LZLJ5++mm4rsvlYjQJJggCHnjgAUwmE9xxxx2oVCq8063rOq5cuYK1tTVWwA8ODtDpdLhAzfM8FAoF+L6PixcvckN5oVDgXe29vT0UCgWsr69jOBxiaWkJ+/v7sCwLy8vLPBdWq9UwmUw4y03knMi37/tQFAWGYbA67zgO73FTORsR8Xw+j1wuh/39fRQKBSQSCYRhCFVVkUwmUSwWeWKs1WrBdV2cPHkS58+fx2AwgGmaV5H3yWSCUqmEfD6PKIo4px5FEWzbRrFYZBWeptISiQTK5TKGwyHG4zEMw0Cz2WTlnb6fCD89L5TzpmK1G+k/bIEcINNJYZa2EYkRAjEm2DFi3Gjo1YbQoV/ry4gR41WLS5cuoVarQdM03HffffjABz6A1dVVPPbYY/A8D295y1v4a8+cOYPV1VU89NBDuPfee7/j7VH5K2E8fulttX/1V3+FH/zBH8Ttt9/+qixGo/z1NDeDnXIwy8x/j4nJ9fWBKIrQuFDHw3/w0CuuZgM3ONHe3LqCSqmKS5uXEIYhypU5OZFlGf1+n8urNE1jcptKpeD5Hvq9LhaWarxnTUSo3W5zJnc2myGKIqRSKQBAsVicW5cPW6h1XcfTTz8N27aRzWZhmiY2Nzehqio0TYMsy9w0TZZw2lTu9/s4e/Ystre3AQDLy8uQJAnNZhOFQgHnz5/HwsICLMti6zM1V1cqFSiKAt/3oes6TNNEvV5HMplEMpmErusYjUZIp9M8D0aKpyiKEEURx44dw/7+PuevqVm7UCjgiSeewF133cWE/a677sLTT8/LA3K5HGzb5lkvaiV3HAcXLlxAFEW4/fbb2RbuOA4ymQxvjCeTSb5u+rkBsNWangNS0+lnd10XhmFAFEXs7+/DcRzouo58Po9Op8NfVy6X0W63uVwtmUxiOp1iZ2cH3/M934NLly4BmB9IWJbFk2WUkU6n01woFoYhZrMZ0uk0Go0GNE2D67rI5XIA5ie1mqbhySefRCKRYMs+ACQSCaTTaXYdBEGA6XTKBFgQBC7Po6Zwso4D4L3vIAigKAoymQw/R+TMmEwmbEmnGAC5DCaTCYrF4ivzRnwJ0KsNEa5d66uIESPGi0L8i2WMGC8b7rnnHnz0ox/F6dOn0Wg08P73vx/f+73fi6eeegrNZhOJRIJ/PyFUq1U0m8+u4n3gAx/A+9///pf1uj3Pw2c+8xmcOXPmqlnBGx2hGCKQQ7iai35tdHW8Lf678LpB6Ae48OB5tLeuTV/BDW0dFwUJM8uE7cxgpOatz4mECkVRmDwmk0mIooiLFy+yxda0LGRzOVza3MT+/j4kScLOzg6azSYymcyhai1D1VTcfMvNKFfKECUJ4WEplSzJSGezSKXmG83A3M5Dmd90Os3TS6IoIneY/x6NRpzhNgwD4/EY0+mUFV5qoQbmBHQ0GiEIAqTTaciyzIo9AM5lz2YznDx5EkEQ8L4zEVpFUWDbNmazGUzT5EI2UkZ938fKygre/OY3cy7Y8zysra3hypUr6PV6SKVSuHTpEiRJQiKR4NugsjF6jJeXl5HP51Eul7GzswMACMOQPw+AG8en0yna7Ta++tWvwjAMLh4bDAY8oZbJZNhy77oufN9HpVKZW/sPLdWSJHFmu1AoAAA6nQ5M04Rt25xX9jwP5XIZjUaDc99UYhcEATqdDoIg4Py567o8qUX2dHou6/U69vf3MRwOIUkSgiDAwsICEokEzp07h1wuxwVujuOg2+2iXq/z/QHgmIBpmphOp3xgQPNp2WwW9XqdDw/ocKTf76NYLHLhHAAYhgFJkpDP5/m1ThNpk8mz72hfbzDz1rW+hBgxYsSIEeO6xQ/90A/hR3/0R3HbbbfhbW97G/70T/8Uw+EQ/+N//I8XfJvve9/7MBqN+A+JBS81/uqv/gpbW1vc23Ojw1N8DKpjNI910Tze/aY9PC44u64QRRHGnTH+/IN/es2u4YYm2oPBAP1+H2vra3AcGwsLi2g2m6xAUmGV7/uYTCZMWkvlMkbjEW9Tj8djbu92XZdzwI7jYDga4fLWFsyZiYSaQOmwzTGdScNIGVhbW+Mc7uLiIhYXF5FOp1Gr1SAIAmazGTdGU9aZSFYymeSm6r29PYzHY+i6jmw2C9u2MZ1OOb+9t7eHTqcDTdOwvLwMXddx1113IZVKodFo4Pbbb4fv+xiNRnj00UdZDe52uzh16hRWVlZ4AmowGLAlfjab8RzZyZMnYRgGXNdFrVZDLpdjRX9xcRGCIPAmdavVQqfTYbtzv9/H+vo6FhcXkUql2GbtOA6azSZqtRrCMORCsU6ng4WFBfT7fXS7Xdi2jX6/j2aziXq9zmVxRLIFQcATTzyBXC7HVnay85OCm0gksLS0xIcloiii2Wwil8uh0+kgn8+ztTyVSkEQBHieh/F4zPNqwFyNzufzGAwGKJfLnImmErhkMskZdcpj0752KpVCoVDg530wGEAQBJw+ffqqrHgYzrsBAPAJb7vd5iZ6Xdd5+msymUAURX5NplIp6LqO2WyGIAjgeR4EQUAul+PXezKZfNX8By1GjBgxYsSIcTVyuRxOnTqFzc1NLCwswHXdb4uMtVotjhZ+J6iqyqIE/Xm58N//+39/2W77lUAohhgXp+is9NFZ7WO4MIabjKdGr3f81X//S4yao2t2/zc00V5aqkHXkxgNpwjDeRP0xsYGTNNkVZpy2Yqi4MKFCxgMBmg2m/CDgEnUYDDAbDbDN77xDViWxQVbg/4AvU4X1tSEIkpYX1nFZDiCLMsYDAYYj8e4dOkSTp8+jWKxyHnrbrfL29l33HEHPM9DNptlVZRK0ai4a39/H7quY21tDY1GA5ubm7BtG7feeisWFxfR6XSwsbHBBwZPP/00Njc30Wq1IAgCT3EtLS3xrvVNN92E5eVl3HvvvZjNZty4TRNa1CLebDbhOA6CIMDu7i5EUUQymWQLMxFpUmRHoxGq1SoMw0CxWMRNN90EWZaxvr6OK1eu4OLFi+h2u9jb2+Ppslqtht3dXSQSCbzxjW+Ebdts6e71epyNXlxchGmaSKVSyGaznNsmdfmuu+7CysoKptMpbNtGKpVCqVSC583L6Xq9HqbTKfL5PABwMzuVh2xtbeHWW2/lnHm73eYSNCLWw+EQW1tbCMMQKysraLfbyGazSCQSTMrDMESr1YLneThz5gwMw0Cr1UKtVuOfh64pn89jMpngwoULWF9f52wVbY6vra1x2Rq1wlPLe7FYhCAIUFUVsiwjn89zxpwaxx3H4R4CcgV0Oh10Op3X9KRGjBgxYsSI8WrGdDrF5cuXsbi4iLvuuguKouD+++/nz1+4cAG7u7u47777ruFVfhPnzp3DV7/61Wt9Gc8Z0eH/7KSD5kYXjRMd9JaGGJemsLJ2TLBvAJj9Kb78uw9c02u4oTPamqZDlhOwbZuJr67rmEwmUFWVy7EURWGVmTLTzU4byWQSGxsb6Pf7nMldXFzEhQsXoKoqcpkM1tfWsbW9BXMyReOgDkEUMRwOEUURqtUqNjc38dRTT0EURSQSCfT7fd6M3t3dRavVgmEY3FY9nU4RhiGTo1KphJMnT0IURXzjG99g63en0+G8dj6fx3g8hqZpXHZGSm+9XockSahWq9jb28Py8jKm0yk2NzeRy+WgaRpmsxls24amaZhOp5hOp8hkMlBVFfl8HqdOncLnP/95VKtVFAoFbG5uQlEUlEolZDIZVmcpT16r1VhlNgwDBwcHmE6nPFF18803Y2dnB4qicHFbOp2GZVl45plnsLS0BNM0uU27WCyi0+lgNBohiiK+zbvuugsHBwec16bMPGXou93uVRl6mhPr9XoQRfGqyTFq+7Zt+6pG7lqtxj9XNpuFIAjc5GkYBgaDAc+uFQoFNBoNJshhGOLg4AAbGxsA5ko4RQFWVlY4Y21ZFpLJJE+ZpVIpWJaFdDrNFnHqBJBlGTfffDOazSY/7sDcEk/W8+FweFXUIJlMotPpIJVK8b75/DEKX7k3Y4wYMWLEiBHjZcPP/dzP4e1vfzvW1tZQr9fxi7/4i5AkCe985zuRzWbxrne9C+9973t5jvZnfuZncN999z1rEdorDcdx8Hu/93u48847Of52PSJCNC9llQOMSlP4qg8zdxhvi8n1DYMojPCpX/7/Ydq7tqLTDU2050qwgZWVFUTRvHDB931WQGVZ5nZn2psul8vodDqIRAG9Xg+e53FW13EcntIql8tIGwamkwkSsgLHtrHT66FSqbAFnUhqp9NBsVhEu93G6uoq24nf8IY3oN/vIwgChGGI4XDI28xRFEHTNNTrdc7hptNpLjGTJAmZTIbzt8PhEIPBgNvTjx07hkajgVQqddi07vPXq6oK27YxHo/5kIFmrYD5hnQQBCgWi2i1Wnj88cdRq9WQzWYxHo+xsrLCO9ekwHe7XZTLZf45AHDuvN+fT6cVi0Wsr6+jXq9zNvvUqVNsgafZMFVV+bEvl8s4ODjA4uIiNE3jdvWtrS1sbm7yx8gGLUkSDg4OAIDJL82WjcdjiKLIOXTfn28WjsdjJJNJ1Go17OzsoFwuYzweY2FhAfV6HYuLi9zuLYoiZ7ibzSYT+cFgAE3TcPr0adTrdWiaxp9vNBqYTqdciFYqlfiQpNFoIJlM8k46ZcIpQy8IAgRB4EhBoVDg161lzf9iz+fzSKfTbDlPJpMYjUZYXV3l2TfKZvu+z8+zaca55xgxYsSIEePVgP39fbzzne9Er9dDuVzGG9/4Rjz88MMol8sAgF/7tV+DKIp4xzveAcdx8La3vQ0f/vCHr/FVX439/X186Utfwpvf/OZrfSnfhggRIiGCY7iYFE2Y2RlCOY7g3ahobjZx6aGLCINrKzrd0EQ7lUpDlueq6Wg05KkjTdPQ6/WQzWZZARZFEa1WC7ZtQ1VVLC8tY2KaqNVqGI1GbCd2HAdr62so54sYDgZM3nVdR6VS4VysJEm4ePEilpaWcPLkSTz11FMol8tQFIVbom3bhu/7aLVa0HUduq4jl8thdXUVm5ubSCaTME2Tm60dx8H6+jpbh0+fPo0vfelL0DQNjuPg1KlTPL2QyWSwt7eHXC6H8+fPwzAMJpCz2Qzlchmrq6sQRRGKorB9/OTJk1xydu7cOayurqLZbMK2bVZ/2+02jh07BmC+zdhut+F5HjY2NpDNZnHp0iW2d89mM94Cz2az8H2fDx2o0VzXdbbvC4KA7e1tZDIZ1Go1nD9/HktLS7BtG7quo9vtYjKZcEY9m82iUqkgnZ4Xz5HafvLkSYzHY9TrdQyHQ868z2YziKKIxcVFntKazWaYTCYIwxAnT57kDP6VK1ewvr6Ovb09JBIJKIqCu+++G8888ww6nQ7b1AHwtnWtVsPq6iouXrwITdNQq9X4saPm9P39faiqygq87/tsKR+Px8jlclzMl0wmUS6X8fWvfx0bGxuYTCZwHIcL3i5cuIDxeMwb4rRFnslkMJ1OMZlMMJvNUK1WuXxOURR2VcSIESNGjBgxbnz8/u///nf9vKZp+NCHPoQPfehDr9AVPX8MBgM8+OCDuOuuu5DNZq/15TAiRJjmZ3B1D7OsdXWDeIwbDoEf4OE/+DI62+1rfSk3NtE+efIkNjc3MZ1OUK/XkcvlkMlkEIYhjh8/zm3OR1VqRVHgui66vR4y2SyeeeYZLv1aWVmZE+ZKed4sfdiCTfNUzWYTa2trCIIAe3t7PK1F5D2dTqPdbjPp2t7e5mw25XBph1lRFGiahqWlJc6Iq6qKS5cusX2cJpyCIICqqrx3mEwm0Ww2Icsyer0eMpkMWq0WisUil6CNx2Ps7e1xxnh3dxfHjx+HIAhIJBJwHIfJm2VZkGUZuVwO29vbCMMQX//613HbbbdBkiQ4jsMKeb/fx+23345CocANkrQ7vby8jG63y9vTS0tLmEwmGAwGODg4QKlUwmw2w/Hjx3H+/Hk888wzOHXqFHZ3d5HNZhFFEWRZRrfbRa1Wg2EYOHHiBPb29tBsNplIiqKIra0tzl5TdnlzcxPHjh2D53k8dzWdTrG+vg5d17G1tYVEIsGb26QcLywsQFEUOI6Dxx57jBvr8/k8Z9VvueUW7Ozs4MKFC/B9H8vLy2zdp8ZvTdOws7ODMAwxmUxQLpdRq9UwnU7RbDZhGAar87IsYzKZoFAoYDgcolyev+bS6TQSiQRM00Sn02FSTh8XRREHBwf82lNV9aoWczpcGgwGCMNXfi8wRowYMWLEiBHj2fC1r30N58+fxz333HOtLwUA4MsBxuUJRqUpQjmM7eGvAuw9tYtvfP5J+K5/rS/lxiba29vbnPM9deoUBoMBk41Op4PFxUXeM57NZrwrfOXKFSRCDRGAcrnMCme32wWAef7ZdeG6LgaDAe644w5sb2/DMAzk83k8+eSTXAym6zpvRV+6dAm1Wo3zxtQ8vr6+ztNWRJANw0C1WsXOzg6TsVarBcdxIEkSXNfl9m5FUWAYBmzbBgDOfZPia5omvud7vgeXL19GpVJBIpFAJpPBYDDgPHO5XEa/30c6neYsO21QUy5ZVVUUi0W2X1++fBlRFHFOO5vNIplMcumaaZqcT6bbrVQqaDab3OhtGAbniW3bRj6fR7vdRj6fx8LCAk91AWBrtGEY0HUdu7u7fA3lchmyLOPy5cswDAOmaaJcLsOyLCQSCbiuy1vo6XQaYRjybVHT+eLiIoIggO/7vKl+cHCAbDaLRqOBRCLBrevpdBpPPPEET3hNJhPous4knB7fMAyxt7fHbgLDMDAajfj/aeeaugJoe1sURWSzWT6AIes5tZEnk0kuzVteXuZZNIpF0M/teR4cx+HngHoJBEHg6bkYMWLEiBEjRozrAePxGF/84hdx9uxZ/v3vlUSEuR3czFmw0jZmWQuBHCISY5v4qwGBH2Dna9s4eGb/Wl8KgBu8dVyS5vvCpVKJp52m0ykODg64COzKlSuo1+vodrtcJkWlYoqiIIoiqKrKNttkMonxeILjx4/h3nvvhWVZ2NnZYbV8b28PtVqNd4/JSt5qtXDixAkMh0Pe1N7e3kar1UK9Xuc2bcuymHh2Oh3ous4EyrIsbsUmBZsKvQaDAUajEZLJJEqlEpLJJM8yUAt2rVbDZDJhCzWVhRHxrlarXMbV6XTQarUwHo8RBAFkWWaSt7GxgWKxiGQyicXFRWxsbHAmPZlM4qGHHsKFCxd4N7zdbsM9PJgwTRNBECCZTKJer8OyLNTrdSiKgmw2i2w2i8lkAt/3eRKNSDkdlNCcmeM4rBCTpfzOO+/kn0kQBCbVlGmvVCqselNe2vd9dhGMRiPOyJumiWKxiCiK2GFQKBQ4a12r1aCqKsrlMmfWKfMuiiIGgwGCIMCJEyeu2vTWdR2lUgnZbBbD4RC2bWN9fR1hGCKRSPABymg0giRJvHs9Go14yzsMQ2SzWZ70AuYFZ/Q80GtZ13WIoshZ7Xq9zgc9MdGOESNGjBgxYlxv+NznPof9/f1XdIY0QgRfDmCnXLi6h85KH+PSFH4iiEn2qwRRFKG328Xnfv1Pr3k2m3BDE+3hcIhOp8Nky/M8iKKIQqEAAExsySbtui4ODg4gKwpWV1dhmiZ2dnbg+z5OnjyJWq2GY8eOYX19DX4QXGXL3t/fR6vVgmmamE6nME0TiUSCSWwymcT58+eRTqdx8uRJVh6PZpWp5ZsmtUi9JjJGpVx33XUX7zS7rgvbtlGr1bCysgLXdbk465ZbbsHm5iaCIODStbNnz2IymWAymSCXyzGRO5rvtSwLCwsL3F596tQpmKaJS5cuQdd1PPLII9yg7rouHn/8cQDg7WbHcaAoCiRJYtsylZx1Oh2YpskHGfS1wPwUk54vskQ3Gg20221Uq1Uu9LBtG4VCAcePH8fNN9+MVCoFwzCQSqV4UzqZTLJ6Tg4A3/fhui4uXbqE7e1t/hlmsxk7CorFIhNpmnIbDAZYWFiA7/tsh6ecPR1kjMdjPijwPA/NZhOJRAJRFKHVasH3fVSrVUiShHQ6jWq1ytNmoiiiXq9zAZ1pmnBdl5VpOmg5ffo0Tp06heXlZbiui93dXfT7fQDg26XyNLKWK4rCByLkRKCDC9rpjhEjRowYMWLEuJ7w8Y9/nON5LyciRAikENOCiebxDuqnWti/qYlQiW3irzZEUYRv/MWT6O12r/WlMG5ook2Z3eFwyFbdtbU1VkufeeYZpNNp+L6Pg4MDNBoNCIKAqTVDcGgrJlvu1tYWptMptra2oCgKGoezS9TyDICzzUQEyTrcaDR4G5oIdKlU4vmlWq0GXdext7eHTCYDXdchCAJfF219N5tNKIqC3d1dXLlyha3e5XIZg8EAgiBgMBgglUrBdV2MRiNks1kUCgVWNTudDkRRhGVZyGazrN6T0kuZaSrLMk0TrVaL7emapjGpFUURQRCgUCigXC6j0WjgxInjCIIApVIJmqZhPB6zKhyGITKZDO655x4uhUun0yiVSqxo5/N53HrrrZxPJvW30+mw/TuRSKBer6NeryOKImSzWXYPSJKEO++8E6Io8p9ut8v553q9jrW1NRw7doy3uWVZZuu5KIqYzWY8JUbFdnQAUCwW4XkeDg4OsL+/z2Vyx44dg+/7uHTpEu+XZzIZbopfXV3F9vY2BoMB6vU6Ll++zMVm5XIZiUSCS9Fmsxlb1g3DgKqqqFQq6HQ6aLfbnLPf2Njg11Gv1+Mog2VZWF5exuLiIhfYqaqKarWKUqkEWZYhCEJchhYjRowYMWLEuC7x0EMP4emnn35ZbjtCBE/10KsN0Vsaorc8QHutD8eInX6vZrgzF3/6f//Jtb6Mq3BDZ7QVJQFNm+9mUz51Op3y1BPldev1Om655RYmc2ldQ7s9b6KLoggnTpyAZVkwTRPj8fhQcfTQ7/extLQETdOwubmJEydOcLu1ZVmsUhPJr1arsCwLzWYTqqpidXUVrVYLlUqFrcyVSoVLxYj4SpKEQqEAwzCwv78PwzBgGAZKpRIAoN/vY3FxEY8++igKhQK3X/f7fVSrVQBzW7HjOKwmd7tdzmID8+I4VVVZCaU/6+vrEEURGxsbGI1GbFe/cuUKwjDEaDTC0tISgLmtXpJkuK7LP5dlWdjf34cgCMjn87hw4QIGgwFuuukmuK4LwzDQ7/eZ2CqKAt/3IYoiz67RbZMNnxraaRILmE9cKYqC8XjMVnXa8aYSON/3kUwmWSGu1WpsGa/X6yiXy9wC7jgOk+XBYIBSqYTRaMTPoyiKXJLnui4/zwsLC+j3+2xxp0b7ra0tZDIZLoZLJBIYDAYcZaD9b5rpoueFGunJCk7N7DRVRvvrlJNPpVJYXV3F3t4efN/nDLrneXBd96ptSlVNvNxvwRgxYsSIESNGjOeNKIrwO7/zO/i1X/u1l/y2AyVAe7UPO+V884Oxev2qx5/+35/BuDO61pdxFW5wRTtgMr2zs4NEIoFbb70V2WyWbb9bW1us5tK+sq7r2NjY4JzvpUuXAADFYhFveMMbUK/XIUkSJElCr9fDM888w2RHURRMp1OIoohUKoXxeMyKsud5nHnudDqo1+u8H91ut7ldWlVV3vdeXFzk26zX6ygUChiPx7wxrWka8vk8bNvGyZMnkcvl4Louer0ewjDE/v4+giBAuVzG4uIims0mz35lMhmsr68z6Wu1Wtjd3cV0Ov3/s/fnQZLd53ku+OS+73tmZWXtXV1dje5GYycIiBYlglppy57LCHpnSBEOcubKumPdyxmFxtboXl57FBqHFBorHL4KWWFRupIt0SQlUQQJAiCxNLobvVZ3V1XXklWV+75nntzmj8L5REjcQBJoNHSeiAwEKk9l/fLkOV31/b73e1/a7TZLS0tUq1Wy2SwvvfSSdPC73S7dbhev1yumXLVaTSLN1tfXMRgMNBoNvF6vFJz1ep21tTXMZjN7e3v0ej0ymQwHBwe43W6Wl5dFiq7T6QgEAm+a81Y7y4DMQ6uzy4VCQQzHksmkxHGpUvxyuUwul2NhYQGdTsfa2hrXrl2jWq3KjPPR0ZEUsKqM+xvd20OhEOvr61itVhRFEXOz8Xgsc/7tdptutyvPHR0dSSdfNSFT48TU2C2Hw8FkMpH4OHXGPJ/PA5BMJkU+NRgMqNfruN1uisUidrtdFAoul0vWCsg1Oh6PRZ2gGqt1u11GI811XENDQ0NDQ+Pdye7uLi+++OL3/TpqBnbL1yGzVCC3UD4usnX81UPjPU233uHSn74G77Jx+/u60C4WS2ICpc7SXr9+nZ2dHTqdDg6Hg0QiQTAYlAzrdruNwWCQrrPVaiWZTBIOh+n3+2SyWRYXF1lcXCCVSpHNZiUbWs2jrlarNJtN0uk06+vrZDIZrFYrpVKJcDiM3+8nGo0C0G63qVarMmf81a9+FbvdzurqKm63G5/PJ87RiUSCTqcj0t+bN29y9+5diSc7PDyk0+mI47eab60oCul0ml6vx/r6OrOzs0QiEYxGI6VSCZ/PRzgcplwuS+43HM+wq8Wa3W5nYWEBv99PJBIRibwaUVWr1Uin07RaLWZmZnC73YxGI9rtNi6XS3KqT5w4gdfrZW5uDp1OJ++7XC6zs7NDv9+nWq3i8XgoFAq4XC78fj/r6+sAkvMdj8fp9XrY7XaJ0TIajTz22GPUajVWVla4ffs2iqIQCASYmZnB4/Hw8ssvY7FYODg44PTp0+Karm4izMzMUKlU6Pf7NBoNlpaWiMfjolY4PDwkk8mI3Pvo6IjRaCQyeFUKv7q6yvb2tszfqzPV6XRaiu1HHnmEUCgk5yGZTLK0tITD4aBQKGAwGIDjXEk4LrJVIz21w60oCqVSicFgIIqMQCAghXmv18PpdALIKMJoNEKn05HJvDscFzU0NDQ0NDQ0/jqtVou/+Iu/oNvtfk/fP9FPUCxDBg6FcqJGOVmj7xqg2BWtuP5bxHQy5XP/+2epZqr3eil/g/tcOv5Xyx+NRjIT6/F4aLfbADLje3BwwGAwIB6Ps7W7w/nz53E6nWxtbVGr1TCbzXg8nuPcaa8Hm93O1p1NAoEADocDOJ7Rnp+f59VXX8VutxOJRMhms8zOzuJyuSiVSlgsFur1OtVqlUKhwNraGiaTiWq1KrFUNpuN8XgsxlVLS0uUy2VOnz5No9GgWq1SqVQYj8esrKyIi7TqpK6+L7/fL47knU4HQLKlDw8PsVqtDAYDstks9Xqd8XhMuVxmdnZWDNTUaDKTycSFCxdwOp3odDpisRhut5tsNsu1a9eYmZmh2+3i8/nY3d2V9eRyOYk/s1qtXLlyBbfbTSwWw+PxcO3aNZxOJ+12G6PRKPFhsVgMq9XKxsaGmLS53W6sVismk4nxeMx4PMbpdFIsFkkkEmQyGW7cuCFmYP1+n0wmI+7xtVqN5eVlcTm/efOmdK+DwSDNZpOdnR0SiQSKolCtVmW2eTqdotPpSKVS4tjucDjkPbdaLckk1+v1VKtV4vE4jUaDYrEonXZV3XDjxg3S6TQGg4FYLEYikeDGjRsSbba2tkY6nRYndI/HAyDdbPXnq118taCORqPs7OwwPz/P/v4+er0eo9Eo3f94PM5oNKLZbIi3gIaGhoaGhobGu5Ht7W0uXbrEU0899Za+b2gZ0gx06Hi7jI2T4wxsjb+V5Lay7Fy4y3j47lNy3tcdbbXDOJlM8Pv99Pt9rFYrsViMwWBAr9eT+e35+Xlxc7ZZrUQiEdrtNpVKBY/Hw2g04tatW8cd60qVu9t3sdlsxGIxQqEQTqdTOrJqpNJwOJQO6d27dykUClSrVYbDIQaDgXg8TiAQIJvNUqlUMJvN/PAP/zBGo1HmbdvtNoqi4Ha7JZu73W6TSCRIpVJUKhWRqRsMBnw+nxSjqrGZWoDF43GZGVa7+Pl8XmTffr9fvk918HY6nZjNZjqdjrx+v9+nXq9TLBbx+/2cO3cOu90uMuZQKCQbBalUildffZXZ2Vkmkwl7e3s0Gg1effVVNjY2xJndarVSLpfp9/uEw2EymQy7u7siyVcUhWKxyMsvvyzmX81mk0KhIJsJw+FQ3NjVDQtVDTAajSRP+9FHH8VqtfLggw+yuLhItVqlXq+LRF+VxrvdbhYXF8lms+zv79PtdqnX6xLF1mq1MBqNNBoNuaaGw6FscNTrdQCZv280GmQyGTqdDuFwmG63+yZ1AsBwOGRra4tQKMTKygrr6+tMJhOq1Sput1tM3IxGI1arlWq1Kn4AzWZTPvt8Po/H4yEejzMcDmm1WlitVqLRKEajkURiRnLXNTQ0NDQ0NDTejVSrVV555RUaje9utrbr7FNO1CjOVmmEWwwtI63I/lvMdDLl1lc3ONo4vNdL+abc1x3tarVGOByWeKlkMkmr1eLOnTsyo9xqtajX60QiEa5cuYJerycai/HlL38Zu93O008/LfnP7Xab6XTKQBkQDQSxmC0Mh0NisRgHBwcydxsKhSQvejqdMj8/T7FYxOVyUSwWGY1G4sKtKIoYft2+fRuv1yuv5XA48Pv9tFotcrncm+a8h8MhvV4Pn89HLpdjZWWF7e1tTCYT/X6fM2fOcHh4iNls5uLFi7z//e8nl8vR6/UYjUYSOZZIJFhYWGB7e1siyfL5PIFAgHA4TKvV4vDwkPn5eXQ6ncwZr6+vs7+/z3Q6ZW9vjzNnzrC5uUk2m5WYMlVGHw6H6XQ6dLtdnn76aa5du8a5c+fENTyfzzOdTolEIrRaLfb29pibm2NpaUniqdQMaavVSiqVYmdnh2azyfz8PB6PR2LMvlE90Gq1xDBudnZWuubb29vkcjksFguKokhWNyAbCt1ul6WlJYl3s1qtuN1ukskkmUyGwWCAXq/nzJkzHBwc0Gg0JC5OdTsfjUY4nU7Jvbbb7TgcDnK5nJjUfaNBWywWkw788fX7V+7i29vbUuT7/X5SqZQY89lsNtkU2draEgf3QqFAsVhkOp3idDppNBrs7+/LhoLdbrsHd6WGhoaGhoaGxnfPiy++yI//+I/jdrvl7zWV6RtDt21/h2agw9AyYmwc3+etQo0fBNPplPx2jlf/6GVGyuheL+ebcl8X2uFw6E3RVblcDrvdTiAQkJgjs9lMu92mVCoRj8ffMIkaEQ6HMRgM7O/vY7PZyOVyeL3eN7KJjdRqNXxen0R+qTPXvV5PjLtMJhOdTodcLicz0M1mk8XFRXq9HuPxmF6vRzweJ5FIcPfuXS5fvozP5wOOO/J6vV66keoaVlZW2N/fZ3l5mVKpRCqVYnd3l1arhclk4vz581y/fp1YLMbGxgZra2siFbdYLOJgns1mpXjX6/UEAgFcLpd0TO12O61Wi/n5eWq1GlarVXKeL126JJFY6+vrXL58GZfLhcViodVqkUgk6PV6KIoiUvJoNMqrr76K2Wzm6tWrkjceDAZlU8FmsxGJRBiNRty5cwej0YjD4RA38rm5OdLpNMPhkPF4zN7eHidOnCAUChEKhSgUCiiKQigUwmQyoSgKk8mE0Wgkc9eqM7faBe73++JYHolEKJVKLC0tAcdSbdVVvdPp8Oqrr4rc3GQycf36dQaDATabjel0SjAYlM63oigyH20ymeQ6UjdLvF4vg8GARqNBKBSiXC6j0+nQ6/Xk83nG4zHFYhGv18vq6iqVSgWfz0e5XGZvbw+j0Siu8JPJhE6nw2g0Ehn8cDjEZrPR6/Vwu90S6Xas0nAzmbw7/9HR0NDQ0NDQ0FDp9Xp89rOfZWlpCavVKsX1xHAc05VdKTLVfYPLlTZ/rcFxoZ25fUT66v69Xsq35L4utMfjsbhOq/Oofr9fModLpRL1ep1SqcTCwsKx+ZQOrBYrnW5H3JqNRqOYdqnRUIFAgHazRaPZFIdvg8FAq9WSn200Gtna2mIymUjRuby8jMFgwGg0vsnkamNjg5mZGcbjsRTMzWZTZM+pVIp+v4/RaJQsb7XDqxa1S0tLIomfTqe0Wi1mZ2clTiqTybC6uioGbHNzc1QqFRqNBouLi+j1ejlHqmxbNQnT6XRi/uV2uzEajTSbTUajEfV6HZfLJZLodrvN0dGRdGf1ej2NxvFMsE6no91u4/F4CIVCtFotptMphUJBurvdblc66qq5l06nk8gxn89HMpnE7XZz8+ZNiWJLJpMin+71ejSbTSwWC4lEgu3tbfR6PW63G4PBgM1mI5vNyly8xWIReb7BYGBnZ4f19XWWlpZoNBoEg0H0er1EkqnO4OPxGK/XSzqdpt/vc/PmTaLRKB6PR75HdQRXN0zU7HJVsq9uygSDQcngtlqttNttWd9kMsHpdMo5UscccrmcXO9er1cKa3WjRJWYT6dTDAaDxJap8XYaGhoaGhoaGu92nnvuOf7BP/gHLK8uM7AroJ9SD7XpenpaYa3xTek1e/y3f/3H7zqn8W/kvhZeqLO3g8EAs9ksuc/r6+vs7e0BiJxXp9PhDwZYWFxkZ3cHs9mMwWCQCCpA5qP1gNPhpNc7djN3OBw0m03a7TZOpxOTyUQikZA8bZPJRCAQwG63Uy6X2d3dxWAwSGFcr9fFuEtRFJLJJDqdjkgkIlLodruN1+vl9u3bGI1GjEYjLpeLTCZDsVgUeXa9XpeCUJXMq5nT8XhcZOGpVIpwOMxgMBCJcbFYZHNzk0qlwvve9z42NzdxOBxS2BqNRoLBIKPRiNFohMvlwmw2o9frxU09n8+/aV4YjrvCKysrDIdDFhcXWVtbk/MSjUbFbE6d07ZYLGSzWQaDgcjxDQYDoVCIyWRCqVSiVqtx+/Zt+v0+0WgUk8nESy+9xGAwIJPJiDQ8EAgwHA4JBoPMzc3RarWw2Wz0+33MZrPkgquGdurM8zc6sQMcHByQyWQYj8fiWD+ZTGi32yLz93q9zM7OYrPZcDqd5HI5jEYjvV6PyWRCMBgUM7LxeEy/3xcH8v39fUqlkkShKYoiWeJq0d3tdsVhvFwuY7fbxVxNLfzVz0av14sJnJrH7vF4xEFep9O/KVNbQ0NDQ0NDQ+PdzO/8zu8wMo8pJ2uUkjV6bq3I1vjmTKdTXv/vlyjvl+71Ur4t93WhHY8n0Ov1JJNJqtUqMzMzmM1mdnZ2MJlMlEolcrmcSLnT6TSbm8dO4o1GQ2aNdTodi4uLMkvt8/lIzaZYWj6OfFI7qIeHhwwGAzE6GwwGIlMfj8d4PB7y+TyDwYCjoyO2trZYWVnBbDbj9XpF4jwYDGS+W5WY12o1dnZ2cDqdzMzMsLy8zKlTp3jkkUekQ2q1Wul2u+j1emw2m0jSJ5MJ8XicM2fOsL6+TrVaZWtri0wmg9/vJ5FIiLO41+tla2uLcrnMY489JrFWtVqNbrcrnWuj0ch0OqXT6ZBMJmm329hsNmw2G81mk7m5OZFLP/XUU9hsNoLBoMxFK4pCo9FgdXWVubk56dyfOnUKQDrf0WiUQqFALpej0WhgNptxOp0MBgNWVlb4h//wHzIej4lEIqyvr1Mul5mZmZGiXFUzqJsk6oy5y+UiFotJ51vt4AcCASnAVQdzh8PBiRMnsFgsGI1GMpkM/X4fp9PJZDIhl8txcHAgpmRwvCmjurmr5mqtVks+Q1X5oNPpePjhh1lfXxepfi6Xk/xuq9VKpVKR/GubzSZGeTabjUajIYoLRVGo1WoS91ar1bBYLORyOXQ6HR6PR/LZj/Pl3ffmxtTQ0NDQ0NDQeItcu3aNy5cuo5vqGFpHTO/rKkXj7ebPfu1z93oJ35H7Wjre63XpdnvSGTw6OhKpr9frpVgscvbsWarVKu1OG9v0uLs9GA6l0zgYDPB6vVy9elUk1PV6nUuXLmJ3OIhGo+K4/dBDD3Hp0iVOnTpFrVYjkUiQTqeZmZlhb29PilKz2YzNdmxEpRZiiqKIa/dgMAAQ2bbX62U4HNJoNHC5XGxubhIMBrl48aJIrVXn8VAoxK1bt1heXmZ7e1s66bdu3WJuLkWn02U8HjMzM0M+nwdgcXERh8PB1tYWFouFcDjMxYsXsVqt1Ot1AoEAuVxO3r/VakWn0zEcDun3+1y5ckVM3NRZ5e3tbWw2G6VSieeff14iskqlEnNzc/T7fXw+HzabjWQyKQ7d29vb4squznunUimRw6vnX50Vv379On6/n2q1ytHREaurqxweHuJ0OhmPx5w+fZqNjQ2J/1IL11gsRqVSEZO0kydPkslksNvtrK2tcfv2be7evUsgEKBcLrO9vY3ZbBYn8MPDQ8mqdrlc2Gw2rFYriqIQDofZ399nZmZGTOC8Xq98fl6vlzt37jA7Oytu9oPBgGAwSDAYxO128+qrrwLHhfh0OhXZe7vdJhQKUa/XJQN8Op1it9tlk8PtdrO1tYXdbqdQKEiW+muvvYbL5ZJO98FB+h2+IzU0NDQ0NDQ0vjcUReEz//Uz/I8f+5/Qaa1sjW/DZ3/1T6jl6vd6Gd+Rt7xX9OKLL/KTP/mTxONxdDodn/3sZ9/0/D/9p/8UnU73psczzzzzpmOq1Sof+9jHcLvdeL1ePv7xj0vu9VvF4XAQDocJhUJ4PB5Onz4NQC6Xw+Fw0Gg06Ha7+P3HnWedTofRaMRisUgWtc/nk/isbrfL2toag4FCuVQWqa7aEZ+fn8dut1MsFkXmm06n6XQ6uFwugsEgpVKJnZ0dut0ujUZDZN7qf9UO9XQ6pVqtotfrcTgcRCIRmTtX3abVmC81xsnn82E2m6lWq4RCIfR6PT6fTxzGjUYjJ0+eJB6P43A4cLlcNBoNarWadNWLxaJ0jtXzMJlMcLvdMm+u5o97PB7sdjv9fp+VlRX6/b4Yq3m9Xk6fPs3c3BypVEqKwXq9TiwWk0Jwc3OT8XiM2Wzm4OAAo9HIZDIhFAphsVgYDAZMJhNarRbhcJhkMsnMzAzNZpPXX3+dGzduUK1WpROtKgxsNhsbGxvS7Z2dncVsNuNwOGi1WtJ1LpfLkqm9v79PPp8XAzJ1VjwYDNLr9dja2uL69euUy2XJHldz0NvtNr1eDwCL5XgtRqORZDJJpVIhGo3KHP+JEyckBsxqtTIajcjn8xSLRcrlsszLl8tlbDabGPaZzWYAiTvr9/u02225ZtrtNrVajbm5OZlR93g8jMdjmdFWI+gsFut9cx9raGh8b2j3soaGxnuJgzsHXPrca/d6GRrvYjq1Njefvc5k9O7Lzf7rvOVCu9PpcObMGX7rt37rWx7zzDPPkMvl5PEHf/AHb3r+Yx/7GBsbGzz77LN84Qtf4MUXX+Tnfu7n3vLip1NExmyz2TAYDFQqFQKBAHNzcxiNxuPZDr0Op8tJbzDAaDazu7eLxWYFnQ6dQc/FS5fIvSHlNRoMZI4yGAwGdHqdzPomk0n8fj93795ld3eX6XTKk0++TwobgGg0KpFYDodDuqsLCwu0223pkKrO0dlsFr/fj9lsplQ6njGwWq3SEbdYLFKoqbJ0k8mE1Wrl4OCAnZ0dhsMhlUoFu93OSy+9jNPpJJ/Pi+t3IBDAZrOxv79POp3GbDYTDod54IEH8Hq96HQ6bt26hcfjEcduRVGYmZlhNBpJYaxmXX+jdLpWq5HJZERm7vF48Pv9YihXrVbZ2dmh0+mg0+nI5/MSx2a1WnE6nRJ9VSqV6Pf7tFotyuUyw+FQurOqk/poNKLdbqPT6QgGg3Q6nTeug6m4kaszzw6Hg1gsRiqVks9CURR8Ph+VSoXxeCzXjBqllkgk5PNUZ+pdLhfdbpdTp06xuLiI2+2mWCzS6/XF6V4dBVB9AXQ6HZ1Oh1arhcVioVaroSgKqVTqTRsZg8FAZsi9Xi+tVot+vy8z3AaDAafTiV6v5/DwkHw+L5nimUxGFACqgVsgEMBisYjs3OGw3xf3sYaGxveOdi9raGi8l2iVmlz989fp1Dv3eika71Ke/z++Sm4re6+X8V3xlgvtD3/4w/zqr/4qf/fv/t1veYzFYiEajcpDjbOC4yzpL37xi/yn//SfePTRR3nyySf5zd/8Tf7wD/+QbPatnTSfz8f58+e5desWZrOZRqOBTqcjEAjQ7XYpl8tkslmcTifNZpNms4miKMeO2IEgTKfcuXWb0+vrjIdDmvU6RoMRj9uNw+nAZrNRq9VYXFykXC6Ty+Wk8wnwhS98gaWlJXHLVnOuQ6EQgDhOqwZg1WoVr9crhZbFYsFms1EoFAiFQoxGI3w+H9FoVLrhm5ubFItFPB4PZ8+e5caNG+zv77O4uEi/3xcHar1ez9mzZ6VzqsY9qdnanU6HUCjE0dER9Xqdw8NDif/y+XwcHBxQr9elSL158yYmkwmn08mJEyfY2trC7Xa/KW5Kr9dzcHBAu93mypUrVCoVqtWqFKTq5+Hz+fB4PJLvHQ6HcTqd7O/vU6vVxJ19OBxSLpfF1bxWq9FsNpmZmSGTybCyssLMzAyDwYDpdMozzzxDtVrFYDBgtVqJRCKSB37r1i3pQDcaDer1OrVajclkgs/nYzwec/PmTTk/S0tLUsiqzuSqcsHr9ZLJZESFoJ5vs9mMy+Uil8vh9/vFnE5VG6hd9W63i8ViETM9n8/Hgw8+yGQyYTgcEolEmEwmolTY3d3l5MmTojgoFotibKZmkne7XbnmTSaT5I0vLCxgMpmkG38/3McaGhrfO9q9rKGh8V7j9gu32bu0c6+XofEuJL+d49ZXbzLsD+/1Ur4r3habgeeff55wOMyJEyf4F//iX1CpVOS5V155Ba/Xy0MPPSRf++AHP4her+fChQvf9PUGg4EUyuoDwGg0cPnyZYlSevjhh3E4HLz88suSmWx7o/s7HA5xu92cP3+eJx9/goO9feLRKI8+/DCdVotYJEIyMcNMPC6Fi81mIxaLsb29TSKRYGlpiSeeeILpdMpoNCIUOo66WlxcxGQySczTqVOn+JEf+REcDofkQatd1e3tbaxWKyaTSWaP3W434/GYbrfLcDgknU6Lu7ndbmc0GvHcc8+JQVc8HiedTnP+/Hmq1Sp+v59CoUCv16NarWKxWESqvbW1JVnRwWAQu91OPB7n8PCQ6XTKcDhkZWWFRCLB+fPnSafTFItFbDYbXq+XSCTCwcGByPAPDw/FTVun03Hy5EmRfCuKQrValRnzRx55BDjOR0wmk0SjUYbDIZlMRorPWCyGx+PBZrOxuLjI/Pw8yWRSZp+feuoper0es7OzvPrqq2xvb+P3+zGZTFy8eJF//s//OU888QRPPfUU+Xye4XCIyWTi7Nmz4hwejUaZnZ1lbW1N5sOtVis2m01i1m7fvo3T6SSRSOBwONDr9SwuLkosXDwep9ls4vf7v0GabUGn07GwsECn00Gv12M0GjGZTNy+fZvpdIrX65WYMHX84Nq1a5J7fuLECdLpNG63m4WFBdlkqdVqsvEQDoexWq3Y7XZCoRAul0s2FQKBAJPJRArrcrmMy+XC4/EwGCjvqvv4293LGhoabx/v1O9kDQ0NjR8ErVKTS5+9SFframv8NQ5vHrJz8f7ZhPmBF9rPPPMMv/d7v8dXvvIV/u2//be88MILfPjDH5bumiof/kaMRqNER30zPv3pT8u8sMfjIZlMAtBoNDl37hxms5lQKMSrr75Kq9XCYDAwMzMj0tpQKIROrycYDFKr1SgWithtNra3tskeZaiWK3RaHZhMyefyZLNZdnd3paPd7/cpl8vcuXOHzc1NmWVWC65SqSQmYWr28XPPPUe9XpdOrjobnkgk6Ha7VCoVms0mvV6PwWDAzs7xRTMejxmNRjSbTXGlNhqNrK2tEQqFxOhsYWGBer0unVS/308wGBRjLLW4Vl3RdTodmUwGm83GaDTi7NmzYnamRmXBX0nX6/U6BwcHTCYTptMpZ86ckRls1XG83+/T7XaZn58nEomwtrZGPB4nFouxt7dHLpeTzYqXXnrpDcl1T9yxU6kU4/FYClz1XKgz3Eajke3tbckXV+XRagyWwWDgxRdfZH9/n3K5jMlk4vTp09RqNdLptHTHPR4PlUqFw8NDLBYLjUaD6XTKiRMniEajOJ1OyQ53OByYTCYMBgOHh4fA8XjC4eEhiqJQqVTk+E7nOIs9n89Tq9UkS73ZbMrmgdohNxqNmM1mAoHAG9duQ1zTO52OOJqrs/Tq9eJyuRiNRlitVinyVcf8XC6HoigMh0N2d3exWq24XC6GwyGj0QhFGbyr7uNvdy9raGi8PbyTv5M1NDQ0flC8+ocvUzk6TmXR0ACoHFb481/7PGNldK+X8l3zAy+0P/rRj/JTP/VTnD59mo985CN84Qtf4OLFizz//PPf82t+6lOfotFoyEMtgNQZWbPZTLFYlIgltRNoNptJzc2h0+mo1WrU63VsVivZTOY4b9lqRa/XH7uKO+xYLBYsZrNEaamzyYDMNqsdw1QqJQWf1+uVoigSieBwOLBYLPR6PYrFIlarVdal5kW73W6Wl5dRFAWj0cipU6doNpvHed9+P81mUzKsO50O/X5f8pOn0ynFYlHmg3O5HM1mkytXrkgR63K58Pl8+Hw+yQAPBAJirrazs8OHPvQh9Ho9BoOBUqlEPp+n3W7z6KOP4nA48Hg85HI5AJkvHw6HeL1ekZWbTCaZza5UKjzyyCPs7+/TbrepVqsMh0OZxVYzoRcXF7FYLBweHsp7UpTj7uvu7i6dTodYLEaj0aDVatFutzk8PMRsNlMul0Vync1mcTgclMtlbty4IUZmam75yZMnSaVSMnPudrvx+/04nU6WlpakMw/HpmShUIhqtSpFfDKZlM2UbrfLaDSSmW61sFYz1cfjMcVikXa7LY7qh4eHNJtNkXc3m03G4zGhUAij0Siz+qrT+t7enkjL1WMNBgP1el2KZ6vVymQykef7/eOsd71eT7ValWixY8VE4Hu+596O+xi+9b2soaHx9vBO/k7W0NDQ+EExHo353P/2p0zGk3u9FI13AdPJlMMbBxxt3F+/b972hLqFhQWCwSB3794Fjg3DisXim44ZjUZUq1Wi0eg3fQ2LxYLb7X7TA8But4kM+5lnniEYDDI3N4fb7SYSjbK0sozd4aCvKLjcbmYSCXbv7mA0GlEUhV6vR6/X+6t5W4+bpZVlIpEI6XSaXC7HaDTC4XBQr9fZ39+n1+tx69YtMe/K5/NEIhHq9TrtdptisUg+nycWi+FwOHj44Yel8LPZbIzHY1566SW2t7fZ2dkhHA7T6XRoNps89dRTVKtVut0uTz75JHq9/lj+brPh9/tptVp4PB5u3bpFPB6XLqnf7yeZTBIIBMQBXVEUcdpW3dSn0ylXr17l8uXLeDwe/uIv/oKDgwP6/T7nz5/nkUceIRwO8+qrr8q5sVqtzMzMiMP62toaGxsbFAoFCoUCVquV3d1disUiBoOBP/qjP2I8HjM/P8/DDz8sGwRer5e7d+8Sj8dlpjkYDEr+tdPplMJZdWyfm5sjFAphMBjweDwif59MJkQiEZm1VgtMVS0QCASIxWIEAgEcDgcGg0FyvRuNBna7nXq9Lhnek8mEtbU12RhQpd4PPPAAhUIBgJWVFelQG41GUqkUq6urzM7OShdczQYPh8NUq1U8Hg8mkwmz2czR0RG9Xo/hcMhkMnnDrOzYMV+V6C8vL2M0GmUzodVqMR6PWV5eptvtkslkRApvNpuZTqdEIhFMJpM4o1erVRkJUE363i338be7lzU0NN4Z3s7fyRoaGho/SK598Srpq/v3ehka7wLGozH/5//y+/d6GW+Zt73QPjo6klxjgMcff5x6vc7ly5flmOeee47JZMKjjz76ll67VCpz7do1+v0+W1tbxONxut0ubreb4WjI3bt3Gb+RU202m7l27Rr1+rEh1vz8PKFQiNOnT5PP5+n1euzs7EhX8/z585hMJmw2G9vb2/R6PXw+H6dOnZJIrBMnToijdyAQwGQySaf1+vXrNBoNrl27JvPAqrnWqVOnWFtbE4m4WnTdvXsXp9OJTqcjlUphsVjEWfv27dvk83nMZjNPPPGE5Ho3m03y+TxHR0cMBgPC4TBLS0sYjUbG4zGlUolyuUwikWB3d5dGo8HMzIwUc9FoFEVR2Nvb49VXX6XZbJJKpfB4PHi9XqLRKNeuXePOnTvk83kKhQJOp1MyyNXZ9Fu3btHtdonFYoxGIwqFArVajaWlJTY3N5mbm+NHf/RHabVaFAoFbt68yd27d2k0GlQqFXK5HDMzM4RCIZLJpDjIu1wukWOn02nsdrs4oKtma2p2udVqJRgMkkgk0Ov1PP/88+zs7OByueh0OuIGr8aeVSoVzp49K3ni6hy9aiL32c9+llQqxXQ6pdfrUavVqFar1Ot1isUirVaLg4MD4Ljjf/LkSRYXF1EURTZK1I69xWKReLJKpSKxXZlMBovFIpFwk8kEu93OcDik2WzK/PXR0ZHMxbtcLina1c2DyWSCw+EQmX2n06Hb6/6A7uK39z7W0NB459DuZQ0NjfuF6WTKf/9f/+ReL0PjXcALv/NVyofle72Mt4zxrX5Du92WnXCAvb09rl69it/vx+/382/+zb/hZ37mZ4hGo+zs7PCLv/iLLC0t8aEPfQiAkydP8swzz/CzP/uz/PZv/zbD4ZBPfvKTfPSjHyUej7+ltVitVs6ePUu326XZbIqs+9SpU7x+9Qp6vZ5CsYjH68Vut2PQ6+m0WujQMZ1OMRgMZLNZlpaWJEapWCzidDq5ffs2fr8fAJvNhtlsZjQaYTabpZBzOBysra2hKIo83+126ff7UhA6HA4pytSorUqlIk7TyWSSw8ND9vb2mJ+fl4Jse3ubwWBALBaj0+lI7nWv15PZ4+l0it1ul05qsVjk7Nmz0qVXzdnUWWpVqlwul8VJvd1u43a7SafTUlyra0yn04xGI2w2G6FQSDrPiqIQDodptVq0Wi3MZrOYoo1GI/x+PwaDgUKhIBL4ixcvEgwGyefzYro2Ho9FOn+cde7nzp07OJ1OIpEI+Xye7e1tFhYW5Pw2m01mZ2c5PDwkEokA4Pf76XQ6nDp1ipdeeom5uTnZsJiZmSEQCEiHuVarYbFYyGQyksXtcrlYXl5md3eXwWCA3W6n0+lgt9uZTCbSBVeVEB6Ph06nI4W9qnxQI9z6/T57e3uUSiV8Ph8Gg4FgMChxXuqIwc2bNwkGgwAEg0FGoxG1Wo3pdEqn08HhcGA2m8VBXjWoq1Qq4oDeaDQYDof4/X4xcSuXyxiNRnTo7ov7WEND43tHu5c1NDTey+xf2eP1z1/iwZ986DsfrPGeZDqd8vzvPAf34bj+W+5oX7p0iXPnznHu3DkAfuEXfoFz587xy7/8yxgMBq5fv85P/dRPsbKywsc//nHOnz/P1772NTHbAvj93/99VldX+eEf/mF+7Md+jCeffJL/+B//41tevM/nIxaLiTN3NBqV+V51flWdeS2VSrhcLsajseRQN5tNdnZ2ODo6YjQasbu7y82bN5mZmcHv91Or1XA6nRLblEqlqNfr0kFUs6/r9bo4WRuNRp588knW1tbY399HURTa7Tbz8/Po9XoGg4EUTtPpVOTA8/PzwLFJ1tHREY1Gg7m5Oa5fvy4SbbvdLpnKtVqNw8NDbDYb+Xwer9fLE088wWQyoVgs0u/3Re7t9Xopl8s4nU4cDodIldvtthTfFouF1dVVccYejUbicK6a5kQiEcbjMRaLhWAwyNramnRZ1Tlil8vFzMwMFosFh8NBMBjEarVisVgkxzqXy+FyuSR/ejgcotfrZf5bjUKrVqvo9XpxYw+FQlIsBwIBptMp5XJZCuTpdMpkMuHKlSvs7u7S7XbJ5XJUKhU8Ho90iA0GA7OzswSDQTJvzOtfuXKF4XAocVuzs7Myu66amPn9fsncPnXqFOFwmNFoxHg8lrlxda39fh+Xy3V8k+n1xGIxut0uDodDotxmZmbo9/si2zQajRL5NplMRGkwHo9JJBIyn200GvF4PPh8PgKBAHq9Xj4jdW5c3RS4H+5jDQ2N7x3tXtbQ0Hgv0613eeUPXrpv4pw0fvB89lf/hHK6dK+X8T3xljvaP/RDP/RtHQD/8i//8ju+ht/v5zOf+cxb/dF/g83NYzmzxWIhEomwv7+PxWLhv/63/8aZc2fR6XQE/QFu3bqF1Wii3WxiMpmwWq0MBgPMZjPJZJJsNksul8NgMGAymdjc3MRgMDAej/H5fNy4cQOfz8fu7i4nTpwgFouRz+el87mwsECxWERRFGZnZ8nlciwsLPC+971PHKU7nY50f4PBIK1Wi3w+L8WW0+nkzp07xONx9Ho9pVKJo6MjEomEGLl1Oh38fj+j0Ujk0tlsFrvdTqFQEAMudX7Z7/eTyWSk6NLr9TKPp3aRAW7cuMHMzAzb29vMz8+zuLjI888/j06nExd3gGq1SjAYxGg0cvv2bWZnZxkMBhgMBikS1aJPURQmkwmVyrFjZL/fl40INZLq1KlT7O/vi1O2TqcjkUhw69YtMU47ffo0BwcH6HQ67t69y8LCAl/+8peJx+OiQpifn6fdbpNIJHj44Ye5c+cOd+/exWazkUwmMZlMOBwO2dg4ODjA4/Gg1+txuVx0u12q1SpPP/00iqIwGBy7dWezWaLRKFarlXa7TbPZ5MyZM9hsNg4PDymXy8zNzTE7O8trr70mc+e5XI5CoSDSzF6vRz6fx+fzUa/XxXldNZNTz4/6GS4vLzMYDFAUBZvNRqPRoNfrYTababVarK2tSRyZasRns9no9Xo0m01CoRCzs7N0ut86FuPddB9raGh872j3soaGxnudvcu73Hj2mtbV/ltILVvj7qtbjAb3j9P4N/KWC+13E16vl35/QLVaRafT8fTTT3Pp0iVWV1ep1WsYTSbKkwnVSgWj0Qj9Y5OXvb09otGoFJJOp5NA4LggV7vGOp0ORVHY399nOp1KR/TOnTtitFUsFllYWGBra4vJZMLS0hK7u7v0ej0ptHw+H6dPn2Y6nTIYDNDpdHS7XXq9nrhKh8Nhtre3pegGpKv+8ssvy88Ih8PY7XYGg4HMXp8/fx5AjGuMRiOZTIb9/X0WFhaIx+PUajUWFhaw2Wxi9nXhwgUikYhIt9Vuqd/vZ2tri2AwyMHBASdPnmRzcxOn08lkMpG570gkQqvVwu12i4xdNV1TO8eBQIBUKsXLL78skWhnzpyhXC7jdrs5ceIEnU6H4XBINBrl1q1b5PN5VldXKRQKmEwmtra2qNVqYva2sbHBysoKnU6H06dPs7+/z9WrV+n3+xwcHKAoCoqisLa2RrPZJJvNilmazWYTabjZbKZQKNDtduUzf+GFF1hcXMTv95PNZmUMQI3tgmP1wu7uLj6fj3g8Lk7hoVAInU5HNps9lm3rdBL7phbBvV4Po9GI0Wik2WzKOjqdjmwGqDP/sVhMzquqWPB6vfh8PnFyV4tv9VEul4lGo6RSKXZ3dymX779ZFg0NDQ0NDQ2Nb6RRaHD9L6+x8r5VnH7nvV6OxjvItb+4wv7re/d6Gd8zb7sZ2ttJr9cnmUwSiUTwer3s7+8zHo/f6AxaaTdbvH75dVwuFy6XC7fbjdlsZnZ2FovFgsFgEIOs0WiEx+PB4XCIDFeVoAcCATFDMxgMtFotGo0GLpdLnMHVjG61uLbZbDKzu7OzI27iakd3Op1isVgwmUzkcjnm5uawWq3EYjFmZmbY399ncXERr9dLMBjk3LlzxONxrFYry8vLtNttTp48SSaToVarYbVa2dnZkTn18XjM3bt3yWaztNtttra22Nvbw+12Mz8/L11aRVHQ6XT0+32WlpYol8tsb29Lnvbdu3cxGo0MBgM5D6rRWq1Wo1gsyuyx6gB+dHQk0WeFQuHY0d3l4uTJk2SzWQqFAleuXOFLX/oS9XqdQqHAiy++KHFqzWZTCkpVuq6uwePxiDRdzcru9/vSJTebzSwsLDAcDmm1WtTrdYxGI7VajUKhgKIoYk4XjUYJBAKy2aHOOZtMJpHOG41G6Tg7nU4pzvf39zEYDNjtdjmHalde7YjH43HZYFHj0txuN7VaDYfDIbFr3W5X8rCj0Shut5vNzU0xNTt//jx+v/9NxyWTSRKJBNPpFL1eT7/fl4xtNXosFArey9tTQ0NDQ0NDQ+MHwpUvXKawnbvXy9B4ByntF7n83y+i9L71KOS7nfu60HY6HQwGA+nwqRLn0WhE9ihDo15Hp9MRi8UkLunBBx+k1+uJeZWiKNy4cYPDw0NarZZkVqtmVz6fD5PJxNLSEidOnMBkMgEwGAyIx+McHR3J3K1qcDUejxmPx5hMJtLpNC6Xi0KhQKPRYDqdSoFosVjEfVrNW1ZfOxAI8Morr6AoClevXqVarZLP56Vrq8q2w+EwNptNire1tTWZA1dzo6PRKCdOnKBcLpPP56WzPRwOJXdbdS1XNxfa7TYzMzM88MADBAIBLBYLXq9XDOE6nQ4223G8mird9vv9PProo1IAqs7Zs7OzKIpCNptFURRSqRShUIhut0skEsHlcr1p46HT6bCxsUG9XpfOsc/nw+v1YjAYuHPnDnt7e0ynU/x+P263G6PRyNzcnJio5fN5AMkS93g8nDlzhmAwKG7diqK8SXJpsVgYDod0Oh0qlQrBYFDk+qFQCDieozYYDHi9XnK5HBaLRYzSkskkTqeTfD6P0+mkUqnQ6/XkmjSZTJTLZQwGgxjjWa1WKdJVx3o181t1LD86OqJcLjOdTllbW2M8HnN4eIjRaMTv96PT6ZhMJgSDQWw2G51Oh/F4TKvVfsfuRQ0NDQ0NDQ2Nt4tuvctX/4/nGHQH93opGu8A0+mU0n6JrZc27/VSvi/u60J7NBozGo0YDAZiGgbgdDpJJhKEAkFMb8ii+/0+iqKQz+eZTCYAEqt15swZwuEw8XicpaUlhsMhgUCA8XhMPp+nWq1yeHhINpvlxIkT/MiP/AhPPfUUOzs7nDx5kvF4zMHBAdlslscee4zRaITRaGQ4HFKtVvH5fLhcLrxeL/V6XYzbJpMJt27dwul00ul0KJfL9Ho9iY/KZrNYLBZ8Ph+VSoUzZ84QiUTodDqMRiMURSGXy5HL5ajVapKl3Ov1WFlZkSipg4MDWq0WqVSKubk5ms0m6+vrPPLII4RCIXnf29vb6PV6wuGwdNp3d3fZ29uTwlQ1QJtOp1IEq5nUm5ublMtl7HY7yWSSZDLJZDLh6OiI4XDIwcEBt2/flll6u91OLpejWCxitVrpdDp4PB7u3r2LTqcjGo2KcVqv12N3d1dk+CdPnpT3Np1OZbMil8uxsrKC3+8nHA4zmUzodDqSkW2z2ZiZmcFqtaLX6zEajSQSCYkpU+PG5ubmKJVKMl/vdDplI8RsNvORj3yEdrstEV3NZpNLly6hKAoLCwtifBcKhSiXy+zv74vaoN1uc/XqVabTqXTSx+MxwWAQg8HAhQsXCAQCkuft8/lYWVlhZmaG69evs7CwgNFolPesKIqcQ/Vrx9122z27NzU0NDQ0NDS+O1588UV+8id/kng8jk6n47Of/eybnp9Op/zyL/8ysVgMm83GBz/4Qba3t990TLVa5WMf+xhutxuv18vHP/5x2u331ob7hT96hXK69G19KTTeG/QaXf7o//EZJuPJvV7K98V9XWi73W4poEejEeVyGZ/PRzabpdZs0On3cLnd3Lx5U4rHzc1NWq0Wer1eYrrS6TQ6nY5qtSqFmzpnbbFYiEajABSLRba2tvjzP/9zLly4INJpi8WC0Wik1WrR6/VYXFzEYDBIx/P27ds0m00ymQzT6ZR4PI7RaCQWi5FIJDAajUQiEU6fPi3Gbqos3efzMRqNCAQCfO5zn2MwGIhjumo0pigKc3Nz7O/v02q1xEX80UcfxWQycfbsWZxOJ+PxmEajQbVaJZPJcOfOHa5cucKVK1ekQFRl2zs7O9hsNkwmE8vLy5w4cUIK28FggMViod1uS+Gvzl2rc8R7e3uk02larZY4wEejUfx+P2fOnJG5aNUlezgcYrFYeP3112VjQt08qNVqtFotPB6POJE3Gg36/T7D4VCc1NWfk8vl8Hq9+P1+JpMJsViMhYUFstmsdP9zuRynTp1iPB5LQRwOh2k2mxweHrK5uYnVaiWVShGNRhkMBiIjX1lZ4Q/+4A8IBoOkUikWFxdxOp14PB56vZ6Y6hkMBhRFIRAI4Ha7CYVCWCwWXC4XTqdTPsvxeIzX66Xb7ZLP53E4HHQ6HZmZV4v0RqNBt9vl61//unTpY7EYOp0On8+HoijHGfLD4RuqhG9thqahoaGhoaHx7qDT6XDmzBl+67d+65s+/+/+3b/jN37jN/jt3/5tLly4gMPh4EMf+pD4+gB87GMfY2Njg2effZYvfOELvPjii/zcz/3cO/UW3jH+6P/5h/d6CRpvM9PplM2v3yFzK3Ovl/J9c1+boamFxu7uLgDlcplyuUy328XlcmG1WsU93Ov1otfrabVahEIh7HY7vV6PdruNw+GgWq1Kp3txcZGNjQ2RDqvyXjWq69iErU8kEsHhcNBoNPB4PDJH7Ha78Xg8IgNWI6z6/T7pdJpkMkm326XdbhMIBOj3+2J41Wq1xEm6Xq+TyWSwWq1UKhVCoZBIolutFi6XC4PBwMzMDIVCQeaBp9OpOIvHYjEprFdXV9HpdOTzecLhMGazGavVislkIpPJ4PF4yOVyWK3WN8nKM5njC111B3c4HLTbbVwul3To1XgzVX4/MzMjec56vR6/3y+527lcTrKp1RnnyWSC0+nE7/czGAywWq3ioK3OSKvz1m63G0VRxAxMddu2WCx4PB4MBgMWi4VKpSIS/dFoRLFYFKd1j8fD0dERXq9XpP2quV25XObo6AiTycR4PCYej9NsNuV9quZ76hrUAlj9ueo1Uq1WGQwGIrdX878VReHkyZNcv35drgHVF0B1iFc3PUajEalUiv39fflc4vE43W73TWMTFotFMrXVol2vv6/30TQ0NDQ0NP5W8OEPf5gPf/jD3/S56XTKv//3/55f+qVf4qd/+qcB+L3f+z0ikQif/exn+ehHP8rt27f54he/yMWLF3nooWNn7t/8zd/kx37sx/i1X/s14vH4O/Ze3m62X97k9vMbrH1g/V4vReNt5E/+zR/f6yX8QLiv/xK/du0at27d4tSpU8zMzJBMJrFYLLjdbgwGA41GQ7p99Xqd8XhMNBolHo8zGo0olUrMzMyImZgqb1al1tPpFJPJRLfbxWw2k0gkSCaT+P1+ksmkdH7VXOZGo8HMzAylUonRaMTS0hJ7e3sMh0NMJpO4ce/s7GA0GkVOrpp8NRoNLBYLxWJRDMDOnDmD0+nkfe97H2fOnJFIsng8Lq87HA5JJBKSNW21WsUlu1wuS7FWLpfJZDLU63WazaYUxC6Xi1QqhV6vl9dfX1+n1+tJ97hSqVCpVGT2fHV1lVarRblcJhaLYTab6Xa7pNNpmYFfWlpifn5e3qPa7VcVAq1WC0C6uAcHB0wmE8LhMAsLC9jtdvb29qjX6+TzeYbDIbVaDZvNhqIo9Pt9ms2mOK6raoZWq8XW1hbZbJZUKkUqlZIIMnWDQS3EK5UK169fp9vt0ul0ODg4oN1uEwqFxGX9zp07stkwHA5lc6Ner5NOpzk8PJQufyQSkWtG3QgajUZYLBYuXLhAqVSSDHaDwcD8/Ly8L4fDIQZ4R0dH1Go1ptOpSNYBccpXZ+Tn5uYwGo2Sr11/w5fgzJkzjEb3ZxSChoaGhoaGxjF7e3vk83k++MEPytc8Hg+PPvoor7zyCgCvvPIKXq9XimyAD37wg+j1ei5cuPAtX3swGNBsNt/0eLczHAx59v/3JU0+/h7mK//hS5T278/c7L/OfV1oq8Xy5cuXZUZV7TKrhVin0+Hll1+W4i+VSpHP59na2qLb7ZLNZnG5XMzPz7O6usrS0pLEUs3Pz2M0Gun3+1IcqTPUtVqNRqPB4uIif/fvfoT5+XmSySR3794FYH19XaTS/X6fYDAo7tPqHLjBYJBM5clkQj6fx2w289BDD1Gr1eh0Oty5c4d2u80LL7zACy+8gMvlEtMuAEVRaDQaFAoF6Q6Px2MikQiDwUAcsrPZLGazmclkwsrKCoeHh+Jy7na7MZlM6PV6HA4HOzs77O/vYzabsdvteDwe5ubmCAQC5HI5hsMhr7zyCnq9nslkwvz8PDqdjk6ng8FgwOl0srq6SqlU4u7du+zv71Or1WRWqFarMRwOiUQiLC0tYTAYsNlsxONxmfk+ODhgfX2dkydP0uv1sFqthEIhCoUCkUgEv9+P0+nk/e9/vzi8T6dTzGazFKgej4fRaMTu7i75fJ5Go4HT6RQ5fiqVks2KbrdLIpGQbvOpU6dkw6ZUKkl3PxgMMp1OiUQiso5UKkU4HMblclEqleR1ut0uxWJRzM7UeLZSqSTmduo89TcaxpVKx/+4jMdj+cWn/lxVVTAej+n1euzs7OB2u7FYLCQSCWZmZhgMBmxtbeFyue7NjamhoaGhoaHxA0FVMkYikTd9XTV/VY8Jh8Nvel41TFWP+WZ8+tOfxuPxyCOZTP6AV/82MIWDq/tc+uxr93olGm8Dw/6Q1/7kAuPh+F4v5QfCfV1oJxJxcQV3uVxsb2+jKAqdTodAICARVfPz86TTaarVKrVaTeZ2J5MJw+GQYDDI9evXqVarEp904sQJSqUSrVaLQCAg86/hcJh6vY7JZOKxxx5jdXWVP/mTP+XP/uzPGAwGMn/caDSka6woCnt7e+h0OsLhMK1Wi9FoRLfb5ebNmxwcHEih5/F4ODg4wOPxSJd6OBwyOzsrWdSdToder4fNZpPNBIvFgsPhYHd3V4pDtQBVz0+lUhHJ83A4lLny/f19Dg8PMZvNKIpCJpORnOlms8ni4iLtdluM0tSO9Pz8PKFQiL29PRKJBE8//bTIvL/2ta9hsVhYXFwkkUjQarXkvaszRYVCgUKhwHg8plKpMBgM8Pl8Etel0+k4ODgQKb7JZMLtdrO1tYXD4ZD5dzXWSlUJhEIhidKyWq0UCgW8Xq98dnD8C0idfVcl371ej4WFBQaDAblcDr/fT71ex2w2y2eiKAqFQoFXXnlForxUE7LhcIjVasXlcsl7sNmODcncbjdHR0fU63W5NpPJJCaTSdQHk8lERg/U+Xg1Rs1gMDCZTLDZbLRaLXQ6HTabjclkQjqdJpfLyecLx53395oJioaGhoaGhsYPjk996lM0Gg15HB4e3uslfVc0S02uf/EavVbvXi9F4wfMc//xy2Rv3/+z2Sr39Yz2aDQikUiwt7dHKBSS2CRV+tvr9WSmVZWRDwYDFhcXSafT2O12+v0+R0dHuFwuBoMBq6urbGxsoCgKdrtdcrMDgQA+n4/NzU1mZmYIBAJcu3ZNpNvhcJh2u83Xv/51iX4aj8csLi7S6XRoNBr4/X6JwSoUCiLBVl27X331VaxWKw7HcWyZatZmNBrx+XwcHh4ymUyw2+1Mp1PG4zGdTodIJCLd6ieeeILJZCIz23a7nUgkQqFQkM0FNdosm83S7/fF2Xxvbw+DwUAkEqHX64nzdT6fl+71wsICd+7ckf9GIhE57w6HA7/fj8FgYG1tTTYk1Ezq6XTKZDKhUqmQSqWoVqvs7OyQTCZxu93s7OxItnQ2m5XC0uv1otPpaDQaDAYD+v0+Xq+H8XhEoVAgFAqJo7vdbqdSqeDxeKTw9Pl8MutdLBap1+v0ej3cbjcOhwO3243L5aLVasnr1+t1lpaW5FwGAgEikQhbW1sYDAYxuzOZTLLZUy6XcTqd7O/vMxwOqdfr8nPVbrq6wVGtVrFYLCL5HgwG6HS6N50v4E3X4HA4ZGdnh1QqBSBdfIPBILvQ3W6XXC5HLBbD4/Hcs3tTQ0NDQ0ND4/tHbW6of8epFAoFzp49K8cUi8U3fd9oNJLRum+FxWLBYrH84Bf9DnDr+Q12Lmyz/sEH7vVSNH5AVI8q3HnxFoPOeyfC7b7uaLtcbur1Oqurq+zs7BAIBERGff36dckhzuVyNJtN7Ha7zGf7/X5mZmakM6pGg928eRNFUdjd3aXb7eJwOOj1euTzeTY2NlhcXKRSqUhBevXqVRwOB8VikXK5jNlsZn9/X4yqqtUqR0dHzM/PM5lM8Pl85HI5yuWyFPPhcJjhcMji4iKlUkkeBwcHFItFBoMBGxsbJBIJ3G63HKc6dlutVsbjMclkkt3dXba2tiiXyzgcDvr9PoVCgfn5ee7evUuz2aTb7XLy5EkURaHVanF0dEQmkyEajWK1WmX+u1wuc+vWLXHPLpfLlEolzp07Ry6Xw+fzSWFssVjY3Nxkb29PnMnVTYxms0k4HJYM6slkIl11tdOryrLL5TJ+v59YLMby8jKDwYBCocDOzg52ux2v1/uGI3yRwUARlUI+nyebzVKpVHA6nYTDYR5//HHMZrN0hyuVCnDczT516hRer1fyqUejEZlMBovFgl6v54EHHuDmzZtiVtZutymVSjgcDvR6vSgcEomEGM8ZDAY8Hg+dTgeTySTXlVpQ63Q6lpaWaLfbtFotmZWfTCYidz9//rx0owuFAvl8XqLHbDab5I/3+31isRgGg0HGDNrttnS0g8GgNqOtoaGhoaFxnzM/P080GuUrX/mKfK3ZbHLhwgUef/xxAB5//HHq9TqXL1+WY5577jkmkwmPPvroO77md4JmocHFP3mNTk1LWHmvsHd5977Pzf7r3NeFdq/fkyzsn/zJn0Sn0zEej6VTqRaZMzMzEnm1v7+Py+Xi8PCQarWK3W5nMpkwOzuLXq9ndnYWs9mMwWBgOp2yt7cHHLs+Wq1Wdnd3ZXa6Wq3y4Q9/GIPBgF6vZzQa0e/35R9FtdvqdrvJ5/MihbbZbCJH/0aJ+czMDLFYjMXFRQKBgLhqq13tmZkZdDodV65cEUlyIpGgWq2SzWbJ5XIoioJerxcZ8/r6OpFIhKOjI2w2m0RcqUW16tpts9nweDwsLy/T7XZZWFjg/PnzBINBCoUCNpuNcDiMxWLhypUrPPbYY3g8HlKpFEajkVwuR6FQ4OmnnyaZTFIqlcT1G5DNBdWhXc0n7/V6VCoV7ty5Q61Ww+fziUO7WkB2u13sdjuDwQC9Xs+5c+ekIF5aWmJtbQ2TyUQgEJBOP8DOzo4YutXrdZxOJ4uLi5w+fZpSqcTm5iYGg4Hd3V1GoxE+n0+696+99hrz8/P0+31KpRLBYBCfzwcg8nDVWRwQR3K1Kx4KhWi32/T7fbk+rFarbCqYTCZmZmYIhUL4fD4ZObhw4QJnzpyh2+1isVgYj8eUSiXm5uZQFEVivFSZeSqVElf0UqmEy+XC4/FId1xDQ0NDQ0Pj3U273ebq1atcvXoVODZAu3r1KgcHB+h0On7+53+eX/3VX+Vzn/scN27c4B//439MPB7nIx/5CAAnT57kmWee4Wd/9md57bXXeOmll/jkJz/JRz/60feU4/hf5+KfXKBZbGjGaO8B6rkaz/3HL6P0lHu9lB8o97V03ON2o9PpqVartNtt0uk0+XxeCtVqtSr5zu12Wwo9q9WK1WqVIigajUqBvLGxgcFgwG634/f7cblcdLtdhsMh3W5XnKjVYuv27dsyD+x0OikWi9hsNpF57+zs4HQ66ff7OJ1Out0uOp0Ol8tFMBiU/OhUKsXt27dxuVz4fD6Wl5elmzmdTqlWq9y5cwen00kymUSn01Gv14lEIhiNRmq1msSSWa1WkTzDX5lqTadTwuGwuKzHYjHphtdqNSKRiHSj9/f3JerqwQcfJJPJ0Ol08Hq9LCwsSKdbNTVLJpMcHh7SbDbFeb3f74tUv1wuy3P9fp9+v4/L5UJRFOmYq0ZhyWRSjlHnw41GI1tbW5LbPTMzI5+JwWAgFArJPHwwGKTZbDIYDDCZTNjtdorFInq9XmK91Mi3lZUVSqUSzWYTq9XK5uYmxWKR5eVl+YU3NzeHyWTi6OhIIuBmZmbEJV0t7tVuvV6v5+TJk2xsbOBwOKjValSrVUwmE0ajEYfDgc1m4+DgALPZzGg0IpfL0W63sVqt3LlzB5vNJvFrFotF4svUjZTRaCTz4jabTQzRVHO1nZ0d+n1tdklDQ0NDQ+PdzqVLl/jABz4g//8Lv/ALAPyTf/JP+N3f/V1+8Rd/kU6nw8/93M9Rr9d58skn+eIXv4jVapXv+f3f/30++clP8sM//MPo9Xp+5md+ht/4jd94x9/LO8mwP+SPfukP+eQf/I8YjIZ7vRyN75HpdEpxt/ie62bDfV5ou1xums0mvV6ParXKcDhkNBpx4sQJtre3ZX5V7QSqxRuAwWCgUqlw/vx5ADKZjHQE2+02iqIwGo1Ip9OkUimJU3K73bRaLZxOJ9evXycYDOJ2H0vY1U5mo9FgNBpx+vRp/H4/m5ubTKdTiYxS11ypVIhEImxsbHD37l1xIh8Oh0ynU9bW1sQwrNPp8Prrr5NIJIjH41QqFRKJBFtbW8Bxx3gymeD1eplOp1gsFsxmM/1+X+KlFEWh2WzidDpxOp1UKhXJlX7kkUdIJpNcvXqVGzduEAqFyGazYuym0+moVCr0+31sNhvLy8vkcjlGoxHlcpler0cqlaLf79Nut9nd3UWn0+H3+8lms0ynU6bTKa1WSzYY1Azv9fVTTKfH88Wzs7OyodBqtVhYWCCXyxEOh/H5fOL+brPZJI+72+3K+1HdwROJBIeHh5hMJubn5zGbzZhMJorFItFolOFwKPPqer2edruNx+MhEomg1+vls3Q4HABSKFcqFaxWK/v7+7jdbtxuN7lcjmg0KoX9aDTi9u3blEol9Ho9/X4fh8NBIBCgXq9jsVhk7r/ZbIopndPpZDQaMRwOabVaOBwOTCYTk8mEbDYrM96rq6tcvXqVTqcjCoBvNGEbDod0Oh2Z89bQ0NDQ0NB49/JDP/RD37Yrq9Pp+JVf+RV+5Vd+5Vse4/f7+cxnPvN2LO9dzcaXb5C5dcTsA6l7vRSN75HxcMzv/0//+V4v423hvi60a7WaFClut5uHHnqIdDrN5uYm7XabwWBAMpmk0WhgNpuJxWIiw/3a177GYDBgc3MTvV4vEVNqd/nGjRsyk61mLrdaLVwulxiPhcNhyuUynU5HjMl8Ph+nTp1icXFRis54PC5dTbPZjNlsZnZ2lmKxKPPctVoNAJ/PJ/LiYrFIOBwmn88znU559NFHmU6nnDhxgkgkwpe+9CU8Ho9EOqjd+kwmIx151XSs2WxKdMPe3h61Wo1yuYzVapXos3K5TDgcZmlpCbvdLm7ddrudkydPotPpmEwmBAIBmQm2WCzMzMxw69Yt6ZpbLBbi8TiKouBwOEin05hMJhYXF6WATaVSDAYDrl+/LoX87Owse3t7ZLNZHA4H586d48qVKxiNRtrtNsVikbm5OQAp5O12O0ajkel0yg/90A/x0ksviUS/1+sxGAx45ZVXMJvN+Hw+CoUCVqtVNhjS6TQLCws4nU52d3fFfK3dbouBmTqn3e12xb18d3eX8XjM4eEhXq+Xg4MDUUrMz8+zs7NDLBZDp9MRi8WYmZkRt3i16/zAAw/w7LPPMjc3h8/no1QqieldOBzGZDKJ4VkgEJDufK/XQ1EU6XoHAgGSySTb29tUKhWWlpY4OjqSeW0NDQ0NDQ0Njfci0+mUP/k3f8zP/7f/+71eisb3yJU/e53sZvZeL+Nt4b6e0VaNsEKhEIFAQKKRer0eXq9X5OHlcplarUatVqPf75NOp7FarSwvLzMajWi1WkwmE8rlMv1+n9u3b0tclsfjYTgcYrPZGI1GzMzMSBfUarUyOzvLcDjE7/ezsrJCr9djPB6LyVg0GqXb7RIOh0U6bjKZaDQaTCYTZmZmiEQihEIhTp06hcvlkm62Wph5vV5isRh37tyRzvK1a9fQ6/W0Wi0ODw9JJpOYzWY6nQ4OhwOv18vJkye5ePGiSOZrtZrkYI/HY5xOJ8vLy8zMzNDr9cjlcrz22mtyTkwmk+Q0vvbaa9RqNRKJBDdu3KDT6TCZTOQzAHA6nbhcLkajkcSo5fN5HnvsMfR6Pa+//jpGo5Fer0e/3yebzbK4uCgd/L29PZrNJl6vF6fTiU6nk6zqcDhMPB6n3W7T7XYZj8eYTCZCoRCtVotyuSwyatXBW5WIq/PXk8kEs9mMxWLB7XZLp7lUKpFOpxkMBjSbTXlPqlmaGi3WaBzPAUWjUZxOJ51Oh9FoxGQy4dSpU9jtdtrttsx+q3Fk6XRaZvtHoxGzs7MEAgGKxaIUzq1WC5vNJpsxer0er9eLxWLB5XLRbDZptVpkMhlqtRp+vx+LxUIoFGJ3d5fNzU329/dlNMDlcmmFtoaGhoaGhsZ7nr3Lu1z+3MV7vQyN75Ev/n//DN6jY/b3daEdDoewWCySLVypVGRGNpvN0u12KZVK4tbd6/Xw+XxiojWZTHjggQcwm81ituX1ejGZTDK/fevWLbrdLi6Xi/X1dcxmM0888QTx+HGGt81mE0MzteOYy+Wkw/vVr36Vg4MDMUPz+XxYLBba7baYa8Hxjlw6ncZsNjMzM0M6ncbv99NsNlldXWU8HhMMBnE4HBQKBSnY1BlyteutmnPVajX29vbwer2YzWZOnTrFaDSS3OpEIoHBYGBvb49+vy8S9KWlJQKBgEirS6US1WqVWCwm+dLj8RibzYbP58PhcGAwGPB6vQSDQekUW61WkWJvbGxgsVhYWVlhc3OTg4MDDg4OODw8pN1uS1fW7XZLR1yVSQcCASqVCltbW0SjUUajEVarlUgkIjPwqoogGAwymUyo1+siWzeZTBgMBuLxOIeHB9jtdtLpNHfv3sVut1OtVnE4HAyHQ0wmk5iGzMzMEA6H0el0cs4cDgfBYJCtrS2Je0skEtJV73a7svliMBjo9Xp0Oh1WV1cpl8u8/vrr9Ho9tre3yefzpNNpdDqd5KO73W7Jx85kMqTTaclKD4fDuN1uFEWhXq+LxKxWq4mruTqnrjqWt1rNd/J21NDQ0NDQ0NB4x+k2ulz8b68xGU/u9VI03iJf/g9fIn83f6+X8bZxXxfa4/GEYrFIPp+n1+vhcDhwOBxkMhlx0gaoVCqsrq5is9mwWq1vuHy38fmOo6LUrOPJZEImk8HlcjEej2Veu9friWHWdDrl9u3bsoZ2u83i4iJ2u1064pFIhEAgwMzMjBREamTWZDIhHo9js9nk/9XiKhaLkclkKBQKMlPs9XrZ3Nxkfn6e9fV1Go0GnU6Hu3fvylxvrVZDr9cTCATQ6XQkEgmWl5dxuVzi2u3xeIjFYlQqFXHIDofDrKysEAwGWVxcBJBOdSqVEkWAaiSnzq2nUimKxaJ0lAuFAuFwGI/Hg91up1arEQwGMZvNFItFOp0OJ06cYGVlhaWlJRwOhxizqXnV3W6XYDDImTNn5P2oM+anTp0iHo9LPnS325W5fDUGrd1uc+HCBTqdDm63G6/Xi8vlkiixdrvN7GwKj8cjs+Hlcpl6vY7RaBTZtyqzbzabHBwc4PP58Pl8TKdTdDodqVRKstO73S6Hh4fs7Oywt7dHPB6XTvJwOJRMS7Ur7nQ6mZ+fF3m6muU9Go0olUo0Gg0U5dhtUTXB8/l8OJ1OORcWi0Wk+6rLvdF4PAGiKIpsEpnNZiKRb52dqaGhoaGhoaHxnmAKWy9vcvm/a13t+4luo8uNL11D6b53crP/Ovf1jHa73cJoNKLT6TAajTSbTWw2GysrK+RyOfR6PTabDYPBwCuvvILRaMTpdEr3udVqE4vFAAiFQlJ0l0olySv+kR/5EcxmM9lslna7zUsvvUQkEsFisYijud/v59KlS4xGI1ZWVtjf3ycYDNJoNEgkEpJ5vbS0xObmppiDlctlHnroIXq9HsViEY/HQ61Wo9FoEIlEKBQKJBIJut0unU5HIptisRhGo5HDw0OJikomk5w+fZpnn30Wp9PJ3NwcmUxG5snz+Ty3b99mdnZWYs9u376N0WgklUoxnU5Fol4ul3G5XDQaDRYXFzl37hzPPfccgUBACjtVvq12kUulEnfu3MHj8RCNRrHZbKytrZHP52m32+zt7Ylhmdq1Hg6HklnucDg4ODhgOBzKPPV4PObo6Ai3202n0xHJdCgUku+dn5/nkUceIZfLiUna+vq6yNHh2HV9PB5TLpdZX1+XMQGfz4fb7cZut4vRm9frpd/vizpCNbmzWq3U63XG4zHT6ZRkMsni4qK8bjabpVqt4nQ62dzcxO12k0qlqFQq9Ho97HY7wWDwTW70er2ehYUFCoWCdLU9Hg/pdFrUCqob+ezsLPl8HqfTiV6vx+Vy4XK55NoajUYyOmC1Wul0OqJu0NDQ0NDQ0NB4L9MqNbn1/AZrH1jH4XPc6+VofBe8/vlL7F3evdfLeFu5rwvtarXKeDyh0WiQSh27DXo8Hu7cuUMgEMBoNHLy5ElKpRL1ep1UKkWz2SQSiYj8We145nI57HY7nU6HSCRCrVaT+V01z1o1xjKbzeTzeXGZ3trakqJrdnaWw8NDceReXFzE6/WSTqfZ39/H6XQyGAwIh8Pizj0ajdjd3eXhhx+mXq9LtrU6a5tKpSiXy7KZMBgMJBbL4XDQ7XbFWEx19n7uuecAsNlsTKdTgsEgs7OzeDwecSxXY6n6/T6KojCdThkOhywvL3Pp0iWm0ymFQkHes9/vx+fzsbW1JZL9UqmE3++nXC5Lh77T6VAul3n22WcxGo0kk0nm5uaoVquMRiP8fr8UqKrMOpvNisFcrVaT7MheryeZ0nNzcyL57vf7LCwsYDab2djYQKfT4fF4cLlcXLt2jeFwSKVSYXZ2lpMnT8qmyOc//3lcLhd2ux2Xy0U+n6dcLmOxWFhdXSWTyXD27Fk6nQ75fB6z2Uy32yWXy0nWuslkIp1Ok06n5XOcm5ujXq/T6XSIxWLyGXa7XfR6Pevr6+RyOTweD9vb2ywuLtLpdGi1WgAYjUbMZjPtdhu73c50OpVYuslkwsHBAV6vF5/PR6fTweVyAccS/UAggM1mo1KpoNPp8Hq9TCYTrFbLvbkxNTQ0NDQ0NDTeYa58/jLv+9j7WXp0+V4vReM7UM1UufrnV+g139tRtPd1oW2z2UmlUiiKwuHhIaPRiMFggF6vR6fTyUPtJqoFqiqtLRQK0s212+0Sq6RKk9WZXJ/PJ2ZU0WiUQqGAoijiwD0ej6WI9nq9DAYDkUcPBgOZzw6Hw5jNZqrVKnt7ezz44IMUCgWRCKvGXpFIhHQ6LdFje3t7DIdDarUao9GI1dVVdnd36fV60i3N5XI4HA58Pp8UvUtLSxJvpkqqb9y4gdvtplAoMD8/T6VSJp8vSCdbzXeOx+McHR3JzHWxWJTs7nA4LB1g9VxPJhOCwaAUgOPxmHb7WDGQz+dFCq7mfh8dHWGxWBgMBtLRtdvttFot/H6/zDu3223cbjcOh4NoNIpOp2M0GomjeKFQwGg0Uq/XRbqtFruqHH9nZwedTsfa2hrXr19Hr9dLLveDDz6ITqcT0zS1S9xsNmUTptfriXN4uVymVCoxnU6ZnZ0lk8mIu3qtVsPtdlOr1eh0Ojz++OMyGqDmXufzefr9Pr1ej9XVVfb29sRYTzWgg+Oos2q1SrfbxeFwSBxYrVZjOBxSrVYlL129tlVJu2qk1u127s2NqaGhoaGhoaHxDtOpdfjyf/gSyfUkFof1O3+Dxj1hOp1S2ity67mb93opbzv39Yy21WohEokwPz+Px+PB6/UyGo2IxWJiGqY6d6sFsTqTGwwGSSQStFotstksJpOJbreLTqfj5MmTjMdjer0e0+lUZrRVGbjX6+Wxxx7j3Llz3Lp1C6/XyyOPPILBYODq1avSbc5ms9Jd7Ha7Mne9vLyMx+Ph1q1bIke22WzcunWLeDzOwcEBgEiSx+MxiqJgtVqxWCy89tprKIoiUWSRSERee29vj0ajAcDGxgY3btxga2uL27dvMxwOiUajBINB7Ha7bAwEAgG8Xi9nzz7AzZs3aTQa5HI5/H4/Ho+HbreL0Wjk1KlTAJRKJdl0iEQieDwe5ufnGY1GEt2lmneVSiWcTic7Ozvi2K7mW49GI8kXHw6H4tjebDYlRk113s7n81y4cIFTp06RyWQYDoe02238fj92u51kMonX65X5doPBQDQapVKpUC6XiUQi7O3tsbKyQiKRYDweA8haSqUSu7u7VCoVhsMhAF6vl0qlgqIodLtdkeKHw2EMBoMoChRFodFoUKlUaLfb2Gw2lpaWuHbtGnA8O721tSVme+9///up1+uk02m63S6KoqDT6ZhOp3S7XSKRiBTXoVAIm80mGwiq0ZuqZJhMJthsNomzi8VijMdjotEoev19fXtraGhoaGhoaLwlXv/cJZrF5rfNJde4t/RaPf70//1fGfaH93opbzv39V/ihUKRwWDA5cuXxd1ZNZkaDAYiEVYUheeee47t7W1qtRrz8/PUajXq9TqlUoloNMru7i56vZ5IJEImkxGH8FdeeYXDw0PMZjODwYAzZ85gsVhIp9Pk83kajQZHR0d8+ctflriu8XjM7u4uJ06cYG3tJA6Hg/Pnz2M0GikUClJ8qvFPqjGZKuueTqfU63Xg2BRrbm6Oc+fOEQqFcLlcLC8vM5lMmEwmNJtNCoUC+/v7VCoVKeAODg5ETr+6ugrA/v4+mUyGSqUCwI0bNygUirjdbnZ3dykUjnOcvV4vkUhEorTUvOZarYbT6SQQCDA3N0ckEmFpaYmtrS3JgK7X67z22mv0ej2ZOVbNzNTsa5/Px9ramsR8ZTIZMf8ymUxUq1Wy2Sy7u7vSOfZ6vZKPbTabCQaDAGJc5nA4qNfr2Gw2MYbrdDoMh0PJmK7X6wyHQ1EInDhxAr1ez/b2Ng6Hg0QiwWOPPYbVaqVQKGAymUTSrdfrZQNDNWFTo76SySTD4ZDRaESz2cRsNnN4eIjNZqPX6+HxeGRTYDwey6aD+jkYjUYxndPpdBgMBorFokj36/U6y8vLrK2t8fjjj2MwGMSkbTAYcHh4KCqGo6Mj2u02BwcHWqGtoaGhoaGh8beK6WTK7/5ff+deL0PjWzCdTjm6ecjOhbv3einvCPe1dDwYDHDx4kWZA65UKhwdHRGLxQiHwxwcHJDJZLDZbCwsLDAYDKhUKnz961+X/Ohr166JhHwymbC3tyeS736/TzKZxG63Y7PZpPvcaDQYj8fMz8+LLFyVFquF4NLSEv1+nxdeeJGZmRl0Oh2dzrGUdzqdYjabSSQSHBwciBlXOByWXOVEIoHX66XdbtNsNikWi5w4cYKjoyNx2X766afJZrMSjaXX66XQt1qtMue8tbWFXq+Xol7tjlcqFWq1Gq1Wiw9+8INiGJfJZOh0OszNzUm8lvr+q9Uqg8GAc+fOsbW1hdfrJZFIMJlMMBgMZDIZ/H4/+Xyew8ND5ubm2NzcFMm+KslvNBrMzs4Cx3P1k8mEfr9PIpEglUqRy+Uki/qll14SF/itrS2cTic2m41oNEq/3ycej7O1tcV4PObhhx+WmWq1E6zX63E4HNy4cUO67qohmlqwb21t8dhjj3HhwgWsVit6vZ5yucyZM2cwGAyyqaLGslmtVsrlMgaDgel0isfjYTAYEI/HMRqNWCwWisUivV5P8q7L5TKtVouFhQXpYo9GI8kWV9UB6XQao9FINBql1+vRbDbZ398XxYbqQG632ykWiyiKQigUolKpEI1G8fv9HB4eyvWmoaGhoaGhofG3hb1LO2y9tMmJJ1fv9VI0vgn/5//ymXu9hHeM+7rlNRgoeDweTCYTHo+Hzc1NLBYLFotFZrY9Hg86nQ6n0ymxVgaDgUajwe7uLmazmVarRT6fp1qtUq/XeeCBB+j1euj1ekajkTzX6/WkW2y32yX6q9/vS0ST6pptNptpNpvo9Xo2NjZQFAW73Y5eryeTyXBwcMD8/LxkUKdSKfb29gBwu91EIhG2trakOKvX62QyGer1OqPRiPF4zNWrVxmNRpKlPBqNsFgsfPjDHxZztnA4jMvl4vHHHxd3c0VR2NvbE4m2yWTi+eefl3lxo9HIuXPnGAwGNJtNmaVWFIVgMEgymeTmzZu0Wi2q1aq4aR8eHuJwOLBarczPzxOLxWi1WlitVqbTKdPplFgsJrPmo9GISqXC2toazWaT8XiMx+MRF+1yuUy5XMZut0tsVTgcplqtcnBwILnh29vbAOLync/n2d/fF8l7pVLh7t27Mgqgbkp0u138fj/FYhG/38/+/j4ej4fRaMQTTzzBgw8+eLzzdnREqVTC7XZzcHBAqVQCkEJd3RwxGAyS4W4wGAAIBoPE43HZRNHr9RSLRdrtNk6nk5WVFZnPHo/HDIdDUqkUp06dot1uk8vl8Hq9ACKDd7vdDAYDisUiwWAQm82GzWYTEzV1HTrdO39PamhoaGhoaGjcS4aDIV/9tS8T2Q1ia1rRjXV/46Ef6Qkceb/pc++GR+DIi6ln/BtfNw7+5te+8eHNu7/5+x3qcdTsmHqmd2T9zqodf8aLYahHN9Zh7pkIHHnZ+E/Xyd7J3OtL5B3jvu5oJxJx+v0Bk8mEy5cvY7PZ8Hg8GAwGif0ym83cvXsXt9stzz/55JO8/vrr4pqdSCRwOp3kcjkUReHKlStMJhNarRZ6vf5NMm3V+Ovy5cssLCwQj8exWCy0220ajQarq6vi/t3v99nd3ZXCvdvtYrfbicfjjMdjiRGbnZ2VzvLh4aF0Kj0eD7dv32ZxcZFoNMpgMMBut0t8VrlclnxnNY5qcXGRSqUic+ihUIhAIEA6nSYWixEKhTCbzVy9epW5uTna7fabOszdbpenn36a5557jmKxiNlsZm5uDq/XS7lclozoZrNJOByW6LEnnniCCxcuEAgEpJt74sQJ7ty5w/z8PDs7OwQCAZHM37hxQ7Krk8kke3t7Mos9Ho/R6/U4nU6KxSLdbpdAIEAkEpHuuvo6Ho+HXC7HyZMnOTg4YDwei3pgZ2eHyWQicWlqrrnRaMRgMKDT6aSQVYvVS5cuyXx/s9lkb28Pg8GA2WwWt3YAg8HA008/zWBwfP2pn6fa4a5Wq3Luj46OpOOv1+tFVu/3+0U5oW4EtVotarUaiURCFAoul4vt7W2JDFNzy69fv04wGOTBBx/k61//OmfPnqXRaIivQKfTvcd3qIaGhoaGhsb9wntmrnkK269v8fx/eY6nfuQp7PpvnsJiHOrxZ9zv8OK+O4xDPZ4jB9O/1jTRTfkbX/tGDCM9/vQ3eU9T0E902PSmb/v9Pyj0Yz36iQ7voQt0x+s2jPR85T8/y0gZvf0LeAf4bu6X+7rQVpQhNpuNVqtFq9WSeWx1PtXn89Hv91leXqbX61EoFLBYLCiKgtls5uDggFAoRLPZxGg0sri4SCaTweFwcPbsWYkFczqd0jk/d+4cX/7yl98Uz7SwsMBXvvIVlpaWeP311wmHw1gsFpaWluh0Omxvb2O1WvnABz7AV77yFRqNhuQcRyIRJpMJc3Nz0l3f29vj9OnTYsz29a9/XWTLs7OzOJ1O6vW6OHMriiKFXbVaxW63U61W0ev1YvA1OzvLlStXqFarpFIp/H6/OJarTu2FQoFAIMCXvvQlarUagUCAYDDI/v4+g8FAYrIajQZPP/00m5ubuFwuNjc3iUajxGIxgsEgn//85/H5fLKRAMedXa/Xy9zcHNPpFL/fz9WrVzGZTHzlK1/BYDC8KYLN4XBI5z4Wi9FsNjEYDAQCATENe/3115mfn2dxcZFQKEQ8Hufll19Gp9OxuLhIt9slGo1K5Nnq6irb29tSxOr1eq5evcra2hput5uNjQ3m5uZwuVzcunVLzOKMRiOtVguPx00ul5fZ58XFRSaTiZjpqbFx6vz0NxrTWSwWGo0GHo+HTCaDy+WSz2gwGBAIBADo9/usrKxwcHDAYDCQOftQKMR4PObOnTv4fD6GwyFOp5N0Ok2j0cDtdrO5uUmxWGR1dVVc3DU0NDQ0NDQ0vhtU75j3As1mk1//9V/n13/91+/1UjTeoxzXBp5ve8x9XWiPx2Nx83700Ud5/fXXmUwm4lTdaDQYjUaEw2ECgQCj0Qin00koFODmzWMZ9EMPPcT169cZjUak02mJxwLo9Xp4vV6Rbk+nUy5dusT6+jpHR0c4HA5cLhevv/46MzMzDIdDHnjgAZEkV6tVbDYb4/EYk8nE7//+7xMOh6WDOZ1OURSF69ev4/f738g+thIMBtHr9RIxZbFY8Hg8mM1m1tZOsrOzQ61WeyPCqcvy8jK3b99GURQxxfL7/dIZnU6n3L59G5/Ph9vtljlpVRLudrs5OjrCZDJJRzkSiUhBr77W7u4usViM2dlZqtUqPp8Pj8dDNpvl6OhIorucTqe4cw+HQ65fv854PCaXyxEKhdjd3cVgMBAMBslms5KBPZ1O2d7eZmFhgV6vxwMPPMArr7yC2+0WozU1V1pRFJm5LxQK1Go1arUaHo8Hp9PJ0tIS29vb3L17l4WFBXK5nMj2h8MhiqJgNBrR6/XUajWJx0okEoxGI5aWlqQLHQwGJef8z//8L9DpdDzxxBNcvHhRHNMdDge5XA6Aer0uMm5A8tedTifdbpdut4vBYMDj8dDpdFAUBbfbLQZ46gaIOke/uLjIaDTizp07ki2uGtbl83kMe5sYFQABAABJREFUBgPVahWn04ndbufOnTtEIhHNDE1DQ0NDQ0Pju8bv9wNwcHDwHQsIjW9Ns9kkmUxyeHiI2/3u7Ji/23k3n0O1gRePx7/jsfd1oa1GHRkMBmKxGJFIROK8nE6nxHqpMUxutxur1Sqz3YeHh1y+fFnmh41GI1arldOnT9NsNrHZbJhMJhqNBsPhEIPBQKvVYn9/n9FoRKPRkHxs1S1cnTOeTqesra2JS3c+nycUChGJRHC73UwmE9bX1/nLv/xLmU8+ceIEvV6P4XDI7u7um5zUJ5MJer2er33ta0SjUelo3rlzRwzBjEYjLpeL/f19Op2OdEvtdjt2u10k4vF4nEqlQi6XIx6PiyLA4/FIfJk6x1yv1zl9+jRmsxmj0Sgy8H6/z2AwoN1uk0wmyeVyDIdD8vm8yNw7nQ46nQ6v18t0OqXT6ZDJZJidnaVer6MoCsPhkG63S7/fZ2FhQfLIFUXh4sWLfOADH+Dy5cvs7u4yHA5ZWVmh1+tRqVSIx+NSoPb7fQCJOatUKuzv7xOLxdje3kav19NqteT7l5eXyWQy0vVVo7x2dnbwer0i955MJuzv70ssXDwex263Uy6XSSaTdLtdhsMh8XhcDNTUmDFV/m4ymWRTolKpiCM+IPnaqsGew+FgOBxSr9fxer34/X6uX78un2G/36ff7zOdTrFarSQSCex2u1x3mUyGwWAgIw4aGhoaGhoaGt8N6ga9x+N51xU39yNut1s7j98n79Zz+N1uRL2lltenP/1pHn74YVwuF+FwmI985CNsbm6+6Zh+v88nPvEJmcf9mZ/5GQqFwpuOOTg44Md//Mex2+2Ew2H+1b/6V4xGb12v7/f7WVxcxGw2S060ai7WarVYXl6mWCyyv79PLpcjkUjQ7/fZ2toW2bUaj1QoFHC73eh0OhRFwev10u/3xXysXq/T6/XEDEx1+s5ms+TzeUwmE/Pz82QyGXGo3tnZkezjg4MDcrkc165dY3d3l3w+z+bmJufPn8disVCr1d6QlLdZXj6eszabzWSzWYn72tjYYDyesLW1zc/8zEfY3t5mdnYWk8lELpcjHA4zGo3Q6XS4XC7cbrdka3e7Xe7evUuhUGB7extFUVhYWMBkMjEcDnG5XCwtLfHMM88QDAap1WoUi0X0ej03btyQTYp2u82JEyeo1WosLi7S7/fJZrNiDFar1eRz6PV6hEIhVldXxZlbdYPf3Nyk1+sBxxFmTz31FK1Wi4cffpjTp0/LDHWr1eLo6IhWqyXGc8vLywQCAck+/+mf/mkef/xxdDqdzK5funRJ4rVMJhOhUIhMJkOxWGQ4HNJoNDg8PCQSiWAymbBareh0OtbX12Xjo9/vc+rUKVECqMZ6LpeLfD4vGxc+n49bt25RKBQYj8e0222ZpVeju8rlMu12m36/j9FolJi4QCDAZDIhHA6zuLhIo9Egm81KxrtOp6Pf73N4eCjO7alUisFgIJsak8mEXC7H3bt3peNfq9W+baH9bruXNTQ03jrafayhoaGhofHu5S0V2i+88AKf+MQnePXVV3n22WcZDof86I/+6JtihP7lv/yXfP7zn+eP//iPeeGFF8hms/y9v/f35PnxeMyP//iPoygKL7/8Mv/5P/9nfvd3f5df/uVffsuLd7lc0hnUvWGxbLVa6XQ6lEol0uk0g8EAs9mMoijiRH3lyhWZ0XW73Zw5c4b/4X/4vwAwMzODz+fj8PCQkydPEolEpIupFjzb29v4fD5sNpu8vtVqpdvtsrKywvz8PJ1Oh+l0yp/92Z+xtbWF3+8nGo1y8uRJzGYzk8lEsrgtFgunT59+IxLriFzu+I+ghx56iGazSavVQlEU4vG4dEP/9E8/J8W+x+PB5/PR6/XQ6XScO3cOnU5HsVikWCzKrLiiKHQ6HZnJbjabdDod+oMB3V6ParUqkVQzMzOsrKzw1FNPsbq6yubmJoPBQOKn1Liv1dVVydUuFos4HA6ZgVfnil944QUmkwlms5nXX39d5PEOh4PTp08zGAxoNBqYzWY2NzfFPX0wGHB0dITL5eLRRx/F6XSSzWZ5+eWXRYrdbDa5fPky165dIxaLoSgKq6urzM/P4/V6OX/+PMFgkHq9TqFQIBaLYbFY6Ha7OJ1OotEo4/FYouFeeuklyWJXFIV0Oo3JZGJmZoZsNkuz2eTatWs0Gg263S6lUkmc7hVFEeM0tcje2dmhVCqRSqXY399Hp9Px5JNPksvlqFar5PN56XRvbGzgcDjwer0S/9ZqtSTv22q1ynlWHfVVB3Z1jGAymYh0f6AM7pt7WUND462j3ccaGhoaGhrvXnTT78NisFQqEQ6HeeGFF3jqqadoNBqEQiE+85nP8Pf//t8H4M6dO5w8eZJXXnmFxx57jL/4i7/gJ37iJ8hms0QiEQB++7d/m//5f/6fKZVKmM3m7/hzm80mHo+Hf/3/+l8Jh8Myq2u322k2m8TjcXG1VuXT8Xgcp9NJIpFgc3OT6XTKaDTi8ccfZ39/n3K5LFL05eVl9Ho9iqIwHo/fcHA+lqQnk0ny+TzxeJxOpyNFYb1eJxAIiHFWu93G7/djs9kYDoeSPw0QiUQoFAooisLc3BzdbpdyuYzL5UKn05FIJNjb26NSqeD3+1EUBYfDgU6nw2QySdFvMpnQ6XQSKaXX68VU69atW2Ky1m63CQaDDAYDSqUS4/GYVCols+S5Qp5Sucx8KkWve+yI7Xa7CQaDMieszmqrc8Tj8Rg47kb7/X52dnakw6soisjb1flqtZN75coV5ubmMJlMUkzncjlcLhe1Wo0zZ86Qy+Xw+/10Oh2MRiM2m412u83R0REzMzPs7e0RCATo9/sEg0Gq1SrdbpdIJILVahVX736/j8ViYTgcEgwGKRQKnD9/nkKhQLvdZmdnh1gsRqfTkZ9vMpmky6+6lZtMJmZnZ8XcrN/vY7VaicViskngcrloNBrYbDam0ymPPPII29vb4l6v0+nI5/OsrKywsLDAjRs3ZLOg3W4DyMy+OnqgXqvq2IDNZiMej8s8+GQykSLbZrOJ4/h4PMZut2OxmPl3/5//TczS3s338m8c/Adsbtt3PF5D428jvWaP/9vsv/iO97J2H2tovHv5bu/je8lgMODTn/40n/rUp7BYvrlTt8Z3RjuP3z/vlXP4fbklqY7KqnnC5cuXGQ6HfPCDH5RjVldXmZ2d5ZVXXgHglVde4fTp0/ILHeBDH/oQzWaTjY2Nb/pz1Dznb3wA7O/vi6S4WCySyWQYjUZS5Ho8HhKJBAaDQTqIzWaTw8NDmWXd2NhgMBiIgRUg+dlWq5Vms0m5XEZRFEwmk+Rpq1FOqmGWKhkOBoNSrNntdkqlEplMBqPRiN/v54EHHqBYLFKv15lMJtLBVAtfm81Gs9lkbm6O0WiE0WjE4/FIxrIqmZ6fn5cZZ6/Xi8/nE0dytUC3WCxUKhUcDgeHh4e0Wi0GgwHRaFRyrEulEucffJAHz59nOByKCZfVamV3d5evf/3r9Pt9iaZSc6VVibrZbMbj8dBqtSR26/3vfz+dTkeitfb396lUKjQaDdbW1pifn6fZbGIymSiXywQCAVmber5yuZxsbpRKJTEqq1arog7wer1iGNfr9chkMoTDYaxWK8Vikbm5OVZWVjAajdRqNRYWFhgMBnJMIBDAarXidruJx+NMp9M3CtRjx3j1ffX7fUqlEo899hgLCwtEIhEMBgOlUkk2A8rlMh6Ph2g0isFg4Nq1a2xsbIhioVgsYjQa6fV6bG5uynlW56vV6y4YDLKwsECxWOTg4IBUKoXH4xFTPHXWvVqtYrFYsNlsYganPm8ymVAUhdFofN/cyxoaGt8/2n2soaHx/WCxWPjX//pf39eFzbsB7Tx+/7xXzuH3XGhPJhN+/ud/nve9732sr68DkM/nMZvNeL3eNx2ruiOrx3zjL3T1efW5b8anP/1pPB6PPJLJJHAsHe/3+zInq7qAq51jtYvodDp54IEHaLVa5HI5otGoFEUAtVqNZrNJrVYD4OjoiGazST6fp1KpMB6PJaaqXq9z5swZHA4H2WyWUqkkbttut5tOpyO53GqGsioj73a7UjCmUikxG1NzsBVFAY4NvfR6PclkEovFwq1bt6QjbDQa8fl8VKtVarUanU6Hzc1NdDqdSJUVRREpudphj0aj4ja+tLTEdDrF5XIxHA65eu0a8ViMp556WjYB6vU6Tz31FOfOncNqtfLhD3+YbrcrGw1ra2t0Oh2y2SyXLl2SmXabzYbD4WB1dVXUBJlMhkKhwNHREfV6nWvXrqHT6chkMiwvL4trdygUIhaLUSwWZaZ7MpkwPz8vbumqQiCdTuPxeDh//jwPPvgggUCAmZkZdDod3W4Xo9HI9vY2jUaDyWRCu93m8PCQixcvcuXKFQ4ODmi1WvJ+T548KVnpyWQSv99PsVgEjrv26saAep3FYjHa7TadTodarSaqh2KxSDAYZDwe43Q6sdlszMzMiON4Pp+nXq9z+fJldDodN2/exGAwMBweR9V1Oh1u3ryJz+djMpmI2/3CwgJerxedTke1WiUQCIiE3O/3y4aHXq/HbDYzHo9pNOr3zb2soaHx/aHdxxoaGhoaGu8uvudC+xOf+AQ3b97kD//wD3+Q6/mmfOpTn6LRaMjj8PAQOHZ8azQapFIpkfGqXe1EIkGv18Pv99Nut8Wlulqt0ul0mJ+flz8iXC4Xc3NzeDweer0eg8FAjM9Ud3BVeu50Otnd3WU6nTI7O0sqlWI0GjE3N0elUiGTyXBwcCBF7+nTp/H5fHQ6HTweDy+++CKdTgefz0cqlaJSqdBqtYDjGKi9vT1u377N1tYWDoeDSqVCKpXC6XTKRoDq7q3+8aR2ri0WCwsLCwyHQzKZjGRCq1394XAo+eHD4ZBCocBgMCAYDPLSyy/z6qvHUsJHH32UmZkZnnvuOSqVCjqdjs9+9rPs7OxgtVpZWlqSOe65uTmMRqNIt4fDIRcvXpTC2WazEYvFWFpaYnZ2llarJccuLi6KUd3m5ibZbJZ+vy8bGZubm+zv7/OlL32Jg4MDzGYzuVyO8XgsBeezzz7LaDTizJkzEkNWq9XodruMx2Oq1SoGgwG73U673ebkyZPiDv7EE08wOzuLwWDgtddeY3FxkVgsBsDu7i4f/OAH5flQKMSLL77IlStXgOOOzuLiIn/n7/wdLBYL4/GYlZUVBoMBFy9eJBgMcvbsWcxmMy+88AKNRoMHHngAnU5HvV4nGAzSarUkx73dbkscmF6vFwf9brcrsXSxWIy7d+/SbDYZDocAxONxJpOJXPter1cUEsFg8Lu6v94N97KGhsb3h3Yfa2hoaGhovLv4nuK9PvnJT/KFL3yBF198kZmZGfl6NBpFURSJJlIpFArSPY5Go7z22mtvej3VAVU95q+jmk39ddLpNKlUCpfLRbVaxWQy4XQ6ZTZbNYsCUBQFnU5HLBbDarXSaDSIxWL4fD4MBgPpdBqr1Uo4HOahhx7i5ZdfJpfL4fV6qVarEqelOo2rEmOLxUK1WqVSqbC+vs6tW7cYDocSsVSpVDAYDDLDq85xl0olDg4OZK5Yfb7dbmMymYhEIvT7fTwej0Q7TadTGo0GHo9HcrqtViutVotHHnmEP//zP5c57kAgwIkTJ9jZ2aFerzMYDLDZbOKkrq4pnkjQ7ffodbsY9Xq2NjfpdnskZ2aYjMY47Ha63S5HR0csLi7i8XjI5/PSBVE7wOVymXQ6zU/8xE/whS98gWKxKPnhlUpFpNuJREKKfXW2/JlnnuHu3buUSiUODw8lVzuRSIhhnd1uJ5/PY7PZpLBUNyhu374tc/Lq+YLjIlRRFInpstlsHBwcYLfbiUQi3Lhxg/n5eUajEa1Wi2QyKbJ1VY7ucrkYjUaSrT6dTnE6nSK7f+GFF5hOp5jNZm7evEmlUkGv14tRWrvdxmKx4Pf72djYIJlMMhwOmU6n8pw6W2+xWOj1enI9RqNRgsEgxWKRUqkknf9er8fe3p5sLOh0Oh5//HGZCVfl6ur5uR/uZQ0Nje8d7T7W0NDQ0NB49/GWOtrT6ZRPfvKT/Omf/inPPfcc8/Pzb3r+/PnzmEwmvvKVr8jXNjc3OTg44PHHHwfg8ccf58aNGyLLBXj22Wdxu92sra29pcWbTCba7bZ0b1X5Wj6flyzApaUliSnR6/WEw2GZB240GlitVqbTKTabjVKpRK1W48KFC3S7XQBarRbj8ZjBYEA6nZaOeaFQoFwuy6zuYDDg9u3bnD17Vrq4RqORVCrF2bNnCQQCKIpCJBKR4w0GA/F4nNFoJHndoVCIdrtNvV4Xs7BqtcrOzg5Go5FcLseNGzekaF9eXsbtdrO5uSly5mq1itls5uLFi5LPrGYvq5L23hsu43c2N9nc2kKv0+F0OknOzrJ28qRkTLcaTRr1BslkklAoRLfbxefzUa/XOTw8xOVySedVp9OxtbWFxWKRQl5RFPx+v0j81Vl5RVGYTqcMh0Nef/11RqORSKVLpZJ02z0ej8i+1QLb7XaTTCZl86Tb7YqLeLfbpVgsYrPZ2N3dJRQKMRqNRHo/Ozsrjt39fp98Ps/MzAzz8/Pcvn1bYrN6vR6NRoPBYCDrUOeiNzc3JZtb3dwxmUyEw2Hp3JdKJZnzdzqdAKKisNls6HQ6HA4Hk8lE1jgej8XMrd/vk8vlMJlMFItFCoWCKCUAmU9X48vS6bQ406+vrzM7O4vf77tv7mUNDY23jnYfa2hoaGhovHt5S4X2Jz7xCf7Lf/kvfOYzn5EsYbUogWMp98c//nF+4Rd+ga9+9atcvnyZf/bP/hmPP/44jz32GAA/+qM/ytraGv/oH/0jrl27xl/+5V/yS7/0S3ziE594yzvkandTp9NJVzMSiWC329nd3ZXcZLVrbTKZ2N/fp9PpYLfbCQQCLC4u0un8/9m78zC5zurA/9/a96Vr7+q9W/tqWZJlWcYLNhZg7DGBMCyZACEQiE1+4MSTkAxrMiGBSUiYgBkyA2aSQAgJBPBgQFi2vGixJWuXet+36q6urn2vur8/WvWGRgYs01gSPp/nqcfuqlu37r3dr7rPfc97Tk617Oro6FBFpWZmZlRv5mKxSFNTE5s2bcLpdHL99deTzWap1WoYDAZWr16Nx+Nhbm6OUqmkClxls1mMRiPT09OYTCampqbo7u5m7dq1RCIR7HY7TqeTQCBAe3u7SktvrD83Go2sXr2a9evXUy6X0ev1qgBXo092o9CY0Whkz549tLS0UC6XsVqtdHd3Mzk5STAYxGg0qnXh3d3dbN68GbfbtdRO6kJP51K5xLHjz+FwOrnm2m34AgEKxaVWV8PDwwwMDKiK3clkkieffBJN02hqalIBfGPd+KlTpygUCoyPj5NIJCgWCypAdzqdNDU10dXVRaFQUDP52WyWxcVFdcOgMbOfSqWoVqvs3LkTk8lELBajpaWFlpYWHA4HnZ2d2O121q5dy5o1a9Dr9Wzbtg2j0ciOHTtYs2YNlUoFk8lEJBLB5XJht9tVte75+XlcLhfBYJCtW7eqNeednZ2qiJ7b7VZF5BqVwRsF7xrFzVpaWrBarTQ1NVGpVNTPTaOn96ZNm9QSBbfbrdqONVLec7kczc3NGAwGtc7eZrMxNzdHLpcjnU5TLpcJBAK0tLQA0NPTQzKZJB6Pq2u1VC34p4+nK20sCyEunYxjIcRK+tznPkdnZydWq5Vdu3ZdlO3ycvbEE09w1113EY1G1ZLKH6dpGh/5yEdobm7GZrNx++23MzAwsGybRCLB2972NtxuN16vl3e9612q88zLwSc/+Ul27tyJy+UiFApxzz330NfXt2ybYrHIvffei9/vx+l08oY3vEFlWTWMj49z5513YrfbCYVCPPDAA2pS9UpzSYH2gw8+SCqV4pZbbqG5uVk9vv71r6ttPvOZz/C6172ON7zhDdx0001EIhG++c1vqtcNBgMPP/wwBoOB3bt38xu/8Rv85m/+Jp/4xCcu+eCtVivBYJD+/n41q3vmzBlisRjpdBq73c7o6Kjqt7y4uIimaYTDYXQ6HTMzMzz++OPMz88DS3+UDA0N4Xa7CQaDKgienJykWCwSj8c5d+4c8/PzPPbYY9x66604HA40TWNiYmJZiyWDwaBmkScnJ0kkEtjtdlyupcC20Yv6/PnzqtXYzMwMoVBItW9qFEMbGBjg7Nmzquq51+tV6cyxWIw77rgDk8mk9tGYHa3X6/T19XHXXXfR1NTE1q1bVWqypmmEQkFmYzGSySTVSmVpbXOhQFdPNzqjnudOHGdyZgqDwYDH48Fms+HxeMjlcmzbtg2TycS6devUgCmXy2oNdePz8/k8LS0tbN++nZtuupmOjg5yuZy6SRGLxWhtbVUz/DfccANr1qxhamqKSqXCD37wA3Q6nSpOd/bsWVKpFAaDAYvFQi6XU1/b7XZSqRSJRAKXy8XQ0BAnT57k1KlTzM3N8cY3vpFAIIDNZsNkMqkshUqlQk9PD3fffTctLS2qynwoFOLRRx+lqamJ1tZW1q9fr5Yo1Ot1FUj39PTQ2dmpep432m55PB5CoZCa2a5WqySTSdVPe3Z2lo0bN9Lc3Mzq1avxer34fD5GRkbU7P34+DgAnZ2deL1e1XZubm6Ojo4O2tvbOXLkCMVikVAoxNjYGDMzMxgMhp+ZOn6ljWUhxKWTcSyEWClf//rXuf/++/noRz/Kc889x9atW9m7d++ybJeXs1wux9atW/nc5z73vK9/6lOf4rOf/Sxf+MIXOHLkCA6Hg71791IsFtU2b3vb2zh79iz79u1Ty33e8573vFSncNkdOHCAe++9l8OHD7Nv3z4qlQp33HEHuVxObfPBD36Q7373u3zjG9/gwIEDTE9P82u/9mvq9Vqtxp133km5XObgwYN85Stf4aGHHuIjH/nI5Tiln+sX6qN9uTR6dv7lX/41uUwWo8nErut2MTg0yOjoKOVyGafTSS6XI5fL4fV61dc6nY5IJEJzczMnTpzAZDJhNptxu92q6vPIyAjd3d0qqJ2dncVqtTIzM4PT6cTj8RAIBNiyZQu1Wo0TJ07g9XrVOtpSqYTdbsdsNtPe3s7s7Czz8/O43W5V8GpxcZGOjg4KhQJ2u53p6WnVfzoej1MoFNi+fTuPP/44NpsNr9erWljt3LmTUCjE1NQUqVRKBc/ZbBa73a56LjcC6kAgwPz8PDfddBPPPnuUVDpFS0srXq+b8YkpCqUi+VyWQCCIwWBQKfXRaDOZTJZEPI7jwjE21he3tLSwuLjIhg0bGBgYwGw2Mzc3p2ZpPR4PMzMzlMtlVq1axfz8PF1dXeh0OuLxONlslpaWFpWi33jv2rVrmZmZwWg0YrFYGBkZIZFI4Ha7VRu1PXv20Nvbi8fjYWxsjE2bNlG5cKPAbrdz8uRJ1q5dSyKRYO3atUxOTmI2m9m9e7daB57JZNSa6Gq1itfrJZvN4vf7VZX5Z555Ri0tsFgsrF+/nt7eXgwGA6Ojo2zZsoXp6Wmq1aqatW5ch8aNg0YWRSgUQqfTqfXitVqNQCCg1ubXajUcDgd6vV61AmvcPDCbzczOzqp+2gsLC3i9XlVJ3m63U6lUSKfTauZ8aZ14ji/+/eev6J6d0n9XiJ/vSu+/K+NYiJ/vSh/Hu3btYufOnfzd3/0dsNTJoK2tjfe///380R/90WU+uiuLTqfjW9/6Fvfccw+wNJsdjUb5/d//ff7gD/4AWGq3GA6Heeihh3jzm9/M+fPn2bBhA88++yw7duwA4Pvf/z6vfe1rmZycJBqNXq7TuWzm5+cJhUIcOHCAm266SS2h/epXv8ob3/hGAHp7e1m/fj2HDi0VbH7kkUd43etex/T0tOqQ8YUvfIE//MM/vJDNab6cp3SRX6iP9uVmMpoAyGdz1OtL61sb65oDgQAGg4Guri4MBgN+v5/u7m4AAoEAsViMRCJBJpNRs8EOhwO32821115LU1OTWpd74403EggEaG5uVv2hNU3jwIEDnDhxQhXqstvtdHZ2smrVKorFotounU4TjUbx+Xzkcjl8Ph+1Wo2JiQlVkXxhYYFsNsv8/DxjY2NqBv62225T6dONVmWBQICjR4+iaRqLi4vU63XK5TJms5l8Pq96P5fLZWq1Gr29vfT19dHb28tsbI7p2TlOnTnHzNwCVruTarVOfCFJsVRFpzeSyxdJpbMMj4wzMzuPw+GgVCpRqVQwGo0Eg0FcLhcmk0kFwo3AsNHuqlqtEggEVKE0g8FAPB5X1bIb17JR0M1isRCPx+nr62NmZgaLxcKWLVvI5/NEo1F1DD6fj/Pnz2MymdDr9TgcDrLZLF1dXezatYt4PM6ePXvweDxYLBby+TzxeJzJyUlVjdztdqPX66nX69jtdjwej6rE3ujf3WgRZzabsV8oCNfb24vZbMZms9HR0cHg4CDFYhGTycTs7Ky6sZPL5dRNDqvVyrp16yiXy3i9XrUuuxGsnz17lmw2y7p167BarcRiMfR6PVarVaUTNfqpl8tl8vk8DodD3TBoLAdo9OhuVG5v3DwSQgghhPhZyuUyx44d4/bbb1fP6fV6br/9dg4dOnQZj+zqMDIywuzs7LLr5/F42LVrl7p+hw4dwuv1qiAb4Pbbb0ev13PkyJGX/JivBKlUCgCfzwfAsWPHqFQqy67junXraG9vX3YdN2/evKwt5d69e0mn05w9e/YlPPoX5kVVHb9StLREcTldDA8NsW/fj/AH/GpG1+12U6vVVJDVWEtdLpc5efIkJpMJg8GA1Wqls7OT8fFxhoeHsdvtjI+PEwqFSCaTFItFTp8+rQKopSJTPiKRCG63izNnzlKv11VF15MnT6p1wxaLRfVYNpvNTE9Pqz7RjcDo+PHj+P1+7r77bg4cOMDo6Cgejwev16sqV3d2dlKtVrHb7eofwxtvvJF8Ps/IyAiFQoFQKKSCx8YsscPhYG5ujnq9zrXXXsvU1BTR1hYy+QIer5exsaXK301NTZRKZSYnJymVSphMJnw+H4VCcelGhF5jemqKQCCgqp5Ho1EKhQIzMzOEw2EymQyapuH3+8nlctRqNWw2G+l0Gk3TqNfrFItFJiYm1DXv7e1Vs98ul4tCobBslvmb3/ymqvTeSDVv9JJ2Op3Mzs5iMpmYmJjAbDbj8/mIRqOq1YzX61XF5dauXcvIyIiafR4ZGaG5uZlyuYzf71fB686dO0kkEgwPD+P3+2lubsZsNvPEE0+odTfj4+M0Nzer9SDRaJS5uTnVbzsSiZBKpahUKqoon8FgUNXeGynkjRn6Rk/byclJ9XM7MzOjZrcblfITiQTVapUtW7Zw/vx5zGazKjDn8XhUEF8sFtUNDCGEEEKInyUej6u/R35cOBymt7f3Mh3V1aPRLvj5rl/jtdnZWUKh0LLXjUYjPp9PbfNyUq/X+cAHPsCePXvYtGkTsHSNzGbzsi4ZcPF1fL7r3HjtSnNVB9qPP34Al8uF1WZD0y2t2bbb7UQiEQYGBiiVSgSDQdatW0elUiGVSpHP51m9ejWVSoVIJILRaOTw4cOsWbMGg8FAJBJhamqKeDyOpmn09PSowl3Dw8OMjIyoyuMmkwlN05ifX5r1DQQC9PX1MTExwcaNGymXy/T29qoiNZFIRP0Q9PT04Pf7OXr0qJqJ7OjoIBaL4ff7VUXrhYUFcrkcc3NzRCIRtf7YbDZz6tQp2traVNDq9Xqx2mwMDw1RKpXwer0MDQ1hsVg4cOAAmzdvpq+3F/RGjMalR09PD9PT0wQCARwOhwpiN2/ezJNPPrlUaduoU2vO9Xo9zz33HLt37+bIkSOUSiXq9TrT09MqIG6s5966dSuVSoUzZ85gNBqZmppShd4ahbsCgYBqo9a49qtXr6ZWq9Hc3IzD4WB0dJT29nYcDgdnz55Vaf2NGxzpdJr+/n6V9r5u3TrV7zyfz6tUeovFwsTEhPrcUqmkioeFQiECgQDxeByLxYLNZmPNmjVks1lmZ2d505vexOjoKNlslnq9zvDwMNFoVFWDT6fTOBwO/P6lmz3t7e3s379fBdzNzc1omsbCwgKBQECltuzefT0TE5N0dXVx7tw5kskkVqsVs9mstonH4ywsLFCr1VS7HZ/PRywWw+VyqWURBoMBm81GpVIhmUxiMpkuz8AUQgghhBDip7j33ns5c+YMTz311OU+lF+qqzrQNhgMeJuaqKPh8/sYGhjEYDAAqBlrnU7Hxo0b6e3txWQyUavVCIVCZLNZKpUKiUQCp9PJ2NgYzc3NDAwM4Pf7GRoa4rrrrqOzs5P9+/fjdrtVMON0Opmfn8dkMmE0Glm7di31ep1EIkEoFFK9tvP5PIVCgebmZhVc2u12DAaDquDt8Xjw+/2MjY2pfszVahW3283CwgJtbW2q+nYsFlNts44cOcKqVasYHx9nfHwci8XC4OAgLpcLn89HMplkYWEBi8VCS0sLa9eu5cSJE+gMRowXZlfvuusuRkZGaG9vp16vU61W0el0HD9+nHw+j9FopLm5mXhsGq1ex+l0quCyUYCrVqvhdDrp6OjAZDKpGxQWi0WtZ3Y4HCpNPplMkkql1Dp5o9FIPB5XReLi8ThTU1OqQFowGMRqtZJOp9X3tHENGsXhmpqacDgcjIyM4HQ6Veu2XC7H2rVrmZqaYmBggL6+PsxmM/V6XfW2ttlsTE5OMjs7y6pVq4jH4+RyOZxOJ0ePHqVSqeDxeDh//rzqsx4MBjl79izFYhGn04lOp8NisWA0GtXduFgsRjgcVq3VEokE7e3tqr96oyr8k08+RSQS4fz58wSDQUqlknpf41gXFxdVJXydTqcq2m/cuFGluet0OnK5HHq9XhWv83g8l3N4CiGEEOIq0Fhu+ZPVnWOxmLrBL366xjWKxWI0Nzer52OxGNdcc43a5icLy1WrVRKJxMvuGt93332qGFxra6t6PhKJUC6XSSaTy2a1f/znMBKJXFQNv/FzeyVex6t6jbZer8fd5MEfDpHKZCiWilQqFbZs2YLD4cBsNmMwGBgZGcFmsxEMBtXMbKNoVFdXF21tbej1esbHx1lcXFTB4unTp9m3bx+Aar3U6AtttVrVbLNer6dWq7G4uEgikeD06dPE43EA1qxZQzAYZHZ2Fq/XS6lUwmg0qjXcZrOZkZERyuUy1WoVn89HvV5XldP7+/ux2Wwkk0k1Ez85Ocnw8DBms4nrrttBIBBQBb0as9+NytmN9cf9/f00t7RQqdXVbPLjjz/O5OQkfX19nD17lqmpKUZGRvD7/dTrdWw2G11dXXi9XtUve2Zmhmg0SiKRAFDrkMPhsFpj0dbWhtFoVGvO5+fn0ev1ara5keIeCAQAKBQKzM3NqaC2cQ4OhwOn08m6devU7KzD4VA3IgAWFhZwuVyEw2FuuukmlUIdiUSw2WxMTU2xceNG+vv76e7uVr2q8/k8yWSSXC6HzWajXC4zMTFBOp1WM/R6vV6lgc/OzjIxMcHJkydJJpP4/X6i0SjBYJBCocD8/LxKb1+9erWajTeZTPj9fnVzoNHr3Gw2093drdqh1Wo17HY7brebaDRKIBBAp9NRKBSIx+Ns2LABp9PJwsICQ0ND2GxLBYca/bgrlQoWi0UtIahUqkxNTb10g1EIIYQQVyWz2cz27dt59NFH1XP1ep1HH32U3bt3X8Yjuzp0dXURiUSWXb90Os2RI0fU9du9ezfJZJJjx46pbfbv30+9XmfXrl0v+TFfDpqmcd999/Gtb32L/fv309XVtez17du3YzKZll3Hvr4+xsfHl13H06dPL7tpsW/fPtxuNxs2bHhpTuQSXNUz2uvWrWUhlaJQKlLI5HA6nFQqFfr6+tTa4ObmZpXKPTIyotowBYNBLBYL9Xqd/v5+gsEggUCAc+fOEQgEVCXv97zn3fT19fPII4+wbt06pqamyOfzBAIB6vU62WyW0dFR2traWFxcxOv14vF41OytXq/nhhtuUL21FxcXWbt2LRaLhWeffVat021paWFoaEgVUkun04yNjRGJRJatc26kEzc1NTEwMIjRaMRqtbK4uIjZbMZoNKp2WI1Z8C1btnD8+HNkCwVcbi9ut4dt27Zx5MgRnE6nWm+czWYZGxvDZDKpHtN6vR6X04XDYVfrhjdt2kR/fz+hUIjx8XEWFhaYmJjA4/EQiUSYnJxUwWQwGETTNNxuN+3t7Rw+fJhbbrmFeDzOs88+q66j2+1mZGREtcvatm0bp06d4sknnySXy+FwOGhpaVF9pc+cOYPT6VRBut1u59y5c9jtdgAGBwfR6XTEYjFKpZKaAQ+FQiwsLLBp06YLNyvMDA4OsnbtWgYGBmhvb2dhYQFYaiEwOztLa2srQ0NDrFmzhnK5TLFYZP369Tz66KPqZkCjTdnExISqQu/xeCgWl27+rFq1inw+z8LCAiaTiXw+r3qfNzIQGhXOn3zySdViLpPJYDAYyOfztLa2ksvl2LFjB/V6Xa2balTCHxsbU8XaXC4TpVLx+QeOEEIIIcSPuf/++3n729/Ojh07uO666/ibv/kbcrkc73znOy/3oV0Rstksg4OD6uuRkRFOnDiBz+ejvb2dD3zgA/zZn/0Zq1evpquriw9/+MNEo1FVmXz9+vW8+tWv5t3vfjdf+MIXqFQq3Hfffbz5zW9+2VQcv/fee/nqV7/Kt7/9bbWsFljWQvhd73oX999/Pz6fD7fbzfvf/352797N9ddfD8Add9zBhg0b+C//5b/wqU99itnZWf7bf/tv3HvvvVgslst5es/rqg60p6amqWh15hfibN20mVw6QyqVUqngmzZtoqenh0qlwvz8PKVSiYmJCaLRqOrTHIvFsFgsbN26lSeffBK73a7SzS0WC/39Azz++ONq/XEjYLPZbLjdbpXO0NzcjNfrZXR0lK6uLnp7ewkEAkxNTfHEE0+oVk8mk4ljx45hMBhobW1VacSlUkkVFCuVSmSzWRwOB3a7Ha/Xq2a+Gy3KDAYDPp9PVZeem5tTP5Tnz59nz549nD9/nnK5zDPPPENXVyfZQpHW9i4WEwkef/xxHA6HCjDT6TSFQgG/309nZ6dqsVWtVlVLr9bWVqampjhw4AA333wz58+fp1KpqHNupNLrdDq2bdtGJpNhYWEBp9PJ+Pi4Ssvv7+/H4/GognBtbW3Mzs4Si8W47rrrGB0d5dChQ4yPjxMMBoGlmVuj0UhLS8uF4m0lnE4nnZ2dnDx5koGBAZLJpAqkGxXKG0GsxWLhxIkTdHd3c+ONNzI0NIRer0ev19Pd3a0qxGezWXK5nKrmffPNN9PX16dm0mdmZmhvb+fs2bNEo1Gq1Sr5fB673c7g4CA2m41qtYqmafT392O1WnG5XAwMDKgsgaamJvUz2NLSQrFYxOVyqYrjPp+PcrlMJpOhqakJgImJCVKpFHq9XvV1h6U7pu3t7eTzebVGvdGqLpv96X20hRBCCCEa/vN//s/Mz8/zkY98hNnZWa655hq+//3vX1R46uXq6NGj3Hrrrerr+++/H4C3v/3tPPTQQ/zX//pfyeVyvOc97yGZTHLjjTfy/e9/f1lh2n/6p3/ivvvu47bbbkOv1/OGN7yBz372sy/5uVwuDz74IAC33HLLsue//OUv8453vAOAz3zmM+ralEol9u7dy+c//3m1rcFg4OGHH+Z973sfu3fvxuFw8Pa3v51PfOITL9VpXJKruo/2ffd+kKqmYbVZ8XubqFYqquhYY8bV5/MRCAQ4ffo09Xqd6667Drfbrdbltra2UigUaGlp4fjx41QqFcxmMzt27FAVu0+fPq0CvpaWFtXmanJyUs02+nw+NbPZ3d1NOp1WhcUsFgtnzpzBZDKxZs0aBgcHSafTbNmyhXPnzqlU7VgspoKk06dPs3r1alXoKhAIMDw8jMPhIBQKMTAwoNp+dXd3Y7PZSCQS5PN51dLq5ptv5ujRo/T09DA2Noqm0+P2+nE6napXXSwWI5fLkUwmyWQyKs05l8vR09PD4uIiRl2d5gsp1I105nA4jMlkor+/n2KxyKZNm3C5XCQSCVKpFA6Hg97eXrUmvnGXyWazMTAwoNKj5+fn1cxxpVJh69atNDU1odfrmZ+fx2AwMDs7q7ITisUipVIJm81GJpMhGAwyMjKiZqsTiQQej4dYLIZOp8NkMuF0OjGZTGo2et26dcTjcTo7OxkaGiIWi+F0OmlpaaG/v18VymsUf+vs7CSRSKiq3w6Hg3Q6jcvlolKpEAwGGRoaUmnhje9XMplU+5qbm1PLAxo3Ctrb26lWqwwODrJt2zYWFhYIhUIMDw+TSqVU67FGsbjGDYRGT/FGWzq9Xq9mzxsp+CaTmWwuw7/8yz9dsT07QfrvCvFCXOn9d2UcC/HzXenjWAix8q7qGW273YbN4cRsNjEfm1NtrgYGBli/fj0TExPY7XYWFxdVga65uTlOnTqFpmlUq1VmZ2dV+y2j0YjX68Xn89Hb20t7ezuTk5OqtVI8HicYDDI5OYnX68Xv93Pu3Dk8Ho8Kynt6epibm2PVqlXMz89TLpfV+vBYLMbExAS5XI5MJsP4+Dj5fJ7m5mbq9TpNTU2kUinWr1+vZq3NZjN+v5+ZmRl0Oh2tra1kMhlCoRAOhwOr1crQ0BA6nQ673U48Hsfn89HT04PJZKJSqajK28lMhoXFNF6vl/b2dhYXF3G73Wpdb19fHx6Ph4WFBaxWK7OzS59Z1y3163a5XExOThIMBgmFQuRyOaxWK6lUipGREWq1muoX3pj5v+GGGxgdHSUej9PS0sL09LQKQPP5PCaTicnJSfx+v0pdn5tb+l42NTWxsLDAjh07iMfj5PN59uzZw1NPPUWlUiGbzVKtVrFarZTLZVWMrtHe7FWvehUDAwOqAn3jusTjcdLptKrM7vV6GRwcJJVKUS6XVWE4u92OxWIhFosxPz9PMBhkYmKCXbt2EYvFGB8fJ5PJqGJujYrfdrudTCajZpkbN2L6+vpoaWkhHo9jNptV7/V169YxOztLKpXCYrGoPtoAmUxG9QtfWFjAYDBQr9fJ5XIAqqVXMBjE7/er77/FYsFqvfJSaIQQQgghhHg5uKqLoYVCYZKJBCPDIywuLlIul9UMo9frRdM0NE1Dr9dz7bXX0tPTQz6fJxgMsnbtWnp6elQVcYvFQiQSIR6Pq7WzfX19RCIRPB4PVquVP/iD+5mdnWX16tX09PQwOTnJ+vXrcbvdrFu3jmg0qvomDw8PMz8/D6DWYNtsNjZt2qRmbFOpFF1dXZjNZjo7O7FYLJhMJqampnC5XGpN99zcHE6nE5vNdiF9PLvUTsrTpFKIr732WlXd3OPxUKlUOHjwIMVikWKxyA033kjA72fH9m3Mzc1x/vx5UqkU/f39qkd4Pp8nkUiQyWSwWC0Uizly6SSx2Vnm5+fp7e1V/e0OHz5Mf38/bW1ttLW1USgU8Hg8uN1uJiYmyOfzqqf19PQ0i4uLDA8P4/F4CIfDrF69mmg0yq233orH40HTNMLhMLfddptKVTcYDKol1vz8PNVqlYGBAWw2m+pb3WhT1tTUpPp8h8Nh3G43Tz/9tKomvnbtWpXyXy6X1b77+/uZnZ1Fr9czMTGhCqCVy2X1fYjH49TrdWZmZnA4HJw4cQKDwUCpVMLhcGCz2dixYweFQoFUKsXQ0JCqPr7Ub91NOp2mqamJfD7Pbbfdhk6no7u7G7vdTl9fH/F4nGq1SiwWU2njLpcLt9tNJpOhr68PvV6vqqUbDAb0ej3FYhG73U4ikaBUKuH3+1Ww3livLoQQQgghhHhpXdWBdjw+Tz6fZ35ujkAggN/vZ2FhgdbWVvL5PJs3b6ZQKLBz504VQAcCAbZv306tVmPz5s1s27YNu93O0NAQo6Oj1Go18vk8c3NzzM3NLVsXffDgYdVbudE6ymQy4XK5AFi/fp0qSb+wsEAmk6G7u5v+/n40TaNWq1Gr1Uin03R0dNDS0qL6UJtMJtra2lS6cHNzsyoCZjAYGBwcVL2Vi8UiJrOJWrVKvV4nmUpy8tRJnnzqSZp8Pmq1Gh2dnfj8Pjo6Ozhz9iz/+3//bwqFgkpxrl9o1zU7O8vTTz+t+nDX63UAmrxeVq9Zzdve9la6u7txOp0YjUbK5TJzc3M0NTVhtVoZHh7GbrezYcMGtmzZQn9/Pz6fj+npac6cOcPZs2fZtGmTSqs2Go0YDAZaWlqoVqs8+uijOJ1OisUiZrOZgwcPqhsmjRTxVatW4fP5mJubY3JyErPZzKpVq6jX6+r65PN5xsfHcblcDA4OotfrVUX02dlZBgYGqFarKuV769atPP3009jtdsLhMB0dHRQKBXQ6HcViEYPBoGbuN23aRGtrq1ojDf/RSqDRu73Rjq3RkgyWKnZOTU1hNptxOBxomobH46G3t5dSqcTAwADj4+Nks1laW1spFovqxoLFYmFmZgaTyYTFYlGfsXr1amZmZqhWq2QyGVURPhaLcfLkSTKZDNVqlaGhYcYnxi/DqBRCCCGEEEJc1YF2o52VzWYjnU5TrVYxGAzMzc1RrVaJRCK0trZy4MABgsEg+XyexcVFnnnmGbLZLMeOHeP48eOk02mMRiM2mw2TyYReryccDhMOh9V65VAoRCqVolarqT7NHo+H7du3o9Pp0Ol0nDp1Ws3qhsNh9Ho9TzzxhKoeXSqVVIVzs9msZk91Oh3nzp2jUCjQ09NDIpFgYWGBYDCIyWTC4/Goom6NKtR2m31p1tdswtPURFd3N8FQiEqtSqVe49CRwxTLZWr1One8eq+q2F2r1VR/bK/Xy80330xnZyew1M8vHA7T1dVFXdOINkeZnJiku7ub+fl5VdirWq1Sq9VUde7Nmzdz+vRpBgYGmJiYwOVyMTExgdPpxOl0MjU1RXNzM52dnYyMjNDV1aX6cDeKsFUqFZVS7vP5VDVunU7Hvn37iMViWK1W6vW6quC+lB69lDbeKCoXCATUTHdjVrxR8r9RzCwWizE9Pc3mzZvV7H+jinmxWCSTyWA2m5mZmeHQoUOUy2XS6TSBQID29naKxSKrV6/G5XLhdDoJBALqPbVajebmZvx+P6FQiI6ODsbHx9VNEqvVSjabxWazYTAYsNlstLW1sWvXLlKpFKOjo6rfe6PYGlxoZed2o2kau3fvJhwO43K5yGSWCp41+pUXCgUcDsfSun2rrJUUQgghhBDicriqA+3R0TGamprYvn073d3duN1u1fh8dHSU/v5+yuUyhUKB06dP4/V6WbNmDX6/H7vdTi6Xo1gsYrFYMBgMWCwWKpUKNpuNzs5OzGYzU1NTtLe3s2bNGtrb21XQNTMzw8TEBJOTk2iaRrlcJpvN4vf7OXr0KIVCgWAwuGy9dFtbG7FYTM3Wjo6OEovFsNvt7N69m0QioYL6QqFAR0eHatXlcrnU18lkipmZGcYmJsgW8jjcLjAYcHjc2JwORifGmZyZxu5yMjg6QrlaUcF/S0sLi4uLZLNZkskkRqMRs9lMNBpVRb6mpqZA07BYzPQP9NPX18eGDRuwWq1YLBbV4szhcBAOh8lms6xZs4axsTGi0Sjz8/O4XC41K9y4WdCY2QXYuXOnCozD4TDt7e1qBroRVM7NzfGqV70Ku91OLBYjEAgQDAbZsGGDat119OhR0um0+qyhoSGuvfZacrkcmzdvpr29nUqlQiqVApZmoG02G+fPnyeRSGA0GhkdHWXz5s0qVfuaa66hUqnQ3t6O0WhkbGxMtW6bmJhgcXGRiYkJjEYjIyMjTE9PMzY2poLtRlXwRm/rSCTC+fPnqdVqNDU14fF4yGQyTE1NqaUBhw4dwu/34/F4VNu5np4e9Ho9pVKJUqnE1NQUAwMDmM1mCoUCmzdvVjcPnE4nVqsVq9WqqulL6rgQQgghhBCXx1VdDK2xBjaZTKqKzl1dXUSjUYaHh+no6KC3t1ethdbpdCwsLDA+Po5Op2Pv3jvYt2+fKly1Z88eSqUSY2NjGAwGXC4XLS0taJrG1NQUc3Nzan1wOBwmmUyyadMmJiYmiMfjFItFUqkUO3fu5Omnn6azsxO/34/ZbGJ8fJx6vY7vQmp3S0sLAFu2bOHAgQM8++yzqnhZuVwml8tx6tQp7HY7kUiE48ePozcYMJlNONxOrFYbwVAEnV7P3Nwchw8fwWg0UatqOB0uzC1WSsUyXo+PkZFxisUSBoMZnb7I2972Zk6ePL3UHq1SUVW6o9EoFotFzSx/73uP4LBaWUwsEo1GcbvdlMtldu/ezcGDB1W69sTEBBaLhUKhoNqBbdy4kXq9rnrkDQwMYLfbVWC/sLBANptd1sLK5/NRLBbZs2cPP/rRjygUCvzgBz/AarXS2dlJS0sLzz33HJOTk5hMJqxWK69+9auZnp5Gp9OxuLjIddddRzweJ5PJ8Mgjj7Bnzx6MRqMKPK1WKzqdjle+8pU88cQTZDIZbDabClKHhoZUVXZArY9Pp9OsXr2aTCaD1WpVwfeGDRswGo0sLCzQ0dFBOp2mUqnQ1dVFX18f1WqVxcVFVq1aRSqVYmBgAIvFwu7du5mZmSEej5PNZtWNGU3TmJubw2q1sn//flWQrVHpvqOjg6mpKVWNvXHzI5PJYDQaqdVqnD9/Hp/Pj8lkujwDUwghhBBCiJe5q3pG2263USqVSCaTqvDZ3NwciUSCcrlMLBYjFoupQlnpdFoV/1pcXOThh/8f8/NxSqUSTU1NFAoFbrrpJgKBAF6vV/VZ9vl8hEIhbrjhBrVmGKBUKqlgqq2tTRVVe+yxxzAYDMzPz19o87U0QxsIBOjo6CAYDHL8+HFKpRKHDx/mhhtuIBwOc+211xIOhzEajZhMJtVn22g0EgwGWbd2LU63i0qthtliYWpqkpnpWXLZPHqdkWhzC7lsnsRCEo/by1wsTrVSw+V0U61BqVJlemaWL3/5/3LixEl8Ph8TExPAUk+7Rsp1V1cX6XQGt9uFyWQmEAhQqVSwWq00NzdTrVbp7Oxk48aNtLS0qIJkHo8Hj8ejbgyMjY2xZcsWNVPeWFvdWAsfCoXQNI35+XncbjdTU1N4vV6+973vUSqVKJfLtLS0qMJjJ0+eVKndoVAIu91OuVxmbGyM4eFhwuEw3/zmN1lcXKRWq2G323E4lqrO+/1+arWaKlx36NAhXC6XCrwTiQQOh4OOjg5sNhsWi4WWlhY6OjqIRqOEw2EcDgeBQACDwUAmk8Hn8zE4OEgsFkPTNMbHx5mfn2fNmjVMTEygaRput5tSqURraysej0ed88zMDPPz86p4n9FoJJfLqTXjDocDi8VCIBDA5XIRCoXUsoLGWnGv10sgEMDpdLJ+/Xo6OzsxGAz09PRgNBqZmZm+nMNTCCGEEEKIl62rPNB2EI/HmZ2dxeVysXbtWgAmJyep1WokEgkV8AaDQZqbm9Xa5Gq1itFoJBQKsX79eoLBIIVCgdnZWbxeL729vWqtdzgcplwuMzk5ycTEBLOzsywuLlIqlUgkEqqftaZprFmzBrPZjN1uV23DGini2WyWQ4cOMT4+Tnt7O2azmfb2dtUaK51Oq+rRjYC3VCqpXsnz8/MsLCygaVxIta6j1+vJ5XJs3bqViYkJ2tra2Lx5M5VKhdbWVhwOB5OTk2SzWbZs2UKtVlNBfCgUolQqMTc3Rz6fp1AokE6nufbaa7HZllKsA4EAnZ2dLC4ucubMGer1OuFwWK15b6wbr9frGI1GHA6HSonWNI2DBw+STCbVjY7x8XEikQiZTIZkMonH4yEQCKgbI43Ufb/fTzQaZXBwUK2d9ng8ACoQLRQKmEwm9fD7/Vx77bU4HA42bNjA2rVrqVTKeL1eisUi+XxerclurPVu/Gw01tkbDAYCgQBut1vNFtvtdvbu3Uu1WqVcLqvlBx6PhzVr1pDJZGhpacHtdqPX63nyySfVLH2jH3kj42FiYoKuri7m5ubQNA273Y7ZbFZp8420b6vVSjKZZGBgAACTycTCwgKFQoGZmRna2tpUpkUikWBsbExVd29qarrQo1N3WcalEEIIIYQQL3dXdaDdCJ7cbjdr165V/aTXrFmD1WplenoavV6PTqfj2WefZXp6WqU2t7a2UigUsFgstLe3s3XrVgwGA8lkkuuvvx6z2czOnTup1WocPHiQkydPcu7cOdUaqqWlhba2NiKRCPPz8+h0OpxOJ7VaDb/fT6lUwm63Mzg4SC6XU+t7Ozs7aWpqoqWlBYvFwpYtW1RBq8YabZvNhsPhIJFI0NnZqY45lUqxZs0adu++nqGhIbq7e1SQ1zhvg8FAJBIhn8/T29tLNpvllltuUsW2TCYTPp+PfD7P6Oioagn2zDPPYDabGRkZ4fDhw0QiESwWK/l8HrvdTn9/P52dneRyORYWFggEArS0tBAMBtm8eTP1eh2r1ar6la9atQpN01SVcavVSiAQUNfqx9cVh0Ih6vU63d3dLC4uqtnzaDSK3W5Hr9erKtsul4t0Os309DR33XUX5XKZa6+9Vs00R6NRstks8/PzmM1mjh8/idFoZO/eO3A6nYyNjXHmzBmmp6dVL+3JyUkikQi5XI5CocD4+Dg2m01VLk+n0zz11FOMjo7i8XiIx+NMTU2ptmOBQACHw8H4+Dg+nw+3243ZbMZmszE7O4umaeTzedavX08oFGJubo7m5mZVDG1ubk6lxs/MzKDX6zl27Bgej0e1jGv0eS8WiwQCAQBmZ2eJRqMUi0Xi8TjT09NYrVaOHTuG3W5n69atl3N4CiGEEEII8bJ1Va/RzuVyrF69GovFwuTkJLFYjDVr1qgZ7RtuuIFMJkN/fz+Tk0vVs10uFyaTCYPBQLVapVAocOjQIZW6q9PpeO655yiVSqqomc1mY35+Hr/fz6pVq6hUKszOzmKz2cjn8xgMBoxGI263m3w+T1tbG5VKhaamJpLJJKdPnyYcDrNt2zYWFhZYXFwkkUgA8LWvfY1SqYTL5SIajRKLxYjH42zfvl3NMieTSZp8PrLZHGdOnyWVznDdddexalUPmqanUqmQTqfp7e3F7XZz5swZNm/ezMmTJ8lms/T19bO4mMRisdDW1kY2m8XpdDI9PU17ezvxeFzdZNi1axf9/f1MTIzjctkp5wu0XZj9TiQSVKtVTp48yZo1a3C5XBSLRebn5+nq6kLTNCYnJ2ltbSWbzbJ+/XqGh4d5xStu5PDhI5jNZnQ6HefPn6dSqXDjjXs4cOAJJicn1Ux4owDZ3Nwcs7OzrF27lvHxcbZv387ExAR2u53Tp0+j1+sZHBxkfHyc1tZWfD4fQ0ND2KxWYrOz2O12isUiLpcLm83G0NAwmqZx8uRJgsEgHR0d2O1LaeWpVIpnn31WVfFuVPceHx9n69atxONxjEYj2WyWbDZLtVpVhfFCoRDJZJLx8XFe8YpXqMyHoaEhVVE8mUyq422s5e7t7UWn01EoFOju7ub06dNYrVZ1M6G5uRmTyaTWXjcqtHd1dREIBJidnSUQCKjvncViweFw4PP5VE9wg0FmtIUQQgghhLgcruoZbYvFTLlcRtM0Zmdnufbaa2ltbaVSqahgpJHSHA6HKZVKahY8FoupnsjVapWNGzfS1NTE2rVrWb16NU6nk46ODiKRCHa7HZfLhc/nI51OL0v7LRQKuN1uFbjm83ny+Tzd3d1q1tNoNNLX18fw8DD5fF71jHa73VSrVbZs2aLagTVaedlsNorFIqOjo1isFtq7Otm0dRsWq53kYorp6WlisXkSiQQul4t8Pq9mh5ubm+nr61Mz6alUWh1HI83Y4XCQzWYZHh4G4LrrrkPTNKrVKh6PB5vdTktrC6l0is2bN+FyuTAajWzYsIGOjg719bp166jVaoyNjTE3N0cwGGRychKbzcbo6Cizs7N897sPo9PpVKDfKOo1PDxCZ2cndrtdrdN2uVyqb3YjPTqdTpNOp2lqaiKVSqmCcslkknXr1pHJZFQP7UQiQTgYwqDTc8erXqXWMxcKBbWuuVarqWJnxWJR9eJufL8bfbTNZjNDQ0MqzT0ej6v0flhK32+092qk+58/fx6bzYbL5VJLDhpZEI3vwdTUFE6nE5fLpYL7RmE5v9+P2+2mVqthtVrVf3O5HB6PR7XxisfjTE5OkkwmSSaT6HQ6zGYzlUoFh8NBV3cnpXLx8gxMIYQQQgghXuau6kDb4/FQr9dZWFigXC7jcDjI5/M4nU5GRkZIp9NkMhlisRg2m42ZmRlMJhNTU1OqwncsFmP9+vVomkZnZyeJREIVrNLpdIRCIdUGrFAo0N/fTyQSUanher2eaDTKzMwMhUJBpUwfO3aMtrY2CoUC0WiUbdu2YTQaueWWW1R1bb/fj8PhoF6vq5ZRmqbR1NREIpFgZmaGrq4unE4nwyPDnD5zBr1+Kd14qQjXUkXvmZkZdDodLS0tqhDc9u3bWbVqFclkklQqRTQaZfXq1USjUXbt2kU6naZWq6lWY41WaJlMZino1+nQNA2Px8O3v/0d2traWL16NVNTU+p5n8/H6dOnqVQqOJ1O9Ho9qVSKhYUF0um0Whev1+uZmppicnKSpqYmNUs7NDTE5OQkOp2Oer2u+qGPjY2xsLDA0NAQ58+fx2AwoGmaqiZeKBTQNA2TycSzzz6r+psvLi5iMBrxBQJ0dHXx3YcfplQqEY/HOX78uKpebrfbiUajdHZ2ql7Yfr9fpe0vLCyQSqV45StfqYL/ZDJJPp9XaekAFouFXC5HJpNRbdH8fj8ulwuLxcLs7CzF4lKw29bWRmtrK+VyGf2FSvGNom35fF71J/f5fFitVjweD06nU61F7+rqUjcYTp48qdb0VyoVvF6vKuo2NjZGR0cHqWQSu9162camEEIIIYQQL2dXdaBdqVRV8OVwOMhkMiqYq9frtLS00NLSwrp16y5U/9bR3d2tAmmv14vX66Wvr49YLMbp06c5e/Ys//AP/8D8/Dw2mw2TycTExAR6vZ6BgQFCoZBqUWUwGLDb7cTjcdauXUskEuHo0aOUSiVSqRQ2m019Zk9PD01NTYyMjKDX6zGZTBw8eJCOjg7Onz+vZrnn5+dV+ngjyLfbHWiaxo4dOzCZTKxatYpwOMypU6doaWkhlUoRi8XU7GksFuPUqVPqZkNjPfDg4CDZbJZcLqd6OjfWk2cyGdXbuampiVK5jF6no7V16WbB8PAwdrud5uZmdu7cyY9+9CN1jMFgkEwmo9LIGxkGjVnjZDKpek03Uqez2SyrV68mHA4DS0Grz+djcXERvV7P+vXrWb9+PRaLhWq1SiqVwmg0kslkKJVK+P1+1dO8ra2Nnp4eFbiePnOaxOJSUblCocDY2BiFQoG5uTkA6vU6XV1dHDlyRAXL2WyWrq4uBgYG6OjoQNM0nnzySfr6+pidncVgMCzN9Nts+Hw+7HY758+fZ2RkBKfTyc0336xunjR6gDdaezVuoDRS9qvVKs3Nzaxbt04Vu+vo6KClpWVZUbNYLEa9XgdgbGyMZDLJ1NQUoVAIi8VCU1OTqo5fq9UoFotEo1HK5TKjo6M4HM7LMzCFEEIIIYR4mbuqA+1GlWq73a5SgvP5PP39/VgsFqLRKF6vl/Xr12MwGPD7/Rw9elTNIHo8HlatWkU8HieZTFKr1dRzPT09HDt2jHg8znvf+15CoRBms5lMJkNfX59KUXc4HDgcDk6dOsXCwgJOp5N4PE4wGOTYsWMqCH7uuedU+nCtVsNiseD1eolEIvj9flavXq0CsJmZGdVLG6Czs5NwOMyZM2dwOp2cOXOGnTt3YjKZmZycVG2hEokEbrebUChEa2sr119/PRs3biQWi+H1etE0jVwuRyqVYm5uDovFQrFYVNXJG7OvTz/9NE6Hk96+PpLJRdWj+ujRozz++OPs27ePrq4uMpmM6qHdWPceCoVwOp1EIhFMJhO1Wk219WppaWFxcZF169ZRLBbJZrNq/TNAJBJRad6N9cwAfr+fxcVF7HY7drudzs5OYCnte9OmTRQKBQqFAgBujweDycjoxDi5/FI19tbWVvx+/9I69FSK+fl5Nftcq9UAWLVqFZlMhlWrVpHP58jllh6N1G6AdDqNpmn4/X71M1QqlTh9+jRPP/00RqOR3t5eFhcXaWtrU+umt23bxtGjR3E6narQm8lkUuv/i8Uic3Nz7NmzB4/Hg06nIxwOqxZlGzduVAXRNm/erNrTeb1eVaOgXC4TDAbp7OxkfHwcs9nM1NTUSzYWhRBCCCGEEP/hqg60S6USBoNBpY/Pzc2h0+nUmtinn35aVRs3m800NzdjNpsJBoPU63W2bt2iipblcjk1yx2Px1UV8dnZWU6dOkW5XMZkMlEqlWhra6Ner3PmzBmGhoYwm81Uq1UsFot6X6P/NixVh56amqJer5PJZDCZTKqt09GjRzl79iw6nY7m5mYmJiYwGY1o9TrXbNmCho6BoWH0eiOdnZ3UajWuv/56isUy8/Nx/H4/27dvx263s379etrb2wmFQqodl9vtJhKJqFntRoBrsViw2Wy43W4ymQxdXV3Y7XYMBgMmkwm9XocOCASWqorrdDqKxaJal+7z+chms2QyGebn56nX6+RyOUqlkmoBNjIyQi6XIxqNqhsLa9asob+/H5fLRW9vL/Pz82QyGZqamjh9+jQ6nY5sNkuxWKRcLhMIBNT35vjx4/j9foxGI4VCAaPRyMLCAlarlfhCnEw2g9frpb2zk1WrV+P2eOnt78PudGJ3OtEbDRRLRYLhMMOjI8wvxHG4nHi8XsbGxojH4wQCATZs2MB11+1UP2d2u52FhQVMJhORSIRqtaqK2rW1tREKhbBarapeQKFQoK+vD5PJpH4W6/U64+PjeDwe1de9VCqRzWbp6elhfn6e8+fP43K5MJvN5PN5VcH+3LlzbNiwgVgsxtzcnEpNj8fjjI+Ps7i4qH62pqamiMfj2O12QqHQZRqZQgghhBBCvLxd1VXHLRYLsBRw53I51q5dy/z8PFarlTVr1jAzM0MwGKSvr496vY7JZGJ4eBin00koFOLJJ59SQZ3FYqGrq4uJiQmSySThcFitDT579iw+n4+uri4qlQrZbBav18uOHTsYGhoin8+Ty+WWzZyWy2UKhQJNTU10dXVhs9kYHx/H7XarAmqNdlSN9lWNHteaBi3RFlLJFG63B5vdybmzvapKusViIZ1OYzCYVGA3MzOD0WhEd2FttU6nU8Gcx+Ph0KFD5HI5fD4fTU1NZLNZXC6XWit88OBB1aqsu7t7aR2yTsfs7CzdXV2Uy2Xcbjc9PT2Mj48zNDSEw+FQPcN/vJe2wWAgFotRq9XIZrPU63U0TVPp3wA6nY5qtYrT6VQtv0qlEqtXryaRSNDc3Mzi4iLDw8PUajXC4TA2m02tjzcajczOzuJ0OpmZnSWTzWCz2zn63DGafD4cDgeVWhWXx8P8QhyPx0OukGfThg3YbDbK5TIDAwMMDg3R1d5BsVhUM8BWq1XdvCmVSvh8PnQ6nTr+Rsszl8tFvV5X6+DvuecelTIfCAQwmUzq+6rX61VgXSgUsNvtqh1aMplUVe87Ojro6ekhFotx6NAh6vW6+trr9QKwsLCgCsVNT0/jcDhYWFhAp9OpInX1el1tL4QQQgghhHhpXdWBdqFQIBAI4HK5CAQChMNhlWKcy+XUDGRvby8ej4d169bxile8gu9+97tEIhEVIDmdTlWsbHp6mg0bNjA3N6eKUbW2trJu3Tp8Ph/PPPMMp06dwmQykc/nKZVKOJ1Oenp6mJmZudB/emm2sVqtYjKZ1JrrSCSiWl7pdDqCwSA2mw2v18v09LS6OeB0OUml04xPTuL2eBkaGqKtrY1SqUQsFlMzwFarFYvFwvnz57FYLKq/tcPhYHJykre85S2Mj49z5MgRlRo/MzPD4OAgGzZswOVy0dfXh8vlUrP4lUqF48eP0+Rrwu/zw4VguZESnkgk8Pl8OJ1OjEbjhRsDGlarlZ6eHkwmEzMzM2iahsvlwm63Y7FYSCaTaJrG/Py8muFupIl3d3erqtnVapV8Ps/JkycJBALcddddpNNpkskkExMT9Pb2quroVutSsS+j0YjNZiOXy+G4kLqfSqXIZrMqOLdardhsNo4ePaoq0EejUdxuN26Xi3yxwOz0DIFgAIPJSK1YQqfT4fP5CAQCeDweZmZmKBaL1Ot1dYPAZrNhMBhwuVycOXMGTdPQNA2Hw8HY2Bhms5mJiQnC4TA6nY7x8XHC4bCqPt9IId+4cSOwtBzCbF5aEhAIBNT3dW5uDqvVSkdHB8eOHWNxcZGbbrpJLRnQNI1yuUytViMYDLKwsNRXWwghhBBCCPHSu6oDbYvVQiaToaWlhYGBAVX4a3h4mMXFRRXUapqG2Wzm7NmzJBIJ1RqqsQb31ltvZXx8nP7+fvR6PZFIRK0njsViNDU1ceTIUh9ogN27d6uiZ0ajkcXFRWw2G7VajUQiQSwWI5/PYzKZVF9vr3cpYG7MvptMJtXyymq10tbWxuTk5NI653CIufl59AY9docDYzrDpk2bOHr0KDabjfb29qWZ5u5uCoUCPT09lEolkskkGzZsYHJyEo/Hw3PPPad6cb/qVa/imWeeUcW1GjcCmpqasFgsZLNZEokEfr9/qbf2QhyXy4Xb7mDVqlUMDg5SqVQwGo2Mj4+r3uE33XQTDoeDvr4+gsGgSqU3GAy43W7Wrl3L//t//48bb7yR2dlZlSJvNpvJ5XJUKhVsNhsjIyNYrVbGx8dZu3Yti4uLFItFDh8+jN1up1KpUC6X2bJlCxMTE2oNe6VSQafX09zcDIDd4WBwaEjN+ns8HjweD/F4XFVKj8ViFAoF9dz09DTBYBCL3UYgFMJsNtG2dh1zc3P09fUBqP7YRqMRj8dDJBKhUqnQ0tJCLBbD4XBQLpcZGRnBZrOxbds2xsbGVPo7oFqXmUwm5ubmCIfDzM/Po9fricVipNNptU4+n8/j9/vVrPi6devUzYYtW7aoau9ms1ndeGjcbOjs7CSXy1KrVV/qISmEEEIIIYTgKl+j7XQszTiXSiWVnp3NZjEYDFQqFaanp1WP4UZFbpPJBMDU1BQ2m42uri5GR0fJ5/Po9XoVVI6Pj6viVUajcdkaXr/fj9PpxGw209TURH9/P6lUCrvdTrlcxuPxsHHjRhX4NB6rV69WlbCLxSIzMzMkk0kKhQKJRIJKdanVVrlSJRxpplqvo7+QXn706FE0TcNgMHD8+HGuueYaEokE/f395PN5BgcH0ev17N+/H5fLpdqNeTweNE3jBz/4gWpJtnHjRkwmE5lMRgW6PT09WK1WnM6lStXNzc2cPnOayakpvvvd76riXF6vl0wmg8vlAuDcuXOqENx3vvMdRkZGWLt2LdPT05TLZQ4fPkw8Hlcp6tVqlbGxMcbGxkilUioVfX5+nkKhQK1WY9WqpZnxRu9yk8lEOp3GH/AzMDBAvpCnVl9Ks/c2eQkGl7IaHE6nWibQKMhWrVZJJpPU63V1U8VmsxEMBunu7l5Kxy8WaGtv59od2zGYjERbWhgaGVY3WarVKrlcTvVWt9vt9Pb2YrfbSaVSqv1bIBCgp6eHlpYWJiYmiEajmEwmdWPB5XKh0+lIp9O0tLRQKpXo7u5WfbKr1aqq3K7X61WafTQaJRaLqfXzU1NTKl2/UZAvEAiovtujo6P4fD7cbvflGZhCCCGEEEK8zF3VgfaPpx2/4hWvwG634/F4KBQKqsjWhg0bVPBYKpXwer3cfffdWK1WVfW6WCyq97ndbtWK6vjx47zuda8llUpRKpVYXFxkcnKSs2fPUigU1HrsRrBVq9WYn5/H4/EAqDT2ubk5bDYb4XBYrY0OBoPA0ixnLpdTadvlaoVEIoHeYKJUrnLmwmdlMhmVCm2xWDCbzQwODlIsFjly5AilUon5+XmcTienTp1iy5YtpFIpJicnKZVKqn91I5W9WCwyMTHB8PAwhUKBZDKp1qQvLCywmEjgcrowm0zkcjnK5TIul4vJyUlWrVqlArxGGn0wGCQSibB582bGxsbI5/MMDAyogP/ZZ59lcXGRbDar2nQZDAYKhYIKFOv1Oj6fjyNHnlEF7IaHh5mamqJUKROLx3E3eXE3NWFzOCjXakzPzpLOZmmORqlUKlQuBKuN/tNzc3PqZkmhUODw4cPU63V0Oh3T09NL/dTLFY4dO0p/Xz+lQpHpqWnCobC6+RKLxRgbG6OtrU31CQ8Gg6p9V7VaVe27Gunv8/PzqgBcLBYjlUqp2epUKkVrayujo6OcO3eO5uZmotEo6XQas9lMS0sLkUgEp9Openfncjny+TyJRIJsNkulUiGVSrG4uIjH4yEUCqlUc7vdDjod2uUZlkIIIYQQQrzsXVKg/clPfpKdO3ficrkIhULcc889KrW24ZZbbkGn0y17vPe97122zfj4OHfeeaeqjPzAAw9QrV56mqvFYqG/v5/e3l7+6Z/+ifn5eRYXF3G73WzZsgWLxcJzzz23VJX6QsutDRs2EAwG0el0xGIx1SIsn8/j8Xjo7e3lVa96FX6/n23btlEolBgcHFRVuev1OseOHSObzRKLxYhGo6o9lt1up729nZGREex2Oy0tLZhMJvbs2UNbW5tKzW7MdEajUQKBABs3biR3IaCq1WqUL8zG6/UGnE4X09PTKqgrFovs3r2b/fv3YzAYaG1tZf369Wo2PZ/PEwgEGB0dpVarUSgUaG9vZ8+ePTzwwAOsWbNGpXy/5jWvwWq1Mjw8zOzsrFrje8cdd1Aul2lqamJ2dpZ8Pk+5XCaZTDIyMoKmaUQiEex2Ozt27MDlcrG4uEg6nVY9udesWaParq1fv57m5maVLr24uIjT6VSFwarVKpFIhFe/+tVs3rwZvV6P1WolnU5TrVbJZDLo9Uup6qFwmGKxSHxhgbb2NjZs3EilWqVSrZJYXGR+fl6lmjfatY2OjpLNZrFarSoVvauri0KhQDQaZfv27bicLpKLiySTyaUZ9rk5enp6cDqdqniexWJB0zSMRiPVapV0Oq1SxhvB+/nz57HZbOzcuZOFhQXS6bRa157NZpmZmaGpqYn9+/fj9Xpxu9388Ic/5PTp00QiEbX8oLEuvVFQz+v10tTURD6fV8H06tWrcTqdNDc3MzU1xfz8vArWq9UKMzMzV81YFkJcOhnHQgghxJXrktZoHzhwgHvvvZedO3dSrVb54z/+Y+644w7OnTuHw+FQ27373e/mE5/4hPrabrer/6/Vatx5551EIhEOHjzIzMwMv/mbv4nJZOLP//zPL+ngp6ansJiXimo1Kl4Hg0GCwSBut5vZ2VlVGMvv95NIJHj22WeZn58nmUzS1NREJBJRlcljsRgdHR08/fTTmM1m9u/fz/bt2/H7/VgsFhVAGo1GKpUKhUKB3t5ejEYjFotF9Ui2WCzMz8+Ty+UYHh6mUqmg1+uxWC2ks1lcXg+pbIaF5CLpXBaT0UiT34fBaGBVIAA6PelMjubmZlVYy2Qy0dvbi16vV8XJNE2jvb2dAwcOAGCz2VizZo3q591YJz41NcXGjRvZt28fo6OjNDU18cwzz9De3k57ezubNm1icXGRZ599lnw+zze+8Q18viZCoRDBJh+bNm1iaGiImZkZuru7VcBfKpUolUoMDw+zdu1aLBYLp06d4h3veAenT5/GaDSyZs0apqenqVQq3HHHHUxPT1Ov10mn03R0dFAqlWhubmZycpJ6vcbJkycBVCp+qVRi27ZtzMXjxBMLHDlyhDvvvJNEIkEikcBkMtHe3sb09JQ6Np1OR0tLC6OjoyQSCbU2u1AosHnzZrLZLNVqldtvv52DBw/icDjQNI1gMEgikVgqdBafVynba9euVf3Z6/U6FouFWq3Gxo0bmZqaIhgMUqlU6OzsRNM0pqam0DQNt9uNyWRiZGQEv9/P0NCQKnhXLBZpampC0zT1PcvlcipFv1GxPRwOq7Ty+fl5NfufSCSYnZ3FaDSqQnM2mw2dTofdbidfyP/M9l5X2li2J63Ya7ZLeo8QLxe6zPPnp1xp41gIIYQQ/+GSAu3vf//7y75+6KGHCIVCHDt2jJtuukk9b7fbiUQiz7uPH/7wh5w7d44f/ehHhMNhrrnmGv70T/+UP/zDP+RjH/uYKjj2QgT8ATo6OqjX60xMTJDL5UgkEoTDYc6ePUs6nUav1+P3+9HpdBgMBnK5HE1NTbhcLtXSqVHkyu124/F40Ov1VCoVFVw7HA6MRiORSIS5uTlSqRSdnZ24XC4WFhZIJBJq/fPIyAihUAiz2Uy9Xqe7u5tjx45Rr9fZtHkT+VKJXbuvX6qqHQoxOT1FLpfH6XSg0+lYXFykVtcoV2qk00vp1Xq9XrVzikQihMNhZmdnVVVvj8fD2NgY3d3dTE9Ps7CwwJo1a1hcXMTlcmGz2YhGowwNDRGNRkkkEqRSKbVOe2BggKamJtrb2/H5fIyOjl6Y5c+RTaV5/PHHVQuqRoE4vV6P3W5Xf7DNzc1RLpfJZDI88sgjtLS0EI1GGRgYUEG42WzG4XCwbt06SqWSKkZWKBQwm808/fRBstmsClJbW1tJJpNMT0+TLy7N7E5PT/P000+j1+txuVwkk0kSiQQOh4N6XUOv11Or1RgYGCAajdLR0UE6nWZhYYHm5mY1uzwzM6NuVuTzeTKZDDabDZvNhqZpRFtaGRsbUz8Xvb296HQ63G63KlqWz+dJJpOqh/nTTz+NwWCgWq2SSCSoVqt0dXURDoc5f/48brebWCxGtVrF7/cTDodVyn4mk8Hv91Mul9W18fl8mM1mFhYWVN2BTCYDQFtbG1arlbGxMVVRPpVKEYlEOHfuHD2reijnylfNWA6PBZYFBkKIJUV7ibLp+cfylTaOfdMe7Gn7z99QiJehfPaFjyUhxK+GX6jqeCqVAsDn8y17/p/+6Z/4x3/8RyKRCHfddRcf/vCHVUB26NAhNm/eTDgcVtvv3buX973vfZw9e5Zt27Zd9DmNmdOGdDoNgNvjplarUa1WVYun8fFxTCaT6j8cj8cxmUwq/bevr49wOEwgECCVSpHJZPB4PCrIttlsxOPxpcrb8ThTU1O4XC6amprUzPj58+epVCrs2bOHubk5HA4HXq+XdevWMTQ0xMLCAhaLhZ07d3Lu3DkKhQLepiYiLS0Mj03wxIGnCIcjeCMeFhYWcblMOB0OVq9azfHjz9EcbWVubp50ein4SqVSDA0Ncd111zE/P8/g4KAKDltbW7FYLBiNRpX6nUgkmJqawufzqQJbX/nKl7juul3odHry+Txut1v1BI/H46xatQqPx4PT6eSWW27h8OFDGAwmqtUafl8T58+fVzOkhUKBtrY2qtXqUn/qXE6d8yte8QqCwSAnT57EZrPhcrlYvXo1CwsLHDx4EL1ej8FgYMeOHYyOjjIXixH0B9Dr9BRLRbXO3WAwLKVOl0vs2bKZxQs/a+Pj42qmOZ/Pq6C5cQzFYhGbzUahUGDr1q243W7OnTuHy+Uin8+rn6dcLseTTz7J+vXrKRSLJFNJypUy4XCYcDiMVquTTqVILCwQiUQwm83odDoymQyBQACj0cjg4CCbN28mHo+rwna1Wo329nYWFhaIRqNkMhmVleDz+Ugmk+oYLBYLq1evVunqmqapWe0fL1TX6PXeyIyo1WoUi0WSySSlUgmbzUZra+vSDYl8DqfTwczMNCbzCx/el3ssCyGeX8VaId2UfUHbXu5x7Jl34cg7mO2ap2qqveBzNFYNRIaX6pbMtS9QtlZe8Htf7nwzXuwZKyVbmfm2xM/dXgeERv3EOhde1Ofpa3p8Mx7irYuX9L6mWQ/2jJXp1bFfufohzUMhDDU9qUCGjC930evGspHIaABTznAZjk4IcTm96EC7Xq/zgQ98gD179rBp0yb1/Fvf+lY6OjqIRqOcOnWKP/zDP6Svr49vfvObAMzOzi77hQ6or2dnZ5/3sz75yU/y8Y9//KLnFxcXyaQzFItFVSHc7XaroluN2cpcLofFYmF4eJiJiQmGhob4tV/7NYaHhzl37hzhcJgjR46odcgul4vW1lZGRkZ44xvfyD//8z+r9lNzc3MX0pXbmZycJJVKsWbNGgqFAvv37ycYDKpK2vv27VOBUUtrC08fOkQ6lUWvz1GvQ72u4XS4VK/ngcEh9AYTU1PTGI1GWltbyefzqsJ0c3Mz2WyWoaEh1Qv69OnTZDIZ/tN/+k+cPXuWUCiEw+FgamqKjo4Ozp8/T2trK7fcciP/9m//RkdHF3Nzc2zfvp16va7WTI+OjqoZ8qVq2mmMBiPbr72W8+fPYzKZ1Gyrz+cjk8ng8/lIpVJs3LiR8fHxpR8oo5H9+/fT1NSEw+Egl8tx4MABMpkMpVIJh8PBNddco3qQo8HwyAjoYM3ataRSKVatWkUikWBmZgab3U65WmVycpJ8Ps/GjRtVuvnU1BTFYhGv10s8HufcuXN0d3erwm3PPfecmi12OBwUi0VuuukmxsfHVVs0g8FAMBigXq+RyWRVmzNfUxPzsRhGg4FTp05hsVgwmUxYrVYKhQJ33HEHMzMzHDp0iPb2dkZHR9m8eTPDw8M0Nzdjs9lU9XCTycS1117LzMyMWjff1dXFyMiIqlxfKBTo6+tDp9OhaUt/hjSyMCqVpT86vV4vdrsdh8Oh2qMVCgXWrFnDiRMnVG91r9dLtValWnthf6xeCWNZCPH8nAkHHZPRn7vdlTSOQ6MBuKRwSqf+LzjhQ/uVC8V+eXTa0rUzF0xEB376cqGffM8L3fZ53o1O45Lf3zjO5hf9uVeuxrm5405cC8+XmaV7nueEEC8HLzrQvvfeezlz5gxPPfXUsuff8573qP/fvHkzzc3N3HbbbQwNDdHT0/OiPutDH/oQ999/v/o6nU7T1taGr8lHe3s7tVpNVX/O5XJomoamaQQCAWZmZnC5XGSzWZUufeTIEarVKrFYDIvFsqxVU71eJ5PJUC6X2bZtG4cPH0an0+F0OlWRrkbqtsfjobm5GZPJxNatWzl48CD5fJ6JiQna2tpwOBykUil0Oh2jY2MUK0sz743PaPRBjkaj5HI5fD4f4XBYtesKhUKsWrWKUCjE2bNnefLJJ7HZbKrSucFgoFQq0dnZqQJXnQ7y+RxdXV309vbi8Xjo7Ozk9OnTdHR0kMvlMBgMnDhxArvdTqFQYOPGjUxMTGC323E6nUszwsUiFquFvr4+1q9fT6VSYWBgAL/fT1NTEzqdDr/fT19fH8VikebmZkqlEqdOnVIpwLFYDLvdTjqdplwu097eDqDWDzqdTrKZLBs2La11blQIDwaDhEIhtf79zJkzFAoFDAYDi4uLqo+4zWZj8+bNPPLII1gsFrU+f35+nvn5earVKlu3blXttgwGgyoa18hkSCQShE1hsukMHpeLJr+feDxOcnGR1atXMzw0jNVqobW1leHhYQKBAIVCgaeeeopEIoHNZiORSBCNRrHb7fT09JDP52ltbVUV3Ov1OpOTk6rCvdFoJJVK4XQ6KZVK9Pf3A6jq+FarlUqlQldXF8ViUe2/XC5jMBjw+/0XZq+X1mGPj4+rtPxCYWmm22A00NbeetWMZSHE89OhQ6/9/LqlV9I41ms6XmxwodN06CQwuWQ6dCrge0HbX8K2K/n+X/Rzr2SX+j0QQvzqe1Htve677z4efvhhHnvsMVpbf/Yf87t27QJgcHAQgEgkQiwWW7ZN4+uftobMYrHgdruXPQDMZjOhUIi5uTkWFhZYWFhAp9Oxdu1aWlpaqFQqtLe3EwwG0ev1pFIpQqEQbreb+fn5ZS22Ojs7ufbaa3G73QQCAebm5kinU/T19angLJfLEY/Hl3pdl8tYLBamp6eZnZ3lO9/5Dh0dHZjNZiwWC4lEghMnTqj0ar1Oj8loxOl0qmrcLS0t+Hw+xsbGGB0dZWFhgb6+PtWjenBwkLm5OXUjIJvNMj09TSgUIhqN4vP5CIVC1Go1zp8/TyqVYnBwEE1bWsPr8/kolUoMDAwwODh4oRJ5XV27RvXsarXC4oWK27FYjImJCVLJJFNTU0xNTZHNZnE6nQQCAcxmMzMzM6rQWqOauNlsVsHwNddcw7Zt29A0jXg8zvz8PGazWWUENDU1YbPZWFhYYHxygmeefQZA9UNPpVIkk0m6uroIBpbW4RcKBSwWC7lcjtbWVvR6PVNTUyp4TyaTeL1eNYtsMBjU96FRVK1cLnP69Gk0TaO7u5t4PL40gx2PY9IbyKTTuFwuarUaBoOBkydP0twcwePxcPToUZUeGQ6HSaVS6PV6nE6nWp9eq9VUUbOZmRk1G22z2VQ7NLfbjV6vVzdhGpXJHQ4HLS0t1Go1VSNgbGyMer1OrVZTx9/ok724uEi5XCaVSnHNNdeo9eyatlQU0GQyodP9/F/4V8pYFkK8eDKOhRBCiCvPJc1oa5rG+9//fr71rW/x+OOP09XV9XPfc+LECQCam5sB2L17N//9v/935ubm1Jrfffv24Xa72bBhwws+DgC9YWmGOZFIqGDE4bBjsVgoFAoAjI2NUq8vFddqjjbjci3NTAeDQQwGPcPDw/T09OD1elX1crfbzYkTJ3A4ltp5dXV1USqVOHz4ENlsjra2Vjwer0pBnpiYoFKpMDg4SLlcRtM05ubmiETCWCwWrFYLNruNkd4+rr1mOw6nA6vVRjKZxOGwMzw8hNvtplp1Eo/Pc/7cOYLBALlclrm5GIuLi7z2ta+lt7cXp9OB0+lgYmJCravO55f6bLtcTubn52lra6evt3epcrfDzszMNLVamVgshss5x7r1G8nlskxPz1wIWKcvBIJL51upLM0EFwt5zp46wdNPP004HMZg0FOrVbFaLVRrVfoH+mmONLOQWGBgYIBYbJbNm7dw4sQJSqUigUAAm91GLptDr9fx5JNPcOutt1IsljCZjORyOSLRCBrQ5PcxNTHJ9ddfz8DAAOfPn2dmZgZ/OESpWCQSCROLzXHbbbeh1ev4/X6mpqY4cuQIHo/nQjZCDbfbTUdHB4uLi9TrdUZHR0mlUrjdbqxWC8nFRWJzc3R0dFCrVbFYrOh1Our1OomFBYaHhwiFggz09dPcHKEl2kIynWLDhg3U63VyuSxerxer1UImm2VhIY7T5QQ0xsbG1LKF9evXkUqnMZmMpFJJwpEwI8MjFyrWlxkeHkLTNNra2ggE/Etr4S+cU7VaVenvVquVnp4ejh8/jsVixm5fqpBeLi/1hB8dHePs2bNLvdf1eq699lpOnjyOXq9ncXFx2Xi5ksdyY/28EOJijfHxk2NZxrEQV4+fNo6FEL/CtEvwvve9T/N4PNrjjz+uzczMqEc+n9c0TdMGBwe1T3ziE9rRo0e1kZER7dvf/rbW3d2t3XTTTWof1WpV27Rpk3bHHXdoJ06c0L7//e9rwWBQ+9CHPvSCj2NoaEhjaQGYPOQhj5/zmJiYkLEsD3n8Cjx+cixfKeN4YmLisl8becjjank83+9kIcSvJp2mvfBbaz8tFfXLX/4y73jHO5iYmOA3fuM3OHPmDLlcjra2Nl7/+tfz3/7bf1uWWjY2Nsb73vc+Hn/8cRwOB29/+9v5i7/4C4zGFzbB3uiBPT4+jsfjeaGHL/iPtXQTExOS7neJrrZrp2kamUyGaDSKXr98lYiM5avf1fbzeCW52q7dTxvLV8o4rtfr9PX1sWHDhqvmml5JrrafxyvJ1XTtftbvZCHEr6ZLCrSvFOl0WqULX+n/sF5p5Nq9eHLtVp5c0xdPrt2LJ9du5ck1ffHk2r14cu2EEFcyuaUmhBBCCCGEEEKsIAm0hRBCCCGEEEKIFXRVBtoWi4WPfvSjWCyWy30oVx25di+eXLuVJ9f0xZNr9+LJtVt5ck1fPLl2L55cOyHEleyqXKMthBBCCCGEEEJcqa7KGW0hhBBCCCGEEOJKJYG2EEIIIYQQQgixgiTQFkIIIYQQQgghVpAE2kIIIYQQQgghxAqSQFsIIYQQQgghhFhBV2Wg/bnPfY7Ozk6sViu7du3imWeeudyHdNk98cQT3HXXXUSjUXQ6Hf/+7/++7HVN0/jIRz5Cc3MzNpuN22+/nYGBgWXbJBIJ3va2t+F2u/F6vbzrXe8im82+hGfx0vvkJz/Jzp07cblchEIh7rnnHvr6+pZtUywWuffee/H7/TidTt7whjcQi8WWbTM+Ps6dd96J3W4nFArxwAMPUK1WX8pTuSrJWF5OxvGLJ2P58pFxfDEZyy+ejGUhxK+Kqy7Q/vrXv87999/PRz/6UZ577jm2bt3K3r17mZubu9yHdlnlcjm2bt3K5z73ued9/VOf+hSf/exn+cIXvsCRI0dwOBzs3buXYrGotnnb297G2bNn2bdvHw8//DBPPPEE73nPe16qU7gsDhw4wL333svhw4fZt28flUqFO+64g1wup7b54Ac/yHe/+12+8Y1vcODAAaanp/m1X/s19XqtVuPOO++kXC5z8OBBvvKVr/DQQw/xkY985HKc0lVDxvLFZBy/eDKWLw8Zx89PxvKLJ2NZCPErQ7vKXHfdddq9996rvq7Valo0GtU++clPXsajurIA2re+9S31db1e1yKRiPbpT39aPZdMJjWLxaJ97Wtf0zRN086dO6cB2rPPPqu2eeSRRzSdTqdNTU29ZMd+uc3NzWmAduDAAU3Tlq6TyWTSvvGNb6htzp8/rwHaoUOHNE3TtO9973uaXq/XZmdn1TYPPvig5na7tVKp9NKewFVExvLPJuP4FyNj+aUh4/jnk7H8i5GxLIS4Wl1VM9rlcpljx45x++23q+f0ej233347hw4duoxHdmUbGRlhdnZ22XXzeDzs2rVLXbdDhw7h9XrZsWOH2ub2229Hr9dz5MiRl/yYL5dUKgWAz+cD4NixY1QqlWXXbt26dbS3ty+7dps3byYcDqtt9u7dSzqd5uzZsy/h0V89ZCxfOhnHl0bG8i+fjOMXR8bypZGxLIS4Wl1VgXY8HqdWqy37hxMgHA4zOzt7mY7qyte4Nj/rus3OzhIKhZa9bjQa8fl8L5trW6/X+cAHPsCePXvYtGkTsHRdzGYzXq932bY/ee2e79o2XhMXk7F86WQcv3Ayll8aMo5fHBnLL5yMZSHE1cx4uQ9AiCvFvffey5kzZ3jqqacu96EIIX4BMpaF+NUgY1kIcTW7qma0A4EABoPhosqSsViMSCRymY7qyte4Nj/rukUikYuK11SrVRKJxMvi2t533308/PDDPPbYY7S2tqrnI5EI5XKZZDK5bPufvHbPd20br4mLyVi+dDKOXxgZyy8dGccvjozlF0bGshDiandVBdpms5nt27fz6KOPqufq9TqPPvoou3fvvoxHdmXr6uoiEoksu27pdJojR46o67Z7926SySTHjh1T2+zfv596vc6uXbte8mN+qWiaxn333ce3vvUt9u/fT1dX17LXt2/fjslkWnbt+vr6GB8fX3btTp8+veyPon379uF2u9mwYcNLcyJXGRnLl07G8c8mY/mlJ+P4xZGx/LPJWBZC/Mq4zMXYLtk///M/axaLRXvooYe0c+fOae95z3s0r9e7rLLky1Emk9GOHz+uHT9+XAO0v/7rv9aOHz+ujY2NaZqmaX/xF3+heb1e7dvf/rZ26tQp7T/9p/+kdXV1aYVCQe3j1a9+tbZt2zbtyJEj2lNPPaWtXr1ae8tb3nK5Tukl8b73vU/zeDza448/rs3MzKhHPp9X27z3ve/V2tvbtf3792tHjx7Vdu/ere3evVu9Xq1WtU2bNml33HGHduLECe373/++FgwGtQ996EOX45SuGjKWLybj+MWTsXx5yDh+fjKWXzwZy0KIXxVXXaCtaZr2P//n/9Ta29s1s9msXXfdddrhw4cv9yFddo899pgGXPR4+9vfrmnaUjuRD3/4w1o4HNYsFot22223aX19fcv2sbCwoL3lLW/RnE6n5na7tXe+851aJpO5DGfz0nm+awZoX/7yl9U2hUJB+93f/V2tqalJs9vt2utf/3ptZmZm2X5GR0e117zmNZrNZtMCgYD2+7//+1qlUnmJz+bqI2N5ORnHL56M5ctHxvHFZCy/eDKWhRC/KnSapmm/3DlzIYQQQgghhBDi5eOqWqMthBBCCCGEEEJc6STQFkIIIYQQQgghVpAE2kIIIYQQQgghxAqSQFsIIYQQQgghhFhBEmgLIYQQQgghhBArSAJtIYQQQgghhBBiBUmgLYQQQgghhBBCrCAJtIUQQgghhBBCiBUkgbYQQgghhBBCCLGCJNAWQgghhBBCCCFWkATaQgghhBBCCCHECpJAWwghhBBCCCGEWEESaAshhBBCCCGEECtIAm0hhBBCCCGEEGIFSaAthBBCCCGEEEKsIAm0hRBCCCGEEEKIFSSBthBCCCGEEEIIsYIk0BZCCCGEEEIIIVaQBNpCCCGEEEIIIcQKkkBbCCGEEEIIIYRYQRJoCyGEEEIIIYQQK0gCbSGEEEIIIYQQYgVJoC2EEEIIIYQQQqwgCbSFEEIIIYQQQogVJIG2EEIIIYQQQgixgiTQFkIIIYQQQgghVpAE2kIIIYQQQgghxAqSQFsIIYQQQgghhFhBEmgLIYQQQgghhBArSAJtIYQQQgghhBBiBUmgLYQQQgghhBBCrCAJtIUQQgghhBBCiBUkgbYQQgghhBBCCLGCJNAWQgghhBBCCCFWkATaQgghhBBCCCHECpJAWwghhBBCCCGEWEESaAshhBBCCCGEECtIAm0hhBBCCCGEEGIFSaAthBBCCCGEEEKsIAm0hRBCCCGEEEKIFSSBthBCCCGEEEIIsYIk0BZCCCGEEEIIIVaQBNpCCCGEEEIIIcQKkkBbCCGEEEIIIYRYQRJoCyGEEEIIIYQQK0gCbSGEEEIIIYQQYgVJoC2EEEIIIYQQQqwgCbSFEEIIIYQQQogVJIG2EEIIIYQQQgixgiTQFkIIIYQQQgghVpAE2kIIIYQQQgghxAqSQFsIIYQQQgghhFhBEmgLIYQQQgghhBArSAJtIYQQQgghhBBiBUmgLYQQQgghhBBCrCAJtIUQQgghhBBCiBUkgbYQQgghhBBCCLGCJNAWQgghhBBCCCFWkATaQgghhBBCCCHECpJAWwghhBBCCCGEWEESaAshhBBCCCGEECtIAm0hhBBCCCGEEGIFSaAthBBCCCGEEEKsIAm0hRBCCCGEEEKIFSSBthBCCCGEEEIIsYIk0BZCCCGEEEIIIVaQBNpCCCGEEEIIIcQKkkBbCCGEEEIIIYRYQRJoCyGEEEIIIYQQK0gCbSGEEEIIIYQQYgVJoC2EEEIIIYQQQqwgCbSFEEIIIYQQQogVJIG2EEIIIYQQQgixgiTQFkIIIYQQQgghVpAE2kIIIYQQQgghxAqSQFsIIQSjo6PodDr+x//4Hyu2z8cffxydTsfjjz++YvsU4leFTqfjYx/72CW/rzFWH3rooRU/JiGEECtHAm3BQw89hE6nUw+r1Uo0GmXv3r189rOfJZPJvKj9Hjx4kI997GMkk8mVPWAhhNIYv0ePHr3chyLEVefHf/899dRTF72uaRptbW3odDpe97rXXYYj/MWNj4/z3ve+l87OTiwWC6FQiHvuuYenn376F9rv5z//+Zcs2D937hwf+9jHGB0dfUk+TwghVoIE2kL5xCc+wT/8wz/w4IMP8v73vx+AD3zgA2zevJlTp05d8v4OHjzIxz/+cQm0hRBCXNGsVitf/epXL3r+wIEDTE5OYrFYLsNR/eKefvppNm/ezNe+9jXe8IY38PnPf57/7//7/zh79iyveMUr+J//83++6H2/1IH2xz/+cQm0hRBXFePlPgBx5XjNa17Djh071Ncf+tCH2L9/P6973eu4++67OX/+PDab7TIeoRBCCLHyXvva1/KNb3yDz372sxiN//Gn0Ve/+lW2b99OPB6/jEf34iwuLvLGN74Rm83G008/TU9Pj3rt/vvvZ+/evXzgAx9g+/bt3HDDDZfxSIUQ4leTzGiLn+mVr3wlH/7whxkbG+Mf//EfATh16hTveMc76O7uxmq1EolE+K3f+i0WFhbU+z72sY/xwAMPANDV1aVS8xp3o7/85S/zyle+klAohMViYcOGDTz44IMv+fkJ8auuXC7zkY98hO3bt+PxeHA4HLziFa/gscce+6nv+cxnPkNHRwc2m42bb76ZM2fOXLRNb28vb3zjG/H5fFitVnbs2MF3vvOdX+apCPFL85a3vIWFhQX27dunniuXy/zrv/4rb33rW5/3Pblcjt///d+nra0Ni8XC2rVr+R//43+gadqy7UqlEh/84AcJBoO4XC7uvvtuJicnn3efU1NT/NZv/RbhcBiLxcLGjRv50pe+9KLO6X/9r//F7Owsn/70p5cF2QA2m42vfOUr6HQ6PvGJT6jnP/axj6HT6S7aVyPFvvE7vLOzk7Nnz3LgwAH1+/2WW25Ztu0TTzzB7/zO7+D3+3G73fzmb/4mi4uLy/b709apd3Z28o53vEPt79d//dcBuPXWW9XnSe0HIcSVTma0xc/1X/7Lf+GP//iP+eEPf8i73/1u9u3bx/DwMO985zuJRCKcPXuWL37xi5w9e5bDhw+j0+n4tV/7Nfr7+/na177GZz7zGQKBAADBYBCABx98kI0bN3L33XdjNBr57ne/y+/+7u9Sr9e59957L+fpCvErJZ1O87//9//mLW95C+9+97vJZDL8n//zf9i7dy/PPPMM11xzzbLt/+///b9kMhnuvfdeisUif/u3f8srX/lKTp8+TTgcBuDs2bPs2bOHlpYW/uiP/giHw8G//Mu/cM899/Bv//ZvvP71r78MZyrEi9fZ2cnu3bv52te+xmte8xoAHnnkEVKpFG9+85v57Gc/u2x7TdO4++67eeyxx3jXu97FNddcww9+8AMeeOABpqam+MxnPqO2/e3f/m3+8R//kbe+9a3ccMMN7N+/nzvvvPOiY4jFYlx//fXodDruu+8+gsEgjzzyCO9617tIp9N84AMfuKRz+u53v4vVauVNb3rT877e1dXFjTfeyP79+ykUCpeUsfY3f/M3vP/978fpdPInf/InAOrfh4b77rsPr9fLxz72Mfr6+njwwQcZGxtTRRJfqJtuuonf+73f47Of/Sx//Md/zPr16wHUf4UQ4oqliZe9L3/5yxqgPfvssz91G4/Ho23btk3TNE3L5/MXvf61r31NA7QnnnhCPffpT39aA7SRkZGLtn++fezdu1fr7u5+EWcgxMvXzxu/1WpVK5VKy55bXFzUwuGw9lu/9VvquZGREQ3QbDabNjk5qZ4/cuSIBmgf/OAH1XO33XabtnnzZq1YLKrn6vW6dsMNN2irV69Wzz322GMaoD322GO/6GkK8Uvx4+Pn7/7u7zSXy6V+P/36r/+6duutt2qapmkdHR3anXfeqd737//+7xqg/dmf/dmy/b3xjW/UdDqdNjg4qGmapp04cUIDtN/93d9dtt1b3/pWDdA++tGPqufe9a53ac3NzVo8Hl+27Zvf/GbN4/Go42qM1S9/+cs/89y8Xq+2devWn7nN7/3e72mAdurUKU3TNO2jH/2o9nx/Gjau04//Pt+4caN28803/9Rtt2/frpXLZfX8pz71KQ3Qvv3tb6vnfvIaNHR0dGhvf/vb1dff+MY35N8SIcRVR1LHxQvidDpV9fEfv+tdLBaJx+Ncf/31ADz33HMvaH8/vo9UKkU8Hufmm29meHiYVCq1gkcuxMubwWDAbDYDUK/XSSQSVKtVduzY8bzj9Z577qGlpUV9fd1117Fr1y6+973vAZBIJNi/fz9vetObyGQyxONx4vE4CwsL7N27l4GBAaampl6akxNiBb3pTW+iUCjw8MMPk8lkePjhh39q2vj3vvc9DAYDv/d7v7fs+d///d9H0zQeeeQRtR1w0XY/OTutaRr/9m//xl133YWmaWpcxeNx9u7dSyqVesG/XxsymQwul+tnbtN4PZ1OX9K+X4j3vOc9mEwm9fX73vc+jEajuiZCCPGrTlLHxQuSzWYJhULA0h/aH//4x/nnf/5n5ubmlm33QoPkp59+mo9+9KMcOnSIfD5/0T48Hs/KHLgQgq985Sv81V/9Fb29vVQqFfV8V1fXRduuXr36oufWrFnDv/zLvwAwODiIpml8+MMf5sMf/vDzft7c3NyyYF2Iq0EwGOT222/nq1/9Kvl8nlqtxhvf+Mbn3XZsbIxoNHpRINtIZx4bG1P/1ev1F62RXrt27bKv5+fnSSaTfPGLX+SLX/zi837mT/6+/XlcLtfPbc/ZeP3nBeQvxk/+W+J0OmlubpbK4UKIlw0JtMXPNTk5SSqVYtWqVcDSXf+DBw/ywAMPcM011+B0OqnX67z61a+mXq//3P0NDQ1x2223sW7dOv76r/+atrY2zGYz3/ve9/jMZz7zgvYhhHhh/vEf/5F3vOMd3HPPPTzwwAOEQiEMBgOf/OQnGRoauuT9NcbnH/zBH7B3797n3abxb4UQV5u3vvWtvPvd72Z2dpbXvOY1eL3el+RzG+PqN37jN3j729/+vNts2bLlkva5fv16jh8/TqlU+qntyU6dOoXJZFJB8U9bO12r1S7ps39RL/XnCSHEL4ME2uLn+od/+AcA9u7dy+LiIo8++igf//jH+chHPqK2GRgYuOh9P+0X9ne/+11KpRLf+c53aG9vV8//rCrIQogX51//9V/p7u7mm9/85rIx+dGPfvR5t3++sdzf309nZycA3d3dAJhMJm6//faVP2AhLqPXv/71/M7v/A6HDx/m61//+k/drqOjgx/96EcXpWf39vaq1xv/rdfrDA0NLZvF7uvrW7a/RkXyWq22YuPqda97HYcOHeIb3/gGv/Ebv3HR66Ojozz55JPcfvvtajlXU1MTAMlkctlNhsYM/Y/7eQXNBgYGuPXWW9XX2WyWmZkZXvva16rnmpqaSCaTy95XLpeZmZm5pM8SQogrkazRFj/T/v37+dM//VO6urp429vehsFgALiofcnf/M3fXPReh8MBcNEv0efbRyqV4stf/vIKHrkQAp5/vB05coRDhw497/b//u//vmyN9TPPPMORI0dUJeZQKMQtt9zC//pf/+uiP4ZhKQVWiKuV0+nkwQcf5GMf+xh33XXXT93uta99LbVajb/7u79b9vxnPvMZdDqdGi+N//5k1fKf/J1pMBh4wxvewL/92789bzu9FzOufud3fodQKMQDDzzA8PDwsteKxSLvfOc70TRt2U3zRor7E088oZ7L5XJ85StfuWj/Dofjot/vP+6LX/zisqUqDz74INVqVV2Txuf9+Gc13veTM9o/7e8JIYS4ksmMtlAeeeQRent7qVarxGIx9u/fz759++jo6OA73/kOVqsVq9XKTTfdxKc+9SkqlQotLS388Ic/ZGRk5KL9bd++HYA/+ZM/4c1vfjMmk4m77rqLO+64A7PZzF133cXv/M7vkM1m+fu//3tCodDz/uEuhPj5vvSlL/H973//oudvueUWvvnNb/L617+eO++8k5GREb7whS+wYcMGstnsRduvWrWKG2+8kfe9732USiX+5m/+Br/fz3/9r/9VbfO5z32OG2+8kc2bN/Pud7+b7u5uYrEYhw4dYnJykpMnT/5Sz1WIX6aflrr94+666y5uvfVW/uRP/oTR0VG2bt3KD3/4Q7797W/zgQ98QAWs11xzDW95y1v4/Oc/TyqV4oYbbuDRRx9lcHDwon3+xV/8BY899hi7du3i3e9+Nxs2bCCRSPDcc8/xox/9iEQicUnn4ff7+dd//VfuvPNOrr32Wn77t3+bDRs2MDs7y0MPPcTg4CB/+7d/yw033KDec8cdd9De3s673vUuHnjgAQwGA1/60pcIBoOMj48v2//27dt58MEH+bM/+zNWrVpFKBTila98pXq9XC5z22238aY3vYm+vj4+//nPc+ONN3L33XerbX77t3+b9773vbzhDW/gVa96FSdPnuQHP/iBagnacM0112AwGPjLv/xLUqkUFouFV77ylap2jBBCXJEuX8FzcaVotOJoPMxmsxaJRLRXvepV2t/+7d9q6XR62faTk5Pa61//es3r9Woej0f79V//dW16evp523T86Z/+qdbS0qLp9fplrUG+853vaFu2bNGsVqvW2dmp/eVf/qX2pS996ae2AxNCPL+fHL8/+RgfH9f+/M//XOvo6NAsFou2bds27eGHH9be/va3ax0dHWo/jZZBn/70p7W/+qu/0tra2jSLxaK94hWv0E6ePHnR5w4NDWm/+Zu/qUUiEc1kMmktLS3a6173Ou1f//Vf1TbS3ktc6V5Ie0tNu7i9l6ZpWiaT0T74wQ9q0WhUM5lM2urVq7VPf/rTWr1eX7ZdoVDQfu/3fk/z+/2aw+HQ7rrrLm1iYuJ5f2fGYjHt3nvv1dra2jSTyaRFIhHttttu0774xS+qbV5oe68f3/7d73631t7erplMJi0QCGh333239uSTTz7v9seOHdN27dqlmc1mrb29Xfvrv/7r523vNTs7q915552ay+XSANXqq7HtgQMHtPe85z1aU1OT5nQ6tbe97W3awsLCss+q1WraH/7hH2qBQECz2+3a3r17tcHBwYvae2mapv393/+91t3drRkMBvl3RQhxVdBp2k/kAAshhBBCCPEiPPTQQ7zzne/k2WefZceOHZf7cIQQ4rKRNdpCCCGEEEIIIcQKkkBbCCGEEEIIIYRYQRJoCyGEEEIIIYQQK+iyBtqf+9zn6OzsxGq1smvXLp555pnLeThCiBdBxrEQvxpkLIuV8I53vANN02R9thDiZe+yBdpf//rXuf/++/noRz/Kc889x9atW9m7dy9zc3OX65CEEJdIxrEQvxpkLAshhBAr67JVHd+1axc7d+7k7/7u7wCo1+u0tbXx/ve/nz/6oz+6HIckhLhEMo6F+NUgY1kIIYRYWcbL8aHlcpljx47xoQ99SD2n1+u5/fbbOXTo0EXbl0olSqWS+rper5NIJPD7/eh0upfkmIW42miaRiaTIRqNotevfPLKpY5jkLEsxItxpY1lGcdCXLpf9jgWQlx5LkugHY/HqdVqhMPhZc+Hw2F6e3sv2v6Tn/wkH//4x1+qwxPiV8rExAStra0rvt9LHccgY1mIX8SVMpZlHAvx4v2yxrEQ4spzWQLtS/WhD32I+++/X32dSqVob2/npmteyeTiBNlcGp2+js1uw2gwomkauUIe0OGw23HoHZgsRnLlIl5XAH3dgg4dtapGpaRRL2noqjqqWoUSeTK1JNV6FZNZR0swilvvgRJUixqFWpW6XsNg1GE2GjG7zFSNBZL5BXR6qFXrwNJsADqwWCzYbXb0eh1oYDIaqWt1qrUa5UoFAB2g0+nQAKPRCJpGXatj0OsxGk2YzSbsdvuFfdkwmszodPoLnwMWixWz2YLZZMZoMqLX6dDrDej0OnToQKdDq4Om1anXalSrNQxGAwDVShWAWr1KrVZD01h6DxdmJTSNxtoCHYBOh06nu/AZxqXzuvCOpS116HRQrS3dvdXroK5BHQ0dOnTa0j7qF3Z64TTQ6Vh67cK2dTTQNHWeyyx9GJpW5z8WPqz0Cggder1+6Tx16inQa+h1OrLZLLVqhW9/65to9Sqvec2dNLe2USxV0OpL3+sLlx6H087k0CQDJwcppSvobWaMTVa27dgBlLGY69TRlq6f1jgb9T9L++E/Zom0C9fyx7eHpeutaZp6vVQq8td/9Re4XK4VvjYv3k8by1//+tex2+2X8ciEuHLl83n+83/+z1fMWJZxvHJyngLGkoGMP0fdUP+Z21YtVUr2yqV9gAb2lG3p9+vzvq6jKeam6CzhSjgubd/iklxp41gI8ct3WQLtQCCAwWAgFostez4WixGJRC7a3mKxYLFYLno+HAySKqUpFPNouioWixWj0UClXMZgMKBpYDFbqBQqOJw2cqUSuXQRS8UE6KCuQ1c3YKqDzqjDaNRhsxopJLOgq4GmYTPaqOc1tAroTQa8bismhxGHx4rdasFit5Av52kzNlOtVQGNUrlMpVqlrtUolcpUyhVqNQANvQpgwWq1YLVYsVituFxOvF4vbpcbm82K2WxeCrpZStOr1WpLgZ9ej8FgwmQ0U6/XQauhoVG/ENzp9Dpq1RrVapVatQYsBfEWixWDwXBhPxXq9TqapmE0mpYCYr0ekxHQ6dDr9Oh0YDSYloJjve4/Al5NW4oeL+xXp9NduDFwIcjT6uh0emr1pQjRoIc6Our1C6/X69Tr2tLXLAXauguBpI6lAL6GpoJGvfpsTQXVer2Oer1OXWsEmr+cMgM63VKgDdrSzQW9jiafh0QigcvpYmZqku6ubqxWC21tbWg6PTaLhWpt6QaBDkAPZpOFSHOEarlKbHaBUqWKs8mD3e6gVjdgMdXQdEvn29D4/59Mw2wE143nVbD9Y8G4Tr/02Waz+Xn3sVIudRzDTx/Ldrsdh0P+yBPiZ7lSxrKM419cXVcHHRRDFdK+HDVTHX7Ot1ePEduL+LNN8/yM35KahjPtxKE5MDoMy27qil8OWV4hxMvHZQm0zWYz27dv59FHH+Wee+4BltZ4Pfroo9x3330veD/To3FMBgtGvZGKVr0QLBop5PMqGNGhw2Q1Ua3WqNfrlCsV7Mal2UqD0YDFbMZkMWC0GtCbDVSpUtSyVGpFHC47dUMVV9CNpoHNbiUcCqIz1CjV89QrZYr5KlPj02DToTfrcdit1Op16lodnUGHx+3GbnfgcDjw+/1EwxFsNhuVWpVioUC+WERDw6DXU78Q8GpanWKxhMFQvRBwLQVTtVqdSqWKjioFSjRCLZ0O6nXUmp9l9e10OjRNo1qpoGNpxlyv11MqFqnW6hdmP5fT0NDr9FgsFgwGA4VCkVrt/2fvv+MsO8pzX/xbtdJOnaa7J0dliSAZEYwuIhkuhyAO52CwRTIgQNgGG/DlXuOAsY8v2OZcG3NNPAcsPj8kwGCMkbHBPphgMBguGMkgBEozo8mde8cVqur3R1WtvffMKIw00kzP7EefVk/vvUKt1L2fep/3eQq0Uu6PtSWFQki3T0cS/RyCNmht960EKG1QSmGrxIE9Rvz1MfhVhcCS54GPBJagFyCMI71Q5MN/qO7pA8SD+VNm5xPc0boxGQO33XY7xhjq9Rrbtm+nWq2wsDDP8soqMgjQBowRVCpVhBQESLq9LkESsfW8bVANOHToMLMbJylUFykHFAPH+ePrJzPKazpQKfcvHb2evU6GPD/ByscJ4mQ9xyOMMMKpxehZfvhQRAVFrDh4zhw6dBXsU8y79jxqPwBTh8aprVYRSpD04lM7qBFGGGGEMwCnTDr+lre8hV/6pV/isY99LI9//ON5z3veQ7vd5lWvetX93kaWGUQSEYUJRZ5hlCWklTjBlJJjQSft2QqvVkxNVGnUKsRRiDQgA0GQSEtMOj267R4bxmcIxwJECEbD+ESDXpqSdjoc2XcIaQRZlmJyTdExJKLKzou3s37neibGxogrMcqKn9Fak+c5xhi0UjTbLZrtFlJI0JpACFsNVhqQjlC5SqqXcRtdHksQSDADcm0n7fa+GgbKinMJISiUIi8KqtUKs7OzHDx40FaTfRUU0Sds7nu310FrXUrT0zQdJvFOJq6Nduu6KmwgCQMrnbdVc4mUiT0HjlQXSvfl5FjS6CmnPyY/lCAMAe2+bIXbGINyBNivfzSMeOCfXwQSrRXaFO5K2m2NNRpkWUaRFxxcWqbVahHFFRaXlt11CIjiCBlK18YgCYIAjZ3oGR+vs7wSMjZeIQhzJIGbsLDVe2MGiD120kIKqyowrnpvnGzeHiQorRBO3250Xw2grYziIcXJeI5HGGGEU4/Rs3xiMBha69ok7QQjDVk1R4WKuBtRa1bL5dJqRnesV/7cHevRmegdb5OnBgN/JJc2rbK0aZUgC5g8MixvTtox1XblYR7cCCOMMMLaxikj2r/wC7/A3Nwcb3/72zl06BCXXXYZX/ziF48xY7k3TG+fQqApFtuoZoZSVjJdqVQRkT20QARUqwG6UNSSGlEtICs6dJsFlTC2MukgROcK3dGY1GDGBdXpOpOzk4xPTPCTH/2UtNmjt9yDriARCTrXhCIiCEPi8YhKXKEax6RZSi9PLYmUgiSOSeKEMLS94xLpqpGmrBAr5WXDtkwppCyr04XKCRyJ7vR6jtCKoTLuIJm8J2JpgCgKGR8fp9PpoLSfSff91YML2zq3p7tpmpKJzFaxy3VcV7YRA0RflO9JEbhlKccssNJxuwvbN162P9vm7SEptGvTRhUKIQxC2hfKSi6DVd3jHfXgiycqL/f7Omo913cvpaRWqzI9PY3WdqIhCAO00ray7V4zxqC1RkqJkIKxsTHO2bWLKIoIpCRwE0JaK6sCYKB6XZLqvoz86PEI0fcD8CS7lJE/DPK0k/EcjzDCCKceZ/uzvLx+lfpyjdXpFpVOTHNd+z7X6Yz3iHsRRhiKuECHhjANSDr9anCeFGQn2ld9iqFixcLW5aHXol5I3I2Y3TtNoEaO2SOMMMII9wen1AztDW94w4OSpSXjAaGJWCfWoUOFUhmRlMhAEhKijbF90wp6vS4ms5LlMVNHt6CQ1nCsMBlRHCGMIIwlM5vWcfkTL6enMtKiRyACOkspRUcTmRAdCBABBYbCZGzdvp1zLzofESpylOvP1iil6fVywkADGUFQdmjbsRWFq2Y6ObUuLCnVCm0M42Nj9JpdFLqUwT9QCAHVapVarcb+/fuRUlIojRRYYuirn2J4LzII/Bac+Vi/2io49o+t0QZtFJp+Fd6+YVwvtl1baUuS9SBR9sfoJeV2xbKSK8qWbH8+nISaoyraXld9P07XkNHb0edMSgIZeos3jOtr9xMlBoMMAgI/iSIEIrDjj6KoNJzDQFEUti8eQ61StcdrdCmpF4E7x+hj5gTsPkVZqR4ctZ938S+VkSFi4N8PMR7sczzCCCOcHjgTn2WDQQf9yct9Fx3GHMcZTIea5Q2rqEAjtUCH929yNq1nQz8XiaJIug922Kcd8kpBXinIqoeoNivM3r3uVA9phBFGGOG0x5pwHb8nrB5aIlAhuVEEKiLLu4jQkCQJUZIQhCFRGFGrVInDmMb4BOumpkkI+OG/3sLyQpNCG6JaxNhMgzCOOP+SC5iaHUcHhkpYIaqEXPLIR/DNw98iiAJqSR3ppMtxHDO+bpJHPvFRtIsegdZoNEJKjMFJfgOkCEpWaauPAm1UWYkUoTMF0wKlFEIIxsfHyPMcIQxBEBIEAXm325d4D5ArSz7v+0PBarNJu9Nh29atKKU4fPgwcRyjtCZVisCTam92Rn/7xtgKPUaUlW0vXR80KvM4tt/YElAv5w6wTFsNmaw6Suv7j90x9ov4/VK2EZTGcgIY3Iwn39rJq+/VeMSR2OPB1+GtI3y/qhwEEl95Fu4aai/xFgKlLYHW2l5L22duTeK8cZwww3J96/juXcOHxzBwZobGYScl/GGYo/k5Wj/00vERRhhhhNMNKlClO7cKFUd2LgwvcA9/EpS0v0W1fGgMNs8ErDswSZSu6Y+OI4wwwggPG9b0b8vmviZJWEEkktpknS07NiClYHJygjhJaDQaVKpVqpUKqlAEQUQSJ6gs54KfuYCFI4uEcURSr7JxywaqYw1ypZBJv787kgnrZqd43JMfQxzGjNXHS0MxGYUIKSjInYTXOp1jIHTmZpVKjbSXIjAIYSvsQRAQRaGVGjsSJqUkTBLyPKcoClrNFgioVmvUG3XCICTptFlZWXFj80yU+0WycUuromD37t1IKalWq4yNjdHtdonCkCiKBiraluVqRxotcdTlz0WhkAMfRrxplzZ90zLhtePufRxZF0KCCBDGELjYMdu/rdBKlU7fpcN5v4m73JbBlL3THr4CjpOzC+nk1H6MBpADsnuBiykbPo1lLBqUagMALQtXRbfxZNrooRmBQmvnW2fK/VmC7c+CKQ/LDFTs/c5LifgxV80up12Pen+CZUBmf7zsllNssDPCCCOM8HBDS838tiVa6zqneihnJA6fM0/YCxlbrDO2WKcz3mVifhRXNcLZDSEEv/d7v8c73vGOE1pv9+7d7Nq1i7/8y7/kla985UMythFOLdY00Y6pEMsEIwxj43Uue/QjERLiOEIVijAMETKwhCywRC/LM5Ik4rxHnM85F2iCKEADeZGhlCaOQgy6T2+MIYwjtu3aikSija1m+iprXmQMMhpfoZRAvd4AIUlNlyiKqNdrRHFEt9ul0+uWrtCqUChXfZRSlpXKmekZpJAUqqDVa5fy4yGY47Op41Lvo2ThaZpy5MgRpLQO4z7X20uk/Xh0+bN1a4+iiCAIiOOYSqUKGDrdLr1ul14vtSTSaBczZUoCbiw7tVVfY+O5SldtR+pt4V8Mm7P5wxwgmIPVXd8HPliHF3iTtv46NgO8f1378vP+vnxPNX5MhS4r64Hwruj+e0mf+/sw9j1RXhrTZ/BuAmBwjYGLg8DL3ftjGbyeRnvZuCjHP8III4xwJqCcoBz4K7U8u0p9pUaUDX9UySo581uWANiwe5oiVixsXrbbkYbeWPrwDPosRVEpWNq8QmeiS1bJaU/0pfJhETC75/iy8lF02AgPJa677rrSvPFf/uVfeNKTnjT0vjGG7du3s2/fPp773Ofyd3/3d6dimA8Ke/fu5Z3vfCdf/OIXOXjwIBMTE1xxxRW89a1v5X/73/63B7zd97///dRqtYeF7N9yyy381V/9Fa985SvZuXPnQ76/U401TbRrkw3GpsbYdcEupraOIRNH8Fw+tJSSMIqpVqvIwPYkG60pdE4v71q5bWbdnCNXZdaIfiY0BjSWqEu7XY228mcDwhiiJHLkStvKrG86lgFGKcbG60w0aqw2V1leXkIEgZMXK9efy1BhWmtd/jGan58vK94lAcQRsJKD2QqxEDaD+hjzrnIp/4/Sfsxtz37v9Xr0zcj6dNAT0f7qgqIokEFAr9djZWVlIPNa0hhrMDkxQRAErKys0Gq10NqAOz/+GISTX2ujXOFa2H5wR5qVVuUxeqLvDcVKSn2Mu7odtK9AW+M50Z8ocCZhRlhTOhulZs9rURTD504c+6FAGesMDrj2ADNQmWZ4XNbFzPUC3lsneP+yCCH7FHyISLsJgSDodwwMSOvLi3U07mESZoQRRhjhdICWupRpd8e7qFDTWKwTFBIVauorVYSBIhxug5FKMLN/ErC/5vKkoHs6OXmfJfD96UPn3jBEvCNX/ZZKUlutIJUcEe4RHlJUKhVuuOGGY4j21772Nfbt20eSJKdoZA8O3/zmN3nOc54DwGte8xouueQSDh06xHXXXceVV17Jn//5n/PGN77xAW37/e9/PzMzMw8b0f793/99nvrUp46I9umOS596KTNbN1hZs1RElYA4iqjECYUqyLIMrQrSNEVrg8KSMCkESGvlpY3NoFZ4h2gDwlc7bT81WqFV6bNdGqkYA2mR+vZjwkCWZC3Lc849dyd5mrF3725kYM3ZUIUl5mKgH9cRZ3NUr7PSvm/X/ix85Vb0TdXMYKn3XjHY7Us/HmqgQnq8deyY+n3BJWnNCyeLthMVQgqEUqRLy6ysrCAdIa9Wq2zYsJ4kqdBsNlldtcQ8SmJ6aUZaKFRREEUxRmu0MmXF2huA9WPH7nlGvDT+khDIwEnR7fiiOEa6sStl1QOeXEO/l5tyN8MVbn/sUtDvo9Z+MsL4gQ3w6X69fXDiQtyP6+T7y119m2Gq3R/m4Dm5JwI/qniPMMIIpxt6tZS4F9FtpDSn27SnhiXeC1uWmdk3xfy2pVM0whEeFAT9fHAgbWSkjYyJw2Msblph+y2bTuHgRjgb8JznPIdPf/rTvPe97yUM+zTnhhtu4PLLL2d+fv4Uju6BYWlpiZ//+Z+nWq3yzW9+k3PPPbd87y1veQvPetazeNOb3sTll1/OFVdccQpHOsLRWNMZDRObJiDWBBVJENqKdTfNWG23yTKFIUAGMVJGyCBCSptZHMgIKUOkDBHCvqYNFMqgtP+yEmDtiK7W1vDKaAVau9xrR8CcwZnSxvXu2n7sfXfvY3x8jCiKKVSBNraKbYkkfSmzGSBsDMumBQIpRSkpL12nfauu6Pf1Dnb4iqO/xHDPtI+NMsa4/mt7rGqoJ9sSUjXQm+37tG2VvW+G5pcDS0K1tjFXaZqyb98+7rrrTubn5ygKRRzH1Gs1GrUa69fNsmnDJgJhc6vtJAfl5IWt1tss6sBXtJ3UW0pZ/hL1CgHl8sILpciznE63S6vZpNls0u11yfIM7a6ddDFqgevDlsJ/9Um+Mdp1g2tL0I226gV3bsrzqI0dg7Z95gyakw1I0+8tcsvHoEl3/aW/F7BqhUCKMhLMn4PB83Hs15p+vEcYYYQzBFoYFjYvs7B5mcO7FpjfusSh8+aOIdkACEYk+wzEyoYmRVKwOtM61UMZ4QzH1VdfzcLCAv/0T/9UvpZlGZ/5zGd4yUtectx12u02v/Ebv8G2bdtIkoQLL7yQ//7f//sxRag0TXnzm9/M7OwsY2NjPP/5z2ffvn3H3eb+/ft59atfzYYNG0iShEc84hF89KMffUDH9KEPfYhDhw7x7ne/e4hkg00U+tjHPoYQgj/4gz8oX3/HO95x3ILLddddhxCC3bt3A7Bz505+9KMf8bWvfa38/PjUpz51aNmvf/3rXHvttUxPTzM+Ps4rXvEKlpaGf08LIY7bo75z586yUn7dddfxohe9CICnPe1p5f6++tWvPqDzshawpivamcqQuXRu2Kbsqy2UwtjUJACkkCUhtcSyKKvJhZd6mwEi6siTFqZPYIWrLHvTKQEYjZCiJLgGg3IGWcJoWu0Wt995JzIKGatWqFSS0kG8UIpempLnOd1ulyyzEixLeHVJsGxRvU+Oyz5lbY3FyvxtBylFKUGHo9Z1B+ol66X62BiM6b/WNx0b7hEuyb8nhAM8zrjcaN+P7QXe2p1X39tsVEGz2aTVahGGEZWKzRjfunkLYRRy5PBhWp0OSIEwAlMqyO3xWmd0gdGGvMhLyXdfDeB6yd1Y7fKuKj5wqspKtZOCl7bl/j5y1XApA0ABBu16roWwYyu0bRXwxx3IAINBlvecn0AxLm1MDF6IIdgJhf718Lfi4PULpCQIQyff7/f1H3eLAkY8e4QRRjjVMBgO75qnM9Etf/82k+LUDmqEUwNhFQsIGJ9rjCTkIzwk2LlzJ0984hP5xCc+wbOf/WwA/uEf/oGVlRV+8Rd/kfe+971DyxtjeP7zn89XvvIVrrnmGi677DK+9KUv8da3vpX9+/fzZ3/2Z+Wyr3nNa/j4xz/OS17yEq644gr++Z//mec+97nHjOHw4cP87M/+LEII3vCGNzA7O8s//MM/cM0117C6usqb3vSmEzqmG2+8kUqlwotf/OLjvr9r1y6e9KQn8c///M90u12q1er93vZ73vMe3vjGN9JoNPjt3/5tADZs2DC0zBve8AYmJyd5xzvewU9+8hM+8IEPsGfPHr761a+ekHryyU9+Mr/2a7/Ge9/7Xn7rt36Liy++GKD8fiZiTRNtIQBphmachBGu6uh+BoRwzs+OLCsoDbjKQqOUR/Unewdpi74jtOmTbQTKGIymJNz9arWtEC+vriBd1VGu9km5chLsMAypVCrWIb1ScUZjoSWnrmKa5xlFUdDrpeR5Rp4XFEVeyqWNwUqute4T2gFiPfzdS8DdaJ302880DCuRh2Xpfjk/4VDOObjeYi9ploPnq5S79x/EIAjKSrDtDbeziUklYdu2HbQ6TQ4eOkyeZ3jvN200Ki0wWBJbRpy57Qk3QeIr0eU18+ZlbiJgqF3aUFa3y6gsg6tiC+cGzxDpLY/DSELho9qOl3094EB+lOrg6F9JYsCkzffNW5I/oGxw0ve0l5Ymcvb6H2+L7ji0Ofb1EUYYYYSHCVpqjuxYGCLZI5zdMIFhfssSYRZQX6md6uGMcIbiJS95CW9729tK0nn99dfzlKc8hc2bNx+z7Oc//3n++Z//mT/8wz8sieav/uqv8qIXvYg///M/5w1veAPnnnsuN910Ex//+Mf5lV/5Fd73vveVy730pS/l5ptvHtrmb//2b6OU4j/+4z+Ynp4G4PWvfz1XX30173jHO7j22mtPiAzfcsstXHjhhffaX37ppZfyta99jdtvv51HPepR93vbL3jBC/id3/kdZmZmeNnLXnbcZeI45stf/rJNJwJ27NjB//l//p/ceOONPP/5z7/f+zrnnHO48soree9738szn/nMsnJ+JmNNE+0wDggCWZITT2wsCTuWOEpHro2XT2szRKCHCNpR6BM4v7zbhyl3PVD9tv9woypJrSf4YmCbSik6nQ7tdqfctieFUljyXxQKozUycBLqIKBWqzExMUEURbTbHbI0BycDT9OUXq9nSSnSkj7hJgO0cdVT+93nY3tDskEMVrcHXsHPQPRbks1RfcP+vLvKsui7e3u5uj32vou61pput8vS4jLbd+5g165dLC0tMXdkzvVSC4SUBL5HfbBH2Qx8hnOKAuMIs+911q7q7SvNvoJtBg7Etu4P9GY76bpd2F/7fq+7NgZvOFZO3Pg5+mNO3nC/eX8exF3zAfJsTd9s5rbS9nj6lXu7LeEUFXZbYkhx4I9rLeVo53FOa7JNtVklrWbUWpVTPaTTHlklI6vkp3oYJarNKmktI8wCsmpGbbWK1CNZxdmGXi2liG3Fuj3RpT3VvY81RjjrIKHbSKk2K6PfESM8JHjxi1/Mm970Jv7u7/6O//Sf/hN/93d/d0wl2+Pv//7vCYKAX/u1Xxt6/Td+4zf4zGc+wz/8wz/whje8gb//+78HOGa5N73pTdxwww3lz8YY/vqv/5oXv/jFGGOGesKf9axn8clPfpLvf//7J+QS3mw2GRu79xg9//7q6ur93u79xete97qSZAP88i//Mr/1W7/F3//9358Q0T4bsaaJdp7nRFE4VGH2ZNe4XmEhQDoiovoiZPfdDFSu+73NXu5bVjkZ6Icuf7aka6ATd4BkOy9qpxQuzcygrPYaq6e2ZM5tp2+wBaDRwruMa3z8lVIayMnSjOWlZUseZcBYfYxGo9F3/26MEccRRVGQZindXoder4cUgSOiw19wLNE++jUxQJoHXxsieE567X6wZ9JV740jjkZrtDZlxVZpbQmuEURRxN69exibGGfLls00GnVWVlaYn5t3nnHGEUxRkmljrFz7aAMzcEZnnpz7MerjH7Pfvjd3w1W1wRnADRWPRUni7XUeINXCE29fDR92Si8jzUqFgPE7B4HtNc+yIa5emtcNXSM/MWOcE/5R128NFbS1NCxvaNKZ6FFbGZHs+wMtDUWkWd64wuShiVM9HJY2rdCaahP1IqIsJK3lrDswMZKHnkXo1VLaO1fIKyNp+Aj3jpUNTSbmxpDZiGiPcPIxOzvLM57xDG644QY6nQ5KKX7+53/+uMvu2bOHzZs3H0NkvZx5z5495Xcp5TE90hdeeOHQz3NzcywvL/PhD3+YD3/4w8fd55EjR07oeMbGxmg2m/e6jH//vgj5A8H5558/9HOj0WDTpk1ln/cI94w1TbSF0aB1SZsZIMv4Pldc2y19wtv/bkq5+GCl0W/FVmo9IfJV8375syRIVuft1nVU/ajquBDeyEtihLGGWb4UflxGJIZkxGAJlVVMS/tvHHnU0Gq1aLXapeQ4jmO6XTveMA654PwLODJ3hLkjc4DLxzb9HnRfcR7usz5qREeZbfkxeidyWyHXzvDNEuyiKIiiqOwLD4LA/VuUxxaFISBKKXwoQ9qrLXb37qJaq7Jx00YmJyc5cOgQrVYLkyukEeU6xuVee/WArUKbY47DR3LhCbK/WZzpnRTCc3g3d2OcHN2eZyP8zwPVdH/+Shm/tneKXaEk6FEUUa9WyvOVFwVGaYweqJC7CYj+vdm/Ln2GL0qFglKDsnM7QRCIYOAOWjtMe2HbEmESk1Xye8xgHWEYSScm6cQsb1yhta59qodDVs0wEiotyfT+SQ6cf4R1B079BMAIDx+yan7/SPbAr6aZu6dYWd9k/e7p8rUiVhzedRxn4NGczRmFwzvn2fLTDaPJuBEeErzkJS/hta99LYcOHeLZz342k5OTD8t+vVLzZS97Gb/0S7903GUe/ehHn9A2L774Yv793/+dNE3vUT5+8803E0VRSYrvqXe6jBZ+mPBw7+90w5om2sbgKrxmqDe3vwDH/GEeqlIPkNyhflbPym05vPwnTmZt1/XVYHDFT0vOXHU9kEGZ+ewjsrQ25Cq31VwhjmNWdbyHwgrArZRcl6TLOAJoq93+YOw+tLbRWlambtAdTZZnXHDBhUxMTLBn917yrHCyblOSSikH3KzLiYP+XICvHvvj126iIU3T8nOTlNIRZ5BBQCyt3F06o7DA/ewrsz4GTMqgX7XVotxuu9Om2WyyYdNGLrzwAhYXFth9+52EgSQvNKqwOdzS9cgHQdCPIHPwUnxd9GXrXo0gHHEOpEQp5c6BHCjK97fj750ydmzwNitV89YrPAgDojBCBhJVKIoiLzPFff+9XdkR5b7e3G8IMagOGLwjjFc/+Kq5l8pb1/uyHWANEe20liPDkA13znDg/CNsuW3Dfa90lmN1psXi5hWkEmWe7emA7ljK3RcfLPORRxhhCAa23rqRldkmM3dPIYxgbKHhJk/dIh3Drh9sHVqtPdVhaaOVROZJMSLdZwCy6unT+jLCmYf/8l/+C9deey3f/va3+dSnPnWPy+3YsYP/9b/+1zHy7FtvvbV833/XWnPHHXcMVbF/8pOfDG3PO5IrpXjGM55xUo7lec97Ht/61rf49Kc/fdw+6t27d/Mv//IvPOMZzyh7v6empgBYXl4emmTwFfpB3Jeh2W233cbTnva08udWq8XBgwfLXG+/v+Xl5aH1sizj4MGDJ7SvMw1rWrOjlSplyVrpkoAMZRz71loHT3rLfmvTr2wPLSoGCY2rSkvhiKx2JL1PknwElTfqUlqR5zlpZp3Fi6Ioe2alFMd8SOjLoAe/+qO2kwnStiDrQT36APEf+NlDOsKfZRl33XUXkxOT1Bt1O4cgrau2DCQyCEo5c+lYPnCesyyl10tJ05Qsy+yxpSl5URCGIXEUEYUhURQhhCAMo5JU29ksS7K9qZfX1GsndfeVXk+StZN3WwJccOjgAeaOHGF63To2bJh2jtt23SCwPc3ldgYN0GCAPAvCMHTO7zYazE8u2FMnyl7rQUk9x1Ty7dmRQWDN7OKEJE6Io5g4iqkkCXma0W61aK2u0u10yLPMxqMZL//3Unx3dY+aJOpLzhkam4DyWlkvNq+YcMcpbeSX3e7am0U8fM58mVM/wr2j0k4YW6gzMXfyZWIPBkknJsxC6sv33+hlhDMMBsYW6sf/WqwTpSHr904jjZ2YlEe1vdjX5NDX2GKD7bdsZtuPNzG2WCdpx6fo4EYYYYS1gEajwQc+8AHe8Y53cNVVV93jcs95znNQSvEXf/EXQ6//2Z/9GUKI0rncfz+61/s973nP0M9BEPDCF76Qv/7rv+aHP/zhMfubm5s74WO59tprWb9+PW9961u58847h97r9Xq86lWvwhjD29/+9vJ1L3H/+te/Xr7Wbrf52Mc+dsz26/X6MSR5EB/+8IfJ8/7E2Ac+8AGKoijPid/f4L78ekdXtOv1OsC97u9MwtquaHOU8nqQULvKYVnVG9IK+4VM+X6/WjlQ9XblXC//NbiKtulXCz0pNaagn1s8sM3hjub++357JcmDo7jWUFXVyoJl+aJrly6lzF76PFjZ97LiQAQYIE17LC0tsWH9BtrNNv0MbY0QkrzIyxxtKQR5nqOUzb32BFkIG7EVOlJdVvWlYDBSzJ57UTqhJ1FUkmdbkXcqBEeufZXZH4uvngsBRa4ICTh0YD/jjTq7dm5HFYq5uWW8tZ1AuIkQXRqaebk+xvZqe3m3O2lDJ7zv4t03RPNE1xuUSdk3o8vzvDQqszvQqKKgUEV5pfvXT/f3A/1IMX/dsU7qQ+T+6DvHX1chwPXseyUH2ovEreeAHZIpJxzWAuqLVepZnUo7ISjW9Pzfw4b2ZIeskrM6e+99Ww83uuM2SSBKQ+a2LwIwMTdGlIbMb12ivlyjvjoi4Wcy1h2YZPLw2EMiCRZGsH7PNGklI61nLGxZQodr53fdCCOM8PDhnqTbg7jqqqt42tOexm//9m+ze/duLr30Uv7xH/+Rv/3bv+VNb3pTSVgvu+wyrr76at7//vezsrLCFVdcwZe//GVuv/32Y7b5R3/0R3zlK1/hCU94Aq997Wu55JJLWFxc5Pvf/z7/63/9LxYXF0/oOKanp/nMZz7Dc5/7XB7zmMfwmte8hksuuYRDhw5x3XXXcfvtt/Pnf/7nXHHFFeU6//v//r+zfft2rrnmGt761rcSBAEf/ehHmZ2dZe/evUPbv/zyy/nABz7AH/7hH3Leeeexfv16nv70p5fvZ1nGz/3cz/HiF7+Yn/zkJ7z//e/nSU960pAR2mte8xpe//rX88IXvpBnPvOZ3HTTTXzpS19iZmZmaF+XXXYZQRDwx3/8x6ysrJAkCU9/+tNZv379CZ2TtYI1TbT76BPLwZeOqRJ6Zuoq0UIGDDBwtNKO5PVzl0sy7P+tB4ytBgiTlLJcpty/8HxueCagNNFyVWw77MEPJIZBA63B4/P8UDgm53vCfdXW/7uUfbtJASEFhSrIspR169bR7XbI84IsyygKRZLEJXEOHZmUQVCSUSmD8ljCKLKTFP69QLr+6L7c3FeWizwvK80IUSoEiqI/w2WMcXnX/Z+HTNXcKeh2etx5x508/nGXMjM9RavdJkuVrRB7wiqHSZqvnovyxNlz5KXfR5u9DU5UaKWHJhC8HF8GAbqcoOi/76+im0soj+PofRwt6bZGd8eRiJf/76sWxMCbfj/uXXxsW5lzvobUOb2xjJnVacaW6qd6KGsK3YneqR7CPaK1rgPYyubyhlXSWkaeFLbaPSLaZyTqy1Wmb5kiSqOHvO826cUkvZhKKwFhWJlpsbq+9ZDuc4STi413zp7qIYwwAlJKPv/5z/P2t7+dT33qU/zlX/4lO3fu5N3vfje/8Ru/MbSsJ6rXX389n/vc53j605/OF77wBbZt2za03IYNG/jOd77DH/zBH/DZz36W97///UxPT/OIRzyCP/7jP35A47zyyiu5+eabeec738mnP/1pDh48yMTEBFdccQUf/ehHedKTnjS0fBRF/M3f/A2/8iu/wu/+7u+yceNG3vSmNzE1NcWrXvWqoWXf/va3s2fPHv7kT/6EZrPJU57ylCGi/Rd/8Rdcf/31vP3tbyfPc66++mre+973Dn2+fe1rX8tdd93FRz7yEb74xS9y5ZVX8k//9E/83M/93NC+Nm7cyAc/+EHe9a53cc0116CU4itf+coZS7SFOV6W1WmO1dVVJiYmeNtv/Q5JUhnoj+1LgAerpLKsavoauCWnllgPVGGPQ6ChX+EerhQfpyf8KBxN2Ae3BbaPWxsb2zU4LkuoBvrV3Hdpgn4J1I3TE8ije5J9/3Spfg4NExMT7Ni+nbkjc9y9926UopRQ+4qulcar/n6NQQbBcOzVwPENHqd3RQ8Cia9aSzl8HFopVwm2+/bScu+WPqgKEFKitaIoFL6YL6Vkx/aN7Nqxgz379rF3z0FUYZyUWqKVLicE/HWSzgTNu6a7Qfd73Ieuo5Neu9d8rJafaDiaXA/+khkk+X4ZrxbwRNgY4xo2jjqPWpQV9DIGjYHJjDKr3EfUaTdJ4/r1Gb5vjTFkacof/dE7WVlZYXx8nNMR/lm+7vv/P7Y0NxKo4L5XGgGAxU3LLG06+TEeJx3+VhcglGBm3xTjC41TOqS1hna7zVVXXXXaPsv+Ob7xxhtLWeDDPobpFvNblzDBmvtIc9Zi+w83E2VnSL3nfuB0f45HGOFoXHfddbzqVa/iu9/9Lo997GNP9XDWJNb0bzhjvORXlES5dBIH1+urUar/Sa9fPTZD0m0YoLqDhLok2cP7xfVEH93T74mQl0GDI0BalwR7sBdYDBDnPuETGGHJlZeZuxUHRo51rTbD0uSjI7sQEIYR69fPsGnTJvbv28/iwgJhGCGEtj3ajiD6yvAg6RbSOgZqfyxYSbbWqk+wB43BjEYpSrIehmG5XBAE4EzHyutz1CSBn2gYrDgHoVce2NfSNEMEkq3btrLnrv34PHCjVGmGVhqWlaTVkvzB2C2ti6Heax8zZlTf4d2fG983fvTVHqxY+yzs/j0kBsi3KPc91OMwCGPQuDg6M1z39uPxkoaj2w7ATgr47PXh++n0R9QL6Yz3RhXtE0DSTgiyABWf5r34A78jwywg7kb3vOwIIzxAjC80MNKwsGUJM+o+GWGEEUYY4TTAmibaGGeepRki2OD6c+1CA7zGy5EHSixD6/jvA7LtkmQfRQZL0t5fp/xEObg//74cIN5lP7gn8qLfU+7JkZMGG7AGb64PuNzyQDXZukz3Y64Cacu/QgiqtQpTk5Ns2bKV22+/ncWFhaEKr5SDRLl/rnyVebAibMr99nOxfdU7CEPbH+3k+N58DCwBlW6bSimCMLRjxUvu+73i1tBLYpQqP59LV7XVRqOMIc8VaZYhg5AwjCiKfnXZV/OlG3foxqWKYqgv29A/Ll919nJ140rExoDSaqj3vawgu3EPTqiU58Qvy4CqgUHia4Y7BQZg19HlcWt3fstb6xhVRf+e8PJ74cZUHD0LdBqj0kqo6ONHVowwjLmti+jQ56qvnckUgLxaMLd9kQ27p1le38RIQ2OxPpKSj3BSMD7XQGjB3I4T638c4eHHxJHGyI9jhBFGOOOxtok2UIqyhasmO1JsykDke5CCg/2QavqE+rhbvl+fY49f+YbhqnjZG+7lv66iK+lnWg/2+3oSe3Rl0ldkj3HCHpAuB1JSb9RZv2EWrTW3/vhWlpeXLWl0Iy6MoSgKlFJl1nVZwXX7KDzhHjyespJqHcGFsMZpnuh6GbiVZcuSTHvy73um/eu+Au0Nx4QQSBcR5tUBxqiyWtvrpTRbLcbHJwjCgLzQQ87lfvzGGLIs6/d/l5MFALqU4RujkdIer3JV7/JYB069l6cL+tVrvz0h+pJv7c6jVQT0+/H7PL9vCuf/LQn643YTDmaAYPspIWEGSfrxb85yEub+3bynBeI0KmPhRrh3dMd6TB2eIK1mRGmEitJTPaQTQlbLOXDeHLN3T7E606LXSAnzgKQ7cpEe4cFBIBhbsKqYuW2LazxX5czF2EKddQcmkXp0gUYYYYQzG2v6k60+pr/WYpDYwkBBsCw4D7KngT7bQXn48A/9HmtXuS4L4wPbFMa+KAZ2JoS0r5e8yldG+5JkEKg8H+oDL4c30AvuCawsx9CvyHvyLoSkWq2yceMGavUqBw4eYHl52cqh3fpK9026DKI0QfOu3F7OLYUgdFLswbEMVvgHpfee6Eqfk+32hxDWPMz3YgfBUC+yDAKMtq7gg3Jvt4OytC+EPfbMRWdNTo4xMdlAz69a8ivBJomZ8lwYrRFGE0goCoX212Xg2lIeV79iLWVfvm1cRV4gEM5czsvffUSacZMF/Uqzn2Tpy77LQ5ISrRTQn1TRaHvfGmHvDQPIAWm+GLgrhyaVjq2W23aC40ndRzgzIKitVAnTkF5jbZFsDxUr5rYvMnVwAqnkSE4+wkmDJ9t5UrC8cQ14GJyFkEqOSPYII6wBvPKVr+SVr3zlqR7GmsaaJtoWwxLuB7mpoX94vjxsAEbZhT1QGx8i3QMLlvBk1VeuB3t/jXRGbcYahA2SvmOcsLUecOjuj0ujmZicYHxsnEqlQqfd4a677iLNU1shRrqeb5xU3cVd6b7TuifyGFP2OvcjrAZ7t/sZ3/3KqyAQfRM6YRucy3NRSsrd9gd7p71JmSm32yegx0gEsAqFIAiIooitW7aycPiHGKMJwqCcGFBKgRgm7V7c3y8mD1Sl3XnxffBKKeuuPiCh19oghTV4E7p/3ynnRj4Igykr02BQ2maC217ye2hdQJTqi/75FQgRlFJ7e67cPTnUzTDoTXDM7THCGYTxhToqVCxsWSKtZ6d6OA8YKtKszraY3bNu8DfpCCM8aAgEldYa8TAYYYQRRhjhjMUan1L00luO+vLS3AGCfA8y8NJp3Em8fYSWVRX7PuSj+7OPw2SEq7BrLwnX1tXcVXlLIut6lz3JzPOcLM+QgSSOo9IB3FZ3XRXXuXF7WbU3UtNaUxQFY2NjXHzJRaybnqKXddm9ezd33303WZbb/nXfzun360ibKgrnMt4ncdKZlRltMNq4yquFr+LaLOmwnBSQUhK4jOnBCQTAVrfxhWlje6XpR4HhxtOXzPcl9UXhHMrBKQD65FYKWxW2PdgKECilyPO8dAr3Y/b95v5CyYHKfdl/7idCXK+4UoostdVCf04QYNClnH5QaRAEoe0z98ddGp+53nHVPxYMSOQx92PpMi68IgNUoQBTuuMrrZzc3zrmG/eev7/79/3R9+0IaxHL61c5dM4cC5uXAVjasMLYQh0jTb9Pew0jq+bM7VgkS/JTPZQRzjDUV6ts2D2NOE504ggjjDDCCKcO73jHO44pUN0ThBC84x3veGgH9BBiTRPt/iUyR325Vz0ZctW/44nMhyTmnlgPkLKj93Q0jOvxVcoSID1AvnzEli5LqH2jK79yEASEYYCQth/a9wjbqrdAqYI8z0uCJYS0+1GKJEm45JKL2blzB0cOz7H/7gPMH14gz/Kykipd/7g1GnM1XSHK/ShVAP3e6qIoiJMEW5AWxHFCEATDpmjGUKjCunQPGIp5UusnC8BmUXvy6J3Hy8kHR7Z9ld4bkuVFgQBCV6H259jLucfHx5mZnUEbww9/+ENLOvWxbQRFXpTXojyvAnyklyrsucUY647u1QIDRmq+4m770DPyIkfpopwosXFmAQsL8wOqA7s/KfrkP4wiZ9AWuPd1SYz7hN31lecphcrJ84xCFaRp6jLPc7TqT0gMruMneI6edBphbSOtZbQnuyyvX2XPIw4Q5AE60Bw4/wh5pTjVwzspyKr5GTFpMMLph0orGSl7RhjhDMGPfvQjXvayl7FlyxaSJGHz5s289KUv5Uc/+tGpHtpZgyNHjvCbv/mbPOpRj6LRaFCpVDjvvPN41atexTe+8Y1TPbzTEmeAdPxeYN2jGKbNfdIsBpax1VLZN7Uq45R8lNVxto1d1zufewKrtXX+thVoSiMsEGUfMp5gCVul1FoTyND11QpHdGVJ5IwxKLsLxifG2bBhA7Vajbv33s3i0hJFXhC5KC1vyhYEYUlqg8AS9CAI+r3ajnwWRU4cx/1+8ULZY8ZWfYMy/suSaFzvtnEE1RNJHOE2bgJBKVW6dluyq8vzC/2e7iiObfSWlMRxbMkv9mALVwEXQlrDNSmoVCoEgSTrpbTbbSvplgKt7KRG5JzGvUzdm6wppcqea+Pk7P49L3n3hnBhFNm4rIE4siRJ3HkxYASBDDDCkOUZ4xPj3hIPBGRZThRFpYt6kdufgfKclb3YbsJHin7km1YK6XLGBw3mvDt735TON36Xt6On4COmfQYg7kVUV60be9JJaM60rKPyqEg3wgj3C5V2Qne8d6qHMcIIIzwIfPazn+Xqq69m3bp1XHPNNezatYvdu3fzkY98hM985jN88pOf5L/8l/9yqod5RuM73/kOz33uc2k2m/ziL/4ir3/960mShLvuuovPfe5zXHfddXzta1/jyU9+8n1u63d+53f4zd/8zYdh1KceZwTRvif5gfO5GjLvMtqUVcsgkCW58gZWbouuum0JdFkNHujDHuzSFkiCwJFRo5BIBM5R2/h2YOPatl0l1xEnS+oFYRChXYyXBIQIBuTUtn95ZnaGdeumieKQ5eVl7rrrrtJVOwyDkrOVMVNGlHnWgz3ilETTE0zZz2mm3x/uCfLRRE/oPvn3kV6+T1lKS4illNbPy53fwI1t0NEbbMZ3KXnWhkxl/T7wAQdwjyAI2LptKyDYc9fdCGMnJbxsv6ywG40UEuXI/KCjejlxoTSDkWB+T76y7//tL7sl3H0Zt879ZIwl23EUO0M8l8ntq/tun9bYTLuJF2+oZ8fkTdaElEihIZBDFW+BQKnh3vihe32QVJu+eHyEtY2oF5VXsddI6TXWbk/2PaG6WiHIgvtecIQRThACwezedex95IFTPZQRRhjhAeKOO+7g5S9/Oeeccw5f//rXmZ2dLd/79V//da688kpe/vKXc/PNN3POOeecwpGeuVhaWuIFL3gBYRjygx/8gIsuumjo/T/8wz/kk5/8JNXqvUd1tttt6vU6YRjawt1ZgDUtHQcGZGGi7LP2/7ZGUlYCHEUxtWqNeqOOLzMXRVF+ZVlGlqWkaY807VnZblG4anafbB4Nge/pHnYH165K7Xt/i8L+PFhl7PdeB4Aj/vj+a2XlxRiq1QqXPOIStm/fQbO5yp133MmRw0fKCrTftt+nJ7yFz46G8nVP8j2B9OOQge2BBoiTpCSnR7uK+x5nv49emjr5OQPj0CWhtyTe/hwOSNCHnMXx/dRWyi2dXNzL8QPnSq6UYueuHURRSKvVotVqUahiqMI7aOqWpmlZsR48ByWxduVnpZStfAdB+eAnSVJuTwC56/uWjgB7ki6cHF9KYZUJbruVSqWcvCkl5a4X3J6vYcM73LjyPC+PSRtdnn9DvxfeqxwGr4u91wzHuUVHOE1hBv47+mf/X3uyw9LmFZY2r5yxVbnaaoUwHxHtEUYYYYQRjsW73/1uOp0OH/7wh4dINsDMzAwf+tCHaLfb/Mmf/MnQe/v37+eaa65h8+bNJEnCrl27+OVf/mWyrD9hvby8zJvf/GZ27txJkiRs3bqVV7ziFczPzwNw3XXXIYRg9+7dQ9v+6le/ihCCr371q+VrT33qU3nkIx/J9773Pa644gqq1Sq7du3igx/84NC6WZbx9re/ncsvv5yJiQnq9TpXXnklX/nKV4aW2717N0II/vt//+98+MMf5txzzyVJEh73uMfx3e9+95jzdOutt/LiF7+Y2dlZqtUqF154Ib/9278NwFe+8hWEEPzN3/zNMevdcMMNCCH41re+dQ9XAD74wQ9y8OBB3vOe9xxDssFyoKuvvprHPe5x5Wu+D/uWW27hJS95CVNTUzzpSU8aem8QaZry5je/mdnZWcbGxnj+85/Pvn377nFMawVrezrBy2U9GTG2rzhwecveV8oSREM7z/EExxhrfOVL3tpoK/UV0mYfD6xro5RcZJQSZQxWWUk1oAqXI43GKDNgCkZJ0n2klxDC9v+aYSMwbQxxHJGmKVEUEUcR5557DhMTE9x9990cPHjIVbB92FT/+AersYOmZcYYjBheFihl2kWeu37ikMJYabVykumysl06jXsDNtubHQRB6aRtSaw91jCMHPHUFEVuq6taU/iJCH9igKLIy2qvUoo4jp08um9glmUZSmuq1YTZ2Rk0moWFRVZXVgFZSrKDMHCTC1a5ECcxUgZEYVgaoqW56y0v7xmXt46Vaxeu77zb7Q5L3JVyPfNWDm8Juyrl4kJKwjAgkCGqUMRRROFaEUpib/oGbENu53Ynpft7GNltKKVQQiGDAKUK0rRr++2NJs+L0hhu8JeVswe8/8/QCA87DAYVajrjXRa2LrPhzhmSbkS3kYKAlfWrZK7/Wsszv3d5cdMKlVZCpZOc6qGMcAZCGJCFQIej34sjjLAWceONN7Jz506uvPLK477/5Cc/mZ07d/KFL3yhfO3AgQM8/vGPZ3l5mde97nVcdNFF7N+/n8985jN0Oh3iOKbVanHllVfy4x//mFe/+tU85jGPYX5+ns9//vPs27ePmZmZEx7r0tISz3nOc3jxi1/M1VdfzV/91V/xy7/8y8RxzKtf/WoAVldX+Z//839y9dVX89rXvpZms8lHPvIRnvWsZ/Gd73yHyy67bGibN9xwA81mk2uvvRYhBH/yJ3/Cf/2v/5U777yz/Px78803c+WVVxJFEa973evYuXMnd9xxBzfeeCP/9//9f/PUpz6Vbdu2cf311x8jsb/++us599xzeeITn3iv16BarfJf/+t/PeFz8qIXvYjzzz+fd77zncctWHq85jWv4eMf/zgveclLuOKKK/jnf/5nnvvc557w/k43rGmi7a+Xr+YhQClTkuPBuC7PRbQjUt6YS0jbBxxH8SB1BXSZQ2zNzAZM1nRfau4rllYy7NYuHcMZIEOyn1M96LJt6BMvZQmu78GemppkaWmJm26+iV6vi9aWTAZCon1FVXiSK8s8an+8nnCLcvLAVVClJHBmYMbJmL3cGyeb9pXgsiKtNQifuW0Jqna92KWifqhvWOAzoJM4cRV6F5XlKrPC9WB7ebeffPBS+zCKCGRAUeREYcjOnTuIKzHdboulxWVL8LHGbFJKtPIxXPbcBi4Wq9vt9ic2XM/5YAXcXpb+RIhSyvW3K5c7rsnyvKxm29vBy9TtBEQUReR5hpJW5l0oRaFc7Fc5waAJg4AsywnDsJ/V7W4WKdx6uQZhrzXCmsL5e6SfjW3Ka9c3VPM93g/ocRrhYcTeRxzABPZaHrzgCEEWMHv3FBgoYnVWmYOZwIx6zkd4yCALyfhCg+UNzVM9lBGwkx5xNzrVwxhhjWBlZYUDBw7wn//zf77X5R796Efz+c9/nmazydjYGG9729s4dOgQ//Zv/8ZjH/vYcrk/+IM/KMneu9/9bn74wx/y2c9+doh8/s7v/M69EsJ7w4EDB/h//p//h7e85S0AXHvttTzhCU/gbW97Gy9/+cuJooipqSl2795NHMfleq997Wu56KKL+H//3/+Xj3zkI0Pb3Lt3L7fddhtTU1MAXHjhhfzn//yf+dKXvsTznvc8AN74xjdijOH73/8+27dvL9f9oz/6I8B+VnzZy17Gn/7pn7KyssLExAQAc3Nz/OM//mNZ+b4n3HrrrVx44YUlsfdoNpukLqEHoFqtUq/Xh5a59NJLueGGG+51+zfddBMf//jH+ZVf+RXe9773AfCrv/qrvPSlL+Xmm2++13VPd5x06biXAwx+DcoMer0ev/qrv8r09DSNRoMXvvCFHD58+AHtSzsC1Ov16PZ6Tgauyh5dYEhCLoQkCPqO2DiyXPYbGx/H1ZeL+2q4JzNW/mtsP/UAAZfCyr8xw3JyX7n0uc2WHEkwLk5MSqS0Y6xWa2zZuo0Lzr8QIeCWW27htttuo9VqOiImMdpQKGWJM3ZfgbRSax8d5o+jdMym3zfsK/j2HFhSbEmf7OdmD5xf4yr2/X7rgfMxUOX2Lt6e3CulKPLcVrKLvKyAR1FM6HrkQRCEIdKN0RjjJPx5aQjmf9k1xsaYnZlGqZz5+XlWllcxuPOR++vunM8LBcbea8pJztMsdYZzgjCQBBKkAIkhcBX/wJ1Tez/okmSHQUC1WsWbl8VRgpRhKT23t4G7x+zZcSTdnmsvM/f3jxBHOdW7fXhzOdtK4HvFlb2/Ox3rPq8KlCpcdFz/3FvZuO6b7FHemg8YD+ezfLZDxYpD585z6Nx5irMo9zfqRtYZeoSHDGf7c6wiPSLZpxGiNGJ8oXGqhzHCGkGzaZ/dsbGxe13Ov7+6uorWms997nNcddVVQyTbw3OAv/7rv+bSSy89rona/Y2eOhphGHLttdeWP8dxzLXXXsuRI0f43ve+B9jPmJ5ka61ZXFykKAoe+9jH8v3vf/+Ybf7CL/xCSbKBsrJ/5513ApYsf/3rX+fVr371EMk++jhe8YpXkKYpn/nMZ8rXPvWpT1EUBS972cvu9bhWV1dpNI59bl/+8pczOztbfv1f/9f/dcwyr3/96+912wB///d/D8Cv/dqvDb3+pje96T7XPd3xkPRoP+IRj+DgwYPl16Dl+5vf/GZuvPFGPv3pT/O1r32NAwcOPCApAvSNomyu82AVebiPuKyyGktGdEmUPZE0fWJttJXtFjabeXA/vvfauoSrkmz7XGtvWmWMdbz2kmghXayUI2C2gmlQ2rtww5Ytm7noogupVirceccd3H7bHXTaXYyBKIz7zuUDz/4gmQ/CAINGBGBQGKmRAQRhCC6+SwBRGA5EbKkyi9tv3JuX9V2tbe+0l1p70zcv9S4KZev/A4Zp3pncf0kZlBFcShUEYUiR56VRm7uaztTN5nP7X0LGGBpjY+zYsY0kicnTjAP7DxKEoZXEC0kUx8Dg5Ee/mm/cNc1z24ufZ5m9PgjyLCPLM5RWbkKgKCcTyuN394UqCuIoIgzCMjsrDEOiMCQMbOVdCFFW5xH9yrKdSJHlJI3vr/bqCm0Mhw8fptfrkfZS8qzAm7XZSDZKIznt+rNt/7ZrIDB9Tj3IrU+GUPLhepbPNByv33qwH3sE7KRVLyRpx/e97AgPCmfrc2wwHNmxcKqHMcIAskrOyuxo4mOE+wdPoD3hvicMEvK5uTlWV1d55CMfea/r3HHHHfe5zIli8+bNx1R0L7jgAoChPu+PfexjPPrRj6ZSqTA9Pc3s7Cxf+MIXWFlZOWabR5NnT7qXlpaAPuG+r2O56KKLeNzjHsf1119fvnb99dfzsz/7s5x33nn3uu7Y2BitVuuY1//gD/6Af/qnf+Kf/umf7nHdXbt23eu2Afbs2YOUknPPPXfo9QsvvPA+1z3d8ZBIx8MwZOPGjce8vrKywkc+8hFuuOEGnv70pwPwl3/5l1x88cV8+9vf5md/9mdPaD+21zlwjtk+mst+l0L2Hbj1sR9wLYmi7OUepCW+Go7Sw8tDaVYGlsQJ6fvBVdmP7QmwcWQtlAFaK/K8IIqikmDV6lWmpibZumUzWmt+9MMfUShlyZiratrv/YitQEYoJ5X3EmlLbEEbW+kO4wAZWCm1NBIRuP5g3SfEBsroKeVyq+MkLglnltve6cBL5N1Y8jyj23OmTE5CnjjztCiKShm6UsrJzI2LsuobtHXabcIoYnW1SaWSELoeajlAQLu9HqpQjI1X2LhxA+umpxBG8+/f+3e6aQ+tNHEUI31/d2H7vX1LQJZlVKoV1y8dU4iilL4XRYHRhmq1aqPEhI0r66U9oriKNposzRDCuYW7SZOVlRW7TlFQrVRs5d0R4TRNCeOAKJK0Wm2kjAnC0N4tjqxHYWil8krb/nilKLKMMAyp1mpUkgStNEorMH6Sw1a7rTS9IIxC0jQjkJJe3itbJuy5lyddgftwPctnGg6cf4S0liGVtJMuWjK9f4IiVrQnuhh5dhPuILeqnvW7pwFhExZHeMhwtj7HKtSktTPPqX8tI0pDxuZHFe0R7h8mJibYtGnTfcqHb775ZrZs2cL4+Djdbvek7f+eKtu+mPNA8PGPf5xXvvKVvOAFL+Ctb30r69evJwgC3vWud3HHHXccs/yg+e0gHoi8/RWveAW//uu/zr59+0jTlG9/+9v8xV/8xX2ud9FFF3HTTTeRD0TVgpXs3xfuy4n8TMdDUtG+7bbb2Lx5M+eccw4vfelL2bt3LwDf+973yPOcZzzjGeWyF110Edu3b79Xt7t7g++X7dNgCy/L9V/eRXvQ1GtQKq7VsOzYOHbppdeDcnNfVu5XsjUGDUIjpMEqjE3Zf1wUObnrexYCwihgcmqCiy66kHXr1rF37x5+8IMfoIoCdL+K6fu/JWCUdTAXGCSitMb3MVpGg9ECXbhoKndOvHFXnmfgSHBRFNa92lW53YHR7XTodrvEcVz2a9v+49DFW9lKa7VSoVqpkCQxSVIpq9i+6p9lmSPY9txHAxndntxrrak36iUxlo7wF0pZcgvEcYQMJFu3bUEGggMHDmAKjUCWxmRSSrLUfpBSWpHleUnsVWGzqH1Ul88Sl0KWhNvvq3D96spNdFSrFTvREIbW8A0rAQqCkDCwpmv+vGAMaZqW91q16hzH3T2X57YnO8sy8jwvVQRhEBDHCSCI3LX05964Wy0IZHkvGXe/VipJaWaXVJLyGjwUeDif5TMJE3Nj1FaqjC/UCfKAIilY3tCk20jpjaVnfU/y+HyDxnIVaSTSiIHf3CM8FDhbn+PDu+ZLL4QRTgMYqK1WkWb0vI9w//G85z2Pu+66a0iJM4h/+Zd/Yffu3WW/8uzsLOPj4/zwhz+81+2ee+6597mMrx4vLy8Pvb5nz57jLn/gwAHa7fbQaz/96U8B2LlzJwCf+cxnOOecc/jsZz/Ly1/+cp71rGfxjGc8g17vgSWL+Eiz+zoWgF/8xV8kCAI+8YlPcP311xNFEb/wC79wn+s973nPo9vtHte1/GRgx44daK2PmWj4yU9+8pDs7+HESf90/oQnPIHrrruOL37xi3zgAx/grrvu4sorr6TZbHLo0CHiOGZycnJonQ0bNnDo0KF73Gaapqyurg59Aa5PVVnnbycNV9oSG6X7pBoGIpa0KUm4Jd4+6sp4Dy8Q/X5nYVOtBwynBiOZcNum3Meg5NpA6UwdSEkcR8yun+Hiiy9mx44dHDlymJ/+5Fbm5ubKvmk/TgEIowkdgQrDkNBVuYUQZFk2YKhmq/YC0MqAkegCBDb3ulCFJYnejM0ZnsWuug6W0CVJUvZqe+LnM6WtaqBP8L0sXsr+xMNgJJh3P/dGdV5qHkWRvU6FInHE1c8M2h5qSyyFtOZuO3buwAh73putFnlREAURcVhBiL47uAGiMCKOI5S2BNu6ogelVN5X3KXrES/vD3cd7THZiRM7QaJKYgw28ksN5JJ3ut2SSMdJYqvQxvbra9WP6pIyIMtT8iIvx5BlmVs3Kwl/nhel8zj0s7L9DKK/PkpZ4zgpAicdH9COn0Q8nM/ymYaFLUtUW/aeyGo5AGk9ozN58mba1zKWNq4ydXDyVA/jrMDZ+hy3JzrkSXGqhzHCUQiKtZ8qO8LDi7e+9a1Uq1WuvfZaFhaGW0EWFxd5/etfT61W461vfStgPzu94AUv4MYbb+T/+//+v2O25z9jvfCFL+Smm246Lnn0y3gp89e//vXyPaUUH/7wh4871qIo+NCHPlT+nGUZH/rQh5idneXyyy8H+hXqwYr0v/3bvz3gyc3Z2Vme/OQn89GPfrScRD36ODxmZmZ49rOfzcc//nGuv/56/tN/+k/3y139l3/5l9mwYQNvfvOby4mDe9vPieLZz342AO9973uHXn/Pe97zoLZ7OuCkS8f9yQIrKXjCE57Ajh07+Ku/+qsHLB9417vexe///u8f87rvi3Y/WLJcmjybIXl4n4iIY8i3L1aX7tkIZ/4lSxI9WNkuHZ7de1LYDGUbvWR7c5XKiEIbF2Z7dmHHzu1MTEyQphl33bmbTruFKvKS1PucZh+vZR3Rrdu1MYY8y5BhiHIO3r4a7OOjAleFtg5voApFGARWHk1QGpLhKsF+siGKopIU+0mCdrtdSsIBwrA/Rk/y+zng/SzvIAzJej3iJCEMAtK0h1LK9jPHsa3khqGVyJc985YEh2FEmvaslDu0hHtmdhpjrLFYt9cjzTJ0N6UxNka326WSVKyJWBDQ6XSoNxqlMVyWZcSumm7PqyJOEqsMEIIwjsmyzOVnB2X137qP2/Ngia3r93bXSQYBhbLnNs0ypBBE5eSCodft2Ji5SFKowrqMxxKNIi9yW2mXQXnefc+60gpR2BtSKwXI8h711fA4im3Pv1MHIGTpK3Cy8XA+y2sV99RzbaRhYcuylY6P0Iex1eyxhTpSjapaDwfOtufYP5O9eoo6i4wF1wQM1FYrp3oUI6wxnH/++XzsYx/jpS99KY961KO45ppr2LVrF7t37+YjH/kI8/PzfOITnxjq733nO9/JP/7jP/KUpzyF173udVx88cUcPHiQT3/603zjG99gcnKSt771rXzmM5/hRS96Ea9+9au5/PLLWVxc5POf/zwf/OAHufTSS3nEIx7Bz/7sz/K2t72NxcVF1q1bxyc/+clSKXk0Nm/ezB//8R+ze/duLrjgAj71qU/xgx/8gA9/+MOl5Pp5z3te6XT+3Oc+l7vuuosPfvCDXHLJJcftg74/eO9738uTnvQkHvOYx/C6172uPD9f+MIX+MEPfjC07Cte8Qp+/ud/HoD/9t/+2/3a/rp16/ibv/kbrrrqKi699FJ+8Rd/kcc97nFEUcTdd9/Npz/9aeDYfvL7i8suu4yrr76a97///aysrHDFFVfw5S9/mdtvv/0Bbe90wkMe7zU5OckFF1zA7bffzjOf+UyyLGN5eXloBv3w4cPH7R/zeNvb3lZa5YN1v9u2bdtA9Ve4PGtTklalvFR7QFQujjPr4h3UENjirDdOc73aBtvvrC05GiTpw07SlqDJ8rOjXVaGksnJSc4771yCKODwwcPcecddyCAgkBAG4VA1PZABWvbNuLzBWpqmSOGjqwRJpVL2U4NABn3zt7zQ2MKrwIi+q7qXWg86i0sZOFmyKfur6/U6RVGQJFbWnDtnd79931Ntybn9ZeOr3FL087WVKoiimCSJ6Xa75FlGkiQ0m82yjzovCmrVqjUqc9XdUIR00gxtFHmREYYxBw8cYHFxiTiOiKMKeZ5TqVTIs9yeM62Jk5hqpQJY2bq/Vr4vvlAFcRBTaNse4KvyRZ6TGVt5j+KIQmmECIjjiEIpojAkzwt85Jv2ExXK5mVXKhXyvCDLUsIwJI4ia7KWFzTqDdqtDtVqlXarjSoKgiAsJzqEsJJ9rbWbFLD3pJXX903ppAgJ/DyKMmA0URjZkFijHxYp8kP5LK81GAx5UtCa6iC1oNqscHjXPEVsnwfjhB4qGH3QL2Ggvlxj6uAEYXH8nrMRHnqc6c+xCjV7H7mfkTr59INAEPUemmgvg6GIFVG2plNrR7gHvOhFL+Kiiy7iXe96V0mup6enedrTnsZv/dZvHWMEtmXLFv7t3/6N3/3d3+X6669ndXWVLVu28OxnP5tarQZAo9HgX/7lX/i93/s9/uZv/oaPfexjrF+/np/7uZ9j69at5bauv/56rr32Wv7oj/6IyclJrrnmGp72tKfxzGc+85hxTk1N8bGPfYw3vvGN/I//8T/YsGEDf/EXf8FrX/vacplXvvKVHDp0iA996EN86Utf4pJLLuHjH/84n/70p/nqV7/6gM7PpZdeyre//W1+93d/lw984AP0ej127NjBi1/84mOWveqqq5iamkJrzfOf//z7vY8nPvGJ/PCHP+RP//RP+cIXvsCnPvUptNZs2bKFJz3pSXz4wx++x6zz+4OPfvSjzM7Ocv311/O5z32Opz/96XzhC184bf62PFAI82Dr/feBVqvF9u3becc73sEv/dIvMTs7yyc+8Qle+MIXAlZ/f9FFF/Gtb33rfhuvrK6uMjExwRve+OtUKtXSfKwkx/TzhX2MlUtiYrCiLeXAX+J+Odtxb1H2cvse4n6bthj6bv8tGdTvBjIkjmM2btzE5s2b6KVd7rzrDtrNLlpZiXsYWJdvb2zms6uzLCsJbZlv7QZmq6ka6fKYA1ft9uv2+9GtKVsYhmVMmZ9Nk0FAr9slCEPbFw6lJNzLv9M0LavBwlXK/TmxBFGWruFBEJQVdk/m7b5EWbEejAFD2J5kv+0o7MvH86IgCKwT9+zMNJc8+iLiKGDvnr3c/pM78DFtvidc5aqUjofejRtb6ffVc+9Mr7Uuz6e/doVSpaO6n1zw59dfC3+eiqJABgF5lpXnMghD8iwnzzPnfh8SRbYyr7GEPgpjlMmtLFxZibuQkuKosVhCLVFaEYQBhXIxZ1qjcpvVbaPqRHlfG5RzTTfl/e2fh14v5c/+9N2srKwwPj5+v56te8ND+SzfeOONxzh1ns4wGOa2L5JVc9J6Rn2pRtQLWd50+kloTxfIQrLhrml69Yx1hyZO9XDWFNrtNlddddVJeZbP5OfYYFidaTG/femUjWGEe0Z9scaG3dMPiSdDa6rN8vomW39iJ4hakx201CTdmKR7eiQbnMzneITTD0996lOZn5+/X73SpxJFUbB582auuuqqYzK7Rzj5OOlTf//H//F/cNVVV7Fjxw4OHDjA7/3e7xEEAVdffTUTExNcc801vOUtb2HdunWMj4/zxje+kSc+8YkPyN3UVlUtURw0g7K9xb567SrUPgrJx3CVEnP6JNv4aDAnGxbSkjDh5eWijFQy+CgvU8q8tbZkT2nN2NgYmzdvZnpmmr1797K4tIDSVqad6wKNy57WlhiGzpHam1x5UuoJI1BGSBmgKBRR1CeR3vHcyqhDiiKFgfHFTrZtjMvhdmZdXk4upSRN03KqII7jkvxGQTAkkE2ShDRNrcGbUxBEUVRKyqMoKsftq+BAKUPXSkEYOjm+Pf1Wwh5TSQJa7RbVapWNmzYShTav2mjbl6zLyCtjv4e2ig4ucixX6PIai5KE+okDH6eVZ6lVExiD8Dni3hzPGPRAlV8PyOqVO6Y4jkmzbMC53vewBxhXne5lXaswyHNyndnzFFin9G6nU05k+LH76xiGEVmeIgPRv+6BvR8L5xAvg8BGj6EG54hOKh7OZ3mtQSCYOjjB4V3zjM3XEUawvHFEsu8NRmo64z3GFtfOhMqZgLPpOV6ZbbK4ZflUD2OEe8C6gxMPmfGh/4zSGevSmurQmupgAkPciUg6MTP7ppB61Mozwgif+9znmJub4xWveMWpHspZgZNOtPft28fVV1/NwsICs7OzPOlJT+Lb3/42s7OzAPzZn/0ZUkpe+MIXkqYpz3rWs3j/+9//APc2YDzmJNYIa3g2xJ4ZINX2J7R2MnNXIbQuz/ZPQD9DmQGC3ifZfrO+p9dg5bxKK6JKwoapSbZt20a1WmXPnj0cOniwJMBSgEAjsVJl2wxuR5UkSenS3Wq3CJxU3ZNlbTShCDHa9vUao9FGuF5yRe4yrQutXOyZLs/CYMXZOolbc61Op4Mxhm6vR+BIt3f/9j3EQojSNT2OIsIoshLzWs3JylMaDUtaa/U6zdUmUvbsMTsSa49NORl5x7l2Rxig4/rBrdQ8IokrJJWEKAlB9nvsjVIkUYXCFGUElhyobhdujN7czp4XQ+gmJDxZNlqTxAnaGGKnGnB3k524ELYf28rmMyeLD137gCzNzOx+NNoUCAlBKClUbvu3vZReSoJQELg/8HmWe6c7Wp0WlUoFlReMjY+TpzlCSLIspVA5SaViSbUMMCgQxpq9ObWCveMl0G8FKO/wk6BTeXif5bUFIwwHzz9CXikoYoUK1VnvJH5fMEBWzU+b6tLZgrPhOTYYVmdbLG5ewYy41GmLg+fOkXRjaisVgiKgtlo5acS7NdUhq+Yc2bmAivp/E7NaTlbL6TVSqs0Ks3evOyn7G2GEtYZ/+7d/4+abb+a//bf/xs/8zM/wlKc85VQP6azASSfan/zkJ+/1/Uqlwvve9z7e9773nZwdDpbzxOCLx1m0ZB+CIJDlvxGCQPb7oQfdv+3WbA61wVW7B/4u+Aq4UoparcrW7dvYumkTWmtuueVHLC4sOkJtKGRBKIKS3HuHb601Whrw8uk8Jwr7BmVAuWyn0yF0ztU+kkq78UiJi+QSQ5Jx48v3A5MSAEtLyzYqylXufVSWlIIojst4Ly+vztKUMAhorq6WcnGlNWEYEMdxKXNuNOql7L3b7VKtVm2PuZT0ej2CwC7vZdy+mu7JuHfjjuIIIay7fDkJoBQG7eYnpJtMMGR5jtGaxlgDISTLy0uWXCvbv+zPhyfVvtLspfPGGNIsI44j20eWxLTb7XKioJemCLCGbs6JXBuDUrkdZ9xXDwTYSLQ8y8uJjXq9Tq/bc+RbUG80CNOUMAxIjSbPMtv/ra0jfpREZFlKElfK+1UISVHYSZR+RJ2NkxvGyfng8rA/y6cpiqhAhe45VNJOskWqdDQeGS7dN8I0ZNPts6ysb57qoZx1ONOfY4OhOd1mfuvSaLLrNEdRKSiSgvZkB4CNd8wSpSFx+uD7tqcOjdOZ6KKi43/+yysFQZFThGrkETHCWYkPfOADfPzjH+eyyy7juuuuO9XDOWuwpl0jbFXPlDOiJZcsyXefhQ9KdAd/Dpzseziay0vHRb+aisvqLg3JKLdnjGFiaoJzzz2Xer3O8vIS+/bto9Vs2ixkJ5P2xE/nmiRJyLIM52VOntu+bClsrJWXYBeqKPtvpZTU63XSzJqGRU5uLoUl50EQoFyPeq/XQzs3bvSwuRpCkOU5sjzuvhGaleIH1gXbGZ4BNMbGUFrT6/Vc/7KVhidO5u7zuT1Z9ESwVquRJElZBa7Xa2VkVhCGrmIrS3m5l8OvX7++NKxot1ocPHho6LpJIUs38067U0rgV1ZWreO3DOx5VJkba15W0bM0o5f2Sum4vZA24kwrS9zzjv0g4CcTkjghTXvWOC3LnDGeJoxCd/3spEEgA8IgpN1qEyexJWVKkWW56/GWfndWfVAUrg3AeuVWKxXC0EnF3WSAjAIKVRAE9vzYnHB7zow+tpo9wsnF0oZVVKRoT3ZJOvaapo3sVA9rTaG2WiHMglE1aYSTDh1Yv4QRyT4N4VIGPFpTbXTYJ8KHzpuj0kzYctuGB72rzsR9Ryf2GinNmRZTI4+IER4CPFAjs4cL11133YhgnwKsaZHVIMG2cDLxgTgv37ts87Ldei4ne7Cv229PSok3Hy+jexzJtT3SlGZT3ml8dnaWCy+8gHXrpjiwfz933nEHy0tL1hjMxXt5SbZGo42mKHJnBibKrOnAEb8ityZYaZa5rHBt3bVdhFWWpTZv2ljy3+tZAhhIWTqUA6iicP3cRb+67avUjuwWRWH7rR2xHnRSD8MQISXVapVupzPQJ61YXV0hz23klK/kpmlK4PKrfeXY94ZT9iBbUl8oBS4qzK9fFAW9Xg/jCHocW4mpN2jz189oXF513zjObzsMbbZ0URTkWdaXwucFYRBac7IoGtpnmfXt3OuFu2bSZXkLIMvSsmIfxzFhGFCpVq0BWhiU1fY0ywijiCiOyqzEMAwBQ5zE9jUD7U6b3N0DNpaNsmffXiMIgpAwCFGqcNdFO5JtZ5P8JMgIDz0mD48jjM3CHpHsE8fqbAsdPKS+myOcpVjYMjI+Ox0xNl9nw+5pZu6eYvbudcTd6BgneKHFSSO9k4fun7lYa7JDVslPyj5PV7zvfe9j586dVCoVnvCEJ/Cd73znVA9phBHOWqxpok1JeO9tIVe5dv2y4NaRlvgJKZDSEiXb362HSKk133J52kPxYJaobdy4gUsuuZhGvc5Pf/pTDh08aOXIBgTS/duacRljSOLEyb5V2UMshLA9yo704arLRZ6TpilK2fznMAxJKhWktEQ2TXulGZqXlgNETu5crVaHzMgGTltJqoUQpUus72HOsj4J91FePkbMv+fJqtKWmHqDNe/GHbrYK09k8ywjyzKazWaZ3V0oxdjYWGmeprUmjCKQMDc3R6fdBqDeaLBu3brSid2STkt+veGaJ/wCQS9Ny8kN695dIKRgdXUVpTVpmqKVZnl5mUqlUu5bKesSjjGEgZuIMbYf2veP+/0PGpn5Y/TX0cu/szQjDCLbSy4DjAatDNVajTTNqCQV6vU6MpDkRUEcx1YiLgVaK7IstWS89BkwBGFfhGKN4vqZ3/2ppxFONg6dMz+KC3oQECPhxQgnGUYYjmxfoDndHlWzTzPUlqvM7JuisVQv/ypl1RwjhyfbjDC01rVPyj6P3vY9Iavl1lPjDMWnPvUp3vKWt/B7v/d7fP/73+fSSy/lWc96FkeOHDnVQxthhLMSa1w6LkqS5H/23y0Hsuw4CGTfxMxFPwFl1dLHVNnqt7LVUV06oZVkTogAVajS3GvnOTuZnZmh0+2y+647OXzkCAFejm1lyHFUsc7XxqAFNJstG38VhjaSSgZlHJXvExaO5Hsn7zCy/bpGawrft+1IXpqmRFFEFEV0Oh3iJCFJYtrO1VoAoRQU2kZpGWeQ5km41pqVlRVbnZXS9W3bLGpPPqPIxlH5CKuxsTG63W7phm4r2wW1Wr8X2xPeOIrpdNrlGH1WtCoKqpVqSfi1MdZtXSnCQLK8vEja61GtJ8RxSK1Wsz3TLoNaBiG1ep0it8ZoSlszKhlIwtAbuhXIyE6qhDKk3mgQCImIE9AwMT5JXqSkaQ8hpK04OwO6brdLEAZobeX3YRAQBJIwjEizlE6nYyc4AhdpFvh+ewUYxsbGEEjSXkqe5Rht6HQ6VKpVOp0O69fPkuc57XbbXScBQqMxdj9uMkVLe61V4YztZG4nKQpFXhS2paHMrhM2V3uEBwwVKPKKva+FFoRZgIrUqA/7QWLq4CSBWtvzuiOcPtBSs7B5eUSyT1NILY5x+J44MkZnoksx8LtUaMHE4bGTss/9Fx6+38tm1ZxKKzkjp6b/9E//lNe+9rW86lWvAuCDH/wgX/jCF/joRz/Kb/7mb97n+lprDhw4YD/D3HsVa4QRzloYY2g2m2zevPmYYubRWNNEOwiCoV8Eg2Zn/Tgu4ap+DFS+hYv3MkOmZ8PVX7+MqyQ6glegqNfrnHPuOUxNTbG8vMTdd9/N4sKCrfBiXaJx8l+lCmea1c+X9r3ZvvKstabValmJscuWrlartNvtfh+usYTf92KnWWYdq7Xto65UKq7XXJPlWWnkpQ0UWYpBEPgca0Bh+8+Nq96naUoYhlSrFVfdt+7cURSVEnYvme92u6XJlzEwPj5Or9cdyqz2J1wr248uZUCWZWRZyvjEBJiQorDVcXscturdbDap1SrESVwqD1SuqdWqNBoNup0eRaHQucvIpp+hbnQ/61tpjUoz957tSfexZEVREEYxaWbj1IQMStm9NqacbLHO6vVSXSCkNSPzx2bvP8hNDrpvWCcE9Hqpk32rUgLv5fC5ysqe9iRJABvXZlwGuMG4HnDnOC8kQRSU19/u3t0X0t6r7glgVNV+YGhNdsjjgrya05xu01is0R3rUW1WaE/dd+/fCPeOtJZiRAMxkgWMcBKQVXNW17dO9TBGOAFk1cyavg7ACEOvkZL0TlISwf389TK/dQkjDJNHzqws6yzL+N73vsfb3va28jUpJc94xjP41re+ddx10jQt2w0B9u/fzyWXXPKQj3WEEc4E3H333WzduvVel1nTRNsS4+AYwly+7/875pdvv197cFlbHXTZxYHvgfYGaXYfMzPT7Ny5k6nJKY7MH+GOO+5wEmdBGISkWY/AGKTwvb2eoBUliQ8CS+y01vTSHqqwVWqfpZ0XBcrFbkFf0q2UIoojMJTkrZJUnKFWQSADirxABJJqpVK6iBut0fSr/ZYIWyd0ISRRFDt5tHUXF0LQ7fWIoohut4dSNpZLCEGcJCUBb7fbzrDMns/CScyrlapTAVBKuKW0GdNBUCXPcqrVCt1ulzCK6Ha74BzdwzBkYnzCTRZ0GF83hpCC6elp6vU63W6PQAYETi4unJxcaUUQOFdzKSF0LqZKMNYYs73TMiQV2h2/JC80MpQEYYQUdoKg2+uSxAkEkOVZSZSTJKHd6ZBUqmVGuJQ2zksVilSljI9PADYaLYkrZE4eDtDpdpHC9s9HiY/oEvR6KVFko8N8ZT8MXb93L0VIQRRGaF0Qx6FrG7DGaDIIMMdEe7lYOnzE3Qj3B6szLdJayvjcGI2FGlJLVKhpreuc6qGdERhbaIwybEc4KdDCsLB5+VQPY4QTRBFpzNGKK8FQhfuBYnl2lSI6ge0IbBScgKnDZw7Znp+fRynFhg3D5nIbNmzg1ltvPe4673rXu/j93//9Y16//PLLefOb38zExMg47v5CBRodKHRgUPdxPxaRoj3V4YQ+pxnh/pYef0YpKCRoQaACglyOyi4PEVZXV/nzP/9zvvOd7zA2dt+KnDVNtH21+Xjw7uFHS198xdM7lJdk1hhbUSzl5xL/AKhCEZiALZu3sOucXcRxzKHDh7jrrjsplKLb6VKr1jC6T/iDwErCjSOcPpO6zN+2oxsyDfPyceuMnR5XjlCtVEsDsTy3MmIpJR3nkp1lGcKZgwFob3Cm+8eJUkRRDNgKd6WS2OxnLBlut9tIIchd1bxWq9Lt9hDCVsCV0gSBJejVahWldCmdriQJUgomJyeYm58nDMMy6stnXHe7XVZWrETdAO12m0a9gVLaSeC7KK34ya0/ZXr9JEkcE0Vh31BOSHDHqF0WeRAEhFGEKhRhFBKGUOQKoSV5WtBcaZLnBRu27bQKgyJneWWJepKQK1tZ72QdKpUKaZpSq9XKXv0sy4YMz2xkmXVPNxhyV5m3agNJJamUff0+dgxjqFSrNg4tCpzLfIAqbLU0DEOiKCxN5cIwwiSmVAlIQ1nBj5O4zGBX+ihCbUoLv3t8NkY4FrN713Hg/MPklZwwC1mZbY4kqScR89sXqfx4I4EaxeqM8MChpebA+UdIayNDwrWE5lSbxS3Lx/ZRC+jV0+OvdAIYW2ywsr5FERT3ex0jDb16ihYGeRYrbd72trfxlre8pfx5dXWVbdu2cfvtt3PbbbeNspZPAFmSszrTIk9sdvu9fgITBhEGJ/Y5w0B3JuWeVqqtVqivVIi7MWEWjIj2Q4Tvf//73HbbbQDHcMzjYU0TbYHAaOtCbaAvSxSUWdUYAdr+jLAVXEtANGDzo7UzvDLGZjbLIAQjEBLyIiNJYs4773y2bduGMobb7riNI4ePYBzpiuMIrV1VWtq4JwxotN2vd5YWEiMMAlt51kaXhmi+QtpLUyruMOy2Y/LC9j9nWcbKyoqTZNue5F6vRxzHxElCp912ZlwaZQxKm1ICrZSi0WjQbDYJ4phut+Pk5tLKnEMbDRaJ0Em2pauaC9vDXakSxRHtTgcpBEmlQhDIsqosgDiKqNcbrK6u2G3YS0HXVZlTZ1IWRRGNxhhKFbaiG4au+m2oVqs2jqvXJUsLhAkwGBSKrdu3MXdkAYNzRY8i0l4KApI4ptNuu17ynCAMCEXE+OQUi/NLaANj4xMszC+wfsNmoqjOOhmz2lxCytDGe4USpSAgRBWKaq1KL+2RZTntbocwjIljaQm96udva6WZmJgoJz+KvCCKI9KsR9VJ+gMZuPRvQ5HZ/PNmu1nGjVkDtbyMRatW7SSLbTkICANrONfr9Vx/vc1199IM47Zt/AOAKSdXRuhDBZq0Zj/YVVoVjNSktYzFzStsumOWuy+2MXKjv08nFzN711kzJJERpRFRtqb/9IxwClBEBUd2LFiSPXo+1xSkkshCoiJFtZkAgqyaoSKNDjV5kqOlIe5FD6i9JFDyhO1JhLZkuzPRpbFcO+F9no6YmZkhCAIOHx7uVz98+DAbN2487jpJkpQtbINYWVnhG9/4Bo9+9KOZmpp6SMZ7JsAIQxEVLLiJpLSWoUKnNDzZv6cEqPienUU74z2KWCGVYHr/lK1qGzEi3CcRKysrfPvb32Zp6f6nXazpTzuBDC2BUX0zM4t+fnb5uovCsjJnXZLtQvdzsr0EXWiFkLbqODbW4Pzzz2f9+vX0uh0OHDrE/n37MNqg8sKRaoMekPAKcFJma6qmtI2y0lqjncu4lJI4Smi3WsRJUpquVZKkNFyrVCtWei2krRo7slqtVqlUEprNppMVa4yyldwgCEiShFanYyvZQMXJyKMoLiu/aZqVPe5GWil56Cro1VqNKAxZXlkhiWPiOKZWq5LnORXnfq61BmnjtSLnwF0UBcvLS0gpabVaBEFIu9Mpq/mRr846Y7U4jqlUII7t+0EQuIgwWznOi4LlpRXWb5xGG8Ps7IydUOi0CaOodBvXRhMGAVEcowpl+6bznIPzR5ieLLjo/Etotlqk3R51EXD7bXcSRhGPeMTFjI+Ps7qySHN1GWMKRGSsnDwI6HS6zp0+xBirIojj2KofXF97EEpq9Rp5Ubh2A0DYqr2U9jorpezEhAxQQJ7lZO74lbKEPk3T8r6oVKys3hvIeYk5WFm5NZwTturt5P/D8qMRwb4naKlZ3tCkO95j4vCY/ZAXF6hQszLTGn2Af4jQWtcmyAPak13W71k3ItojnDDaE1264w+++jnCw4/6ahVz9xRZNWfq0DgCQWuyzdyORdtvP90m7kZ0x3pMHBk7YWLQnuj0yc39hCwCNt++/oTWOd0RxzGXX345X/7yl3nBC14A2Pa9L3/5y7zhDW844e194xvf4JnPfCaPfexj79Pw6UxAESmEFhhp7yUVaoSBqBeV96QKNEXcV06szLZI6+lwZNwp+hyhIkXXSdazSo4wgrGFOtVWpVxGKkGYhyO/lAcAYwx33nkn3/jGN05ovTX9aWfTxk0UhWJhcR7j3J6hT7gtlz7qNU+otUEEwslvdbmudfTWGKNYt26KCy+8kMnJSVrNJrfffjurzSZaKfLMSn/dRhFYLboQwkVeCdsfjSGOImeIZvuDsywlSSpoRy4DJ4PudDslsQKsKVolotezfdLaGBqNhiVaQYAU0jlQF9ZxG0m31yWObHa1UnZCoVAKqTVpuoI2hnarRRCG9Ho9wBPxwE4IAHlmTcRi5zbuCaE3HjPuPIVhiIyicqIDrDS91WxSq1bRLg9b+jgswHTtPsMwpFCqdB1XSlGtVm0EWpLQarcJwoCbbrqZZ236OYxRGAHVWoV2u0Wn0yFJEuIkthL6apVup0uSJHR7XfI8Z7W5yvz8KnkuePQjLyWZqdDpdJFxlb379/KjW37M5o0bmZneTKM+xeLCEeKKoNdtobQgSWpkeQYYGo0Jer1OOcmQKWXl3rGthnuirJ0DuTVey+j2utaFPUvBSIzRVi3hWhikDCgKZaXoriXA9+QDA739doLCknE7qaGVQkiJRKI5vk/BCMMI84DZves4vHOelfVWHh6mITrQI3OlhxCtdR223bKR5nT7xHopRxgByOPctnOMsCbQHevRHu9SX62WrzVWarDiPoNhaCzXkVpy8Nw5WlNtolpEVsmZOHLPPY/mqElk760TpiHiHvpW7wk6VCxuXGHdScrxPl3wlre8hV/6pV/isY99LI9//ON5z3veQ7vdLl3ITwRpmvL5z3+eRz/60S6NZu3AYMiTAh1qhBboQN9nfnpnvEeYB5ZIG0GvniK1YHKgjz+r5rQmOyWZNtJY74HTgbcOjCGv2pjhxc0rCLNavh6lIfWVKo3F+khefoLIsowvfelLNJsn9rdoTRPtO++6k3qt7giGlct62NcMRvddqSk9wOxDoZUV89p+WpsHbeOdCmZmprn4kkuoNxq0Wy1+cuutLC0toZ082PZgW2JZ/lvrksjneW6N1KSNGpNSEDiTK2OM66UWxElspcZRVPZ4e1O0XrdbVkTr9TrNVtPKzaVEuyppoQpXVXYRX90OPdUjcn3NvW6HIAxtBVhKKoF1+1aO5AZBQBhGtFpNpJQEUmKwZNv3TCsnWfY5zt5QTQhhe7mdo3pRFCRxQuyc1bVW1OIqi4uLVCpVjNFUq7YynmVZ6dydZ5kzXuvS7nSYnJggc7FlSRKVEmgpBY981CP41je/TRBGCIEzfLP97LOzM7TabcYaDRYXFwllgAk1d+25jSNHDvO0pzwdGUaEUcymzVtYmJ9nz559RGGNarXClq27WF1dBhHTaq3YnnQRUBQZWd5DFRlzc3NO+t6gKAo6nS7aKHvfBIZK1f4x0koThgG12pjLDtdoZbPItVI239uRaK84UIFECunyyyMajTq9Xs8pGTK0LqhUKmRZ5ozYFFEYoLWyH0BGvy/vE2kt4/A580wdmGAxWUZFmiK5/319Izxw7L/gMFret0nMCCMMQoWKPCnsB8cR1gQqrYRq8/jELHPJDpOHxqmuVth58xZWZ1osbVph020b7vGDv8Gw55EHMNIwvX+S1ro2s7unaU92Wdq0gg5OvKI9eS+kfq3iF37hF5ibm+Ptb387hw4d4rLLLuOLX/ziMQZp9xff/e53+dGPfsRjHvOY0ybuy3/e8T3/3XpKe/Io41KBJdpBn2jnSXHCn5M0ML/9/suETysIMIEZmqBKw4y0ntGrZVRaCVNnmPP+QwVfzf76179+wuuuaaIdBNISFK2OUcvabO1+5RABRtnvtn9YWLm3sdnLYIljHEds3LiNXTt3EYYh83Nz3PrjH5N2e1b+rdw6QlrTMYM1CNOWIGtXRU7imMJXegeixIwxxEliCbc2dNpW4p1lGfV6vSS/hYvssrFSwsmVbdRTVI3otDukWWp7vHHGWErRqDcsGctzikKV8mPtor0yZWO8fBa4r55aM66YTqdDFMUklYQwVHZCQFiZspCCdqvlZNB2AsDHggkhkVKjVFFWZe210VRrNedEbg3Rer1e6dTXc9ESUWQr95VKpTRQS9OURqNKu9WiMVYnL+wERxzH6DSl2+nSGGswOTVVTm4EUrKy2qTT6SGNrf5qkZLlki9+6e845/yLWL9xK9NTM2xYv5lASA7sP8D3vv8DnvD4xzIxsZ4066ALw/LqIlESIIOQREiS8QbtVtOaxxVFKR2PQzsZkee5zeOOIzuvEwQsLy+TJAlGG2q1GoUqwNhzCdZ9vNdLqVRsn5QqFJGIMBhWV1ftOSyso3oQBGSpnVQBFwnmzjNw3AmnEY6CgKQTk9ayE/5gNsKDg5aG8YUGtZXqfS88wggOi5tWWJ0ZqU3WElSoUZFCHtUiYjB0x3qsrG+ysr7J7J51RL2IqcMTGAEr65uIw7anOyjkMeaJlXZCnuSktYw8Ltj7qAMPapxnahLCG97whgckFT8e8jznYx/7GI95zGNOyvYeKAzGTtTGBUZAHhcsb1xBS4MOtW0dOD3mAdYEas0KUS88rkpkhOPjhhtuKJXAJ4I1TbSNNuQq57j5wZ5zeHmHM4sSiNJxHOz7nhRWqwk7duxgx47t9Ho99u/fz57de6zjtp0aQgqBESCMzTEeJMChDMkKW23MnCN4r9crJcVBGNr1jSEMAlKVEUWhHbu0+dRFUVCp2upvu90uY7wKV0XvdLsIYTO44ygupdw+w9nHaQmlQCnbbx1F5FmG1tpKjt0yhZPACyEIwhDbAxxhjC7HIoSw0VbOaC1JEqIBF3Hvtm2wZmg2eioopd3VahXp4tF87/Xk5CTtdtv1sNsc7TiOXTSX/cMqXZa4AA7sP8AFF50PwhBGIeMTY6zsXbEV+17PuY9r1/tdkMQVwqCLDCNiBIVICaRGAbf+5MccmVtgx7Zz2LB5OwKJIWDd9HryTLNn9x1MT0+zbeu5VJfqtDvLLsasTpq1iZMKYRCW1zcvcvLCEmwfWZZltpfbKxWiKCZNe7Q6TSI3oZFlGXEUI6VAa+X68gPywuaDq8KexyIvqFQrLmfbmsD5irdtC8iROiij7oS7y0dk2z7zi5tXAENjqU53rEfSTmhPdqkvV61R4ug8PWwQCBuZNtU54+SaI5x89Gq2SnWikuARTj10oO9xInOwv3VuxyJBFrB+7zrWHZpAC01nokeQG4QRBAPiF4Fg410zNKfaHNm18OAGaDgjq9kPFW6//Xa+8Y1vcOWVV560bZYqPDP86d1gykq10MIWqoSVZ3fHeixuXiH399DAZ/wRTgzzW5ZIujETRzRhFiCNIOpFfUtdPTJRG8RNN93E97///Qe07pom2t7t2nhp+NCbJcMuvxtHtBHGxXlZNi6lZGZmmnPPPYeJiQmKomDv3r3su3sfeTYoV+vvRGmFFLKskAeusm6MrS5rrel2umX10Uuu8zQiUBwAAQAASURBVNwSXf+6DALArt9pd5icnCRNU4q8sP3Nri83z3MKZbOyx8bGWF21PRe2cg+5I8+1Ws3GU9Xr5LlCqcI6c2MGMq372/SEG2PKarqXqxdFUbqepy7qS0o50CtsZc7G2Gptt9slLwrqUY1KpUK1avO0O90uYRiVsWZFURBGEdL1s/t+7bGxMdtP7vrCsyynUJqiUAgkQlijsg2bNrCwsFj23QdSstpsEoYhQSCdPB+0UWhTMNaoYQy0sxRlYubnD7O6ssLc/DyPuezxzKybZWbdLD+59VZmZiZcNrhgamKaeq3KarzM/MI82miCANwpt9ncYUAU2j55H9VmjCFNrWmPJ9NKWYd5IayhXZJULJkObYXey/CFgG6ngwys0ZxXHRhtHezDMKRw0vsgCN21kN5n3E0wjX45ekRpyNz2RdqTXVSo2XjHDADtye4pHtnZByMNRVwwvW/yVA9lhNMcBkNWyVneOOrLXouIexFJNz72DQHdxrChnYoVR7YvsvGuGZJ2XDqAz29doogKNt41Wy5bRAVLm1aYODxGe7L7oNp+xhYaD3jdsw29Xo+//du/5Wd+5mdoNB7YeVOB9UKSSpaTrnklp9Iadjw3AprTLTCC2moVHWhW1jft74Rq/oDk3yMcBxLSesb8tiWCwqYCRFloJz6MoL5SJXSKFKkEwgh77c5CAt7tdvnsZz/7gKrZsMaJtgxFn1wcdeGF+5/P2tbOLM0boPk+43q9zubNm1m/foZaNaHVWuWWH93C0vJyKRFXSrtKeJ9o51mODCW1WtXmPgtlSZHRRDIijmNLPLOMpFIpzcP8LF7kTMR6vR4T4xNkecbk1CRZltNLe6RpisFQrVTJi4I4ikjihCzPS0InpbQy6yi045HWHC3LMtqtFsjAGZFF1Go1lpeXy4o2WIfKNE3L+LEgCFCu6u3JbhiGVKtVdNnTbavZdgzCZmGX51i7im1U5lF7kzMbMVbQbreZnp62Od/GkMSJjaoqCnJHVmW9buX9ImdluUlSiVhcXGJqegowbNi4nna7zeGDcywuLJJUbOU8SzNylRPIkF6vy/z8ESZn6vRSa1xWa1RozXVI4gq56rFv3x2k3Q6PfNTPkCRVdp2zk0a9wuHDh/nWt7/F5OQY519wDhMT02SZptdrIaWmUJmNJYtt9V+7yQHt+u+llASuF14GNuPcFvUFRaFot1tUkgraaIpe4VzbNa1220rBgwBjbKVf+2x2gT2+IndSfXtd0zS1igEXp0ZJuo95JM4+CFjYvMz4fIPxuQYHz5vj4Plzp3pUZzWEFmesXHOEkwODoddImd++eKqHMsIDhJYGLfWxz7qBycPjx1SkVaw4cP4RtvxkQ0nQ1+2fOOZvWFAEbLhzhuZ0u9zeA/k7FxQnHgd2tuOOO+7gW9/6Fs985jPv9zpaaLrjPVRonbpVpKi0KkRpiAoVvXpGXimGC2UCilhjhKEtbd91c6oNoz8bDwl0aCP2AFIy96I1NPTPb5gFSCWZODKGDjS15tnV/vXv//7v3HrrrQ/YcHhNE22tLYE6Xl6wKSvW0hFJm8fso5DiOGZmZoZ169axYcMGjCk4dOQQhw4eYmFx0bphuzxs4wi3J4fGQBAGCClcf3GIUbZSa7RGFQW4im+SJP3KcWEr0kKKsoe8klRot9u2z9bYvvMoipgYnyjl116CDhCGQUnaK9UqWWar30VhZcpgCXgQRSht6HY6trretRU8IQRaG5JKUhqqedfwTrdL4Mi6Nz7r9XosLS2xdetWFpeWMMYeS7VaJcty68CdZYyPj1uCqLXL3e5Xvzvu+OI4ZmJi0hJPKYlcJRsDhSOQlUrVTiZkGYEMiKKI1ZUmRw7PMbluwvWCSzZsWM+RQ3NEceSk3LZ3OVABWlsJfK/XJYzGLHkVhlAIhMlBJO4Xe87hubtZ+dclzj/vIrZt22kzyJViw6aNTEw06PVSxuoNdmzbgSpSdu+9g1arTRwHqKJgbKyBEca6mbuJj2arRRgGJLG99lEYOZm8dbgfa4zR7ljpfJzEjixLwjAgCOyHDH9MeZ4RRTU6nY7rT09KJYHWmji2fd3G3vTWMR9cS8RZ/knCwPhCgzAL2HfJoVM9mhGAvJLTHeudMbm1I5w85FFB2kgxwJEdC6MP1msYWTWjV0+P/UAuoDPRpb5Yo9dIUXFfG26kYf8Fh9l0xyzVVgVp5DFKRRVoljauMr5QZ3r/JEd2LpAnBWk9u1/jCnJJpVlh3aGJ0YTfCWJlZYVvfetbPPaxj73PXO3V6Ra11Qpz25bIBvxQtDS0JrsEeYC5l/aCY3C2Fw0ebkgoEgX0o8LAxp/F3eisItrNZpNvfvObLC4+8InfNU20c9erSmkC1X8atevDloFw5BonnbaV7HPO3cXM7CyVSoWlpSXuvnsPC/NzoJWtImqDdtXyMIgIhO3JxsVJGGNAQ+Ek5EIIQmFl4MZAnmelPNsTUe0Ms6QIXH9tQSWslGZo2vUrN+oNjDG0220QUEkqpbw4cxJuH+9ktM3lbjQa5HlOmqbWmVxrKrUGAspsakuKc0faZCkV73a7NBoNqs7RGiB0FXdf+W+1WkghXGyYQghJUeQIAUEQ0mw27QSAM15Ls8xVeKHVajM+PlbK0ev1Ou12m9znUmuNMTYHe3xsjJWVFSvFNjnVSgWDZn5+kXVzC2zcuBEMNMYbnHPuLn56620UhbITEEpTrdZYbbaRQcD09DRJUiHtta2TelEQCGll6FKCBiGh12tz883fZ2VliR07zmPDhk2sm5nlyNwBbrv9drqdLmEQsG3LRrrdHkcOzzG9fopqJSYrcowxVCsVCmWl8UmcUKnY61oUBWkvo1qrYZxjfJa5Crg2ZR+37S/Pnew8K6POrILAnjNjbD63MZIkidHa9KPVtMEIYePD/DOgzh6i3Zrs0G30CIqA2mrFPjfthIm5Bod3Psh+vhFOGoQRdBs9uo0eUkmmD06e6iGNcIqxPLvK+PwYSMPKTIve2Cgre62j0k6O+2FcGMGG3TN0Gz3Smvus0QuZnLP90ksbV+jVU4y00Uxj83VLuB3CImDj7pny5w27Z8gqGUd2LN4vsp104qH1RzgxfPe73+WWW27hiiuuOMaB3GBoTXVY3LyMCjVSyX7CxMCiOhwg2CMCvTbgrlOvkZJXcmqrVWrNyhmfxW2M4bbbbuO73/1uqQR+IFjTRNu4vmJvciaQWKdxcMVod3KcyRc2M/pRj3oE9UYDMOw/cDe7d++m3W5bwzIMxs90GmPJirQ92UorYhfD5fuUjTMgS9OUWrWKdLFXXhocBgFxFJOlGdpo+29nhFWtVskzS67q9Trdbrc0LMvzHCElYRCW8us0TYmTuMza7rhe3kAG5Xt5bmU4vV4PZSAKQ8bGxixRlgFxDEVhK+SNRoNWu22lyK4v2+9fBgG9Xo8sy2g0GgghqDcaFM4ELcsyGmNjtvIcBCwurhLHEfV6vZyFLhAkSYzvD5+amkIpTaEKGo0GzWazlKHHcYwAN85+5NXy8pI1hBOGvbvvZnZ6xhq3Cdi6fSurK6scOniYXpojhSWvYRBy9913U63FjDXG0SqjUNZB3eaZG7qdJo1a3WWmGxCS3bvv5NDhw5x37oWce86FzExvoFaNkRiarRY33vh5Dhzez7YdW5heN0OWd0tFQ7PVLM9TkiQUzhQuS3MajTrr1q1jaWmJLMsI3fh9RJoxlK/neU61WiUMAhABWqcY45UYulRGeIk62P4R6aT/ZWV78PtZgF6jR9KJqXRierWMpU0rSCUxwoxigU4jFLGyeeUGNt+2/lQPZ4RTDIOhPdktpcCjjPW1jyALWHdg8l6XiXoRG++yhFdoQZxaNV7ciZnbscCKbDG9f/J+fZDPkoKxhToqVK4Kd3zIXDKz794rsSPcO9rtNl/96ld59KMfXSbHeKT1lOUNq+U1UMG9PMtnNj87cyFsosDClmWCPeuodJL7XmcNo9vt8q//+q/Mz88/qO2saaLtMdyYb0p+IV3fqgwCoihk0+aNXHzR+UgZ0G61+Ontt3H4yCGEEKhCI7Q1YvA6fJfEbY2pXFZzEARkeV66XPvYqyAIrDmai9kKwsBm97ltCSlIwoQ8yy1ZjiPm5uasvFpIemlKpVIpSWcYhiSVxBIqYSXohSqIwohOt4vRNuO6UKokpwjodXs0xsaoxzGFNvR6tt87qVQQQLPZY3Z2ltXVVXq9Hjt37ODQoUOkvR5KKcIwsrnMWhM7l/E4Tmi3W2VVXCmFkJLlpSUajYYz7YoRQjI3N8fMzCxCQK/XZXx8nDAMWV1dtbFnlYTYxKwsL5e9xj6yqygKDh48yOTUFIGU4Cr1AKEMWVpc4T/+40dc9jOXIoQ1O9txzg6Wl5fppT06nQ5aQ7vbY35hgfXBOnq9HmFg48cOzB3CUIGsTa/bZX5+jh07djhCapUB3d4q3/zWV9m3bx9PeMLjWVxc4Ec/vIlDhw5htDVXs5nfPcJQopWm2bMku7naBAFxaCc8KpUKQRiAECwuLpbO4WEcEce2l74oClShEFKU5meFi/PykzBBENBsrpbL1et1ssxOLBhtSsO0sxlBHrCwdZnNt62nM9El6cYjw7PTGGEecGT7Ijtu2XyqhzLCKUCW5CBgZbZJr5GOPnifYbiv/uewCAiL4JjXK+2YmbvXkVdyGku1+2W6VHdxgSvr7904b9utGwnzM+Ij7ynF17/+dZ7znOdw2WWXoSJNVrVKgua6Dlk1P8WjG+Ehh7DJAd3xHnE3GlKcnEkwxrB3716+/OUvP+htnbm/dYztUVU6px7XOe+889i6dTOgOXzoELfffjurzRZGWxIssdWvo3uCfAUximyfbW9Ahl2pVJBCkuVWzp2lqYsOs6TJGFPO+qVpajO4HaFrtVo2ykpAFEfEUUxeWJKd5RkYqFQrgKDb6bj+b+tmLWTf0M3nKCtlJezGGHq9LlPrplGdnuulzsizzFWPMxYWFojjGKUUd+/bV0rCfZRYnutSDVBJkjLuy+dbt1otpqdnyCJrCiZcdTZJEiqVhJUVmx1te7y7KKUcgbSV2H379lGtVpmcnCz71/OiIO31mJ6eHlq+2+1S5DkTE5OkacbC3CLzC/NMz6xDG0WlmnDBxRfwHz/4DySSXi8jz3LGx8fAGHppjySyle4sywijCgJDo1Gj1VolTVO6vR61Wh2Jnayoj9VYWDrE5z73VyyvLGC9xiRRKNEF5fk0RjoybQlvEAYYbajWatSFpNVq2fPozNIqlYQ07V8H7yMQBIHt5Y5trnYcx0yMj7O8skyv10PrjCiMqFZrFEVuI78qCXlW0Ol2ylzzo6VcZxOqzQoq0nQmurSnRgT7dEd9qUZnYnSdzkYYDPsvPFwa8IxwZkHFikO75lm/Z7qsVN9fCAS1ZgWalRNa594QdyKSToxUZyYheLiR5zmf+MQneNRlj6Y91WFpo03AMXL0PJ8tMNKQJQUmMHCGCgaNMfzt3/4tKysrD3pba59o+2QvAwhTkk2DQUjBxg0bOe/cc5mZmSbLUu6+ey+3/fQ2K80WEikD13PsLOuFKCW3viIeBJI4jMoeXOXcpbM0Q0pBrV5HFTYnuygUIpDWxVsGrK6sWDm1G2u1WkNrRb1WL/uTrZmVKV2/ozAkiiN63R5jY2PkriIcRiFJnKC0ote1sm6llTXbCkPq9TpJktDtdmk1m4RRTCAlSRwTxjH77r6bWq1m+8adc3kgJd1u12Ze12oYZ24WBkH5XpZlbNiwgdXVZhl9pbVCSit7HnN91Vrrcv/GGKIwtL3ojmCDnYA455xzmZs7QrfbY3V1xcWA2SqulBLlJg+EsGZzlUoVpbWt2Pcy9t99gGqtRq1exWCYnJpg0+aN3PaTO0kqCUEoy7iy5mobMVbHKEOtUkcLa9jWXF21cv2ePVdRFBFHictW1kipyLI2YWD7EHx8VrVaoVq1TulFkSOFsV4AUiBliFIFWZqilSqzx6WLXOt0u6WhXrfXIYwiEMJ+L+zEUJ5njDUaVr0Q2ckQVdi2BX/fCSHodrokie0DT+IYEChVnNFy8eX1q6UpR325RlbNmTgyRlbNOLJjgSgLWZl9YPELIzy8WNnQRCjBykyToJAknZgoO7EP5SOMMMLpibSR0R3rnTDRfihQW60yfR9S9hFODD/4wQ/4jx/czHlPvwAttSVcx4PBRkK57xNzY3QbPSZ8hrmA5rr2UH+9DrRtITl76wanPwR0x7tkC3WqrWOVKWcCdu/ezde//vWTsq21T7RLWCLnTMUJw5AtW7dy7rnnUE1iut02t99+Owf2H7BkWPT7sDG4KrE5enNl/6wqFFmaUalWUGlW9kpbGXHX5WcbjDBl4Ls21jyt17MxV5VqhU6nQ2OsQSBtVRwDBQVpmlFJEsLIOlf7aCwEZbXZ9277XnNjDJ1Op5xYWF1dRQZ2fa01eZYiksSStZ5mfGIC6aTaXh4vhCir9asrK8RxTK1eL/vIvcN4EARMTEwAWKdzR56LQrG0vEy9VsMYO4aJiQl6PRtP1mm36XS6bNy4kSCwxL3VbpGmKZOTVaampsjz3BF4O1saRzGFM44LQ+uAXq1WSHu2V/7AgUOMTYyzc9cOW8UVml3n7OTggSM0V5pMT6/j4IEDNJsrGGHP8dyhI1TCOkk1otVqo4ucsYkGvSwjigKMtudaumwsiUCrgpJkGwNGMjY+xsTkOEEgsD5k1um72+kxPjFBkecokxMEIVoVaBOXmdpGa7QQhG4Sxlbu7XVMkgp5bqXjR+aOUK830FpZibi0DvaBtCZolUqFI0fmSNOeuy/s2IW7ng80guB0R2esR3fCEukoDWks1Tm8a57GUo28Wox6sdcYpLbZnEWsqK2cmX+sR+jDR1uOcHZgadMKlVZC3Ise8tzdhc3L5PFRv/+NlaKXpG6Ek4aiKPjgBz/Iey9/L9VmpVQnCX3sda60EhpLNZJuTNQLhwzuDIakHQ/9XjDSsLy+iQ403bEeRays2nT0u+P0gvFVzjMPWmuuu+66Mq3pweIMItoA1i18bHyMnbu2s2njJoyAAwcOcOutPybPbCXXV70FAi0NYRg4Uut6uoWw/dlGu6ioEF1YY4cojCjyglarxczMDGmWlkZWYRCS9jrIICCMA1vxDiw5MtjsbSGtTLuTdahWqhRKUavWStIspICeJf5pL2VpcclWiXs9KpUEraxZWdtJ2KM4JnF52GEYkmUZnaxDHMc0Gg2MAEFAXvQdxL1U27h+6yiKqNcbtNstjDG0mk2klKQ9a/RVrVbZsGEDnU6HpaUlV4EuqNXraOcknucFYKhWqzSbzXIsUkouuuhCDh8+XEqbpaviFkVBpVql0+mUEwnj4+MAZQ98URQIIThy5AgTExPUajWytMfc4TkmJyeZmpq0UWExPO4Jl/Ov3/w2Ra646KKLuOmmH9ButSlyhRQB2rZiE4Uh8fg4WgiazSb1erXMAfdmdsbnVw/eXdoQRxGBlChVlEZmaTe1EWxtS3xVoUh7Per1uo3uqlTInFQ8TwsC1/uujUZgUHlOpjVCSLKsY+X5zSbjE+MuxstQqdjzk8iEw4cPEzr1RJ7m5QSI1vpM/b3Xh4EwCykihQoV3bHeSIK8RqFCTWe8y/S+Kfrh7yOcqeg1Ug6cf+RUD2OEhwkq0uy/6BC7btr2kD/bRaSOiYMTWjC7d/q4veAjPHgcOnSIf/3yv/KYFz+W7liPSjs+rgmeMIIwCwmcdH/Q4E5gJ1uH7g8N6w7YzzRFrMgqOcsbV1GhspnbI5wWiLKQ4Ax9tm6++WZ++MMfnrTtrfmmFQG2AukMtTZu2sQlj7iEzZs30Uu77Nmzhx//+BYWF5fIC/uQ2jgpg9I2w9kblnlZrjaGosidOZit/kaxrSQ2m03CKCSOYzpOGhzIwEVrOdmqI23aZSZbEgpJJSndwo02LupL0Gq36aUphXLGWEIQBiG1Wq0km4GUZKmV1wghmJyctK7VUErfvXS7UDZXW2lNr9djdXUVrbWNm/KV4iCwxN7lfa+sLBPHsZWQOyJdrVUJnST9yJEjLC0tWUf1SgWlrOTd9xcnSWz7jF1UlQGEM487cOAAgO0/zzKkDMr4q8XFReLYVs4rlQq9Xo9ms8ny8jJpr0elYnu1KpUqAliYX6Db6dFutfnRf/yIbrdnJf5CkNRiduzabvvVpeC8885nYmId7XYXra06IS8KtNG0Ws1SXh4Gdr5JFarMpy7cveIc8Ryp1uUxglVNBLJf8bdRaVbSHycxUghmZmeIYxtBJ4B6rVpeQ+MGFbjzFIYBYWid26M4Lt3Eq9UKWWZ7s3tpj9DlcgcyKNsFvAP5mYz6SpWgkNRWK6yub7H/osNWsjaa6V6bEJAnBXM7F0YmOmc4Vte1aE12+imco2f2rIAR0JrqnKJ9Gzpjo1aihwrNZpN//Md/pNiTMXVonHUHJ13yRzL0lXTjkmTfXwj3X5SF1FerbP7pejbcNcP4kQbj83XEqB38lCLIJfXlKkF+5hHtTqfDF7/4RVZXV0/aNtd0RVtgCVYYhYyPj7NxwwZmZ9eTVGJa7RZ79uzh0KHD6EIRSJuD7XuF/XchhZXxGlvBjqIYk2cYaaPCrFlXWBIvHynmpdNLi0s0GnUqVesYXo1CtDEIAyY0rKysUKvXaLfbCKBaraJc1FQQBPz/2fvzmMvSu74X/TzPmtfa8ztWVVdVT7a7PQ8cHEsQXcA52EhOIvyPkaVMCM6JQnQTboREFJEgRRcJkeHCcUKUEFCCCUnOURwTgQkYsMF4Bg+x2267u7rGd9rzXvP03D+etVd3ubvdXe4auqr3t7Wrq96937WevfZae+/f7/cdpKE1w4alDdEc1yVtdNHr4nmdEl7XNZ7nkWYpdVITBAGzmZ54G4aO+JJS6gk5EEcRhmVqDTBgGga+7xM35mpCyvbvg8GQsixJs4woDHWx10yly7JkNpu1azUbk7MsS7Esi6qqGi21y3w+Z2tri+PjY1STk72eZEdR1EaGDQYDrT8vS0xLx42VZYmUkm6322R9G/T6fdIm9sx1Hb3vJG2o6XD54mUeefTVOtJNwv7pfVaLiKuXr+IFAY8++jq+9MUvsVzMkUJhqBrXcTGlBNPEMnXut2VaVLVqHNcVxZru3fy5PteElJSNuVmW5ai6otvEehVFTifokCSxnrxapnaHNy1k09DQ7AerbXBYlpYJ5EWF47rUdc2iofAbhtVOzquqJE0z0izDcWyqSpuvmYbVGvbd6+iNO4hacHL/9E4vZYObhNzfFNj3Oua7S6anFyi5oSy84iBgfN8UJRS9See27loqQf/k9u7zlYavfe1rfPFTX+T7/e+/pfsRCJzEZufKSNPIa8FyJ9w07O4QrNSiO+lg1PfegOcrX/kKX/rSl25qks9dXWjrqXCF73d485vejGkbSEMSRSu+/vhjjE8mqBJA0On0SNJk7ZnWuIODIQ3KsqAotflUnMR6YmjqQ5PFObWCwA8wTVMXR6aJZZo4jotlmYRR1EZjVWXV0ocN0yCKo8YMTTcE8rxop8tpqs3OTEsXe91eV8d/Ne7fUkqWyyVlVWHbFq7nUq/zk5UuvEejEYZhMB6PWw237/tsbW2xWq0wpMFqOWd3bx8FZFmu9dtFoQtHsc6s1uuxLAv5jGl3mqbthFs2VPOiKNufKcB2HF0wNwXkeDymqmvqqqLX77fRYUo1jYZm2q+aKa9lmuQNFX57Z4fJeKwL+LrmqQsX6PV6uK5Lkuri1/U9bEsbrV25dIUHH3gQyzEQQuF5NoNBl8uXYDTcIk1THn3to1y+eIlr1w6QhoU0FKbtoIAgCKjKEsOQCFFTltp0LU7Sll2wlhaalknQ6WJKE6VqhCnJMs16WMznKNCGeJVuGPS7feI4Jk1SyqrEwMD3fAzDIE5iqrrGMLWjue9Z7TE3DC1DiJOIbq9LFIYIIRn0+40pmp6EZ1mG22+OS10hBdTPNs6/66BQrLYiFrvaMOv0N3YRCI7PTUi72Z1e3ga3AIcPnmClFqe+uYt8Edm5G7x8MT4zIxrEiFqgpKIy602R/QpGbSrSILsthbYdW+w/uXPL97OBxmKx4FOf+hRvfetbGQwGt2WfQglGBwPc2GFyek5lNXndm4+N2wMFshLI6t474EmS8PnPf57j45srcbqr2xHSENx39hRv/wvfhe2Z1JQcjw/52uNf4+joiKrRVSdxrOnTStuUrR2t9aRVu2K7rtvkOssmV7vCkCaB7+N7HoZhYlk2tm1rDbZpYlm6GLdMU086mxgw0JPvuqrZ3d1t4rr0VDRJElSti2XLtsiyjLIoNPU8zUiSpJmcCrI8x/M8XMfBMi2SWE+610V2GIUATGczTFNrqYejoZ56pylKKZI41usTgvlsRp5rkzXbtpssbpN+v99mOJum2Ra2da0N1LIsQwiB3VCUq7pqpqz6+JZFgWPbVFVJEAT4vq+N3RqtsdsU5UZj1IbSUVtZljEYDqnXTuemyXw2x/M8pNQZ1adOncJ9xvNZLpcUpdbIj8djpJD8+Z99gbpS7XE7d/853vCm11NWBXmeEQQ+b3jTG3nd61+H6zpUZdEwE2p832e0tdW6xOvMdL22dfwWKOomT317Z4eyiWGzLLudyq/PjbIocBwHgPFk3Ey6C1DguZ6m3dcVeZbp4t00sW2HutIyBsMw9CQchWla5Fne6N0LklSfG57nolAtmyBJEm2S16z1bkfhFhROyfblIaODPuNzM07OTglHMaVd3enlbXALUFk1aSfj5NzkTi9lg5eIyqqorIr+SZfSqZ7fkXiDVwwqsyYJUupbzPlVTYC3lZtYuXnLTdg2gI9+9KN84xvfuK0mrLISdKY+p57YwV+62oRt8zZz66GgM/XZf3Lnnru2lFI8+eSTfPSjH72p02y4ywvtBx96gDe+6Q04nkVZZly5fIlvfuNxTo6PUDWURalvDdVXNGZnQuqCz7as1kRsbXRV1zW+5+F5np76IgmCDkLAfD4DaCnE88VCF75ok7S80AXadDKhKAvtsB1GJHHSFoqO67R6csu0tL7Zden2uiRJgtWsIU1SbMsiiiKShjpt2zZpk2etXcdpC6y1dljViiiKWq2xZVn4gc90OsUwzHa9SilcTxd+RVFoXbXSGdC2ZWHbtjYsaybftm3juS69Xg/V0Jsty6JuzNSElG3hp9TTNHchBHEU6caErZ3aPU+bj0VRxPjkhKIoW52x57kslzpuq9/vMR5PSOKYNMtYLBZNHrWL7TgEQUAUxYRhyPHRMUJJpJBIQ3Dqvj26PU3pt22bOI7o9Xu85pFXEXR8NB1co64qTfcXjRxBitbobO3orlSNEGDbJoapmw1ZmrbnVF1VrYHb+jXRjug6D91xHOIkYTafsVqtcByHqqop85K6qjGknmILoZ9DXdWURUFd1dTV0wwEpTQF3/M8bNuiKPJmP/fOm56spKaIn5ty+NAYFKy2o03H+h6HrAT+0rvTy9jgJkBJGJ+b3ellbPAyQTxIuPaa41veKC28kuP7J+TORpJyu6CU4sMf/nCbrnI7sNZwO4nNzsWtjbP8bYKVmexcGt1zRTboWuqP//iPmUxufrP/ri60z58/r+O14pgvf+nLPPGNJ1hOVzqTuKoxDQvP87VZlZRtAakLG4lpWjhN8VgrTWW2LJ2XbVomnaCDbTvkWd7ELMlnOGfrYt20LD1xzdJ2P14TVWXZNm6jnx6NRgghCPygnQZXlc5HBt0UyPOcWtWtGdd6kqynwUZD2y4wLQshBZ7rIqTEaxoD6+dgNwUt6KZCt9NtpvXakCzLc3zfxzJNqqqi0+kQBIGmOTfF49qcbJ31vdZWT6dTXNfF9/1W521aFlmaasaAUuR5Rr/fx/P91jxNKcVysaAsy5aCL6VBFMfUzYRcSkmcJLiungjrJoiB4zgEvo/jOE2BHjeTeousmdBfvXKVKIp0QptQGLbk1Y+8qp34llWB7ZgEgcdDDz1Af9DTDu/o/OqqcfcG1axNthNttXZEk2j38IYFkeW5NptbLfF8D8fRZneG1IwHve0aQxpEUaQ18p6P2bAjDClRCqqmkJZSUuSFNstrJtp1VWOZNkGgf69sHrc+f/I8182Nm9yBu5Mo7YrVVkQtFUoqXWRvcM9DCZ6mAW6wwQb3HCb3zdr401uFtJNtzBVvMz7xiU/w9a9//Y5Ei5qlweC4y+C4e0/SmV9OcGL7niyylVIcHBzwO7/zO7dk+zdcaH/84x/nPe95D6dPn0YIwYc+9KHr7ldK8TM/8zOcOnUKz/N45zvfyTe+8Y3rHjOdTnn/+99Pr9djMBjwoz/6o4RheMOLtxyLKIz48he/zNHBEVmSo2oQSmKbNkLoyeNoqItcnU1dY1pWE5+tda7T6VRPl5u86nU+dFVXxFGElAamYeiJcTOJTVNN112tVm3kledpl+4i11Thfr/XTpUB/KApwBvKeZbnCAThakUURezt70MzpS7LksViQa30lDQMQ/I8x3VdlosFy8WS2XxOuFqRNOZpZaEN2saTCbPZjLIqybOM1WrFcDhksVg2U3qYzWZkWUYYRVy8dImiKBgMhu3jkzRltdTrklKyu7uLbI7BOuO7rmv6vV7rsq5znGUblSXQGmilFN1uj06n0xa+eZ7j+x5+wxxoJ/N5TpIkrbHbzs6Ojl0TmnZfVTWLxZwsy5nNZxhSkmUZSZJS15qujwAhodvzeeSRV2EYgiDwGQ4GlI1T+pkzZzh16hQCRa2aZkdZ6mZGXoCqm0l2RVUVKFHTCTygZhWGCCnwfQ+FwnU94jghiqP29U7SpHUs18d2gOu6zfP2yfKM0Wik3emrisFgyGg4atdhCImqlTbMa+LG8kKzEdYRb2VRNk0PD6s1nXtxb4Ivp+sYIOrHRL2Eg4eOme8tCeYe1YYm/oqCMhTT0wueesMVMi/n2sObKKgXg5fTtRwOY6LBJm5vg+dG3Eu5+IarTM7MOD4/obRujYnnybkJl1577ZYX9Rs8jX/zb/7NHdu3URkMrw0YHPY2FPJbCCey79nj+5/+039itVrdkm3fcKEdRRFvetOb+MAHPvCc9//8z/88v/iLv8gv//Iv8+lPf5ogCPjBH/xB0vTpmIX3v//9fOUrX+H3fu/3+B//43/w8Y9/nB//8R+/4cWHqyVf/vKXOTw8Is8LBKLNhpbCwJCSsiiI4gjbcRBKa6/LqiLNc8IwIvADOp0uCh3zFcUJtYIkTYnjmO3tLdIkJssyTQ9vtMzSMHBsB9fR010BOpKqoWbXdU0Yhiig3+icVa2dotc53p1O0E7JgyBgMh6TpmkbqbW1tcXu7h6dTkdHeQlBWZUMBgMsy6LX7Wp3cminnHVdc+b0aVzP1ZpjKanqusmL9hFNDNSaJj4cDjl96lTjcF618Vy+51GWRWucliQJeZbR7w8YDAbcd999uJ7HZDptp9Salq6aRoYiDMNnRIwtGgM60U57Z7MZtm0TBEGriVjnfwdBQL/fZ7lctrR73QSptdbZD3BdrZ33PI8sz/nspz+HqiRCGcim77azO2J/fxvLENRlie040LARdne3ef3rH8UydHQXogahi2vdiSmpVUlVF5RlTFklZGlELWqKqqCoCyzLxPc8LFu7xgshSLMU29ZZ2d1uF9d120aJUtqJ3rZswjCk3+vS63UJwxXzxZyt0Yhhr49j2RhSUBU62q0bBMi6aWBIiW07eK6DROeS17Wieo7s77vhOoaGLq6gf9zFXTksdm/NG94GL28oqVq9dmVuGi0vBi+naznzs43x2QbPD6H9GOa7K1ajiJvle2gnFuIZ08zaVBt2zG3GhQsX+PSnP33H9i+Vlh7ZiXXPFoN3FArc2LnTq7gluHjxIn/6p396y7Z/w67j7373u3n3u9/9nPcppfiX//Jf8o/+0T/ir/yVvwLAf/gP/4G9vT0+9KEP8b73vY/HHnuMj3zkI3z2s5/lu77ruwD4pV/6JX7oh36IX/iFX+D06dMvei1ff+wxFvNlS9fVuliJkKLRCitkQ4FOkgQhJVVZIoRsKL0NPRhtSpVlObZlkedaayKEaNyhKxzb0ZTehtq9zriOG7Mxadl0Ox2KosQMTKTQUU5W40Jt2zbzxYLhYEDRmHFJIbXmWSlqpRsEQRDoohw9m4zjWNO/u13SNG0p5OvCOwgCPQGvSnrdXhvHtd5AWWmtdlaUBEGHONGxWbZlMWto4NL328iytf7ZaKLAyrIkirRzep7nLJc6eirLMmzLQiCQUrSabJ0lnZCkKVIaJHGC4+gCNElTBDSZ0yZRpGPEVqsVdpMbrZTCcRx6vR5VVTGbzTh9+kzjUg79wYA4jlkuFvQ6HSzbbicvQeDz5BNP8OpHXqXLbKnwOg73nT/DMlyCUpimREpFkWfs7OySpinn7z/H1SvXiOIIKU2EUChVUFUFtSopqxzHtZjOTpCG4P4HHsSUEtPSZitlqWn/vV6Poiwx6pq6rvA9j9lsht8c33WzII5jrTdvYrkUiizNsG2bVfh0gel7Pnmh89zzNEcaBkZjjKaqunWNN02Tuq6pKm3ud7ddxwCHD43xeht97gYa47Mz/YVpgxfEy+laXm5HeGyu4w1eAE1NvNxeMbo2eMl01OFxj9V2SGHc+zGXL1dkWcav//qv8+Y3vxnXde/IGuzEYvfiFkf3jym8zblwMyFqoW/3GHW8LEv+43/8j0TRrZMo3lSN9oULFzg8POSd73xn+7N+v8/b3/52PvnJTwLwyU9+ksFg0H6gA7zzne9ESvm83bAsy1gul9fdQE9ETdMCJbQmu3HXVk32tGXbmIahHa0NHclkmKbWRTfT1bKqSNNUx141kUlZpnWvtmWzXOh9CSFwHUfrooXO4Y7jWOupmxxpwzTboivLM/I8JwxDZtOZju/qdJjNZ5qaDCyWS633rSqkkAyHQ10EOw6WaWKYuqj2PE05RgiqWlOaOx0dlRFFkd631I+lochr6rbAMi0cx2nysyMs08S2bRzHaanwYRi2tGYAp6HPq+Z5W5ZFnhetM/tyuWS+WDQTEUWapjpyDIiiWFPcHYeiyFsX83VklWVpA7goCjEMrRHf3d3F8/w2W7yqKqI2Ms1kPp+RZqnWmFsWlmnhui69fo84ilrds2lYXHzqEsdHJ9DkXiNguDXgwYcewLAkSRwiUFimQZbElHlGtxNw7vxZijxDqRKlSqACCmqVY1gCwwREyXR2wlNPPUGeJZR5jtWsd32OrHOvi7wgSVPCKGy046o5zzJ836fXUO6jOCbPcoRsmj+G2UoAwjCkLIr2uCilMISk4/sEvo9tO5im1Wreb1Yb91Zdx/D817K3dPCW92a3dIPvHOpb/tvgxnC7P5M32OBGMN9bMTkzZzWMSP1NdOPdjmvXrvGJT3ziju1fILATCzvdTLVvNqzMuic18F/96lf52te+dkv9BW5qoX14eAjA3t7edT/f29tr7zs8PGR3d/e6+03TZDQatY/5Vvzcz/0c/X6/vZ09exaAvNCGVIaUmn6sFFVd6eurKYRPxuPWaEtHRlUN/Vb/TOuKBYYhcV0Hq6EnK6V0sVwUOLbTUrPLUkczRWGEbLZrGAZBJ9DFYa23j6KdEhdN5JOUEtPQha7v+6AUZVG2BddyuWzivzRdO89ztne2kUI2xlcZRuNqnee5jonKc4IgaA3Kup0OnW4HBNSqpqz0RDqKIra2tuj1esRRTNU0B8qyZHt7R+vUbRvP09PX6XRKnmVsb28zHI5YLpeEYYhhGAwGAxzHwXU9Op0O/X6f+XzexHRl+EFAGEYNDV2wWCxYrpbQNBXyotAxVqahC0hge3ub3d1dylJndM/nc65cucLW1haWbVM3RfdsNsNoDNLSJKXb6zGbzVgulo1jt8GVy1dZzpdQCyTamOz06VM88uhrMC2TVbhCoVisFiRZgue7nDm9zyOPvBrTNCiKnKrOMU2B7ZiYtgRRI2SFaQnSOCaOYhzHIcuzpgkgsB2bIi/a6C3Htgl8TYt3XEc7uZtmqz/3fJ8izymKAtd1yPOcOIqI45gszxpDNE2NRym6nQ62bRNFev+TkzGTkzFJHOvJuFKN98DTt5fTdfztruW0k5F0Nl+0NngaSug89cuPHnLxDVc5vn8T/XWjuN2fyRtscEMQkAYZ3srFSeybKheppeLwwfFN294GL4z5fM6f/MmfMJ/P79gaBIJg7mMUxqbYvkkQlcBfusjKuNNLualI05SPf/zjNz03+1txV7iO//RP/zSLxaK9Xb58GQBVgyEMpDRImymuvkPzpk3TZHtrmyzNSFOtm9U0c4ltmtq4rCiwLUtTpMOQqtT/Xlcsg/6Afn9A2dC19SS1j23bVFVNlmV0u10Wc627NaTR0teDIGjjrCaNQZmOrerjBz6dTqctxAW0buFrirhlWu2E2DANXFebXq1drA1p4HkeYRgSRiFKKY6Pj1kulqha53Y7tp4S9no9wjBkPp/rLOmqxrJs+v0+lqWZAL7nsVguOD4+bieoJycn5HmO5+lc7SzLyPOioagXRFHURo8dHR0hG3f3qipJ05TVaqWLUMvSpnAKuo3m3Gxcz4s858KFJwnDkOFwSJIk+L4+PpPJBBo9+VrbvXaHVw0DAaDb63H58iXCaMXBwQGPf/0bpEmmzcKFwDAF2zsj/rfv/i729naRhqCsS3b398jSlOlkSuAHnD93lr2dHYJuB8MyME2JIQW2bbE12uHBBx7gu7/7u7j//vsp8qJ1n9exZ0o3PDxtejedTts4srUuXzMf9LE1TaPNLK/KCtdzsSxLZ4c7Lttb29SNvr4sK+IkIc0yfN+j2+0wHA3xfY+iyHQ+eq1lDeoZt5cbnvdaltwl70Yb3C4Ubkk4jNm61kfUgmDmk7n5nV7WBjz/dbzBBjeKrJMzPjsl7iVMTs+/I+ZK5uXU3+oNIKA2Xn6fgfc6PvvZz/LVr371jq7BCx0Qmyr7ZsFOLDoz/56baD/++ON8+tOfblmptwo39avt/v4+AEdHR9f9/OjoqL1vf3//Wd2DsiyZTqftY74Va83uM28AhpRIw9AZyA1VWDbxWzpaWNBpdLx144StlGop0AK0Htk0CZooKsexKXJNeXYdB9u2mE6nVGUJAsIwbFzEdSa267rkmTZIWxe7oPXXruvqGC7Po9vt4vkeVUNVn001HXpdRK+n32vzMaW57bpYatykBbpoLJtYsLXRlh8EWKbFfD7HMPS0t6p1NrQukr2Wkr2G67mt+ZkupnVOs9Yxm9RNMav12KleV1k2BW7daM8rLMtumhAmUj7d7bJtG7lmGjT6bdM06XQ7raFcVVU6qkyI9v6yrHRDREpsx2FnZ0cX2YZBmmYNC0E0r6U+VkEQUJYF2zs7uhhXipOjMY9/7XGKotQf20L/TnfQ5aFXP8RwNKIqa6KVzqReu3dvb2/xyKOv4Q2vfwOnTp1uI9nO3nee17z6tezu7FM3799lpc8J0zBb9kNVVaxWKwzD0OeeZWEYuqD2PK9dv2YuaD16p9PRx7x6OtbNtu22ydHpdNpGi900GKbTKfPZrPUnaEfZvPSJ9q26juH5r+UNNnguJL2U1Simloqjh8abqLcbxO3+TN5gg+8E0TDh8KHxd6zXnu+urkup6Ex8jELSG3du5jI3eBGI45iPf/zjt8zB+YWgUCx2QyqjfrEhLBu8AJRUKKHuKX12lmX8+Z//OVevXr3l+7qphfYDDzzA/v4+H/3oR9ufLZdLPv3pT/OOd7wDgHe84x3M53M+//nPt4/5gz/4A+q65u1vf/sN7U9BW9iu861p9NMIQd0UtWv9al1V7cQ4z3MU2q07z3MdWVWWZE0xV9c1tapbbXCe53S7Pe47e187uVyjaKjQoPXRKE1JiKKIItfRVVmWkSbaUXwdf2Walo54WuvLG3q7ZVmUpf7Q0Nttnq9SJGmCZZk4tsN4PCaKI3zPI0kSre9uClzLtLTxmGmQpmmbzW1ZVqv97XQ6rZ5bSkHRFIqO42Aahj4GzW25XGI3EVK2bbfHbr1GyzLxfY+yqrhy5QpKKYIgQEq9HQVaV64UaRMPBjT51fr5S8Ngb28PKfXlXOQ5QgjyLGMymbR526uVptibDT3bD/S0uyyKJi4tYrVcEYYxX/3KV0njHIFBrcAwJfedPcNb3vImAt+HupmKC60BreoKIcHzfF79qtfwtrd9N29589t48IGHybMKQ1gUWYnZNCGuOwekxPW8lsWwnvTnRc7xybFmXAgwzKe16kII/MBv2RjrZlCapm0BXpZlK3MoiiZnuzFWWzco1ueJQjVFd3P7DnC7r+MNNvh2yL0chGL70vBOL+Wuw+Za3uBuwvH9k5vixRAsfE59c5fOzL8Jq9rgRvE//+f/5MKFC3ckV7s2aq33v3dqwjuLGvyld085jiuluHbtGh/+8Idvy/5uuNAOw5AvfOELfOELXwC02coXvvAFLl26hBCCv/f3/h7/9J/+Uz784Q/z5S9/mb/21/4ap0+f5q/+1b8KwKOPPsq73vUufuzHfozPfOYzfOITn+AnfuIneN/73nfDTsWqVqi61tnJz7pTZxBHUcR0OkUIqaeH3S6dIMBxXW00lWVsbY20E7app+PrYjXLM1bhisVyTqfboWxirqIobIti7aad6CivprAyDAPLtlgul820tdRab8dhvphTK/04gZ6KlmVJFEeURdFEYlUNdVtrrFsIQVmUTCdTbciGwpAG0+lUF31NsyHP87ZARvG0Jhxa6reUkiiOMQwTt8kAX0/bO52O1gUDq9WKKI61frrJuy6rijRJqKsKKQVlk/udpClloY3e1g2N1WqpTdaUYrlcIqWkEwT4vt86lGttsc7QvnjxKY6bSS5CEIYhjuM02eLaubvX6xHHMePxGNM0iaKoLVxd18XzPLa3t7Fth6eeusSXvvxlyqICqZ3IhSHwuy7/+7t+gDzXayyKHCFgOBrg+z6e45JmBXt7p7nvzDnyrMI0bLKsxHN9TWlHm9EtlwvKouDw6FD/vSzJC21gFoYhpmGyu7unafJFQZ5nZFmG67oUZdH+vdfvs7W9TZZljCcTpjNtohd0AvIsb8331qZ5ZVVRlAVxkmAYps4bvwuv4w02+HYo3JLaUEzum1MbNbWsKaySwta3Wryy6aGba3mDewVJN+XgoRM9jbwBGKXEzIz2JmuBk9j31ATubsOv//qvPy3nvI2orHojGbhZUNoErTsJ7vRKbiqUUvzu7/4us9nstuzvhuO9Pve5z/F93/d97b9/8id/EoC//tf/Or/2a7/GT/3UTxFFET/+4z/OfD7ne77ne/jIRz5y3QT4gx/8ID/xEz/BD/zADyCl5L3vfS+/+Iu/eMOL1/FG+o20vaCb91XV/MyyLIzWlVnTWmgKuzWtd7lcUVUV21vbmiZeV7qIR2E7DqrWDtBFUWgzM8ehyAuyTJtxxVFEkqbYlnbznk6nBEHA9s4OSRzrbSQJ0jAYDoYtTVzViizPqcqSwA80hbzUxVgcRXR7XZ7ZlhOA5/vttHjL2+bo8LCNL0uSBNC0vrqhgANNwbei2+mQNprystLO60kSE8Uxgybr23VdFosFvV6PnZ2d9sua3q6NEHoKXTbmZHEcY5omjuMQxwmGrV3OoyjCNE3O3HcfF558so0H007lgjhJcB0X7Q6uWQVC6Net3+tTVRWDfq+h0yuGw2HbLFgulwwGQ1bLOWmaIhoddK0Uq9UK2ejkDw4O6AQdxicTvv71x3nkta9p9lGjhMTvePzF7/9evvDnX2S5WCEMyWoVas16E70VhjFlrl93x3La59zr98iznNFoRBzF+jibOtZNSkmapO05tmZQ1ErR7XSRhmR8MiaKIlzPbRgGJYZhEMdxIzPwyTPtLbCYL4CnmxeLxaIxhNPma77nEScpCIkSL66R+3K6jjfY4AUhnjZH8xceSSelcAtKq2LvqW2cxH7hbdyj2FzLG9wzEJD0U07OTdi+PMIsX5z50vbVIdtXN4yXlxM+//nP88UvfpG3vvWtt22fhV2y2FlR2uVmon2T4MQWVnbDpeKzoFBUZoWsJbK+s4Y8k8mE3/7t375t+xPqTnA7XiKWyyX9fp//48f/DyzbBkUz3ZU6AqsxLkMpFGvNtnYWX5tXrWOw7IYCHIYhfuCTJClVWYDQRmKWbWvatGHhODayMQmr67otQNf7y5IMYegTyLFt0jSlKIpG0w2e77XCWWlI8ixvHcnXsVlVXdEJOi3l27Lsp+k3SiGkxLFtima6vC66V6tVW9itDcJMy9IxYYbRFmlIg6Ksmoxvg6IokIaB57qaMq8USZLQfQat3DAtotUC13UwpEFeVhRlSa/XY7Vcsr2tGxRr+H6AZZmYTVZ3lmV0ul3yPKdoXNLX9Pw1lb3T6WBaFsvFksGgz2KxwPM8bNtmNps1VHPR5oebpoFtmTi2TV3XzGazlq5dK4Vj2yRpgud6JGmMZVu8/g2vZ//Mni6k0ar3qq6ZTxd8+Yv/i/F4imFoYzjDNLU0oa6oSt34ME39OvqBj+u4rSyhVqqd6puWpb0DGkaE53lIofPWHdfBtuyW/l1WOu98PY33fZ80y/BcF8u2KYuiZSZIKVvzPmkY+qxu5BFVo5XPSh0ttv58ybKMX/43/1fbOHk5Yn0t/+Klf73J0d7gRcFbuFiZSWVXlFbF7sURdnpvF9pRFPGe97znZXstb67jDW42Tn1jF391Z/KYbxVe7tcxPH0t3ww88sgjfOADH3ha2nmLsJYbxP2UowfGqG81xtvgO4Ib2uxd2MEodF3znTJEFIrlVkjuFWxdG5B0MqanFjiJxc6lUfu428FAUUrx8z//8/zu7/7uTdnei7mW7wGf36Yoeo7rSkpJ1RQfhqFNqEzLaopsXSQJKdtJ8Dr/eW0KVhQ5WZqiak3hTrOM8ckJVVXpAqcsCcOQ5Wqpi1zbRgqBZZrkeU6SJm1hKA1JFEYIKTFMkzzLKZtitVa6kPJ9H8/1yPKM8XiMYzvXOUfXqm7dvDudThtZtlqt6PV7rcGY53kURUFdaar1Ots7z3OqsqAqc6h1cWZZFrZlt4+Jo4igKfiUUk0Gt8dgOAT1NEvAtjQtyzA0dT3Lc1zPYzAYEEUh0FD7leLs2bNkaaoLSEs3IJRSCCEpy6p1X8+zjCiOkFLiODquTLuku+zs7DAY9PE8F9u2Wi1zlmVUdcVoNKIoNbXfkJIkTen3+5iWiWO7oCQXn7zEF//8S43+XaCUNtTb3tnmu//Cd9Pr91DUIBRBx0fVJZ7n4jou5++/X1P+HZswjJjNZ228WhxF5EXx9HFfm+45rj5G5tPdwNlspk3iOh2cxgUfoVkHeZFjGjryLI4incdd6Dzuqimotfma0TAs9GuqM8/vLaOKDTZ4PiT9lOVuSGGXbF8eYhQvvdu+wQYbvLwwPjulMmrUt/y3wd2Dq1ev8rGPfey27CvppkzOzFAbt/GbBiVhtRWSdjNyr3hJ16AyFHE/4cojhxw+dELu56y2Iq6+5ojF7uq2NUcuX758nR/J7cDdX2gr1eZk140BlBQSVSvqxh7adRykkK2pV5qmbTa152kDLz8IqKqaxWLR+khlWUYcR4jGWTpNUgxDa4LzPKdoHKKlkIRh2HbtlsslnU6HM6fPaDp4Q0UPgoAkibXWuSzo9XrteiaTCVVVMZ/PWS6WWKaOHDNMAynWjura5CzPc2azGavVivFkrOO9wrA133Ich26vi9EYaVVVRZqlz6Cs15iWSZomCCFwXQfP8/TvdbssFovG5TtlOp2yWq3aKfl6ah4nCaDaAt51dA708fEJtVJMplOSJGnNukTDINA9DNVMahtDtMYYbbVaMRqNdPEaR5ycnGDbNodHR8znc7Isb7K5JUJIwtWKKNbGZ0VRsDXaaunyKNU8D5OdnR2G/SFRGLNahFy6cLk5PyqUglpVeL7LX/y+72V7d5tuv4tpSSazMZ6vO+p6yt/FMi18T+eHCwSu6zIcDul1uyRJQuD7bb62lJLFYkEcRTrOzDDZ2trC932yNG0m5wZFXtDv99na2kYBs/lMSwHSFMvWrISqoep3O12iONI55o6LNAwefPBByrK6bpq9wQb3OoQShMOYcBiRO8WdXs4GG2xwE1E4JU+94QpPvvkyT775MuEw5sojz53r/krBP/kn/6SVTK5vjzzySHt/mqb8nb/zd9ja2qLT6fDe9773WYkDtxOr1YqPfOQjhGF4S/ejpOLk3JTC3VDGXypkJXAiGyeyyd2c6akF1151zGx/QdJNv6NtquY1KZ3q6deouWVBTtJNb0uDpCgK/tt/+2+3TZu9xt1faIOe+irVTH/XV5nuvDiOg3xGtJVpGFgNLTjPcyaTSZsJjVKYlglNNJgUEtnQc7M8Q6Ea+reiqmvSNMX3tOO1aWpjrzWlvK5rpKEnzp6ri/mqqlp9tEAQJ9rcyrZs/CDAtm06nQ47OztYltY6543zdpamTdRWhu/79Pt9ncft+brwjbQTtZSyoc03h6GZilqm3t6a1qzqClXXJEnCZDolz3OiKNL0Z9MkTTO9fd9H1aot9kGfrP1+n+FwyP7+PlVdYzQu5cPhANMw6HY6FEXOcDhkPB7T7XbbiDDTtNp1gaLT6aCaKLKqrEiSpInb0prsU/v7+L5PksTEcdzkjGsGQNAYq1VVRZZlbRPAMAwG/QGgODg8YBUtWazmnByd8LWvfo2vfvUxhJRa+0lNpUosx+RNb3kDhilYLhdsjUaNBlwQx3G7j7WY3DAMPF9HdhVFQa/fQ0jJKlwxHA7pdrv0ej2qqmrN6vI81xFxttUW48PhUDvcN9N4z9VND9mY362lBUVRsFgsEE3TaM0MuHLlStM02HRyN3jlIAtyFnsrxudmXHnkkLib3OklbbDBBjcLAv0NtbkdPzChtCpNQX0FN9Ze97rXcXBw0N7+5E/+pL3v7//9v89v/dZv8V//63/lYx/7GNeuXeOHf/iH7+BqdVbx5z73uVu2/VrUhIOY0r61Wcj3OkQl6J102LoyZPfiFv7Ce7pCBpKOnmp/ZxtXrEbPH80Z91IKp7zljJXHH3+cL37xi7c8N/tbcXcX2s+Yjq4dwEE1nRI93VMosizFMA1My0RI0RakdV1R5DmGIUnTjKIs8TyfulYYpolt223OtmFIbNtqC6315LiqKyxTZ0gXZY40JH7gk6Ypy+WSbqer87ltGyEFSaKduXVsldYrC6nzv4WU9Pt9TUE3DE7GY8qyJI5jDNPUecqG0RqLCSHwfR/X8wiCoHHmLsnyjNFohOe6mIaB67mopolQ1TVCQK/bg4aifd9995EXBUHQwXXdhu5OSx2nISaXdU1Z18znc/Is5fLly8xmM5zmWPie12aXZ03+89HREWYzkbUsiyAIUOjC3W104VmWIQ0D23Eoy6KN+zIaPbwQ2jxNKUUYRgghiZOENM1wHf3clqtV664uhSBNU6q6oqpqHMdBKcVoOGoK9IArl6/y+Ne/gRASKY32Off7fd761rewvT2iKPPGRbygqhqttGHopkqatrr3otAu7tPplHC1wpAGURQzmUzahkmWZa0EwfM9ykIb4Dm202S660aGZVk6Ag7VRnYVjWdAWZats7xSilrVCLTuSzcH68bB/bpY7Q02uOcxPOpxfH5K1I/v9FI22GCDW4Taqjk5P+X4/ITSKl/4F+5BmKbJ/v5+e9ve3ga0VvRXfuVX+Of//J/z/d///bztbW/jV3/1V/nTP/1TPvWpT92x9c7ncz71qU8xn89vyfajQcLs1OKWbPuVhM7MZ3StT2/SwU4tnNhCKNrZpZNauvj+DjDbX1K436ZIFyDqW0tFyPOcz33uc1y+fPmW7ue5cHcX2tCYbplY1tPO4mtWAkBd1VRlSZHnZKnOuF6uViRxjOO4WLalTc8sqy3A13TrtbEaTZRWjS7qszTFsW1s26aqqkYDrjOs1wVwmqWgIC/0v4uypMgLAt9vqdSimXAGfoBhGFSVpqILQDY6cZQupMLViuOTE5RSjCcT/bMoIkkSyqJgMBiwClfMF4v2DW2tD6/KisVy0UaQrWncjq1dxF3HwWkyoddUdqUU8/m8mVTr553nOmLLsiz29/exbRvTshrDNF0YSyn17zWZ0kIIPcVvtPJFnjdZ4hDHegIlpSRL02eYiOXM5nOuXbuGUoo4jomjiN3dPba2RpRlgWWaBJ2ALM8RUuA6DmmaEscxruciDcnVK1dZLBZkacbpU6eZzWZEcYwQgnAV8tWvPMYffexj5FmBaC6Fqi7pdALe/JY3c+7cWR588AFcz2M0GmlNeJpS5NrMLI5joijSk+48Zzgc0e/32dvfw7YtDFPHywVBwGAwaBkPRVG2HbWiKMibBsk6Xs00Tfr9vmYgNEyBsii0uZ1lYRoGnufRCTptYb4+9zXUM24bbHDvIxzEDI96ZN9px32DDTa4a5B1cq696pha1tTipWm37zbt9ze+8Q1Onz7Ngw8+yPvf/34uXboEaJfvoih45zvf2T72kUce4dy5c3zyk5983u1lWcZyubzudrPxh3/4hzz11FM3lXWnUNSyJlpPszeU8ZcEb+UiK/09UqG0JvsZXyuV0HKtGznQ69coHEbPHI4/J+b7yxd8zHcKpRSXLl3i93//92/7NBvugUJbCInR6LOfy9lQv4EK/ec6+kspgk4H27abGC907nZT8AkgTRJd/NR1YzLV/Cm0oVqapvi+j2M7DIbD1szMb5yvjUbjHEdxa17mOA6r1QqzMUuzLAuFjhwrigIpZEsfl1ISBAE7Ozv0+32klLiuDoxf07iNxolaCMGFp55CCsloNMI0TC48dYHlckmSJsRxzOlTpxkNR23Ot85krijLgsn4BFVX9Hsd6rqm1+vpjOeiaDK6LaRhsLe3x97eHiC4dnCgM7kb7XaeZaRZxuHhIZZlkSQp08mEKI6buLNOe4yKPKfb7dDv9xDNcwbtvm1ZFt1Oh+3tbba2tzEMo6VgJ4kuksuy5MrVq8xnc8qyoChKXNdt8tJFO9l3XReF1mp/4YtfAGB7a4vlckmRl1imRZZkfPnLX26Ov6AWFUrWOK7N617/OlbhEse1ieKQ7e1tHNdppvw0TRE9me8EAcvFgjzPOTk+Ic/y1vBu7Yre7XaRUjIen2jNtmlSVqV2yweKphkRxzFSPP2GVxQF3W6XIs+xTJOi1IZ4RVmSJEk7sd9gg1cqcq9gfN+MyqrIvJzMzamMmszLqeUmU3WDDe41FE7JhTdd4cKbLxOOvjMmS2XUHJ+fkPn509u1yvZ9o3iZTc3f/va382u/9mt85CMf4V//63/NhQsX+N7v/V5WqxWHh4fYts1gMLjud/b29jg8fH5t+8/93M+1UsR+v8/Zs2dv+rqLouC3fuu3Wq+fmwElFKtRTNrJNkX2TcA6wkuhSDsZq1F0nW66sEuUrG/oUCsBJ2enL6oREg5jZvu3hplQVRVf+MIXuHr16i3Z/gvhrrdrreuKqiobCrB8dreioT488zXudjokiZ5o9/p9kjgmL0vt0J1luJ5LkRcN3dlsMrr1FszGYKxsjMuA9v9SyFa7bZlWm++8WC6o65pOt4NpmZimieu5jIYjXZi6Df15uWwnmOuC/uTkBD8I6PV7oNBTeYHWfZf6QyCKY6yGWr7O2rYsiyiKGAwGOgancUjX02SF67ra/CwI9PMpCpaLhS7kmkLV931k48qeZRlpkjAYDFr2gDR15Nl620IIbNtpimOHMIpY28GvVjoyQimF47qsVivCMGQ00scg6HRQdd0WzEopioZ+PpvPUbXSOd6NU/y5s+eQ1NRV3T7v9XQ3jmPOnDnD0eERruPS6/ZI05SyLPF8Xx83pTANrW0/qRWXLl7i/gfvRxqyjYvzA5+3vu2tfPMbTxLHOqe839N544N+HwUUa8110ySI41i7yDfno0K1x2Y6myIQ9Pt9irxgPp+jlOJkPObUqVNk85k2q1OK+WKB21DObcsmjCJ2dnZaLfuaPWGaJp1uh9n09po7bLDBywrNG/xyJ6S0KrIgw194FG7J7lNbyPyu7ylvsMEGz8QzvtTF3YRa1vTGnRtK30i6KeFWjFEaZIEutsNhTBpkDI671FKxc3n0Alu5fXj3u9/d/v2Nb3wjb3/72zl//jz/5b/8FzzvO6P1/vRP/zQ/+ZM/2f57uVzekmL7D//wD3nve9/Lo48+elPivgqnZL6/oLI2jdSXjFpPqwUCJRS5WyCUoDMNQCiSTsa65s68HCszX1QWtpL1i26CdGY+ZmG8hCfxPGtQitlsxn/+z//5pm/7xeKuL7TXBFkpaF3Gr8O3vMhaw6oY9IdEYUgpdVFZV5V2cvZcbNMmzVKSNKGdhj9jY2WpDapQChoaspQS29GTWb9xMg/8oJ1Oep5HGIYNZdtp3M7LVr+8nvaWZUmSJqhaTzJd16UqS+rqGUUcOtJr7cC9mM9xPbehn1fUtdYlp2lKrRTdbrfVCi8WC1DgeI42OZOypVzbjq2bFXWFaRqUZUmn02mbF6PRVtPUEM3EXRf0dV2TZpl+3s3vaAM2k8BvnNbLEsMw2lxx07LodrvMFwvsJu87DEPSLGujrFzX4+DgoCngddZ5EAQIoKrKJlLL1Y2TNCXLM9I0xfM84khPv23Hpsh1VnndmL9JIZGN/tkybaIw4uJTF1mtQt781jeCUCilY0U6nYCHX/UQoDg5nLBcLZFCkudFQ2OvGh13hePYbWZ5EASt0d7apM22bFzPxTKt9jXyfB8aSrppmIyGI9IsI2iizQyp11lXFfPFXLvDuy5ZlpFlWou/XCy17r3pKK3P102Td4NXImpDf/GSlSSYe1j5Xf8xt8EGG3wbhFsx4Sgm6WYEC5futPOCv1MZFYtdTZNe7K2edf98b0Xv5IW3cycxGAx49atfzTe/+U3+0l/6S+R5znw+v26qfXR0xP7+/vNuw3GeZundavy7f/fv+Gf/7J+95O0oFEkv3Rig3SQIBLlbYCeWLrBnPk7kYOUmQsFqFLHYXTE9tUAJxc6lLb6VKKaEponLWqKEQtSC0q4onBfhBK8gmPsE8++sWfRC+O///b8zmUxuybZfDO7+Nn9TOOvbsztbjXXUM/7UNJaiKAmCAFCYpoEf+EhDkmc5q9WKOIoxpUFRFi21F/TUdDAYaLouMJlMkIZsKdlCCIKgQ+AHZFmGaZnkedZOqQf9AUVREEYhhweHJGnSFtpKqVYT7bouvX6PutGNjydjiqLQHSelGtfqnCRJ2N3bbU3X4jhui99ev0eWpiSNkVjaREoBpEnKKlwxm82I45igiauyLRPbNOl2OnQ6HaIoJI5jsiwjikJWqxX9/gDLsgA4ODhgMpkwGg6xbJuz585x7do1VqsVQghWqyV7e3sMhsO22J7P55RlSVFo2vRioXVBvV6P4WBAr9ej0+m25mT63x1M08RxXM6dO4dSkKR60h6GIWVRMBwM8QMf29Hu7JZt6SK0MYLr9TQrIEkTTMMgiROoYXdnj7KsOT464vOf/TOo16WqaovtRx99DfedO42iJk5itre3mc3mpGmK47jUjbO4aZpEUcx0qvOyXc9t12NaFnmus74d29FNjKYxYVoWaZayaBoPx8fH7XOQDX3eNLTkQEpBnmeIxoDNsiwMY+2WrxBCwfq2wQavMKTdDJRgcNSjMjWVfIMNNrjHISAaxpycnXHxdVe5/OgBcTdltr94Tg22rCS7F7fojoPntTNZjSJWw0hrwZvb8bkJF193lcMHxtSyvqP67jAMeeKJJzh16hRve9vbsCyLj370o+39X//617l06RLveMc77tgan4nHHnuMz3zmMy9pGwrFcidkufX8LtYb3Bjs2MJOrfbfRmXgJBaTMzPG982wU4v9J3YwSoPKqjFKed15XwvFcivk2quOiQYJRw+MOXjohKP7x+TfzgQNQEFnGuDE9i15bsvlkt/5nd+5Jdt+sbjrW/1KacOz9XT2uRgpqvlD6T9wPQ/DkJRlhcRAUmFK82mH61jHbgmp47100VW3zs+Br52zq7Jid3eXNE0JOkGrpV2ulriui5DaTG1re1sXSUXO9s42Uoo2XqzIC5RSJElCnCSYptHGOZmWyWQyodfr47re067nzXMeDgZcOzgAaHOW67pGAWmm6eu1qlmtViiliCKdv7yOH7MtG9d1W8p1lmUYht6/ZZrMZjP29vZYhVEbL5XnOavVEs/zmqK7r6fNUYRlmjx14QIPPvQQB9euNTRzve3lckme68D7wWBAGOps6eFwgJSSTqdDmmaAbjKsVktNt+9owy/X1XnWR0eHFEWOaRq4jkNVVcRJ3Lp267XrrPH1G4HO5Y4ZDAYsFgscx2E2nzPo9xltbXF4cIjj2+RFztHRMcfHJ+zs7iCFAegmjm3bPPLaRxgOhzz21a8RRxGOq6fsw+EQz99iNptimCYITXOfzWY4roNt6+Mc+L6Okqsqlqsl/V5fN0+kwLYsup2uXndzHlqWfr1Pnz7dUsoXiwVhGDHo9zEMgyRNtCv5MzTajff+ZqK9wSsWlVVx8Q1X6Z10Wu3ZBhtscO9DGYrSqEBVHDx83PxQ4IY2RiWx0+YLvdA0cVELrNSk8J6tx1aG4vj+55iECSjtmAuDmP0ndjALAye5NYXCM/EP/sE/4D3veQ/nz5/n2rVr/ON//I8xDIMf+ZEfod/v86M/+qP85E/+JKPRiF6vx9/9u3+Xd7zjHfyFv/AXbvnaXgyyLOM3fuM3eOtb39oOa24UcT8hc3M2Zq83D0IJZCmvk12kQU7UT6jNmnAY05sEDA/1sCoNMkQtcVJLBz0p6E4DMj/n+PzkaW33i/gS6kQ2g6MuZm7ckOzjxUApxa/8yq9oJu8dxF3/DaSuq+t0td/6Qj3TI0o01FoBVGVFXVf6JGmmyZoJriOz0kQHs0vDQKmaWiksw6AqK9IsRSAIAp/pbNZqw6uqYrVcaWfpvGhim2hylnWm9PHxsdZNlyXT6RTPdUkzPRUFRa/bYzwes1wu2dne0ZnJVUWSxOSZgWlZOse7qiiKgu2tLcqqbCfxSZriuC5C6Lgz0zBZxSsGw8F1zuoArusyX8w1ldxxKIqCoBNQlY2L9mjIKgwRQrZ68OFwSFVVzGYzhBA6A7quGQ2HJElCr9fjiSee4PSpU8RxTN6s0TAMXNchapoYlmUSBNp8bX3sfF/T6/W0Wzt7r6n16wzr3d1dPN8nbCbrYbhq3bwDP6CsShzbaXXoURjheR7S0K/x3t6ebhqUBeEqbDK+OxyNj7Fti7qGrz72dd5k29ppvNbiAWEY1Kpma2eLN7zpDRweHLZU9IODA60Nz2LMyiDwuiRZguM6bdyYdGTjTp5RVzWu4xJFEUVRMBlrVoTW+FcUZUGn09FO7c25tVwtKfJCG/gpRRiF2JZNEASaYm4am8+dDTZYY63Z3g3pzgLSIEMJhb/0yLyc7jS46R/qG2ywwcsIz7i8p2fmAFipSXcS0JlqCdr09Iv4Av58bxPNz6NhTNxL2L48ojP3X8qKXxBXrlzhR37kR5hMJuzs7PA93/M9fOpTn2JnZweAf/Ev/gVSSt773veSZRk/+IM/yL/6V//qlq7pRnHlyhX++I//mO///u9/0b+zHprUhtYPh1vRdY7YG7w02Kn1LM110ktQsmEDG4rFbogChod93Ngh7qRknmon0XE3xSwMvJVL0k2+/evTfFc1Sklv0sFJb02T6vLly3z5y19ufLbuHO76QlspEM8okl8QApJUF8qWaTUaWEFd6oxjlNYaSEO2U0QpJYNujzzPMERNlmZ4vkfcREUZhtYzl2WJqhVVXREEvp62xjGu5+E4DlEYYloWSZJgNNnNVVVhGiae60JjdLWzs0MUR8RJTCcItPGYkJiW1UzsRevUvXYQtywdJyWEoCwKrRcXgqQxMMszPUm1TBPDNHA9j26nQ7fb1RT48bgtHC1Ta6YtxyHLtMa40+2SxDFVVeF5XlsAL5ZLVK0wDInrepRlxVYThbVaraiV4qmLF/FcF9txcB23dUovCj29VWh6R9E4dG+NRriNpj2KIlzXY7laNTIB3RX1PK/VZLuei2XpArQqKyaTCa7nkSSJppJbmtZflJp6XxRFOw0OOgEIQa/b1ZNhBAcHh1Rlyetf/zp2d3cQQtP1lVBIU7C9s8XW9har1ZIkSen2O1y7do0tOdKU/U6fyXiKNCRFUbQXeSfogNLNirXB3Po1nM/nbG9vs7OzS9VkpydpCuiMcNf18D2fONHGd2vGQ1mWeJ5HnuffeprznPSODTZ4hWFyek7/pEsaZByfnzA47t7pJW2wwQZ3AIVbMj2zIO4niBdh5vRisGoozKut8JYX2r/5m7/5be93XZcPfOADfOADH7il63gpmM1m/Mmf/Alve9vb6Pf7L/j40iqbaCl9rBc7q02RfZNRmdV1DuMAdmJhpRa5n2OlJl7okHUy8kaKZRVGyw5RQiErib/w6E46rEY24TCm+DZxm4OjHnZi0Z0Ft+Q5lWXJ7/3e73Ht2rVbsv0bwd1daK8dxZ9RUKj2j+f7HYWqa3w/wLZsiqLQuthGY72O5XJdVxdYlS6cozCiLMvGsTxtsp91wZdmKVVVI6XAsR2koePGPN8nL4o2y9pxXeIooqrrdgKbJEmbay2l1AZh8zlS6AlslueYhoHt2JRFqek2grbA0jpem7IsMKRBf9Anz3LqukaaQlO8wxUPPvggh4dHukAuK1bLCYv5HK+ZuCIgCII2kgzQE/IkoT8ckiVxW0ynWY6UEsd1sWoFSjutR3FE3VDlq7Ki3++3mdxSGsymk/aYdfs9LNPGskxWqxW9Xo+iKNjd3eXawQFSCPb29rAsmyRNsLEoy5I8zxgMBrq5UcDZs2dbs7HR1ohrV69RFNoxft0kSauUMAzxfR+3KfijMOT06TOsVkttFGe7WiedpHT8DlmccnTtENd26Q97UGstliEFghqQdDtdgm6Hrb1tHnjVQ0yOxly6dInJyRjf98izjCxLEULS7w9YLnXjIUm0bt7xdPxYmmkX8bIqOTw8QNWaXj8Y9KnKiiiKEOgYONd18QMf07Qo8hzDNprjkl9vaCLAFDffwXGDDe42pJ2Mwi20WYupmO0vtZvqBhts8IpE2nnxvg2iEiip2ozhWtbP6W4Ud1PmOysGJ5tG3gvhz/7sz/ja177G29/+9hd8bNLJWG6HCCXI/Jza3LiM30x4K4etq0PM8vrvi515gJmblHaFWRjYiUXhlCQdLfG0nqHpFkrgh1reqVD0JgFGKRmfe3YajhPZ9MYdupNbyyp78skn+fSnP01RvIBG/Dbg7i604Rka6qa6fiH6rBDYtkWeZcRR3Dp3u66rJ9qANKQ2FCtqhAAptZN0J+gQRiGdToflakm3221p4tKQOJ6HqmrKosDzfba3t7EtiyjWhatAtH+XDR1bCkmv1yOKtA56Mpm0U3KrMciStoUUkiiMcFyXstRT0izPsG2bJEkYDUdEUcRqqXO6HdchiXXG8sAeEIURdqOXLoqChx9+mNlsRhTpBoJpmgS9AMdxiOOYyXRKr9dtM7wXjVkZKOqq5ORkiu/5bO9sE65ikiSl0wkQtt0YjcXEcYzvB3iey9WrVxmNRhRFTl4Ujf5Za8st226NxA4PD7HX5l5AkujiMkNHq3me19r1O7bFKgypq4qiLCkOj8jzvI3yAuj1egghOHfuHKvVqnXrLsuS8cmJft0LTb23Xe267nk+i9mML3/5q1w7OOItb3sz21vb2uFegKLSVKa2yaOwTZO9U7vsn9pluVhycnJCuFqxXISA5OjwWOvVpUFR5jr2bbXA9VxUXWNZupEw6A/aJsFivsCyLXq9HqvVCt/3WybD8dERtm2T5TlVWepzUSnq5nc3tuMbbNBAcF0ETH8z0d5ggw1eJPonHUqrZveijvk6emBMNEye/UDZxBlt8IJYLpd87GMf47WvfS3d7nO/Hxd2yeT0nKSb6uJ6833mliB3SpJOijkLEOr6g+zGDjwjot5OLK2lVuLbxnvJUl7/eikQtcBfufROOngr95YW2VVV8bWvfY0nn3zylu3jRnDXF9rtqyl40S+cbdvMZwtNya60lnlnZ4cwDMmLgjTV0V6GqWnlpmmSpilpmmrKcZJgNT9b51FHcaRzs20H2RSa4/GYNEm17rYosEzdARJCIGRDXTcMnd9dlppa7boodJyTlBLHdkBBWZUEnYAsTbVJVplRlhV5FuK4js6iDoLW7MyQhp66NwZn2rCtg+d71GHNcrVsncABaqXo9XrM5jMM02B3Z4dlQwu3HJvhcIhj26xWSwLf5+x9Z5BCkKYJeZ435nIlruty4amn8D2PwXDIfDbj+PgI13W1wRyCTqeDqiSz6ZRur4vrOO0xAK1pl1KwWq0IGup8mqbUtUII2seqqgQUgR8wnU5xPbedxnuep2PH0pQsy8hzPeVfZ032+j2WCz3NFkKQ5RlxHKPQ1KYizxuqvuB/ffkr3Hfffdx//wNYlolCaTq4ACn0m86aVi6A7qBDf6gL/DROuXrtkFNn9nnqqYs6972osB2LLl19HhiKKIwwLZMkTUibqK+1aV2a6dfc932yJv5sa2uLMNJu62VVkqZpW4QLIZqie/Ohv8EG34rx2RmlVSHQkSJJJ6M2K9zIoTZqCrtkcNQj7WQYhYGdfWemPRtssMHdj/n+it5xh9kprefOn4cOa6Umbnh7YrLuBXzkIx/hPe95D4888sizZJ9rGrOSinqTk31LUVkV0TDGjRyszPy2dZRAYFQvzJTMvZLFztORebLSmdzbV4e66L6FRbZSisPDQ37zN3/zjmuz17hHlA5KD/BezGvXuG+bhqmLUqk1u0dHR6Rpynw2o9/v49gOdVXporiZMBtN9nLdmKNJKZ/W2jY7r+uaIAhwPa3hzvKsof4KLFtPlNea4U6nQ7/fxzD19LosCrIsa0+OOIlbB2rTsgj8AM/3sWyrMQdLkYZB1lCPlVJtYR1GEb1+n7quWYUhVV0jhaDIC/ZPneLk+IQ8y6ib6KuqKnnyySeJY53h7bouo9EI09Q6YCklURQhheDk5JgsTZlOJpQNTds0Tfwm+3k4GOic7I7OoLSbiTUK4lXCMNjCa7TaVaU11auVnsQrpfPDPc/j/PnzbbGZJAl5npEkCZ1Oh1OnTuH7AaZptRp109ARXkGnw7BpIvT6fR1dJgSu65KkCX4QaIO1pgGS5Q0V3rG127dpotD0/FopVquQo6NjPvaxj/GZz3yW6WSBIbRf/dPmiqJlU0ipu3lK1biBy0OveoAHHr6ft333W3jz297Eqx55GGlqh8WqLDENA9FMx4XQ8gPLstrscNMwcT2PKIrIiwLHdVFKNxhqVdPvaZ3TOu9cv4dpt/QNNtjgWyBgfmrJ7NSSo/vHGJVktr8k7qZYicViJ+Tg4WOSbopR3iMfkRtssMF3jOVuyKx5zyjcZ7uT71wcYWUmXuTegdXdvfjgBz/4rGJIoQgHMddedUQ8eA7mwAY3FwLifsr47Kw1P3upmJ6eXXedjK4N2L4yRChxy01IlVJ8+tOf5vDw8Jbu50ZwD0y0bxBCUJYVVaknxkEQUORFa1wmpWQ2mzEYDJC1QV0WGIaE2qSuK4SUDT2XlnIthGiczEuk7XD16lVs26bX62GZ+hAXRYFI0JNKqU82wzRZhSsMaWDbNsfHx20GttXQxbNcF84CXXCidLaz67ogaJsBVV1r6vFgQJZnbG9tEYYhdV3j2DZpktA5c4bZbMZysWBra4vFckHVTJHPnzvPbDZrGwrHx8cMh8N2Kruz22W5WOA6DqdOndbGbqaJqmtc12UymZAkCVXTaJjP51y6dIkgCLAsi6IocT2HVz/0CK70Wa5WenJf15w/f77Vqruui2zyoSeTSeuUPhgMyLKMoijp9nqcHB9jWyZZluLYDoZh4PvaLKzb6WDbNp1OhyLPoWmKFIXWsa+WS2zbJs9zTEMX991On1W0pKoq+sMh3V6fsio5OT7BcVyuXTsCQ3F4dMhTFy6yu7PNQw8+yM7eDqZt6OK8ls1bSM3aJ1OpGqRESOgPdUG8u7PDQ/c/TBInXL1ymauXr3L+/vtZLBZahtC87o7tcP7ceeI4Zj6bYds23U4HKSUHBwf4noeqFXkjVVANdbwsS92cMV95l/cGG9wICq/k5OwUgOXOitVWxO7FEYcPjMm9Ajd08FfeHV7lBhts8HLGbH/J2cf27/Qy7jp88pOf5Ctf+Qqve8vrifoxhVuihCIcxlR2daeX94pC0k0JBzG9aeclbysN8tbhH2hc/m8P9z9NUz74wQ/eln29WLxC2vXXa1aFoNX6hmGIH/hNBrfQxbGlp6TryK8i12ZT9ZoyjGjo3bq4rasaicQyLIqiYDQcsr29jWVZ5EXRUqrLsuTsubPaKTyJmU4mJHGCaZrkea6joJp1rCO3up0uruu1E++iLKirGsd1cR33ulzsnZ0dre+tVetoPRwN6XQ6nDt3josXL7ZT+TVdfh2vlTaT9CzPMC0Ly7aJIu2m2et2WczndDsdalWTpSndXlfTsAVQVwz7PaQA6pqTk2MMQ2qjuIZaXhQZaZowHh/zlS99BUMKXNeh1++zWmmKiWGYbXPA830M02xzyqMoavK2A8YnJ0RRRLfbxTKtVpO8WC401d2yODo6arapzcKiKGoNwzqdjm5gSIOqrlFKsVwuAUESx8zmc/I8Y3JygmlK9na3GY0GpFFCv9vHcVyEknz1fz3GH370j3jqyUtcuXLIYjanKitQAoFEIAGpKdxS08sbm3xMSzAYdHj0ta/mL37f93Df2TPcf/85BsM+tmsjpAAJJ5MTlssl/f4Ay7JZLpdIKel1u4BACEmR5xR5rhtAzSR7zcLYYIMNvj2Uod8/lITarDl8aIydWfROuq0B0gYbbLDB86E2K+JuStiPqYxNgfhioZTiV3/1V5G1Njpb7C5Z7K6orM0xvBOY7y+Z7r+0zOk0yLSsspJ0ZgGDox6yvn0C+9/4jd9gNnu2CdudxCti5KXrsEbz0Uw3gyAgiZNmSqw10GtNs5QS23HIsgRQWlutBDXPvvjXXZpa6SLcNm0UsFquKMqicSrvMhwOmC8WHB8fU1cVvufj+z5CCJI0aQt/IYSmAAu02ZllY9k2StV0ul2KpljM85wkTfFcF8/3Wh15Sx1vCtZOp4NAcOGpC/iNy3mv1+Pg4IC00fvq7enC3LEd7RRe1xiWtX6SRGHE7t4udV1zdHTEmTNnNGXbtjFsHXTvC0GWputfoa5KkjjGtm12d3Y4OjoEGyqjQEhtVJamqaa1K4VSNXt7e0wmEz2drWvCMAQh6HZ7DIcDpg21v2qaHGtdt1KqnVJfvnwZ13VZLpf0+v22uBZCaBO0yZgszdjb22uf/2q1Is/zdjJsGJLBcMh0MuHqtWs4jkMQBK3+/fLlywwHOkP86qUD4jjCcky8js9wOOD06dP0+/3WNE2hqFFIKdrGiBA1whTYhsn58/vUqub+9Czz+ZJwFXJweMByscLq2kRhiOt6SGmwXCwZDkbMF7Mmn32byXRCr9tDNJ4CCIEqn01x22CDDV4YuVcg6gRl1MS9lM7MZ7UdtvfbiY2sBHZis9wOWWtI+sddFjshTmzf8qifDTbY4OWB2lAcPTQGoDP1G5dmm+4m3eAF8eSTT/LHH/tj/rcf+m6SXkrhlBvjszuEwimJewmdua9Nz+obp3qvtiOUUOReQTiMGBz1bts0OwxD/vAP//C27OtGcE8V2s+tLmgKnSYKTCmF5/mN5lcXrfP5nNNnTrNarlCqoWWDLlZqTRGvqhJhiGfpXtf/Xps5KFUThnE7mbYtW8deqRpDGtSqxrYdHMdhOpu1k8e0SgkC/aa8XK2uM7LKm+JfT7g7RFFElmW4rkNVVQwGAybTCYZh4Lqu1h6XmoJ8cHjAYDDAsR1GoxFXrlzGtCxGoxGGYZBnmX5sJukPBkzGY7I8I89y9k+dwpCS+WKO53lEYYTv+3S7XeI4JoojAiBtitW6rqnKkjTL2N3dJYljAs9rTN1sHNehKgu6o4A4jQgnEXlRMhoNW7fswWDA0dERlmW1jIA0SbBtPc21TLOZbgsW8zm9Xo/lctmyAbIswzRNHeNl22RpqnXPjtY9ryfZZZNV7Xle+3fTNuj3+8xmM2zbIQqnbDcmeaPhkPFk0jRAcsqyQoGmlV/VOX0PvuoB5gtNzR8fjxkMB/h+wOkzpzFtE9MwkY2UWzdtFAptjCdEhQH4gYXnbVHvjThz3x55VjA5mfDEhafI0oyiyPA8n1pVbXZ6GIYM+oNW62QYBnVdty76G2ywwY0jC3KyIAcF4TCi8Eq2Lg9Z7C4ZZCalVbMaxkTDxpZV6IgfJRVGKYm7yYZ2vsEGrzCEoyZZppQstlfsXtrCSr+9ydQrGavVit/+yG/zqh96DZVZbYrsO4UmvCkLci4/coBQgjNf38NOrRs6d8uGjaCEjtJ0Eht/ees/B+u65td+7dc4OTm55fu6UdzdhbYAKYXmgq/TvYS6vuIWAmoFKFC6UK7qqsmozpoiuiJchVofrRRxHNPpdNrCRbtqG1of3WwKQEjR7ko2RlZFUdLpdPB9nyiMQIClGsfoNEMIQZzEeg11jWlZGFKSFwVRFOnCryjaTOSqrigLTT0PVysGg0FLo86zvKFnp62j+doYrN/rE0VRGxO1tbWF3USUzWczbMdpYrQMirJEKaUjz+KYvb09ZrMZk/EYt9EBCyl1/rdSpGmKkILRcMR8MaeumoxpITFNizqOicIQgSAMIxzH5sqly3i+jxm4VLkiLwv8IGDUFMTXDg6I45grV66yvb3V6oyrskRKgyxNkZ7Xao+LoiDNMsImjF5Po7329Yyb4ryua7rdLkVRMJlMKIqi1YGv7x9PxkgpMU2HJI7xfZ+joyOqskSh88UvXb7M/t4eR0dHdHs9TMvShml1RaerTe0uXbxEWZXUdUXqZxweHCOl5IlvPoHre5w5fZozp08jDIntWECJqgEUtSFbQz9hgDQgMBw816HX7XDuwftZLRccHU0Yj8cIIQmTkG6vS5mXbfzX2lANeNk4Lm6wwV0NobXcANMzM5SAyX0z+kc9CrfAzA36xz2mp+cMD/tYqUk0SK6LFNtggw1eWajNmqyTk7sFR/eP2X9ymzrZvCc8F77+5OP8yVf/lLe+6m13eimvbIin/6+UYr6/ZPfilmbbvshi28yNdhtmYeior9uAS5cu8ZWvfKVlub6ccFcX2lLoCCud7aXNp1A8Y+qsMISJYelJsmkYrFYrhK0dmj3Xw2uKtzzPWSwW9Ho98rygLCsEEilB1bo4N6QBKK2fRWdhAy0VuKoqDNNoqNeKotTu2WEYUlUVRV4gpNAu04g2O3rtpJ0kCfP5HN/3cT2XxWLBcDBsYqf0c9JaYr3+9bPUDuSa+r02UyuaKe3e3h6L5YK8yDk+OWZ3d5cgCNrJ/Ww2I01THNvm6OhIT4M9j+kTTyClxLJtyrLEME1GQ02VHo1GWte80tnas+kMVSsMR0dfnT9/nsVyqQtaU5KlOaPRCIQgDEMcx2G4vU9ZVoRxzLQxn9MS77o1mcvzAsex2dvbbR3K5/M5juO02utut4tSiiRJcB2X5WJJEAT0B33CVQhCywI0hVvgei7DwZCicUu3be00PhgMWC4X1IDTOLj3en0GgwFFmbO7s0OtaoajIQJBt9vFNAx6/T7T6RSFwrFdbBSmaVEUOd2O1lGrWrCYLpmPF1z45lOcv/9cM+12CHwPpKBWAoFCChCNhAChkIbO5hS11nQPR33iaJ8sL7l88RqTyYSwinTh3jid17W67vzcYIMNbg5Uc0mpxrl8DR2PYnP0wBhv6ZL0U3af2rpDq9xggw1eLjh6UFPKL73+AOPCZlz7XFgcz/ni7/4Zr/7eV9PZeu5c7Q1uMwSEwxhZSdzQoTP3n5Wz/a2I+jFxL20LdiUUL/ArNwVKKT7/+c+/bHKzvxV3daH9zOndWi2thKBSVTt9XmdW21IXT51ulzzLdbSS0k7jtuNQ1TVuk7FsmiaWZSKES1npyapS2gStrmqtr5VrbXbdRlIJIaDUcVaWbbWma71ulyiOKawCaUgsy2K5WOL5PlWTjz1fzNvnZVk6Bmw0HJEkSbvtoB/guA7hKmym50UbvZWmKb1eT0+WlUFVa2pxmqZUZaWLVtvBMvVU+/j4GNFo1dfFrWEa9Ho9JpMxOzs7LJvIrTzP8G27XYdt263WW9WKU6dOYVomk8mEuq5Zrlaa+m3bWvtc5CyaBoEQgjRLcX1tlLaY6yYASrG3t4dt24zHY2zbJggC4iSGKEJKAyn1vqU0ME3FzvY2eZ63pm15kXP69GnKsiRchcRxrCnjptW6og9Hw6b4rqirCs/z8D2/yaAWSKlp5lmW4fsBKKiKitlsph3UTVMbuC1XXL1ypX2us9mcMAwJ/ABpS3wvIM1S3WApCoqiwPd8HMflyuUrXHjySR586CGkBM9z2d3bwbIMqJuWSksxr1FCYZrryLCKTtcmUC6D/qOswhXz2ZLFfMFsNidJUvI0a5/LBhtscOuRdnSjEwWyFrihgxPZd3ZRG2ywwcsGTmSTuvGdXsbLFp//8Of43r/x/+KhUedZudob3Dkst0JqWeMvPWT17TOwk25KZVXIUrD31DZGYWClt7bMVEpx6dIlfv/3f5+ieO6M+zuNu7rQNgwD2UyZtd2ZQijdRalU9YxitGI0GjGZjPXUWRqNo7ie/BlSUgtBXVWEjZnYmnat0OZpZVXS7/a5dPkSju0QBD6FqvRUtKERr3OgLdumKiuqqmY21e53QgpWyxWOY2PbDnGiKcpSSFSt6e5rl+i1btz3fJI0wZAGRVFw+fJl7Ypu68zosiqxLRvTsuj1eyRpQpqkLSV6XRAbhkEn0EZoSaJzCXXutNZ0p2mKlBLX8litVpw5c4bDw0PKomj14XESIxAkaUqv2yVJEsqyxPO8VhPc7XYRCNI0JY5jlksdl2UYhj6OQuvA57MZddOcMA2BEBbdbpfFQrsd+n7QOrOrWjc2XNcjjiOdgd5Qxw0p8D0Pmni1brdLkqSkSaIbDFVFEARkeU5VV218WBRGnDp1ise/8TiGYWA7+jg5jsP27g5JHOO6LlevXqHjd3Bcm53tHZaLJWWu6d6rcMXZs2c5Oj5GAGfPnWvd05M4wbKtVgrw0IMPMplOW+dzIRRCSCbjKWmS4gUely9fw/cd7n/gvDZRU6ottnVE2Pp81dFhCAUGdPs+nU7A3t4OaZqyWq2YTqYsFivms9XtuhQ32GAD0MaRwwRZSo4e0JMsO7HYvbjF5Myc3rjD8f0TLXFa/4oS7b/PPL6HrDdMlA02uJdg5gZ7F7a1nHCD50QWZfzhv/0oZ19/Didw7vRyNoB2Mh2OYpSE7ctDjFI+b7G9dXXI6OoAEGt/0NuSm33hwgW+/vWv39L9vBTc1YW273u4rteK+Ne02SxLSdKq0XBrLW6eZZRFyXK5ZDAYaDHsMyGENt/KcwxDUtcVau0WXemidT6f8/rXvZ7Hv/E4w9EI0zQ5OTnBth1d8Deu267jEIYhlqXjqh586CGkkEymEzpBhzBcEccxeZ63UWJrGvloNGK5XFIUBVEd0el0ULViMBwwGU/Y3t4mTVPKqsQ0TBzX1Y7XpkW31+Xi/CJ148AtpMBxXQypv7gFnQDQztvbOzssFwuuXr1Kp9PBdV0ODg7wfJ/j42NM08TzPXo9XcCvlitdjDfTXs/Xk2DP90mTpI1Dy/Mc27HJ8uxpHbRSlEWBYRiMT07oDwZYpslgMCCOIga9Ht1OwJWr1/A8D8vSDYuqcRXXU3SLNDPo9npIIciyjLrU3SvXcRpDs4SDg2vs7e6RZRn7+/skaUJRlPR6Pfb393nyiSexHYeLFy/y2kdfy9WrV5nP5himbr6MT05wXJfVasV8viCNUxzXYTQcMhwOtWt8Xbf09f39faqq4sqVK4xGI6IowmnWU9c1Arh46RK7u7uEYUi4CimrkuFgQBxp2rwVmqgKDENw8anLWLbFAw88wP7+Hn7gYtsWqqygcSxXQiGUaDXdygDTkQSWh9/x2Du1Q5GXnJyMb+PVuMEGG6xRmzW52Xh8eAXhMAYBq62I09/YZbkdstwJkaVkdNBnfHaGmW3i+DbY4F5EaVXM9hcEj7l3eikva3zm//4U//vf+UHOvfn+zVT75YLmZYiGMU5s4yQWohJYmYVRyevo5Pp76e193aIo4t/+2397W/d5o7irC23HdXFdpzVD09NC7XgnAJSeHNZVjbB0RrZp6qesY7RKaCKf/CZeqyxLak3YfdpgTakmcktwfHxMr9tj1dCqfc+jquqGPjyj2+026xDESUK31+PSpUs6uznLEIDn+WxvbwNQFFrHHccxVVWxXC3baXSaaMdsKSVbW1uokTZqC8NQu5pLQc80ieqa2WzGcDjE933SLCVN68b1XOqJfFlSJFqX3O12Gyp1rFkBhmQ8meC6Lr7nUdc1URTpTGig0+nSCTqswpXWo1c1dVVT1RXz+aw99pZlMRgOOTw4wPd9qqqiPxig6poojrBtG0MaxHHM4dEhruNqM6+iZDyeYBiS5XKJaZoYhkEQBMwXCxzHaSfzKNU0N2xMqafna+O6JI7Z293TTYwibyO7DMMgyjKm0xmGYWAamgUxnU5ZLJcYDfV+0B9guzZHh4c6EiwIcBx9TKIoxrZs6lphWpqFMF8sMKRBp9OhEwQYpolpGO05EIUhtuOAUu20u6xK0jQFIVgsFni+h+PahKuYoqhQqsYwLb7yvx7jyScvsLOzzenTp+h1Onieg+noYyAkyPV5rGoMCUjZaPkFhmkx3Ordrktxgw02eD4I2i8rtVlz5dHD9i5v5TC+T7Oedi9ubabZG2xwL0JwW7Sq9wL+2z/9f/h//9//nzu9jA2eA9MzcwBkIfFDF2/p0pn6SHVnPreUUnz84x/n4ODgjuz/xeKuLrR1saenhrVS5EXe6I2fzrs2TZMsy9qM5XVWtdZdKwSKvCio6xrD1NpmaOK6mjdGKSRlUdIJOjiug2mYHJ+cEEcxQRBQVZqW3Ov18H0fwzCYzWbUqkYKQa/fb827qqomy3Wgu+d5+Pgsl8vWUK29VTUIWu31ZDLBaoy7pGEghSBJEo5PTkApsizjiSeewLJtpJC4nktZlGRZhmVZlFWlj0WekWaaXt7v9QmjiLqq8T2PXl/n3a0n7LbjsFgsqKqKra2txgxO64YBrly+Qn/Qp9/rt/ndWZYSdDqtC3tZFCRJQpZlOM32FsuFpsUnMd1Oh+FwyOHhIbbrYNsOOzs7HBweUhQl3aZBUZQljm0jpGQ0GhHHMVmmp82WZREnMbXSDYe6rtvXud/vs1gs6HQ6zKZTHNchjrVOKiQkaBoChmng+R6rcIVSNZ7r0gk6eK7XmOR1mS1mOI5NmqWN9tskThLyIifLMkbDIWVVtRTxoijbKb9lWu05aNs2w+FQR8xluXZtr2ttROe4KBRVVbMKI1ZhyGy+QAJbW9uMRgPOnDmli31RI9XT1BwhZJvbjQLT3EzINtjg5Qz1jCJ8trfEiew79qVlgw02uHVIOxlmsKm2XwiPf+LrPPZHX+G13/f6O72UDZ4HtVUTDmPiTkru5TiRgxc6mMULl5SZm2MWJkZ1cz7nfv3Xf/2mbOdW4q7+RI+TmCiMCMOQKAz135sppq43pDanEZIwCjEtq9Uvl1WJoMnFVtohvMgL+v3Bs6gPSinqWiENg+ViyWq1YrGYUzbZz1bjUm2YBkdHRyRJwvb2NqPhkPsfeIA0SUEpwtWKoiywTJM8z9nZ3sGyLIajUasnPz46JgxDneVs2XQ6HYqiaLTaktVqhaprHNfl9OnT9Lpdzp47i+M4PPzww5imngSvaTdFUZAXefu7oF3UPddrJ/J1q4N2yfOc6WxKnMSkzRR5f3+fMNSU56IssW2bOImxGgOx4hnF9MnxCXmWac31cqEL+cYF/ejwCKUUp0+dptfr6Sn5asV0OqXb7TKfz9tbHEVMpxNs2+bMmTMkccLJyQmqMVsrigLbcQgCfXxUrbjvzH0YhsHOzg47OzvtsTt16hRZrqnkay18p9Npp93nzp/Hth2yNAMF3U6PU/uniaKIVajPp+OTY0bDEUVRMBgMMA2TWil2d3ZwbJuqqlgsl5iGdp0/f/48+/v7SCGp65qr164yn88xpMQwDK5du0ZVVqxWKxzbZjqZEMcxrqed05VSnDl1msAPKPKCyXTGpctXeOxrj/Onn/wUn/iTT3ByPKHIa+q64Y8jEcIEZej/sym0N9jg5Yx4kLR/78x9jh4cE/USLr32GpcevUbm5Vx67TWuPPLy7thvsMEG3x6lU5K7L0+zppcTirTgI/+/39nEk94FqK2axXbI5L4Zs70luVNop/Hmv29FOIg5vn/C8f1jDh464dKjBxzdPyZzc0BLdde//2Lw7//9v2c8fvlLJG+40P74xz/Oe97zHk6fPo0Qgg996EPX3f83/sbfaCfG69u73vWu6x4znU55//vfT6/XYzAY8KM/+qOEYXjDi8/znDzPyPKcPNe06KqqG6MzQVmULQ27KAriSBfl68KsnWyj8D1fG2el6bO1IQp8z2vL76qu2dvdY3trS+uym2itJNaF6WKx4Pj4mJPxmKeeegrHdRBS4noeVVVxMh6T5zlPXbzIhQsXePLJJ6jrGtPSGm0hBA899BB7e3soFKZpEvgBZVli2bpZkKZpG1H1xDefwHEcvvjFL1IWpTZZa2jEhmFQlVVbnBqGLvLDMGQ+n7NaraiqigceeIA80yf71miLqqpwXZednR2CIGjo2U1Toig4d/acfv5KMZlM2NrewvU8+v0+VV0xmUzwPA/VmKT1ez329vdxXJfpbMbx8THT6ZROt0O329VFpqObB8fHJwRBwO7uLkmScOnSZba2RtrlXClsS+eSLxdLLl+6xPHxMY7jcPnKFR5++GEWiwV5njObz5nNZly+fBnHdnQEl+OQNMcuz3OyPOPk5JgkjhmPx8RRTBInjMdjLMsiCAJ832fQH7SvfbgKGY6GjIZDsizHcVxQsLu7i5QGeZ5z+dKllmGRpimPPvIor37VqwBd6BdFgVKKQX9AWVVsbW/jOg7Xrl3j9OnT+L6PUuD7fhMPV1OUBfPZnPHxhPF4xpe+9BX+9E8/zTe/8SSrVUwUZZRFjaApur/N5f1yuo432GADODk3Je6lHD50QuGWFG7JlUcOqcwa+W26/5treYMN7g5MGurtBt8eV75ymc9/6LN3ehkbvBhIqMya5U7I5dce8OSbLzM+O+PwoRNyt6AyK83SNGoqs6K0K+JeStxLKFztX5J2M3K3IO6lPPnmy8xOLSitklo+f7NluVzymc98Rst6X+a4Yep4FEW86U1v4m/9rb/FD//wDz/nY971rnfxq7/6q+2/Hed6B8H3v//9HBwc8Hu/93sURcHf/Jt/kx//8R/nN37jN25oLWtHamjcmZs/UQJV142mtibPc7ZGW5qC3JhyAddRw9cFLegC/rr9NA7QtapxXEfrsw2zpZ+bhtFGSXU6HfIi1znXtcKyLMJViOu67O7u6jgrkVFWNTRZ1pZlaXMvVWt7egGL5UJPyaV2QLcdm7qqCYKAPM/pdbscHh3S7XRbY66d3R3iKG6K8FJPbxsn9Lqu8Xxd+NaqbvTFkl6vh5SSq9euEkfabbuua8pCO4qfnJxw39n7UErhex5lWbbu5UIIhsMhtm2TZRllWeHYNv1+nziOdWRY4+BeFAVpmmI2Oub+zg5hGLK9tU3daMxtR0d7bW9vU1UlURQ1U/YMwzDxPK/N0XZdTz/fOGJ7e5v5bM5yueT4+Jh+v68p2paF1e9jSInruiRxgm3bbG9tEScJtVIEfkBeFPr+NKXfH+iIsuUSy7Y4OT7Bbab+TlWxvb3FZDwhyzIm4zEIgdNQwXWTBjxXO7H7QYBpmoRRyMHhAfeduQ8hJXmWIYRgPp/ryDDLot/rUxQ5CEEURa2Te5GXOLaLNA2EEFiGhW1ZLFdzICG3Cp6ML/LUU5fodLuMRkN6vT6dbkCtnv9N6uV0HW+wwQbwLA+Z5t9WZjK4HDzvr22u5Q02uEuwYY6/KKxOlnzht/+M137/6wkGz//et8HLBN9yXi93dJM27h8QzDy80CXzclbbz+26Pz47u+7fs1NLkm5KMPcZHD+319CHP/xhLl68+NLXfhtww4X2u9/9bt797nd/28c4jqNpus+Bxx57jI985CN89rOf5bu+67sA+KVf+iV+6Id+iF/4hV/g9OnTL3otZVVhVJUmGTTFJOiC2DVtqqokSVO8pkB8ZqTXWscrDQPDNFuTrqLUk0YpZGuGJoR20lsul/S6PZ3P3Rho9Qd9kjjBNE26vS5RqDXPw8GQbq/LZDzBsiwAojAiyzMs02K01WMynujn0dCxi7JAGNr8rNvtcXDtGmfOnMGyLcqiJK81hbnf6zOfz0niBN/zyYscBRS51gqvwrDJEVdEUcRDDz/EZDyhqmvquok3kzq2LM9zkiRhMBhgGEZLp/YDnQOd5zlXr15jfHJCp9tBKdVEbcV0Oh3m8zm9Xo8oiuj3eqRZxnK5RBoGZVXhuC6L+RwAaWhjtqIoCIKgyatOGZ+M2RqNCOOYo6Njur2ennC7Lp1Oh93dXba3t3n88ceJ4xjP93Fdh8V8CkozCZbLJft7eyRJQn8wwPVc5vM5pmHi+z5xHHN8ckwQBPR7fYQAKQS+77M6OiJNU4bDIUWREwQBSaqN4rJcsxVc120d69e6/zCMGAwGZJk2v9P7SdpmSJ7P6XS0znt3d1dP4xuaOUqxvb2tTeryXOu4bYui0E7reZ4zHA5xbIc4itnZ2ubS5ct0goAsy8nzEttWlGWNZ+ls9TIrmY6n2LZNJ/AxjOefgr2cruMNNtjg+ZEFOcnZ58/f3VzLG2ywwb2Gxz72GBc+9wSvf+cb7/RSNngJiIYJ0TB57jsVOLFNsPAQtdCMj6ZoT4McozTg+Nm/dvnyZT73uc89ayj6csUt0Wj/0R/9Ebu7u7zmNa/hb//tv81kMmnv++QnP8lgMGg/0AHe+c53IqXk05/+9A3tZx3/tL6tC2nf99je2QHAtm1cT0cqVFWlCx/Payl0KIVqCvRer8ep/VNPG6E1tzWVvBN0CKOQXrer6cuBTxBo6rPneRhS51Lv7e1RFAXTiS56Dg4OWK1WjCeTls4eRzreK4ojbMdBGtpwbb0vQ0qGwyFhGOI4DnmRc+3aNTqdDr1+jzzPuf+B+9t1JUnS6od7vS5lWYLQz+nw4LDRKu+3DuSWbeniMPAxTRPLtnEch16/j5QS3/M4ORlrqn2e88ADD9Dr9uj3+ji2zXyx0Nr4ho4/HA1ZLBaN07aNISVVWVKVJa9+9as5c+ZMyzDodDpUdYVlWayWKwaDAUVZUleVzgU3jDYDe2dnhzCKWCyXdLtddnd3ybMMhGB7exvLspBSsre3hx9oyvzWaEQcxZiGqZ3cl0sMw9CT3qBDEASMhiOGwyFSShzHwbRMbMtqDeMsy2a1XLG9vc3O7g6j0YjBYNBO5T3XY2t7C6UUu7u7jEajVhfe6/d1vFojK1gsFiRJwnQ6ZblcsrW1RRTHdIIA3/PZ3tmhqivKouBkfMLJ+IQ8z7lw4QJPPPkEeZG3BXlRFCxXS5SCIi+xbYciL/SxrWrqqiJNEk7GEy5duvydXL4tbtd1vMEGG3x7ZP5L03ZuruUNNtjgbsLqZMnnPvRZ4vkme/xeRmmXRP2EaPB0M9lfuPSPuwyv9Z/zd5544gm++tWv3q4lvmTcdNfxd73rXfzwD/8wDzzwAE888QT/8B/+Q9797nfzyU9+EsMwODw8ZHd39/pFNPnRh4eHz7nNLMtaHTRobj60A2dtavYM6kJZVly8fAkp9AT16PBIF61R2DhyewBYltWYmVksVytWqxWWZWFbdjv5VujJJ0AQBG2humr0a4bUbuJ5UWDkOVVZ8sQTTzAajbBtmzAMOXXqFGmaMhqNWhfw8WRCuFpx7vw5pJRMJhOk0FTuvMhZLJcM+n2d7TweU1UVvX4fgaCqKkajEeOTMQhteHb69Glm0ylpmmIYBru7u8ybSbLZZHV/4/Fv4DiOppqbBpjaqdowDFbNFLqIImzb4vjomNFwyGq1YhXqKDPXdamqCttx2GnyvAeDAUop4iimaNzbn/jmE5w+fRrHcZjP5+0Ee03j73a7JM3k1zBN0jxnMZ+TpAn3nT0H6PzzyXRKluVUVcnx0TGOYwPQ6/U5PjqiLksMQyINAwEcXDtgNBrx+OOP6+lwXrCzs0OcxAghuO+++xifnBDFMWVRIKVksVhQFAWdQE/n1+Zrs9mMLE1ZLVfs7e1hSINrBwcopVgul6Rpyu7uLtPplMl0gmVamgGQ5SRHR0hDkudFG1U2Ho/p9XvUdc1ivtAU/DQlDLWsQAjBKkl0FncYsbOzQ5qlmpUQRly5coX9/X2m0ymeqxtFXkNpl4ZBWRS6uWKsLwRB/RLM0G7FdQzPfy1vsMEGtwa38zN5gw022OBm4VO/+af8wP/5l/D6/iZX+16EgMqqqazrJ9O5WyIriZJa2y1qgWyKvKOjIz74wQ/q77t3CW56of2+972v/fsb3vAG3vjGN/LQQw/xR3/0R/zAD/zAd7TNn/u5n+Nnf/Znn/M+9Yw/NbRuWgFWYxq2zoru9/pUVYWUktowWqdvIURbTK/1zlXjKA60k/Isy1pqdeDrC3+1WrXU6aoqMQwT1/MoigLLsjAMozVjOz45YTgYkGUZw6HOlw7DqJ2y25bN8fGxNspCUZUlCtUan+3u7RKuQlbLFbWqGQ6HbSF75fJlHcFlGkgpWw2153usViFK1c20NscPAmzbptftaj2251FWJUmc6KisKNYxZaaBZWtDMCkkZVWRNWtJ0xTf97FtrasOgoBut9sWjb1ej8VioR/jODiuw3K51FTt1Uo7gpcFYRxR5AXD0RA30a7na023YRjM5zqbvK4rkiTRE+0805Fq6GYJjfP73t4ey+WSvNAXbdVEmuVZTlVWHB4eUhYFnhSYpklZlUgp6Q/6TSxcSb/f56h5DXZ2dhoztSsYUruH10rhNsZ4h0eHJHFCv99v5QWGaeKaJovFAtM0iaKIOInpdXuUZclgMADgzJkzrVGf4zgt9bwoCgwpyYsc2cgTXNdtc8E7nQ6z2YzRaNTo5n3KqtT6cCnac1YIgXwJgrBbcR3Dt7+WN9hgg5uP2/2ZvMEGG2xwM1CVFR/+//43/s//8BN6OLTBKwKlXRLaJeFQT7k7U5/euIuZGXzziW/yxBNP3OEV3hhuebzXgw8+yPb2Nt/85jcB2N/f5/j4etJ9WZZMp9Pn1ZD99E//tM5fbm6XL397Smxd121El+M42LatJ9VN4Z02zuJCCEzLREqJNHQ+c5ZnWqtdFJRVSVVVbfQVaOMZy7bpdLvarKwxQut2u0ghsS2Lfq+nHaIXc61RXiwQQtDp6NgtKSVJrA3FXMchbiKwptMppmnSHwxat+801RPw7Z0dFotFG4fV6/ZIU62hRmgjuCiKiOMEFO3E1ZBGM4XXWdFboxG2ZbFaLjk8PORkfEK/38eQOkc66HQoK+1cXhYlUkhNTbZtoiiiLEtNNbcsDFNP86WUWiO9v98e1+VqRVmWdDodTRUvKwzTbKnwi+WSJEkBCUK02ec665w2osyyLMbjSasxtG0b27a1O7sUrdPuKgwxTZOqrnjggQd1hFe3Q5qm+rV3bAb9Pv3BABS6EDZM5vO5dkh3vZZmbhoGlmW2um3PdRGyceyFVlNtmiadbhchBfPFnMViQbejqekPP/wwnU4HIQSnT53W0/wsa3PKZ7NZ26yJoxhV17qYryqqZvJvGgZ1k/Ftmiar1ap9Puvc8rUvgWmZlIU+X6u6bsz4bp4b4824juHGr+UNNtjg5uJOfCZvsMEGG3wn+OJHvsDBJ6/e6WVscDshrr+lnZzVdkhqpnzg//rAHV7cjeOWF9pXrlxhMplw6tQpAN7xjncwn8/5/Oc/3z7mD/7gD6jrmre//e3PuQ3Hcej1etfdng9SysbwS1O8VV3rKbXUkUpCCqQhW4MyVSvSLMW2dBFuGiYIoc3SakWttGlYXdWkaYbreXp6XZatXnc9te71esxm2j3PsR22t7ZJ4hjbsSnKknAVcnxyQlEUbG1vs7+/T1VVjc7YwLIs0jSlKsu2IFsbdgnAdVzOnz/PqVOnmE6nrFYrhsMhqlZ0u1263S6qrkma/OtLly4xXyxI4pheoyNfLpdMJhOGwyFCCLa2tomTGM/zcF2P6WSC7/u6cSClptUvlwSdAMMwSLOUsix545veyGq14sqVK5imyd7eHtcODrTeuih44P77eevb3sapU6cYj08QUlAWBf1+nyAIOH3mPhZhTJIk3HffWRASx3WRApSqsSx9POM4xvc9kiQhz3MODg956qmnOD4+JvADxuMxpmURhSFxkjRF9LyZeAuiOGqL2SRJuP/8ee3y3e9rlkO/j2VarVGb63kIKQj8QDvKN1NpFG282HqSX+QFvufR7/XZ3t5huVyyXC5bF/V1PE5RFLpxUZYcHx8Rx7pLZxgm/Z6WB5yMxxyfnHAyHms6e56zCkMM0ySOY6wm0ixJEmxL71s3cEAaBicnY2pVt40cyzLJy5tnFHEzrmO4sWt5gw02uPm43Z/JG2ywwQbfKVSt+PA//RDB3LvTS9ngDsHKDAaHPX7vN/4nR0dHd3o5N4wbpo6HYdh2wgEuXLjAF77wBUajEaPRiJ/92Z/lve99L/v7+zzxxBP81E/9FA8//DA/+IM/CMCjjz7Ku971Ln7sx36MX/7lX6YoCn7iJ36C973vfS/J3VTA0yZmgJACz/XwPI/pdEpZloRRiFZ0C/JGT2wahnaDdmziOMY0TZy1M7SgnYznRY7nu5iGniwWTSRUnuekadrSpF3XbbWzi+USKQRlVmpDszyjrjWd+crly+1E0ve1IdblS5fo9XqswhWL5YL9vX329vYIo4go0kXbyckJ0pBsbW0hpWzzng1ptHnSawp0FMfMZlO2RltYlkWSJEgpyfKMC089hee59PIeCtXqq7M801NSRdtE8E/5zOe6YB/0BwRBwOc/93l83welKdprHfTJic7AvnL1Kr1ul5OTE0ajEfPZHD8IQCkODg8Ybe3Q63Wpq4paqYaK7jIYDKhnc5zm9djb2+fk5BghBLPZDNOyOHPmjHYvz1LiOCVoHLyF1HrzLMvaDHLHdnQOdUM9/+pXv8pwNGQ+m5NmKY6tvzAeHx3riLKqpK5qHn30Ua5du0YYhkhDG6YdHR3R62kK+DrD3LIsVqsVhmEwGo3aOK/jo2P6gz4dv0OSpvR6Xe1QnyRYpsVsNmW0NeLk5Jgsz9je3iZLU1zHoap1o8HzPfI8bwtsQ0p9vqIwLVPT4osChGhYGza10pT6oolWu9uu4w022ODGsLmWN9hgg3sZj3/t63zyDz7JG3/4zXd6KRvcAZRWRSUrPvzhD7fyyLsJNzzR/tznPsdb3vIW3vKWtwDwkz/5k7zlLW/hZ37mZzAMgy996Uv85b/8l3n1q1/Nj/7o/5+9Pw+6LD/rO8HP2Zd7zt3fPd9calNVISE1EhY1KGg5qEFuC6JpyxFNBG3TDgX0eKqYkWVjmxla3c0QoQhiwjjkxmgYd7foMGow3YCNehCWJZDcpihBYQnVnlWVWZn5rnc/9+zr/PE790iFhYSQVFlZOp+IjFDme/N9zz333lI+v+e7vJe3vvWt/Nt/+29f0dv5y7/8y9x///187/d+L3/1r/5V3vGOd/CLv/iL35AnVFUVkiQ1PuuNbDuMIsqyary2Eojk8Ho7qaoaqqLir33SVPRgF3lRS3GLRjq8WC6a77vpQNZ1nfF4XPc7m3VNWI4ETfhYkiR07A6KolJRYVpiIN9sSSeTCXI9KDodB1VRxYZ0vUZVFPIsJ0kSwigUlnQJBoMBg6FIzu4PBvQHA3FNupAW97pdLhxcoCgK0jRtpNdOx0GWJR64/4GmM/v45LgJ9VIUhbIqyWufuu/75Fkmhtd6y+sHPpZl4bouqqoShRGGYTSd3XmeizA2CfIiryXfItV70w2epimSouCtfcqqIgwjfN+n3++zXq/Fz80zHMfBtCwhq+92SdOMLMtEhVYmPPOyLGMaBpIsEUURy+WSOBIy6zRNRSJ3Xem2Wnl0ap86CDtAt9ttqr8cx+G5559vvi8VRFGE67oURYFhGHQ6Haxa3bDZUCNB8iXSd03VxDCuqiwXS05OTkjihPl8RllV3Hj5ZfwgwDJN0iQlrgOGJEnCMHTSJMFbefi+X9/X6hWyelkSHu4oilBVTTw/xP3ebLbv1M9xS0vLn4/2s9zS0vJ6JlgF/Nv/9dNk8dfXvtByZ5IZOf+f/+UXOTk9ud2X8hfia95ov/Od7/yKJwq/8zu/81W/x3A45KMf/ejX+qO/KlUlvMqKrKBIYljUNE2EY1UVmqpi2VYzQG9SsKuqIvoSeW5VVRRlKWS5yEhIouM6FcN2FMVIUHcli/Au0zTF8GxanJ6eYpomefXFIDNZUeh2u0iyRJoISa/neYy3thqp90amvPE1b+/scHx8RKKqZJlIsHYdMdgWecFytaTIxeZ9Np2S5RlxFAOwvbPDbDbF0A1MyxK+3jQhz3PsToc+fXzfbzbQqqIKqTxVHTAmxAF5UbC/v99svE3LJAgCtsZbWJaQdEdRJGrBJBkkiOKY4XCAt/LQdI3J+QRdF0nuaSpCvnRdw7RF6vhyuSTPMzRFwQ8CZEVFkiSGwyFpmtLr9/HXa3FI4DhNZ7gky+L5mSZZnnN6dkq/P0BRFCQkyqrihRdfpNfrYSoKnudhWmbz+lt1H3iSJFy8eJHZfNYM147ToSiLRipvWRZBKCTkiqKgG3rj+S/KovnfsiQRBgGGYdR96G6z6UcCVVWQZJMojKgqsEyT0XhMmqSUVYksyVRUhGGIt16ja2KA7nQ6IihNFSF+eV2HVtQBbY7jEAU+siKh1jVqRfFne7Rfy5/jlpaWPz/tZ7mlpeX1zrUnXuILn/g83/EDb/vqD255XbE4XfDsE8+QpXfmQcs33aP9alFVUFbCV10UBW7XbeTPg/6gGRLF1k8Mk6ZpipToels6mU6FB9bUsW0TXdfF0CZLVFVJnosXud/vcenSRbq9LoZhCL9zPUAfHx+zXC6ZTCZN77KQdsv4vt/Iuzcb98n5OUEQ0Ov1WCwXaLoY9gFeeOGFWtrcYzgcotTD4mAwYDafc+PlG3ieR5GLjXWRFwyGQwzDwK5TzCsqdF14mCeTCbZtY5km4/GY9Vp0WK9WK2RFJIw7jggQy+vEc0PXefnll/E8TwyLFYRhiGmazGYz0SFuW5yenJAXOVTgdDqURcnu7i6HFw4ZjkaiGqws6Ha7mJbFcDRia2uLk+MTqgoURaOSZHxfBK6t12uOj48Jw5DVckmSJPi+z2KxoOuKnvDJdM7FS5c4PjkmjiJ2d3bRNY04ivHWa0zDoCpLijxnsVziui4duyP825JEXhQ4rsub3/Jmjo6O6HWFb1vVxAa6Kiucjuj8Xi6XlLUXPsuyxvMtrAK2kHlnIiDNsi1WqxWaJmrjZrMZSZpg2zZxknB2eoqiKviBT1H7uRfLBVVV4XZdBoMBRVnS63ZBkjg4OGByPmnC8nzfZ+15LJbLL6ou6h55oOmUb+swWlpaWlpaWu50Vmcr/uR3Po8/92/3pbS8ynz+t/891//42u2+jL8wr5tBG2havqqq4tbNW5R1KniaZVi2Jby1aSZc2nUPsQjeUkmSBMsy0Q2DJImJE1EhtRneQRIb37KkLApOz84aX6+maVRl1cjJXdflnnvuaWqfkiShqirWvs/dd92Nt/bIi0JsvWs/9Ww2Q9d0wiDk6OiI1WrVDE43b94kCAL8IACEB6/X6wopc+351jSNvCjI6+Ct6WxKnMTIkkzgBxwfH+M6LpIsarryPGe1WtHv9xkOh9iWheu4bG9tceXKFWRZpior/MBnOByS57kICpMkOo7DcDhkvpjj+z6aqvHAAw8gSzJp3eltGAZhFPHcc8+R1VL8NEk5PhHD89nZKbdu3RIJ5KulGOoNk8FggOd5dVCb8KFXiECxTW1ZFEUMBgOu3HWF2XzOoD/g4sWLHB0dcXJywmg0QlPFVnw8HuO4Dk4d5rZarVA1lbOzM2RJQpJEL59hGKiqilpv08uqRNM1BoMBqqKKrysKa39NWYnDnDzPG+90mqTsbO9gdzp07A52p4MfBFR1QJkkSQR+QBIn7O3tNT8rjiJcRxwcGLrwpa/XayzTxPPWyLLM0dERhmmQZRlRGOL7Poqi1h56mZ2dHUAEAVaVeP9vauxaWlpaWlpaWu50/v3HnuDs6p0pH275izG5fs4T//IPSaNvXLjvq83r9l/iWt1d7XkecZ1GvekaVlWVohBbSt/3OTsT1SaGblAWBYZmUhUVVDQb8o7VwTSEVDqOxeCc5cInnCQJSZqSZRlBEGBZQpL88ssvC/90v8/O7i6djs18PkdRRM1Wp9NB1YSPtygKEQRWlhh1F3XHtjk/P6cohHTZtm0cx2E8HlPkhejbLqsmrdx1ncY/nmd57eUWG9Ht7W3KqiTwfYLAFyFfssxiuSQIg6bLeTKZcHR83GxFZVkmrZ/bRr5OVXF0dERVVuRFTgUi4Xy5bKpesiwjjiL6/X4jFwcRnNbpiFqrIAiQFZndnd1m473xfWuaVnuVDbI0pdvrsbW1RRzHTKdTfN9H13XW6zVJkvC5z38OVVN5wxve0HgP/SAgTmLmszkSEkV9uFFVFY7rsF6vSZOU1XJFRUWe5+R5zunJKWVRNsneiqLgOA66odeScHFIs39w8MXuaglW3oosy5jNZhi6TlTXeEmyxLd927eBBNs725iWRRzHVFXJ4eEh3trDMAz8uuZtXXvzHacjVBFRjGEY9Lo9ojgWW/tEJN53Og55nhMEAWrdM7kJTcvz/HZ89FpaWlpaWlpavqGEy5Df/R8+RRImt/tSWl4Fqqpicn3C8//uudt9KV8Xr79Bu94e5lmGpopNdYXoTU6zjDRJm8TxPM9RZIW9OiQszdIm0EyWZbHNrodNTdNQ6+Fv80uRhV9WeGErNF1rarHW9SAryzJBvYUMgxDDMChLETB2enpKVXd067qOt15jWRZxFLG1vUWWZwyGA3Z2dpAkqemBLssSVVNxXZc33H8/iqJgGAZFUdLtdun1exRlWfuD4erVq6RpirfyAOj1enS7XcqyxPM8dE3Iw8/OzojiCFVRhMTcslAUhcVigaIo7O7s4Hke8/mc2WyGqmnkWY7rOKiaSr/f5w1vuK8JKpNlmeVy2Wxll6slZVFiGiaaKmTqvu8TRRFZljGfL1itPDRNIwhD0W9t2yiKSpokRFHE3XffXUv1ZRaLJePxqE6PVzF0o5Hta7rGYj6nLEsURSGKY8IwpCiFD1qWhSc+TpKmA13TNebzOcPhkP39fYIwbDbgsqJQ5CIcrut2m0MW0zSb9PU0SYki8RpvDgz6vb4I2fN9Bv1B897Ksox+f8DZ2TmmaTKdTOn1evR6PXTdoOu6hFHEdDrF7thNt/vu7i6O4zSveRAGTM4nhGEkusglcb5S5+W1tLS0tLS0vMb5zGc+ww/8wA+wv7+PJEn85m/+5iu+XlUVH/jAB9jb28OyLB5++GGuXr36isfM53N++Id/mG63S7/f573vfW9TM/p64fF/8RjTlyd3ZPp0y9dGtAr5F/+Pj1IW5e2+lK+LO3rQ/nKDxKbmy7ZtDNOgP+iTZ5nwW8siaCqtpdyboWdWb5k3XmfHccXQUgk5riTLrNfCFytL4pZVZUlRFvUmtqQsSizTYrlc4nZd4ihisVzUm8gua89jNB6xXq9RVaVJQ8/znDAMCcOQOI7E1zUNTdWwTCF3t0yRbv3iSy+i1Bvyg32xpZ5Np2h1mne3TsWuStH1vL+/z+7OLoDYlBsGmqZR5AXnk4nwrNfb9MuXLzMYDEhTsZWXZRlZkZuO7nvuvUd0VztiC9/r9bBMU1SRrVaURUkQBFy/dp1Lly6RpAmDemBdLpf0+mLgHI3H6LrO/fffLzrH63schVETRCZk7g6j0Yj5bEYYBqK7vCg4Pj6u68cqLMtkuVzVG2q3SUjPsgzTMOk4TpPGbda++PlsJlLnJUl0v9Yy626vi67p7O3v47guYRhS1mnztmWTxHHjne/WloDlYkGeF8RxjGVZHBwc4K99ojgiCILmwCGOY16+/jLzxZzFYsGo9qwvV0uSNCEIAvYP9lnMF0ynU4ZD4dHu9/vIkkhRL4oCwxRVZUgSOzs7ZGlGlqYkSYxliYG/LEqKvKgVCa/SB7GlpaWlpaXlL0wQBLz5zW/m53/+57/s13/2Z3+WD33oQ3z4wx/m8ccfp9Pp8K53vYs4jpvH/PAP/zBPPfUUn/jEJ/jYxz7GZz7zGX7sx37s1XoKrxr/4v/5K7f7Elq+yVRVxXP/x7McPX10uy/l6+aOHrThS4bt+n9UVUUFGKbBZr23SYBWNr3Qto1t200q82g4FFvROt3b81bsH+w3gWVVWRInUbPZdlyXtPZ6A8h16FSFGGgX8wV333MPo+GIJEmarmvf9+vhDkzTFJ3dhoGu6/R6Pfq9PnmRk2UpnucRRmEz/AP0uj2SJOHk5IQbN27UIWYyYRBi2Raz2Yw4iSnLkvl81oSaXblyhTRN0XUdSZIwTRND17Esi+3tbVRV5fr16+R5zs72NiC6Wf2130i4r127LobYNEOWpOZ77+3uYVoiXE3XdWzbRpLFIFjkOZqmMRwNKfKc3d1dijzHtm1OTk7Z2dnl0qVLVFTN9ty0TEajEcPRqBn4NyqDIAiQJKmp2fJWK3TdRNUNOnWIW5aKQLIwDNFUFdu2GI1GuN0u3W5XSP+TBKqK5XKJbdsiOd4PmM/nTCYTwjAUnmnDRJEVZrMZ9953H7IsY5kWq+WSPBNy7TzLSJKEo+Ojxuvd6/aYTqeYpgn1vZJlGduyURWVWzdvMRgMWCwW2JZF4Aes12t0Q7w+hmlu3swYpknX7TbVZJsk9k03eBwnTYXZyekZeVZQFRVZkiPf+R/vlpaWlpaW1z3/yX/yn/AzP/Mz/Gf/2X/2H3ytqir+8T/+x/zUT/0U/+l/+p/y7d/+7fzP//P/zPHxcbP5fuaZZ/j4xz/OP/tn/4y3v/3tvOMd7+Cf/JN/wq/8yq9wfHz8Kj+bby5Xf/85nvm9p273ZbR8k/n1/+7XbvclfEO4o/8lLuq8Nr/54pBd5DlJnDSeYpEwnYvKp7IECfr9PoCQPxfC76woCnbHFvLomRhUy6qse7fF91A1Fa/27Wq6BogNOpK4IE3XcLsuZ6en5HmOU/uNoygiTVKWyyVFURCEosZrM3Bv+qeHwxGqolKWwiM8GAya69yEqhmmQRAErFYrlotlsxHeSJj7/T733nsvWZZxPjnn6Pio8XgDhFGIWW+Dp9Npc4CQpil+vYndSOs33cxlUWB3bKI4Iq2H2U2wmqZqdUVXTpqmTCdTwiBkWR8EZGnWVJaVZcnJyQmLxYIgCFAUBUVWRGI50O32RL91VdHv9+kPBti2zeHhIZqm0el0iKIIy7LodDrkecagHj77vR6uK3rJN4nf/X6fPM/x12vyPGc8HlOVJVmWoWnaF33nEs0BhFxvu7M0JS9yur0epycnnJ2dicTxKKQoCiEpl2WqqkLXdIbDYdNh7roucRxjWxYdxxE2BIRHXZIlsjSrpf2i6kxCQpZE4N7pyUn9cyKhxFAVXMdBQpx6G7rwimuqCoiN/OY9hCTV1nyZknal3dLS0tLScidz7do1Tk9Pefjhh5s/6/V6vP3tb+exxx4D4LHHHqPf7/O2t32x/urhhx9GlmUef/zxP/N7J0mC53mv+PVaJ0syPvFP/3UrH38d88lf+NdMrk9u92V8Q7ijB+1NInieZfXvRR3VZrOc1v8ByeqvV1WJLMtcuXIX8/lcDGSqShgEqKqKruti4ywhurdB9BpXFWmWoigq3W6PNE3J8xxVUcnrqihZVhqZ98a7nWYpEmBalhjwgb39fXGtRUkUx82ArWkaVVUxHo3wPI8ojsTAfn7GYrEgikJ0XRcd1JrOeGuMYZpcvnwZJEkM1eciBb0sS87Pzzk5OaEoChRZae6BJEtYpsXB/gEP3H8/nU5HXGua4jgOtm3T7/fFoUVVEUVRE4h26eIlsjQTCdy1fNzQdZI0odfrNT3PiqrW21+T2WyOLMvkeS4C01Yr1r5PEAQkScxkOiHLMizLQq6T4NfrNYvFEkVRmE4mwl/uCe+22+02Se5hGIm6rTRtpOCnp6c4jsNgMMB1HI5uHSHJQn7d6XTEIJwmpGnK9vY2mq5RVhV5llMUhUhvr5PgO50Ouq5TFDme59Htdrly5QqGLhLKFVnBql/b4XBIlmWibqsOddvc1ygMkSUZf73G80TwWYWQ5OuGzmAzoNfvKyQJp+OgqRrr9Vq8hqqK2+0SxzFr32c+m+MHAUVZ4jgiBK/X64mwN6AoC7KsDUNraWlpaWm5kzk9PQVoGkY27OzsNF87PT1lu1YkblBVleFw2Dzmy/HBD36wyYfp9XocHh5+g6/+m0AFNz53nT/6zc/e7itp+SaQxRmf/fXHKbLidl/KNwT1dl/A14Msy6iqQqdjE4YRhmGQpGLQ1L5kU6wbuvBkGwayovDCC1dFKFddr3V+fs5wOGxqrHa2d1gsFqRJWm8gZVzHFVVUyyXdbhdFEcNrWRRItbe4QGwsk0QMcpqq1QOl2HB2Oh0mdY/25trSNCWKo8YzfuvWrWYLW+QFHbtDWZZ0Op3GiyPLMmdn5wz6febzOVmaEicxh4eHQo5umoyUUR36JWNaJo7jACKw6/z8vPYCD4U/udtlNBqRZhlVkjRS56r6YhL3cDjk5s2bXLp0CcMwuHbtGlmasgpDhsMhV1+4iizJuF2X2XSKZds4nQ6u41BRsbW1xWK+YDafoSoqbq/HZLZga7zFZDJhNp3R7/f5whe+gCzBYDCsDzBkLEukve/s7DCZTFjVSfLD4YjVaiW85UlKZtby9KJg5XnIigg8Wy1X6IYImwuDkPF4DBW89NJLdLtdOo5Dlqb0+32m0ylplnH9+nWGoyGyJDdy8oMLB5ydnXFycoLb7ZJEEdOZkIh7nsdyuaTT6bC9vS2891FEFIWUVYWuikC1LE25deuWCDSTZSzLboZkCQlN0zg9O8WyLZarJY7jEAQBuqaJcDjTpNsThz1VVaHUgXO6ptWHSjmKqmCaJmWbOt7S0tLS0tLyZ/CTP/mTvP/9729+73neHTFsexOPP/n453njw9+O5Vq3+3JavoF86hf/DcfP3Pne7A139KAt+o4rgjBs5NZlUaLWQ3CcxFimxXw+R1VUEiNBVVRkSUZSJBaLhdhi93qo9aBSFCJZuqwqIU0uCopa1hxFUeO1znNRuQU021+qiizLWK/XYtApRQp4WXcpT6dT4rpiTNeEH9eybfJ6Eyy2nn4zXNqdDmvPY7FY4Hke29vbdRp6hVvLsMMoxHEdqqqqt7whkixz88YN+v0+qqYSxzHDgRiqsyyjrCq2t7dZLBYieV1R6tAvi9O6XxpJEhLrPGN7e1tUY1kW3trj+Nlj9vb28H0f27aJk5jtrW0hbS+FfH4TPKdpGoqq8sLVFyjKAsdxoarw/aDxxGdZxtbWFsvlUni1ZYleT/ipAc7PzxtvNkC/1yPURGp5kiScnZ1hmgaLxRzLssQhSb0d3traYjQaCf+0LsLgojBq0ukVRSEKQzRN4+bNmwyHw/qwwiBLs1qeLl7/OIpRNY1OPSTneY5u6ELOHkdsbW1hGAbT6ZTVasV4PEZRVGRZYjQeMZ/NG896nud4qxWGaRLXqeu6phPFEaZhcnZ2Boh8AcMwSNOUnZ0doihicn5Ot9dDlmVWqxV7u7t46zVGnUOQ1j56SbqjBSstLS0tLS3f8uzuilDbs7Mz9vb2mj8/OzvjLW95S/OY8/PzV/y9PM+Zz+fN3/9ybP6NcSfy9O89xYuPX+WND3/77b6Ulm8Q81sznv3M0yTB66fC7Y7+l7gsSc0vTVPRVBW1li0bptEkeiuKgm7oqIo4V1BVlTRNKauy3ui6VHXYVK/fJ01StPr7SICExMpbsVotyfIMw9DpOJ3GC1zxRfm3oigMhgMxwEUhQRgQ+IEIQqtrtQYDMWiZpomuaWxtbbG3t0cQBOzs7tLv98VmPI6Jokh8b11rqsSqsmyk6FmaNT3LjuPgeR6z2ncdx7Hoj86LpuN6M/zO50LSrSgK5+fnrJYr8XNUlV49xEmyGG4tS6Se+75PHMX0+v0mWC2KY46Pjhu/9WKxaLqq196a4+Pjuhfaw7ZsZElivV4zmZwT1j3T+wf75EXOcDRCUxU0TRNJ5nW1mrxRDBSFkIS7Lo7r4roOVVXS6/VQFIUgDBu/+Wg0Eh54y+T4+FjUt9Wd50EYUlUi/G5TLbZerynKUtRlTSasvTVxHDObzRiPx4zHY3EtkkSnYxNFUaM6WK1WUEEcxyyWC1RVbQ5FTNPANEySOBH3VJLwVqJSTaqfU1GWtWdd1HDkRY6uiwE+DELCjZd9040tiS74OIpEKF0hlA9pmpKnGaosIcsSRZ7dro9mS0tLS0tLyzeAK1eusLu7yyc/+cnmzzzP4/HHH+ehhx4C4KGHHmK5XPLEE080j/nUpz5FWZa8/e1vf9Wv+dXAO1vxh7/+WYJFcLsvpeUbxLUnXrrje7P/NHf0oJ2kaZPI7QcBZSk2tnmeE0cxiqwwHA2xbZs8z+kP+himSCAHml7jLM1YrlaNnzZJE7EtL8UgvuliHgyHJHGCbXeI6wG4Xw/mm6E1LwriSFRByYoihn9NQ5Zlwrqi6vzsDD/wmyC09Zd4d4tcBK4pikIcx2iaxvb2NrZlY9mWkHMXBXlR1MOhGKKjOjhLkiRmsxlplmF3bBaLBR1HBIhVVYWqqJiGwWw6RVFVilJs8FVVbQbxvb09yqJgOBhi6AaSJNV1VSmSLIa8lSf6pYs6MM2ybS5dusTFixcJ/EDUnNWBYGdnZ2R1bdh6vRYHGr0+OzvbOI5DFEaEYcjOzg6GabK1tYXjOORZRhCG7Gxvi02zprFYLPB9H0WWCcMI0zQZDAZsb28z6PdJkoSiKHBdtw4+q5qO9E1oWNd1cR2XwWDAxYsXxdAax6iKQlp70Hd2dynKoulAHwwGwqqgqaiKyuXLl+k4HUajkfBNr9e1laBsToe73S7z2ZyiLEiztMkB0A2dvMh5wxvewP7eHqPRiJ2dHcqyIvBF0vtyucSr35OL5ZLAD4jjmDiOqeoedsd1sWtVRZomIhxNEgqLIs9RFeX2fDBbWlpaWlpa/tz4vs/nPvc5Pve5zwEiAO1zn/scN27cQJIk3ve+9/EzP/Mz/Kt/9a/4whe+wN/8m3+T/f19fvAHfxCABx54gL/yV/4KP/qjP8pnP/tZ/t2/+3c8+uij/NAP/RD7dTbQ65E//PXH8c5XbTDa64DlyYJP/eK/IY3S230p31DuaOm4kDwLKbVlWRR5jmHoQvZcVORFznQ6paoqOnYHf+3XadnCC1uUJWmWsru7R5ZlTa+1hKhk2oSBqaqKponKqKqqmEwmKIpMURbMZjOqWjIuNos2qqaSZ2Jg89ZrdE2vk60lqqJopNpXX7jK3XffQ+x5BGFAr9sT21GETL1Ty8MX8znbO9usvXV9AFAgSxKO69Dr9phMJs3zVFW1qdiiAsdxmJyLQLEKuHDhAnEcsX+wT+D7WLZN13U5PhFb3/39fdHxLYvNc8fp1NJsE1VT0TWd6XSKZVsMB0Phj94cbtSDoCRLVFUlPMW2jQRcvHSJs7MzRqMRzz77LL3BkNVqhet2KYqCvb19bt26BaXo444TcdjRdV1uHR0hIQZXy7IwTZP1eo2m5azX4p543opOLdffJLWfnp6i6+Lea6rWqAjiOObC4QXW63Xday5q1larFRcuXGA2m/HC1at0u132dgdouk5cD/BhECJJEmEYcunipaaybWMV2FSDhaF43O7urjjAqQ9CVqsVo9GQxWIh3jNZ3twvP/Dpui6qomAYBrZtk8QJly5daiwNsiyDLOReeZ6jqirj8Zjj42NkRaEsSipRJo+i3dEf75aWlpaWlm8J/uiP/oi//Jf/cvP7jW/6R37kR/jIRz7C3//7f58gCPixH/sxlssl73jHO/j4xz8uakRrfvmXf5lHH32U7/3e70WWZd7znvfwoQ996FV/Lq8mWZzxL37qV3j0f/m/o6jtcuFOpaoqzl86f91ts+EOH7TTNIUKZFmqq7uK+lRLDJlSLbEty5K8yMWmrygIw5AkTVEU0W0chaKuabNhTtIECQnTMtE0jcFwQFVVnJ2eIUkSmq01225ZkdE2lVC9LmenZ2ia1sjIqaDT6TQy5XUgJC6KomAaZn04YLD2fcIwRDeMRiJcFkWThJ0mKYqqkGc5VDRb9yAUdVyj0QhFUSjLkl6/RxiGzZZckmVM02R3d1f0Ufs+hmnQ7/XxfSFX1jWdLM/xfZ/jkxPhh64qsjRr/OhFUTSd4JttdZqmuHWHdRiGzOYzdF3nnnvvqTe9PnEU4a/XlEXBfD5nPB5z8fJlprMFJyfH3HPPvUiSRGYaUIqk7W63x9oX9VybDfFwOMTzPEzLQtU0ojCsK8wmlEWOJst1sriOrutousZwKAb6OI6J4qipLfvCF57kYH8fJFA1tenpPjkVSe3DwZA4joUcf7Vif3+fta5zfHREUZYkcSzSwGvlwcHBAefn55RVie/7jMdjEU6WZ4BQBCBJFKVIm9/4zTcWB9u2myo6pQ5xq8oSyzJJU1ELp6oqaSJO+hRZpqgtBCenpwwGA/z1mqQUYYCSLDdWiZaWlpaWlpbXLu985zu/4lZWkiR++qd/mp/+6Z/+Mx8zHA756Ec/+s24vNc0T/2bL3D09C0ufvul230pLX9Biqzgl//uL93uy/imcEf/S3wzkCiK8OUmifDdllWJVElf3AJKMhISfhAgSxK6odOvE7vLquLs7Ixev0eSpCBt0sxVJCRGdd1WM/xUFWVZURRiYOv3+6yWYgt95fIVZtMZWZ3U/aW+WkkSg/smcG13d7epHttUkRVFjizJzXCdpCmWaWLZlvDiZnkTIFaWZbNB3tR+FUUh5OVlxWg0Is/EdRiGwc7ODpIsce2layJJXZJQZKWRVEuSxNrzWK1WmPWwb1vi58qKvDm7wO7YjMdbLOZzoihCURRG41GjFiiKAtMwWXtf3BR3XVfIvRUF27aZzWfIkkQQ+ATrNas6lM33143Xvdt1MU2D88kEtT5AmM1myIpCWHeIS5LEeDwmCAKKQm4OUfSiwPd9Onan2XhvbW0RJzGBHzAYDJqQkE1AXH8gBvrRaNT8eVW/x8raQ72p8QqjEKtOrM/znLwouHbtGtT3JwxCFssFuiZ84Zv3QVVVjb97PB4zn8/FwUG9nZYloZJI06yxCCBJGIqCZVoihd5y6A96LJZzqBUMVVmhKGrzc4qiRKmDAltaWlpaWlpaXq9UVcWv/3e/xvv+t793uy+l5S/Iv//f/5jj545v92V8U7ijPdodu4PdEfVIeZHjdl3UOr0bRFiahASIADTbskCSiMKIk9NTNF0jTVPecP8b6LpdqnrIKwvRz51lGTdv3WTlrUQCtkTduZw1G/A4ikSyeFnyB3/wB0iS+InCh9xD03UWiwXr9ZooijBMg263SxiF9eFAIhKndZ3777+fbq9LVYkNfJokZLnoZi6LUgS41aFtSh0QZnc6JEnS/FqvfXzfJ/BFgNamJ3s6naKqYsveq0PZiqJgNBoRhiGWZbGzs4OuaVy6dAlVVViv1yCBaYitaqfTYdAX/dSbhPCiKDg7PSMIAjzP4y1vfjNXrlwRQWFFges4vPzyy5yfnzfBa1mWc3JyTJZlPPjgg0RRiOs6GKZJluVcunSJKIpYLBao9XDe6/Xw/aAZLvM8Z7lcsr+/j2VZGIaQT+V5ztnZGdPpFN0Qm22/rlgzDFP45RUF3/eb1HThh/a46667ODk5QdU0RuMRtm2JgVnXWftrJFkiLwrhyVdEqro4UJHZ2dlhNBo1SfN5XpCmKXEcU1Yld919N0kcM5/NAfBWHlRVHWxX1XVgIWUhlBJ5JnIGVqsV5+fn+L5PWYp0+6qsxABumhSF6Bk8PT2lLCtRiaaI9PGqbAftlpaWlpaWltc31554iSf+1R/e7sto+Qvy8Z/738U273XIHb3RTpK42YBKkkjXRhKJy7KsCrl4WaEbBkkiUp93trcJ64ArKkjimMV8QZwkaJpGGIQoqqgHc1wHVdNYLhYgQZ6KmqdNONqm9smUJEzTbLqny6pEUzWWqyVZmonKKkVhtVzhdoVkuMgLev0+/X6f69evk2WZ2LAXJbquk2UZqq6KXmRZ+E42Ceebbef+3h5FURCFoQjems+pyhLXdcVWvZaeW5bFjZs3cF2XbreL4zj14K3irTw0TUNVVabTKbZts1qJg4WiLBoJfJ4XTKcTTNNkOpuxtbVFWZbYts3R0RHdXg+A4+MT/CCgKkuGoyFnZ6I3/OLFi1RUKKoqJN9phm3bdDqiJ/zll2/gug4PPHA/8/mcs7MzVFVld3eX2WzGYDCgqkrW6zW+72MYBlEci97rNKUocoraC21YJlvjLcIowrYtJElUhG36wBeLOWmWMh6P8X1fPJeqYr6Yi6o3VSEKRXhclmYEZUCe59y6eYvhaCh61GWF7a1tzs7OsDsdZvMZcRTT7fVwXJcwEnYE27bRNI0bL7+MaZo4rkOR57WUHDRdFxYDqLfROauVz9bWNmUlgtWkOqldlTWyNGM6ndIf9cmzDMk0CcKIXq9LlqbC2lC/ZhXlq/2RbGlpaWlpaWl5VQlXIX/4v32W/+jdbxUqzJY7hn/zC/+a0xdOb/dlfNO4o9+NSZqSpAl+ENTp0GtRl1QUGIaBaZpiUAF0XQNEBdNqtSLNRM9ylmV1IrcYnhVVrTus7VqaHYmu6Dghq7e0m2TnNBGy4PXaEzVRecZisWB7a7sO4RJe5sFwgLqpzZLkpprLNAxefOEFylJsx5MkEVvroqTrdsVgXQdsbcK2klhswA1dJ45Frdfly5dRFIUwDAHqnyMRf4lEWdfE8J6mKTdv3qSo5dUbr7nruuLnVVXj1c7SrNnKGrpOkRdEYUSR580wnuc5BwcHHB5eIM1SJpMJeSZqpU5PTkmTBFVTuX79Ov7ab+rWNgPkRv6uaSr9/oDlcslsNqPb7dYDo0q322W5XDb3wLQsBoMBw8GA6XQKiCE1rg9TdE0X4WJ1EJ1lWti2jeu6FGWJrunsbO8gyzL9fh8ACTg5PsF1nCYMz1/7FGWdVN7tsr29DRXMZ3O8tce1a9fqDXOJZVo4rgivO7p1iyROyPNcKBbyjI7jiE18Jg5ALEts4KuyYr32SBKRC6DU7xMRPKeh6zqmaRIGIVEYCutDnQmQ1oN1WZVNdZlce/9lSX69Hg62tLS0tLS0tHyRCp7//ed44l+2W+07iXAV8oV//XnS8PXTm/2nuaMH7Y7doWN10FUdTdFQZJUoiMhSMQj6a584ScQQnGZUiAoFJFBkkVieFzmyoiBJcr3BTJu6rjiOoaIeRvNahC6G7KqqcLsueZajKKK/23XExni5WuIHPqvlkiiOUBVRoyUkxXmz+V6tPOI4IU1EbZamihA1WZYJw1BIgGv5dxAGqJraDPTdbpfVakWei2R1XdcZjUavCFPr9XoEYfjF+qra3+3UaeabjXJRFMwX8+a+igA1kZgdRRFr/4v1Y6ZpIkkiJfvs7AzP87jvvvvQdZ2iKIVE2zRFtVZVcfnKFVF5ZRosl0uCOqU7SRKqqmI+XzTd5ytvRZ4XjLe2kCTx3A8PD8VWuJaAW5aFBE2d1qbOLc9zuq6L47iEUcR0NiXPc05OTkiSBKcedGVJEhLwXKgd5os53W6X0XgMkggcKcqCIAiQFZmiKMU9WK8ZjcdcOLzA9va2OMwxjaaTPEkSkjhB1zQhE08SEZSnaVBBGASN/F7XdRRVpSxKLMui2+2J+rTaJqCoKoZusFp5zOdzlsslaZYSRCHIEoqislp6ZHmOt15j6DpAE+ZX1YO33LxjW1paWlpaWlpev6wnHk//3lNtr/YdxB//1h9x7YmXbvdlfFO5owft0Be+YAmJfq9PnuWi9xmJnZ0dIbHOMkzLqgdBIfW+fOkylmWhKgr33nMvpmGwt7tLURQkidhE5pkYiJM0IU5iJMRwqaiKGIYVMQwXRUG/36eiEsNrx6YsSjp2hyt33YWqqJyenVGVFSenJ8iyjKZqOI7DarVkNBqKDXcFeZGjaVrtOTaagLG1vyZNU9beGllRcDqOkEjXlVRRHHPp0iXR3S3LjadZkiXOTk9Bkug4HY6Oj5trt227CRfr9/sUedH4vPv9PoP+oB4mTXG/bBvP83Ach6JO7nYch4ODA/7wj/6QyfmEsiwZjcdEYchqtcKyLJ55+um6P9rAtMSQPl/MuXzlCoauk+UZs9mM0XiMoetomsrOzg5pmmIYBs8887To6TZNet0uVVWxWCzQNI1+v8/u7i5JkqDI4nDBdR2cTgfXdckL0fEtpOUFjuOg6zpJnIiDEdeFShwsJHHM1nhLyPZTMcD3e310TbxW4rUWvumiKIjjmMn5BF3Xa/+46NqWJImrzz8v/PmqRhRFIoVeF/L8xWIhus3rGrgsy/DWHnfffbcIZsszNFVjsVxQVSWr1YrZdEpZKy7C+t6WpehE73a7KIqC4zhY9etfgRjaa/92S0tLS0tLS8vrnX//W09w8vzrM1Tr9cb8aM7n/n//nsiLbvelfFO5owdtu2M3Q2mapvT7fRESpsjM5nP6/T6WZZEmidgg1jLs+XxOXlczXbt+jSiOWS6XIMH+/j5BGDCfz5EkEbVd5IWo2ypLZEnC0A0xMGsaFw4POTo6Is9yIUEvRYXY/sE+mqqKuilVJYojLNMiTdM6oEv4jB3X4Z5778EwDMIwZLFccnx8jB8ETQd0r9trpORpkogebklCkmUs28Y0DD73+c/hrT3KsmC1WrFYLJjP5mxtbaFpGmtvTVVVeJ5HWZRMplO2trc5PTlhvV6zXC6FzH0wYLVc0uv1mE6nLJdLvvDkk6zXa3Z2d9HrujCr02F7Z4d1XQ8W1oO/X29+bdtmsRBBYh3Hoeu69PsDdnd3uXh4kZs3bjCbzzm8cEhVVUynYgPtBwFFXuC6Dv3+gCiK68AxtUlvB7F53t/fr4drt5ZPZyRJimEapEmKaZo8+G3fxsGFgyaBXtVEcnxey9837x9R+Sak+91ul06nA3V92mZYPj87JwgCNE2j1+2haZroFK+l7FVVEdfVXXmeo+kadscWQWeBeN/FccxgMGCxXIpttwT9fp/ZbIZt21RVVdfLgWWL9zd1v/t6LQ5cOo5DBbVNQhxCJEnSpNgrdWp+VmcItLS0tLS0tLS83gkWAf/mF/41SRDf7ktp+QpUVcXk2jlPf+rJ230p33Tu6EH7YP8Cci0xNgwD13WRFZl+r09Ry4m12udq2zZFXjRVT1ARBAFRGJEkCUEQYOgGcRJj6IYYEDsdfH+NoirNz0zTDMu2AOH3Xi4WzebQtkV1kyzL3Hj5BpPJhDhJSLOMNElFKFrdp60oCsiwWq2YTKYkqdjK2pbFaDzCNA1R4D6ZNEOVJEkYphgKgzAUHl5Nq3udE1zHpd/rE0WRkHezGawLZFmGqmrk67Ztc14HjimKwv7BPoZpsLe3h2VbBKFIRbdtC8vuICsqZQXn0xlhGInqMbtDVpQ4bhfTstne3m680ZsBXNd1wjBAloWQOUkT4ctOEnrdLpPpBBB+9SAICHyfF158gdVqxenpCZIEN27cwPNW9SGKws7OTnP/gTpMTKo90TGr5aruIS957tlnKfKCbq/beKR1XaeiIkmSRjqv1HVuk+mkqSJbrVZYptUcHBiGwXK14oUXXiBNU3r9npD2Ow4XL15kvV4LT7VlNoF5qqJi27ZQVRjifRVFUfMalUXBer2uD3B0DMPAqju9l8tl894aDodsbW2xtb2DH4YgybjdPrKsslp5LOZflP7nRSGC0qRWOt7S0tLS0tLyrcMf/6s/wjv3vmIvecvtJVpH/Mb/638li7PbfSnfdO7oQfvk9IQ0Tdne3sY0TWbzGaqqMplOamn2qgkSOz09oShLIfmOQpyOIxK4XZdOHZS1GYBkRWY4HFKVVbNllCSJsizJsgwqsbWWkJhMJk1dlkh6pnlsnucUec54NEKSJJIk+WLFWBTVoWgViiyjaTpFKfzAm0T0PM/pdbuEgajq6g8GzcGB6zhNkFieZU3ImK7rzc/fbF2zPGNra6sJfxMp1h4AjuMQBAHz+YLlYslTTz3FtWvXCYJA+JUL4ZnuOC52x0HXDQzTotNxOD45IY4T+oMRcZywWC6RFYW9vT0koKxKtra2KPKC+XzOcDhkf2+fs7MzXMchimOyNMXtdtna2sI0rcbDvknjtiyLwXAoNrWKgr9eE8cxSZLy1FNPkaYpWZbT7/cYjobouo5uGFRUyIrcbLslhGT97rvvBkBTNdIs4/z8vE6orJoqs4ODA7a3t9nb3WW8NW7S7e97w32odT2a67oossJ4PEaWJRaLhegqlyTyTGzeF4sFvu8zm81I6y31zs4OVSkOeRzHwe50qKqKIAxJ6s7tte9z8eIl7r77bvb29uj3ekKZoGuEUYSm6RiGSRQlZFlJt9djZ3dX+NAVRbyfdL2Vjre0tLS0tLR8S1GVFR/58f/xdl9Gy59BVVXcevImLz7+wu2+lFeFO7reS0JiMByQ5Rnn52dYls3aW2MaBlEcsb2z3XiiB/0BWS4CzcIgRJZlirLA0HXOzs/pdbuiwivPoYLZbIZhmoBEr9cnCHzuuedeyqIgDEMuXLggKrDygiRNODs/52BfyMU3w+L29jZHR0fIssxgMCDPczzP4/KVK1BVwkNcVEiUoh+7TgDfhJZtqss2UvHJ+Tn9fh/PEynnhxcPefHFlzBNk929PWazGW63y3KxwKm7rsMwxDAM4irm3vvuJQxCkiTh8qXLnJ2dMZvNhCS8lkGPx2ORZi3LpGmCrdu89OKL7OztkaQJeZYxHg3pdDpkvR5hEJClKZqmYtsdTNNiMplgWRaapnF2dsZb3vIWXnrpJSbTKavVCkAEfhkGcRSJ7u+NLLrTwfd9ERLmdll5Kzq2zWAwYD6f4ziOkONrGnkuvNTL5ZIoEt5l13VRFIU0y7FMkyhJSZMY0zDZ3trmxRdfpNfvEUcx97/hDRwdH4sk8Cynomr6x/M8Z3tnh8ViQZZl7O7ucnR0JLrGDYNVLf1eLBZCdVCWYuu8vcXpySm7e7vcePkGlmMjAVEcMRqPyLKMS5cuouk6XbfL0fGR8LaPRqy9NZ63oihL8d40DebzuUiLT1JUVWEw6NYVcqAqOlEYsl4HGIaG2+kQxXFtcZCbkLSWlpaWlpaWlm8Vrv3Rizz/757jDe+4/3ZfSsuX4Vf/4Udv9yW8atzRg3anY2OYJqenp/T6fcIgpKxKZFkmy3Mm5xM6TgdFFiFSVSU21Gmactddd3F2dkYYhFw4OOC8HmKTNCEKo9oXrGCaJp63QpZknnn6aSRZYjwaix5kIIqiumZL1GcBqKpKURQcHR1hd+y6PqxCkiU6nQ7L5ZIsy5quvyzLQJJQNRXTNEXFVyk6lDVNI6s31pt6Ltu28X2/6cJWZJkkjkmShL1OhzRJWCwWmKbJaCSGu+l0irfymEwnWKZFt9vl3vvu5ebNm+R5RlWJxHBVFW+JqhT3sd/ro+mGkCo7LsN60A/DCEmC09Mz3va2txJGIYvFgm7XoSgKPM/D7tgMhkOeeuqpJrFckWUm00ldizZn0O9z8eIQVVWZz+ccHR3h1oFru7s7LJdL7E6HIAjQdYMoihiNRgRhSJ7nGIbReKodx8GyLM7Pz+nYdnOfqop6C56g6RpxFGOaJr7voyoK0+m0GfDH4zFlrSyYTiaomkaSJuJe1/Vnm1Ayo+5n31SjRXHM9WvXUVUh5+52u0I94bg4qsrp6Snb29uEUYSSppRFQce2OalD6sIwJIwiTMMQj93aRlUUwihitVphmCZVhdjYlxWaahDHMR3HpmObItm8fg9WVUVZtrKplpaWlpaWlm8tsiTjd//f/4bv2X8H3tgn7nz99VG2Z5FrOan19cmd3XkHI9LwRgH9sy65luNt+eTaa0OFaK8scv3rf55fDi1R+cNffZzjZ4++4d/7tcodPWh7aw81jMizjDiKUVSlGaSzNKPjdLBtG+qaozzPSdOUvMi5evUqZSXqlUzTZGdnR1QspaI6S5Ik+oM+EhLnk3OSOKm/F0xnU1zXJfADbNum2+02ndLbOzucnp6iGzpBEBBHMZqqkec5O7s7pGlGkeekqeh8zvMCCTEYUUnsHOx8MdgqzUQvtKEThAGWLdLTLcsS1V5Z3sjYTdMkCEPhcw4DTNOk2+0iyzJlVdLtdjk+PkZWZGRZZjabsVgshMwZiSIvqADP89ja2mqSvGezGVvb28zmC9Zrj6qsUBSZPM8xTYvhaMjp6WnT3ew4Dqaus1gsag/7kq3tLdI0ZblYEEYReZaTxDGyJBGEIev1mm63h27o6F/SDz6ZTOl2u9iWja5ppGmKZW03AWTdXo+T42N2d3eZzWaiBi0IGI5G6PW2OS8KDEP/YtBZr4siK/i+j+M4JEnCeDwW7yfPa8LK4jhmZ2eHP/mTP2E0GpGmKVtbW6ia1sjqN9L2zf3F81h5Hmrtw1cVpXmNyqJgPB5jWTZVWTKdTinLkkF/gGVZxPX9GAwGTfr90fER21vbdOwOaX3gMhqPMQyT6WQqAvM0jfV6jet26NgdMm/VBMRpdXd8S0tLS0tLS8tX43Xja67g6h8/z+/980/xPf/n78GWja/7W8qFRCXpVPLXd4+UXEYqJdwjGymvUCWZ3lGH6jUSq/ONep5fDqmC3/0fP0mevj7Cev88n5c7etA2DFN4d5uAMbmuSMqRJBGSJSHhB0Et55bE5jAKRViVrIh0asskDEPGW2PKouTk5KTxNEuS+J6GYcAm8RqJsiibyqjlasnBwQFhGDKdTCiLAqUOvtINgyAMMU2DyflEDM663qSZK7WEPc8LLMskSzP8td8kmEuShOu62JaNZVsostJ0YU9nUzq22OTmtRfcNE1M02Q4HPLsc8/R64rBUlEVUVcWJ0wT0bvdH/QxDJGgvlwu8f01hmEwm89EEvZUyOeTOMZxOhwdHWOalujKNnRUTWN7a4vpdNoEsuV5RhQGDIcDloslWZ7j+wFFnrO7u4skSfT6PU5OTjBMk7Io6zCziuViwb333cfZ6ano9p7PRAr6asViMce0rMZnrmkaZVnWYW5qE0TnOA6u42CaJpqu8/RTT+G6DmWe0+11qcoKWRX1ZpPphDTLODs7w67l6XmeU1Ylg8GATqfDYDAAiWaIB3FgU9XS/06nw2pVB7XJMoNBn8m5CHgb7e8jyzJBEIgKuKri9OSEw4uHDIdDLMtiOplw6fJlnnrqKSzTxNI0TNOEqkJVVdIsBSqcTkd4/G2b05NTur0+rHzKqhSb/jBkd2eHohLJ+uL05rZ8LFtaWlpaWlruQGaz2e2+hG8Ynufxj/7RP+If/aN/dLsvpeV1ynq9ptfrfcXH3NGDtqKITuswCECWKMqSsk7WrqqKqqooyoIkibEtmyzPCMKQ0WjEarlivV5j2zZnp2dUQHRTdLnpho7neSiKQhAEXLp8mVu3biJXFVX9czdBU956TRTFHB0fk8QxhmmKASlN0Q0dWZLY398jz3L8wCfPcoIgQFEV5rM5Dzz4ABJSIydfrVasViuGwyH9wYD5bMZ0OgVgMpkwHo/Z2toiyzMefPBBjm4dsag92RUVhmlw48YN1v4aRZHxPA/LsqjKinvuvZfzs7O6FqpgNBph2x0MXSdNUw4ODlBUlbPTUxRZpHvHcUyapkzncx588EEUVeWZZ57B7nSaQLb777+ff/tv/w+QIAx9iizjritXKIsSSZLQVJXlYtFUr7ECSZKbVOyqEuFgeZ4znUzY29vjs5/9Q3RdDJ1BELC/v49pmhiGQVVBFIWNGsGyLHx/TVl73OM4JgxDfH+NqijomkalKEzOJ/T6fa5cuSw2ykXJeDRif3+fLMtY+2vKohR1WlnGyckJDzzwAE8+9SRRGDWe+aIsUWQZqU46dxyHZ559lm7XFdt400BVVKqqbFLNJ9MppmEwHo9J4oQwCjk+OkaWxWukazqyrFDkBX7igwRlWTKZTJsQtdXKYzVfsLe3x61bR0iSgqZqVIhU+ThJyPKMqqrI0ow4bestWlpaWlpaWv58DIdDQLS9fLUBouXPxvM8Dg8PuXnzplA8tnzNvJbvYVVVrNdr9vf3v+pj7+hBe+NZlmUZQzcoykL4mYMAy7Ybf7Oqiu7kXrfHfD5nuVxBVYkOZdOkqDeUep3UrMhikC5LMSienpyIeiyE7EGWhfx6Z2eH+WKO6zq4jst6LYY9WRGbY1XTMA2D6WSKoghZ++nyFNMUMmvdMPDXPsvlElmWsSyLS5cvcfPGTbq9XjNwp2nKarVCrkO6Tk5OUDWV05NT9vb2RC943dUcRzG9Xo80SYniCF3TsWrJ+8nxcSODFgnqOdevXROb3rrLejQeASIxPEvE5hjgyuXLQgq+XDIaDun3+yyXS/qDAb7vUxQ5nY6DZZkM+z1eePEFTMPk7rvvZjabcXDhgDiKhfxeEh7wzcmpbVnNRjjLMl566RoXLx6SZRmdTgfXFQPs0dERw+Gw3uBnQta+tcULL1zFdV36/T6+79Pr9fD9gOl0yoWDA3Rdo2N3mEwmrNdrppNpk9g+GAyIoohbR7dQFZXBcIC3EmFzGym5Iivk5E0Vmq7rtWdcb2QjFw8PCcMQCYm4lt1nWUavrltLkoQoigjCANftYplm4/XOspzBYMDR8THdrktZCqn5hQsXOJ+cN55y0zTpDwbMplNM0ySOM5GkL1VEUUSWZRRFgazIVNXrSALW0tLS0tLS8k1n82/dTZtOy9dHt9tt7+PXyWv1Hv55D6K+pnqvD37wg3znd34nruuyvb3ND/7gD/Lcc8+94jFxHPPII48wGo1wHIf3vOc9nJ2dveIxN27c4N3vfje2LbqXf+InfkKkfX+NZFkqJN0V+IGoxFJk0bUMkKap2PRWFXmeE4Qh/UEf6m23oiiEQYCqqUiyzMGFA/QvCTVL05TRaCRCtFQNKupKLjHErFYrVFUjDELOz89BEv+RyrO8DurSWa/XIIHv+6z9NUVZsrW9jaqqDAcDlqulqJUyTSoQG0xJ4uT4mNl0ynQ6Ff5sy2I4GNQya3Adtw59y4jiWCRVF0UTnCYGV7HxdzodsT2WxBvWrTf+/V5PbIHzAt/32dnZYdAf4DhOs+UuS+FjXywWLJdLgiBg5XkkSUKe5yzmc65fv85dd93VSK91XUdTNVRV5dbRLeI4pt/rY5hGE4rWHwyQZeHplmWFre1tJElCVVU0TeP8/FzUs0URs9mMPBcy7Y0HX9M0iqKg0+mwt7dHt9tlZ2eHra0t9g8OKMuCXrfLcrWkKEoWiwUAWu31TtNUJIjrwv+uyGLQL3LRax3HcZPAnheid3w4GuIHPlVV1cFkQtrvOA5+7ds2DAOzDklbzBecnp4271dN1+i6XZI45vT0FMMw6PV6LJdL8lykpNuWjaYJK8TNmzeJwohev0cURSBBkef1wC7S46Eiy3LiJCEIA7I8J0vFwM1XCEN7rX2WW1pavnbaz3FLS0tLS8trl69p0P70pz/NI488wh/8wR/wiU98gizL+L7v+77Guwrwd/7O3+G3fuu3+LVf+zU+/elPc3x8zF/7a3+t+XpRFLz73e8mTVN+//d/n1/6pV/iIx/5CB/4wAe+5ouPQrHFM00T0zCoqlIEnJkW/nrdbKXLosCyLbzViuOjY7JMBJ5thsKqFF3WZVGKALM4xg98yrLEdV1M08TudMjznLzIm80rwMHBPmVZEscx3sqjKAsUVcGqB0IhHxeBZIP+AMMwmNeb3LvuvqvpXV4sFwwHA1RVYblaiuAv2+bs7IyqrFgsFkynU5IkEVVgVSUGxiRl7XlNKJphGkiSRFVVDAcD0jTl5q1bzGYzwjDkpWsvsVwskBWFZ555hjAMuXb9Go7jiG3uei2uKS8a+b3nebjdLnanQxzHUInrCYKA7e1tOp0OZ2dnqKqKbVtEcUye5/W1ir9/dHTE6ckpy+WS1WpFURRoqspoOOLSpYskSYLjugRhSBSF7B8cMKy37/1+v+lDPzk5IY5jzLo+LMsy4iRhNptx69YtJtMpN2/cEEFhhtFI9c/OzsQWOBFy6sFgwNnZWaMEWNf1YnmRNyniRVGwvb2NpmrIsoyiKOzt7df1WRLdngjNm81m5FnWnATneS5q2VQhW+84jghjS1JkRaH6EnuD4zhcPDxEkqTm7+uazoULFxgMBvWvIUEQUNYHBqZlYZkmmqpimpZIGpdk9g8OMQyjroP7yhbt19pnuaWl5Wun/Ry3tLS0tLS8dpGqr0NfOplM2N7e5tOf/jTf8z3fw2q1Ymtri49+9KP89b/+1wF49tlneeCBB3jsscf4ru/6Ln77t3+b7//+7+f4+JidnR0APvzhD/MP/sE/YDKZiKCwr4LnefR6Pf6v/5dH6Pf63Lx1k36vR5plTSXWYrFAVdVGdlzkIslZ0zSiKGJrawtFUTifnDMajlBUheVyheN0CEORGA1w6dIlXnzxRVH5FIve7E6nQ7fbJcsztre3mwHo+svXuf/++1ktV1RV1SRbb21tNffLNE1G4xGnp2fIskyv2+X8/JyiLDFNA1mS0eokacdxhIe8HmI7nQ66rrNarZoU7DiOCYIATdN485vfzIsvvtj0eNu2za1bt+gPBkwnk0Y27rou8/mcMArpdXvs7Ozw8o2XsUyL8XjMYrEQ19bv4fs+s+mM3mDA3t4B3trjxo0bGLrOwcEBaZbx4osvsre7KzatQcDWaMh8MefypcsUZSHUAEAQBNx9z93cunmL9XpNGCd0Og5nZ6e1/1nHtEwMXReDt+M0hyVxHON2uwS1NFySJOI45uDggKeefrpOPBeHIbu7u+L5BQGXL19qwt5Mw0BWZKIoEp79LGW99kWfdyxk7ZvKsMl0Qp7ljEYjLMsSm/G8EPaCsiBNUsbjMZqmicRzx6EqRUVaRUW/PyDwfSRJajbz99//BhbzBcvVsrEnDAYDXNfl+PgYx3XRNh3qVUWWZcxnM9G/nWbouo6iKMRJgqrpDPpDdMPA8zzyImM+n1NmGZqmNl3g/8NH/hmr1eqrym5u92f5Qzd+AatrfdXHt7R8KxJ5Ef+3i3/7q36W289xS8trlz/v5/h2kiQJH/zgB/nJn/xJoRht+QvR3sevn9fLPfyaNtp/mtVqBXwxPOGJJ54gyzIefvjh5jH3338/Fy9e5LHHHgPgscce401velPzf+gA73rXu/A8j6eeeurL/pxN3dWX/gLRYa1qYgCd12FbZVFQ5AX9Xl8EREUxqqpimAaDoZArG4bBYrkQ6d0dB0VVWK99LNMkCiO6XVdUe8kyq9UKSZKI4rjxe5umKYbZOpFckoXk+fKly4RhJDzYioKm6+zu7aHUW8wkSUSNmB/Q7/XodbtEcYTrujiOw/7efr3Rjej3+3Q6HbL68EDXdaIoanq03a5LlmW4rotlW6iaxtNPP81iuWA+n4vNfBLjOA7r9ZrhaMju7i69fq+pOdPUOrlbUzEN8xUdzJZtoWvCsz4YDsnznOeffw5/vaZj21RVxcsvv8zk/ByrllG7rstoPMayRdWU7/ucnp6yWC54/urzpGlK4Af4gY+qafR6PaIoZGdnp65Y26brCq+7pmm4rouqqnWVmMlivkCr67VWnsd0OmXleeiahusKi8CFCxdqmfuKIAy5cfOIZ559Dm/tM5nNRUhYFDOdTDi6dYRRH1xkecZ8MSeKIk5OTuh1e83gnaQJcRQTxZGoSyvK5n25XC6JoojFXPzdleeRZTneakVeiM32hcNDhoMBcRQjyzKqorK/v49lWU1dmGVZogc7TSmKQmzFVZVevw+V2MBvtt6KLCNL4IcBi8VchPwFAYZh0B+I941hGCiqcsd8lltaWr5+2s9xS0vL14NhGPy3/+1/e0cPNq8F2vv49fN6uYd/4UG7LEve97738d3f/d288Y1vBBD90bpOv99/xWN36m7pzWO+9P/QN1/ffO3L8cEPfpBer9f8Ojw8BCCJhQ82CAJsSwx/RVGIgbsq6dg2cSISqAPfF93anQ6O69B1u6JvO8uIwojhUPiLFUUhCiNWK4/hYMB8PkeSpHrI1jAtsxnAPM/j1q1brJarZrMchaFIxi5LJCCJY3zfZzoVlVrHJ8d4nsdyuWy23hspuu/7XL50icPDQ0xLDK+L5bL24oo3XRAEIsgszVA1DW/tCclz7c0OgxCAMAxJ4kR4mHd30TWd4+Njqro2aq8+ADAMg8V8QZ7n9Ootfbfb5eTkhMlkQpqKw4XhcEi/P2jqqgzDQNP1ukpNahLE57MZK8/DMAyRam7ZrJYrLNPCMAyOjo6QkEiShPl8Xnu05aZGzfd9AHw/YD6fk6ZZk/Y9Gg3p9no4riuqsCyLg/39OrROKAHiJGE0GtHrden3+xwc7NMfDBiPx2I7XlU4rsv2zk49mA44PDwUcvyyot/v8x3f8R2EYUheiAHf89Z4nsfB/gGO66BpGnt7e8L3Xw/JVVWxs7vLaDTkDW+4D8dxcDoOAFEYous6aSYSwS3LIk1TkEDXNHRdF1v7RCS8dzoiCT5OEnrd7ivsAoZpUlal8M8XGVEUsvZWOB2bPEub/AHgz13v9Vr4LLe0tHx9tJ/jlpaWlpaW1xZ/4UH7kUce4cknn+RXfuVXvpHX82X5yZ/8yab2arVacfPmTQD2D/Z58Nse5PDCIZ2OTRzHdByHtb8mTRIWS9FvvQmp2gxiSZygGzqSLAa+KI4IAzEMqaqKZVns7e4KH7Gu4fs+hq5jmSYSYui26k5nQzdYLpeiC7somj7nKIq45557mk36JrG6LMrGB5xmGbZlc3R0RFkUHFy4gN2xMS0Lb+Xx/NXn0TWt6W2O45hutys2sFnGcikkyK7rNsFg1pd0TZ+dnxEnMUVZNHLwvb19Ll+53PiEi0KEf/X6PY6Pj5lOpiwWC6qyIstzqCoC3yeJY/JcbNAd12U8HmNbNk7HaX6eJMlsbW2JVHZF5tatW2i6kI27rksURfi+T7fbZW9vj6IQUuzj42O6vS6GaWLbwgeu60Li3+v1hDJgd1f4xVcr4nqzv/FRb21tNZaAyfm5kKWHEaPRCEmSuHBwQKfT4cqVK5ycnhJGEWEUsbO3y5NPPcnx8TFhGNHpdPA8j5PTk9qDL5GkKQf7+1y6dImO0yFNM6I4arrzqqpCrwPeVEVBlmRefvmGOLCJIsIwFPLN7W389ZogFAchW1tbjEdjbNsmSRIUte58933CKBQe7rLE931c162VBxpVKXrHLdMk8H38tYemKoS+T8e2m+o2cahQ/rk+X6+Fz3JLS8vXR/s5bmlpaWlpeW3xFxq0H330UT72sY/xu7/7u1y4cKH5893dXdI0ZblcvuLxZ2dn7O7uNo/504mnm99vHvOnMQyjiXf/0pj3IAj4/Oc/T5ZnxHGCbdvCr5qJ2qOqqjg+OkICqDeubh1MNZ1Moaq/tysGTsu2qBAS7xdfelFsNbOcw8NDOp1O06G86dDe1IGpmkaRF0RhiGXbzUB8fHJMGIRMpzM0XUPV1GaQD8IAu95sjkYjNE3j+OiI5559jhdfeIE0S/mP/+N30u/3hcRYVZvgrbIsmU6nZGmKJEl03S5uVwxjpmmi6zqGYeA6LlVZ4a/9JgDu/PycZ55+hpdeekkcIJgmZVVxfnZOp9Nhe3ubiort7W2k+jV5y1veglwPjht/9s2bNwkCn/l8xr333styuUJVFS5duoSmqsxnc9ENnmZcvHiRvb09Op0Oly5dIgxDPM9je3uLOE64ePEiErBaLomikMOLF9F1UUt2cnKMpmriMKMosCwLSZKbRNzNRsWyLZIkIUkSzs7OkCQho+wPBoxGI9brNc9fvcpwtIVumCyWS8Iw5r773sBgOGR/bw9ZltENvTm8cF2XJI6ZTCbEcYymaiJ4TryjOD45wTCMRvK9keuXRcHR0RF+4AuPt20RhgF2p8NWnWT+0ksvNRVjq9WKqqyag544EjVqgzqZfdMNH0UhZVly4eACWZ4jyxK9bhfLMtENHaqKMAyJa5tD9RVSx19rn+WWlpa/OO3nuKWlpaWl5bXH1zRoV1XFo48+ym/8xm/wqU99iitXrrzi629961vRNI1PfvKTzZ8999xz3Lhxg4ceegiAhx56iC984QuiDqvmE5/4BN1ulwcffPBruvgoinDqJGzHdTB0UfWVZhl5ltOtE8MVVaUoCoIgIAxDDN2g0+mgKAqqporapLLAW3nomo5t2+zsiHAvx3FI6vRwRVGwLQvTMvF9H1UVg3Ov20VVVRFUVg+EcRxT1hvJJI7JM+HXtTsdLNMi8AOOj4+xLEsMU3WQVrfbpeN06Pf6XLt2jfPzcxzXodPpMBgM2N3dZTQec+HCBWzbZuWtmM/naNoXZdxKvT3v9Xqs12sWiwWWZYltaRAwGo04ODjg3vvuoywKVEUEc4VhiLcW9yAIAlzXxVuvefKppyjynJ2dXe6//356vZ7wqlsWw+EQ3/fp93vEccLzzz/P6dkZTrdLfzBo7sHJyQmWbXHz1k28tQdUqIpCXG9vsywjyzJWnodlmhRlSeAHDIdD9vZ2RQJ8t0sQhoShCH8zTZOrV6+SpinTyZStrS103SDPc8pSJMhPJxP++I//vdgMOw5VVSJLMlmWs7W9jW6YlKWQ8GdZhq7pLFdLkjRlPpuhavV7JwxZeR55nuM6DpYlAn/KqqIsSxGCt1qRZ3mT1p7ECTdu3MB1XPIsJ45jkiRpBuq8yJlOp6JWrD680XQd3dBJ6u50SZKYz2YiSM8wiZNEDOZVhesIn37X7bJcCCvCaDQS9WqaONi5Uz7LLS0tXzvt57ilpaWlpeW1y9c0aD/yyCP883/+z/noRz+K67qcnp5yenoqOn4R28X3vve9vP/97+d3f/d3eeKJJ/hbf+tv8dBDD/Fd3/VdAHzf930fDz74IH/jb/wNPv/5z/M7v/M7/NRP/RSPPPLI12x413UdWVawbRtVVQmjkKo2pqqqQllV5EXR9B2nWcpyuRA+ZU1lvV6ja6LzeTMcFUWBqqpEYYjjuiRJwnA4REJqvMhVKaq18jzn4MIFdENvfLGGYTAYDBovbiMZL0tcx2Vyfi48zqaJ4zikadqEnxVl2YStxXHMfDZDURWqsiKMIl669hKTyYTlYtH0gJdFKQ4S8pxBHaDmOg6aLmTVtm2LwwZFYW9vj7IUCeme53Hr5k2qqiKoO6D39/fJsxxVUxsvtixJ3HfvvSBJFEXOyYmQVfd6PdIkYTAYEEVRPaiL7zMcDhkMR+h1/db+/j7r9ZqO3eHK5SsYukGeFwS+j6LInJ4cs7u7i+O4WJYlfPGA44h0d9FFLirLdE2nrCoMwyTLchbLJcfHx2RZyoULF9jZ3aEoCqIoQtdFJ/rGe2/bNlEYNlt44UEXnugLFy5Q1RvhqoKgPkixLVHTBhVxFNGtu7mPj48piwKqivHWmMl0IjzrWYa39oRHu05NP59MCIKAQb/PwcEBlmUJqT1SMxQjSeJ9rCjEUUy/10PTNMIoRJIkdnd3GQ6HqKrCYrnAdRzKUtgQTk9PGY1GbG9vY1kWW1tbzSHQnfJZbmlp+dppP8ctLS3fSH7+53+ey5cvY5omb3/72/nsZz97uy/pNcNnPvMZfuAHfoD9/X0kSeI3f/M3X/H1qqr4wAc+wN7eHpZl8fDDD3P16tVXPGY+n/PDP/zDdLsiR+i9731vk030rcAHP/hBvvM7vxPXddne3uYHf/AHee65517xmDiOeeSRRxiNRjiOw3ve857/QHV148YN3v3ud2PbNtvb2/zET/xEo3R9rfE1Ddq/8Au/wGq14p3vfCd7e3vNr1/91V9tHvNzP/dzfP/3fz/vec97+J7v+R52d3f59V//9ebriqLwsY99DEVReOihh/gv/ov/gr/5N/8mP/3TP/21X7wiN4nLs9mMIs+xTIvd3V0M08R1HFRFbTqmi7xANwz29vawLZvBYICu6xwdHTEYDOsU7AhJkgjDkPOzM9I05fzsjLIUfte8KEjShMuXL7O9vc3Z6WlTv2WYBueTSRM4dnp6JrbNuuhUfuqpp5phvd/vceHCBVRN4/DwkJdv3EBVVe6//346docKsS399jd9u5AXL5cMh6NmMKyAOEno9npEYciNGzfE9jxNOTs7Y71ek9eJ4WVZ4q1FguzR0RE3btzAcUSoV5qmGIZBr9drEtmTOGl84EjiTb957Msvv1x7mkNs2wZAVdVG4j6fz9nb2+f46BgksCyLnZ0dNE3j1q1bFGXJer0mieNmKN/0Y6/XHrs7YlA2DBNVVfHWawzDwNDFYUYUiZ8bhgFZnhGFIUmSMBgMOT09RVM1HMfh4OACo9Go3vKD7/ucnZ+zu7uLZVmUZcW6/o9bhegFdxyHC4eHRKGQaIdhSFEUOI5DWZSUtW2gLEqyLENRFEzTZO2tWa+FckFVVYaDoQguM4ymU7ssxd+ZTCZEkUia7zgdqqoSw7dp0usLGbxhGuLe2TamYSLLMovFgtPTU3rdHiBS7quqoizENaVpilcnsaeZ8K9/pf/ovNY+yy0tLV877ee4paXlG8Wv/uqv8v73v5//5r/5b/jjP/5j3vzmN/Oud73rFWqXb2WCIODNb34zP//zP/9lv/6zP/uzfOhDH+LDH/4wjz/+OJ1Oh3e9613Ecdw85od/+Id56qmn+MQnPsHHPvYxPvOZz/BjP/Zjr9ZTuO18+tOf5pFHHuEP/uAP+MQnPkGWZXzf930fQRA0j/k7f+fv8Fu/9Vv82q/9Gp/+9Kc5Pj7mr/21v9Z8vSgK3v3ud5OmKb//+7/PL/3SL/GRj3yED3zgA7fjKX1Vvq4e7dvFprPzv/rR/wrb7lAUBZ7nIUkS49GoqeXS67CssqyQZEkESqkqSZw0SdGmaXJ8fMz29jZ2HSYVRRF2XWE1n8+5dOkSk3qABhHmnGcZo9GIJEka7/X1a9frJGkd0zRJ05QwDOttdYGERH8wII5jqqriDffdJzq6q5IwCJtNZ5ZlxHHMaDQirH3fae0/BpBkGUPXX3G9mwG+LEuiKOLg4ID1ek1RigMGJKkJiNM1jf39fbq9Ls8/9zwXL13E89YU9VC4u7uLLMucn59TUeF5Ht/5l97O5z73JywWc7a2t8nSjCtXLqPrOk899RSO4xDHMVEcYxomVVWiKTKHh4ecnZ2xvb3N6elpc32O6yJJEMUxuq4jIbMOhG+9rCpGwxGGIYLS8jzHtCz29/Y4Ojri5OSE8dYWhq4zGAwIgoCzszN0Xadbp3T3+33iJKEqS5AkwiBgPB5zfHzMeGsLf70mimMsU/R225YpQuCA7a0t4iTm8qXLPP3004xGI+bzebPdsSyLsB7Gy7JkZ2eH2WxGr9fj5q1bXLl8me2dbV584UURWKcoDEdD/LX/xVRxwyDLM/y1z4ULF/ADH9dxm2C9IAg42D9g7ft4qxUHBwf4vs9iscAwDMbjcfOeHI1GTbf65pDH7XY5Pzvj//s//uJrurOz7d9tafnqvNb7d9vPcUvLV+e1/jl++9vfznd+53fy3//3/z0gmgwODw/58R//cf7hP/yHt/nqXltIksRv/MZv8IM/+IOA2Gbv7+/zd//u3+Xv/b2/B4icoJ2dHT7ykY/wQz/0QzzzzDM8+OCD/OEf/iFve9vbAPj4xz/OX/2rf5Vbt26xv79/u57ObWMymbC9vc2nP/1pvud7vkeEB29t8dGPfpS//tf/OgDPPvssDzzwAI899hjf9V3fxW//9m/z/d///RwfHzcNGR/+8If5B//gHzCZTNB1/XY+pf+Ar6tH+3aTphlJ7VmVJRlFUYScuJZWi0A08YHYbLUt08QwDOIkQZKlZqO4qeu6cuUKsiwzm81qGbEYtouiEP5nRUGpN79RHIMEgR/grbz6a0oj2ZUkqUkE31yft1qRxDFZmnL16lUmk4nwhus6cb3lTZIESZLwAx9Jlgl8nyAMMUwDp/YHl1VJFMeEUYjbdUECs668etOb3kS3122GbF3XybMM27bpui5VVZHnOddeuka31yXwAyzTFAFaVcV6vSZNUyRZJk1S+r0+zzzzDI7T4fDwkCLP6XRswjDkueeeQ1VVglBInEfDIW7Xpdfrsbu3h+/7zGezJm18PB5zcHCAqigkcdJsbIejEePxWCgD6oT4nd1dIYe2bbrdrgh+63Y5vHiR0VBsjbMsQ9f1RhququoXk9/DkPPJhLIo2NvbQ9d1er0euqYxGA5xa+m+CMEDTdcYj0ZEUUQQiL9r27bw/G+qxySJwXDI1tYWbreLJMt4ntdIfzq2zfXr13nuuefJ61T10WjEvffei9t1m2vN8xzTMDFNs+4jn7BcLcVhRRixtysOFaIwJAxDlqsVqqYyHo9Fsv56TZaJurokSQjCgE6nw3A4bPrJZVm6jZ/OlpaWlpaWljuBNE154oknePjhh5s/k2WZhx9+mMcee+w2XtmdwbVr1zg9PX3F/ev1erz97W9v7t9jjz1Gv99vhmyAhx9+GFmWefzxx1/1a34tsFqtABgOhwA88cQTZFn2ivt4//33c/HixVfcxze96U2vqKV817vehecJ5e5rjTt60K5Ksb3r9XoMhgM0TUOSJS4eHnLx4kXSNKUoCypEVVVZlqx9n6Is6fd6BEHQdDcXZYmsyE2q98Zbvb2zTV4U5EXeeGKzXGydvdUSKliv180pjOiX1lAUBVmWmy24VHuMi6IQEm3TFP3Quo6iqnQ6nSYZXdd1XNdFVdS6I1rigQfuJ8sywiikyHOiMCLNMizLJstyut0+cV15dX52xnKxFP3feYYsi45pRVGwLIsHHnwAz/MYj8fs7+2L51P3Z2u6RlmVlFWJIot07zwXPuDzyQSg7hEv2N/f5/Lly2Jr3+s3MnAQp3thHKMoCpqqMZ/NmE4mXDi4wGI+R1ZkJFmmzHP8tU9R5BRFQa/XY2s8RtNU/viJJ4jiWPjl69A727Ypi6LunU6a6rbxeIzrupydnTVhcP1+H9MwxGGM5/Hkk08293M+m1NVYqM+nc6YzuZ4a7+5R6ZpcnJ6htPtEcUJQRii1GF2J6enrINA3H/bFqF6qkqcxMiKeG2LPBfBZIbBdDrFW3msvXXTl+55Hp7n0fmS55WlWVMLFgSBkH7X8nvfX+P7Ad1ulzzLmgOZTYiepmoslgvC+sBD9HS3g3ZLS0tLS0vLV2Y6nVIUxSuGF4CdnR1OT09v01XdOWzu0Ve6f6enp2xvb7/i66qqMhwOvyXvcVmWvO997+O7v/u7eeMb3wiIe6TrOv1+/xWP/dP38cvd583XXmvc2YM2IrwqCAIm5+dQVdx9993kec7zzz/f+I6pqkZqXZUlVSXkxK7jsre/R5IkOJ0OTsdhPp8jyzL9fp+8yBkMBnX1k0KWZaRJSpqIIDRV1QiCgNF4hKIoLOuTGb5kuAbxZipKMWCrqkpRlnjeiuVyia7r2HXdVxgExHGMZVlN/zW11zdNUiSkRtYtyzI7O3sEYYSq6azWPrbdIQhD8npg7dgdum6XwWAgKrAsSwxta59777uv7ow+ZT6bN9t7QzdYe2uqUtSceZ5HEASo9WFAr9fD8zwWizmPPfYYmqbVNVQScRxzenrK5PycPM8JgxAkCU3XkGWZUb0t1nUdb+XVKeBikHRdt6kvW/s+Tz75JFmWce8993Dp0iWm0ymXLl3i5s2b6LqO47r0e33G4zHr9RrP89A0jfF4zN7uLm984xubkLnd3V281Yp77rmX7e1twjDkrruuYJoGhxcOxYHD/j6SJDOZTFgsF/hByHg85kbtnXe7IlU9jhOSJKUsK2RFJc9ykUZeiPfDXVfu4vBQ1G8VRYG3WtHr9TifnJMXOWvfF4FtZYlpmeiGwVYdYpYXOQcHB/QH/fowQxxy2LYtrAEImc0m4K3X6zW1Yts72/R7fZJaPi4hEUfxn/HJaWlpaWlpaWlpabk9PPLIIzz55JP8yq/8yu2+lG8qd/Sgret643e9ctddSLLMtWvXWK5WjMfjZuMny2K7rGsaumEQRZHw6EYRzz37HFbdvy22pDFRFLFerxn0B3grsQkNa6N+RdVUMRVlgeN0CMMQWZZxHAdZlpEkufFMb1LMN3LhzcBkmVaTEO44DiA2xX49bBd50QzqRVlw6+gWeZ4zm82JoghVVRmNR6z9gBdefInJdMJ3vPWtGKZFkmXcPDpitV6zXC65du1aHc52ynA4xLIsXnrxRdI0RZFl3vjGN6KpGqvViiAI8AOfmzdvAnDx0qUmxVqRZbw6AXxre5vBcMBsPsdxXTRNE5VSqkgsX3les9Hv9nps7+4y3t7m+svX+bY3vQlZlvHWHjs7OyiyLKTqCKmSVaekZ1nG7/3e7zVb2uvXX+by5cts1R5ry7J45plnkCQZTdfx6z7rk5MTfv/3f78+BBlzcnKCJMlkWcr5ZILneVy9epU8z8kyESJ2dHQkQuYkCak+VAmCQFgEoojDCxfodDqYpklVVUynU6IwZOWtmE5njLe2CaOIF156iZPTMzRdJy8KtnZ2iNOUs/MJ1NeJJNNxHHw/JI4TdMPA931m0xkvvfQStmVz69YtkRhvCIWAIivNFnvj4d8k5e/s7BBFEd1eD01VWSwXZFnWvE9bWlpaWlpaWv4sxuMxiqL8B+nOZ2dn7O7u3qarunPY3KOvdP92d3f/g2C5PM+Zz+ffcvf40Ucf5WMf+xi/+7u/y4ULF5o/393dJU1TlsvlKx7/p+/jl7vPm6+91rijB21ZlgnDkEF/IGS2FcymMzxP+KUBqrKspdAVae1B1jW9qXwSw6HSSLh1XReS81pSrigKhil8xLKioCpiaJZkSYRQ1QOlLMtEYYima6z9NRVV048syRISErIiU5Qlkiz82ptqrbzIRe93r8elixdRFEVUhJUVsqIIGXAFo/EYRZbZ3t5mMBjw/HPPgURTp/XCiy8hEql1bNvBdbsoqoJpmRRlITzidRf0pu6romIynSDLMq4rPMQbX7Rch65pmoZhGKIzuig42N+nKkvG4zH+ek0SJ6iqimVZjLe26HQ65PWg5wchvcGAJE2ZTKcEUUSSJBRFgaZqdDo2ZVmyWq1wXZeLFy/S6XSwLHEQ0el0CMOIJEkJAp80y3j++eeZz+ecnp6I+0RFVZbMZzOqqmpejzzPSZMEWVHY29vFdYV3/MqVK+zs7Iiu6yQhTVMuX77M3t4eiqphGBa2bRPHsUhhT5ImtG08HrO1tcXu3h5pmgrZfr+P74cgyRRFRZykqJrO2g+YL5ZMpjPCKKYswe32yPICkEnznMl0RpYXGKYhVBR5jrde0+12MS1T2BvKksFwQBTHVICiKk1YnyzLJElCnuUs5vNaMWA0XvCWlpaWlpaWlq+Eruu89a1v5ZOf/GTzZ2VZ8slPfpKHHnroNl7ZncGVK1fY3d19xf3zPI/HH3+8uX8PPfQQy+WSJ554onnMpz71Kcqy5O1vf/urfs23g6qqePTRR/mN3/gNPvWpT3HlypVXfP2tb30rmqa94j4+99xz3Lhx4xX38Qtf+MIrDi0+8YlP0O12efDBB1+dJ/I18GcX7d4BFEVBURQEYYBpiF5qwzCI4xjP8yiKAtdxRCVXnJAXeeOnRRLS7tFoxK1bt7AsC89bkWU5/X4fx3Upy4LVaoVpGKRZiqoqSAivtSRL+Gufjt0BCbIsp6wq3vhtb+Txxx8XdVBVWXdoV8gSzWBUVVXj8x6NR6yWKwzD4OTkmNFwhF1v2IuiwNJ11HooF8lu4nlXwNr32d3bw9ANZrMZ3mrFxUsX667tJXmekWU5siSTxImoDKvrteJ6aNN1gyRJURUF13WZzmZ0bBtZkijKgiRJWC6X9Ho9JFmh2+3irddIksTNGzepEIP+rVu3RBd2x+GlF1+k2+0BohrMcVxeeOFFDg8P2dnZJUkzTEsMshupexInpKnYIm96usWQHTKZTrFtm+l0iqwojEajWrqvkqYpFy9e5NatWxiG0cj5q6ri4sWLBEFI4PukdR96VVUkcYzv+0292Hq9RpZljk9OsG0bRRbnT47j4PuB6MOuq7Ju3ryFYehMJlN6vS6qqlFVJWmaUFHRH/SbjbNt2exe2eWFF64SxwmSBFmasVouUVUhp9/b3SMIA4IgRK7D9uI4Jq9fc9M0RYVZPeiblsViPsceiTC6xWLB4eEhy+WyeXxY96KrmnZbPpctLS0tLS0tdxbvf//7+ZEf+RHe9ra38Zf+0l/iH//jf0wQBPytv/W3bvelvSbwfZ8XXnih+f21a9f43Oc+x3A45OLFi7zvfe/jZ37mZ7j33nu5cuUK//V//V+zv7/fJJM/8MAD/JW/8lf40R/9UT784Q+TZRmPPvooP/RDP/Qtkzj+yCOP8NGPfpR/+S//Ja7rNp7qjb211+vx3ve+l/e///0Mh0O63S4//uM/zkMPPcR3fdd3AfB93/d9PPjgg/yNv/E3+Nmf/VlOT0/5qZ/6KR555JGmHei1xB09aG+6iVfLJdJgILbKcYSh6yiKymg04vjkuPFI53kuBmClQNM0oiSinJfYnQ6GrtcDUiTCxqKI/f19sQE3dFYrT/R61flSYkOtNKnjOzs7nE/OuXHzBoqqiC16HaomQRNQpdXDj6Eb2JaNt/KEhFtR6NidRvK7XVdGJUmM03GaruQwjOh1e5ydn7O/f8DpmQgO8Nc+siTx9NOrJkxrd2enka8HQUCeZVy/fr1J9fbXa4qyQlbVJvAMqNO1waglzYZhcHR8jOt2CYIARVGRJFA1jazu4X7Tt387EnDr1hH/p+/+bo6PjpAkCVmWeeyxx7h8+bLY5gPPPvccsiRBfW2maWDbHQzTYrUS1z8YDJjP50ynUy5cuEC/38f3faI4ZrFYYNs2PcPAtCyefvpput1uXdclDiL6/T6yLLO9vcXaF13c5+fnlGWJ4zhcvHSJZ599FnuT2l3LxFerFZqqotW93f1+D2+9bk7OOp0OZVnQ63WZTqdIkkSeF9x11xV2d/d48skviIFfUXBdh5OTY6qqQlFkLMtC0zSSJMU0DXZ2d8izDKqK3Z2dRr6+Px7j+z5u12W1XJHlGYZukGWZ8PProvZskw0Qx3FTaxbHMVme0/mSA4OWlpaWlpaWlq/Ef/6f/+dMJhM+8IEPcHp6ylve8hY+/vGP/wfBU9+q/NEf/RF/+S//5eb373//+wH4kR/5ET7ykY/w9//+3ycIAn7sx36M5XLJO97xDj7+8Y83IcEAv/zLv8yjjz7K937v9yLLMu95z3v40Ic+9Ko/l9vFL/zCLwDwzne+8xV//j/9T/8T/+V/+V8C8HM/93PNvUmShHe9613803/6T5vHKorCxz72Mf723/7bPPTQQ3Q6HX7kR36En/7pn361nsbXxB3do/0Pf+Ifkhdi6zwYDEiTlDAKiaII13VRZDHwAhR53iSPq6rayKGLvKCqKizLQlEUbty8yZXLl4njuNm4lnVNk6ZpTaXUZliVa39xnue4rksQBJRliaKqZFmKaZii51qW0FQxZIvhLMcwTbGdtG10Q2c4GBJG4qAgrQ8Q8iJv/NybGHzd0BmNxhydnKGqCoZhMJ3O2NnZYT6fs729xYsvvMDdd9+Nv15RFSVFWaLrOrIsE8cxV+66QlmUXH3hRRRVxdS1JgFbVpRaUp1gWTZ7e7uEUUyv1xd94devM51ORVI6IswsCAKiKKKqKgaDIUkSU1YVw8GA8/MJruuwt7dHHMckSUoci8MAp2MThCGu65JmOZoqkuO73S6TyYS47jS/++67kSSJGzdukCQJZi3nX3keYRA0MvPN65MkCRcuXGAwGHD16lU6nQ4nJyeYponrdrFtiyiKmM3njEYjqPunT09PuXB4iFz7oTeHD7quY3c6BHVCvdPpYNt2834sypLRcEgURaRpxqVLFzk5OSXL0uawYnt7u5Gi37hxg16vj+N0cLtdfG/JYr5oDic2VWhHR0ecnZ3R7/fFwVKes7211dgOur0eZ6enIvhPkZtkc7sjKs4+/Iu/8Jrt7IS2f7el5c/Da71/t/0ct7R8dV7rn+OWlpZvPHf0Rvvs7By7Y5MkCWdnZ2iahq7rGLpBnmVUaoUsSUiyjKppfOmJQlEUZGlGmqbN0KYoCqPhEMdxmC/mRFFMWcu0FUWhoiJJE8qywpQkVFVluVwyHI2Q6wFJrbfDm02vogj/t6aqIEmkaQIlaLqO43Qo64Tw2WyGZYuNrrcSUnKl/l5hGFIUBbZtc3xywuHhBRRVpdfrUtWbbk1TWa/XOK6D0+mgaTrr2j99sLdPXuTEcUyapvQHYtv71JNPgSQjKyLAzLLEz99404MgwHXEgUUYhpycnOLW/+fQ6/WasDld11FVlfvuu49VnbJ9fHxMEoasVh6qpiJJEqenp3XX84DZTCS/h2GI47iiJ1w3yLIU13UZDYciSR6JIAjqjbLUDNmO4xKGAaqiYJomnueRphllWWBZFlVVcf36dSaTCYPBgCzLcByHOI5ZLhcsFnMR4KaqBL5PkiR0ez329vYxDbFhf/GlFzEMo/btZxR53tQwyLWP3vM8LMtqauE0TcPzPF5++eWmZmz/4IAgCJjPF6iqsC5sDj0sy+b46IiuIw4KFstlXSNXiO103RPe7XaZzmbomkaapk1Xu+s4RHX6uOu6lGVJFEUoqkpRlK/2R7KlpaWlpaWlpaWlhTs8DG2znd4MySA6rSVJoqwqzHrQLUsxcGwG4bIoKfKcsiqbfuk0TVn7a8qyZDqdsrO9g2kYWJbFhYMDbNsWQWiygl5vttM05W1vexvr9ZqiKLhw4QJJktDr9VBUMYitPA+j7oQTdVZV032cpVkzOJqmyfHRMaPRSNRsGQaB7zcde3Ec47ouly9d4uT4hNPTE6bTKUHoU5YF/9Fb3oKmqfjrNUfHx/T7PebzGY7j4K09wjAEQNM0Tk9OeenFl4QH3LKoKnEfV94Kqa42syyLbrdLr9fj1q1bpEnC1tYWeZbxbd/2bYA4fNjcO6CWlSvNBtb1Ce9EAAEAAElEQVSyLNZrj45ts1wuieOY1WrF6ekpqqpiWxaDwZCirKhKMbwXhQhte+aZZ3Ach7IUMv+bt25RFHkzeCZJXH+9RJZler0emqbScRwGwyGHh4dUVSUS3IuCy5cvo9X2gKp+LyiK2tRo2bbNbDplPp9zfHzM8fFRc/8VVWVre0vUpPX7dDodijzn/Py8UTSMt7Ywa1XERv6/Wi6bLX+/1+eee+9BlmWWyyWXLl2i23XJsrSxQEiSJO5Jv4+3WonOdUXGtEzOz88xdBHiFycxfuAzGAyIoogsy1A1kRpfliWmaaLrGnrr0W5paWlpaWlpaWm5LdzRg3ZVlSRxTJHn6LrOaDQSHtqqpCgK4iQhLwqqsiQIApI4aSqPZFlBUzX8epu58lb4vgjiOjo+EqnYuka322W5Wr4izbosS1FHJUm8dO0ahq43FVR7+3tkeY4iizqvXreL7/ukacqtoyM2a/WqLJsKrdNa+pvnufAKmyZJkuB23Wagv3LXlXrjuaDX74kqMN8nzQoUVeOFF14gz3J0TUNVFA4PDxkMhiiKwmq95uLFi6zrSqzReESy2bjLEkUmUtYvXbrM7s4OlmVx5coVdENnOp3yHd/xHeiGgSRJZFnG448/LgLCilL43svaj14rCiRJIoqielBUWK/X7O7uIkkSnrfG9wMmkwmnp6ecnByzXMy5fPkSuq4TRhHn5+dN6nuv16OqKlRFEa9lVaFpOrKscH4+qYPpRMK4pmlUZcnk/IzVasne3l7ju3722WfJ6k1wUT+2KAoWCyHXDqOIra0tlssFICoC7r3vPg4PD9muDxjy+nXtdBzSNOX8/JzFYiG+z3yOhFBK7O3tsb29zeHhIVEUcevmTQ4O9jk/O2vk30mSYJgmcRyxNR7R7XXFPasPhQaDgTjIkMVBURyLTuytrS3h96lgPp8Lq0JRsPY8VqsVK2+FrutQicOElpaWlpaWlpaWlpZXnzv6X+J5UeC4LpZto6oqcRSR53mzNS7LEirRey0hfNGyJDMYDBiPx3Q6HbrdLpquoakaiixjGAb9/oDFYoG/9oVcPEkJggBZkbFtG03Tmi355PycqqrI81yEdYURYRAQRiGnp6ds1XVXkiSxNR6L60NUjYnB06MoC+aLOf1+nzCK0DUNx3G49977SJKEMAw5Pjrm6tWryJJM4AdkacbWeKsZ+tMsI01FVZXneRiGQRgGWJaFaRgsl0tG41G9YYVR3adt2zaO6wLwJ5//PJ7n0el0ePHFF5ElmSzL+OxnP4u/9rl+/TpmLS+/deuWGHIlkcJeVhXnZ2cURUGn4+B5HqPRiDRJ0DSt8bUPhwMMQxdecFmuD0Yqrl69ymw2Y3trWxyajMdkWcZyueTixUuMx+NGYXB2diq29a7YaEf1tn5TG6bKCnEovN1FWTIajXDdLq7rEicJbrdLnCQMBgOSJCFJEhHOBjiOiyRJKKrK5HzCjRs3OD8/J6gTvheLOefnZ42XPctzrLpqq6qqZlj26+2+67oYhtF8H1lW6LouJycnTM4n7O7uodf3J01T0iQRG/StrSaBcWssesxN08SyLLbGWyJIriwIw5CyEv3vuqGLTnZJIk5i0iy9PR/MlpaWlpaWlpaWlm9x7uhBW9d1PE/IolfLFUEYCil57Z/eJG6LSi8hc07qQSsIA9a+2PACjEYjNF0H4ODggE1G3GQyQUIEkPlrn9FohGVZQoJefbEr27Isbt66yWKxqL3YGf1+n5dffpmiLFgulwRBIC68EhttRVUpykLUe+kGsqJQ5DmSJDGZTDg+OsJxRWXZJrVQUVWGoyF2x0bVNPIsExvgPBe92HWo1wsvvMDh4cWmAqvjukiSQpwkHB0dYZomZT0QBr5PWZWNp9wPfBHQVvuIwzDEtEwhiZdlLl2+XAeBVdh2h4sXLzIaDtna2gJgtVrS7/dZr33yPGcwGGCaJuPxmCzPqaD5/hu5tGULr/1sJqq8NFUjz3O2d3Y4PT1BkoRXW5Kk5v4Hvk+WZWiaDog/T9OUJElRFJXj42OyNBXyeW/V9IJbpolpmKzWazqui6JqdHs9yrJEquvTnn32WXx/TV6IYTYMQnZ3dynLkn5/wOHhoUi3l2VWyyWGYXB8ciJC9KIIf73m+PiYyWSC67rMZnMRGhcG2J0Oe/v7JGnCs88+y2Q6YTqZUpYlbrdLXg/dlm0RJzFRHDEajZAVheVyiR/4ZGlK1+2K928lZPeqotLr9ZGlLwbvtbS0tLS0tLS0tLS8+tzRg3an06HrdoXH2TKboVdRVVRFDNoVon5alhWG9Rb3+Ojo/8/en8dZVtcH/v/rc7a71619670bRDbBoKKIG6JEEUbjMoKZqEHcQL+oQxJ1RDT5xUSTqIxC4kwUZ1xi1LgxoiIguCAaFxCQZum1umuvuvtyts/vj8+5p7vsRgFLuhvez8ejaOrWqXPPPbdOV7/P573QbrVp1M0s5UK+gLIU2UyGVrvN3j17aLVbZLIZjtpyFAMDA1jKQinFwsICnW4H27axLNMAbWFhgb6+PorFIrlczgS94+PpPLfeamW73UZjVj4LxaJJFw/MbG8zAspOa857gXAURlSqlbTRVl+pRBzF1Ko1RkaGGRgYoFAwY8F27txJPp8nm82awG/vXvbs3UsURXS7PpVqlU6ni+s43HPvPWb11zE11uVyP319fbRaLZaWlpmfn6darRJGEZlMhjiK0RrmFxbQSZp4uVzG97vp6nbv+z3PS0dzjYyMpBkC09Mz2JZNFEXU6nWWlpcJgsCswLZN/XYul6NWr1NL6sV7wfXw8DCZTIZ6vc7s3Bz1ep2JyUmGhobodjsoywTauWwO23JoNlpJI7MM27Zto9v12bJlC1ESOLsZj/mFBfrK/XgZU7sdBAG5XC4Jljtks1miJJ3fcWwajUYy3zxk7/Q069dvQCUr4d1uF881pQbZXA7P89i8eTPFUgnf9xkaGqRWqxH4Ps2GGcXWy4xoNVu4npe8T11q9bqpDbdsioUizaSrehgGVKtVms0mjUaDRqNhGtb19dFqtszPge8zPjGO53lEYXQIr04hhBBCCCEeu47oQDubyZLL51Y0kwKS1eYYpRSu46DRaSDWC2jtZMW7kayKLi8vs7i4SL1ep9VqUcgXWLt2LflC3qyMx5FJ9a7XiaM4HcO0uGgajpnO3x7ZbJZW26Qy9xpxKcwKu+M6KFSa0t5sNBgZGTHp667L3j172LJlC77vJw2/uqZDtetx9OOONjcS4oh8oUC5XGZudo5arZau3vf1mZsO7U6HkRGTVj40NMy69evZvn0Hi4tLWLbN+MQEhXyBo446ilw2x+jYKFNTu5OZ1lmUMvW9ylK4roMGlivLlEpFMp7H9PQ0tmUxNTXFxMQEURwzPT3D9u3bieOY6enpZPXe3FSYmtrN4uIii4sLtNstOp1OsqqcIZPJ0Ndnxm3l8wWOOeYY5ufmWVpawtmv2dry8jLZbNZ0LU9mps/NzjI1NcXY2Ciu47C0uEgYhhSLBcrlPvpKfSwtLNBsNJPa7QUcx6Vc7ifrZekr9rG4sES91gQNnbZJI/cyGR7/+GN48lOeguM4ZkU+l2NsbIxMJkOxWMRzXRYXF0z3+FKJyclJAKI4Rsemo/rU1B4zOgxYXFxkYmKCiYkJLNumXC7TX+43q+RaY9k2a9auJZfPUyqV6HY6LC0tMTU1xXHHHkej2aRYLOI4DmOjY+l4OjOiLiSKItrtNo7jsH37dtqdNkEYHIrLUgghhBBCiMe8I3u819ws2UwW27LSwKNeN3OEtdYmwHXNCrHW2owA81xarTaFfJ6BgQEGBwfxfTPrOAxDs4qZpHqXSiXCIGRhYQHLsnA9F0+56f4yXoaJiQkzPsxxWFxYYG5uDo2m0WyAJp21rbUmiqN0/Fez2cTzPEZGRqhWq+zZs4fR0VFqtRoDAwMsLCyY2u8oIgxD7vjVHUxMTLBr1y68jAdKUa01KeRNGvVypUK70zHzvItF2u02lmWxtLzM6MgohUKeXC6L47qgTKfs+7fdT8Yzdc8ZzwRtnY5ZyVUostks/f39NJtNNm3eTBBE6ZixSqVC/8AAnU6HsdFRZmZnKRSKFIsFLMti9+7dJtXctpmenk5Wz5109R1UOgO80WiQzWTJZDR33nknSkEYmrFlvu8TBAF9fX3pWCvbtnFcl1azydq1a9E6JgwDvIxHt9Mh1jFhEKIrVTzXo9xXRmNWzQM/pFatmfRyyyGTzROFIdlMntGRUZaWF5mdnWXHjh0sLS+b9901M8Z/9as70nnWfpKl0Gg0GBwaQgF9fX3UGw26nU46Kz2qR5RKRbO/pSW2bNlCIZ839faW6RfQPzjE/Nw8WvfqzEOU1tTrdfoHBrjr17+mVCxiKVPT3nvu3sgy23FwPZMq3utDoGPz8y+EEEIIIYR45B3RK9q1ao12u0WQdL7ef2SWbVnEsZlFHEexqSlWmHRi100D82azSS0ZCdbtdgFT+53NZpmZmaFer7Nx00biOKavr8zo6CiWbRGEIUvLS1SrVZMmvbhAEATk83lGhkfodrrp2LHezGO0aToeRVGyips3o6c2bWLz5s1mVXvvXlrtVtpcS8dxGlg3m80kmOziJXO4SyXTmbyQzzPQ30+UzNUul8sMD49Qq9ZYXFpMA7PFhUUKhTzFYpGhoWGCMKDT6dBoNNKmbscde5xJl7cslpeXabfbLC6afURRRH9/P1pDNgmS640GfaUSa9euSdKxy4yMjKQZBscffzzDIyPYyczrTCZDHEcUCgXa7TbLS0s0mw3WrVuH67o4rkuhkEcDA4ODdJO68t5M8WKxSF+pz+wvl6PbNdkEcayxbCdt0haEAbm8GbmlFOzdu9cEpradnKcuGc+j0ahTq9WYmpqi0WjQ39/PxMQEM9PToJSZR97tYtkWnW7HNMZTilJfH3Eck/HMqvzo6Cgkdfvtdtv8zJT7UErheR7DwyN0Oh3m5+fRwOjoKK1WC7/bJdYxGhMod3vzszMZLMs0pKvX6yYdPI6ZmZmm3F8ml8tRKBaoLC8T+AGtVoswCtP3sddhXwghhBBCCPHIOqID7Wwug+OYwKq36nnccceamcqeh+O6K1K2c9ksjuMwPDxMu92mUq1Qq9Wo1WppwynbtvA8j9HRUcbHx6k3GiwuLKK1plqpMDM7S6fdATSO4ybpzHkmxidMcGrbJmXdc02gmQSbGp2ucmYyGbrdLsvLy2zdupV7tm6lUq2we2o3nU6HynLFjHlSygTqtpk53e12TcfxMEiCrwZLS0tJivgQrutSq9Xo6+uj0+kwNbUby1LJbHGLdqfD4OAg7VabgYEBgsBHKbMan8lkmJ+fB2B01ATJa9euTffbS8fv+j7VahXXM/XF7bbpsq6SBnCe65LxPPL5AmFoVsDnFxZAawqFAnv27KHT6aRjy/L5Apu3bKFarXLHHXcQRTED/f2EYcjgwADdTod8kn0QhiFLS8tJw7MuWkM+lyMMI1AW+UKBONb43S5KKaqVCvl8nlwux0D/AJlslnw+z/DwMJ5nAvNcLsfatesoFAosLS2b1OyxMWq1GmvXrmV4eBjXdanX65TLZQb6+/edjyhizZo1oCGKYqrVajoubmBggC1btlBL6s4nJyexLJXWvI+OjLJj506CMGR0dJRjH/94Ws0mY2NjbNy0iULe9B+IkjniQRDQbDYJg4BsxmQauK5Lq9kijKI0c6LRaOK6ppGcEEIIIYQQ4tA4olPH161bT6fdplAsMjU1xc6dO1leXqavVKLT6eBlMqZ7uNbEsWmSBhAkq329NGCASqWC53r0l81jmUyG2WRcleu6hFFIt941qeq2DZB+bXx8nCAImJ6eZnRsjInxce65554kGNTkC4U0jTfjedi2TRiF6divTqdjVlotU5OMglwuR+D7YNu0kxnPC4uLuK6LshS27TAw0M/i4iJBEFAoFrEsi3y+kDbJ6qVbd7tmdb2QzzO/MM9JT3gCrm1WXRv1BijSNPZKpcK2bdvxfZ9t27YxOTnJ2Pg4M7OzJnU8jmi2Wgz0D1CrVZMu3P3k83nuuWcrfX19/PrXv8ZxHEqlkpmv7TgMDQ6mHeLB1ID7vk8uZ9NptykWTXd1pcDzzI2IpaUlBoeG0pXs4eFhtmzZQhhGzMzM0G63sGwLy7ZYt349nW6HKIpRUQwKbNthfHyCWq3GwqJJ/5+YGGd52XRF37xlmHvvu59MxiMKg6TePGDH9h1mFFinm3QitxgeHmRqagrVP5DeVLAsiw0bNvKr2+9I0sm7TExMMD09Ta1ep902NzTq9TpjY2MsV0xTu2qnw9jYKEtLi9Sqpht6uVw2ZQ9hiAXYSiX19m3yhQKu65rsjNj0B5ifmycIA/K5PMMj5sbRwvwC2WwWz/Not9vpz6kQQgghhBDikXVEB9r1Wg3XdSkVi5RKJRr1On19fQRJmnShUKTdaROFEV7Gw0mCVh1r+vv7mZ+fT+c7O45Ds9kkn88nTc9qLC4uMjk5Sa1eo9M2K6uNRoO+PpMOPDDQT71m0ooLxSJr161lZHiEubk5MpkMC4um+VYUhiYgjK00yLYsi2OPPZal5SVmpmeIYpPm6zgOpb4S9VodjcZNVs2r1SpRGJLP57Esi75ymTCGgf5+qtUqleXlNGW6UqlQKBTMnOyCSS12XYdY2wwODDA7M02z1cJLsgHqtTpg6oMzycztarWajt9yvQydTjcdlbZhw4Z05baXTt5qtdKbF70bA91ul4WFhaRBWRHLtskVikRao7SmUqmkq6+5XI5jjjkGpeCXv7yNKI7JZbPUqlXGxsbSruBxHLO0tEShUKDU14dGEyWPATQbDYq5PJ12B9t1mZmdxfM8gtCnVCzRaDWZX5ynkCuwa+cOiEMqlQZr164hk8lw3z33Uir1MTw8SrPZpFJZNlkKWOgY8rk8IyOjLC8vs7AwTxhE9JfLVCoVgsgnm8ulNx52797NxMQEuVyearVKq9VkfmEB13Vptprk8nky2Rxzc3N0k2yD3ki1IPBxHBcV+OkKvZN0pzfzwDtktWkOtzC/QLm/TBRFeJ6H53k4jiPN0IQQQgghhDhEjujUcZTCsm327N0LGoqlErVajUazCUlH8SiKGB01QZOOTd1zpVJhYXGRKIoYGRlBa53W7prVSh8dmznaruuiUChL4QcBmWwmffoojNKV1507d1Cv1dmxcyetdgtlWfT19dHtdJI04zit1Y6jmGwmy65du7j3nntN0JXLpfW8vbFjljJN1LxMhlarhVKKVquVrpS3221Akc/nyefzFEsliqUSmUwmrf8uJx3Ne/PAHccmn89TyOdptVt0ul2UpWh32mgFjWYTZZk0c2VZaDS7d+8mny+gtaZcLnP//fdTrdXIZDJs3ryZ5eVlSqUSjutSqVQAaDabZDIZxsbGsCzLrPj6AYVCPj1/mSTjoN02zcPuvPNO5ucXGBgYwHNdpqen8TyPXbtM13LP85iYmACl0Jj3TGtotVpp4F+t1bBdl0zWzEevLFdYXl7edwOjXiOfz9PpdggCk1Vg2xbZbIZdu3alI72WlkwH8ziKsW2bpcUlLMtmYX6B6em91Gq19ByXSiUs22Z4eJhOu02n2yWMIoIgYGlpmb3Te03jtHqDUqHIxPgEnucxMNCPIsZz7bRzvO04RFFMEITU63Xy+Ty+75ufP9/HSjIRigXz81pvmBsyvfPZay5nJ+PBhBBCCCGEEI+8I3pF23VcctksYRAQxhH95X6WlpcYHBgkjEx6uOs4LC0vEYYhjusQxxGO66KATDIKq1gsmtRxz2Pv3r0cf8LxbN+2HdtxWFpaolgsAqQN1wyzcpzJZgiCEM81s6Pz+TyFQiFJmXaZmJhgYXGRQrJSjgLHdUApcvk8/f396bzoynIFx3Fot9u4rku+kMezPKIwNDOq2y1KpRK1eo0gDMhms0lqeCdd0e3r62NiYoJKpUK9XidOVrlbrTbKsojCgEajQaVaBW1Wgz1gbHyCZlLvu3PXLsYnJigWC8zNzVOrNxgaGmLLli3s2bMHlGJoaMg08UrqtHft2kVfXx+VSgWtNc1mM+mgbVbBl5eXWbduHUtLSwTdLq7n0Wg0WFhY4JhjjuGee+7B8zwWF5colYrk8/kkaGwyOjrCzMwMM7OzTE5OEidBbKVaTV9fu9NmubLMmrVr2bBhE9u3b6PVbKGBweFBmk0TiAeBef2tZhtLWdiOxYb1GxgfH6evr0wum6Wv1Me2bds4+nFHcfevt1Kv1ykWB5neu5dYa3zfzLNGawYGBslms4yOjmA7FsPDw2zfvp3A9ymVSgRBQJisxm/etIVGs8HE+Dhb796KshRRGDA0NES93qCT1KNnMh6gGR0bw+90aNRqdDrmxoBtWwwNDtHpdLAsi4yXSZ7D1GQ3W00c23TaF0IIIYQQQhwaR3SgHYYBsdZ0ul2KhSLNVpMwDPEDPx3L1ElGLdm2TbVaNSO8Mhk2bNjA1nu24nkedlIjq7XGD3y2b9uO63msX7+e5SQlu9eQKo5Nd2gLaLXblPvLdDsVKq0Wa9eupdFopEFOf7mP6b3TlIpFisUicTKyyXFs0JpOu80pp5zCL2+7DduymJiYYH5+nkKxABosZaXzuuM4JgojdAa01ma/5X4AOu0269evZ25uzjTMSsaUdbtdCoUi/f2mltvvdul0OgwO9ON5Hrlcnmw2RyabQceaTDZHp92hXm8SxZpON6CbBHB79uyhntQdF4slGo0G69etp16v8fhjj2UpWXHurcx6nketXmdyYoLdu3eb1eZqhVazgee5tDtdul2fTMbjtttvZ2hwENd1mZyc5P7772dgYJChoWFarSZ7p6cpFoso4JZbfsxRR23BcRx279mD52XSGmfP88hkMuzatZt8ociatWsJAp9sJovjmLKBTDZHp9NleMh0PM94GaZnpgmigN07dzE0OIwC5ubnmJ2dZWx0jEqlQmW5wsjoKP3lMnun9+I4poO6ZSkymRytdhvf7zA7O5t0/Y7YsmVD2tG+12280WhQKpYolfqYn58j4zksLy6alPooZrlSYWBgAK01nU6HamXZNHMbGKBSraLjOM1mGB4eZu/0XnLZHMvLy9i2TSFfSINwfSguSiGEEEIIIcSRnTreardZWlpCKUWxVCSOYyxlpSuXvVRtNxnn1RuVFOuYTDaDpRTdTpfpmWmTShyalcEwDAmDgD179qCUIopMini3203mciviOE7GRMWUSiWKhQJRstKay+dxXZdsJks2mzXjtwoFBgYGku3i9DXs3r0b13VN87MgYGRkhIyX2ZdmHse0O23q9ToDAwM06nVGR0cZGBgwjcjKZXzfN7XnWuM4Dp6XMTXOuVy6bwDLtunr62Np2dRGx1qbEVi5HAuLCywtLbFcWSaKzevduWMnQdL0a2BwkFjr9Jjm5+e55957mJraQ3+5bN6PVotOp0MURViWRS6bZXBoiM2bNwMwOjqWjvkaGR5Ga1NbXe7rS0dS7dixg4nJSQrFAuvWraVUKuE6DjqOyRcKDA0N0mw2CcIQ27IZGBhgbGyMVrNJNmPSvjvdDvVajSAIaLXadH2fdrtL4JsxcKViCdu2zf+XStiWTeiHjI9PMDw8RBiHtNttctkci4uLDA4OUe4vs2H9eoIwpFars379eorFIs1mi507dzE4OMj4+DgZL0O5r59CvsDCwiJLi0v4ycxuktnkzWaLkZFRlLLoKw8wMDjMyMgIURyh45iF+Xk8zwMN/eV+hoaHUEqhFARBYI5dx0RRRDabxXVdukkJQKfTAU3SaV8IIYQQQghxKBzRgbbjJCmyWpv5x+V+xsbGyGazxHFMp9MhDMN0hTXwfdxkLNPOHTuJ4pggDBgeHsZSCtdxKZfL9A/0p3O2e7W/URThOA71eh00lEolsrkstmWljacajQa2bbMwP4/WmuVlM4oqm83S9btpkzYdx8RxzPLyMrVajcD3aXc66exl27bxA990TAcc2yGKIoaHhxkeGSYIQo47/ng6HRP8e56Xrta3223anTZgbjCASeN2HHfl/v2A7du20UoawGW8DN1O12yT3DDQWmMnDbiajUYyyqxAq9Ukl80mjeQ8ZmdnCUMzv7nXGTyTyaCBHdu3s279evr7+5Pu5zZxbILqwcFBMhlT8x5FUVrvXK1UKCRN34IgTOu4O23TdbvRaCZz0mNq9ZoJvIOAxYUF09hNx6xbvw7f9+l0ulSWKzQbTbSGKIixLYdms0U+X2DXrl20mm0W5hfRsWb31C46yfmLtaZSrTI7O0MYhmzdupUd27ejlGJ6ejqZw95gbHSUUrHI1l/fQyaTQ8eaVqvN8lKF/r5+szo/OISVdIuPopBGo5HME9fYlkMUx6ZpnmUxNDSUzDav47gOrZbprN/tdGk2m+zevZv169ZT6utjbnaO+fl5E3iHEYV8gbVr15qRcPn8wS4bIYQQQgghxB/YER1o9+p/bdvBc13CMEiDrjAM0xFXAwMDtJotLNsmimPCKKLeqJPNZimXywwODgKKWq1GvV6nVq0lc6rrtFottDbtppRSaUO1KI5QSZ22RuO5Hs1mkyiKGBgcJAxD9k7vZWFhATBNufbu3ZsEoJpMNsvw8DCtViupZzYrwb1xXL2GWVEc0fVNN/ClpSWOO/Y4gsDn7l//migMWV7uzYrOp4FxLpulXqvR7XZN+ny3i21b1Gs1RkZG2LRpE49//LEMDQ1jWRb33HMPpVKRdevWEgYha9asodvp4LoOjUYDz/NMan2sieOY0dFRgiDAT8aGAUxMTlLu7yeXy5HJZJiammJocJBcPs+O7dsplkrU63WWK5XkPDfI5XIcf8IJ6civKIqYm5tjebnCrl272L59O6VSETAd3i1LUa3WCAKfvXv34tgWnpPM7c6ZxmSxjpMa7GbaNV1ZJsuhVOpLa9qVgpNOekJy7rJkMibtfGJiEsdxOPHEE80oLUhnbE/t2UO70+GEE07Atmy63S5hEDI7N2dqtwMfJ7lJ0tdXoi/pil6v1ygWiybbwHUBxX333UdfqQ9LWVRrVWZnTDAfhiH5fAHP89Bas7S0ZDINkl4BAwMDuJ5Lo9FgbGyUyTWTdLtd+kp9ZJJygaXlJbrdbtIsTwghhBBCCPFIO6JrtC1lVjUd16Hd6eB3u2ig0+5Q6iuRz+fpSwK8IPCxYjutybYsExC5rku71abrm1FVpVIJ1/MoFgpmJndfH41GA601mUKB/v5+U/8aa4IgYM2aNURxTLNhVoaHhodNcNtuMzQ4ZFayg8CM99JmvJdCYVsWjUaDbC5HpVql2WxSKBTwA59MJkO1ViUKI+I4JpvN4jhmVXvbtm24jstypUIun8fvdshmczQa8xQKBVzPY2hwkE6nk6w+t9mwcQNobeY712pUq1W2bDkqXfF0HYfbbr+dMDBp4svLy6ik4VmvC3u73abRbJLNZMhmzSxx1/MIgoBOp2NmRCc3PjZu3MjY2Fia/l5LxrBVq1W8TIahoSFs26ZWqzE3N0e5XE6bqtm2jZd0K2+12ywuLJDJeKYbd7dLJuOhgUajyeTkOPNzswwMmv0VCmYVfGRkhIWFBXOMrmPGvxWLrFmzhrvv/jVa23Q6Hfbs3Zv8/Lg0Gw2WlpawbEWhYDqsDw0N0WjUzcxspRgfH2N0dIylpSVirU1Xb6Wo12p8/etfY9269ShLkc3maLda9HK3fT/AD3wqyxWUZZlacs9jeXkZ1/Not9rkizky2Sw6Sctvd9rpzaM4DBkfH0drzfYdO3Asi3qjzg3X35B2de91zTcZCaZsQFmSPC6EEEIIIcShcEQH2qDTOcyZTIa+vjLttlkdHRoaAg2Li4ssVyqmdjqpgx4YHWXPnj3kk9VXhcJ1XUZHRlFKsbCwQDaToVAopHXTtXqdTNIpO4oiOt0OKqnVXpifJwxDk06ezTA3N0etWiPWMQP9A2QyGbq+mYUcxzGWZZmu1cDjj308tWqVcrmc1lIvLCyYemvXYdPGzUxN7TZpw2ETyzKdrVvtNsuVCvlcNn1tvYZvxz7+8ezYsYNCsZgGkLbt4LomQM94HrOzM2g0C/MLZnV9aIharUY2m+WYY45h+/YdhGHI0NCQaTy2ezeDAwMoZVGv19Fam5sYjQae6xJ3u8SxRmtTZ60xNfQL8/MMDQ0TBD7FYpFcLpc2qFuzZg2VSoVsNkcQ+ECSpWBZJphNRqz5QUB9eppSqcRQMkLLc11arRblcpmFhXkymSylUimth3c9jx3bd5Av5Onr68NxXGzb1Oj39ZXp79cszM9TKBQJwgDLspOO7hUqlQrNRov+/n7CMMTzPIrFAcrlMvV6jUqliu/7yVi1nLlhoczKd7PZotM2Hd7brRau51EoFJiZnqG/v59Yx3iumeleKBZpt9t0kpsonueRzWSSn2lzE2dpaZFCPoefpMajtcnSGBxAocjlcpT6SlQqFezkxsZAf7+plQ+jR/h6FEIIIYQQQsBDTB3/wAc+wJOf/GRKpRKjo6O8+MUvZuvWrSu2efazn500btr38cY3vnHFNrt27eLss88mn88zOjrKpZdeShiGD/ngezOt48is/NZqNSrVatrhOQwD8oUCtm0zNjaWPj40NASQriZalqnPzhfyxPvVT/e6jGcyGfrLZVODbVlEUYSOzYrm4tIiWmusJD15+/bt5LI5+vv7zcrz8jIzMzNoDUuLS3Q6HWzbxrJtmq0W27dvN2PIkmZt9XqdoaEhXNc1NbeFAo7tpDW9mUyGHTt20Gq1KBQKNBoNGo16ksJtZmrv3r2bUqlEu93Gsizuu/depqf3pmO35ufnGR0dpd1qE2tNFJpRaENDQwwPD1Ot1eh02nQ6HRzHpdVq4/s+juuidYzvm1V3pRT5XI5qtZp0eXfQYGZRRxH1Wg0w3eF936fVatFut6nVaoRhmKSGl9i1a2eSdRCwfv36tBbedV38pKYdoFars3vXLgrFIkpZ5PJ52knQ7To2YRBw4gknoJQil81x1FFb6HY6VKtVlpeXuP3227GSTIJyuT+psW6yvLRENpvB933CMKSQLzA4OMDc3ByOY5PJuGSyLnNzM0RRQLlc5KmnnsriwgLVSjUJhguUy32Mj4/jeZ5JA49C+vvL5nX4pua+Xm9Qb9SxbXO8nuuaVXqt6XY6+L5PpVrF8zxiHXPU0UeztFxh+46ddLomS8GyLObnzHvY6XbIeCbLIPB9ojBkdGwsna19pFzLQoiHTq5jIYQQ4vD1kFa0b7rpJi666CKe/OQnE4Yh73rXu3j+85/PXXfdRaFQSLe78MILef/7359+vn9TpiiKOPvssxkfH+dHP/oR09PT/Nmf/Rmu6/K3f/u3D+ng48isoEZxTGW5QrFk0oMbydznxcUFUIowCCgWiqhRxebNm1lYWGCgvx+/18E5jtNZ1EqZdNtut5usKrt0uh0sZQLsKI7MyrSO6Sv0pTOvNRD4PmEQUqlUGB4ZZmBgwIzV8n0mxscZGhxkfn4ey7LIZjJoHdOoN8jmsgDMzMzQ19dHFEe0Wi0GBga4+9e/BgW2bbPlqC1Uq1X6yn009k7TaFVMEzfXBaUIAp/lZI51Jpulm6SPr1u3LumQblK77733XrZu3cr4+BgLCzaZbJbZmRlyuRzdbpe909O4jkOz2WRmZjoN2m3bxnEc4jhmbGyMdqeTjhOzkhsQaM2ePXvSGvQgCJhfWCAKQwYGBlEKcjnz8+AHAXv37mXz5s3Mz89jJ/OfwzCkUCjSbDYYHRkxo82imIWFeU488QnMzc0yOTlBrVZL/+GYyWTI5fPceuutZLwsa9euJZvNmpsk/QMEQcAJJ5zIjh07mJmZZnl5KXmOBXw/YGlpmaGhQSbGJwiCkPUbNhAEIbOzM+RzOVzbNNGrVauMjIxw7333EsURnW6XIPBZ6izTP9BPt+vTaDY58cQTaDVb+L7P/MI8rufSbJk56AP9/YyOjXHbbb8kjmNA0W63cVyXrm/qvOPkZzrwAwYGBqk3GjiOTaPZpNzXRxiGZoyXsqjVagwNDZkbD60W999/H3EU00qyO46Ea1kI8dDJdSyEEEIcvh5SoP2tb31rxedXX301o6Oj/OxnP+OZz3xm+ng+n2d8fPyg+/jOd77DXXfdxXe/+13GxsY4+eST+eu//mv+8i//kssvv9yMNXqQKtUKpWKJwA8o95sRU7Ozs3iex8LiQtrIrFgsUW/UiSITwCqlaLXbWMoyH7aN7TgsLiySL+RxXCcdNxXHMfV6A0spwihEodJgsNPtpqngcRKAu65LsVgkCiP2zO1hdHSUSqXCffffRz5nVsxbrRbFYpGJ8QmqyQp8GIa0O23yBfMPoEwmQxhFZHM5SsUiO5o7WFxYpNPp0O12sR2HNSNjFAt5Go0GcWzS6J2kS3i308FxHGq1GpZtJ2PPOsRaMzo6yvJyJRl/1aJ/YMB0Tg+CtL660WgwNTVFLp8njCIymQyO61JMGoMtJc258vk8Xd83q/xaE0UR5f5+6rU6eyp70FqblG5gcnKCSqVCtTqDZRVZt3YtW7ZsSbIPQuLYdDv3fd/UsifvU6fToZis5HZ903l7dHSUOI7J5/NEcUy9VkNrbcoD/JC5uTlTMz80TD6fw3X7qFQqTE5OoHWczvXu6+sDoJM0dlu3bj033vA9gm5Ap9sll8mhI43nZk3zOKXwg4AojOjvH8DzTHMzx7aZnJzk5z//OdlMhiAIWVpaShru9TM/P08ul8WxbfKFPD/9yU9A9TrDK4aGhul0O8RRlDSKy5qV63lTxhBGIY6lyGYyLC0v8bjHPY7AD6hUK6xfv97U1leWqdfr9Pf3ExHBbxnwdbhdy0KIh06uYyGEEOLw9XvVaPfqjE3X7n0++9nP8pnPfIbx8XHOOecc3vOe96R30G+55RZOPPFExsbG0u3POuss3vSmN3HnnXfyxCc+8UE/v2VZ5At5lKXS8VC5bI6ub4Km/v5+mo0GYRjSaDZMl2fLMt2Ytcb1HGKtyefy1KpVvIxplLZ27Tr2Tu+lXqsnaeIx2rLoK/WZTtNhSC6Xo9VsJg23XNAmaPIyHo7r4Ps+J5x4Atvu35bM5Q6p+lUe//jHs7CwkB5zp9PB80zH8jWTa1BK7VupBSYmJvB9H4UZKTUwMIBSCmu/ldxG8hpRZuTZwMAAlUqFNWvWcP/99/O4o49mz549hFFIIZtlZnoajaZaq1EqFgl8P12R1ph52LunpvDcfTXDtWqVzZs2s7S0aOY9a02lYuZxFwtFMhmPSqWa1JzXGBwcYHBwgL3T07RarbTOO5PJUCyW8P0urVaL6elpfN9PVq0j2p0OYRTheRna7RYjIyPs3rWbWq2GHwQU8nmCIGBhYYFms0mr3SaXy+HYNoFv6rzjOCYIApaWl8llc9x//zYGBvoZHx9n27ZttNvtJH1+3yi4RqOBb9vMzc6ZZnadLgvzC0RRyMknnUQun2Nhfp5cPke34xNpTaNRp1zup1zuY3h4mF27dmHb5r2PohDXc9ObM9lsBscx864XFhbIJKnqTrL9/Pw8a9ZMUqlUcRybfL5Af7nM8nKFTtenWMyj0MmNE4uZmRkmJybxuz67du5idGyUKIw46qijCKOQeq2O49hHzLU8uLdMvibjyIQ4mFbjwQW7ch0Lcfh6sNexEOLR42EH2nEcc8kll/D0pz+dE044IX38/PPPZ8OGDUxOTnL77bfzl3/5l2zdupX/+I//AEx69P6/0IH085mZmYM+V7dr5kX31JLa34znmUZmjmMag+XzDI0OsbS0lDYya3c6bNq4iV27dxHrmMXFxXQltFAsEoYhCwsLRHGM57oEQcjM7CyFfIHZmVnK5TJhGFIslXAdJ63jtW2bKDa11b3V1yiKKBVK6ZitXvfw9es3MDMzTRiENFtNcrkcuVyO0dFRFhcXyefzzM/Pk83lKCcrrPl8cgMhDKksL5PJZpiZmaFYLLJ27VrcuTm8bI7JNZPMzs4Sx6aezrJs9k5P47ku27dvp93usHfvtAnKPY8N6zewtLjI8PAwIyMjLC4uYjsOleVlhodHTEAehjzu6KNpNps0m036+wfScWntdhtLKQYGBtBamzFV5TLDw0MsLi4xPzfPHXfcySlPOoXBgQGq1Sp2Uo/u+wGTk5Ps2rWLIAiwbcesmudy5HJ5lGqza+dOSn19eJ5LtWo6mo+MDKeB9vLyMs2maQrXa97md7tY2SzLlQojw8OmgVnGpdvpUioViSLT9Xt6Zppyfx97p/dQ6ivR9duU+gosLCzj+x02b96EsiwUitmZWaJknvjO3bspFgrsnZ7BcRzWrltLIePRXy4TxTELC4t4XgbHcSiViiwuLjE7O0u3a1b6s9kMpVIJx3aoVKsMDg3i+wGu69Htdin397Np8yZarRYjIx5hENDt+lQqVcbGxs1NoJxHu2lmmXc6HXSs2bp1K0EQsHnzZvbu3Us2l2XT5s1878YbyefzBH5wxFzLTtehsfaBU92FeCxr27/72jgcruPyfIlCq8DMpnlC9/BpxpivZxmc7mdu/SJ+9sH9vfiHNLS3n9pwg/JciYW1ywxPDZBtZdKvazTTR80RW7+918ZjVf9sH83+FkHmyOkjkK/l0EreTyEeax52oH3RRRdxxx138IMf/GDF469//evT/z/xxBOZmJjguc99Lvfffz9btmx5WM/1gQ98gPe9730HPL5u3XoWFhfM+CzLIp90FV+7di179+4FoFwu0/W7DAwMgNY4xaKZ26zBUqY21u92yWSyZHNZ01BteZluLsfw8DDZbJZa3Tx21FFH0Wg0KBQKhFGE67goS6WzpDudDpVKhY0bNzI4OMjCwgKe6zE1tZsN6zewsLDA3j17KRQKZLIZ7rjzDoA02B4bHcV2bKq1alorHkURYWhWKB/3uMdRWa7QTdKc6/UGv/713WZ+dLLy3g1C0KCSbte9YH5iYoKpqT3cc89WcrkcXiZDtVplcs0att1/P1prFhcX0tnbzWbLZAjk8+zZM0WpVMIPfNNlPJNJZ5X39fWxbt06FubnedzjjmZ2dpYTTzwB3/eTtPguuXyOsdFRduzYwe7du9m8eTM7du7EtizWr1/Htm3bAJOhMDExyfT0XjzX5aijtqC1Zu/evQwODppa8tlZMpkMlmXT11cmCHz6+vooJ0FvL5XcshQjIyPMzs6CUnSSWeT5fJbhYXMzpn9ggEplmTAMGJ8YZ2Z2mlqlgYVFK3n9lm0xOzPD2ElPMI3pXJeMl6FSqQAQRhGWUti2zcL8Av0D/cl4MHMsjmOzvLRsVv4Hi/jzc8zMzFIsFrGSrvXVapXp6WksyyLwfYaGh6lUlnEcl8A3537P1BSlYoEtmzfT39/PHXfcwcDAAMvLy2zbto3NmzczPTPNf/70p+kseT9Z4f9dDodrOV/LMnyvrIQJcTDNZvN3bnM4XMc9ozuG4Xc0ZHwkqaSMZmT34O9sFPlIUFqRaWZQGibvHUXpA8t8xu8fOQRHdmRQWpGv5TicfsZ+F4XCaz74LDMhxKPDwwq0L774Yq655hpuvvlm1q5d+1u3PfXUUwG477772LJlC+Pj4/zkJz9Zsc3s7CzAA9aQvfOd7+Ttb397+nmtVmPdunXML8ybGuBiEc/zUJaFYzvcd999jCYjuTpJrXLg+8SxRlkm5bqX/mzbdjoaKwxCXMch42XI5XI0m03GxsdxHIdO16Q0a63TO/mmCRlpd1bXcwn8gB07dzI7O5uOsSr3mdFdnmfSyo8++miq1SqzM7NMTEyQz+fxPNN5eueOnQwNDZlANopot9tks1k2b96MH/igoF6v4/s+QRAwNjpCp93GUqCUQquAXD5HNQkEh4eHyWQy7Ny5M/0ex3XpdEw98NzsLNUkVd1zXZRSTE5Oct/99zM4MMBxGzdSLpe5Z+tWBgcHWb9uHQsLC+TzBebm5igUCuzauZNMJsPU1BR+ENCo1/E8j3K5bLp2ex6WbTMxMcHycoVf/eoOstkMdjbLyMgId911F5ZloZIbHyMjIxRLJWZmZnAcl2w2y96904yMDKfZA2EYEEUxnU6HpeVlul0zPm3jpo1M7Z6iVqujlIXf9RkeHSGMQjqdNo7jkElGtzWbTaIwZN369SwuLFIoFLCVS61aI5/PmxsOrSatdouf/vSnZLJZ+kollpeX6QamaVk2l0PHMctLSxx11FHcvfVuBgeH8DyXUqlEvd5gdnaOWs10Gg+CkELBZn5ujnJ/f9J0rpGMfosYHhnGsiwzdiwIaLZaDI+MECSZF/3lMp1Oh3whn76fAwMDLCws4Dou4xPj6c0Z13OPmGtZobD0QxqCIMRjxu+6Ng6X63jf8Sp+W4+IQ0VplQbdh1pvcfNgQbZCHfRxsY85f0fWOZL3VIjHnof0L1utNRdffDFf+cpXuOGGG9i0adPv/J5f/vKXgKk1Bnja057Gr371K+bm5tJtrrvuOvr6+jjuuOMOug8zI7tvxQeYVDnTpduM5Gq322SyZgRWsVQi43mmG3U2h7IsXM81o7QcE1C2k1FbcayxLBvbtghD01k8m83S7nS46847TROujmmeFQQBjuPgemY1G21WnePYzMz2Mh5RGNJoNMjlchQKBSYnJ5mZmaFSqdBf7mfPnj1UklT33vd2u10ajQYolY7hCpJAyqRv91Ov12m32wRBQDaXo1gssnPnToKk67fWGi9jaoAsy6KYrN4XCgUKhWI6ukwBy0tLtFot9k5PEwYB2UyGeqNBq9XCtm36y2WWlpbYvn0HO3fsIAgCUIpCoUh/fz/ZbIYojiiXy7RaLXK5HLV6Pa1bt2w7mbndQFkWu3buTDqXW8Q6xnFc+vr66HQ6Sfq9Q//AQDpeJk46pMfaNJvzMp6ZM53Nmg7vYcjw8BClvj5y2Swjo6MEvs/U7im63S7tdou9e/esGFHjum66Oj4yMkI+l6NUKhFFIVEU0u36DA8PUcibkXBhMts6n8+TyWYZHTVz1pvNJq1mE8d1cRwbZSkWl5aYmprCcVzq9TobN26islxhcHCAXDaLbdv4fgBaMzgwwPCIWa2oN+rk8wUyGY+xsXEymQyLi4s4jo3rOGYmdrvNwMAAg4OD7Ny5k4WFBVrNFk7Spd1xHAYGB8hmsywuLJqU9zDA7z7wivbhdi0LIR46uY6FEEKIw9dDWtG+6KKL+NznPsfXvvY1SsmKI5j07Fwux/3338/nPvc5XvjCFzI0NMTtt9/O2972Np75zGfyhCc8AYDnP//5HHfccfy3//bf+OAHP8jMzAz/43/8Dy666CIymcxve/qU1uZWsJ90u56bm0sC0RoLC2ZleHp6GqXAti32Tu/Ftszc5SAI0lRzJ6m57na7dLom6G61W8nqZxe0Jps1o7c2btzI4uJiWrebzWVpt5KRV66LwtRVNRtNcvlckoq9yOjYKLt276ZRr6MxXbH9wKfVaJHJZeh0OiwuLvLEU/6IoOuzZ+9eojAgCMIkxXoHnuuxY+dOstkcnuuxuLhIrdGgf2CQTrvNxMQEleUlGvU6biZHX9mkUu/fEK3VahFFMYNDQzQbjXTV09RKm9VkN+k8vn37dorFomlENrWbOIqYmJhkz9Ru+vv7mZubx7JsJibGmV+Yp9vtsnPXTvyuT76QZ3J8kmKxyN13352M/wpwXZd6vUEUhWzcsIFYa2Idc+utP2FyzQQz0zMEvs/g4CAzMzMEgU+j0TT7m1zD8PAwu6emWFxcJPC75PNFgjDEsW1s22H7tm1kc1mmZ6bpdn1q1Sob1m/Etm1mpqdpdVo87nGP4+5f/zpNw+x1N280Gpx44hNMqr/n4WU8M8c8jgkC0/yuUMyjdWxusmQ8NmzcQKVapd1q0z8wwPz8PI7rkM1k6XTa3HrrLdhJTXaj2WDz5i3Mzs7QardQlsWeqSlsx05X2H3fp1avomON6zosLS7RVy6b/19eZGRslOryElEcU61ViaOYQqFgOutjMjO63a7JmkjmkMfJ/PHe9XI4X8utltRnC/FAetfHb17Lch0LceR4oOtYCPEoph8CTEHMAR+f+tSntNZa79q1Sz/zmc/Ug4ODOpPJ6KOOOkpfeumlulqtrtjPjh079Ate8AKdy+X08PCwfsc73qGDIHjQx3H//fc/4LHIh3zIx8qP3bt3y7UsH/LxKPj4zWv5gbZ7pK/j3bt3H/JzIx/ycaR8HOx3shDi0UlpfeTdWqtUKgwMDLBr1y7K5fKhPpwjSq+Wbvfu3ZLu9xAdaedOa029XmdycjJt2He4kWv54TvSfh4PJ0fauTvcr+U4jtm6dSvHHXfcEXNODydH2s/j4eRIOneH+3UshFh9v9cc7UOl9xdUuVw+7P9iPVxJXd3DdySdu8M9eJVr+fd3JP08Hm6OpHN3OF/LlmWxZs0a4Mg6p4cbOXcP35Fy7g7n61gIsfrklpoQQgghhBBCCLGKJNAWQgghhBBCCCFW0REZaGcyGd773vc+6I6oYh85dw+fnLvVJ+f04ZNz9/DJuVt9ck4fPjl3D5+cOyHE4eyIbIYmhBBCCCGEEEIcro7IFW0hhBBCCCGEEOJwJYG2EEIIIYQQQgixiiTQFkIIIYQQQgghVpEE2kIIIYQQQgghxCo6IgPtj3/842zcuJFsNsupp57KT37yk0N9SIfczTffzDnnnMPk5CRKKb761a+u+LrWmssuu4yJiQlyuRxnnnkm995774ptlpaWeNWrXkVfXx/9/f1ccMEFNBqNR/BVPPI+8IEP8OQnP5lSqcTo6CgvfvGL2bp164ptOp0OF110EUNDQxSLRV760pcyOzu7Yptdu3Zx9tlnk8/nGR0d5dJLLyUMw0fypRyR5FpeSa7jh0+u5UNHruMDybX88Mm1LIR4tDjiAu0vfOELvP3tb+e9730vP//5zznppJM466yzmJubO9SHdkg1m01OOukkPv7xjx/06x/84Ae54oor+Od//mduvfVWCoUCZ511Fp1OJ93mVa96FXfeeSfXXXcd11xzDTfffDOvf/3rH6mXcEjcdNNNXHTRRfz4xz/muuuuIwgCnv/859NsNtNt3va2t/GNb3yDL37xi9x0003s3buXP/mTP0m/HkURZ599Nr7v86Mf/YhPf/rTXH311Vx22WWH4iUdMeRaPpBcxw+fXMuHhlzHByfX8sMn17IQ4lFDH2Ge8pSn6Isuuij9PIoiPTk5qT/wgQ8cwqM6vAD6K1/5Svp5HMd6fHxcf+hDH0ofq1QqOpPJ6M9//vNaa63vuusuDeif/vSn6TbXXnutVkrpPXv2PGLHfqjNzc1pQN90001aa3OeXNfVX/ziF9Ntfv3rX2tA33LLLVprrb/5zW9qy7L0zMxMus1VV12l+/r6dLfbfWRfwBFEruXfTq7j349cy48MuY5/N7mWfz9yLQshjlRH1Iq27/v87Gc/48wzz0wfsyyLM888k1tuueUQHtnhbfv27czMzKw4b+VymVNPPTU9b7fccgv9/f086UlPSrc588wzsSyLW2+99RE/5kOlWq0CMDg4CMDPfvYzgiBYce4e//jHs379+hXn7sQTT2RsbCzd5qyzzqJWq3HnnXc+gkd/5JBr+aGT6/ihkWv5D0+u44dHruWHRq5lIcSR6ogKtBcWFoiiaMVfnABjY2PMzMwcoqM6/PXOzW87bzMzM4yOjq74uuM4DA4OPmbObRzHXHLJJTz96U/nhBNOAMx58TyP/v7+Fdv+5rk72LntfU0cSK7lh06u4wdPruVHhlzHD49cyw+eXMtCiCOZc6gPQIjDxUUXXcQdd9zBD37wg0N9KEKI34Ncy0I8Osi1LIQ4kh1RK9rDw8PYtn1AZ8nZ2VnGx8cP0VEd/nrn5redt/Hx8QOa14RhyNLS0mPi3F588cVcc8013HjjjaxduzZ9fHx8HN/3qVQqK7b/zXN3sHPb+5o4kFzLD51cxw+OXMuPHLmOHx65lh8cuZaFEEe6IyrQ9jyPU045heuvvz59LI5jrr/+ep72tKcdwiM7vG3atInx8fEV561Wq3Hrrbem5+1pT3salUqFn/3sZ+k2N9xwA3Ecc+qppz7ix/xI0Vpz8cUX85WvfIUbbriBTZs2rfj6Kaecguu6K87d1q1b2bVr14pz96tf/WrFP4quu+46+vr6OO644x6ZF3KEkWv5oZPr+LeTa/mRJ9fxwyPX8m8n17IQ4lHjEDdje8j+7d/+TWcyGX311Vfru+66S7/+9a/X/f39KzpLPhbV63X9i1/8Qv/iF7/QgP6nf/on/Ytf/ELv3LlTa6313/3d3+n+/n79ta99Td9+++36v/yX/6I3bdqk2+12uo8//uM/1k984hP1rbfeqn/wgx/oo48+Wp933nmH6iU9It70pjfpcrmsv/e97+np6en0o9Vqpdu88Y1v1OvXr9c33HCD/s///E/9tKc9TT/taU9Lvx6GoT7hhBP085//fP3LX/5Sf+tb39IjIyP6ne9856F4SUcMuZYPJNfxwyfX8qEh1/HBybX88Mm1LIR4tDjiAm2ttf6f//N/6vXr12vP8/RTnvIU/eMf//hQH9Ihd+ONN2rggI9Xv/rVWmszTuQ973mPHhsb05lMRj/3uc/VW7duXbGPxcVFfd555+lisaj7+vr0a1/7Wl2v1w/Bq3nkHOycAfpTn/pUuk273dZvfvOb9cDAgM7n8/olL3mJnp6eXrGfHTt26Be84AU6l8vp4eFh/Y53vEMHQfAIv5ojj1zLK8l1/PDJtXzoyHV8ILmWHz65loUQjxZKa63/sGvmQgghhBBCCCHEY8cRVaMthBBCCCGEEEIc7iTQFkIIIYQQQgghVpEE2kIIIYQQQgghxCqSQFsIIYQQQgghhFhFEmgLIYQQQgghhBCrSAJtIYQQQgghhBBiFUmgLYQQQgghhBBCrCIJtIUQQgghhBBCiFUkgbYQQgghhBBCCLGKJNAWQgghhBBCCCFWkQTaQgghhBBCCCHEKpJAWwghhBBCCCGEWEUSaAshhBBCCCGEEKtIAm0hhBBCCCGEEGIVSaAthBBCCCGEEEKsIgm0hRBCCCGEEEKIVSSBthBCCCGEEEIIsYok0BZCCCGEEEIIIVaRBNpCCCGEEEIIIcQqkkBbCCGEEEIIIYRYRRJoCyGEEEIIIYQQq0gCbSGEEEIIIYQQYhVJoC2EEEIIIYQQQqwiCbSFEEIIIYQQQohVJIG2EEIIIYQQQgixiiTQFkIIIYQQQgghVpEE2kIIIYQQQgghxCqSQFsIIYQQQgghhFhFEmgLIYQQQgghhBCrSAJtIYQQQgghhBBiFUmgLYQQQgghhBBCrCIJtIUQQgghhBBCiFUkgbYQQgghhBBCCLGKJNAWQgghhBBCCCFWkQTaQgghhBBCCCHEKpJAWwghhBBCCCGEWEUSaAshhBBCCCGEEKtIAm0hhBBCCCGEEGIVSaAthBBCCCGEEEKsIgm0hRBCCCGEEEKIVSSBthBCCCGEEEIIsYok0BZCCCGEEEIIIVaRBNpCCCGEEEIIIcQqkkBbCCGEEEIIIYRYRRJoCyGEEEIIIYQQq0gCbSGEEEIIIYQQYhVJoC2EEEIIIYQQQqwiCbSFEEIIIYQQQohVJIG2EEIIIYQQQgixiiTQFkIIIYQQQgghVpEE2kIIIYQQQgghxCqSQFsIIYQQQgghhFhFEmgLIYQQQgghhBCrSAJtIYQQQgghhBBiFUmgLYQQQgghhBBCrCIJtIUQQgghhBBCiFUkgbYQQgghhBBCCLGKJNAWQgghhBBCCCFWkQTaQgghhBBCCCHEKpJAWwghhBBCCCGEWEUSaAshhBBCCCGEEKtIAm0hhBBCCCGEEGIVSaAthBBCCCGEEEKsIgm0hRBCCCGEEEKIVSSBthBCCCGEEEIIsYok0BZCCCGEEEIIIVaRBNpCCCGEEEIIIcQqkkBbCCGEEEIIIYRYRRJoCyGEEEIIIYQQq0gCbSGEEEIIIYQQYhVJoC2EEEIIIYQQQqwiCbSFEEIIIYQQQohVJIG2EEIIIYQQQgixiiTQFkIIIYQQQgghVpEE2kIIIYQQQgghxCqSQFsIIQQ7duxAKcU//MM/rNo+v/e976GU4nvf+96q7VOIRwulFJdffvlD/r7etXr11Vev+jEJIYRYPRJoC66++mqUUulHNptlcnKSs846iyuuuIJ6vf6w9vujH/2Iyy+/nEqlsroHLIRI9a7f//zP/zzUhyLEEWf/338/+MEPDvi61pp169ahlOJFL3rRITjC39+uXbt44xvfyMaNG8lkMoyOjvLiF7+YH/7wh7/Xfq+88spHLNi/6667uPzyy9mxY8cj8nxCCLEaJNAWqfe///383//7f7nqqqt4y1veAsAll1zCiSeeyO233/6Q9/ejH/2I973vfRJoCyGEOKxls1k+97nPHfD4TTfdxNTUFJlM5hAc1e/vhz/8ISeeeCKf//zneelLX8qVV17J//f//X/ceeedPOMZz+B//s//+bD3/UgH2u973/sk0BZCHFGcQ30A4vDxghe8gCc96Unp5+985zu54YYbeNGLXsS5557Lr3/9a3K53CE8QiGEEGL1vfCFL+SLX/wiV1xxBY6z759Gn/vc5zjllFNYWFg4hEf38CwvL/Oyl72MXC7HD3/4Q7Zs2ZJ+7e1vfztnnXUWl1xyCaeccgqnnXbaITxSIYR4dJIVbfFbnXHGGbznPe9h586dfOYznwHg9ttv5zWveQ2bN28mm80yPj7On//5n7O4uJh+3+WXX86ll14KwKZNm9LUvN7d6E996lOcccYZjI6OkslkOO6447jqqqse8dcnxKOd7/tcdtllnHLKKZTLZQqFAs94xjO48cYbH/B7PvzhD7NhwwZyuRzPetazuOOOOw7Y5u677+ZlL3sZg4ODZLNZnvSkJ/H1r3/9D/lShPiDOe+881hcXOS6665LH/N9ny996Uucf/75B/2eZrPJO97xDtatW0cmk+GYY47hH/7hH9Bar9iu2+3ytre9jZGREUqlEueeey5TU1MH3eeePXv48z//c8bGxshkMhx//PF88pOffFiv6V/+5V+YmZnhQx/60IogGyCXy/HpT38apRTvf//708cvv/xylFIH7KuXYt/7Hb5x40buvPNObrrppvT3+7Of/ewV295888284Q1vYGhoiL6+Pv7sz/6M5eXlFft9oDr1jRs38prXvCbd38tf/nIAnvOc56TPJ70fhBCHO1nRFr/Tf/tv/413vetdfOc73+HCCy/kuuuuY9u2bbz2ta9lfHycO++8k0984hPceeed/PjHP0YpxZ/8yZ9wzz338PnPf54Pf/jDDA8PAzAyMgLAVVddxfHHH8+5556L4zh84xvf4M1vfjNxHHPRRRcdypcrxKNKrVbjf//v/815553HhRdeSL1e51//9V8566yz+MlPfsLJJ5+8Yvv/83/+D/V6nYsuuohOp8NHP/pRzjjjDH71q18xNjYGwJ133snTn/501qxZw1/91V9RKBT493//d1784hfz5S9/mZe85CWH4JUK8fBt3LiRpz3taXz+85/nBS94AQDXXnst1WqVV77ylVxxxRUrttdac+6553LjjTdywQUXcPLJJ/Ptb3+bSy+9lD179vDhD3843fZ1r3sdn/nMZzj//PM57bTTuOGGGzj77LMPOIbZ2Vme+tSnopTi4osvZmRkhGuvvZYLLriAWq3GJZdc8pBe0ze+8Q2y2SyveMUrDvr1TZs2cfrpp3PDDTfQbrcfUsbaRz7yEd7ylrdQLBZ597vfDZD+/dBz8cUX09/fz+WXX87WrVu56qqr2LlzZ9ok8cF65jOfyVvf+lauuOIK3vWud3HssccCpH8KIcRhS4vHvE996lMa0D/96U8fcJtyuayf+MQnaq21brVaB3z985//vAb0zTffnD72oQ99SAN6+/btB2x/sH2cddZZevPmzQ/jFQjx2PW7rt8wDHW3213x2PLysh4bG9N//ud/nj62fft2DehcLqenpqbSx2+99VYN6Le97W3pY8997nP1iSeeqDudTvpYHMf6tNNO00cffXT62I033qgBfeONN/6+L1OIP4j9r5+PfexjulQqpb+fXv7yl+vnPOc5WmutN2zYoM8+++z0+7761a9qQP/N3/zNiv297GUv00opfd9992mttf7lL3+pAf3mN795xXbnn3++BvR73/ve9LELLrhAT0xM6IWFhRXbvvKVr9Tlcjk9rt61+qlPfeq3vrb+/n590kkn/dZt3vrWt2pA33777Vprrd/73vfqg/3TsHee9v99fvzxx+tnPetZD7jtKaecon3fTx//4Ac/qAH9ta99LX3sN89Bz4YNG/SrX/3q9PMvfvGL8neJEOKII6nj4kEpFotp9/H973p3Oh0WFhZ46lOfCsDPf/7zB7W//fdRrVZZWFjgWc96Ftu2baNara7ikQvx2GbbNp7nARDHMUtLS4RhyJOe9KSDXq8vfvGLWbNmTfr5U57yFE499VS++c1vArC0tMQNN9zAK17xCur1OgsLCywsLLC4uMhZZ53Fvffey549ex6ZFyfEKnrFK15Bu93mmmuuoV6vc8011zxg2vg3v/lNbNvmrW9964rH3/GOd6C15tprr023Aw7Y7jdXp7XWfPnLX+acc85Ba51eVwsLC5x11llUq9UH/fu1p16vUyqVfus2va/XarWHtO8H4/Wvfz2u66afv+lNb8JxnPScCCHEo52kjosHpdFoMDo6Cph/aL/vfe/j3/7t35ibm1ux3YMNkn/4wx/y3ve+l1tuuYVWq3XAPsrl8uocuBCCT3/60/zjP/4jd999N0EQpI9v2rTpgG2PPvroAx573OMex7//+78DcN9996G15j3veQ/vec97Dvp8c3NzK4J1IY4EIyMjnHnmmXzuc5+j1WoRRREve9nLDrrtzp07mZycPCCQ7aUz79y5M/3TsqwDaqSPOeaYFZ/Pz89TqVT4xCc+wSc+8YmDPudv/r79XUql0u8cz9n7+u8KyB+O3/y7pFgsMjExIZ3DhRCPGRJoi99pamqKarXKUUcdBZi7/j/60Y+49NJLOfnkkykWi8RxzB//8R8Tx/Hv3N/999/Pc5/7XB7/+MfzT//0T6xbtw7P8/jmN7/Jhz/84Qe1DyHEg/OZz3yG17zmNbz4xS/m0ksvZXR0FNu2+cAHPsD999//kPfXuz7/+3//75x11lkH3ab3d4UQR5rzzz+fCy+8kJmZGV7wghfQ39//iDxv77r60z/9U1796lcfdJsnPOEJD2mfxx57LL/4xS/odrsPOJ7s9ttvx3XdNCh+oNrpKIoe0nP/vh7p5xNCiD8ECbTF7/R//+//BeCss85ieXmZ66+/nve9731cdtll6Tb33nvvAd/3QL+wv/GNb9Dtdvn617/O+vXr08d/WxdkIcTD86UvfYnNmzfzH//xHyuuyfe+970H3f5g1/I999zDxo0bAdi8eTMAruty5plnrv4BC3EIveQlL+ENb3gDP/7xj/nCF77wgNtt2LCB7373uwekZ999993p13t/xnHM/fffv2IVe+vWrSv21+tIHkXRql1XL3rRi7jlllv44he/yJ/+6Z8e8PUdO3bw/e9/nzPPPDMt5xoYGACgUqmsuMnQW6Hf3+9qaHbvvffynOc8J/280WgwPT3NC1/4wvSxgYEBKpXKiu/zfZ/p6emH9FxCCHE4khpt8VvdcMMN/PVf/zWbNm3iVa96FbZtAxwwvuQjH/nIAd9bKBQADvglerB9VKtVPvWpT63ikQsh4ODX26233sott9xy0O2/+tWvrqix/slPfsKtt96admIeHR3l2c9+Nv/yL/9ywD+GwaTACnGkKhaLXHXVVVx++eWcc845D7jdC1/4QqIo4mMf+9iKxz/84Q+jlEqvl96fv9m1/Dd/Z9q2zUtf+lK+/OUvH3Sc3sO5rt7whjcwOjrKpZdeyrZt21Z8rdPp8NrXvhat9Yqb5r0U95tvvjl9rNls8ulPf/qA/RcKhQN+v+/vE5/4xIpSlauuuoowDNNz0nu+/Z+r932/uaL9QP+eEEKIw5msaIvUtddey913300YhszOznLDDTdw3XXXsWHDBr7+9a+TzWbJZrM885nP5IMf/CBBELBmzRq+853vsH379gP2d8oppwDw7ne/m1e+8pW4rss555zD85//fDzP45xzzuENb3gDjUaD//W//hejo6MH/Ye7EOJ3++QnP8m3vvWtAx5/9rOfzX/8x3/wkpe8hLPPPpvt27fzz//8zxx33HE0Go0Dtj/qqKM4/fTTedOb3kS32+UjH/kIQ0ND/MVf/EW6zcc//nFOP/10TjzxRC688EI2b97M7Owst9xyC1NTU9x2221/0NcqxB/SA6Vu7++cc87hOc95Du9+97vZsWMHJ510Et/5znf42te+xiWXXJIGrCeffDLnnXceV155JdVqldNOO43rr7+e++6774B9/t3f/R033ngjp556KhdeeCHHHXccS0tL/PznP+e73/0uS0tLD+l1DA0N8aUvfYmzzz6bP/qjP+J1r3sdxx13HDMzM1x99dXcd999fPSjH+W0005Lv+f5z38+69ev54ILLuDSSy/Ftm0++clPMjIywq5du1bs/5RTTuGqq67ib/7mbzjqqKMYHR3ljDPOSL/u+z7Pfe5zecUrXsHWrVu58sorOf300zn33HPTbV73utfxxje+kZe+9KU873nP47bbbuPb3/52OhK05+STT8a2bf7+7/+earVKJpPhjDPOSHvHCCHEYenQNTwXh4veKI7eh+d5enx8XD/vec/TH/3oR3WtVlux/dTUlH7JS16i+/v7dblc1i9/+cv13r17Dzqm46//+q/1mjVrtGVZK0aDfP3rX9dPeMITdDab1Rs3btR///d/rz/5yU8+4DgwIcTB/eb1+5sfu3bt0n/7t3+rN2zYoDOZjH7iE5+or7nmGv3qV79ab9iwId1Pb2TQhz70If2P//iPet26dTqTyehnPOMZ+rbbbjvgee+//379Z3/2Z3p8fFy7rqvXrFmjX/SiF+kvfelL6TYy3ksc7h7MeEutDxzvpbXW9Xpdv+1tb9OTk5PadV199NFH6w996EM6juMV27Xbbf3Wt75VDw0N6UKhoM855xy9e/fug/7OnJ2d1RdddJFet26ddl1Xj4+P6+c+97n6E5/4RLrNgx3vtf/2F154oV6/fr12XVcPDw/rc889V3//+98/6PY/+9nP9Kmnnqo9z9Pr16/X//RP/3TQ8V4zMzP67LPP1qVSSQPpqK/etjfddJN+/etfrwcGBnSxWNSvetWr9OLi4orniqJI/+Vf/qUeHh7W+Xxen3XWWfq+++47YLyX1lr/r//1v/TmzZu1bdvy94oQ4oigtP6NHGAhhBBCCCEehquvvprXvva1/PSnP+VJT3rSoT4cIYQ4ZKRGWwghhBBCCCGEWEUSaAshhBBCCCGEEKtIAm0hhBBCCCGEEGIVHdJA++Mf/zgbN24km81y6qmn8pOf/ORQHo4Q4mGQ61iIRwe5lsVqeM1rXoPWWuqzhRCPeYcs0P7CF77A29/+dt773vfy85//nJNOOomzzjqLubm5Q3VIQoiHSK5jIR4d5FoWQgghVtch6zp+6qmn8uQnP5mPfexjAMRxzLp163jLW97CX/3VXx2KQxJCPERyHQvx6CDXshBCCLG6nEPxpL7v87Of/Yx3vvOd6WOWZXHmmWdyyy23HLB9t9ul2+2mn8dxzNLSEkNDQyilHpFjFuJIo7WmXq8zOTmJZa1+8spDvY5BrmUhHo7D7VqW61iIh+4PfR0LIQ4/hyTQXlhYIIoixsbGVjw+NjbG3XfffcD2H/jAB3jf+973SB2eEI8qu3fvZu3atau+34d6HYNcy0L8Pg6Xa1muYyEevj/UdSyEOPwckkD7oXrnO9/J29/+9vTzarXK+vXrcT0Py7bQWuN3fdAaZVsoFDqOsW2bMAxX7Mt1HArFIrlcDqUUSils20ZZiijWKAWu65LNZlEoLEthWzbdbhfLstLvKxTyDA4OUC4PMDY2yeTkBPl8HoAwDInjOL2z31cqkc1m6R/op93yWV5exu/6tFpttNZgWyjAsRU6BqXMRxxrIkArcwxhGJpjdixiQCkLR2XQaOI4BkiOV2MpTXW+y/e/ejd7pqao6yVOfc5xPP05T0Jp0IFHvdEk0hGx7VMsZHEdl9jx2HDM4/j2N/4f4wMDDPSV8X2z/5m9M2y7bzvb7tnL4lSDtWvW8rwXPpPJo/uJiXEyNpZrXrOyXNAa21FoHYJSKKVxHMecl2TRI61c0BoNKPZ9DQ3ZjDmnvXOpdUwYB6jk9aNAx5o4jsxzAJZtg9ZEcYylLEBhKRuNJooDsz9tEUUxYRCiic17rRR2cnxaa5RSxHFMFEXJ4YQobEaGJvjlrf/JPXduZ76xjaG+LMMDm/H9EsuLHSbXjzC5fpRsXuE4bnKcMbYXEMeQsS3e9d//O9t3bmNg3SYuv+pf+e+vPJ+TjzuBC1/3GorlHEEYonUM5p3Gim3iOCJOfiY14b5zh52eN00EyeOtZpuL3/x6SqXSw7/4VtkDXctf+MIX0utHCLFSq9Xiv/7X/3rYXMuPlet4aaJKYTlHmIkIMiF9CwWsWFYixcNzuF3HQog/vEMSaA8PD2PbNrOzsysen52dZXx8/IDtM5kMmUzmgMdHkv34vm/S2CwTGOXzeVqNJps3byabyZLPZclmcwAEQUCz2aDb7dLudAijiDgJyrXW5HI5+vv7KRQLWMrC8zxc100Dr2w2y9DQEBs3bsBxbOJY4dgedhLw94J3x3FMAK8UQRjSrlRotztEYUwca/L5PFu2HEW5XMbxXCzLot1q0mw2qVar+L5PHEVoZRHGMZZl4fs+uVyett+hG/iEYYzCwlKKQiaDsiwcxybr2di2RV8u4tTTS2y/d4S7d97O0uIS99+zg8cd8zgmNk8StlpEGrRtE2iTBtjuBOS8DBOjo6xbM8FAYQiw6Xa6DA+MsPv+aeKWQ19ukOVKlW9edw2vGD2Hk594Mo1Wg0argQZz80ApIAbLxrYsUIooCtHapCoCaRC7f7pheh6BqIMJvHsxpQLsXgAcEsUa13FMGpZSKAWWZbaPogjLMsG5UhGgyWZzaSBtW+C6Gtd2sFBoDVEcmedSMZZtEQQhKHOMcWgzNNDPj79/G9d85Xu0fZt1R/cxPjbGxnVr0U6ZOM7j5m3cDLiuhWdnUOYOApYTYSmLZq3G/OwyAJXZGXbu2MUJTz2NLevWMDA6jKUiMlqj0aDNDRQVmxsD9WaLTCaD7WbQOjlX2jZPoDSouHcS0do64Nyupod6HcMDX8v5fJ5CofAHOU4hHi0Ol2v5sXIde+0MtmN+t2tfY+eSm5pC/B6kvEKIx45DEmh7nscpp5zC9ddfz4tf/GLA1Hhdf/31XHzxxQ96P/lCDs/NJEEWOK5HqVhkZHQUv9PB8zwCP6BZr7G4tITnunieR3lgkIznkcvlyWZz9PX1oSwLdEyxVGKgv4xtWeSLBeI4RmtwbBvLtvD9gDAMcRwHz3PRsSKONWEUEkcxlm3jOI5ZzbVMoK0sRT6XT1fXbdsijmP27NnD9PQ0tuuAVihiwijEtiwsywZAxzFuuj8LHYUobYG2kmPImpXX5IZB5EdEkcJWihjFuuP7Wf/4k3l+/mm4eYh1RL1RY35ujv5CAcey6PoRsVLEcYSKNe/5q3fSqlV5z3suo1JtYmmN1hG2o3jRuS+glP0JP/rBrWw4eoJcv+aXt99GNptjsH+YGBdth6A0Cm3+UWJp/Cg2q/VYJmvAzgLg2smb+RuBtlnhjk38mNy80FpjWRDFQKxwlYeyLCzLJZd18f0OihjbdkwAaiUZAjjmtVkW3XZoVq8dBURmdZ+QONZYSmHZdvLPqIgg1MSx7sW6ZOws3732Zr72pRto1R3aUZa+kX7yhQnyfWUiZWM7NhFmJdpxMtgqJI4heSKiOOaG62+gHTRRZFF2kc9+6v/wF5e/lz133kFggWeSHEwgnZwXpRVaQSbj4nh2cvMA9t2BMH+qJODW5kQ+6Gvp4Vit61gIcWjJtXxwbpD8EylKPoQQQoiH4JCljr/97W/n1a9+NU960pN4ylOewkc+8hGazSavfe1rH/Q+Nm7ciKXsNG06Cs0/DuZnFtA6xnFcCsUcT3jiEymV+ijki3iZDNlcDs/1sC2bONLparTZj1kh1TomjCI0EVrHRJHZN9rCsT0spdCRWTG0lALlYPfOZgyO42JZDr1YKI7AshyzIpvElPlcIUkrjtCxRawDHNw0vTpOUtQsy8J1XTKei0JhO2C7GXDsdLHXtrPpfXaFSoMsnTPBehC1CQIFcYTnuqBcOmFMEomCtpjaNUVfX47G0iLb77uLH/3oFp74hFOJIpP2rXUExDz59JPxShaVxiztTovqUoNP/fO/cfpTn8FZL/pjlrozBJGPjmJs20JhoxwbZUXoKDILxkqhe4E4ZtV5xUKBSl6HZRFrsyRsK7CVBktj2wo3tiBbxHayNJoVbCKUpYm0b16+0pgJdjbKstGxhihEA3Gs0ETYlk5uclhozCq4uTliVsCVssh55qbA7Mw0d95+G+ODwzQcm6bOUyqOkC+PkskViJUGImytUZaFayuUjpIVcW0Cbq244647Ofbok9kzO0eUzTHcN4A9NsFa26LRrdKnNI7S7Pc2mvIAC7ycl7znSQCepMT3Am2NSaXXcUz0G2UTfwircR0LIQ49uZYfHZrlFtlGhvpQk2wzQ7Z5YOaBEEKIR8YhC7T/63/9r8zPz3PZZZcxMzPDySefzLe+9a0DmrH8NsvLFbKZrAmGcnlGR4fJ53K4nkc+l6ev3Ee5v0S5XDapOtpCxzFhrAmCEF+bWmodJ4FKsnoaRRFRFBMEPlEUp4Hv/uk+CssEVhqUpVBWUhuOWRm1bRtLWWlAaWqFMXGfJu04aQJts/qqlANhRBxHWJaVPKdZrY+imDg2AanW5lhiHRNHSSQWJyuaScq1WRU2AZqOk5BWm8gtLYFOojilzTG2O2127N7Bwuws9VqNH3//Jo5//BPwHC8JyDXajnDziic++fHsmlL85623M7uzSX065Ppvfp+W3+S05z0JHJUciwkLXcch8KN9wbUCC2tfnbHal5Cn2bcS2/u6TurvXdfCTja0I4hjyOcLtDoNlIYo9vctjiuFpUw9O8mqtLJU+p5pLKxeqnW6Imz+P9bmpovJ3jYBq+e5nPzEJxA2PPbsrmD1j/FHpx3PhrUeKmgQxiE6jrEsk76uMOntcXLOezcYXnD2n0AHrv/BDcy36pxw4vH86Ac/4uRjtuDFFtqK0ZEmNmv66XsEZoVeK5L/sN8xq+THIEpqu0HZNn9oq3EdCyEOPbmWj2x+NmBpokKn2MVre7RLHdyOw9j2YTId71AfnhBCPCYd0mZoF1988e+Vlnb8cSeyYf1GBvoHcByHTCaL63lpcKe1NnW8oSaOQrQ2tb1h3GtuRVLXayXbm9Xpjh9gWTa242GytuN9Cbq616zMwrJM+ralLBMoo8zqOGZVEWX2p1kZpNNrdqZjdBgltbUmwO6JoiTQIzbBoQVBpM3qbpJGHccmbleAjpIVYaWItU5uHuyvt4LceyH7jkWj8f2AXDbH2OgofjcADbXlGkvLc4yNjIKyzeuyTN214yrWbphkx8697Lx7gUJ+gNju8JOf/5BTnnUi+UwBZZnXn8nnaHY7xFHUe2cgTm4CsO8GASh+c6x773PHdrGUJoqjNMZU2DgoOu0OXjaP326YVxibGm8reW0kNxJ6/99bXVaq14BNr1xNXyEmTpqvmUD7BDzKzM8u45b7GRwvY6smHd80U4uTuvQ4DoiifWe8F+DHccwJxz2exbkKRx+zmaFWi6ec/AS+9Ytfkj3haOho0FZyPHGSRaCwMA3zdBwljfD2nas4uamCMs38FCbN3H6Exof8vtexEOLwINfykSu2Y1rlNtqCttsBIMiFRG4MnUN8cEII8Rh1RHQdfyCnPuWpZLwMYZisAGPR7fjESfMwMMFsGAaEYYRtmwZllmWaZ8U6JtoX6iXbhrjKIQ4j7GRV2bYc08ka0pVmx7HpNc+21L4VbctKulvr2KyWJ8E2KGzHTppbJauPcZymlqOiNBhX+wWcpqN4ctMgtiEJuMDE51bSECtZHyf5pv3XhNNgUitlSoV73bl6C/kKCoU8tm1TLJRw3Zi+UokX/PELGR8bM8FenKRXK4WyQVkOmUKRZzznGYRNl2137aY82MfE5k1YrjKp+7aD63r4vo9OO3frZOWf9LX2/k8nDcD2bzZjWfutc2tzMyTurcSrGGJTG2+7HmGkcZQNOiKOk1VpbQLg3ntE0mFcWbap71ZJXn+Sut7LBlBJczQFqOT8u46D3/GpN2fxcg4OVdoLdWICQp10/AYgwnMdIh0Byc9Z1KsasPCjGouVaRYW9uKHivt+dTsszdGY3s1YoWCasiU3YmKt0Tomji3C5H1UyTu6/7scxzFx2vSN5LUKIYR4tOnku2Ra3orflZmmx8jOIRbWLRM7JqvJ6drYofwuEEKIQ+WI/hu42wnw/YAoigiCkCD0k3TvgCgOiaKAIIrQloXluoQ2+MQERHTjkEBpYmVC115gpS1FbIN2LJRraottz8HybPPh2liOjVaK3pqzCVj3FV+blW0Xz8uR8fLYTgbLdtHaIk4CY9PvK0ZZGmUlQXWszWpsr+RWJyO+4hg/DImjKO1CbSsLR5v6a21yys0qZ5L+bivVy1IHrYmVRquYyNKECnpDrcyHhWXbPPGJJzA+Pk6h0MfadVs49tjjiSOFwkkOR6NijaNtLO2g4gzZTJGnPfMpPO3MPyI/mmXTsVvIFTwsW2E5FpGOTKBtXvi+muz9PkiOUaP3jfGCdFXXVjEWEZYNWOYmh+PYYGkCFREFARYuSrlY2ECMUhqlzbPZSuNZYFsa11E4jsKy4mRFW2NZFrbtpA3ozDFYJlUfC41NFCvCIDJlCeUsKhPTCZq0OnU63Q6B76c3WlwnC8pFJ53CozD5CMx7tXtqioXFWSbGx5gYHaS6sJdSFBFMzZAPY1QU4QchUaSJIk3gR3SDDmHyEQQ+cRwQJz/jYRTg+138bhe/G+L7Id12QKvV/oNcd0IIIQ6d+fVLBzymUJSWCwzvHsAKLAam+xjdOUSmLWnjQvyhKaW4/PLLH/L37dixA6UUV1999aofkzg8HNEr2mEUEkZO0jGqV6MaJ1FaMle5N5Ra9QIobRpIaVMDq5J0XsuycD2PWIHS2nQPtxyzGmpZWLa5J2Hb+8Z7xHFsvo7Csq10Fd2wsWw37VoexSYN2FE6WZOMk7VpKw28zUgmTURsVqnTlfJ9X4u1RiUr4b0UcctSK2qc00T3ZNHTNP+K9tV8p2eL9HX43S7NpkW73WHT5mMZGRpl247tZAsFcrk8ttXrcu5RLBZBKfwAOt0uoDnqmM3gRWS8HFkvQxCY7ACT8q2SOmWV1E8rSFaqdWyOVvfet2Ql1/Rgj8Ey9e2qF+or0rFVsY7RkU8cg5cvYSkH4iB5j1W6P2JNTERsFrRNEvl+KepamdnUJOc3OTCTch5DRGQ6zzsOSlnYNth2hkwug2NZSV22RSaXT5rwObTbbTQQBF2CIDDjxFDYlsWaNWtYu26dufFgWURhSBiYBno2cZrBADqpzTc/y+ZmxP4r2TotZdBJBsW+GeW9OnMhhBCPBr38u5Hdgw+4TWm5gOPbZJuZFSveQjzaXX311Wnzxu9///ucfvrpK76utWb9+vVMTU1x9tlnc8011xyKw/y97Nq1i7/927/lW9/6FtPT05TLZU477TQuvfRSnv70pz/s/V555ZXk83le85rXrN7BPoC77rqLf//3f+c1r3kNGzdu/IM/36F2RAfaWsfJWCudBLn72miZGmcI4tgEuQriJGjWOsbzPFPrDCYtXO9rbObYTlIXrSBppmVhAvVQ99LSzdgurQHL7CfqBTokKetxkDbAohc098ZUoUzX82Q0mL3fPk1wb6evR2uNoxRh0mFdqf1Sr5N9R2FEpCK0YydjsCziZBU5iiKzyu7aaZ2w7gW8yny+vLzMd7/7S447/ngWlyrMzcxRq1UYmZhgcnyCfD7PmjWTuK6LshR+NyBOAlHLssh4GY4/9gQcz0FpGx2GaB3T9UMsy8bqBYS9xnOYRmU6OYdxUkfd6yDfq6nupW6Tfk2BFSdvl2kGp4mJgw7FXJFWo4WK99XUW0nTOIDIAqf3D4/9atgjTGYDKmkYZ/43TVvX2vy/1uaGRRybYBg0sVI4ybz0VqtFL8j3PM/Uvge97zdV1mEUEcaRCaSTmyNKWUndf5z0EYjSGv04Tlbde+91Io6jfT8DOvk5TG4gWAe5mSKEEOLIpNGmBruvw8K6ZVSsWHf3OHZ48IaXuWb2ET5CIQ4f2WyWz33ucwcE2jfddBNTU1NkMkdmJ/4f/vCHvPCFLwTgda97HccddxwzMzNcffXVPOMZz+CjH/0ob3nLWx7Wvq+88kqGh4cfsUD7fe97H89+9rMl0D7c9Rp+6aSOdf9ZzKaW2sJyTXMyLGWGEwOu66aztwFcnczC1hGRMoGK4zj7OlQnddZKKRzXTQJz8JOu5EkeeHos5k8L23HTzuOWbaOJiGIzXspJm1mZ+di2bSeNtMyugigiisJ9K5nadKBOx5AlgVUUmWZpcRwnq+2mRjwIgyRAN3O9Hdum0+kShaF5XSjMWDGNbdv09/dzxhlnEIQBb33rW8h5GRSaWquN55mRY4EfEMcxnUaTMArRChzXwcsVTZ20Y5HJZOm2OziuA9jEFoShuZFgxqSFyXxokx0Q7b/qmrwfYRRiKcvMzA4iLDDBo5U0MouSVd0ktVwR0K5XKQ+uox6E0EvqN3c5TCBr9Rrh9X54NKpX621ZKNsCDVFk3pN9XeZ7q8am7tz3g7QrfC9lII4iur4PacCsCMPQjPhyXTKeh9aaoOsT+P6+n5G4ly6fnBClVwTxWpP+jKAs9g+dtTY3kHqnrXcTIoqj5PshDGVFWwghHg2WJ6p4bc/UX2tYHq8yPPXAK9tCPFa98IUv5Itf/CJXXHEFjrMvzPnc5z7HKaecwsLCwiE8uodneXmZl73sZeRyOX74wx+yZcuW9Gtvf/vbOeuss7jkkks45ZRTOO200w7hkYrfdETXaOukLtm2rTQw6o2UMk3PTK2y69hkHAfHsrCVIg5C4jBEhxE6jJP9mODctmwTJCYpuJZt9hFHZgxYHMX4vk/X7+L7Pn4YEiZBfjrWy7GxXYe0wVoU0O628AMfsLEtB6Vs08lb2UTawg9jfD8iCDXdIKLjh3SDCD+I8IPYfPj+fh9dE+jHPrE2FdeWDYo4GQGmcRwby9J02k2WlxZot+r43TZ+t03gt4mCgDDwiaMQhSYKA6IgJAojgjCkGwS4rgNoOp02vt+l1W7hOBa5XJZ8LoPn2ug4JpPN0F/ux+906bQ6tBpNOs0WUeCbRPnInPPeuY/DEN83gWfQ9fG7Pp1OhyAIINLoKCaOYpSCSPcamyXzoaPQpFRHpuY5jiP8bguiCM8poSNt9hGbGxFhGJr07TAyGRBRZPYfm2ZjcRwRhuZ19wJd82ec3sTpzVK3bRfHyQA2pqGcRRiZAD0MY4LAfHS7AZ12l1ajQ7PRptno4PsRUdJULo41Cgu0g47tdKxcmNxgMaUGcZoSHkUhQRgQBKYPQRhG6esPw9CslIemMZwZT2c+hBBCHPmsyKLZ3wJMI9TybB/NcusQH5UQh5/zzjuPxcVFrrvuuvQx3/f50pe+xPnnn3/Q72k2m7zjHe9g3bp1ZDIZjjnmGP7hH/7hgEk43W6Xt73tbYyMjFAqlTj33HOZmpo66D737NnDn//5nzM2NkYmk+H444/nk5/85MN6Tf/yL//CzMwMH/rQh1YE2QC5XI5Pf/rTKKV4//vfnz5++eWXr5x4lLj66qtRSrFjxw4ANm7cyJ133slNN92UxlHPfvazV2x7880384Y3vIGhoSH6+vr4sz/7M5aXl1fs94Hq1Ddu3JiulF999dW8/OUvB+A5z3lO+nzf+973HtZ5ORIc0SvaVrLC2Vt57jUmsyyV1ku7nofnemApwmQF0PcDojBK07o7cYDnubgZj2i/1eteKrOKzM4jHRNrH0jSgZWp3XY9D0uDpTVREvzHsUYlAW+sAxM0xRZYnknfJqmd1uD7oVmrVArHsbAsB7QJyAAzjixZVU2bhSU13JZFMs9bg9JYxHiOQ6wVtWqFKGmeZUaRmZX8Xlo6OsZSEAY+frcDGsIwwnUzJhvATuZQRyHtdgtLKTM+zdpXa621Jp8v4LouS8tLhEGQrGaTdhE3KdMmCIzTFX+ILFMj32uCbpqJWXiWk3yusRwgik1zN8tKU8t7K/29gNe2bZrNCqXSEH6wiEVvdFgy6usBunDvG9e2f/fzOC3vNqvhJM3merPPAZ10UVeYwD1thAeWbWr7dS9tP6mzT8rwcV0LFVlJLfZ+XdVjndw4iNObSL3j2Rf0pwnjJp2dZMU+6Zre21d6nEII8QipjtQptAqH+jAelXK1LLl6lv7ZPtBgRxZexz3UhyXEYWfjxo087WlP4/Of/zwveMELALj22mupVqu88pWv5Iorrlixvdaac889lxtvvJELLriAk08+mW9/+9tceuml7Nmzhw9/+MPptq973ev4zGc+w/nnn89pp53GDTfcwNlnn33AMczOzvLUpz4VpRQXX3wxIyMjXHvttVxwwQXUajUuueSSh/SavvGNb5DNZnnFK15x0K9v2rSJ008/nRtuuIF2u00ul3vQ+/7IRz7CW97yForFIu9+97sBGBsbW7HNxRdfTH9/P5dffjlbt27lqquuYufOnXzve987aDD/QJ75zGfy1re+lSuuuIJ3vetdHHvssQDpn49GR3igbe8LGnujsZK0714tc7fbpd1qEWtNlEQitm3heV7S3CppdmZZhLFOgtbeaKVkFFSvK7nCBMH0gl7SZlaKXmpyjLYVcQyRb9K0XdfBc120hjAyqdCmsRVJcO2kgRSQrK6aVc3e6+h1Eu/N/I7BLKgmx2qCe7Ma2vU7hFGM3/WxLUw9OibdWCkr3afVaw6XpK4rFJmsSbm3k3MSxzGtdgvbtsnn8ytGp+lY01fqw3E8lpaWiKMYy7bS9HY7GYlmmsZZSWOzJAhPbhLoJPU+1iaFvpfibZhacluzL5BV+8Zu9QJXpTTKiomiLq5nY1tmxNf+6d+/y774NUkbX/FFDgjW4163d6Wwk9Sk3nsYhaEZ9KWSOvTkvXYdhwhFFIVJ53QP348Ig6D3NEkmhpWuqicHlfYg6DXX259tW725ZEnt+r5rQQghHimlhSLkD/VRPPoo1EHrrq2u/B0vxMGcf/75vPOd70yDzs9+9rM861nPYnJy8oBtv/71r3PDDTfwN3/zN2mgedFFF/Hyl7+cj370o1x88cVs2bKF2267jc985jO8+c1v5uMf/3i63ate9Spuv/32Fft897vfTRRF/OpXv2JoaAiAN77xjZx33nlcfvnlvOENb3hIwfBdd93FMccc81vry0866SRuuukm7rvvPk488cQHve8Xv/jF/I//8T8YHh7mT//0Tw+6jed5XH/99biuubm3YcMG/uIv/oJvfOMbnHvuuQ/6uTZv3swznvEMrrjiCp73vOelK+ePZkf839K9FVoToJk0YN/3UZZpSFXI5ymVSvT19dHXV6JUKlIul8nn8ziOkwaTvu/Tbrdpt9t0mi3Crp+koJvgrxcA9W7cmFTimCiM0sCYWKeBoG1bZHMerusQRRGdTpdut2NWP5MV097OwiCk2+2amwLttvn/JEU8DMP9Aq6kPdp+afKWZZqqKWURRRG+H6Bijatsirkc2WwW13VxXRfPy+A4Lp7nmRsNrpOs+Juvu56bBIAK2zGpzF2/i5t8D2AaxSVBZ6mvhFKKxcVFEwDSa7xGUhfu7Aue05nQyUdsUpxNwLrvcbPqbT5WdAZPGoPtd9pWNACL44ggbKDpYvU6wycB/8q4tNe/nBX7otfVPNYrnjfpNWd+1tLSBPY7/+amRO/GRC9zwHFdHLu3Mm8EQbjfDSCfRqOBbVnkcjlz04f9niytE2e/D/Nz6DiOCa57W+73gno3UPZ1eBdCiEeGpeUvHSHEofeKV7yCdrvNNddcQ71e55prrnnAtPFvfvOb2LbNW9/61hWPv+Md70BrzbXXXptuBxyw3W+uTmut+fKXv8w555yD1pqFhYX046yzzqJarfLzn//8Ib2eer1OqVT6rdv0vl6r1R7Svh+M17/+9WmQDfCmN70Jx3HScyIe2BG9oq2S1WDLMuOjLBUnAYgJQHvBSS+IC5Oa1SAITFCe1P2aTuQks6ZJ0rZNQGWlKcpmBTeM9wW+vfRpC8Ay3b6xzepwGIX4gZnxbdsmiNJocxNgv3+LmPTiOO0U3hv55Ng2URLUWZaVrD7v+x7XdXAch067TpimFieN22wrbcKmlULrfTcJVG+FVWviMCZKXpuddERHmfMSRzFhkDx3kkJuJzc00FAoFLBtm2q1aoLipLFXb/XWViZdvHf+ozBa0QZb9/67fzp0L+0/CYaT7PZ0+VoT75dqvW8vvQ2UFVGtLeK6nmlsF4OOoyQ13Xxfr3v4yrqb3qp3Lzjd97VecG9Z+7qX9+q209Frv3kk6Yg585VeCr1t91LqQ5QC23bodDvJzQ8neY8UQRCm72Wvf8D+JQMkPxNm9boXZf/G7QQlK9pCCCGEeOwZGRnhzDPP5HOf+xytVosoinjZy1520G137tzJ5OTkAYFsL515586d6Z+WZR1QI33MMces+Hx+fp5KpcInPvEJPvGJTxz0Oefm5h7S6ymVStTr9d+6Te/rvysgfziOPvroFZ8Xi0UmJibSOm/xwI7oQDuKArp+NwluerXRSRp4mASuSqWztXvBYEwSuCRziePYBE2uZZsg13PS2CvqhubJbIgVSTdv0jFcvegxQhHEMUGk0T5pkAlmFBP0VkH3D+Jic0PANcGrjVkNTarDsbHToNykhUcUy33JynWXbtDG73ZNF3PXdBZHYeZ6K0xzrVCveF6tQcfWijpkjQkolTIp3FEYmsDQcXBdB4VJxzeTsC3yhTxBEDI7t2B2YCf1zEkQGMcxfhwnK7TJ6bPttImZlYxDM92yfVPHbVnm9WqNZTlJrbJpGBYrhaW0mau93wqxSs+/CUZ1FNHpNCj2jWCHMcR+0hyuNyhsX+Dckwb02kpibdMVft97qzCJHzZaB2kXcEtpsCyUsonTpmNRsvIemVFvyTGm5zmtcNAmC0OBbUMU+XQ6pvu7UpbJLIjttMGaee0BYRii49jM207S8vcF3nYa0PfKErRa+VqFEEIIIR4Lzj//fC688EJmZmZ4wQteQH9//yPyvL3FuD/90z/l1a9+9UG3ecITnvCQ9nnsscfyi1/8gm63+4Dp47fffjuu66ZB8QPVTj/SjXIf6415j+hAW1k2TpLS3YvAekGP1maWdhRHYCU1t0kDM5UEdpZlJQHYvnFOGgiCfSOYeqO0wqSbuOp1I1e9xlwxGoWfNLJqh6be1rIUrturA4feaun+K8+ofaOnLBS2NvO8tdIrVlaVZVHI5dFRxPLyMkEUmu1tC9ux07rrmH21zWGaAu2a1X6drHBqzf4Lrr0u7WYV2wRqjuMkwZyVHKOdzvbOZDLoWLOwuLDfSjPY2qRRq6RBGprkdei0KVgYRpBsZylTV9ztdtA6NiMYXA9H2bBf468wDJMxYBFaR1i2ZVKy6QXNvRp2K2kmFprgXNv4QYztmpsK++UDrPgZ0rFJSbeUA0qnI7N68bhSVpKGHiUr2sn7x7469DAMk/1G++2/V0awb0V7/7/0dLJU37sFEMfmHJlmaQ7KsrCUTbFQBKVotap0O900nVwnq/T7Zzr06rp18qboSMZ7CSGEEOKx5yUveQlveMMb+PGPf8wXvvCFB9xuw4YNfPe73z0gPfvuu+9Ov977M45j7r///hWr2Fu3bl2xv15H8iiKOPPMM1fltbzoRS/illtu4Ytf/OJB66h37NjB97//fc4888y09ntgYACASqWy4iZDb4V+f7+rodm9997Lc57znPTzRqPB9PR0Ote793yVSmXF9/m+z/T09EN6rkebIzq3VKHwfZ9WUlvtd33CyAREvRXgqDfOab+AB9g3FikMkj/N/OEoGQUVhOGK+milVtZHh2GYjF8yx6IthbYtXNfBTepzVfI8xMmJjvfNZCbpFm2nad770tx7qeS27WA7DlpBq9uh3mgQx1Faq9sLMHvH0gvuwuR1q6Q+une8vQ8zazmpL4+ifR3B48gcu+smTc16NxrMcVuWRb1RZ/fu3URhiB908YOuCTR7ddPpzQFzc8OMmwqJInMDolfrrnWcBNEOnpfBdV2UZerCg2TlNk5GePm+TxSGpsu8Nhdut9s1I858n27XfB5GIUHQpdGs0QlitFIEYYgfmNFhnW4nPQdBYD7MsUXJqLEgHZmV/ICl9d/RfrXk5uend/MgSH629s1uj2OdnrN948F6+4mI4yhdGU//wklu8ph6/g7tlqnVR5leA8VikUIhj5fxsGz7gNr2fT/bvR/IOM0wEEIIIYR4LCkWi1x11VVcfvnlnHPOOQ+43Qtf+EKiKOJjH/vYisc//OEPo5RKO5f3/vzNruUf+chHVnxu2zYvfelL+fKXv8wdd9xxwPPNz88/5Nfyhje8gdHRUS699FK2bdu24mudTofXvva1aK257LLL0sd7Ke4333xz+liz2eTTn/70AfsvFAoHBMn7+8QnPmHG7yauuuoqwjBMz0nv+fZ/rt73/eaKdqFgJlP8tud7NDmiV7TD0E8DlV4grIDYsogjna7yOpZzQCdpnXS6jpO8XtNbygSB+7plm+Co14AqViY5GExteDpuyVKQ1P4qrZLmVBqS2dtaxcTKMtH2fndy9o1v2lfbHIYhpVKRIOyaoDMOafldtNbkLSdZSU8CaWVGlVnWvuOJ96shN43FkgZcVpTUDu8bNRWF4b5jSeqD05X8KE5X7oMgZGBggCAM6LQ7AERxiLZ63c5VUoOtV9Rhm07tEXG876bE/oEhmKZxJrNAm9NjWejYBPhRbG6SOI6Za27q3e396qzTyuq0CZjWMWEQUCwM0G4FBEFsgs7k/Tf1z/tukJiafgtlJTdG6AXIybis3vsZx1iWToJw8+Rx8jOi4l6Qa/abzvzWUfq+quS97f2w9tLKTdd89js/cbqSHwQRStWTnz9wXRfLstOf6yiOTE1/0oDPlCgkpRL73zAQQgghhHiMeaDU7f2dc845POc5z+Hd7343O3bs4KSTTuI73/kOX/va17jkkkvSgPXkk0/mvPPO48orr6RarXLaaadx/fXXc9999x2wz7/7u7/jxhtv5NRTT+XCCy/kuOOOY2lpiZ///Od897vfZWlp6SG9jqGhIb70pS9x9tln80d/9Ee87nWv47jjjmNmZoarr76a++67j49+9KOcdtpp6fc8//nPZ/369VxwwQVceuml2LbNJz/5SUZGRti1a9eK/Z9yyilcddVV/M3f/A1HHXUUo6OjnHHGGenXfd/nuc99Lq94xSvYunUrV155JaeffvqKjuOve93reOMb38hLX/pSnve853Hbbbfx7W9/m+Hh4RXPdfLJJ2PbNn//939PtVolk8lwxhlnMDo6+pDOyZHiiA60Ox0fpcx4L41ZUXRsB8fCNPCybHC8dN61TTIXutc8LN5X82tZFo6VpCBbVhJAx+hQp6ugluMkEbmpH3Z6TcpinaQ2m67ZAFYSXWmtiS0LW2mTNp0EolEU4SQzmpVlOoYPDfcThhGVyjK+3zXjvZL6Y4tkDnhv5TtJedaWaXgWa00chmmtugnwzZxmE4hZxDFph3KVHFePpSwsx06aoUUoyybWIVGoGB+doFKp0mw2CJPRVFjKPLfWKGWnNzys5LXEOgAUyjLzx0k7YcdJmreFshWoZKXaJMOb89lLx9ame7mVdFd3PTftJL6vcRlpWralTAd2bLCyeZw4wA/bEFuYl9qrVU+C2+Q/ab3+fjX36f2QNIVfE8W9AXEKHcVJp3uVppujdNpAr5d6bl6bSle0e53NIVn1V/s62cdJXbo5p6Y5Whh06XZjtI5wHDvtau66DlZk4Qc+Ou6tmMdJ+rlObyQJIYQQQoiDsyyLr3/961x22WV84Qtf4FOf+hQbN27kQx/6EO94xztWbNsLVD/72c/y1a9+lTPOOIP/9//+H+vWrVux3djYGD/5yU94//vfz3/8x39w5ZVXMjQ0xPHHH8/f//3fP6zjfMYznsHtt9/O3/7t3/LFL36R6elpyuUyp512Gp/85Cc5/fTTV2zvui5f+cpXePOb38x73vMexsfHueSSSxgYGOC1r33tim0vu+wydu7cyQc/+EHq9TrPetazVgTaH/vYx/jsZz/LZZddRhAEnHfeeVxxxRUr0sAvvPBCtm/fzr/+67/yrW99i2c84xlcd911PPe5z13xXOPj4/zzP/8zH/jAB7jggguIoogbb7zxURtoK62PvH+N12o1yuUy/7+//iDZbCZNV3ZdNx1rZFZJIYw1rueZkUfJDGitIQwDcByUm3R7jmJUkiYd2ftqjXUc0+12TbDnOCjHTlcoLd1btTWV2pA0p1IKRykcy07rsZUyq7ZxkjIcR2a2dCaXBUuRzeWoLi/T7ZjnQiniJMhTca9eXJtxY8kKpkajHBvbtvFshzAwtcL7z2C2ky7oxE6S3pw051KKlXUSilhpLBss5aC1IlfIMDo4xvzMHI1GA2Upun7HNHCzNco29dZRaPZjJ4GuWcX1zTEDQbKS69g2jmURhhE6TrIHHPPaokijY4XruDiOQ5ikdPdqkJUywWaviVjvhkLvnKuky/r/n70/j5fsrO878ffzPGepve7St/du7ahBIAkkkMQgbDD8GGwTO/bYhjgmxAxgT+zxoBnPBMd7MiFjJw6xYwfI4EBGgB0Tg3HI2J5gsCwshCwWIYGEpN73u9d+lud5fn88zzl1b7d2tdRq6Xxe6pfurVt16pxTp+6tz/P9LEKARiFae+i02qwe/zYhebkQMpXt4x/rXhvn0Rbk+aR8vQofvRQCXfqdvUzcXwXGgjHCM/OMgqgbP/kuSK8Qklzn5QQa77Ev9hssea7RuUWqwtdv/FS8CFXzcXRedREEfrptfNWctwzkeYYxhizN+D/+959jfX2dTqfzdN5yzxiK9/Kf/umflnKiChUqbMZwOOQtb3nLc/a9XL2PK1R4fDzX38cVKpyJj370o/zDf/gPueuuu7j++uvP9+5ckLigJ9pRFFKrxX6KWsiYp0Fa4Gqr8NNdPKkqfNSZ1k5KLAXSAN47q3OxicxFQeCCxKSbFLtsM1GmO2OLTOtiAOrk5EVvtPap5kIIhHXkt1FvYLQhDENWVlY4feIkYRR5b7NkKoSHktnjCFsQbJjI+m3qXHvftpMoC+GCzJRPXhdSOmW3D14rpu3FPhssQgosEm0sjWabTmeW4ycW6a2vEEUheOl8bgyhFESeEFop/ZS2mGq77VgLRrspu5QbCSg+wM7JUYzRBCoiUK6rO9dTSXuWZZ6Ialz7mTsHG5PLp+TbBeAZAYHJsMQEQR1lh+S53jQ9ni4vOU+8Jvfn3CCL829BCOtk/4JSreAOwMu/KUh2cc25xRRbTqanE+3AWxJAlDLvYh/KGi85XTBw+yj8cVPKzYWX0ed5ThAEviedknCnqSwn2xUqVKhQoUKFChUqVHj2cUET7SJMyoVDWR8yNfXZSqWQCMKg6C92k940SzFak+Uu5Mp5kQVKFATLx0p5E7BLDjcYxFly3IJMiQ0ybArZbpGcbQ1W54RhyMLcFrIsJRlPXKDXeobx3mN/SI4EG4vx6eNS+HotazzJlH5RwbowLvBTV8rzoTw5LLfJhu3i0rKLBQPhJd5WCtI0p1nvMDe7wMHDR5iM+gibI3yWgTsLAqRE+wozo633Jlusl+kLT4q1KaTMeDl7QSCnCgBjDFbhA8Gm8vs8z9FZ7pLGAycfV8pN8AtPspvSF4c5Jcd5MmTUH9JozDEejYnC0CkcNoQ5FCjJf0FwC6+/tW5xQmxODAe8R15grZPl+5e9fKxQclrvVeSTldeOq/Iqv7NTUu44u3eeF8oMW4ScifKxxTQ79+F9tVqNZrOJMYbBQJbT7QoVKlSoUKFChQoVKjz7uKCJtrFOXlx4dqUnj0opX63l/MhJkpLlGVmWlf3MLuxKloFXRmxIbN4oA8eFhlnpQ7McE/MkVnjPtCQ4g2hbL/8OggApBVEc0el0WDp52k/NXbI21oWAhWHoPM9+E1prNBDFEXEQIaVLWHfHu4FA2fIQnMzZp4w74m43SJ4d3ER7GohWbMQAea6pN5ps37GHB7/zEMNJnygEKSy5yZBSIX14WTER19ogbCHhNuTGEAi3MLExBLt4Hm2sT/Z2FWtCCoIgLAml9PtutPNDC1kkrHtptSe4G73U1nuuS45qLcl4gGRINDdLb3gSmaclcRXe046fjitlAOUS3SlC80T5/FL4fdv4EpvNxLs8v2eoECxTv3fBs8v9LxQFwvv+PeGWSk63JpzewBhThtVlWUqWFfJ3gTE5aZqxvr6OEJIoCp2fW23Y4QoVKlSoUKFChQoVKjxruKCJNlaWHmgVKOr1OqEnbY6M5IzHY3KtfVC0l/Ya56gW1pQScQtlGFYxWSzIGMoFfylZkMwi2Au0J4LF1DzLfAq4cknnYRASN+qsrq5y/NhxlHWTU6zzXEspQUqEVKToknzJQFGPIgIVIJVL/jbCLwj46iuLRYWh6xLHJZKDC0F3yeQGrCpl2iX8sUnlpNLGCrSRdNozNFotvvPwtxmMBuR5hlI1lDROrm41Skqs1aD9BNZarHAkXJRDeY01Eiu0m1L77vCi39lYg5VuMUIhvKTaIANLnrkkeW00BkMYB5gs9VL0wvOMm+hai8TL+UVQyqsxEAuNMj20mUeqJiYfo4wgt0VgXIAotolAemuBxYXGgSPlJney+sJ7L4T35dtiUcRgbYaQAmyANUVImvWT8CKRXJSJ4i5tvJiCG5QK3f2tRSmBtSlSFj5tT76t+3nmrQhKSQLrFnoCIdA+4A8pyDLn0a7C0CpUqFChQoUKFSo8FbzjHe/gHe94x/nejQsaFzTRltJJaPGTvtFo5LyrWU6uc1/3REnGHbk5W/69qZOKaXhZ4JOqEV6GLuT0vsI9vwwVudGkXpJcr9dpNBpkSYKSkuXlFfKVFYJAEfhaJ2udH9pVgVkfwpWRW02gAsIoLIn6lLRNiVqRYC19l7YL7FJgHMnVRbWZsa6j2/uv8c9tjfVk2x2sFdDqztBqtzl86DC9Xo+11VW67TYYgxW+5kwqL4cGa0uHcnlKiim6C/UygEZIFzwXhqH3uLvQLmRR61XIsCV55jqpE993ba2l0Wg4Ym5sMb7eQLYD/1LIMybnILBYk4IwxFGTwXgZWVDeDRNxyu83Xgt209ebN33GJNs6soyRZdK3LCf8+Em0J+n+IdoY76EvPN7u9lqtBohSDj59rQ2Fu9u/mggvyCgWiYqcAKNzMBIDlNHnFSpUqFChQoUKFSpUeFZxQRNtsKRpWhKcPMunAV/SpYTbcsw59QaX5Ma68Cnlp4tFWNY0mVqU3xcebIPzTE/rrAQ2NwRBwNzcPHmeMRqNGA2HjIdDpChSv225IFB6da31oVVuO6FUBEoRqgAVKNejnWWuLsp437mUjrRGEdoYL1F3h6ONwViNn5UipfTBXp7MuoMEi/dRu0WKubk5ciE5dOgQJ44fJZCSRj1CSbAmB4X3Irtj2FivJaVEKMkkSUjTlCAIGI/GpImm3ogIwsAtSPik7PEkoUhzdzVrljCMyHVSetGL8DCtDUmSEgUBgQq8n74gvhYl1WYZ/RnI0hGT8QBJgLUKTVYuchTy/lJGfoYHu7AIFPTYnqkUL9LK/HVk2fC6bthGcRxKKVTgsgQEtryuLJQTf2MsjUaNVmsLk8mE0WhEf9DHGIPcuEBkDFaAtq4erPCqQ3Fenb0gS9NHPTcVKlSoUKFChQoVKlR45nBBmziTJCknlEWytQrclFv5CbT09UzT+icfqOWn4WoDCQwCRRAERFFMFEVEUei93gESl+4tsJtCucIwYm5uji1bFuj1eqyurtHr9cgyV/VkAYwBbbDeT25tEQLmg618CnotiqmFEaFSUCRoa0OWuR5vhJsau15vXfqNBaIMvlLK15UVBN+PnAuS7Sq1lP+ZolZvYgwcP3SESX9At9lkttuhUYupxxFhINnIHx1Rlf48BhhjGE8mri7NL3wopcoJeurJ3ngyIU2S0gdtjHFEuVgYQZBrf5xYgiAkivy5F7IksUXwW+FVLs7lRhRBdtZkpJMBgYydJFwY0jQBvHTeT9QfDVNKf/a9CmVC+c/Yss+6+H95X0EZHFe8XsYYcq3Jc02aZmR5xnA45NTp0zz40IMcOXKE1dUVjE8PL85NlrnwPGsK3/bUEgEgLC5lXxtsnp+13xUqVKjwQoLFopV+Qv/yMOfEZafRSrumkgoVKlSocM7xq7/6q2eFDD8ahBD86q/+6jO7Q88gLuiJtrWWNEkc8cNLib1Et5Bbb/xXjLZlOcGGjZPrgrhaWwSIFYFbhZzYESopBEq68LW52VmOHT9OmjgCJ3ygl9EGVQSn4cLXrLGkucZiCYPA+WzD0IWieTJc/GnP8xzta66KSbYQTopchL6B666WQqCZ7rPwx5Tn2u2DFM5D7Q9aeAl8pzNDmqacPnkaaXKUyd32paDVbII1bqKupudQ+y7yIAgcARXCTdjdnmKMqyyr1STGuvqpIAgQGUwmk1LuHUcxQjh/tgBCGaKsKhcicl8LVqvVSCcTlPexu/qzosbN+ZDDIPJT5Q3XBqCUYDBYpdWYp9vZSpYtYnODEF4Cv0H6LoSvgKMoVfOTbP/aOYVAUHqsCzIvyqRz/6xFEJ4FayhrvNzkuZD+4xUKRRiaQOeurstVdOXEcVwm0UumQWrFC6+9kVxr7dLRy+uhiGB/pOWBChUqVHjhIKmnpLWM0xcvP6nHHbz6GLMnutQHMbVBjECQ1FOicTgNvKxQocKzivvuu4/3v//9fOELX2BpaYn5+Xle97rX8Qu/8AtcddVV53v3XhA4ffo0v/Vbv8XnPvc5Dhw4QJ7n7N69m5tvvpl3vvOdvOY1rznfu/icwwVNtN0k2hG+wo9dEAxHpp20t/Bxl38exYbU7cL66yfIG1dYhJj6ZwHfFW0RxiKkJctzDu0/UPppjTGEypN17dLEjTGu6sm6ADZjncw8imMCpZz82z9JnueQ54hMYsW0t7mYyivpa5uMKSeqoQxccrks/MASa6Sb5iMR0n1t/PMLRw3ZsX07aZIxWOu7xQFlEFKTjieEUUyWjmm1akQq9L5sR7Qz6/vKcRN5F55tytRwpfBhc66yzAXTZW7hQykMEEURRee5DBTJJCmVBnpDGJy1liRN3IS/jO6eepNdsprfjtgszpB+ei9szmA04uI9l/DQw6dRKsJagVLCe8PBBZqZUhVRhJcVZwtRKBFUcYsLPdtkMRC4MnZHzhWUvmkr/FTbGL+oUl5RZZo4WJSSpcJBSQUIpABtbbmoIKUj5fhryy0o4fddIkK5QU6+OXG+QoUKFS4UJPWUYXf8uPcTRjBzuo1A0J8d0ujXWN8yAKA/PyCPn1rN4erOddaMYOZkx21rbkhrrYHwjRPt5SZh9ugfoSyW/vyQznLrKT1/hQoVpvjjP/5j3va2tzE3N8c73/lOLrnkEg4ePMhHPvIRPvWpT/EHf/AH/N2/+3fP924+r/GVr3yF7/u+76Pf7/PWt76Vn/qpnyKOYw4cOMBnPvMZPvrRj/JXf/VXvPa1r33cbf3iL/4i//gf/+NnYa/PPy5ool2EhbmsqQ2MWDjPM0KC1uUEuEy+9ncqoq6moVObvbpFsvjGDQshnPw4dUnPWZZjPPkMpUKWfNA9k0vujkuJdOQnvGHgJN7GOFkw3strrSWInHwda0nTDG1dqFnmJ56Fr9hVQYG1CuSZ58CRySLtujjsLE9ZWFigt77GsWPH0XlOECqyfEy93qAW1wikojs3y3gycL3b1hJFEdYal4IuJUq5Sqo8z6bp6d4XPhqNHGnWhslk7GX00Gg0Ssl9kkwA4TvKXb2Z68d23dBKud5wnWvqjdjvh8EYjTHel+6Jrpvy++vBH771/ndhweRjxqMRyShHiowwCt21UUjDrUXrHCkl2rjR+MZubreI4Mg1Um6aaBTBdPjFkGKhxwJKCvLcLa4gJXJDOFkR0lcQepgSZ3fucr/QI8txdjENL/z7RU2dI9vS+783dG8/QVlOhQoVKjyTeDL6muXdq6S1HB1q0nr2RDbOuDMBIGmkRJOASevc5FNYaVnduV5+v7a9V35d78cs71nFSEt3scWoPSGrbbbrJM2EwewIcAsC2/dvKX/2SJPxjeepmpxXqODw8MMP8xM/8RNceuml3HbbbSwsLJQ/+7mf+zluvvlmfuInfoJ77rmHSy+99Dzu6fMXq6ur/OAP/iBBEPD1r3+dffv2bfr5P/tn/4w/+IM/oF6vP+Z2hsMhzWazVLu+EHBBe7ShIMOucqvgLOUEFh9wNr2zQzHK3kC0/DDc+Wv9PzcVdITWTZ4deUvTlNHIhZ1Z4+XZxoAtfLc5QoBS005jJaWTiwtXiTUejVhfX2c0GqJ9PzT46ickVhuUUNSiiDgM8S3eBFIhkQRSoYScTu4t5cRTFV3XuJqsjXwuCgOOHzvMqZPHsSbBhYEblAoYj0fUazVCpTC5C2ILQidxd8ckfU83pKmvkDKGJEkYDockaVoSRKWKzm1FFMXUavVpcJ3RxHGNMAwxRjMcDtE6ZzQakqbO214sKDSbTXSuS85Yyq39SxmGgSPoUPqWy0UIoVDCsLp8jBMn9lOvxQyGA/+aGr8Y4q4Dt+hhyoAzW0yj/QJIIdEGygR0ay1GO2n4NA3dMWhjjPen27LOrZhgu27zjdef8fYAhVISa00p7y+UCOCm9EHg/PyFXF8ISei97I6Au8UPa00ZhFehQoUK5wNGGvJAc+TFJzl49TEOXn2M4cyYrJZx6tIlVnaul7cX/9YXBow7kydGsgGEI9rjzgQTmHNGsh8PJy9fZNgdM+5MOHXxMj2/3xv/GWXLr0fdcXmMg9kReaDP+jeYHbG2rceJyxfJohytKlVShQq/+Zu/yWg04sMf/vAmkg2wZcsWPvShDzEcDvmN3/iNTT87duwY73znO9m5cydxHHPJJZfw0z/902V2EMDa2hrvfe97ufjii4njmN27d/P2t7+dpaUlAD760Y8ihODgwYObtv3FL34RIQRf/OIXy9u++7u/m5e+9KXcfffdvPrVr6Zer3PJJZfwwQ9+cNNj0zTll3/5l7nuuuvodrs0m01uvvlmvvCFL2y638GDBxFC8C//5b/kwx/+MJdddhlxHPPKV76Su+6666zzdP/99/OjP/qjLCwsUK/XufLKK/kn/+SfAPCFL3wBIQSf/vSnz3rcJz7xCYQQ3HHHHY/yCsAHP/hBTpw4wQc+8IGzSDY4zvW2t72NV77yleVthQ/7W9/6Fn/v7/09ZmdnS2n5I3m0kyThve99LwsLC7Tbbf7O3/k7HD169FH36ULB82I5ofBYb2TSdsN3ea43+LTdz00RolWmgG98wTf6c+0Gj3YR2i1KWXQxPRSOnWFM7ibTgUThg8d86BoCbJI5Mu1Xc4y1pEnqps7+ebI0Qfv9tYDO86mY2UuiC6IXhqH/Hh9S5iauRSBX4R0uerdznREqgZUQBbHr27aWmU6XiQ81C4OQyWTsiLDW5fEbnxTugtoc8bZ2GkZXr9XcefOkslFv0O/3GQ6H1Go1ms1GGeKGtT74DBqNpiOZAZg0Q2vn7RZSkqQJgZDk2j0uCEOwlKFpQuQIoQiURPvJdFGN5l5fQ6MRMBwtsba8TBi5gDztg8Tc/rgQN5cOXixSUE7YrdXeu24w2k2oC2LuFmi8ZNwnswvpPPqOuHspuVJo7b3VFrSevpZTv/c0P6A8j0W4GniCnjsi7lUFxeNMkeRupr7vx0pkr1ChQoVzjSzKGXZH5ffD7pj+luGm+5y6dGnDd48vDX+uwqgNCqUNXz8qBJjA/a04fcnje8YPv/Q4tX7MzOk2WEGjV6um3BVekPjTP/1TLr74Ym6++eZH/PlrX/taLr74Yj73uc+Vtx0/fpxXvepVrK2t8e53v5t9+/Zx7NgxPvWpTzEajYiiiMFgwM0338y3v/1tfvInf5JXvOIVLC0t8dnPfpajR4+yZcuWR3y+x8Lq6irf+73fy4/+6I/ytre9jf/0n/4TP/3TP00URfzkT/4kAL1ej//7//6/edvb3sa73vUu+v0+H/nIR3jTm97EV77yFa699tpN2/zEJz5Bv9/nPe95D0IIfuM3foMf+qEfYv/+/eXQ5Z577uHmm28mDEPe/e53c/HFF/Pwww/zp3/6p/yf/+f/yXd/93ezZ88ePv7xj58lsf/4xz/OZZddxk033fSYr0G9XueHfuiHnvQ5+ZEf+RGuuOIK/vk//+dnhRdvxP/4P/6P3Hrrrfy9v/f3ePWrX81f/uVf8n3f931P+vmea7igibYV3sMsA5/sXKz+WrTJS2JtrXC9XLhQMOfJnSZKO0JWBFbZkmwZk2NsThzVUEFEoBRBEFKrxdTrDeLYEUvhJdAAQSgJo7AMLxNCEARh2TGNFUgpkCpwfls/EcaT/cLrXVyK1tqSnOpclz5rISWT8Zg0zUiSCZMkYTKZkKSpCw4TRXiadhNzY1yPtHYha+12m36/7/YFQX84cBJ4JJnJsBhE7gj81P+cO0LnjgRpXYhbELiarTzLCYMAYS3GCj+dhlotduFpxqKEYDQYoj1xtkLQajUZjcal19iRReEWJ6z1vvMpuQU3tTdeaSBw6gMpFdbmGOv2WRvAgJJuqrx16xbSbEyaTcrrREpVSvaLa8hJsjVSRpum31qn5F6RbYxTEpgNgWjFdRXIAI31VXAgmKamu9duuhhhCs+2sD7Z3vpptkVb4xeC8Ne5J/JCYrQpSXlRYefq0WRpLUjT4jgrVKhQ4ZnH0u5VxK5KSXOuMGknnGwnYKF7uo04o2eyNoxorjfO095VqPDMY319nePHj/MDP/ADj3m/q6++ms9+9rP0+33a7Tbve9/7OHnyJHfeeSfXX399eb9f//VfLz+P/eZv/ib33nsvf/zHf7yJfP7iL/7iYxLCx8Lx48f5V//qX3HLLbcA8J73vIcbbriB973vffzET/wEYRgyOzvLwYMHiaKofNy73vUu9u3bx+/8zu/wkY98ZNM2Dx8+zIMPPsjs7CwAV155JT/wAz/An//5n/P93//9APzsz/4s1lq++tWvsnfv3vKx/+Jf/AvAcZG///f/Pr/1W7/F+vo63W4XgMXFRf7iL/6inHw/Gu6//36uvPLKDeHHDv1+33EYj3q9TrPZ3HSfa665hk984hOPuf1vfOMb3HrrrfxP/9P/xO/+7u8C8I/+0T/ix3/8x7nnnnse87HPdZxzov2rv/qr/Nqv/dqm26688kruv/9+wCVP/6//6//KH/zBH5AkCW9605v4vd/7PbZt2/aknysIAoLQEThr8ZJZC8KigmLtV7l6LylQMnBhYjonjEIa9Qbdboe5+Xm2Lmyl3Wkh5DT4q0ibVkqxsR5sMkkYjUZkSQ4IL692pDCKQ9bW13w1kyNRQrrHpGlCUWMVhbHz2ypVvtmCIKDZbNJut5HKLR4EQUiz2UJIQS2ubZi2SsAdS+6l5y61WjMa5ywtrzEcDjh27Ai93phMayIpMXlOEAYMB15CbQAhMFrTbDYJw4gszbBItE/+1mh/HLIMlVPSyduzLCPPMxqNBlEYOa+zkERBTJ5rknFKvR5hjKFZbzCZjNEIWs0WeZ4xTl2vdpalhGHkp9YBRmuSxBDHkfM/e0KcponzcwcBgRD+mB0ZlspNeY3RLkXcKjdx90FhOs/dFJipZ92YvHxtN3VsexJchJDpXPttm3IxIIoihLcTOOm63TCR3px2b/xCQRm2VkjC/TTcFAFqOFu20a472+2PWzAx1ikThBR+4UG5xPKi2i0IzpLiPB08m+/lp4oXkqfxhXSsFc4dns338eypDkk7Z9w+Y5HvyVyuZzQsPOLPnuq2zxE6iy0mreTR5e2PdQxPBQLWt/XPulmlirWt09tbqw06Sy3/kOp3RIULH/2+u77b7fZj3q/4ea/Xo9ls8pnPfIa3vOUtm0h2geJz0n/+z/+Za6655hFD1J7qZ6kgCHjPe95Tfh9FEe95z3v46Z/+ae6++25uvPHGMqsIXDbP2toaxhiuv/56vvrVr561zR/7sR8rSTZQTvb3798POLJ822238XM/93ObSPaZx/H2t7+d97///XzqU5/ine98JwB/+Id/SJ7n/P2///cf87h6vR6t1tnBjj/xEz/Bn/zJn5Tf/6N/9I/4t//23266z0/91E895rYB/ut//a8A/M//8/+86fb/5X/5Xx6XpD/X8YxMtK+66ir+23/7b9Mn2WB4f+9738vnPvc5/uiP/ohut8vP/MzP8EM/9EN86UtfetLPEwRuKhyEAXHsiJ21hiiKCGPnZZVC0W532LN7D1u2zhEEairFzS2D/oDV1TWOHj3CYDhkOBgwHo+RSmGsxhjtibYjSzrPyT2xEVYifSe3UoVP3Pt5N6RLh2E4Dcnykmk/rPSeXU2gFGEYbiB9lLL1IChk6qokb84rLclzJ0WP4phLLr2Uiy7ay8JCi4UtXYSQXPeKq4ijiOW1PqtLy4wGAxaXFllZXkGpgCxL3VQ2S6nHMVmak6cpKghQCLS1BEFAnucEwsucsQRCkuocnWZ0Om3G4zEY6whwEBAQkuY53WabNJ+QThLyLPNBZ5Jev4fRmnqz6Tq1fSc3/hwFgaLRcD/Dn88gCMsAMWsMmbU+Cd5fY37aK6VPQTdgrF8g8CRaeGWDkMJ78Kd1bnmuCQL/WueaXOSlBHta6eUeL6XzTyu5sWfcPUeW5xhtyHXu1QXutUrTFASEQYDzERTkW5IbXR5L4fWWUpTPpbXzaKOc9D2308RyrU15Pbjkd7eg8lRXZDfi2XovPxVYLMeuPEVay5g92aG12nz8B12gEEYwmB2ysnOdvfftJMjV4z+oQgWPZ+t9XBvG5LkhSAN2378dYeHUxcuMZqYScZVJtDIE2SNfw/PHZhFGcPLyxbN+Nne8S39+yLYDW8DC8p5Vxu3kEbbyzKI/P8A+xufw2RNuP/N4czgaBqQRYIWTkT9NLqwjjY6mFqFJM2F51xo7H9yK2vA7IkhVRbwrXJAoCHRBuB8NGwn54uIivV6Pl770pY/5mIcffpgf/uEfPjc76rFz586zJrovetGLAOe5vvHGGwH42Mc+xr/6V/+K+++/vwwMBrjkkkvO2uaZ5Lkg3aurq8CUcD/e8e7bt49XvvKVfPzjHy+J9sc//nFuvPFGLr/88sd8bLvdZjAYnHX7r//6r/MzP/MzALzxjW98xMc+0jGdiUOHDiGl5LLLLtt0+5VXXvm4j32u4xkh2kEQsH379rNuX19f5yMf+Qif+MQneP3rXw/Af/gP/4EXv/jFfPnLXy4vwCeKfVdeydz8HJ1Ol3q9TpbmhGFIFIVYDEmSkiU5670eR48d4f7vfIter8dklPrKKUfgCr+umyviPL5SkCapn1ZOfa8F6QaQKIQ2aKVR2v1Rs0KX1WECR/LSJC23IaX3CPtJqBTCya2Fk0ILq73fexrSluWe7Mu8JNpFV7b1suU0TfnmN+/l3nvvRXjfr5Rum9de/VK63TatVp1ut8XlL7qMWq0GFobDEaPxiJW1NZaWltyEOjOkWUaSJM4LbSGVqa+VcgnoVrtFB6Nz0kmCNaasUbPWYmzGeNynXo+x2hBHkevRDkOMNcx0Zxw5pwgBU146jp9SS5IkcdJ26xYr0jQliiKMNehsSjLDMKA46cZov2AhyJlOfzdOnDcS0Kn/fJo+7xY5nJohCEKMmYazBVFU3i/PMx+GNq2G036xxxiDksr58P0UXKnpIgrCPU+WOXVF8XoLKKvDjLF++m69XN1J4PO8CM6TFAF67hpIPNmW5ZT96eLZei8/FQgEOx5a4MRliwxmRyRPNDzpAkSUBAgtn5gXtEKFM/Bsvo9rw5j5o7Mo7dQ99UFcVmKBm3r354ZsOTa76XFZmJO0HFE8i6B6rOxyCeBHX3zySe/XuYR9HHX8xqTyjQjTgHgUoTJFf36AsIJav8akPUGH5yD4TPoFyH2nNuwsLByeI5wE1Ie1p/8cFSo8i+h2u+zYseNx5cP33HMPu3btotPplJ8tzwUebbJdKAmfCm699Vbe8Y538IM/+IP8/M//PFu3bkUpxfvf/34efvjhs+5fTL/PxFMZprz97W/n537u5zh69ChJkvDlL3/5rAn0I2Hfvn184xvfIMuyTfLxq6+++nEf+3hJ5M93PCNE+8EHH2Tnzp3UajVuuukm3v/+97N3717uvvtusizjDW94Q3nfffv2sXfvXu64445H/aOeJMkmD0Cv5yo24lqMzjXLy8skSUJvvcdwNGQymaC1S81O08xJuH0omPUe30LO6wKvip7igrxN08aLSbQUoiRwxRvPBZwVpBdAkGV+2u0Jp5S2JMbgQqt8SDhqw4QanEy8SLrGJ6Dja6MceXVJ2sL7ggUC6YPWcl/9ZaxFW5eoePToMSyCpcUl4lpMFAREQchMt8PMzAz1Ro16vUa322Vhbp4XXXa5UwEoydraKkmakmc5SZKQZRmj0Zj1Xp/xaES/P6DbbrHe65GnGY04YjIaIYOAUAVu300ONnAeaRUQhSHGwmx7lsFkBEIySRLn584y4jh2UnidlyFyRmuscD83xpHqQCpvAXCE05154VPB3eunVIDWLtjNWJciX/rUcd5p90vKlK+Xm1JrN5EXToadZWmpZlBBQNnf7QnutHvdEoaRu8as8h70IpDMT8X9daT8daStRkhvedCaUAXlL9TCq18GliNKBUQRhuY82yCVhNI7bjDWqx7OgYz82XovPxVYLL0tA7YemsdKSzyOHv9BFyiyKKc/PyAah49/5woVzsCz+T7uLm6WeEotUfmUmfbm3VRkcffKpvtlcc64+/zOlchq+aYKsCB15+ZM7/U5hYDFi1YIEkVj3X3gVbli7mT3mXvOChXOIb7/+7+ff//v/z233357mVq9EX/913/NwYMHS8n2wsICnU6He++99zG3e9lllz3ufYrp8dra2qbbDx069Ij3P378eFlhVeA73/kOABdffDEAn/rUp7j00kv54z/+401E/ld+5Vcec18eDUWl2eMdC8Bb3/pWbrnlFj75yU8yHrvQ4x/7sR973Md9//d/P1/+8pf59Kc/zY/+6I8+pf18LFx00UUYY3j44Yc3TbEfeOCBc/5czzbOOdG+4YYb+OhHP8qVV17JiRMn+LVf+zVuvvlm7r33Xk6ePEkURczMzGx6zLZt2zh58tFXqN///vef5TED+MpX7qLRaJSktpzAbsDGbuUz4VTAztNbkFonD9dOZuwfW0ympZQo6WqrpqnWm1eUwsCRrSLQTCCQwnsxrHG9ztZNhQs/+JmLUq4/2YW8IaYragY/EffE3lrQ3k+slMRkuZNUpymj8YQ8y+h2Z7BGk4zHJEAgFePRiOXlFZJkQhTHKCmp1+vEcc33Wlta7TZzc3MsLCyghGLXRbuI4oAsyzaQXJwyIHfhcw89dICDhw6RpikyUAShJEnGSCWpBQEm1yRJxnKa0ZzpEmpDZpzEOo6cZz3Lc5RPY58kCYGUIB1pdNVVI1dnpQKCQEBBdqVGSen3rwgIcynrQrhzH8eR33e3qOIk6iHW96EHQYBFu2AyX69lfWK7W6RxnedSTq+oYrGmkPUXo3Upna9cel+3MRqbZYzTlKjR8CoKgRBOmh+FEUZrtzBkjZeXFwF505VL50VXZXibm5i724tFG2OchF3ljzwVeqJ4Nt/L06o1h8eSOW6839rWPsOZCze5+InCKINRBiumIY5PBsX5fLTHVbLS5y+ezffx2tYek05W9loDZHGGCSolxiMhjzS9rWfLMZ+R54o3PJeBUXf6e3Pnd7ZuIvvV74MKzyX8/M//PLfeeivvec97uO2225ifny9/trKywk/91E/RaDT4+Z//ecB9Tv7BH/xBbr31Vv72b//2LJ92Ycv84R/+YX7913+dT3/602f5tIv7FFLm2267rUwD11rz4Q9/+BH3Nc9zPvShD5VhaGma8qEPfYiFhQWuu+46gE0DleLz/Z133skdd9xxlkz8iWBhYYHXvva1/P7v/z633HLLpm1sfA5wdWhvfvObufXWW5lMJvz3//1//4TS1X/6p3+a3/md3+G9730v1157bSmH3/g8TwdvfvOb+YVf+AV++7d/uwxDA/jABz7wtLb7XMA5J9pvfvOby6+vvvpqbrjhBi666CL+03/6T09ZPvC+972vvGjBrZ7v2bOHwWBQEuuy9uoMiIKRehSSbss09KyQ9xpjyhosnWmC0FVMwVTyXaSUn3VRWRDC+gmk8F5ru3ky6fuXXY3T4/8hK0vK/BvF4OqhlBBI435urJOgY60PJsuZ+F7rTqcD/rld13gxmXfHW6+7bmtUwMrKShnQEIYRBw8ecgFncYzR2tdTOVn0loUFLtm7l7nuLJ12G9F0hPJVN1zHq/+7V3HgwBH2H3yIZjtCCMHKyiq1uMZoOEEF0GzVWTx9CqUkrU6HLM+YjCe0Wi10LlzneBiRZamTpwtB4Ke9aeYIdeF/3hDPXiaSu2+9KkBYjLZ+Op258y9cEn1xTC4FvqgcMwQiKFUN7hpypDvNXA94gCrT4Iuk9DAM3aKIn6iXfnw/iS9Qq9UIwoixr08LI+d/d5Jzi1SSelT33v18w8KR9RNst5/FtFqI6aKL9X56dx0+8vvhyeDZfC+vbeuTNwzjVsKWo7OE6aP/ahp3Jpy8dJGFQ/MoLWmuNVjZtfaU9udCRBbn5DEs7nETwfnjM6xt7VMbRgw3fHjWoWbLkTkGMyO2H3R/SE9eusSkNaGz1CKt5XSWWgxnRmw9PP+Iz1Xhwsez+T5e3d6j3snOS0BZhScBCUnTdwlbOHjNtKt2+/4FgiRAalllQVR4TuCKK67gYx/7GD/+4z/Oy172Mt75zndyySWXcPDgQT7ykY+wtLTEJz/5yU3+3n/+z/85f/EXf8F3fdd38e53v5sXv/jFnDhxgj/6oz/i9ttvZ2Zmhp//+Z/nU5/6FD/yIz/CT/7kT3LdddexsrLCZz/7WT74wQ9yzTXXcNVVV3HjjTfyvve9j5WVFebm5viDP/iDs4Z6BXbu3Mn/9X/9Xxw8eJAXvehF/OEf/iFf//rX+fCHP1xKrr//+7+/TDr/vu/7Pg4cOMAHP/hBXvKSlzyiD/qJ4Ld/+7d5zWtewyte8Qre/e53l+fnc5/7HF//+tc33fftb387/8P/8D8A8E//6T99Qtufm5vj05/+NG95y1u45ppreOtb38orX/lKwjDkyJEj/NEf/RFwtp/8ieLaa6/lbW97G7/3e7/H+vo6r371q/n85z/PQw899JS291zCM17vNTMzw4te9CIeeugh3vjGN5KmKWtra5tW0E+dOvWI/rECcRwTx/FZtxfe14JUFKR6IwUufK+eBZU/Fxt+XhASN4X2Um+f9iw3EO1CVl5Mc4tJt2NVU+LjvyifdxpqVXhvKTubi+ljmbS1YeXJWkeMhcD7rr3mXMqyyqw4B5PEpXcPh0P6/T7GGFqtFibLS1lxcTzaGIzWvpbLYIwjoLVajTRNSdKEZrPpUr6TFKUka2vrhGHAcDREa8OJY8dQQtKo10FJWq0W8wsL7Ni5nd27d3L55ZeAsIzHEw4fPsTBQ4dIkgm93oCVlVWMTgmDmNHAVTFkkwlGZwRCoITCZDkBklotKolr0UtdpG/nWVb6lLPM+l5pcIqCgmxPvfHu8bYMONPGECiFMa4uy3VmC3Ruy9dYSuXPuy2908UaS7Fg4S47g7DTTuw0TfyEHN+prRE+1C3VQ6QKyPLMqRqkJElGniTDYDAor0Hjg85c5dlUsl4cT1FNVgSiFf5tFwZ3bqdIz+R7OY9y1hcGbN+/hROXn2bmZOdRt5HWM6ycdtG+kEg2wInLT7PlyCzd006ie/KSJZSW1AYxOx7ayrg9wQpLFucs7llh4chc+dj2SgMdaoIsYNJMWbxomYu+uet8HUqF84Bn8n1cSsAqXDgQbAp2O+FD6Oq9Gq0VVx0W5IpG74Xts6xwfvEjP/Ij7Nu3j/e///0luZ6fn+d1r3sdv/ALv3BWENiuXbu48847+aVf+iU+/vGP0+v12LVrF29+85tpNNx13Wq1+Ou//mt+5Vd+hU9/+tN87GMfY+vWrXzP93wPu3fvLrf18Y9/nPe85z38i3/xL5iZmeGd73wnr3vd6x4x/Gt2dpaPfexj/OzP/iz//t//e7Zt28a//bf/lne9613lfd7xjndw8uRJPvShD/Hnf/7nvOQlL+HWW2/lj/7oj/jiF7/4lM7PNddcw5e//GV+6Zd+iX/37/4dk8mEiy666BFl3m95y1uYnZ3FGMPf+Tt/5wk/x0033cS9997Lb/3Wb/G5z32OP/zDP8QYw65du3jNa17Dhz/84UftOn8i+P3f/30WFhb4+Mc/zmc+8xle//rX87nPfY49e/Y85W0+FyDsuYgmfgwMBgP27t3Lr/7qr/IP/sE/YGFhgU9+8pNl0t8DDzzAvn37HtMPdiZ6vR7dbpd/8k9+iXq97shwMWU+w5dayL+ng0+76TblK6uK9O/pz92UMwycn1b5NOoiHMxtvPifAGTxBCBEmTaN77wuHiOlC6oqfd6+DxrrasCCDaEH1jqJSTFtneCqxjC27K3Ok5Rc5yRpymA4JJlMiMKQ+fl50klCgPCSdzfRFkoR12p0ux0mk8TXaoXkeY6UijRNqdVi93WWkkwSR4T9NDfNUtIkpV6vowJXTdbv9VBSosKQuF5nbnaWVrPFzEyXLVvn2LtnN8ZqxuMJi4uLrK2t853vPMSBAwdpdztI5VLVJ5MJrWYLY0TZm50liatDi2tlUFohu3Hp7s4D7YLqZDnZtbgFloKIG2PLhQXXt23ROkcp77sW+GAzv4ghXJiZ9V3hUkqkkuRZXgaTKZ9gX1Z5eYm7MZY0TV04HNPQDFFI0KVywXcCgtCpCPQk84s6097sKdmXFDVj1isvChVG4dO21iW+51nmK9JCJpMx//v/cQvr6+tO3fA08Uy+l3//ax9D7FDE49BJwasP608KQaKQRhIkAY1eDWGF83VvGTBzqkNac0Fxw5kRIAgnAdIK0jjnont3VlLR5ziGwyFvectbzsl7+Zl8H//24X9HvVMRsucbVCZLf/eWo7NIU3WlPxWcy/dxhecevvu7v5ulpaUn5JU+n8jznJ07d/KWt7zlrM7uCuce53yi/b/9b/8bb3nLW7jooos4fvw4v/Irv4JSire97W10u13e+c53cssttzA3N0en0+Fnf/Znuemmm55Suqm1BdEynt/KcoIpfPiZKZOm8VVYEimC8j651WWitDWWIAyQIpj2FPt2Y2tcnZMp8rf8gNxYS6AcESqSq5zEnDJJ2uqcgmlLqXwVkyhU4eV2So+UkAilnK9XSQwCg0Voi1KCXGuy1KWmZ1nqpMe+BztQisl4wuzcHOura6A12miM43A0anHZhZdrF6A2Hk+o12tMJgmNRp0gCBmPR4yGQ1qtFqPRECElw8HA/XFw5nakUCRJ6mvCMrLcMOgPEBYOHThEvVGnVotot5ts276NK/btY+/ei9i+S7PvyisZjcdk1nLffd9iZXWF1ZVVxsmYetwk1W56nWfaJbLnOWEUgZGo0IW/1Roxk8mEer3OeDwm05kPkXOS+igMfQK4SwjXWnk/tfW1WiFCSnf+jXVEW1iEsF7B4I/TE26dZSiczz33/nojJQJXEWa0QagAqYT3s2uUDMsJOspNmZVSxGGAznNCqRAWRKB8Yrgpp/JCuB5w5xMvbAlun4y1SKWm4Xkehcw9zzKfEv/U8Wy+lwdzI+q1Onnt6fnKX6jIYw1o0lpGVnPvAx06X/f6wuCMFGdLkAbMnupw6pKlqZemwvMSz+b7uMLzEzo09LcMAZi0ErDQXWqXnd3YytddocKFgs985jMsLi7y9re//XzvygsC55xoHz16lLe97W0sLy+zsLDAa17zGr785S+zsLAAwL/+1/8aKSU//MM/TJIkvOlNb+L3fu/3ntJzFbLdAmVAGVB8ciw80kWtk/NN6zJJXAo1/ZkULkkcgZDKEyg36bSykGrbkkALCVI4KbYsOoxlQcwtxhbeXLFhfyXgibkVLnhLSqQs7uYmo0I6CTVQBndprQmM8mnqid8PaDSbCCk5deo0a2urtDsd+oMB3dkZequrNBt1lJQ0m02UUiRJwupqn1q95pK0s4wsy2k06mhtGI/7vrvbTYBdP7mrTqvVavT7faydoFRAGIXU4ppbwJCSwTDn6NGjNBtNJuMxSTKhP+hx5Ogxvnnft6nVa2yZ38JL9l3J7OwMkZS8/maXItkbDDl67Bj33vstnzAecbh32FVaGctw2AehaAVtrDWMRyOshf56jzCMUQLCKGQySahFblKdZTlR5KrBpLRl97qrRhPlBNhaFyyWZVnpny/UDYWlIFBF4rsgUBKpAtI09X3aTg1gyRF+zUUpiTXeAy6dTUCFkiBwnemYQskgkbKoFSs6tBXWTmXgmUkJo8h9neeuqky5qYJSrtqL3F1jQRhgjd3UzfhU8Gy+l7uLbdJuRbKfNgSbUo2BR6xKGs6OGM6OADj2olMsHJ476z4A0TjEKIsVdpNfMw9zdLC5jiichMhnMj25wlPCs/k+rvD8R/H7ZWn3Kku7VwGo92vMH5sB3O+MinRXqPDcw5133sk999zDP/2n/5SXv/zlfNd3fdf53qUXBJ5x6fgzgUKm9gu/8As0Gg1Ppl31VfH73VpdEu+iwssFX8myBikIIk98HTG21hCEIcKq0gervb9WKceEnad5So4Lya7wCdWlH9qTdEe4FNr7g5UKUKrYril/Lj1BD0IX+pWXgWuOFGqfjC6k9KniY4w2xGHoPNS9PqdOnWJ+fo6Z2VnCIGQ8GhGGAbW4htGauOYSxrXWJBNXzWKsSykXQhKGIfV6jTAM6fX6GGvcYoRUaJ0ThhHWGlZXV+l0OiRJQhhGtFpN4jgmy3KSZAII6vUa6+vrCOm6pYUQJGnC7Owca+trxHGN2blZBHDVS/bR6XbYunUrnXYLIQVra+ucOr3E0SNHWVtbZ2V1iTTNmIwTgjgijCKS4YgoikjSjEazRZIkpc8c/Out1IY0ck0Ux0RhhDaaQCmyLPchcW7xQ2vtksx90IVSzjedZTmhUmANEkEuisTxIjhtQ16AkqhAOdWBNtTqNYx2267XG9RqNYbDIX7JBSFkuQ3hU/CdTNx5souFIK0NBkvmq9wipXzoHqVHu7hu0zSj3+/x6//sl5/TMrVKcvochoW5YzPkcU6QBIRpQL0fM5gdMZgdMWknm+6+574dRElVP/ZM4LkuOa3exxUAsDB/bMaRbSuIxiFKV4FqBZ7r7+MKTw/Pden4O97xDm699VauvfZaPvrRj57la6/wzOAZD0N7JuGmrdNpjfZLBmUnsg8KK9KYpynM1ld0sYkcWSsoOrWl694qJ+LWTnuUnRwZX+nk9iMKQ3LvqdXG+3txNVGmCGQrt1fsKD7ky03ZpXTydSNcNZj2ad9loJuUpElCnmuMNkwmY5QACEiSie/5lkzGY4Z6CFhUGJDkGbU4Zjie0Gm1qNdCxuMxM90Zl/gtFTMzMwwG/TKxvJgou0nsdD+yLGfXrt0sLi66BG3v015ZWUFKRbfbodfrsb7eQ2uX4K1UgDGWOKoxGo6pRa5K7OjhY2AtJ4+fYseOHczMzDAz02FufpbLLruEK190GVdcfglraz1GowHr/T4P3P8gJxeXiKOIca9POpkQRTWUDAnDaa+1UqqcRhfks6jycmqCIqUc78WehqYB5BZPvNPSI22tW6fP8xyrlJ/0+xR6f91leY7QkI9zAqVoNOsILEHoptha56UvXucZblfc5Nopxl2auVLSBdR4X3qxgpRlORTWA4rr3U3EZbmg5Dzc9XrtXL3VKrwQIWBl9xoA0SgkDzXNXh2hBZN2wuzxLv35AfV+rZSVVqhQ4QUMAcu71wgShbCCIAlQWlLv1+gst8733r1g8Lu/+7v85m/+JidPnuSaa67hd37nd3jVq151vnfreY+nGmT2bOGjH/0oH/3oR8/3brzgcEET7SJYrCCFWk+rvvLclHVVBSkpiJdUwhNp65O43f1czVIOKNhQ4yV9kJhLgPb9ytZJwwu6U8h5hRSEQVgGq7nnUxtSow1ZbgmDwAWUQUliCxJvkZ78Oxl7lmeu0sk/d55nRJEjbWmWMZlMyLKMSy65xKWGJwlJMnELA1jyPKeXpgRBwHgyJpeKRr1Ryu63bdvKkSNH6XTaZFnmw89y0jQhTTOCwIWlWSBLUy+ttqyvrzMzO8OWLQtobTh+4jjGONVAu92i1+9ver2EkC48re8IfafdLo99MBgwmUx4+OGH6HTa3PvN+xASbrjxBhYWttBuN9m5cyeXXnwJvX6f7zy8n/1SMuj1GU8mhFGNKIwIQ8X6+pqrJAsC8EoGpRRCSibjpAwTm0wmU0WDNaSpI8DGur7s0AeOKSVJM02SpkRhiPYLLdMMAIES0vVfhyFgiaKQLMuZTBJazZZPiS/sDDCejBHWEhSBa9YipPSkeqq+MEwn5y6IzyJwfe7uPracZBuvgJDKhcml6dOTjleoUCBtuGupPzdE5e49058fsOXoLKf3rjB7vPuYlWwVKlR44cBlRkxl5sPumNXtPYSB3Q9sR1ixqbe7wrnDH/7hH3LLLbfwwQ9+kBtuuIEPfOADvOlNb+KBBx5g69at53v3KlR4weGC/mSktS576Qp599SnPS2EL6aUxWTbGIP1lVpuIj0NK3N1TBm5tgQqdB5u5QKvTDGNFtNQZOFrlArpuRQBaZq4Lm1wCdMbq6KsRTLt1zbWkiQpQgriOHYTWGsJ4siFeKUpOp0GnrXbHSZunM6pEyeoNxrkWUar1SJPE0a+Gmr3rl2MhkN0ljufuTVYIdwEuNmkVovpDwYEKmB1dZVarUYURWRZxuLSEnmWsWXLFiaTSTn1x0K73abX67Fjx07q9Rq9Xo+lpSVWV4sebnf86+vr5SKHtQYf7k69HpPlKcYYsiwlyyxpmnl5dkan02U4GpFlTh79p3/yX+j3+yxsm+e133Wzk5d32vx3N76K19z4Kg4eOcrf3nU3k3HC8tIy7XabZqOB9WoHFQbUG3V6gx79tTWsEa6v20++wYXkgZgueBhDHEXlNNwYSxS672WgyLRGCklmNO12HZPnrqIrTckz98Ei9D7pMIiYjBPSNHWvUZ6T5069gJROhVFcs76yzXVju/S6vFzA8aoK6RPZlST3/vkkTVFBgAGkUgRSYvP8rAT+ChWeNoQLRgLII83JS12Y2uqOdUIvLz8TKlOuz14ZwiQkq2WEY/f/4hdpNA6rJOMKFZ6nsMqSK9fYcuCaozRXG8wstolHUUW4zzF+67d+i3e96138w3/4DwH44Ac/yOc+9zl+//d/n3/8j//xed67ChVeeLigiTZsDkArQs8KKKXKKq1iqlncXpCo4mdF8FfxDy8rt8I6D7N00l9rioRzPxW3G/dFor1/1k06FUI4ybHzYQsvX3aEPctSpFLUaq6P1Nd8O3lykpJr7Z/PMplMPMldd57jJKHrPT61KKLT6RCGIQtbtjjpupDU4phJkqDzHCkESgjffSpYWVmhVqsxHo9I05Rt27ZRr9fp9frUajVaW7awuuKCTqRyfdMISNOUKI7ROmdlZZV6vY61hq1bt7K0tEQQKPJclbVTUrIhWM7S6/eZTCbEcUwUu3MxGo2IopgwDAnDkCSZIP1+hmFMq9VknIz5yl1/ixCCubk59uzezWWXXsrFe/awd9culpdXOHLkMA8+uJ+lpZVycQRgbX2NIAzYtm0b/d7Q14C510AISjIdhAHj8bi0ARhtCMMArQ1xHLvJtV88kMIForl075xGo0FaVoxZL5c3jEaj8npzFWpyGrDmK8ICFaCzrHy9hRAoKdDaTkPP7LSOTkrpJOTF9SIc+c6tJfSTbeUr0ypUeMYgNn9d9JqXMC7krt6v0VvoEyQBVlqyWkajV2d1ew8r3S/QXQ9sozZ8hF7mChUqPH/gf2cM50YM50bMnOwQjUPaq83zu1/PE6Rpyt1338373ve+8jYpJW94wxu44447HvExTgE5zdswxrCyssL8/Pwmi1qFChWmsNbS7/fZuXPn437WvqCJdjFpLchPQboL4l10LkdRRJIkJeEpSEhxf601WZahVLhhCutn0rYgzI7MlLy6IPgCT+rA/RURPqBqmshbVI1ZKEOujO9ftsaghfA+YUBYRkNXpzUajWjUG4RS0YxrCO0qvvq9Hr2+C58JQ7fPtTBCAFmS0qjXyZIEawyRDBC10IWgGRfkBbBlywJLS0vkXqK8vLzC3NwsaerOU7/XK9OrjTXltDrLMzqdDutrawghGAz69Hp9wjAs07WLr11tWJ00TZBKIoOQtfV1n7ItUUqRphlbt25DSsFoNGI0GhKGEcPhCLA0m00mkwm5NiwvrSKEYPHkIgceOsAD336Qyy67lJe97Cq2bt3CwsI8l156Katr6+x/+ACHjxxhNBqXsurhaESj0XC1adYSxzFaa/JcE4bOiy6F76X2QXXGKxWGwwFRHBMoF1YntHGaCSEgCNCeIAeFjx9b9q77SLtSml5UvwWBAusm+RjjlA/+2tXGhfAV+QCFxL24rq1PtC8Wb9Iso5CyK+UWDmz1R7LC+YSALM6Jx9MJeDwOmbQS1hb6CCPYdmAegHByQf8pqlChwlPA2vYeMpcMZkfMnuxQG1WLbU8HS0tLaK3Ztm3bptu3bdvG/fff/4iPef/738+v/dqvPRu7V6HC8w5Hjhxh9+7dj3mfC/7TjSMdRQq4LAPQgDJxvCDX2ku4ixAs6wOvhBCEYeR7jF2AmRUFpXZVW1hH1or+awGbvnYBaI4MFeFbLqRKeO4kXM8yRZ2TQAiXGq2UC+oqfN2OgKZkaUYvXadRq9Pr9RAC1tbWCMOQfVdeycrKCgIIg8DVTglJv9dj6fRiuRppjCYMI4IwIkvHWOV87adOnyo7nbvdDotLS/R6vTK52wISl4JekDwhBXEUc/TIEe/jzhiPJ8zOzpLlGa2mk0anacZoNAbcamm747zYo8mE2KeCdzsdhsMhSTLxBDRgOByhlKTfd1P1MAwZDAaEftKc+5CvNEmIY83S4grJJGP/wwdptlu88pUvp9msM9Ptsmf3TgbDMQ899BCnF5dYXVsnTbMyAT2OY3q9HuAsCLGvKAvDCGM0QRCQJKm/XpznOgpDf30JtM4JVMAkmRBGkauAs66iSynpLQailOPX63WGwyHNZpMoihHKBbcVCz3KXVBeJWFLVYTLCvDKgDIbwBZV5ghk6Ys3m4L6ZBnOV6HCeYGA0cyYcXsCwmKF6+BtrTRImimzJzss7llFWMH2/VtQ4yqduEKFFxpMYBjNjJm0ElSm2PWdrQgjkLZSZD0beN/73sctt9xSfr++vs7evXu57rrreO9730u32z2Pe3fuYLEkzZQgCTDKYKUlmoSVdaHCk0av1+Pf/Jt/w1e+8hXa7fbj3v+CJtqFz7kIjgqCYNOUuiDeWZaVBLwIUHMQJbl2qd/GT66lT5EGpC3l51K4Gi/hstG8VN2HUFnKwKvSi72hbkmIYoOuv1so5YKtPOkTUkKKlwVDo9Gk0+kwGU8YDAZoa1hdXUNJiQpDFpeXiKOYuBbT7/cRUjI7N0t3doY8zxmOhqyvrVNv1BmnE1QYgJL0+wM63a47X2FQ7t9Mt0ueaxqNBuPxmPn5LYxGQ4SQpGlCvdHwJBWSJKXTEdTrdR9Gp6nFMaurK5w6dYrZ2Vl3PMAkmZAsTpBSEYYBgZSIIOD06dOkXnbt/NGyJKVhGBEEASoI0LlmOHR92VEYujC14ZBao8lg0PcTeIk+bvj6V7/GwsICN9/837FlYY5ut8P1173cXSvAffd9m+NHT7G4uMwkGVOPYywwHE2wuZsgR8060leSJUmyYfGjhjGWMAx96juoKCAK3ZQ7y7Kyei3LBGEYICQ0mnWggc5hZjZC57mblGvtF2DcdYLwQncfrmb8Ikhxfotuba1zp7TweQQ6TZFWYoQl9F3mSgq0MTRrVep4hfMPq6b+GhMYegsDgNLf3VlsEaQB49ZkwwLnFNEkRGWKpJFWE68KFZ6nMIHBKMPBq4/RXmnSWmkgjKA+rP6OPVFs2bIFpRSnTp3adPupU6fYvn37Iz4mjmNvKdyMhx56iAcffPB507VssYiOIkwCrLLoQFPrx9WCToUnja9+9as8+OCDAE/IXvG8ucIKGXkQBKU0vPi38URslJZv9Mtu/DnSgDAgDdZqhLQgLAJL7oO88lyjtUaXcvJporS1rmqp6McuZO2CIoBN+v8LlHK1Yzp3FU+9Xo96vU6WpQyHQ8aTCeu9HotLi0RRyPyWLYRRxJaFBQbDQXkcBsvKyioP73+Y1bVVhJR0Z2cIw5B2u4M2mnq9TndmhjiO/WJETp5nDAZD1tfXWVhYAGBhYSuDwYA0zUiSCUIIxqMRo9GINHWp5Csrq74T3E3fC1JYTLofCVobUi/hD8OQdquFUgFRFLmEcH8scRy7zm7jFzmkdCTdqxMajQYIqNXrRFHEYDgkS1PyPGM4HPBf/+t/5Uu338G37vsODz20n8kkQQrBS696Ca973Wt49atfycte9hKkEgyGfaIowFhNGATU4sjJ6/3IOAgCGs0m4LrM+/0BeZ5hMeQ6x2KdJF85r3VhQhPerw0WJV2KvRBucUIp5a9TWV5HSgXltamN8WFtTl4uZFE1Z8p90qWX26WdF0n4hcdbCkkymZyDd1aFCucYYsM/oLcwYHnXKscvP83y7jUmrYRJK2E4M2Z51xq9+SE6MIw6E0bt8fnc8woVKjyT8L8X+vNDTlyxyInLF1nZvs6kkTzuQytAFEVcd911fP7zny9vM8bw+c9/nptuuulJbWt9fZ3bb7+d1dXVc72b5w2NXo0wCYhGIfV+rZpmV3jSWF9f58tf/vKTel9c0BPtjShJip9ku85iXZLojaFpG4l3cV/Xk2zPuI+fKhbSXO0IjQAfOCX996L05Bb/pBBl0Ba+DxkoA9mMNQgLCA1ECAG9fh+jDYcOHUZKSZqlrK+vkyYpCwtb0Tqn0agzSRLWVleRUrG0tEwUhWydmWFtbY1Op+OIahAwGo38JNQyHo+9RD5kNBoyGg6d5Nt7e6WUnDx5gn5/UHrWQZQVUUJIZmdn0MaQpZkj3+MxQRAwHA45fXqRVrtFv99n+/Yd9Acbqr38uRgMBkglabXapNbJyl2/uQuky/IcJRW5dgnrURy5ffPS9SnpDsvvw9DVpCVJyszMDLVajdFoxGAw5Bvf+CbGZmzdtsDc3BzXXPMywijkkkv3ctHFe9i7dxfrvR7f/s5DnDx6nDBQCGPBWtI0YX5+DutT4Y3xCyva12/lGWmW+OtEEIQBKghpNptYC1pnTsat3fRbeEl4ETpSqDGUkmR57rdvELjqN6aXjOtiN8ZfU+5cmSIAsLBH4Lz/xcKR1rqq96pwwaDo4daBZtJMERa2HtyCDnPWtvUxytDo1RjMjWj06+d5bytUqPBswCrL6s51BnNDgjQgyBQLh+aA4pNYhTNxyy238A/+wT/g+uuv51WvehUf+MAHGA6HZQr5k8Htt9/OG9/4Rq6//voLPlz1rOvlbPHUcw55mCO0REc5MlcEeWWvOp+w1rJ//35uv/32J/W4C5poF6R44/eODOlS7l1Io4vvpwRHlYFkAj8VNtoHZ+WAmxSaPEcFCq0zlAwJVOTJswswM0YjpEDiOq/B/U9K6bzYvqapmHoXXdl5rgkCRZqkJJMJaZZx+tRp4jgijCJOnjyBUk7avXv3LsIw5PTpRSYTJ8N24W4BURQSBEEp/wnCkNWVFWbn5krp/GQy8RNTN1UejUbMzc1hjPHEz01JFxcXmZ/fQpr6qb3WrqIqDMqEvdDLt+M4YjJJvHQ7oN1pkUwm1Go1BoPN/dku+Cug0WzQbDSx1rB9+zb6/T7r6z20dqF1JstJs5QwCAnCgDRJvdpelNaAtfV14oarJ0NrFk8vcuWVV7K+vk4Yhn5xA7I8o7feRypBr79OEEbc881vcvFFF3PDDa8iDBXbt29j2/ZtXHrpJUxGCQcPHOTh/QdJJhOUUpxeXCSKYpf6jVsYKK6nUZ5hTE4YRY4IawuZplaLUSoEIcp0dZO7RZws1yjv3ae85gw6z0msJQhCl+ye5wRhiPWy9SIx313HOcJ7v/ELQ7nOIXAqAWwRyhbSbldJrhUuLOjQMA4nYOHwVcdprtUx0qIDgzQCqasP1xUqvNCQ1XLXyW1dJ/fsiQ7dxXZFth8BP/ZjP8bi4iK//Mu/zMmTJ7n22mv5sz/7s7MC0p4IkiThs5/9LFdffTW1yor2rCEPNJPWhP78kCAJGHXHxKOY+aMzhNkFTdsuaKRpyp//+Z/T7/cf/84b8Lx6xTZOozd6tc8k2FLKUmpe+KyLJHBrLSoAl+BsQAgCESAEvmfZYLRFSBeSJqyv+JKiTKwWYipLF97vW0zLRVEbhiVJcr+PhigKUYGTmxfyciEE3Zkuga+barWazl/uk9aLCrIsyzh27BjdmRmOHjlCvV4n8f3XbmLsCJqxAaFyxHwymUqxgsDJvmv1OkkyIc+dzLzf76N1zszMDBNPop0PHh588EEuuugiwJ3DQX/A3JxbaU6SBKk2rry5Pmida5aWFpFScvDgIay1zMzMlCulQRAQybA8b1EUkeeZW8iQCm2Mk16HIdZCMkm46OKLHMmOXSDZyvKK83t76XmuMyZpQqPlnuPI0SPs37+fuflZrrrqKrYuLNDpduh0W1x97Uu54srL2f/wQY4cO069UUcgWF1dI89z6rV6qZjotNsuJA9bTpd1VtTCGQSCMIicd9+4760xpLnzWEdRRK7zsqZLSkWeuWPVxqB8IrkKAoSUbjJunMRcBQorJePJhCAMwcI4S6Gcekus1WUgXYUKFxyE82wWk+5hd8S2A1torjbO845VqFDhvKH4vTA/RGpJmAbUBxUBPBM/8zM/w8/8zM+ck23ddddd3HfffbziFa+o6r6eJeRRzuq2PmkjLed3eTyivdysiPZ5QjHNvu222570Yy/4V2xKYJ2kNgiCTRNtYFMwWvGYosYLIM8LebS/oq3yxNxNL8ejhDB0wVlCOtm39L7bMArJsxxrLFYWEnVP+o1GG43xg3djnO+78P8qpVhdWyVNUmZnZ2k1mxhrGI/H1GoxrVaLMAzJ0gQLhFHoU9HBWBB+Tu4m2jWSyZiFhS2EYUSt5nzetVodKYcMBgM67TZLy8tEYcjc3Bz9vvN4r66tUYtj8FPVVrvNoD+g2+2UfuuCrOd5xunTbtI7GAzpdDosLp5mbm6eU6dOObn3Gb+MLa7CSmtDXKtNSWMQANZJ84XEWoPWuAm6DwsTXrKfk1NvNBBSIpSbbgfNpvsdJARJmpJrQ63ZRBhDHEWICI4eOcrM3IzzwgtVyt4P7D/E4ull9uzdy44d22m1muzZvZt6vcZVL93H5VdcSn8w4PChI3zngf2cPHnSVZxJSSCUS2CPY0bjEUJYwiCEwPWdG5Mh/fWoogglfV2YtQRSYrULXsv9wo+Qwl1TglIebjK3CINSGGsJo4g8y9FGk6Xa+dp9snih67BSYn0tWGETqFDheQEJpy5bIh5G1PvT4J76oEajV2dl+zpWTrM2uqc7rG/t0VivV2FKFSo8z6ByxfKuNQAWjszRWqsW4J4pZFnGxz72MV7xilec7115XsJIg5F2kyw8GofMLLZY2bFOHrnwZpVLpL6w5fsXOj7xiU8weQrZRxc00d44wS6+3liRVaSMF0R8o7Q8z3MC74UtCPbGbu0sy0rJubWuRqxWq21IIHeTbKMNtpCEG1FWfIF7jBCuv7osT6ZINncScqxLsm61WvQHffY/vJ9LLr2YZrNOkiREcYhElkFXsugMZ/qhMgwj6vU6a+trSCl9SvcaURSxvr5OHMekacLKygpR6HzEvX4fayxBoKjFNebn5zhx4gRgGY9GNJtN189dq/mOcUWeZ0ipmEzGbNu2jSAIpxJ8P/Hfvm0bBw4cpFbf8OHWvw7z81uYJBMCFdBut1lcXCp911ZY3yEtSiUBFgIVYIVxUmovF3ATcCd3X1pedk/hvdtZlhF4/fh4MmHrjm30BwPWhwNmZ2cxWlOr12i3O3Q6HQ4dPMSBh/fTaDSo1+tcccXlvOSqF1Orx8zPzTI70+Wii/by4IP7uf32vyEMA3KT06w1WVtbJctzV9UVaRr1hru+clMGxRVJ9Ihp7ZsLVjN+Qh2CtWQ6p6YCpCheWeGUFv76zPMcqaSfjjvPvfQBdFYb4jgiTVJUoMrniR4hSbRChQsZSTMlaabl9/10RJgGpHHG9v1b6G0ZMpgb0lppMmmmgEBpSTSJzt9OV6hQ4Zxi3Jl+2B11xmS1jNZykyBTlZz8GcBDDz3E7bffzs0333y+d+V5h6SRktQzb4VwkFbSWmkijGB1R49oHNJabVAbVn/Hzhe+8Y1v8NWvfvUpPfaCJtoFCjJdEOqNxHvjtNuYwr/q5NSJT8Au0skLFDVhxdTbGANWbKgFgyJJwSU++4mldCtS0geoGWuRPszLWOPu6+Xp1kAYRCilWF5eodfrkecZ119/Patry2S58yenaQLW7bPrVXaTYOmnl4UXuF6vkUwSoiik2+0SBAGj0ZgoCtHasHPnTvr9funFjms1ms0mWZqWgWazs3McOXIYa2Hnzh0EQUCv12M4GlKv1wlUQL/fY/uOHdRrNaRUnD59ijCMaDWbpEnK4uISnY6bhBcd5Vmeo5Tb1traGlmWEoQh3U6HySQp07NL77uXzyN8ABrCecrxlWoqoD/oEwRuMn/8+HHiRsNNwBHU4hqj4YhavYaUku5Ml3gyYWZmhsOHDgPuubJMEwQhuRVMRgmT0YSvrNzFN+/5JrNb5rjpxhuYmekwNzfLq171cl760n1869sP8NCDDzEcDbFWo5SraksmEybjsZu6C9eXPh5PNkyVLVEQkmXpNEzPB78VC0NZnpfXbhA6Kbn1ndnSWlftFkxT3q0/HzrPiOOIKAy8MsCfvAoVnufQkUZHGplL8lgzmPWhaqFGGIEONEZeAKk3FSpUeEroz7v3/NrWPhffs+s8783zE5PJhD/5kz/h5S9/Oa1W63zvzvMCFkseaaxwfd7lh14PgaC51kBlingcIU01zT5fGI/H/PEf//FTmmbDBU60N5JrYBNZ3kiKiwlf8fNCQh5FUXm/jYnjYRhSr9edr1g7MlYEcpVTckBKgUSQa00QhgSemLspJr7TuJChu4m0Nq4SajJO0Hmf5eVllFLMz8/7xOyhm4RLXCJ1lqI1yCxDAHFcc+nS0nlxpZJEYYgFGo0GaZpQq9fJ0owsy8rJ/NLS2O2PD0Wb6XZZWVmh3x+wY8d2jh07hlKKubl5oihiZWWVKIpot1tonZcp6rOzs+XEeXVtFa01s7MdlAqYnZ0hTVOWlpbZsrCF9bU1VBCQpilxTZLnOe12m7W1NZRUDIdDoijCGIsRxRTbIqCclLvKLBepn+U5URyTZTmdbod0NCbPM7Zv385wPMZ4yX6aZYRRyGA0QmtNs9kgDEPWVlZRMiDPcvJcs7K8ShgGhEGI9FPjVqeBsZa11TX+7M/+nF27drHvxVeyfdtWWq0mr3rlK7jyyit48MEH+fa37+fEyVNgBHEcMRqNfcq4q+cqrrk8d0nlbuEmQvppexCGpElSBr1Zy5RsG4sKAufrTlNCf60aIIpj1/OduYldFIbkaeaS7H2NXBgGSFlJxyu8MGACw+mLl8vvT1yxiEoVeZzTWao+GFao8LyF5yZGGsbtCUEaOG+rFTTX6tWE+xzh4Ycf5o477uCNb3zj+d6VCx554BaIh90Rw5kx8SgiTAKCdLMiQ1D1yD8X8LWvfY3777//rADuJ4rnBdEuUBDookKrmGQXXxcTaiEkAlmGoxX3K6bXaZo6f61UZbiZNQbrp43FvzBwIV3WGk+8FVmWuu5sBMZacj+RlVKCUOSTDIQgy1w4WJ7n1Ot1ZmdnOXTokO+4NgjljkfJAGs0CEun2y23Vx6br5dSUpFlGbV6g0ApBsmgJLbgFgXW1taYmZklCBTj8RhjDfV6jTRLmZufI0tToihkOBxSr9fAP0etViOOY9bW1mm1W6ysrrJn926SScJwMGA0HqPUOo1GgyBwhHsyHtPpdDA+wCxLM5IkoVarYYwmrrmU8jCKyNKUJE1pNpouVV0pJsMhURxjbe72BajXakwmE7Zs2UKeawbDgZusC0EoJBmGMArLbvNavU4QBCSTCVmSEAYBgRI0mnV6/QGtTsv5rpVC5zn1VoNWo06tVmNpeZksSxkNxxw5cpiL9u7lpde8jK1bttDttLnuFS9n965d3P/AAxw8dIiV1RWMzsnTBJAEKkDJwEu7ne88SSY+4M2lrOdpBlqj4hgp3WR8nOQuXG1TYr0oJfYCiMOIcT4mjpyMKE0zn2uvMFqjlCRJMwJVrYBWeOFCWIEw0w8tk0aCFZbaMGZ59xrxMAIB9V6tqk2pUOFCh4TTFy8TJiGTVoLUgmi8nfWFPt2lVmUfeZpYX1/njjvu4Prrr2d2dvZ8784FDWEEQguMtKT1jCC9oKnY8xr9fp8vfelLrKysPOVtPC9e3Y0y8UdacdhIjpVSjsAEvv/6jG5tKSVpmvppdIBUCmOct7sWhGg7TRDPdU6kXDiXtG5bSZpSi2M3XfVJ5kEQEIQBubYIobznVnPs6FHiWo0wCjl85DC1Wo1Wq83p06eI4hArFVYahIAgDGm326yurhKEAUEYMrETBI60nzx5knq9jhSC4XCIMYb5+Xl6vR4zM11OnTrFwsIC4/GYer3OaDRy/mdp3QQ2zxHSeYDDMEAFAWEQsLK6ShxFNBpNZmZmWFlZ4dJLLuHEiRPs3LmTRrPB8tISvV6fSZIwGg5pt9skScJgOCQMAmZmZrGBoddLyPOMmk/vNsZVhm2ZnydNU5IkIa7F1Gs1Zrpd4lqNU6ecNL3ZbLgFkDznxPETbkodhI60Csn66hrNboc0z2m0XK2VAHeswxGTyYSFnbs5duIoufYT8SxzCwHNBlmaMhqOsDpncXEJY1ywXmYzJpMxw/79HDt5gsuuuIyrr3opzUaDbdu2Mj8/x9VXv4yTJ0/y3/7bX3oFQYCSIZ12lxMnTviJtUIIyXg8otPusLyySrfTIUsExgfoNWo1hpOJsx0Yg7auzzwIAtIsc93iYYis1ZBSUKvXSzuExcm7jA9cc/J0c9Z7oUKFFwry2CX6n754GWEERrksCZlL0npGR7SYOdWuAmYqVHieQIcGHbpGFSMtJy9bpDaMUVVS8znBXXfdxbe+/S1ueO2NqFxWaoGnCCsNa9t6pPWMcBwQj0L68wO6pzuoqsLyOQNrLQ8++CB33XVXOch9Krigf/tslIoX9V0FYS7+XwSeFfeRPjRLa03kU7wLz+vG7Toft5PumqIKzBrCIpQLF9QlhSNKOncT8TiKyHJX2xSowBP3jDSdENVcT3KWOcJojGXvnj1uMm0dKbTWMjs7W5JqIYTrcbaWtbU1X93knjsKQ6x1ku6ZmVkefPBB5ufn6XQ7LJ4+zbZt25mZ6ZJlOZdddhkrq6sMhgO0zsnyHOmrx9w031VJSSHIrMWkqTsmBNu2bWNpaZnl5WW2bdvKQw89RBzHHD12jGQy8dN6yLOMiy662BHmuMby8hKrq2uAIIpCOp02g8GQLEuJReT98YLBYOhUAdYihaBWqwOWEydO0G63OXzkMFvmt7hJ/GSC0YbZ2TlOnT5Fq9livbfOeDximIxZ2L7DB9g5KfpwMibVGVEU8+37v013tsvpU6fozM5SrzUQwHAwJE0ToijCWoiiECFckJjWOTo35NkEvaQZ9ofcf+/9vPglL+Gql+yj0WgwNzvL7MwMO3fs4K67/5alxWWGwwlR7PrFl5aWWNg6z3A0dOnheU6r3WKSJJg8AwIkMByNqNVi0izzygbrr1WDsZ5wpymnTp+mUa+TCoExljx3YXUSnEc7z8ktZWJ8hQovZGS1fPMNkSYah0TjkCMvOcHub+8gSiqbRYUKzysI378d566tYFBDaFHVIz0NDIdDvviFL3Lpay9jQS0Q6EoJ9FSgcsXC4bnzvRsVHgfj8Zi/+Zu/YWlp6Wlt54L+jVOsMGys8tpIvjfeB6bycSWlT/2eku+CaG8MT5NeOq79dFNJJzPOM0dSgzAoiaq10/2wxmCNq6QS2iWUC+/vNv4+i4uLtDttBoMBcRwRBIokSeh0u3S7XdrtNv3+ACEo07SzLKPRaLrJeTLx+2fJ8pxms8U111yNNoY4ihkOhyglWV5ZQUnJeDxG65w4ijf4xX0yuhR0Ox1G47ELbvM1aUpJ5ufn/EKBqyDrdmfodrucOnWabrfD+nqPZqvJZDwhCAJWV1fQxtDtdNi6dRsPPvggaZZ6Cb9TBijlkret1QgR+oR4gfCLElmWkaYJYeA8zFEYkiQTlGrQqDdYXV1leWWZOI5ZXl4mkJJGo4GKI7I8ox7VyXNDkqVY6b31ecbszCytdpPcTBdMUl/3FQQ+sTyMSJKUdrtdeu0bDTc5F0CeakIFX7376+x/+CD79l3B3ot2Mz83x8zMDN/z+tfT7/d5+OED7H/4EFIKtm5d4PTp01hcoFnUCNF+oSOIInLrCL1TRbharsLGEMexS58Pau62MEJK593PJkX6ssWgnb/dWqeksJYkTahQocLZ0MpglEFVkr0KFZ7fELC0dxWAxnqNHQ9vPc87dGHjtttu43vv+l62X7utylx9iqiUAM99WGs5fPgwn//855/2ti7oTxlF0FdR5VWgINsFaXbVVC7d2QVT4RK8tSx/XkD5yiS3TV/55cmasYYkSZx0PLdl9ZLWOVpbpJUo4R7nd4DcE0ulJNYIwjDi4YcfQqmA+bkt1Os1JskYnbvQNa01yyvLrK2tMRyOaDbr3tMr/TQ+8LVhfp9MTq0W0x/0iKOYJE1Ik4xAuXTqwB97kqSEoXu53blwvmEh3fH3+v3SP4yX1Lfb7ZLITyYTtM6Zm5tlaWmJKIro9/s0GnVyP4Ht9dapNxwRLnzPW7bM0+v32bqwQJplrvfZJ6+7ii5/7oVgMh6TJAnbtm/zCenOd95qtajXXd1ZGEa0Wi3SJGUyGdNut0mTlMFgQD6wbN+929W3ae3831mGCgLiIGJtbY31Xp+5uTmEdD51a60LEWPaFV5I++M4YjjMykC8Ykqepil5lnP40CFOnjzORRftYc+e3Vx//fUoJel2ulx7zTXs2rOXE8eO8fD+h6nVQwa9EaPRCGMs4+GYRqPu0tmRWDQyjNw1K12nuLGGNM9BCGdHMAYrJcZYwjAiM65f3RqL1YbywvOhcmZTSn6FChUK6EiXacUAWZQzaSa0V5ss7Vp1MnOgu9gmHlfezgoVng9I6hmn9y4zc6pTqVieIrIs45Of/CRXX331ps/OFSo8n2Ct5U/+5E9YX19/2tu6oIm2UoogCKbd1htqvgqyXUwGi05soJwUFv3QhS+7CEYr7iulS/nO89xNC/3PJhNX22SNQXiSr3WOsQKL9TVcwv+zGKsRxjKYjFlf7TGeTNgyv4BSysfFuz7rlvcW12o1+r0eUgkWFhZYXFwEJLVa7KbbxaJBlnr5uptYj0cjwigijiOkVG4qHIV+ocHVjaVpWhLLMAwQuWA0HjHT7TIYDIgiJ11O05QsW2THzh0kacq27dtIJgn33fctZma69Pt9lFIMRyPCIGQyGTM3P89MdwaBoNGoM5kkXH755Zw6dYpOp8vBgweRQqIxJcFtNBqcOHmSubk5V3GVZRit6c50WV1dJU0S5ubmGQyGxHHEqdOn2LljJ7OzM57wx0RBSCAV89sWOHbyFO1uGxkGvr5a+CTyFKEk40nCXBCWieDGuGsAQbnIIDcoAMApCgr1woEDB+h0OrTbbUfI05zeWp+7T36NkydPce2117Bnz26EECzMz7Jltstll17M4aNHuf2vvoS1MWura9Rqdfq9PnmeEUd1hDLYIMQYjbAGGQYuwdxY149tDFmWlZ3aSimkUmANbODY1i+UqsD/vEKFCo+IQlJ+4rJFoklIbRhx+MXHyby3GwHjdoIwgvogZuFIJfWrUOFCho40/S1Dxu0Ju+/f7iqTbDVhfLL4+te/zj333MPLX/7y870rFSo8Izh48CC33XbbOdnWBU208zwvp7tn9mgXUnLwU+kN3m3XST1NHD8zQK34uUCRTjIQFgSEG7a58fHl8xuL0bkbKDJV1RhjMJkmjmOEELSaLeI4QuvM9yzLckHAWlBAu92m1Wpz5MgRZmdnmJub4/DhI3S7HRoIhqMhURhNQ8SiCGMttbjmn1sQxzWEsOhcI5VEnbHYkCRuItpuufCyRqNBrjVSCFCKbdu2kkwSDh444KTUxrB121Z0nhPHsavaSlPyPGd2do56rUav16PT6fhzI1lcWvK+7KnHWKmAIFBo7Tw/u3buYnHxNFJKOp0u/f6A/qBf9nwXCxLGaHZs304QBOzff4Bms8GJE8dpt1p0Oh1OnT7tKtekAglmQ81ap9MhW81ptQLWVldRoav0imM/RRaSZDIpvfnGWMbjMVEUEwSKQAUMBwOuvPJFrK6uMh6PEEKQ5hkrq6vkeU50eomvffUbfPv+B7jqqpewZX6eWi2m1Wrxkn372LNrF3ff/bccPnSMtbUeiIh+P2E0HlKrR25ByAebGT+htloTBgqlXDCfNW4RKfdSfBDFf55su6suSVKUrIh2hQqPh7yWk8c5o+7YvZe0YOeDW+nPDwmTgNVtPURVxV2hwvMGeaQ5ePUxALqn28yd6FY9xU8CeZ7zwQ9+kN/7vd+rptoVnncwxvDRj36U8Xh8TrZ3QRPtwn+9kSif2a29cdJddDNr70EuZOQbyfJmCFQQOAYjdHn/KIq8D9uicSnk2gexKeEeZ41BY0uPtzE5S4tLjEcT6vUGtVpchqxhN8reha8UE6ysrLB9+3bSNOHI0aPkecbKivMahWFQDs3DMCj930kycb3fQnjpsJuwG2PIPEmz/rwViehZlroJf56TpZk7FlwQQJbnzM/Ps237dg4cOIAUkiCO6fcH7NmzFSEl9917L7nOGQwGIKDdbpFlKSsry3S7XYzRJElClqVe1ezOF8B4PMFNkRVCCnbt2oW1hiBQNBoNhoMB1lrq9Rr1RgPhK6+2bNlCv98vE9RNrsmtIfcLCEZCMpnQbLawWrO4uOimvf61Ho/GxHFUnhulJLW4hrQ+5d175sGHxEnplAb9Ad2ZGcajkU93tyipEIFgNJywaJbp9dc4dOAQl19+GRdfejE7d+6kFrvk9Ne97nUcO3aC/fv3s//hh11fugwZj0akaYK2dhqEpgKE8pJ2o32ugCEMI7SekGaZW4331/jG90UYhehxJR2vUOEJYcNAyyrLsX2niIcRo86Y1lqDer/qMq1Q4XmDDe/39W19AMI0IJwENPr187RTFxZOnjzJbbfdxute97rzvSsVKpxT3HPPPdx7773nbHsXNNHeiEIKfCbJ3ljttXGyXchwYUrUC7JSEHjXhy2xwsm/rTGOnKqg9Osq6zzd1hiQAst0Gy4JXSOkS5RWStFoNOnOdBFSECrlvbS47bFxYq5pNOpoY5jfsoUgCIiiCK2dhDjPc4QxrqNbKbI0dZVOxm46BiElGF1uebqY4Aj9aDwmDELC0JAmKcant1tjWF9fRwjB2to6q6urdLpdkjShXquhtXZVY0HA3Nx86WWfjCccPnyYXbt2EUURWZZz5ZX7zih7t15UD41Gg8XFRWq1GkopTpw4QbPZJK7FTCYT7wXved98wGjopuPbtm3zcm/N/PwWhv2Bk1MH7rURQpU94DrNytfX+H0Iw9BbBtzCRBC64LV2veEl44Jms+EWPfzejkZjojiit77urynodjrU6jXSJGU8nrhOa2uZTFK+9a0H+M5DD7Fnz24uv/wyrrjiUkCwa9dOtm3byuWXX8ZgMOTB7zzMQw89zHAwYDIeO2tDrUYcuuC+NE396+pK3UWelwtGSqqzAkmcpByyPKVChQpPDUYarIA8yultGdBcb5zvXapQocIzgIJsB4miNoyZOzZTpZM/Dvr9Pn/xF3/BK17xCrrd7vnenQoVzglGoxF/9md/Rq/XO2fbvKB/k7hk7Kl8uyBPWuvSt71RRl4Q7SIUzUmYQ18LBm766wmqEGidupou34O9MZHcWIM0BhtY7wEvpuLFFNEROm0066vrZFnG3r17GfQHvpprGjxmTO73z5FmR+uch9nmmvX1VdI8JQgV9WYdORFgnbdaSlf95WTClhy9YVIP1vhFBym8l1xjvZE3DCNqtZjhaMRoNCYIQ6QxKCmZTBL6/T79fp+tW7exuLRIvdHAaCffHg6HTCYJQjjPdzpJ6XY79NZ77Ny5E6kUw+GQlZXVMlVdypjllRV3/FFMv98jjmOuueYalpeXffjYkMOHDzO/ZZ4wCGg2WxijSVMXfJdmGQLB+vo6cRyjmg0QAhkGZEmCCBSTJEVoiTSgk9SpGSInzVbWSbK1dpP7UEqszsnGOcK6Kb6QgigMCYKI0WhEkiRl3VeaJIDzSTeaDYwx9Hp9Ws0mYViktdeYTMYIIej1JqwsrnDk4FFOHT/Ni6/ax5Ytzo++Y8cOrLXs3r2bha0L3HnnnVhpGI1HmJEh7sZIGTAe9wmCgDAMy8C6XGu0MURxDatzarUaYegWJbIsByxKXtBv7woVziuyuvs9Ooo09V4NIw2nL1ohrWXUBzFbjs5y+iIXrDSYHTF/fOb87nCFChWeFvJYM4hHjFsJ0SRk+8MLSCse/4EvUNx///3cfffdvP71rz/fu1KhwjnBfffdxz333PO0erPPxAX9SbzwPBcekYJ4Fz7kokPbWksQBOVUu/i+6LlWSjkpOFOSba1FBQGNRhMhBUmSeNm1xWIRCDf9zbJN9WLaFERbEMUxaZqwvr7OlvktpElC7hOxbSFLVgG1Ws17zacTd+Wn61IKhHQTam004/EIKRRZnhEod3xZlrmhZplEbkr5t+v/thjtUqyx7jmF9ydPJhNqccxgMATcbY78u/vvbLeZnZvz588QNZqMRiPm590UezgcIQzUWk1W19ZotVqsr69Rq9dRKuCyyy5z8ntgfX2drQsLaG1cirkx5Fpz6NAhgkAxHA7Ic81FF+118m9rGY2GCCFIkpQkTQiUIgjDMqFdqcDXh+Wu/1opMmsQUmGNr7xyLwdCCoR1U3+BAGvK1O7C51x4/nOfaB+GoVssWe+VtWRuQaSQ4Aui0J/HWo00TcvJvdYu7A3r/N533PFlDh06xOUvupy9e3ezdWGBMHKLHddf/3L2vfhKvvq1r/Kd7zxAf32MVBIhYGFhC0tLS+Q6YzQasm37NgbDge9dN74OzakcitqywipRoUKFp49xe8KBa44CsHBojv78kFMXL1Pvx5y6ZIntDy+c5z2sUKHCuYKONONQc+qSJWZOtV3mzTCqQtPOwPr6Ol/+8pd5xStewczMzPnenQoVnhbG4zF33303p0+fPqfbvaCJdpqm1OtTP02WZZt824UH+ZE820V9l861lz1vTp4UQpCmCePx2E3NgSiOPZHV3gO9ucdb+NssFp0bJuMJx4+fcL7mopbLP4vxMnQ3TY8caSz84FBKll0Ht09YVwGj8YgojJ2MPNe+HspP66EMQpuGwXnhszUY3w0upftZv98njmO0MdTr9Q2e7czL4d05XFlepl6vk+caIWB5eYUsS9m6dRtRFBIEDUajId1uF6UUW+bnGY8njEdjsjyjIeoYY2k0m/R6PRqNJmEUsnd+L1EYkSQJtXqN4WCA1obhaITRhjAMiOKYPNfU6s4jaY0lUAG1Wsx4PGZlZZl2u00cx0ySBFVUW1l91p9Ed07E5uuBQnuw4T4CBG7BIstyT7AdQZdKlIsY0xY3gzF22qNujf/akXHXd24wRjMYDPny39zJX//V7dx4041ccunF7NixjTAMaLeavPqmG7ni8svZv/8IRw4d5vChg2jtFll0nlOr11hZXqbVbKCBLM2I4xr9ft8tpOTu4nEhe1WCU4UK5wQbfpksXrwCQK0fk8c5zfU6SSOt6oIqVHg+QcBoZsxoZgwGth6ep73SPN979ZzD5z//ed74xjdy/fXXbwohrlDhQoK1lv379/P5z3/+nE6zAS7omMV6vU4Yhpu81mdO8zYGnhWTRqUUURQRBK5HuvgQNZ1ETuvCojAsq5SMMX4y6qfNwk24Czm51rqUaMdxzMP797O+vs7c3BxSSHJP6ot0aFdxZcsstEAFPuzLT1mxZHnmO6x1We1krat8chN6N9FX3qMuEGXiuT8rXhbvbxEWhEEq4cm1q/xCCC9L1t7/a1hdXWF1dbWsQms2XSp5u93y09o6xsvRsyx3035jWV1dYzgcYrHgfeBSSWa6Xec5n59DSUm/12Mw6LO2tsri6dO02m3W19doNhpOFq5cdVuaJhitCX2XdZal9PsDtNbMzc2XJDtLM6SQJOMxie/IPhPOC78RG17/4hrw3vpisp/nuU8jdwsp0isPXC6AO69hGKC1S42fKiqUX9AxPlhN+EA46T3c9/NXf/XX3P6l2zl+4qTrNg9Cdmzfzg2vuo7/35tez6tfcxO1ekStFtLpthmNh7Q6TXKTk0wS8jz3C0cuzE1JVe5v4devUKHCuYcJDGmck8Y5OqiCBytUeN5CwtLuVU5cusiJSxfRqnq/F7DW8tnPfrYMj61Q4UJElmX89V//NcvLy+d820+aaN9222285S1vYefOnQgh+MxnPrPp59ZafvmXf5kdO3ZQr9d5wxvewIMPPrjpPisrK/z4j/84nU6HmZkZ3vnOd7rE6ieJ0WhUkpriuZ0HeTPBcNPp1HdjS3IfJiWEcHVK1qL1ZgJmrQtDC4IAgfCp0Ol0pcO6rmLhvdl5npMmKTo3SKHo9/pccsklXHXVVdTrdaIoIvZS8jiOSNLEEUlPbDPfXV2kcm9MC7fG+sm2cEnnnnxmeeamrGL6Mrr92XyeLM6vTbFtW/R7O6LeqNf9MWjiOCKKIjqdNrt372ZmZpY8zzl69Bgrq6sYrXngge+QZSnHjh0nS1NOnDjOli3zAGidk+eZr0eDPM/KgK/llRVmuq6+S/oO9DzXWCDXmmazyd69F5GmGVrnZJmrDqvV6qVfvFAipGni09nx5z7B+ElyHLlKrY1J3OWJgCe06hoEoT9HxsnHtVvgkMongLstUSyYaK0xRpcheVK67vI8d9djGIZefSEYj8fMz88zHo05cuQoBw8e4i8//wW+8pW7GY3GaGMIAsn8/Bw33XQD7/mpd/EDP/gDzM3P8qIXXYHWOY1Gvez+TtOkXHCK47isUYvi6FGP77n0Pq5Q4UJEWs/KidfKrnUOvuwoh156jDzQ9OYGHLrqGEf2nUAHGiPP7Qr5RlTv5QoVnnmYwJTv96P7TqGVLv/ZF7h67Etf+hIPPPDAIw43KlR4rsNay4kTJ/h//9//9xnZ/pMm2sPhkGuuuYbf/d3ffcSf/8Zv/Aa//du/zQc/+EHuvPNOms0mb3rTm5hMJuV9fvzHf5z77ruP/+//+//4L//lv3Dbbbfx7ne/+0nv/EYPakGqCqJd/D/w1UyFP7uYcFvvW556maePFUiEcKFqSZqCcBVPk8kEk7uU8OFgxKA/Ik8NeWqQBAgUzUaLkydOcfLUKScR93VRuc5RgaJer5NlGXEUuUl04AgnQpBmyQZZc+HVVkRhjMBN1IWfYEupmJ2ZLQfVFjA8kljYTWVlIGk2W+gctHbHkHupvZASJRVKSQaDIUmSsL7eIwjdBHkymXDxxRfTbDTJ85x9+/axc+cuZmdnkVJy3XXX+2A0yo7nXOeeCPuOcN/P3e/3HWk1lskkQescKQQ6z/n2t77N+voaSknq9Ubpuc/zjNnZWWq12AfaQbfbRQhYWVnFGKcgEP5YR6Mh/cHA15tNYX3d2mP9LRCiCMLLEVISqKAky1JK170dRUghSx87OBVFFMXgf152tGOR0r3ucRzTaDRptZq0Wg2MydFZTjrOOX1ykS98/gv85//8J9zzjXtZWVkjTVOCIKDRaPCiF13OD/3QD3LFFZezsLBAoALazSbddovBYEAQBhiTkySpl6oLjH70A30uvY8rVLjQYaVFh4Y80hx62TGGsyPCJKC72ObEZYus7Fh/xp67ei9XqPDsIo9yDl59rPxngmduIe1CwYc+9KHzvQtPGFoZknr6gl8gqTDFJz/5Sfr9/jOy7Sft0X7zm9/Mm9/85kf8mbWWD3zgA/ziL/4iP/ADPwDAf/yP/5Ft27bxmc98hre+9a18+9vf5s/+7M+46667uP766wH4nd/5Hb73e7+Xf/kv/yU7d+58wvtSkpkNzKmQ9J6psS+C0YqwtDQtCInF+m0UU25rBMIYjDZkeVYSOCFcr3YySdDaEAWB82Pr3DM05xtfWlpi566dnthrVOyk3cJXaqVp5kk2NOp1N2kXEp273mt/Ntk4MRXSESclXYibzp1M/RFfh43/98R9MOizZ9ccYRD6SYUgjEKkP19hFDEejwgCJz3udNqsra35VHbL2tpqmdo+mUyYnZ1F65y5uW30eusMBgNarRZhGNLrrfvXwRHWIAzR2lCr1Wg0mhTEVClZTu0bjQZhGLGyusLuXbuYTCY+Qd64uipcJZerTYPRaOyJs6XXWyeMIoLQWQGiKELF0aZJ/2OhrD7beFvRby4o5fxOPSH8tTX1eLtubulqxXDXgMWpC4o0+NFoiLVQq2kf4qY8KZZ+8cH5548ePcpwOGL/gUNsXZjn2mtfRqfTAdziwo033sC+K6/k0OEj3HfvfRw7dox6o8Z4PCSOa2Spk41rrZkkj17v9Vx6H1eo8LyCgFHXkdhxO6G9/Mz6Oqv3coUKzzLO+Oi1uq2HNIJ6r0Z9WDs/+3SeceDAAe68805uvPHGp7Wdp0t+B3Mj1hf6j60iEq6+UWnF/LEZ6v3a9APgGcE9jxaAZ0tdY+VLv9Bx6NAh/uZv/uYZ2/45DUM7cOAAJ0+e5A1veEN5W7fb5YYbbuCOO+7grW99K3fccQczMzPlH3SAN7zhDUgpufPOO/m7f/fvnrXdJEk2+T+KfrPQ+6eLzmqgnF67qa8sa7+ctNeUfuoyGMtYtPdDF9soCJyQovTmSiHIfHexCzHTm4hxkVy9f/9+wtD5v6VS2Dx3j9Ga0WhEp92h1+u54DApS4mxlJIgVH4fRFkrZq1xdVwWlAxoNdt+uqpIJps9MS70bOpTLxKyQbCyskKearZu3VbWkbnkdUWv1wfGSCnodDqcXlzEWogiN0HO8oxGs+nOm9/WYNCnVqsxOzvL6dOLpV9ZSsHq6irbd+wgS5302/r6tMFggJSONLfbLZ8aLxkOXQd2XItpt9rU6w3G4wm51m6BQkoa9Yb3p5uyng0EtVrN7WOWkqYptbjmqsCw1GsNHmnGvxlF+Jz1ZNldC24Bp/i5KRPOlZLOr69NeY7zPKPVajEcDsvwNnd9FqnwuUtaTyblwlBRwVWv11FK+ddbYDWcPHUKgHu/+U0OHjjIvn37eOUrX1H+ce/OdLmq3WTv3t2cOn2Cr979dU6ePOmfxyWPCymoP8VgkmfqfQyP/l6uUOH5CGGhtdogSINNH8we7cPkuf7Q9mz/Ta5Q4YWIooe7Pzti+4EtRGMXjPhCImFJknDrrbdy7bXXUqs9tcUGIw06MGS1lDR+dB+8AGqDGGEEeZSDsKSxJq2n9OeHT/j5dGg4cdki4SSktdoAXMNEc8193Vyvg/UjLyMw0pafw3SgMcoSJn6Il6mqCu4CRJ7n/D//z//DcPjEr5sni3NKtE+ePAnAtm3bNt2+bdu28mcnT55k69atm3ciCJibmyvvcybe//7382u/9mtn3a68z9d5m8UmiTi4qWTma5qKsLJSAuyn3nmWE9dqzlurnSFeqdCFnPlgM4RLmm42m1hriGsRSTpBCFxnsxClJzmOY5qtFlEUMej36XZnAMswTTFal+ndTsJsXTWXcMFZxhP54p3svp/Op5eWVlyfchQQBIo0S8tf48KnjhtrUVJihaRYPLDWBceNx2OyLCMIHNnN0pRBkqKNJo5qTCYThsOT1Oo1L6GYSrKxrkNaKcWVV15JlqWsrKxy8OAhut0OjWYTJSWnTp3m5ptfy113faWUdOd+sSFJUmZnZ1ldXaVWi2k0mwgEDz30IC9+8UtQUpLnWfmhTSDI8pxABaysrGCxZZVWo9EgzzOstdRqMcZoFM67HQQKGQTkRQXahrC7YlB9FoTY8HOf3V4+znWO53nmXhdriyx3//x1+v0B7XaL0XhMGIakWYqxtqwJq9Vidu/ZzfraGpNJwsmTJxkMhgRBSBiG5DovjzlUISdPnEYKxbGjxzly+Chf++rXuOaaa3jpy15Co+mq02ZnZ+jMNLn4okt54IEH+NrXvsbKylpZRZekjz7Rfiw8U+9jePT3coUKz0dYAacuceEqW47OMpgdsnBonsHckN78EHCSc6kFC4fnqPdr5/TD+bP9N7lChRcy8lrOsRedQlhBc73O1kPz53uXnlUcP36cL33pS3zP93xPeZv1TDVppGRxBlYQjyOMNASZYtxOyoXHpJEyaSUYZcgfg2hjQeaSIFfkYY40kjzUZykNniiyesZqfWrvmbTdImJWy0gaKVgIk4CslmOl21cjDVaA0hIsNNcaBKmiNooI0s3Uyu2bJQ+1WyCw4gW1CPNcxre+9S3uv//+ZzRf4IKo93rf+97HLbfcUn7f6/XYs2dPSZ4LFBNsoCR3BQkuvi583VproijyYVrZpg7uotpL65wojhmP3UrHeDwiTRM/6bWk+QSpHAF2JB6iIMIaxWg4ot1p+yTvnHq9Tpq6qWsQqrInWwgwxvVlIxyJK5hg0XtdIAydDNloDUpitCllzT7gG4FA+X7tsiMay64du8tj08aR7I1T/iKN21pLWZsoMwABAABJREFUGIR0u12XRo4lDN2CRafbpRbHvgYsZGZmxi8USI4fO06apjSbDfYf2M9oNEYpSavVIggChqMRMzMztNstAKIoYn1tjfF4zM6du4iikH5/QBzHDAYD4ti9Nu71skSR64de762zc8dOH05mfMBcViZtu45wJ/fOc402GSpQSOE6tJES2CgpEuR56l57Y3zYmkUI6xZcrPFBebasdhNWetm7QamA8WRMECgmkwlhEGCBwHezG1ME22UcPHgAAQyHI+r1OjW/wDMYDlB+Km+MC06rxWG5IDSejFldW+dLX7qDBx58gFe84lr27NlDp9NByRBVg2uuuYbLL7+cv/3bu7n//vvRuaEW13mu4dHeyxUqPC8hKP2bpy9eZsuRWQ697BgzJzvs/fYOdKA58uITzB+bZXV7j9rQTWme66jexxUqPDKsslgsaZwx7I6oDWqOjL0AsLa2xu233851111HtCfGKPf5J63lDGdHpLUMYSEexRhlCJKAUXf85AmyABMa0tD9bjU8MynwvYVpIGTSeuTBhfbPnTYcUa8NIoLkDKIdaayw5JGm0asRjyJUrmj0akjzwrg2nouYTCbcdttt57w3+0ycU6K9fft2AE6dOsWOHTvK20+dOsW1115b3ufMg8rznJWVlfLxZyKOY+I4Puv2gigWKxEFkS5DzcS0nikMQ9dj7RPCi9td/7X7ZSClZDKZOIKFC0DTevqYacWW81jHccSBAwewxhLX6uRZThRFWGtpNBpEUYRUEmlcMnkQhuR5RhiGBEE4XSQQm/63+ZfOI/4COtPHvRkF+RZYinzsPNdonZfEr+gS11oT12pgrQ/uEuWUXRtNGAROpp4m6FyTB26BYnV1lZWVVXbv3kWeZywsLBBFEadPn2IynqACRbvVwhhNENRoNhpkWVb6kev1rg9fG5AkE8aTCVmWOslRKdvefHRaaxYWFljvrRPHsZPmW7dIEYQheZbRbndct7i1SNyCghQRTmjuJJubzpig9IA7mb07By4pPCBJUi9Ld6qAIHCWhGIRQuvce++n53laIbY5AV7gnqvVKhYblA97y9HWkXyE2fAaCL9IIMtat8XTi3zxi3/Fjh07uXLfi3jRFZeX741ms8mNN97AJZdcxEMPPcRDD+1/pIvncfFMvY/h0d/LFSq8ELC0ZxVw8sRluYqRFmEESTMhj/Nz/nzP9t/kChUqOCStlJOtJVorDYJMEY8ixDOnTn3O4K677uKe73yTS2+4wsm6ASOtmwQLp/KZtNzEOK1nj7yRjX7pM2/biGd6TfKRP2I/5s8mrRQehZQD9OeHDGfGCIubfG/0g1vBzge3nvWYavr9zOA73/kOd95556aB7TOBc7qUcskll7B9+3Y+//nPl7f1ej3uvPNObrrpJgBuuukm1tbWuPvuu8v7/OVf/v/Z+/Ngy7L6vhf87Hk487nzzamyipqAAmMQJWz0LAniCRQhWzb9IlAQYTmCEPEcxv1k2la0um3ZUtNW2OEX9pMCWeG2ZJ7CYCy3EZKQhcQghBpBQZWoAmquzKyc7nzmc/a89+o/1tr73szKogZVVmYW+xtxKjPvPcM6Z+99637X7zt8iaIouP/++1/S65US8ZJUH5WHm6aJZUmfjAyeiqvHSHKtVSS9lKCbpkmr1ar8JeXjS9JT9mOXhPzb3/42zWaTZktObQ1TkijHcSmKQqVTa1VoW7vVIknkD5Y4SY6QSRWs9SLDu1Bd2TLATd5KiXgpSRdCTlPzPCNWtWSy57moerxBo9VqYZmWDNDKMlzXJUlk57OhG6ojO62UAEJtUARBCMgdoeXlFXRdVkvlKvXbc6UUvd1ukxeyusu2pUxaJnRbrK+vI4TgB97+djWJN0jTlFx5scvEeJAEFk0jCiN0TWM+mxNHUVVxZhompikl2EUhNxVs21Ip7xlZqn6Jrd770U9TU18+JPhSLi4rvlzV154kMVkmq8fKKIziiCe+/NyvDFXTKX8i67pRda1p1fuSGzhGeV4ivU62bdNo+ERhJDeJ0pT5fE4QhMwmCy5f2uaBrz/IH37uj9jf36te33EcTpw4yV//63+N++9/+4s8n67Eq30d16jx/Ya4mTBemzFdmWOkBpmZS3nhK4z6Wq5R48Zi3g8Yr81YtKMXvvNrAEEQ8Od/8lVa3/JZP7sMQqM58unuttHyI797qZocPdOvuBmpTvugiR1ZVzyvkelYsYk/8WgNGpiJwfWGP3GvqTDSCg1nYV9J/lX1j5Zrz1cBpB4sVU65VRA3EuLm4S1qxpx786XqNjg+ZtELDqvk9KJOSn+FEMcx3/rWt7h8+fJ1f62XPNGez+c888wz1b/PnTvHww8/TL/f5+TJk/zsz/4sH/3oR7nzzjs5ffo0/+yf/TM2Nzf5yZ/8SQDuvfde3vOe9/AzP/Mz/Pqv/zppmvLhD3+Y97///S853bSUhB/V1pfEuZSQe55XJYqXMm7pUzardOY4jomiqHpsngsclcJdSpJ1XSeOY7a3tzFNk3PnztHtdlW3tqwKK0l4u60CywwD27KIokj5wOU0ufQdl9POaur5IjethChI4tKXXv6wufIzKG9JmiKKQsmeRRVYVk5jZ7M53W6H6XSB60o5s+f5LBYLOYU3LTRNZz6fYfg6Wabhuh6nbz/NaDhE1w2m0yl5nnP69Aqe5/LYY4+RptJr/fo3vIEzzzxDnheMx2NW11YZjyckSYLjuKytr/PYo4/S7/fpdNrKn60xnU3RdQPLMkmSlGazwcWLl+h0Oriui6bpWLaFhobnucRxghAF08lUdUkbagOiwHUdtTEg1Gf9/D+oNO2Qi5ep65ZpVp9hSey1shNOffbiyJ7j4WEsp+NqA0R5unVNrzYWTNMkikIy1adumiae5xFFEXme0Wg0yPOMXq+HaVrSO6/BdDojjCNG4yFPPfkE9957Lz/6oz+K7/toGjiOy2233fa87/Nmuo5r1Ph+RtxIiP2ElQt9cjMnP2JtMVODzMpVeOK1UV/LNWrc/BB6QWq/8qqVmxF//Ed/zI+/98d5Q+sN9Lc7NEc+eqGjFVoVVuZPXTIrY2mrK8fcCpmdMVmdkThXTrtzsyA3CjklF9r1n2YDQffamyNCE9K7fRXcwMYObWI/IfYSzMQgNwuE8SLJscYV952szJisUJF9MzFZutzFjkzp8y409FyvJ94vEUIItra2+L3f+71X5fVeMtF+8MEH+ZEf+ZHq36VP66d/+qf5+Mc/zs/93M+xWCz40Ic+xHg85p3vfCef+9znrkgh/MQnPsGHP/xh3vWud6HrOu973/v4lV/5lZe8+DJZvBz7l9PqQnlty4m1bdvKDysn3WEYkaYRtm1VZKeUG4MKKctSoJSiF2RZjGlaOI7LaDSk3W7TbndkwrWu4zguuvIkCyGIoogwCFkUc3zfl1VfqeyWLvIcu0rR5gp58SG+14Upp/dooB1570eLqqQ/u5CScEX0ykl+mQhm2TYaGkmS4Hk+WZ5VGxGNhs9kMkEIEyGkx9yyLMIwot3uoGsy8Vv63DX296WkWXqyJSE0TZNHv/tdNjc3EYBtW7iOgxCCEydOcPnyZd7+9h9gOBwRRSFbW1vMFws2Nzdp+JLsHz9+nM3NTba2tnEcG8/3VMp4SqFqsubzBUma0Gw0VAq5pjZThApNy2k0fAzDkBsjQrzwjyX1uUmLQU6W5di2RZYhO6vzF7ezWL5WlQQvyv9HCPKioFC+bN0w0DS5GZLlOc1miyiS5+hikTAej7EsW57j6FimSZ7mFBk4rsXZs8+SJn/M237gbayurqjNiOd/lzfTdVyjxvc1pLiI/VPDK78uYPlij6gZMyrGz/vw+lquUePmx6IXcnDv8IXv+BrBf/7P/5mP/pWPYsUmi05IYcjQR0clsueWarHZnFzxuLARy1yLq399UT8ny26gGwq1lqu/FjUTKR1HkmM7toi1lNx4mWqlMpBXke/US9m5Yx937mDkUgFghzZ6oWGHFm5Q23leDIQQ/NEf/RGj0ehVeT1NXM+oteuEsh7rn/yTf1JJkeX01byCaJd/l/Lhw8Cs6XQuCbhlyqmophEEQSWPLifdssarIM9yLNPFNE3OXzhHGAW4rotl2oD0cjuOQ7PZpNVo4/sNplP5w6P0DKdpShAsKApBo+Gj60ZFwkpCdEjcBC9EtOVUVUPjMFTtKASS0Od5QSEKdCWLNkyj8ipbpvyBV3qSASVtlwR1sQgwDB0hIM8zfN/H831cx1GBXi627XDhwgV6vS67u7u0Ox3SJGE6m4EQHDt2XG46hAGTyQTTNDl56hSiKJjNZti2reT2DkUhCMMQz3MJgpAkSQiCgJWVFS5fvky326Hb63FwcKD6zqUE3fU8JTcXWJbNYjEny3NMw8BQ/em6rlMcCcc7/Ci1a5JmUQjyPJdVWRpVUFqR59X5UT1CCDRdR78GsS0/1zwvlOScarPDNE10TU3Jc1kZB3IaHUZh9dymKSXsZWK+TJY31AaTVGs0Gk3iOOLY8U1OnjrJsc0NOp02a+trTCaTqov7ZkN5Lf/KhX+P1775wttq1LhhENDf6pJZGUNG/P27fuamvZbr67hGjRdGOA35v578+zftdQyH1/JfFpqm8S9/9Zc59pOnSN0UoYsqgbwewL5CUFRBExpWbGJHFprQ8CceRqbLcM26cuw52N/f54Mf/CDz+fyF7/wCeDHX8i2ROv58OBqEVpKnXE05y38nyp9cyszjOJYSXcOsKp0OJeN5VQdWku6iKEjSlCjKiKKI8WSCaerYtg3o2JaFYZq0W210Q2c0HrO/v0+r1cZxHMaTcUVyy65sy7aV9Ft/nh84L+YnkSLp+vP1VV1171JSr55X1/QqtKsodCVhjrAsE9t2mM2mVQJ36QkvCkGz0WR7e4tTp05x7tw5prMZK8vLCAFLS0uEUcTGxiadbsCli5fwfY8sy9B1g3a7TbPZouH7tNttvvvoo9WU3bJsDg4OZHic8tSXQWFCFHS6HdrtDu1Wi9l0RlHkWK70lmdKjZDnuZL4yxRxz5PT79lsVj3Xiw3wKUSBaZmq0ksjjqXfXGh6pXL4S+2qCiS5pqh6xqU6Q3V26wa6rinFhAaajiiETD3XymqxAtAqkj0eT/B9jzRJeeqJp2i1Gy9/fTVq1LjhmPXnWImJNbml/1ddo0aN7zMIIfhPv/af+Oi7/iWxCj+r8QqjmvILEj8l8VMQsOiEUlaeydrf/nYHf+Jd9dDvTwIuhOA3f/M3XxGS/WJxS//fu+zOLiuqCuWjjeO4mm5X00dFRqV0XF70Akk20zSt0sKFEDSbzWoKLYQgSRIs0yUKQzqdDrqOmi5Cs9VSU085YfV9X3Una8RJLJ9T0zANA123qu7sK+Ooj5BlUUYZHiZWS2mxlMjrKlxLUi1K8+9VH4yUjR8VK1wtIxYcvo5yD+O6DnleMJ1KD3W73ZbS6TzHNEyEEOzt75HnBU8//TSbm8dotdpEUchsNiMIA247dRvzxZzxaIRtWzzwwDfo93t0u12Wl5fY3tnBdV2CMGRpaYnd3V3y/QMuX97i9a9/PUVRsLO7Q5ompCnEccRgMMR1Xba2t3j00Ufp9Xu4yg+vGzK5OwiC6r3puk6WZ5imhWkaRzZeNPK8eFGbE4aaUOuWTVHkOI4rzwPLunIiXkryv+ezHR6YQ1++Vv0ppf0ypK7ZbBKGAc1mgyRJ0BXhzvOi2pAQQhDH0juUpilhKBUW7XYbITQGA9lTHoTB8y2kRo0aNzs0SL2M1M1w9qwXvn+NGjVq3ES4tHWJL37ti7zt77y8YNYaLwNlpaSQ8nyAndsP0ISGO3dwQgt/4mEmJpoAIzXUw74/iPfFixevCP58NfCaKHAriU9JYo+S5lJuq+t6RYhtS3qzj/ZmF0WB67o0Go1qkqvrsn6qyAtm0yntTodWU6aSu66Uktu2XcnUNV1DqI7pUhaua5qqfzqcKmdZVhG9sutaqH8cJqeDEBrSgq1jaCZFXqaKI5OrNU0R6itvqOlufoUkWruCbFdu7jK5XPWKm6ap+q5bqtoqw9ANNBWi1vB9NE1jZWWVweCAyWRCluVyU6EQnD17lksXL1U+9TvvfB3Hj59ACBng5fu+TM9eBIxHI44fO4amQa/X5cyZM5w5cwZbHackSbnvvvtotVrkeYbruJw8dZL73vhG2u2OlMXneVXf1my2KJSc3LZs5vMZ88VC9YprOO6L968Uhah8/eWnJdPkBUmSyo5zuCoU7SVAk2oEw5Cd3OWGx2w+Q9M0xuOxUl/k1VRfrkvKxRuNBp7nc+LECVzXxfd9RqMRQRCgaTq6bpKlxfdaQY0aNW4FaDBem93oVdSoUeMG41/8i39RqQDL2z333FN9P4oi/sE/+AcsLS3RbDZ53/vex+7u7g1bbzBe8NVP/hnB+Pug1+xmg3blTeiCsB0xXpuxddceF964xeW7d5n3AsJWROImZFaG0G45N/GLRpqm/M7v/M6r5s0ucUtPtMs08fLvICfWcBj8da2gNE2rCrKq7wkhlMRZJwgC9vf3cV0P23LYGe5gWw5FkWEYOp7nS184hky2EiWZFpWsV1ME+2jZnkAjywspAaa4InX8cMKpH/maJFaGoZMXGbpxpJdZPX8hrpxcyxqpwymphk7JBYWQ/pjytcpObfkZWMRJQpZKHzuahmVZh6FrQBiGzOdzVlZW0DRZuaVpGrZt4fue8k7L3bFGs4nv+3S7PXRDZ7FYUBS5IrAOpmlJD3YYVt5535ef63A4Ynl5CdtxOH/+Aq1WC8Mw1QZIwbPPPku32yXLMrlxkWckcYzjuGga2LZTbbYkaUKcRPLzUMqHFyO1P/r+AGzbJlckV9f1khdfg2hrlbxblLsn6viXGzJlBZgoBLmQ56dlmQgBaZbK8862VXVbXp3D5csIIasJHNdVk25ZN+c4DrPZjF6vx3w+50W3xdWoUaNGjRo1bnq84Q1v4Atf+EL17/J3XoB/9I/+EX/wB3/Af/tv/41Op8OHP/xh/s7f+Tt89atfvRFLBeD8I+d57MuP8rafrKfaNxsyO2fv9AAj1TFjEzM1MFMDK7JwFw5GpmOkh5bTWx1PPfUUjzzyyHXvzb4atzTRPiodhyuJd+nVLv9ekuyiKDDMQz92HMdVQnMQBJimyXw+r2S7SSz/7PV7GIZRTcVlsJY8ATV0WfBUsmOkDEP+9dBvrSFDtQAlc6f6HuWjtJKwl08lJc/y/tqRZ6J6b0KIaoJuGAaHmdpH16CSx9U6D0mghGnKDutCSekFMqHdtEw0NIIwwLJsDLMgimJ6Pb8KMkvTmMFwKLvEDRPf9xiPRrTbbUajEe12iyzLiOII13EYDAZ0u93queM4IUlS+v0ejz76GHfddadMOI8iXv/6e3nyqacq6bok0LLSRtM0KTFXHnBZjeUiNxt0RqNhJS1P0pR2u81kcmXC5fOeW7pOkialPl+Rbkmw9cOPl+cIbjS5WXK0T1s7UvNVsnPtCEk/3GQB13FU9oAMqdM0U/1QOPqiqjc+y5jPZ1i2BQJcT8odiiInCCMpka9Ro0aNGjVqvCZgmibr6+vP+fpkMuE3fuM3+OQnP8mP/uiPAvCf/tN/4t577+XrX/86P/iDP/hqLxWA2f6Ub//RI9z9zntpLbduyBpqfG/kVkFuJZROej3XMBMTPdPx5i797b98ON6NRpIkPPjgg1y8ePFVf+1beuZVEukSsoopOySfKgCtJORH/8yyrEoaLyutiqJgb2+PyWSiaqJ0XM+j3+tjWVYlE9d1HUdVW8nn44r08BeD588VPyTmRxzWL6hOLkl+cfW0VtOqKfn3QlFIsl7kBXEckWc5aZIwm85YLOYg5A/4cnr+ne9+B9/3laxbJnxbarI9nc3wPB/TtHA9lyeffBLTNPDUZ1o+Rtd0bMfm9ttPoxs6X//61/mhH/oh4jhhNBoxOBjw9NPPVGsSKoFbCCnPXywCZrMZohB0Om3yPCcIQxaLOYvFnF6vz/LSkjxPhFBd2uVn/MIQRZmQqaHp0hsvZfnF9xyKH5Jq9TxK6q/r8nmOZsxfHXunaYebNppSWlzr4GdZTpbLft08y9Ta5KS73++ztrqG59XpvzVq1KhRo8ZrBTIfZ5Pbb7+dD3zgA1y4cAGAhx56iDRNefe7313d95577uHkyZN87Wtfe97ni+OY6XR6xe2Vxjc//QBbT1y+Sn1Z42ZFYQgSL5XVkmsTLt6zzWBzTGpnKtHp1jqOQgguXLjAF77whVd9mg23+ES7TJkuL17tiumgVvmsgUoaXganmabJ0tIS0+m0kt1mmaxf6na7KkBLYNuOmtQa2JZ1BemR1Vra9yRdpUS4km4/3/2U7PyKCXRx+LXvReLFFX8pTdzlGo/eQ/B8DdLZkYopTdPJ84w4ycnSlGaziabppEe6qk/fdprpdMrBwQHNZgPX9UjSlDCMWFleQdPlrH80HNJqtauEP8dxEAJ832M+n2OYBrefvp3FYkEYhFy4cEFVfHn4PkquLeX9w9EQIQSe51VkvQwGm83m1bszTYuiEExnU6IwpNFoKL/+YWjei9kUec5E+Mjk+Xm5uoBcXNkBqemH6fbV3YSQs/CrnqdUM4CQRB+qOraj0HW9ksKXPzhM06TZXGY0GuP5PnFUJ33WqFGjRo0arwXcf//9fPzjH+fuu+9me3ubX/zFX+SHfuiH+O53v8vOzg62bdPtdq94zNraGjs7O8/7nL/8y7/ML/7iL17XdWdxxpd/80vc9ldP4/h11/MtA/W7buKlJF7KeG1Kf6uDO3ewIws9128JWXme5zz88MNcvnz5hrz+LU20j3ZnH92lKElrSaiO/j1N02qyXUrFoyhiOp3SarU4ceIkk8mYIAho+A0VPiXlx6nyEr+4ybVACE1JiQ/XdVT6ezjZ1K46WUXFlQ83Cp7vVY7+R/Zrp2lWTdqf85nBNfei8qKoSL6mQV4IsjTD82T4mUCA0NjY2ODChQu4rovjyB7x6XSKY9tkWUacJPLzNXSW+n10QyeJY2azOa7rVBNbOdluE8cxly9fIk1TXNclL3Llj85ot1uMxmMsS4aZra6sMJ3NaDR8VcOmEYYxnu9T5FLNYJiGrP6ybMIoxDQt4jghiqRPW6oQrucPhmukwAvU1LncMJHHSQ3aX0SW2nNj5XVdlwF1mkxe1zV5vKMoRNN0gmBBktZEu0aNGjVq1Hgt4L3vfW/19ze96U3cf//9nDp1it/+7d9+2Qq2n//5n+cjH/lI9e/pdMqJEyf+0mu9Gg9++hu8+3/9n7n9B+54SerPGjcBjhyu4eYEPdfxpy7ezMUOLeXtvjnppBCC0WjEf/2v//WGreGWlo6XPuuSTDuOU3moy4n20ftGUcRsNlMpzvJ7URSp/miLNM2ZTmc0Gg3W19dJ0oRer1ulYMdx/KKlL1IaLqogsnIKWhS5lGCD6mKWtWBHU9KvnEMfJpbLMLGcPM/kBLrIKfKcQhRHOsUFhVCBb8+RjKuFXOMt5Fl+GHymaRi6QbPZxPVc+XmpdPPHH3+8eoxhmDSbDbq9HpquY5gmnuvJ+jLkD+w0SRWpbpLnOZZtqaozSQazNGM6nTIeT0iSmGARoGkarusQxzGe66JpOrZtMZ1OydIM0KREfTqj2WxUneBJmqDrOmmaEUZhVXEWJzFxnGCahgoyu74/5HXj6l0+UR2LcrIuhFQPlLVe3wvP/b4gzzPlx5bvMc9ztVkiP4ssSzHMW/ryrlGjRo0aNWo8D7rdLnfddRfPPPOM/J01SRiPx1fcZ3d395qe7hKO49But6+4XS/8zv/rv1+3567xKkGT9WHzfsD+qaG8nRxycGxE2IwQ2s0nLP/d3/1dBoPBDXv9W/o38TLcLEkSiqIgjuPKk33Uo13e1zRNTp48CUhfymKxYD6f02q1cF2PNEnU9HXGaDSqgtEM06wqwiSDfvGn0ZV54GWSdyE7mnU5iS8U6crzXBGnQiaCq0l1SazL6q80y4jjhCyTGw1FLtO8hTj0/V5LHl16yTlC/Es+WKZsZ6kk8Jou16pRhsnpUlqvPlvHcVleXiYMQ8IkoTAMdMOk1+9JKbnjkuU58/mM6XRGlucydO7I2kzTZHl5mSRJAUG73aHTaQMaWZbT6/UBjVarRZKkaIqwHz9+jIsXL8qwNnWMoijCUync7XYbz3VxXJc0TcmznEazQbvdUfVnz3OAXsrB/B4orqhVk9ANXZ02hx+8VvrnS5nB8z7/cyfahmGS50V1/A1DV93ihwqO4XD44t9bjRo1atSoUeOWwXw+58yZM2xsbPDWt74Vy7L44he/WH3/ySef5MKFC7zjHe+4gas8xNkHz/DdL3z7Ri+jxiuIxEsJOhGT1Rl7pwYcHBuBdvP4uKfTKX/4h394Q9dwc876XyKOEuuj0+zyVhRFFWI2mUwOJ4B5juM4JEkip8ZAIQR5kmBZVtWVrWkc1ksheCm9SVf4x3WtknVXk+tSVn70vwI07fDvZUiZfB6qyXW5iSAEGMbhE8mOZw1dP5Sqy8fqhz7wUrouygm4JNa6Ib2/8gFU/nQhBCdPnsL1XFrNJufPX2AymRCGIYkQtJpNHMcijiKOHz/BpUsXlV/aZDqdYpoGRV6oVHCYzWZEccx0NqPdamGYcjo+GAwwTZNOp02WZ+i6VBIUoqDdagOCZ589j2XZ5HnGdDoDBIZhVhsvs1mGbuh4rkdhy88oDAL0q2q4pET/Su909a1rH83v9c3qwbouK74OnfGoRHi92qMphQV66d/m6LHSOHrcnisvl8fMskx03ajOCV03sG0bTdPRDZ1Gow5Dq1GjRo0aNV4L+Mf/+B/zEz/xE5w6dYqtrS3++T//5xiGwU/91E/R6XT44Ac/yEc+8hH6/T7tdpt/+A//Ie94xztuWOL41UjDhP/xv3+We//GGzDt1wT9qFFCTbrDdsT53mVWLvTxZi5acbU19tWDEILf+I3feNFtQ9cLt/SZfnRie63ebJDTU+nn1avvZ0f8suVzlEFZuqZj2qYKQyuwLEv2MSfJIWnXjRcbXK2eG0pftn5lN9QVMPSSwAuK4toKZ1nRpaEbBqIoMAxTTmkV5ETTAiBTYXElwdQ01OsfIXFqHWVnc+kP13UN13XxPRVaZuhsb2/hOA5BEJLlGa1mC7/RQAtCFpMJmeviuR77+/t4vs/O9jbHjh0jDMPq9dM0I1fp8LZl0ez1SJIU0zCYTqeyvgupONB1g/WNDR577DFazSYgI/rzXCoVut0uWZ7J6bhlksQxpmlKr3gckyi5uO972LaFbTuqtk0nL/Jrh9Rpzynsesm4+rgd2eqo/lb+q6xaK/vXD2vXhDouxTXPNVHI9POjm0tpmshasijEcW18v/mXeh81atSoUaNGjZsDly5d4qd+6qcYDAasrKzwzne+k69//eusrKwA8G//7b9F13Xe9773EccxP/ZjP8av/dqv3eBVX4ndM7v8xe8/xNvfd/+NXkqNVxiFISiMDK2A8eqMRSdk6XIXvZDcRhOvLuG+ePEi3/nOd6ra5xuFW5pol5PWElf3aZf+1ZJgG4ZBGIZEUYRhGIqkoqS2kmy7novnuXKuqGnkuSRjeZ6RZwWGZiKE7EEuhJyUox0S1hJlorQoCtAFQuggZIhVluUV4TZ044qkdFRndundlanl8t9oGnkmPd5FLnu1CyE7ni1bU8RNV5NTQZFJ8i43HQ7Ty2WVV6Fyu+S0vHw927bJ8xzbsuh1u2xvb2OaJmEYcuz4cXRNY3V1jTNnnqEQBVEgP0/bdkiTlMV8Tp4XbGxsYFkWvu9j2Tae55PnGbZtYeQGDd8njmMMw6TRtCnygjCMlH9dEAYBlm0ThoGsD1MyccuymM9nCKGzv7/P5rFNup0O+wcHFEXBbadPc+HCBWzHIc+kdN1xXPr9vtwA8DyCICRJEmzbOgybQ1DkObpuUIicZrPFdDZVcmw5iZaearkJoRsGWZpRFFK2XZ53gucn6oUoqu/JjR/9SMq43ESRXuu8rNuuiLdhGld47k1LI89SWRumGWRZiqYLRAGWZZEkMWGweLmXVo0aNWrUqFHjJsKnPvWp7/l913X52Mc+xsc+9rFXaUUvHbP9Kd/67EO8/odfT3Op7tV+LULoELViCqNgsjoHBJbq5TZjEyeyr/sasizj85//PFtbW9f9tV4ItzTRTpIEz/Mq+e+1qr2OEvGyO7v0sBZFSpngrOs6nU5HEjpDerKTJAEOJ56WaWFaclosPdFFRWKvxa00ZNWTrvy4RS7QNHHVVPlqOTPIifaRSi4hiVmmCGeWZcrrLQmZrsvwMt3QydIUIYTaSDAqQldOSHO1+SCObEqUJFv62A0cx8b1PEajMc1mE13X5aS5KEiLAs/zsG1b1p0Jget6GIZBHMeYplH1MHY6XQ4ODtB1HcsycT2XOIpZXV0lyzJc16XZbPLMM88AAtu2SDMZ8tVqtRgMhuR5hq7plcTfsiwMwyRNQ06ePMHBwQHz+Rxd02m3Ozzx+BOYipRqusbS0hKmabG/f8Da2hrb2zu022183wcgzVKGgyGe77FYLOi020RRTJLEMtFb1+XE3TSwbJsil/3VIpPKiaMVYJITlzrvK6fXoiiuOtzaVcdZHWtVz3YoMdcAqcY4cnpUNWbyXNdwHF2mjGuSuCdJiuf5zz0pa9SoUaNGjRo1bhAe/9NHOffQWe77n998o5dS4zpC1oJJ2baRGdihRX+786q89tmzZ3nggQeqcOYbiVuaaJcy8FIWfjV0Xa8C0QolV47jWIZyaVf2X8vgL62a6CZJckVQmKZpoMuJcvl6ui6JrMxHu7bx37Ed0jxRpNykEHmlLZaK7+f6fsuU8aMo68DkFL9Q/dKStOu6pabuuSKYerXuQtV2lb5uVCfzIdE+nJrquo5pylPC0A38tiSf8rPQ2NnZodVqcfLkSYbDIXEcY9s2rusSBAGe52JZtpJ3Z8wXcyzl8d7b36fVbKHrOjs724xG4yqJvNVqEYYRk8kU3/cwTYvReKz83NqRwDtRHZdms8n58+dxXZcsy2k0GgyHA4QQmKZZHcfJZCqT0btdLl++jK7rzOcziiKn2Woxm05xXIf5bE4hZKBeUeRyQp9mFIWQvnUgVRsv2lESLQRCGa41oBAgRH4YcqbODdM0Vejblbj6OJebPqIQV+7fXOP81qrzUyPPVUc8mpLWZzdNGEWNGjVq1KhRowbAYrjgwd99kNvf/joa3caNXk6N64Ujv7bmZk7ULNg9fUB3t037oKl+b37l5eR5nvPEE09w9uzZV/y5Xw5u6dTxstP6aPDZ0QC0coIdBAFRFJGmaTXpLf3YmqZhGIaUOTd8skx6fm3HrkiQrusYhoFpmGj6UV+3qNK+nw+lJ1gvU7uP3FUc6cv+nqjCrnQpEdY0LNPCUbJmWVslZfS6oR/xesvJe1mDlqZptelwKK0v4Kp1RFHMfDEnzTL6S0sEQUir2ar8wE89/TRxkhCEIWmaEkUxrudVx2NjYwPTNGm32ziOi6HrmIaUN5umQVEIHNfhxIkTLC0tEccJa2tr3HPP3ZjqfVmmiW4YpGmCYegEQQgIoiiiyAuCIOT07bezWAQsFnOSJGFpaRnTNFldXamm+eVxnE6nGIbB0tISrVaLNM0IFgFJmrJYLLAsU24+qFC4xWJOo9HAMHSpTMgyGUpXiGodRw4kV26YaFdt/Gjf8xw5+kTlZodpmlimiWlZmKb1nPNBKzvjjrzM0Qo5XTfI8uxFvGaNGjVq1KhRo8arhz//5J+xd2b3RVfm1rjFoYHQBZmdc3B8xM7pAxI3IzPzV3QoJIRgZ2eHT33qUzfcm13ilibaRyUBJXEs08TLaXcYhgRBQKhIoWVZSn5sYNlW1b0tJ45J1cOdZRmGYeB5HoaSkh+VCUtoUnZdPP9J4rquXFdRSC/vUWL0Yt+oIngl4ReUfmGBpoiZrmu4jkuRF2TZYRp5USjPb7VeOc2W4WeHN5AeYsdx2NzcJIkThoMBwSKg1+8xmYzp9fryc1RebNdxQNMYDAfs7uyQpClBGDCfz+l0Orzujtcpb7HczEjTlJ2dXTzPY6m/pNLgTW677Tbm8zmTyZS3v/0HuPueu3EcBw3pQbdsG8/3cBxX9aXb9Ho9NDRWVlY4fvwEtm2xvb3FXXfdxXA4ZDweEYYyaVx68nVc12U+XxBFEa7nEkVyA0H6sGVveBxFxEmC63nkeU4QBHKdpimtA6ZBlmU4jnNFCJ06UADPsSygqtOuecCv+pqu6Ri6UWUIlKT76occ/VqpuNA0Aw0NTdeV0sF4sWdYjRo1atSoUaPGqwMBf/C//37VqFPj+wgaBN2QS6/fZu+2A+b9BZEXvyKEWwjBAw88wM7Oziuw0FcGtzTRThLZJ12GniVJInudVeBZ2a+dZZkinaBrJqZh4zoeruPi2DaWaVWT7lR5nDU0TDUVRQh0TScvsqqHGo3D6fY1UqbLgWYUxxiaqbzc4sjtytTzQ1yrUFmrJpimKSXucZyQpCm6pmGaBhSQJSmmbmAqMk552orD15V+7CNTeO1wrbqmkWYZu7u73H76NPfd9yZ83ydREnHHsXnjG+8DBHfc8Tp8v8FwMOTY5jFs2yZNUqIwwrIsptMpDz30ILPpFCEEjUaTRqPBqVMnWV9fI0kStra2uOOOO9jb2wU0er0u5849y/bWFisrK3ienIbrmlYdF8uyMU2TIAwoRKFk4R1c12N5eYVvf/vbXL68hef5NBoNiqLAdWXNVZplzGbTKrhNCNjauqxUB1p1Hvm+T7fTkb5sy8IwTQzdqDZvNE0nP9IFXn7Oh4qKq5LCBWoyfg35dynlP6rIKHXoiCPH7sozRG6mHHrBTdNE1ww03ZDecs3A9+p6rxo1atSoUaPGzYdvf+5hzn7zzI1eRo0biLAds3fbkP1TQwbHRsy7f7kQ3yiK+MQnPvEKre6VwS3t0dZ1raquOiqPLkmkEEKRbBkO1mg0iaMYTdewlewaJNkxTKOSZ4NKoRZCyq2PVChV1tyiIFf1ULphXIMwSzi2rdYEuqFX9WMvBzKMLAUEfsOXQWiGVnnGsyzHskx1X1FNr6+tzFFSZyEoxGGfcxTH3HHH7exubbNQkvvRaIxh6LRaLabTqUrw3iNOEnq9rkoPlzLvfn+JU6dO8a1vfQtN0/B9H8MwlLpAyveLQkq5u70uly5dpNvtKW90wfnzz7K2vg5KVaDpUnLv2A5RFCEQxHGCaZiEQcD+/gGtdoskTiiKnJWVVRxnKj3K6rinaVqFjC0tLbFYLJjPZzQaTRzHYbEIKNRmimma8nWKgvl8XlkTMuRGhGlZ6tgXVQbAtXA0Cu0wPfyqIyAAiit4dCEKtPyIGp1r17xd8Vqa9GUfPq/AME1EUUvHa9SoUaNGjRo3H0Qh+MxH/zv/5A9+/kYvpcYNhgxOS1kkIfNeQGPs0xz5L9nD/clPfpLRaHSdVvnycEtPtB3HlUnbWVb1ZSdJQhzHZFlWebJ938f3PJnIjZA92FD5YUspeYmyZ1vXpT9XFIqwK2l6SeDLAKoqURqOpE5LFIUkPbquSfJ7BTHTXpBEwaE0uAw0k2FZxWGyOpLsO459uFZRTrDln4XyYl9rYn4YqqWz1F9iPptjWTaNho9lWxiGJJRhGHH58iWiKGY2m2HoRjXRHQ5HNFstgiBgf38fTdNoNBqyikyR/SgKsSyL0WioVAPw2GOPsVgsePrpp7l8+TJLS8usLC+DkKnaruNg2TZ5noGG7PEOA+I4Yjqdsr29TZameJ7Hysoq09mUZrNJs9ms/OBpmqChkabSDrC5ucHdd99TyaubrWZFsssNmyAIaDQaSkVgqmNfUChbgqZUBoZhHnr2OQyguzriIYqj6nMXR47L1QRcBvYlJHFCkiSkWUqaZtWAu3yho9J0IeTxLapkc00lvTsvfHLVqFGjRo0aNWrcAFx69BIP/e43b/QyatxoKIFmZucsuiEHJ0ZcvnuXg+MjCr2g0IsXlJbP53P+5E/+5NVZ70vALU20DVWtVfqzS29sGYZWBn85iqwZhkyjNsxDom0YBqZlVsnQeZ5Xnu0oisiLAssypScX5KQ1zYhVErcMVjusz7oaWZZRqCl2FEdXKIFfDMk+hHyQoQLHpEQ+UORdTmvzPK8IV1HkFeEDGfx2JanTjvwpCX9e5AyHA6azKUkS88gjj7C9tUWv18eybBzHwTRNHMfm5KlTGIZRyfW73Q7BImBtfa1Kzj5x4iTr6xsMBgNc163k/SURvu222zh9+nYsy+Ktb30r/X4f0zS4cOECrusSRiFCvS8hBEmcEEcR3U4Xx3HodLo0mg3a7Q7dbpcsS/E9jyhS1oE0JcuyquZKerTnnDlzlqWl/hE5v5R2W5aJ53k0m011PlhSMaFpFYnOc9mdXioTys9ZV2NrTdNlMJ1SRGjIvRdDqQ5kCJ8mK96uOgGEkKFraZpKgp2lZGlKlqWS5B+pCJOWhsPHlX3c5fPnWU4c3/hagxo1atSoUaNGjWshGC/46if+jGgevfCda7z2UYb6GgWxnzBdnnPpnh0u37NL1IzJjWurgoui4OMf/zj7+/uv7npfBG5poh2EAUkSVz7sJEmq6XaeyxqukuCVtU26qskqJ9lpKlO8k0SSOE3TiOO4qp1aLBYEYVh1Mxd5gW7oVYiaroKnQEq7RQEiFxUBLvKCLM3J0hxTM1T/E2iStR95N6XXW8nTy94tIe9fJqQXavNAeqYd8jwjL3IVkFZUk05DlynphqZhaJpMsK7Inv4cki+Q4XJxkjKbzfjWI4+wvr5Or9djsVjguvL9FkVBFMXs7uzieW4VYtZoNnFdh8HBAU899SRplvKFL3yBra3LGIbB2toqnucThmGV+v7II4/w+OOP8/DDD2NZJkEQ0G53GAwGCFHQ70kybOg6WZZj2xae5zGfzwjDkEbDZ31tnW63g21boIjsysoqnueRZzlLS32SJFaEXZJY13WqarKlpWVMwwS0KpV9MV+wt7fPeDySgWSGgWVaVcJ8mb4uhCBNM7IsU5s08tzQDZmyXuR5tf3iOK6sgzMkES/U5oimSdm+9PuDXgah6UZ1rARUeQOaJhUWUk2RV0F8lnkY8leG+W1vb12X665GjRo1atSoUeOVwIVHzvPYl757o5dR42aCItxCF6RuRmpl7N02YLg5Yd4NSO0rB0kXLlzg0UcfrRTJNxNuaaIdBiFxHFcEqUy3Lnuwyyl3HMeVb9UwTFXTJMmSoRvMZjMACuVpzrKMXKWON5tNmo0GURQRLkJF1qXM2LYsNF1XU0z1UZYkuQAKJSBWk03HcYFDei0lv1dNwlWVV5HnMh08L8jVesowM6BKQC+JX5Hn1cRaV17yIi8qWXM5VX9uFZVEnufopsnS8hKbm5scO7ap6rsy2p02uq4zHo+Yz+e4rqOeV2NjYxPTlH5pIUrZvca73/Uu7rnnHt7whjdimhYHgwHdboc3v/mvMBwOmc9n2LbD6uoqruuwu7dHlmV0u11WV1dB05hOp+i6oTzy0Gy2GI8nioya9Ho9sizl4OCACxcvksQxcRxzcLCPZVkcO36skneXMvrSq58XBcvLy8zmM/Jcvq5pmtVGwG2nb6Pb67G5uSnJrgqRK4mspkspumkaeJ5PHMc4riP94EWhfPvynCil93EckyZpdV7quo5l2zIlXE3CDcPAMCUhh8MGryxL5RrUOZLnBWmWkWWpOqxCbTSosLQ8u0Yqeo0aNWrUqFGjxs2Dye6ER/7wW8wHsxu9lBo3KYQhyKyc6fKcg+MjRmtTMrNsWBI89NBDN01v9tW4pYl2IUQlqS2rvsr+ZJB+3hKu62LbNoUoKlI+ODhQU0kZopZlGUEofcRZlpMmCYPBgP39fWazWUV+dF1OlqWs3KqIsaaVnmtNDaalTtww5PT8qCy9DF/Ls5wsk2nWWSqlwmXAVunjBQ6ry8qptSLMsp6ruEYo16FHWwhBlmbk+WHi+NUTbUM3cByH+WLB2bNnaTSamIZJHEcMDg4IggBd1/E8n+FwxPETxwmCgDyXZDOKJMnd3d3D932+9rWvM1/MeeaZZ0izlG6nS5blOI7NZDrFtmV6eBRH6LpOsAjwfZ/HHnsUwzB44oknGI/HzOczojDEdV0syyTPs6of/emnn8ayLMbjMRfOn6fX69NqtzFNi+985zs88bgsrLcsi9XVVWzbBiCMQs6eOcNwOMIyLdY3Nmi1W9UmTbPZIEszTMNksZgrfzuVhaBMqHddl2aziWHIjZf5bE7Db3Di5EmSOMH3PVaWV2i35UaF67k4jk2apVVN22w6PbKJIirptxL0S2KvSxJeysUNZXnQtefp5xbQ8H1WV9dexlVVo0aNGjVq1Kjx6uGh33uQnWd26l7tGs8PNeXOrZx5P2Drrl1iN+HChQt84QtfuKLy+WbCLU20gYpkl9PGclJo2zaWJaXGrVZL1k+lKUmcSFI0n+O4LlEcoSE7qE1TenQB0GBvb584jjEtU4aqeT6maUkvrfINSw/uVQFnHPpmS7lxKTU2TQsoU8GllzrLMhXelpEq6fu1cJgifkiYiyKnyIvnOMRFJU1XoV0qkO3alWKo5wTbsvA9nzRNiOOIqntbSH+4bdsMR0OeefoZTMuk2WwBGq7n4roOy8tLrK+vceLEcRbzOUWR86M/+qOYpsn+wT7f+c53WFleptvtMhgcsNTvc9ttt+G6LlkmP9MwjLAtizRNWFtbxzQt5osF4/GYdrsjj5kGpmWR5wVZnqPrBl/96ldxbJssy1hbW2exmPO6170OXdfY2d2VloCioNloAHD+/LNEUcT5Z88TBqH0Z7da8jikKfP5jMVigW1Z0nctBEkSS4m48llPp1PCMJQBdAiiKGI6mSJEQRTHnD13lu3tbcbjMXmWYxgmDd/HskyKvJC1XGr6fXhY5HErCb0MnZPBczJsTajz3FCJ49mR80GeV2ma4bp1GFqNGjVq1KhR4+ZGvIj5k//PF0mC5EYvpcbNDk1OuFM34/Idu5x79hxPPvnkjV7V8+KWJtplAFXpTdY0TYadGQaO42IYJkKA63oy9Mw0cT0Xy7KwLZsiL4iiCNMyKYSU82aKtAshsG2bXq+PpulYlq0k6IWU9qq+4rwixVKzW3GlI73IeZ4RRTGWZVbS6jRNJUEujiaBH/FlX40j3y7DzkRxONG+Vt9y+UBN07AsU07S1YT0OZ+lbtBsNrAtm5XVFXq9PqbqFy8n62EYEgQB3U4HXdcIFgvCKMT3fTKlChiNRmxubnL+/HnW1tZwXY/hYIBh6Nxzzz1cunSZyWTKeDym2+1hmGaV4C59xzKUrpwWX7p0kcVijmEYrKyskmUpruvKQLggkFNm26HTabO6uoLjOOi6RhRF3Hffm9SkPSFYBFiWhe/7arKtcfr07XQ6Hfr9HqPRENt2MA2DdruNbUsS32g0iKIYXddwXZeiKBTptapO7erzazQoipwwDGm325iGiaNeq9FsIERBHEcEQUgQhtWmUBzFV23WCDT9CNFWE3O5SaPJCjDVn65psjKuyKXNQIiCQoXO7e3tveRrqkaNGjVq1KhR49XGN/6/X2fnqa16ql3jRWMezvm1//Pf3+hlfE/c0kQbNDTVZZwkSTXZdl0X1/XwPB/X9SgKUfUMN/yG7GV2HWzHxrZtkjipJNuFSrk2TRPLtClyQcNvsbayrqbCkhyVMnJRCFn1JOQNKtG2XKHyXAsh67FkNZj08SoVBJq48nat9ykQFLn0fov8UCquCRm+VlZoPQficLpdTbKvweWLLOPihQvEcUSkEs3jJCZNk2qjQkN6f0svvGEYHBwcVOQyTVPuuusutrd3ME2LJE1xXIfhaMQjj3ybRx99lI2NdUAo4miiazonTpyoZPG6rpPl5WaE/LPZbLK/t8d4PGJ3d5ckjkHTsCxLyteLXP1g1lQ/dw/f99jf3yOKIjY2ysA0m2ajQRzHuK7D5cuXSJKEKIrRNI35fKYk/hm2bVcheUDlPzcMs6qCk6n1erW5kyRyE8DzPBaLBZZlsrq6xsrKMrayDOhqw0dueCiVg1JMVP5vTavqwyqtDBxaE6qUce0wiE8cKh00oNNp0+l0X9RVVKNGjRo1atSocaPxOx/97zd6CTVuEQgh+IvffZCDZ2++pPGjuKWJ9tF+acMwyLJMTqhNE9uSftwqhTyT5BkNHNvBc10sU044yyl3WZGVJklF4BzHAQGD4fCwKFkNj/MiV2nRV0uxn9uPLAfVBVmWKon0S3+/Uiaeq9C20rstSXwpZb865KzUI8vXVb3fV3RqS+i6Qbsl/c2apsnPxZXhbYahVzVmGxsbmJbF+voGaZahKWn56uoajuOwvLzCpUsXGY1HLOZz/vTLf8rB/j6bmxucPHGCyWQi+6mRRDXLMp544gk0TcOxbQSSKOZ5XgXdTaezStbfaDQwLSm/n83m0iNfFLiuy8mTJ9A0nTiK6HQ6OI7L6+58HZqmcerUKY4fP8758xe4ePEi8/mcTqdT+eZLuwFQpa1nmezTLhPrNU0S63JiPB5PyPNcVq7pmgzK0w2CMFDhZwmj0YjReMx0NpPnaiHUuaZMBipJPk4S0tKrfeQ8KkRBIQqZGaA2kuRxPwxne84xBybTqewer1GjRo0aNWrUuAXw1Fef5PEvP3qjl1HjFsEf/Jvfu9FLeEHc0kS7JCQySbpRkZCyK/sKUoIMEEvimDAKGU8mLIIFcSTDuCzLxlCS5U63y9LSEqZpMhmPCcIABEqqq1W+aqF6jfOiOCr+ViRakt5yDUc3BaSc+0W8v0p+XlQkukwbB6qe8CzLpIe6CoLTqtWUXmKZpJ6rzwK1NjhKuHVDZzgcsrOzw3A4xLFluvh0OmU2m6FpMDg4QNd1wijEVnVfeV4wn89J01R6sFdWsUyT+XzBPffczXve8162traJogjbtlldW6Pd7uA4Nuvr6ziOQ5bLUDjDMFT3uc3JUyeVv1wGj+3v79NsNqsPuezl9n2fY8eO02q38X2fp556iscffxzP87h86RLf+ta3GA6HeJ7H6dO3sbS0zMrKCpPJBNM0yXK5QXNwMMBxHCaTCTs7u/h+Q9Wo2ZWHOsty8iwnL3I63Y6cgGcZRV6wtLREp9PBVMnmBwcHsnZMqSzSNCVUlXSyk1seE103VDVccaSiTajXks+d5/mRMLwyLO+wC/5qqZVtWQTB4kVfSzVq1KhRo0aNGjcSaZTyuf/jD583q6hGjRKf+einGW2Pb/QyXhAvmWh/5Stf4Sd+4idU7ZHGZz7zmSu+//f+3t87lL+q23ve854r7jMcDvnABz5Au92m2+3ywQ9+kPl8/pIXX6Znu65bpUA7jlMRVJDk1lIyZU1TFV7KBy2EnB4ahkGz1VQkulC+ajkB73a72CpZPFfEusThJFscEfiK6geEcQ0v9IuBlA3r1e1IIVg1CZcvfeglB7BtS3nRjeq9FKJQVWa66nDWK1myrnq1JUmXaw0Wi+o1wzAE5HS7DIGbTKZYpsVkPCZJUjXt1gFBq9Xm1KmTTKcTNE3nr/7Vt2DbNmfPniWOI2azOevr6yzmC6bTCQB7+zKlXNd0gmBBs9FUXd0RcRThOE5VUyal3KnaOMhVOnxWhZHt7+1TFDn33Hsvm5ubRJGsJ2s0mszmc77+9QcIgoBz584yGo3JsoxWq0WhNgoMQ34es9mMyWRSJcg7rqv6uFOyXFZq2ZatPmNRfX6WZZNlKbqus7+/T6/XRdel0sJSfnfbkZsXaZoqr/zh+aJpuqr6OqxukwQ7U68rSXdZCXdYOaaOq7oBmKaFbT9/GNrNdB3XqFHj5aO+lmvUqPFawqVHL/LQZ755o5dR4ybGYjTnu5//NkWW3+ilvCBeMhNcLBa8+c1v5mMf+9jz3uc973kP29vb1e2//Jf/csX3P/CBD/Doo4/y+c9/ns9+9rN85Stf4UMf+tBLXrwGaJpBw2+iaTq27eI6HrpuViRYUz5u2X2sY1mW9HB7Hp7nYVkWaZqys7NDsFiQJAnTyYzhYESWZlV6uKYk43rpqzXl9LiUFKODZip/sSaqruUSL0kqrpUT8OrRAFiOg2EaoLqhHVeuX4a+yaTposiryjMhBGkmyaFh6Id5aUJOukuvcRRFWLZNEsfomka32yEvcooiVxsUWpV63Wj4CAS+7xOGYZXGresGSRKzvb2D67osLS8xm825cOEiTz75JP1+X/VJC06cOMHe3h77+wcksaxQK4qcKIpZLBaVB3w+n5PneSV5dxxX+ZllXZplWdV0fmdnBzR44oknicKILMsZj8eMxyNa7ZaaTMue6ze/+c00m01+6If+J+W1lyneeV4QhlLt0Ol0aLVaTCYTppOprOdyHRzbJi3D27K8kuSHYUicyOC1OI7xfe+K86Mi06CC+ozK862r4LPSf30Upffe0A2krFxUGzolES8D2Urfv+wNl3aA58PNdB3XqFHj5aO+lmvUqPFawmx/ysP/4y9YjGtVXo1r48u/8SdsP7V1o5fxomC+1Ae8973v5b3vfe/3vI/jOKyvr1/ze48//jif+9zn+OY3v8nb3vY2AH71V3+VH//xH+ff/Jt/w+bm5oteS5n4XajarCzLMC1LTkGLgjiO5VZCUfph5eP0cmqoaWRpiqk8us2mnKZmqSQstu0oKfFYycMloSzyHFP1GKNpmKZMfs7SFN1Qk+jnhIALNE1/UWmKpSS8um85xTYMBEIFaUmib5oGaZpUYW9SSp6jafJ9FkIQxTG+o1eEOVN+dQHkuSal20VOR8m5gyBgMV9gOzaWmSoirRPHMZ7nI4RgNpthmAaWZTKZTDFNk1ZrmR/6of+Jr33tawRhwMHBAb7vURQ5KysrPP744zSaTR577FE8z2d9fZ0777yTXq/HZz/7+7iug+d5zGYZrusShmElkzZNi8ViTpZleJ6P49hkWU6v20PXNc6dO4dt2/wv/8v/hS984QtYarp/7Ngxtra2CBYLNjY22d7ZxrJtgsUCIQTNRoPtLCdJEt761rdx+fIlThw/TpqmzFQ9WZLkCCBJEplob9sURcHBwQGbx47hui5RGDGdTFhZWSEIZed4qa5otZpEcYwo5AZH6dMvyfWVQfNyQl5utAg0dA0MwzpUYoCsNFNqBNuW559Q57YQBbpuEobB855jN9N1XKNGjZeP+lquUaPGaw2P/+njnHvwDG9895tu9FJq3GTYeXqbx/7ku6TRzdmbfTWui0f7y1/+Mqurq9x99938/b//9xkMBtX3vva1r9Htdqv/oQO8+93vRtd1HnjggWs+XxzHTKfTK26AkkRrRKH0C5chWzK8qqgk1VmWkWayfkqmTEfVLUnTyudaTi+ll1kwmUzY3d1VcmspMZehY3JdmqYIuziUpOtKDixUkJW6p6oek1LeQ++1uIJkHZ2em2pqa5oWpqrmSpIY0zRxXJe8yFnMF0dqpqieu/SHl89j6Ho19UzTVJI4pPQ9L3KiKCRX8ov9/QPmiwV33HE7zUYT3/ersDBdl1PmnZ0dADzPI0lSWq0m7XaLxWLBZz/7We677420mi02NzZotlpEUcTu7g5+Q9aANZtNGg2fyWTM5z//eb74pS9y4sQJoihmZ2dHkUydJElxHIdGo6GSyMF2HNIsrWrAkiSm1+vxN/7G3+B1r3sdf/zHn1fVa1Iaf+7cORzHxjDkZN73fAxdJ4piVlZXGI/HWJbJ+voGZ8+dxbJsLl++zM7uLoZu0Ov1mM1mZGlGHMfyuQ2DyWTK5uYx4ihmMh5XlV/bOztMJxP29w8YDodV0jxCSCuBkr9rmpT6PxeHOzSapqErqWeVN1B2ZVdJ+vJYl2F4QghVmZZWEvOXi1f6Oobnv5Zr1Khx/fBq/T+5Ro0aNV4JzPanPPiZbxLUU+0aV+Hidy9y5ptnbvQyXjRecaL9nve8h9/6rd/ii1/8Iv/qX/0r/vRP/5T3vve95Lkkcjs7O6yurl7xGNM06ff7FYG7Gr/8y79Mp9OpbidOnAAkWTQNE03XlSJaVJJx2c2cq6mviWmY1d/zXCY4S2m4YD6bV78shGGo+pxzJenVCaNIdmmbZlVxlSSJ7LIGkiRW6dWmnAYvgiNkXIaRaZp2mICugq3K3uPDzu2yV1ur/NRl4rcMd5OTTEM30NDIi6KShB/KlDUVKJaj6XLSqRsGs/lMvucsU2Rbq6qg2u0Oo9GIMAxxHIeV5WXCUIbEpVmG63pStm2a2LaN67hSll6lYGuqJ9ym2+2yu7enfN0mRZ7LgLlOF9R0fXd3T34+msYP/uD9pEnCuXPPsra+xt13381iETCdTXFdh7woqhR523EQRUGWZkRRSBxHuK7LeDzm2WfP0+126Pa6lce725UTel3X6fd7BMGCbrdDlmWsrq7wuc99jl6vT7+/RJzERGHIaDSqEr6jKFI+dJPJZCLTwhFkWUa322V/f49ut4thmERRjG1bOLaD63q0O21s2yZNU7a3tyuirCsZeZ4X16xMlx5KvapkuxpXf6VMkS/JtxClPP35J1gvBtfjOobnv5Zr1KhxffBq/j+5Ro0aNV4pfP1Tf87g0qDu1a5RYXBxwP/4N79Pntw6rTovWTr+Qnj/+99f/f2+++7jTW96E3fccQdf/vKXede73vWynvPnf/7n+chHPlL9ezqdcuLECWzbxrIt0kQSSF3TVPVVga46icveazl1lhNwy7JUV7Gsx8qLnDzOsS278gCbpvS3SuIiVMiVDL/Ks0z6oYXANEzSNEU3DLDkxDEvJJE2LIvDDmS9mobL6bJQRPcw+EoUchJOXlDk2pGJuITs9jbJ86yaiCbJobRbvo5W9TS3Wi2CKCAIAoo8x7adimxHUYxplzVZMzqdNkmS0Go1KQqBrheVHF6oqqpSCq1phz5gIQRZnuF5HnmWcez0ab71F3/B6voaw9GIbqeDYRhcvHgRz/NY6i/R63bZ29tjsViw1F8iCELuuusuhsMBBwf7rK6uKM9zgqHrJKBILpUvu8hzkiQlDCOazQamafHVr/45m5ubOI7NHa+7g8lYporruk6j0WR3d+cK1YNt2czmM9kZHkU0my3VA77FxYuXaPjSj95qNatE93I6HcURzWYTIQSOYzOZTLBtB89zgdL/LoPqsixlY2ODg8EAhDxuYRiRZc8jeznMvntBlMS83GAqvea+3yAvXn5IxPW4juH5r+UaNWpcH7ya/0+uUaNGjVcKeZbze//yd/hff+vDMp+oxvc1RCG4+J0LXHr04o1eykvCda/3uv3221leXuaZZ54BZEfx3t7eFffJsozhcPi8EzjHcWi321fcAFzPkyFXriMnzEImOGd5TpZm1dQ2V9NtURQUuZr66tKrLCfXOq7r0u60JZm1TLIsA00jzzPSJAEVqlb6tMtQNAGY6v6LxQLHtrEt+0qPNZIYFkUOSAlxKcWWNB5k+9gRyXA5yTaMiji77qH3XNM0+r1+Rbp1Xa8Il2VZ5HnOYDDAd31aTdmPnSQxURRxmHQtVLWZSafT4bbbbsP3G2RZymg04uDgANd1sW1HPWfGqVOniOMEyzJl7ziCNJGBZgcHB3z3O9/htttOY5omS/0+mqbT7XbRNJjPZziOw6lTp3j969/Am970Ji5cvMDy8hJBsGBvb09Vic0JwrDcokAISJIUy5SbIAgIglBtfOREqqKt1+uxs7PNwcGAy5cv01/qc+bMGYIg4NFHv0u/38dxXIIgYDqd0mg2SJIEIQRLy8tyWu+6bG9vs7y8hOO4UsGQZSwWc5mErj57z3MxTYvJZEwURRSFqD5f13VJkpggDEmSBMuyGAyGuI6LZZk0my2lrFC1c0ebs1W/dpk8/kIQV/1NdpOnDIYDJuPxi3qOF4NX4jqG57+Wa9So8ergev4/uUaNGjVeSTzyuYc5//CzN3oZNW4C5FnOf/2/f+JGL+Ml47oT7UuXLjEYDNjY2ADgHe94B+PxmIceeqi6z5e+9CWKouD+++9/Sc9tmia6muDmeS7rqAR4rovt2JU8uxDSL10oYqxrOkmaEIRBJTMWQrBQAVlyyi17jWWPs0kQLCRJVUFVtu3gui6e7+GoWjFLecI1XasmzBWp1bQqofvKQaWQSeGqQ1lOk1U6uuPi2A6GYVYeY6CajLueKzcEVLlYSbjTNJWVZc0WcRyzs71Do+FXKeOapuG6DpnyZU8mE0AjSWJ2d3fZ3t5hOpshlNQ7iiN836fVanH+wnlmsym2bdNqteT7tmx63R7tdpvReMz29pZM/J5MuHTpIufPn2c+n9NoNBlPxnz1q19le3uLc+fO8ab77uOxxx5jd3eP1dVV1tbWWF1d4fbTt8sAMQSu68jwNgG+70nPumVSFIV8T5omk+Rdh9lshmVZdDsdxqMRP/iOd+C6LqtraxRFwbPPPovv+5y+/XYW8wVnnjlDo9mk2Wjgug6PPfZYJQVvNBrYjlPVx2VZWpHxY8eOkSSJCmyTHeuLRYDtODz51JMy9Xw0Yn9/n0Klv88Xc8bjCaPREN/3sG3rGuLwK8+NF4TaXKrq7HSNPC8wdFl390rhel7HNWrUePVQX8s1atS4VSAKwe/+vz99o5dR4ybAn/7mn3Bw8eBGL+Ml4yVLx+fzebUTDnDu3Dkefvhh+v0+/X6fX/zFX+R973sf6+vrnDlzhp/7uZ/jda97HT/2Yz8GwL333st73vMefuZnfoZf//VfJ01TPvzhD/P+97//5aWbahp5llWBX5ou5eNVF7EcFV+B0sstpec2SZKCEJWXO4wkYRe6jH7WNR3P86ups668z2UXcpHLSbWu6yRJIoPTTL3y4JYkqEzQPvzzylC0EqWX+3C96p2oJGrLkoQ+juKK5B2mVcuwrSSJFWnX6PV6dDptDg4OsG0L3/Mrb69hGHS6Xba3t1hfX6fdbuF5HmEY0u12iJOEOIqJ1aS22+nQ7/UYj8aYpglKzqPrOitrq/itJvPZjGA2A8C2beIkwbZtoihkeXlZStqDgNtuO823v/0dPN9H02SqdxAEgCYl7HmOZZpVd3aSxNKzrhs0/Aapkl7rqpdaTpvlBsfBwYCVlWWiKMJ2HHL1ma6trZKmGft7eywtLdHtdomjiMUiUKFubSzL5ODggPl8Tqym1a1Wi729XVqttppeJ7RaLebzGSDw/YZai47rOPT7fdrtFjP1HGmSSB81Asuyqk0VuUkijsjFBS/Nj1R2v5f/khsuWZ6Rh8/vYbnpruMaNWq8LNTXco0aNV7LePZb5/iL33+Qv/oTb3vhO9d4TUIIwZd/80svav50s+ElT7QffPBB3vKWt/CWt7wFgI985CO85S1v4Rd+4RcwDINvf/vb/M2/+Te56667+OAHP8hb3/pW/uzP/gzHcarn+MQnPsE999zDu971Ln78x3+cd77znfyH//AfXvLiy6TlOI7RDaOqdNI0repXNgwDyzRxbDkVNXSDJE0wlSRbFAWGaVSJ4lmeSYm5KNB1A8u05NeEnDwXoiDNMoIgJIoisjSVZDSOybNcTVY9ub4so8jLXmv5Z5kWXeSSaBXVJDtXUvcCkNNvQzfkn4aBYZgV+bYsE02T3uqikOFoZb1XnudKHi4JvUzK1pjNZnieh+f5uJ4n06kNE103aDYadDod8jxnPp/T7rTxfY/5fM54NEbXdTqdDsvLy6RpyngykZ+38k1nWYZu6AxHIzW9zWmoxHLP8xCFoNlssbGxQZ5nNJstNE1nPB7TarfwfZ88zyUZj2MuXbrI9va2miSbFELaAZIkIUlkenyj4eO5Hq7qQs+ylPl8QavVZH9/T3nU29x222miUPqpx+MJQsBsNmW+WJBlGZPJhNlM1obJeiwZWpdlGdvb26RpRrfXpdFokKYZpmmo5PqY+XxOkiR4nuzMns8XGIZOu90myzL29vaZjMc4jouuGziunI7L4y4Jt9z00SVBVgXqZbWXVDC8GAn5lT95NE1X4XH28z7iZrqOa9So8fJRX8s1atR4LSMYB3ztv3z1lqlzqvHK4zMf/TQH5/dv9DJeFl7yRPuHf/iHv+fE7Y/+6I9e8Dn6/T6f/OQnX+pLPwdZlqmEbRncpWkavu/jui4i1wiCQHqsRUHDdxHIpOw4imQfsvpFI80yxpMJbikBN50qPA1NBnAdBq0JdEPg6wbIZi9MwyQHklRObk3TJMozMpGTFzk6GnkuvbhCE5iGhed5TCZjlcwt0HSNVqfNYDhAzwsll7YqCbqh/OFpmlFkBVmSgikIwwhN0wiCkHa7pTzHBWEop8PNRpPZbCbJl20xm815/etfDwiWl5fZ29/nzDPP8D/98A/z8MPfotfrMxwMaHc6JEnCysoyvt9ga+sy8/mcPM/p9fqAIM9k6Fua5xiazurSMmmR41o2k4kkmGVV1x133EEURUwmEwaDA9rtDoUouHzpMu9851/n8ccfZ29vj43NTXa2d1heXpHr29vD93xZV2XIIDjHdSQ5LwoW8wUbmxtEYcixY8e4dPkSd9xxB67n8sQTj7O7u0e/30fXdTY21gnDEMu2sSybOI7o9boUQuC6Lhoag8GQpaUlhsMRy8vLNFstOu02hmHw8MMBjuPS7XY5f/48vu/TbDaYz+dMJlPyXPoaW602q6sr7B/s43keaZqAJo9hOc0WQhLtMgFeN/RKaVGG9AlAE3mV0K7+AprA0GWyfKmGKPuzyxwAx7ExzWvVh0ncTNdxjRo1Xj7qa7lGjRqvdZx76Czf+fwj9VT7+xCjrRHPfP0psvjWSRo/ilc8dfzVRBAENJtN2q02k6lMmE5TteNVyJAv3dCxTIsgXKAbkqysrK5i6DrjyQQA3/Oq3u00TTE0U3m5JZPWNV0SbsOoJqq6LiXMQvmEdd0G0qqOCyAvcjWtRsnJDTRDkqpygoumKWlzzsHggDzLMNX0ulCp0bquIRDYluyDDoIAIQRhGGLbFrZt43myTuvg4ADHcdjclCRV03Vs28G2LRqNJpZlc+7cWW6//XZGoxHBXHYUXrp0iZWVVbVRYLC7s8vSUh/TtBS57jGdzlgsFli2zWI2l7LrJCHL5YZHmqYYponhOqw6q9iOw1NPPsXrX38v4/GIZquF67mcPHmKLEsZjkbYtsXjjz9BnhfcdttpgiBQ6bWCS5cuAnLDRNc1HMclTVMsy2L/4IAojOh02gyHQ3a2t+n1+9i2zWIRYFk2zWaT1dU1HMfm/PnzBMGiUggURUG32yEIQ6kuyHNmszm6LqXcd9xxBwcH+zz99NO0Wy0sy+LOO+/E8zzOnD3DqZMnefTRR1lZWaXb7RKGEbbdRIiCU6dO8sgjjxBFMUtLfeI4rlLAy8+p3e4AVEqCJIlVKF5pAVD2B7XRUhQFAlkVl+cZpmWSJkUlRy+n2kUhJ+Q7O7u47uHEqkaNGjVq1KhR41bEZHfCt//oEe766/fQ7Ddv9HJqvIp45A+/xbN/ce5GL+Nl47qHoV1P2JYlA9A0qd8v8lxNiItqapjEMePx+LA/WpeS5Z3dXZlQnmUMhkOSOCYIAlzXZbFYoCGTrUERZE2GTKVpKieOipzlRUGaZsRJLKXlxWE4VendNnSdOEnwfR/LkiFtQbCQU3hk2MNsPkND+saPesDTVMql4zihUJ5q27YwVGJ5s9mi3+9jWTJVXHrPLXTdqKql5KSzkMFchfyMklgmhQdhyMmTJ7l48QLNZpP5fE4QhLiuqwh9wWBwUKV6+77PeDQiThJms1lFfJeWltB1ncuXL/PkE08wm82Yz+YsLy9x8dIl9vf3GQ4GDAcDBoMD6R/XdBzHVaFiAfP5jDzP8H0pxfb9hvSfa8hu6yzF83xJXD2PjY11oihmMZ+zurZGw/dJyhoypFx9MDhgPB6ztraG67oq7V36mqfTKbqmqy5yQZxIz7sMOBOyC9wwmc/nVT/5zs42YRDy0F/8Bb1+vzpOKyvLKmAu48yZMziOS6/XYzweo2ka0+mUJJYWgzhO0HRNbQqJqnauJNmgartUOr2s8JIS8qIoMK1yUq1yCJTfW97nMLk+TuJX50KsUaNGjRo1atS4jvjWZx9i9+ntG72MGq8i9p/d46Hf/SZJmNzopbxs3NJE21WT6MFggKHr+I1G1UUthCTAMlhMpo+XidymKeu4pH9ZkpmiKKTXVpMhZkma4rgOcSIJeBLHCCGwHVuFWCklryJGpmHKCqxCEi9KuS+yD7vVktNkTeOwOxuqYC3DMFhbW8MwZLp26QGP45gsS8mylCAICEM5zfZ8T01v5+zv7ROGAePxmIbv4ziO8g1Leby8uURRyHy+wPN8dnZ3mM1k3VaWZfiNBtvbWxiGjm7onDp1ktfdeSe7u9LvnKQphShod9qqD7uP6zgkisyFUcSFCxeYTCSpTZKkmqiKomC+WDAajQGN/YMDgmCBYRo0mw3yPMP1PPr9JUzTpN9fwvU8ReJtilwem7KurdfvUxSC8XhCECywbRvf80mSpJKHdztdsizF8zziOGFnZweANE0UadbpdLroho5pWezvH+A6LrZtcf78BXo9maL++te/ns3NTd7wxjfSbDWZTCbSRy8EYRAyGBwQBCH7+/LPY8eOEUURqapIW1lZod1uy9A0rQzik2oJXZeJ9mmSytC8K85u5do+kjegqbq5PMsxVQp9nufq+9Jzb9t2tRkjN3pq1KhRo0aNGjczvvKVr/ATP/ETbG5uomkan/nMZ674vhCCX/iFX2BjYwPP83j3u9/N008/fcV9hsMhH/jAB2i323S7XT74wQ8yn89fxXdxfRGMA/7kN75EHNRDhO8HCCHYf3afp7765I1eyl8KtzTRDhaB9LfqOo7rMhwOieOYNElJkoSd3R2SJAHVexzHMZ7yYTdVpZPjOJW3OwgCoigiSWIsFZQGcnJuGCZ5kZNnWTU5FCXT1qS8W1MJ6GmWqq5uOT3VVBq5qSbjcFhNJkPXNFaWV5hMJui6Xsm3ZYe0UNP4jDhOJIlLU4SQtVdpmrK9vY1hmLiuR57nOI7DwcEBvV5PvT9dSsOXV9B1nTAMADklns2mMkG70WRpaUnWTw1HXLx4ie3tbcIwQDcM+b6SlHPnzrG8vILfaOD5Pktqmr63t8vp06fp9/u88b775AQ6lUnfzVaLvlqL57ksLy3TaDZp+A0sy6Lf73Nsc5PxZMxwNCIMA6JQktgwDGi1WlIlUMjP+9LFS2xtbbGzs0On01Up6wlLS8s4jqt6YXfZ3dtjPB4zmU5YWV0ljuXEejyZMBwOGY1H8tjqBo4jPdtlP/cD33iARx99jCAIMAyDhx58kDPPnKlC8yzL5sSJ46yvb1AUOc1mk7zI2T84YD5f0Gw2KYqCs2fPMV8s2NzcZGV5Rda2uS77+/tyuh3FarPiuen4JTT1H03XcF1Zb1bmD5imUfWNG4ZOrs7ZEydOsLy8cr0uvRo1atSoUaPGK4TFYsGb3/xmPvaxj13z+//6X/9rfuVXfoVf//Vf54EHHqDRaPBjP/ZjVfgtwAc+8AEeffRRPv/5z/PZz36Wr3zlK3zoQx96td7Cq4IHfvtrHJzff4ntLDVuRYSTgN/+f3ySIi9e+M43MW5poo3QVK+1RpEXrK1sYNsuGjqaAceObaAZYFo6SSYlxXGcKNJrkhfFFX/3PI80S+l0u0pWXk4OdeXJloQZkMFoZSf2kUqmMsxKiKLiTZomyEXOcDRAFAXBYi4TyIWUjaNpOK5Dp9OWGwVpUkmID1OpoSjySgJf5AWGYdJutzl+4kQlN8/yjMHBAE2T/dhyvarOzLGxLIvpdEYcxdi2hRBwzz33YJkmO5e3SeJY9WPbXDh/nm6vx3Q6lRN/36Pf6zEYDqQkHUGeZti2jaZpbO3uUACPPvoYCEEQhaBpXLxwUVaSabC9vYPvyyRyXddZW1vHdV0pmdc0Njc25GdtGPT7faRHe0GSJKriK+Etb/krvP3tP8DGxjqaptFo+MxmUzVdXlQJ661mize+8Y0sLy2RJiknTpzEsiyOHTtGv79Ev9djPl8QBAspE7csGiqBvd1u02w2mEyk7cBxXO6443aWlpZZXl5mdXWVRqPB619/L5qSn586eZIoipQyQmNjY508z/A8j8cee4zhaFhJ7R3HxVZJ+J7v83z/zxDSsC2b0tWmUjnpVidXtfFTFEIlpqekaYZt1x7tGjVq1KhR42bHe9/7Xj760Y/yt//2337O94QQ/Lt/9+/4p//0n/K3/tbf4k1vehO/9Vu/xdbWVjX5fvzxx/nc5z7Hf/yP/5H777+fd77znfzqr/4qn/rUp9ja2nqV3831xW//Pz91o5dQ4zpDCMGT/78nuPzY5Ru9lL80bmmi3Ww2Ve1WQRRFzGZTdE3Dsm1c1yXLJSmVXcwyhTvN5PQzyzLiKCYMQzlZVpNAKR2X5NayTNIsJQgDtWuoYduOTCNH9WArf+zVRElUXd4aumFURMk0pTS89E5bloWh6wwOBmxv75DnMlVPVnqVNx3dMKpaqDzPSbNMea8FhmEgREGSxLTbHdY3NpjNZsxmUzJVRdZoNNjZ2QUErVYTv9HgxImTqlv1LGmSEkYRJ06coNVqYpoyGd22bQzdIE4SgoWahKeySss0pXy5KAS6IWvCWq2Wku7LZOwolM/Z6XRI1VQ/TVOiKOTJJ5/Esky63R6LxQLDMNWxkfJ7wzAIo5D5fE6aqX+HIQ8++CBf//rXcRyH+Xym5PdyTbPZjIODAwaDAZYKiovjhDRL5bHWdWbTGWmacOnSJeI4Ynl5mTwvMA2TZlOGbKRpimnJ1He5qVIwny+Yz2dMJhMm0wlra2s88MADhJGUjs9mM1rNFnmeczAY0O12WV1dY2d7m9XVNdIsI4xkSrxUIyQsFgsQMjjve6Ek1qWioaz/0g7vgKaBaRhqo0K/oou9Ro0aNWrUqHHr4dy5c+zs7PDud7+7+lqn0+H+++/na1/7GgBf+9rX6Ha7vO1th6nc7373u9F1nQceeOBVX/P1xNN//iSPf/nRG72MGtcZn/7F/3ajl/CK4JYm2raqaQLp147jmOFwxHAwYDIeE0URju1U0+cyxKz0tuqq89gwzSoYzfVcGr4M3CpJjWXK9HI5aRZX3eRayom2EMq7XXYi65ry4xo0my2iKEJXyeSWbaPpmpqMC/I8w7Jt5bW1sC0Ly7IwTQvLLAPiDyXrZehanmeMxxM8z2M+nzEYHGBZFr7v4zguzWYTx7FptVqcPHmyCgXzPJc8y5jNpkRxhOe6sn5rOCRJEulh1nRWV1dBCEbjEWEYqTXqzBcLSr1zHEWEYUQQSmJsGAaz2ZQ8z5nOpoxGQxqNBqZpsVgscF2X06dP841vfhPXdfE8n+FwQKgenyQJs9mcht+g2Wrh2I5MaLdtptMpADs7O2iapkLZEhoNn+l0xvLyElmWsdTvMxqPGY9HaGgsggXj8YgkiWk2W0raLpjN5gTBgul0ymQyZn19A9dx2d7errrPhRDMZlMsy2J5eZlWs8n+/j69Xp9up4NlWYzHY0DQ7XZYW13lySefrELUlpaXiJMEzTAwTYs0zarMgDzP1JT6qhO8JNNqw6ZUNaBR9aaX59xRVUVRCIIgZDQavZKXW40aNWrUqFHjVUaZMbO2tnbF19fW1qrv7ezsyN/VjkBm3vSr+1wLcRwznU6vuN3sSOOUz//aH9fy8dcwvvjv/5j9Z2/N3uyrcUsT7SRJcD0XTdMIA+klXl6R0l7P9/E9j0azgetIYul6Hq7nytCyXMqwdV3HdSXhjKKoIuJJkkjCqMuwLFNVQiVpQpEXiKKQ8nBFeoUQFFU62mFKmgbohoFu6EwmExrNJqZhEkUxWZqyUKQyjmJcV67NMHRM08K0LCzTwjRNLNtS1WFmlUxe+rfzLKfZbNBoNOn3++Qqdd00LYJgUXmIiyInimJOnTrFYjHnwoWLbO9s0+1IqbyhJv8I2QkeRSHD4YD5fI7ruiwvLbGyskwSJ3ieT6/bpdvtsre3x8rqKpZlkqnqM8uy8DxfepeznOFwBJpGQ60zTVMOBgfc+brXsb29xdbWFo1GgzTNODjYJwhCTNNgsZgjCoFpGhjKi7957BjHjx/n2LFj2LZDo9mg2+1imhaGYTCZyE0Hz/MIw5Dbb7+dY8c2ydKU4ydOqI0QIWXbnodh6Pi+T6Phs7S0xOXLl2gpX/loPELTNCxVrZamMgF+ZWWFCxcusLu7y+XLW/i+z+rqGmEYkecF7XabVqtNnMR0u10uXb5MmmUsLUt/ehwfJsTnz+M/Kb3XJf8u+7It08QwlN//SNI4qHA0RbpXV2uPdo0aNWrUqFHj2vjlX/5lOp1OdZP1qjc5BFx4+Fke/Mw3bvRKalwHpFHKNz79AHn62gj0vaWJdpanFEWOpSa/uq4RLObM5zPiKCIvCvIsZzwZV93JSZJUXdtpmlb+Y9/38X2fNEuZL+bohoZhGqDJdOksU73XSJmvpuuqfkmSHSEKirwgVR7qPM9BSB9ySeg73Y4kaon0YWuK/GuaThiFFELKwE3LohC57EdWYWrT2bzyb+uqGztJ5ITdtKTXOk0ThsMhaZKga7IWqtloous6BwcH2LbN/v4eZ86cUe/ZY3Njk+l0SrfbZbGYEywWpEmC57oAdLs96ZFOU2Yz2aPtOLYMm9vZYWdnF9OQvuGikATTc11VayWr0dbX13EcW/q8XY8gDKRPPI7JMtktvbW1xcFggOM4rKyuUghZpWbbtpT8p6ma7Fvomsbjjz9Blsme8jzLkCRTyu4ty+bgYMDZs2eJo4jd3V0m0ylRFBOFEaZpcvnyFpZlMhwOKISU5PdUsNv6+jqD4YBmq4XnukynU8IwJE7iauLe6Uhi31/q0+/3aLaabG9vq0R7GVDnug79Xo9Gs0mv08VV589gOMAwDIIgVJ3Z8nwuVOG6rmuqz7sMrteqmi/TtCiEUBYEcaTKrrwmcuXlTwmj8NW5EGvUqFGjRo0a1wXr6+sA7O7uXvH13d3d6nsyBHbviu9nWcZwOKzucy38/M//vLTDqdvFixdf4dVfH0z3p3z7c48Qzurfc15r+NJ/+AJbj9/63uwStzTRFgjyLKvSuwuRgw65yEHTyLKMKJby77LDOE1TMkWE8zwniWMmkwmaruM4DnmWk2YJaIK8SFks5qoey5aERwWvieJwilhWhSVpooaL2hVzbSFQsvYh5y9cIMvzyl9uGlKWvrmxWW0AgMC0TOJUPmecxCyCBYUoyPJM+p8NgzzL0XWNLEtJklh2V88X6LoOGozHI4QQOI7D0vISrueolHMDXTdYLBYEYYhhGAwGA5rNJo1GQ6atywYrbMeuNhhSNa0WQJ5nNFstjp84TtP3GY/HRGHE8OAAXdNod9roms7W1hbD4VDKpZOECxfOk6lAsCROuHT5Ek88+ST33fdGVldWMQyjUiD4foNms6U+K3Ach/F4zHw+581vfhO9Xq9Kk7dtm1arjRCCqfJPm6bFfD5nMBiwmC8wDCnV7nTa2I7sM7dth1AljYtCsLW9TRwn9Ht9eXxMqSRwXIdOu0OeF7iuQxAsOHv2DPPZHF3X2dzcVIqBiEZD+rwty6LRaDKbzSj71IeDYaVcyPOcvMgxDJM4jgnCEN/zsSxLWgx0HdM0sdUmkjzuutp4SEhSedwNwwBQSgizIuXz2eLVuhRr1KhRo0aNGtcBp0+fZn19nS9+8YvV16bTKQ888ADveMc7AHjHO97BeDzmoYcequ7zpS99iaIouP/++5/3uR3Hod1uX3G7VfDYlx/lzANPv/Ada9wyGF4a8MRXHiNevHYq3G5poq3rGoUQRJUM164m12maoiH9sY5t43kujpJcl2FolmXRaDYxDIMsy6Q3OE3odbssLy/j+x6mZREEAa1WWzYwCSEn3QgKRZR0TfYh62qyLYPAdCw1gc2LHF3Xmc/nnDx5ktWVFdrtDkksyXGVCG6aJHGiur8FlmmS5zJF2rYtLMtkbW0Vz/O4fPkyaZai6wZJkrK2tk4URbKiTH0eGxsbTGdTkljK4NM0u+IH6Wwmg73CSHZ257mq5MoLplPZF72YzxECDF2eKpqmYZmSQPa6PaaTqZq4yoCv0WjMaDSm2+1JWb2A+XymPO4pvV6PRqPJ6qrsl9Y1jR+8/34Mw2Dz2CanTp1ib29XhbK1quAvv+EzHA7RNA3Hcdnb26+6sA3DZDqdEEURruvI7u1C9qZ3Oh2WlpYRoiAMIw4OZK2WlMsL4iRWHnEPy7ZYX1snz3PCMGQ8GlfBcRowGAxYWVnBtCzZ9e16tFpN7rnnHvb39nEchzvuuJ35Yq5k+yFRFLK+tobv+wghiOOI8WTCeDImSRLOnT3LZCJfx7Ys2dGNhu83yPOCJEmrELzSoiCKojoOlmURhCFl6niRF+iq93w8rj3aNWrUqFGjxs2O+XzOww8/zMMPPwzIALSHH36YCxcuoGkaP/uzP8tHP/pRfu/3fo/vfOc7/N2/+3fZ3NzkJ3/yJwG49957ec973sPP/MzP8I1vfIOvfvWrfPjDH+b9738/m5ubN+6NXUdMdyd889PfYDGqhwqvFZx76Owt35t9NcwXvsvNC02T/mrUhDdNU0zDwFQe1pJMp2mKo+tSpgtoqqtaV+TRsiyyNK2qvnTDIEkSHNvBdXQM3WFnZ1slfOvYliXl4kVBnCQYuoFt2wghK8EqQiQkQS6Kgm6ng6bpRGHI2toaly5flmFfzQa5SkDP8xzDNGVnd56TJAm2beG4DpoGeZ6zvLzCtx/5NlmW02g0mM9nuK7LZDJGQ6Pdbsn3JeDg4ADf99ENgygKORgcoKPT7/e5/fbbOTjYV+Qv5uLFi7TbHYQQ+N0OlmWzCBcsgoA0SfD9BpZlE0UxeSE7nIejIb1uj8l4QpZlNPwG99xzD2EYMB6PmEwm9Ho9lbCdqWC2BhcvXmSxWLC+vs4iWPDww49w4sQJ5rMZmi796ePRiN3dXU6duk0qDYqcyXjMcDii1+vRbreZTmc8/fTTdHtdWq02+/t7dLvl9+SawjBU6ejgeR69Xpd77r2X/b098jxjsQjodjtkWcalS5cYDAZ0ul1azaby6kv1w6VLl+j1ughRECwCvvzlL9Nsyh72IAgJggXj8YSVlRU50W+3GAyGVU3ZdDqt1AaNRgO73WZ7e5tCiKryyzSlX9u2rerc1XWNMIrIsxwhCnluq/C+svrLtmS6ehRFOI6LrunMF3Pa7c4NvT5r1KhRo0aNGi+MBx98kB/5kR+p/v2Rj3wEgJ/+6Z/m4x//OD/3cz/HYrHgQx/6EOPxmHe+85187nOfk78DK3ziE5/gwx/+MO9617vQdZ33ve99/Mqv/Mqr/l5eTXzz0w/wnv/tx/G7/mHtaY1bEuPtEV/6D18gCZMbvZRXFLc00S4KOXkUQtBuNGQQlfJsS790im7oVR1WnsvJsm2aNJpNoigiiiIsy8K2HTQVNDUYDMizXKWTF5hmjqWCxUzTRVey7TyXRv1CyNcydB3DNNA1vfq6EGCZZjV1bLc7jEZjXMfBskyajQaWbdNutwAhiboGSRJTFAWFMAnDAKFSxp858wyO66LFiXx8S06Wt7d3aDQlGW42m0RRSMOWndD7+/sc7A9YWl7CsixOnDjBmTNnCEPpbXEcR208SHmyZdkEwYKlpSW2d7axLRtHdWX7nsdoNML3G4gwoNPtysquLGMwGDCdTmi321iWjef5RFHIsWPHeOKJJzhx4ji27SCEoNvtMptNmU5npFnK3t4u/aUlppMJeZ6zs7OL3/BBgzAMWFlZwbZsPM8jyzJarRYHB/vs7u7QbDaI9AjHcdjf31OhcEsMh0MVkiZl8s2mfOyli5cwTQNN07FtiwsXLtJqNdF1g7W1NTqdLkEQyFT2PCcMAxWW1mBpaUkm2w+HAGp6LlO+V1ZWyPKclZVVDg72aTR8TNPk6aefJstyOt0OW9vb5O0ObqNBu93Gth1iZV9otlqVcsBWPvgsy7Etm0xLmc/nZHmOoetq7XLzyDB0dF1uLHU6bYbDIe1Wi/Fk/GpfkjVq1KhRo0aNl4gf/uEf/p4p2pqm8Uu/9Ev80i/90vPep9/v88lPfvJ6LO+mRRql/PY//RQf/i//m1Kb1rgVIYRg7+zea26aDbe4dLxQtUu2ZTGdScKGkJUGvu/juq6SLwuiMCTPMhkWpVKZi6LAtm00NLI8Q9d0sjyX4WeqcknXZAd2lqWgqpoQgqLIZVq0ItK2ZaFpepVMniTxYccxGov5nFB1fWdZWtU+tdttmZoeRiSJ7JfO0hTbdvA8T3m+dSzLRtcNZvM5rVYL27YZjcbkoiDJEgxDVxNNSZin0xmz2YzLl7dIkgTP8/irb3krrWaLKJJJ2LI6SieOY3TdwDBMsixnsZiTpimL+QKRFxR5jms7+J4PQrDU79Pr96SEeqmP63pcuniJPMvI84IoignDQPngC5599ln6/R4gKyhWVla54447yLKMu+66i5XlFY4dO8ZkPME0TRzHZnllGd/zmc9mdLpdJtMp88WcKIro9fsEQcCpU7fxxje+kXa7I+87X9Dr9QijkDzPWFpaAiAIJFEfDkcYhsHlrcssgqDqHdd0GeSW5RndXo9ur0sQLNBUp3qe57RaTcIw5OBggBCCe++9lyRNmM9nLIKF9FqbRmVLKKXzcZJQCIHruoRBQLvVwjSkjQCk5L7RbMhNDyFwHJcgCPE8j8V8QZZlqqZLJp+XwXoyME1XSfQGmeoZXyibQ3me1qhRo0aNGjVqvFbx6Be+w+XHLt3oZdT4SyBPcz7xf/s/b/QyrgtuaaJdkiBdNyriXAakCYQiJLJqynYcRValbDyOY1CPD6OQxWJBFMsJd5qlCCHQDSkJt9Q013Pdyv+tGwaOIyXdSZIQRTFFkWPoBq7jYKqwK9M0iOMYy7YxDYMwitA0jcFgqDy4CYauk+WZTNBWKdJFUZAXBYYpib4oBJoG/V4fx3EoihzXdaR8PZZkruE32N8/YDgYYtsWd999N44t/cpLS0uEYUieS+9yGIY0my08z6XdbuO6DnEcIYQgSRKSOKHb7bK6ugZozBcLZrMpe3t7RFHEZDTGcx0e/e53yYuc06dP0+/LBG7P8+h0u2xsbNDrdSkKKXM3DFPVps3Y2paVWEmSVMeq2Woyny+YzmaVdH4+X9DwG0RRxHw2w7JsNtbXAcGTTz5JEIZKlj3jr/21v8aFixfJs4zhcMTe3i6DwYAwjNT0XuD7DbqdDhcuXGBpaZlTp07S63aZTKa0Wy1GwyE729tyI8Q0mC/m1S6znBqnLC8vk6YJ7VabJE0ZHBxw1513srK8zHw2YzqdYlkmruviex6madJqNVlaWqbfk52WpW1hMpnS8Bt4nk8YhkwmkyrUrNlsINTGUZ5nVRL5YhFgGCaoPvjpbEaW5biupzz4LUajMY1G64ZclzVq1KhRo0aNGq8GhBB8+hf/241eRo2/BL71B3/B1pNbN3oZ1wW3NNHWdR3HdjAtU0rATRNN06r6o7KB2LKlDDdOpA/aMi2mkylpmspKJRVyliQJRS7rpgxDSsDTLJUp3GgsFgsVTlWQpRlZnuF5Pq1WG8+XhKooCknWE1lNlReFkvbKruZWs8VoNELTNZqtppS5C0EYhpw6dRK/4ZOrLm9RCDzXRahe6yRJaTQbzGZT2f9smtJLvViQZxmO69Lr9TBMkyAIWSwC4iQmCALVZT1E13V2d3dI04zFYlGpAjqdDv1+n3ZbTsv9hq981rKmq9frkSYpjuOSpql8j3FClqacO3uOOI4q33CpItjb2yXLMu677z6msxnD4UCGsyUpZ545w3e/+yimaZClKQcHB2xtbanQOkepBgpWVlaYTMY4tiODzZaXePzxx1VAXQtN03jLW/4KjUaDixcvcO8999Dt9Th2bJNer8cPvP0HCIIFTz/9NCsrq4xGI86ePYdtWTzyyCM88sgjaJrG+vo6ofI4yyA1g4bfkBNo0yLLclZXV2i15PHr9fpys8Nx6ff7fPnLf8oTTz5Jr99XdWoDRqMxw+FQJrJHMfP5nN3dHVzXZWdnh/l8TqPh4/kenY6U2+d5ju04qoYuAw1c1z30YQlot1tEUUQcx1VlmpTYh6yurnL+/HmVqp7duIuzRo0aNWrUqFHjVcC5h87y0O9980Yvo8bLxOf+7R8oBe9rD7c80QZZc2Bbtkz+1vVq6gygIad+muoi9j2PLM8AKetF1V95nidTnG3pcXZdlyiOVNWUJN55nhPHEVmWo+kyhEogk6tLP62uy1Rsx3XQy+7uNJX1X0lCGAZS4m3bGLrOYrHAUusOwpDlpSX6/Z4kVhqkmVyrYRgq1XtEUQgODg5wHEdVW8l1z2ZT5vO5lBVrGvP5TPnPbfIi5+BgH5D+6M3NDaIorD4bx3aq/u/BwUB+XqqLW9d1oihk89gx2m1FPJOU/Z09DLRqUi8T0BM0XSMIAkxTBnydO/csju1UXeRFkWPbFoZhcO7cObI8lxNZxyWKYhaLuUqQ14njiOFQpmc3Gk08V/qsNU1TQXjwxBNPKF96jK0q2qbTKb7f4PHHH2dtbZ3jx4/T7UqZuOd7WJZNq9Wk2WxVAWS+7xOGAcPhEMexuXTpEpZlVx3gcZwQBAGTyYSDwYFUOaiJ9R133MHdd93FaDii2WzgeR7dbhfDMPA9X6kbTGzbodVqY9s2J0+e5Nix4+zv7RGrtPl2p81kPGE4HJJl8ngIUbAIAopCSN868tgGC5m0WRQFjm1jWia2ZbO0tMRiPmc4qlPHa9SoUaNGjRqvbQSTgG/+929Q5MWNXkqNl4gv/Ps/ZueZnRu9jOuGW5poC1GQF7mUjYuCOJZTwySRhCgIAsIwwPO8QzKtZOONZrMiSZouq5JM08KxXEzDQkNHiALD0omTkDSL8RseQhMsghlxHBInCRqgKy+vEIXy9RbkWYbneYhCIAqB73m0Wi01lW6SphnT6ZQ8z5nPpTx5OpmwCAKEkD3VZc3UIgiYjMc0Gk004MTJkxw/cRJN12m32+Qq1bzRaNBqNcmyjF6/T5ZmmKbJ8vIKjuPg+w0uXLjAbDZna2sbv9HA8VzanQ5Cg+FohOPKTYLZbEZa5GR5ju/7jEYjtrYuYzs2hqmxvrnOiZMnMG0LTdfodDrM51Ly3Wo26bY6LGYzptOJCj2bsLS0JFPQdZ2VlVVWV1cRAlpNGQQXJzF5kbO0tEQUxQghGI8nrK+v0263MQydPM9UynfIwcEB0+kE0MhyeR7EquLMth2GwwFFnpMksj/94GDAm970JlaWVwBBEAQURU5RyM2G6WSKaZpsbm4yGo3pdNrs7e2xtb1NkiTkeUYcJ7TbbZpNqUbIsoxms8ViMUfXDU6dOkmSJAyHA4IwwLZtXNdlOBwwDxa0Om02NtZZWVkhSRO1IWHSbrdot1ssFgu63Q5RGLGxsUGR5yp8L8MwdERRkKZJpRyQPntI0wzTMHniySeI45hWq4VlWTf0+qxRo0aNGjVq1LjuEPDUnz/JQ79bT7VvJQSTgO/88SMkwWunN/tq3NJEO8tyUiX3zhXR6vf7+L5PmqQUoiBTRLYo5C6Xbdl4ric9uCq9OcsyKSPPBQLI0gxRyClyksQyjRtBkibomsbyyjKe71VyXk0DXdNATc/niwWTyYTZbMbu7g4gyPOCIAgwDAPTMDEMnWPHjnH69O1S7q3r7O3tM51Omc6mpGlGp9OR3d8qLC2OI+bzBZcvX5a1YoZBkiYyEbvZZDAYsL29w3Q6xVHy79lsRhiGLC+vcOedr2Nz8xhhGOJ5blVjtrO7S5bnnDh5Ese22djYVLJ0C8/3yPOc48dPMBwNZcJ6mrG9vc0iDDAti3vvfT1Zmla1U5cuXebMmTMYhsFsOsPzPDaPHePs2bPcfvp2ms0WSRJjWiZBsMCyrCNhYA6u63L69G34vs/Jkyd44skneOaZZ4giOd2WmwY+7XaLpaVlxuMRTz0pkwrb7Q53330XYRiyu7vLeDxWsu9VJpMJ21tbZFmK47rceeed9Pp90jQlDEPuuusuWq0WjUYD35fp6q1Wi83NTZaXl1hdXSXLUt70pvt4519/J6dOneLY8WNcvHiBp556imeeeRrTsqQFoRCEgfRSW5ZJv99H0zSazSYHBwP29/cZj8fEcYzjONx222lM0wKBTMDXIElSmq0WURhWU/xS8l9OyHf39lheXqHZbGI7MoNAergNrDqBs0aNGjVq1KjxfYDZ/pTHvvxo3at9C+Evfv9Bzj109kYv47rilq73AhkUVSh/tWmYmKbJfD4nTmIsy6p6tLvdLmEYMopG2I4MN0PTqqCrckIoFCEXQqDrsps7jmIs26LVkuFSaZqSpSk6hgp2PjQW6IZOq9kkcRwW8zm9Xg9LdXanSap80TmdrqyQiqIQy7LY3NzENC00TWM8HtHtdImjiOl0SqPZpNfrMxwOFQGLiSIZXLa8vISGxnAwoKueU9clAd++sC17l/WYp59+it2dNmkmPeYlGWu2miRJwsbmBpZp8vilSyzmcxzHRSC942EQkiQJxzaP4bkuu7u7ABimxfLSMrfddhtbW5fpdXvkRU7DbyBEwWg0Ynllhfl8zt7eHpZls7u7yyJY0G61ydKUfr/PQw89yD333IPreezv71ed5pcuX1ZKA4NOp0Mcx9VnJmvIrGpivLa2hhCCp59+ugp3O3XqNqI4YjQa8ba3vZXBYMBkMpGVWCqZfXd3tyLD586dw7IsfuDtb6fd7vDIIw+rNPeYYCFD2jqdLgcHA1zXJY4TdF1jMp2yvr6B7zeYz+Yq5d0FNOI4VhsyGmmasre3R7BYyIT7TB4r31/miSceV/7/nOFwgGXJXAHP9QiDUPnfIU0TJZuXwWdZJi0BnU6nOi/7/Z7sWF/U/7OpUaNGjRo1anx/4Fu//xB//QM/xOvuv/NGL6XGC2B4ecjD/+NbhNPwRi/luuKWJ9q6YSAy2Wed5Rm7u7vkWU6r1SJNk4qMxVEkE66LQpJPNe3TNBmZVgghu6qVHFcI6QGP4ljVJ2UEi4Bmq8liscB1HJI0wdBlH3MJUQhSFZJV5AW242AaBs1mk53dXfr9PqPREE3TGI3GzOZzHNuh0WiQ57kMx/I8kiTGcVwMM2BjfUN2KGcpS8vLBMGCMAqwTFOldsto/DyT4VdxHNHtnmQ+n+P7DcIwQM8NwjAkzTK63Q6+36BAMJ1OKArBcDBE1zUsy6LdblMIQavZIo5iClt53A2dwWBAs9GgpUieEAWf/vR/58SJkyr0TWMwHLC2vo7lOMxn84rMr66usL9/gFDhb0JAFEXcdtttHD9xgqeefJJmo0mrJX3TuqaxurpKkibKHx+zurbKbDZlaWmJlZUVBoMBp06dYnt7hziJeeMb38BoNCLPcxaLBa+/916efvoZBgNJXtE0sizFND0s26IoXJrNBpcuXcJxpK/+zDPPcOnSJQxTXh6maSkZtsby8jLD4ZCHHnqIvCg4eeIk/V6PNE05ffo2Dg4GmKbJ6uoqw9GIxXzB6uqKDDYzdDTA1KXfXiabmyAEaZpiWSatVovxeIRhGsxmUwCWl5cJgoA4jvEbDTzXYxEs0HWdRrOhMgkywigijiK63S7b29sEi+DVugxr1KhRo0aNGjVuKBajBV/493/MiTeewGm4N3o5NZ4HQgj2z+3x2Je+e6OXct1xS0vHEVLerekaWZoRBAGaptHtdljfWJdhVLqBbVkEodoxUZVI5ST7WtAATZcdx6ZhUIhCEj2V4G1Zlqyr0g117yMzbakgJwjk5LpQPuskSaQkueHLHmzLpt1pI4TA96WHPMtSEjXl1XWdre0tHMfh4OCA7e3tKgzMNE10Q6OhCOz5Z88zHA6ZTCayJqvZ5Mknn6jC2wBarRaGaXD77bcThhHzxVxWnAF5nuO4DlEsfdGnT58mDEO2t7cAOTl2bIel/hICpL84TphOp2SZ9HEHYYDtODRbLYq8YB4EeI0GzXZLdYzLSrO1tTWOHTtGURS0221s2+HChQukSUKSpiRpwuXLlymKnM3NTVk7FkVkeYZhGIRBiKbJsLXNzU3iOOaZM2cYjUbMZzMODgacPXtOhpi5LuPxmDzPOHPmLK4ru8Bt22FtbZU8k5Vqz54/j+O4su7M9QiCgPX1dbqdLsPhiNFoxGAwAA1s28a2LRU4tuDMmWfY2NhgMBiws7NbTc0vX74se9gNnfMXLrA/OCBJEhzHIc9zDMPEcRwcWwbaybA7T3VjGxi6QRRFNFst+RlnssYuiWMZKJcXzOcLuenRastJN+B5HuPxmG63V3WX16hRo0aNGjVqfD/gL37vQab/f/b+PMa29DzvQ39rHvY81K656synZ45NdosiRSUMKYkyrmAZsILEpAVBudFt6kKRY8v2dRRBDkRYGWQYiSUjwA39hxnpOrAsm4YYUaRMWWST7G6xT09nPqfmqj2Pa57uH986m+5YFknRYXeL60cU0Kf2OrW/vfb+Duv93ud9nt7sT/09v+CNxZt7/Pbf/T+I/OiNXsr/7by1C+1c+v3AEApEnavpOuPxhCROiCIRk6Tr+jJ+C8TfeUBGPmMtpWQkomjOMuI4hrzjrcgKpVKJyWRCmqb0+n3COCCMPNIsIUtFHFWaiHgvWVFoNJpUKlVkRWRp65pGlmX4vs9sNkVCol6r4TgOjusIaXoGs9l8GSHm+z6arrG+vo4sS/R6PR66+hC7O+cplypsbm7T6XQ4f+48pZLobkqSRLVaw7ZtFEWh0Whw5cplsjxyK0kSppMJ7sJhfXWNRq2G77gErocEjEZjnnjiCb7/+7+flZUVZFlG1VQcx6FSqnB22sO2bNZW1+gNByi6znAy4e79+wyGQ3bO7ebr1vGDgNNuF1XXOT45YTwesb+/zziPDnM9l3PnzqNpGqZhsra6RqvVJgyFU7vnefms94zhcMhoNMSyLM6fP49tWxweHqJrOrIiM5lM2NvbYz6fcfv2bZ54/AmCQKga7JJNlB/GOM6C45MTdN0QzuyqeF8ajTqnpyeUSiXa7TZJKg4gAOI4ptlo8Nr11+h2u3S7XUqlEnEsZqafeOJthGHA5uYmdqlEGIZMZ1PCKOLDH/khSpUKtVqN7tkZ87mIljs+PmY0GlKr1YU7fRgymYyRZQVVU4njhPFoxPHxEVJ+QKRq2lKpIctyHhFWotVqUS5XlsV6GIWYVnGaW1BQUFBQUPC9Q5ZmfOpn/79v9DIK/j1kWcbRK4fc/eqdN3op3xXe0oV2mqbEeVdSVTXRFU6SfI7XJ4pjDEPEdCX599M0Rc0L3tcjZrTTNCVLU5L8Z8v5LHeSCsM1WRIdR9E5ryPJMoqqLGOrkiRBApzc/Xw8HlGtVrEsCz3P8y5XKoCIzZpOZ7TbK0sTqwdRXrKisL29RbVaZTGfMx6PlrPof/iH/4ZBf0ASx7iei2mazOdzWs1WngEtY9sWum4gSzL9Xp+bN2/h+8Eyump39xxxHLO3t0+tVmNtbZ3d3V2azRaLxZzFfM6LL14TEVF54T6fzZlMJsymQm5eqVRYXV0V+dbNFoZh4Hket2/fJksznMWCtdW1pZHX9vYWpmmyvrHO1StXUPMZb9/3ODk5QZJgPp9h2xaWZdHpdJjPFzSaTc6dO0ez2aTTWcUPAsbjMZ///BdoNhtMJhMeefgRyuUKqqZiWiIC7Nlnv8zZ2RnT6ZQ4jlk4C8IwYGWlQ+D7vPOd7+Cd73wnFy5coFwus76+Tqezyv7+AYeHhxweHqLIcu6E3sZxXCbjMVeuXBFdfkNna3uLk5NvdP4ty+Tc7i4AjuNQLpf5gz/4AkEQcuvWLaHCUFUkCQzDRNU03FwG7vsepmUJqb8k02o1sSwb07SE2iEM0FSVlZUOlUqFSqVMFMfM53MGgwHT6YTFYkGSptSqVbpnve/uhiwoKCgoKCgoeIO5//xdbn3p5hu9jIJ/D7/1Nz/9Ri/hu8ZbekZbdKwjUfyqCpZpLp3AbbvEbDLBcR3CKKJSqYh4L00TcvD03yq0M3KzqdwQDWGKJkkSSZouO9XAMk7MNMylVNtzPVRVy2W/MqZZwfWE/Lg/6DPOnbIlOXc6B6rVCr7vEYYB8/kcXddxA4ckiZFlhfPnz+P7Pp4n4p/CIBDz6GlKlqVCUh2GHB4eU66UKZkWk+kUNZ8rHo1GtFpt/MBnMp2wcBY0my08T0JVNcbjEZZlkaYpo9FIzGKnKeVKGQDHcQkCn1arxXQy5fDwkHK5jKULaXW326U/6KPbFpEfYFY0SradHziIwwoF8g6tyAs3dJ1+f8DKSptet0sQhCwWc7a3d0hT4aI9Go8JwpByqUwQBDSaDQLfJ4ljWq0WJ6cnzGdzZFkiTVOazSYgcXCwz8bGOoqi0O322NzcRJYlTk/P2NhYZ7FwWLgLnMWCNM2YzWb85m/+Jts7O1QrFTzP5dq1a3Q6q1QqZd729sf58pe+KqLSGg3m8wUrKytcuXKFwWBImgqzt2azweXLlzk7O0NRVBRFpV6vYRgmruct1Q1ZFNJur1AyTSQJjo9PWF9fE/FykpR37sX7XCqV0DR1GR1WKpc4OT4hiiJUVeXOnds0my2iKKLVbLFwFozHY2zbFsW+JozSWq3md3E3FhQUFBQUFBS88URBxB/8D7/P+3afZtZaEBnxG72kgpwX/8kLnNw4fqOX8V3jLV1oIwlJr54bnol5bVnkaTsLMjIURaVsGGLuVVHyLniCLMvLrrYsyd8ovDNhjCbLgCQRhWImVkLKjdMkfN//t2ToEPgBUSQM0JpNYYxVqVSQZGlpcmboOo7r4viiu762Joosy7JQFBXd0IknwtRtbX2Fqw9d5ctf/jJZmrJYLESXW1awbZsgCBkOR5TKJT74wQ/y9a//MWEo3Kgdx0FVhfv62dkZpmlQKVdIs5T5bMba+jrj8Yg4TqhUyjQadYIgYDAcYpoGnu/jeaI43D13jvFoxGw6y5/XR5KEg7ZlmQRhCEDJtpElmYXj4DgujUadWr3OaDRikUdRlctler0eJcvG83xWOmJGWpYVkkRkipdKJZqNBmmaomkqo9GYzc0N+v0+N2/d4l3vehftVosLFy4QhSHz+Yz5Ys7jjz9Oo97g+vXrxHGMqioMhgNKdomHH36Y2WyWG6yJ5yuVSqL4d118zyeJE9bX1+n3BximwenJkNOTMzRN5fz5c9y5cwdVVZjNZ7RbLSqVKkdHh3ieT7fbE3PXacrO7iau4zCfzylXyvT7/fx9kXn40Ud57mtfY2N1lTiOqdaEmVySJNRqNcL8XiqKjpvPoYu8bIvxaESz2cSyLGRZQtfFPH+aZiSpyC23LZs4jvE8D1VV6Ha7HB197/xDVlBQUFBQUPCd8edmrjmD2398iz/81Bf5wIc+QCb/OXldfw741//rF4jDPx8HH9/KfnlLF9qqqiLLMg8GtD3fJwpDJFkmDEN0TSPNUnRFz3OzhbFZmqbLIl1RFHRTR0u1pew6TVLiNCNNEyRZFvnGksR8PgcJyuUyiiyLruZkwpWrV1hbXWM8mdDvDfB9H2fhcJKcoGsazmLBAmg1W8iSRLPZxPU86o0GQRCIbnGpRKVcYbGYMx6NuPbii3iuS61Wp98fkCQxlUoVJFBVMXcdxxE3b97Ii+WQMAwoV8okaUJKhqqp1Oti/vfB4cBwOEBVVer1MkEg3LwnkymKIjOZeKKbXCljWRYH+/v4vs/Gxjqu61KybaIo5NKFC5yenSJrKsgykiRxdnaKqolZ8sl4TPf0jJWVNrVKFUMX9//yxYt0u718LeLQo1yuMJvNME1zeSgRBCGz2Rxd15ZZ048/9jiB73Pv3n02NtaXbuWarnPr5i3K5RLdbg9VU2nU66ytrfPSS9fY2tpkPB7T6XRI0pQwitADnSRN+NGP/ihf/vKX0XWNk5NToiik3+uxcBxeffU1dnZ2efnlVzAtk5OTEzY2Ngl8nyeeaLO9s4MkHdJut7Esm83NLfb29lhZWSGOI7IMzl84nx92mNx47VWyNGXuLJhNply9epXeoI+u60yPjmjU6qystLl39x6NRoMoCAmDkPv373Pp0kVmsxmtVnOZo97pdFBUhfFojGmajMdjVldXOXf+HKqi0u2eFWZoBQUFBQUFBd8yw+HwjV7CfzBmsxm/9j/+T/za//g/vdFLKfhzynw+p1ar/anXvKUL7TRNUfLOdJKIbrAsyyiqiizJSLLEeDKhVCoRBAGGrqOpBtNcYp2mKUEQLOXkVrmcz89KuI6D64n84iSJSWLRlZ1Op6LjqqpkgOd5uI7Dq6+9KuK0rDJxPhsehRGqomCYJhISvV6X3d1dNE0jGE9QGgqu4xDHMZZlE8URsqwwGo3QDYPRaEwYhkIWb5lLB3FV0/B9H13TeTDT7Qc+mqphVSxGwxHlcgnX9XAcZ2kYVy6XabfbTCZTwlBIxU9PRed2OBxSKpXpdDqkWUqGiJxSFJXxeIKqKmiaTpwkdPs9DMuiUq8xmc9Jk5St7W0O9g/odrsi3zmK8665lXe0S/R6PQzTwHM9LMvC94XywND1pWlZEIRkmeji1+s1ptMpmqYxm02pNxo0GnX8PKrN9wNUVV1KqpvNJovFHEVV6fW6tNsrwv1bgul0IuLWdJ3JeML73/9+7ty5gyRJy7GCg4MD6o0Gvh+QJPFy5tku2Vi2jaLIxEnCtWvXODw8QNcNZrMZw+GId73rXbz00kvIsoxhGGiahrtwUGSFZqOJZZncuiOMH1babY5PjtENI3eDV1lMpyzyme44iuisrTK/u6Bery+jv45PTiiXyrRaTRxnQRiEpFlKq9XC81ziOGYyHnPhwkWGwyGGWZihFRQUFBQUFHxriHE8ODg4+KYFRMG/n9lsxvb2NoeHh1Sr1Td6OW9J3sz3MMsy5vM5Gxsb3/Tab6vQ/uQnP8k/+2f/jBs3bmBZFt/3fd/H3/t7f4+rV68ur/F9n7/21/4av/mbv0kQBHzkIx/hH/7Df8jq6urymoODA37mZ36GP/iDP6BcLvPxj3+cT37yk8v54m8VVVVRc/dlWZKJ4gjdMEjTlFK5RBgEmIaJqigkqnBxfnC9oiikSUq5XMb3PMIoIghDbMvGtEziJCGOYjRdQ8mfJ8ul4lEYEkWR6GwrCq7rMp5M0DSN9bU19vcP8H0PELnU8/kcyzQJo4jT01Nq9TqGoTMaDbHtEpcuXsJxFhiGQb/XR5ZlMRucy9ANQzhfh2GIoqjEsUeSpriRS71ex8sLTwkJWZJZXe1wfHxCs9kkDqP8AyoRBAFRFBNFEY4jZshd10VRZMIwolarUqlUyBAHF+PxhK2tLaqVCq7joGkqQaQQBiGqBNPZTNx7RagATNOkZNuoipCuz+dzGo0GYTghTS3Ozs6QZYVqtYpdKjGbzZZRXZC7aqsqruug66LojuOE2XyObdt4rkez2aJcLnNycoLjLOj1uoRhlH/2PCzLZjqZUi6XkRWZJEkBkYtuGDqO4+AHAaPRkG5XrEdVVcJQvJ+BH9BeaVOyhcS9VqsR+D5ra2u0mk2+/vUX6XRW2N3d5erVq0wmU5rNJjdv3cwVEEJWnyQJURxj2xaj0QhJgkq5TK1Ww9B0rt+4QV3TaLZahEEAWcZ8sUCRZDIyBoMBtVoN3dDp9/uYlsViLkYIyqUSQRAShAErKyusrnYYj0dAhmGYjEZDoiha5qq/FfZyQUHBt0+xjwsKCv5DIsvCI7lWq73pipu3ItVqtbiP3yFv1nv4rR5EfVuu41/84hd55pln+MpXvsLnPvc5oijiwx/+MI7jLK/5r/6r/4p/+S//Jf/0n/5TvvjFL3JycsJf/It/cfl4kiR89KMfJQxDvvzlL/OP//E/5lOf+hS/+Iu/+O0sBWA5Iw2QZSIeyck7xEkiYrqqtSoLx8FzPYJQxEVFkSjMklQU0xkif9i2LCxb5FRnWUYYCWm1rutomsbCEe7QSZpClrFYLOh0OkiyzGI+X/4D1Wg0sG2bJElI04Rmo4GmaZRLJXr9vii8LZswipjPZwyGA3q9HmQZjUaDWr3GfDbD0A2SOCHwAzRVQ9P13CCsydraGrqu4fke0+kU0zDRdI3FQjhQm6YpspUlmSAIxQy7rLC+vkaWZWxubopoK01lMBiyubmBpmp0u10GgwFBGNJqtTg6OqLX7TGbzXBcl26/T3805P7BAdPZDEPVSJOE8XiEbVsoqoqiKNTrNUolm+l0snRbb7Va+Wy6wnQ6pVarYdslsgzW19c4OztjMOgThhEZ0Ov1iKII0zBpNVt0Oh00TVtKmzY3N7l48RIrnZXcvC2g0ahTKpdytYOClmd47+xsY9s29XoDQ9c5ODjMO+gBcZzQ6XR46qmnUVWFyXjC9vY2cRxRqZTZPXeOJI4ZDAa5fHtBGEZUKlUyMkajIeVSGdOy2FhfZzKZikOD3HQvy6Pi6pUq9YpwaLdtG0mSOD4+Zj6fc/f+fVzfZzSdkEkSQRwzdxz6/QGSLNPviVlwTVVxPY8sS0nimNl0xiuvvCo+p4ZBqWRzf2+Po6NDSuXyW2YvFxQUfPsU+7igoKCgoODNi5R9B84H/X6fTqfDF7/4RT7wgQ8wnU5ZWVnh05/+NH/pL/0lAG7cuMHDDz/Ms88+y1NPPcXv/u7v8qM/+qOcnJwsT9R/4zd+g1/4hV+g3xczq9+M2WxGrVbjJ3/yp5Z5wlmW4Xu+cAQ3RdH5IP7LMAziKAJJotloMJ5Mlk7PtmWh6bpw84bcTEuFTEinkSRM0ySORaZ1HMdomkapVMLzvGWkVRRFlEoldNUQMnXDXMY2tdptKuVyLjVY5NnWdfb3D0QXXtMJwwDX9USHWJapVCr4gU+lXKHX67G1tcVisaDRbOC6LpZpcdY9o1wuEwYB4l3MiKJ46RYeRTFrq2vUqlVeeullIOPChQt0u12SJGU0HNLMnallWUbTNI6Oj+msri6lyB/6T/4jbt+4w2QyES7aUcjO7jkhVdc0BmddLl2+xP179zBNCz/waTYaQgIdJ/i+x8pKh729+1i2TZLHsSmKQqezysnJCYoi5NaO42DmBx6KohBFEbZtM5lOeejqVQ4Pj+j1ugBUKlV836PRbBJHMY1GncPDI0rlEp2VDsfHx0vzuyQRZmej0RBN0/E8l9FohO/7PP3093F0dEQURdTrovCXJNjb26fZanL/3n0URabRaAiztmaTs7MzJpNpbpZ2nkajwZe+9OVc5VDCLpWEEkHXMQzhMn52dsb21rY4fEkSRpMJhmWyWCx473vfy2u3brKYL6jVasymMyrlMpoiY5kWkAmHdmfBeDQShzuSzGIhZkPiOF4avtUbDe7dvYdh6EynM379H/0DptPpNz0NfKP38j84+HWsqvVNry8o+F7Em3n8v3d+5pvu5WIfFxS8eflW9/EbyYO9/GZe41uB4j5+5/x5uYffUY72dDoFvjHT8cILLxBFER/60IeW1zz00EPs7Ozw7LPPAvDss8/y+OOPv0629pGPfITZbMarr776Jz5PEATMZrPXfQHomoamaWiqiqoouTEaZIizA0kSTuFpkhInIgosCAJUVUZVZcrlErV6HduyltnaYRjieR6e76Pp+rKQBlBkZdndVvPO7Ww2yx3BZUqlUj4LXUGWRYG+sbnJbDojimLG4wmz+YwwCjk+Pl7OWSuKimlalEol4SSdJNi2zdWrV5kvhPx6MplQqYii++RY5DbHcUyYG5pJEtiWJUzVKlXSNKVaq2LZJidnp9glIYU+OjoiSRJWVztcunQpfx0qqqpRKpVpNVtYhkmj3qDdXuEPvvBFbt+7y2yxEMWfJNPvden3ByJb23PZOzigXm+QpSme6yIrCpPJhNFoyCJ3Qa/WaiSJKHpbTXEIoOkaSRKzsbEhjN4QhnVhFDEYDgmCgHK5QhAEdLvd/L1TkWWFk5MTwjASCoMkxnU9Wq2miCrLZ9nF+xmQkeF5Hr4f5GMDKp3VVXZ3z9HtdlEUmWq1KuT4rrM0jqtVazz00ENUqlVarTYA9/f20HUd0zK5evUhHMdlb28PyHBdByFTz7Bt4QJu2SJSbmNjEz8MSLOUztoq29vbOPMFvuvx5WefZXN9k1aziW1ZGIbO3FmgajpxIg54siwjSzPq9Xq+KzJWVjpUq1VM06RcrgglRyxczCVJRtO+ddnnG72XCwoKvnOKfVxQUPCdYBgG/+1/+98uRxYL/mwU9/E758/LPfwzF9ppmvJzP/dzvO997+Oxxx4DRNdO1/V/qxgQrK6ucnZ2trzm3/4/9AePP3jsT+KTn/wktVpt+bW9vQ1AFMXEcUycJEsztP8rhi6MqTRNA8D1vGXhTAau65IBURQhIQkXcl2nWq2iyArz2RxN1fLnES7lzWYT3/OQ8ueI45gszZZFa5omS7fsQb9PFEf0+32OT46p1+toqsp0OsN1Ha7fuI7veziOi+u6hGGYZzSPUGQZOT8s0A2dRrMBGVQqZSRJzHE/yK0WxaFGkibIsgQIl/TFYkGcxKyvrVEulymXK/lcgcRsPluapbmuk9//jNlsynAg3NMbzSaWaeVZ0nNM02QxX7C+vs7W1haXLl3C9zwm4zHT6ZTNzS3y9jqSJGNbNu12m9XOKpZtoes6USjmi4+PjylXKpycnDCbTfP3SaVaqVIp5yZhiwXlUpmbN2/iug6apuP7HpquUS6XiKOYcrnM6uoqo/GYzkqHo6Oj/PnJpeniUEKWZZG7rsiUSyUee+wxptMJGaBpYlxAlhWCIGBzczMv5kOqlQpZJor1dqstXl6WMR6PiKKQJBGGZO//wAc4f/4cWZohyzKmaRIGAd1ej+OTY+JIyM3DMGQ+n3P+/HlarSaarmPbNn6elb66uobnusxmMybjCWEYkaYJlmXlUQISiqIiyxKVShVV1ajVanieGI/Y2FhHkqV8Pv2b82bYywUFBd8ZxT4uKCj4TjEMg1/6pV96yxc3bzTFffzO+fNyD//MhfYzzzzDK6+8wm/+5m/+h1zPn8jf+lt/i+l0uvw6PDwEQFGFkZWaZ2QDy85fkhffruviei6KomAYBqZpYlliDls3RMdaURQWiwVpltJsNvPIJosgDLBLNpquEQaBMOTyPIbDIZqmYVoWcRSTJgm1eo00SWk06vR6fUzTxDRNhsNh3kn3xVz3fEGr1RaGW6VSXriJQjcDLl++JIrRKOall19mOp0xGo2wLIsb16/j+Z4odvP58Ml0wvr6BrVqlclkTBRFZGmG67rUqjUOj444PDyk1+sTRSHT6ZTZdIZpGvh+kHfpNRzHYTDo02q1cByHUrmMaZr4no/0b6sEkHjo4YcYDgd85SvPcnp6ytve9jY0XSgCfN8jyx5Er0mkacJ8Pme+mKPICqYlOveBHzAcDFjLf6GrVms0Gg3RsT85IYoj1lbXGI1GqKpCkjuGP/3006ysrKDIChubm+zt3QckvvzlL2EaJtPpBDN3234gG5clGc/3KJVKTCYT5rMZZ2dnKIrCo48+hixJrK6uoioqiiK2xN7eXl5cu8znC05Ojrl+/QavvfYqt27dAqSl8kGSJDRN5/DggF6vj6Zr4n3IhCS/VqvRbDRotVpAxv7BAYeHh7z88sskScpkPGF/f0+ML+SHJrIs5yZx4rNcrVbZ2NhgfX2DOI4Yj8ecnXU5OTkmy1KGo6HI2ZZkceiiqGxufXM3RHhz7OWCgoLvjGIfFxQUFBQUvLn4M1mKfuITn+Azn/kMf/iHf8jW1tby+2tra4RhyGQyed0JerfbZW1tbXnN1772tdf9vG63u3zsT8IwjD/xROOBe7gkScssbWDpmg2IHG1VF+7ieQHzwEQtSRIUWRTZtm2TpinT6ZTA90XMFBmWZeE4DrVajcl4TLVWo91uc3p6SqPRIEkTgiBdRoUpDZVqtUoUhTiOi22XME2T0WiUy6NhNBrR7/dRZIVavYazcEQUU5YxnU7Z2t5iOpkym88ol0vohsH+3r5w4g5Doiim0WgymU6wTJOTk2Ms08JxXey866moCvPFHFmSeejqQ3iu6OL7vodti9fUaNQZjcY4ubz7Ax/4AIuFQ6PegLy7bxgGm5ubDAYDLl++TBxF3L53n43tLWq1Gjdu3KDb66GqKu12mySfi5/PZ5RKJXzf56WXrtFqtRgMhyiywigd0u/3eeKJx5lOp4S5i3scR6RpysrKytLN74H8+fu+72leeeUVvvjFf02r1aJSKXN2esZDDz2EZdnousH29hZZBvfv30eWJYIgRJZF9zcKQ2RJWh62lMtlbt++zdHREe12C9suYVkmnu9jmharqxr7+/u85z3voVyusLe/x/r6Bjs72/zxH3+dKArZ2X2Ie3fvcuvWTa5cucJf+H98lK8++zxpmuK6LlEULjPCazUxQ95o1Gk2GgS+T5KkXL58mQRxQNTpdJjPF/i+z/r6Book0WzUcV2Xs24XsjMs2+bcufOoqsLx8Qnz+QzTFCZsWQaj0ZDBoM/q6irT6TeXc75Z9nJBQcGfnWIfFxQUFBQUvPn4tjraWZbxiU98gt/+7d/mC1/4AufPn3/d4+9617vQNI3Pf/7zy+/dvHmTg4MDnn76aQCefvppXn75ZeGynfO5z32OarXKI4888m0t3vd9wiBcFmrA0hgtTUXxK0kQxxGTyZj5fI7jOGJuOxVZzZ7voetCWp7lTtWNZhPTNKhWKlimhSRJZGlKq9WmUqkwHovOsaaqVCoVkc08mWCYBt2zM1RVxfd9dna2aTTqVCplVFUVmdH5Lye2baOqCrZlEScJzmKB53lMJhOODo8Yj8fomo4kySRxwubWJtvbOzTqdXzfI44j6rX6smsqyzL1egNF1UjTjHqtjmmaS2dyu2TTaotorCRJOD4+xjRNtre3hQN6GHL79m1u3bpJSoamayCB57mcnZ2i6xrzxYLJbEar1WQ+n+P7PvV6A7KMdquNoiisr69jmAaSJBHFMVEUs3AcHMfBsiwmkzHdXpcrV67QbLY4Ojqm3W6LeDPTpFQqCxWC6xAEAb7vY9k2juPy1FNP4/s+e3v7hGEIZKiaRhxHtFot9vb2uHP3DqZl5pnkEpZt0263aLdXSNM0zwMXEWJC6SAk+F//+h8zGAzZ2Nig3+8zm814/IknuHnzJl/60h8xHo2Yz+d89atfRdNUdN1gNBxSrVZ59NHH8IOAf/2FP2Q6nTAY9AkCfyndjuMEyJZRbI7jsrGxQa1W4/T0FFVRmM3m3Lt3Px8dSBiNhni+z3Q+JwMCPyBNM+TcBG08HhOGAfV6YzkHHgQB6xsbrK6uYpdKtNvtt8xeLigo+PYp9nFBQUFBQcGbl2+ro/3MM8/w6U9/mt/5nd+hUqks57dqtRqWZVGr1fipn/opfv7nf55ms0m1WuVnf/Znefrpp3nqqacA+PCHP8wjjzzCX/krf4Vf/dVf5ezsjL/zd/4OzzzzzLd9Qp5lmZA0ZyDn+cMPvp+maV50p4RhLLreyJRsG0kWM9m6rhGGAUkinMal3EzNtm0W8zmT6RTDMCjZNqZlibnrMEDXddbX1glzV+xFmhIHgZD6phKeJ8y41tbW6fV76JpOuVJeFtMLZ7Gc4V0sHExDFKZJkhInMVXLIopiPM/L858N4ijBqpvU6nVmsxnj8QTTMimVbNJM5CcP+n0URaVcKROGAQCd1dU8jipEUsQ9UhSVUqkkJNxBQLlcYj63hYmWLKMZGmEUMp6MSdOUWq2OLCtIsoTrucRJQrVeZzyZ4Hs+1ZU2W9vboju8soKzWFDNFQB2bhDXbLUYDofiOeoSDz10lcPDQ8rlEoZhomk68/ksnzkXcvN6o4GuCzM6WZJpt9v4fiAiu2SZfr/PwcEBOzs7lMtlPvAD38+1F1/m5s1bpGlCpVrFyu/x448/znA0RJFlZrMZvV4PTdOXpnaKouLn8v4oitA0jcPDQzodMfOdZRm1WhVFkRkOR2xubhCGIud7bW2V/qAvDnYQBx9hGKEoQvKuKGl+bYyh68zzXPAwCEjThLW1NWaLBffv3+dtb3uC/f0D0jSjVq/jeS7T2RzD0LEsC8uyqFarHB0doSgKpmksc9GTJGE8GhFFwhPgTwsUeLPt5YKCgm+fYh8XFBQUFBS8efm2Otq//uu/znQ65YMf/CDr6+vLr9/6rd9aXvNrv/Zr/OiP/ig//uM/zgc+8AHW1tb4Z//sny0fVxSFz3zmMyiKwtNPP81//p//53zsYx/jl3/5l7+zVyJBHMXL+CRN05aycimXlauqCpJwhX5gLJVlwsQsDELSJEGSJPb393E9T5hsdTp0VldxHIc0Seh2uxiGQaezwng0pl6vC/O0SmUZW2WYBkmS4PkesiThui6Neh3DNEWx7gc4joPnic50rVbDNE0hd88yZrMZqqqys7OTR4pFxEmM5/ncuX2bxVzMk/ueh22X0HWds9NToiiiUqnkLt4VNE3HNEwunL/AeDKm0+kQhiG9Xpfj42OOj08YDod4noeqqHmcGVTKZaIoolarY9s2jUYd0zJx8lznlXYbz/Xo93q4rovn+7z80kvIsszB4QGLxQIAXdcpl8q02y3KpTKNep1KpUKn0+Gll1+mWq1y8eJFZFliOByiqhp2SeSPr62vY+bRWJ7rEQQBv/d7/ydXr15hY2Md13Fot9vU63V83+f09Izrr93khRf+mI2Ndd73vu9H13Tu3btHs9nk5OQkz6xeMB6P6fcHnJ6e5AZ0EU888QSyJHFwcCjM53SN0XDI8fEJq6trItrM9zAti2azge/7TCYTqtUqe3t7jEYjtjY3abXayLJMs9lcjihsbm2h6zrj8ZhyuYxt21y7do3V1VVcR5ieVavCUOj4+BhN06hWK4Aw6/M8kRE+mUxxXYckTdE0nST/nGuaTq1WY3d3B8Mw6Xa7RFG8VHm85fZyQUHBt0SxjwsKCv5D8r/8L/8L586dwzRN3vve9/47YyXfy/zhH/4hf+Ev/AU2NjaQJIl//s//+esez7KMX/zFX2R9fR3LsvjQhz7E7du3X3fNaDTiP/vP/jOq1Sr1ep2f+qmfWv7O/L3AJz/5SZ588sllLfBjP/Zj3Lx583XX+L7PM888Q6slVLg//uM/vhxnesDBwQEf/ehHsW2bTqfDX//rf504jr+bL+Vb5jvK0X6jeJCt9rGP/VVM08yduWWms+my+DAMA1VRSNOEJBUFtKFbGKbBYjFbZmzbto2mCbl1HMXohsFisSCKIjY3N0XWdLPFYDhA13SiWHQ7TdNkNpthWRaGIWTE88WCi+cvMZ5MsC0bu2SzWCwo2SVOTk4wDENIsjMxR56lwsnasix03UCScjl8GKGqCqYpfna5XGI0GlMqWZiWxauvvirc1HWNkl2i2WqSphme6wIQRiEXLlxgMp6wWMzRNI16o8FqZ5VXXn4ZTdWXLuxJIiKhhPt6hm7orK2vsbe3j6bprHRW2Lt/H8M0qVWr3L17l/e//wMcn57SG/QplcskYUgcRlimSblaYTqZkqbiffj+97+fk+MTDg8PME2TKIpRVWFed3JygiRJBEHAww8/jCzLzBcLSnl29kp7BRD/MEVxlL/XMovFgna7zf7+Hm9/+zuo1WscHR4yGo1ZWVlBlmVGoyGVSoXT0zOyLOXd7343X//612k2m+zv7zMajfjID/0Q08mElZUOL7/8EqZpCvdvPyBNU87OTimVy+zu7CDLClEUcPWhq/ybP/wjbLuEbdt86EMf4rnnnuOFF55H0zRqtTq1WhVd1/PoN5VyWcS2mabB0dExYRjiOAuazSbNRpO56+AFAZ3OKkdHh5y/cIF+r7eMeiuXy8iyjKqqpFHEZDzCMEwM08BZCP8AXddIkoRSqcTh0RGT8Zi1tVX+1v/nb7ypMwiL/N2Cgm/Omz1/t9jHBQXfnDf7Pv6t3/otPvaxj/Ebv/EbvPe97+Xv//2/zz/9p/+Umzdv0ul03ujlveH87u/+Ll/60pd417vexV/8i3+R3/7t3+bHfuzHlo//vb/39/jkJz/JP/7H/5jz58/z3/w3/w0vv/wyr7322tKk94d/+Ic5PT3lH/2jf0QURfzkT/4kTz75JJ/+9KffoFf13eWHfuiH+Imf+AmefPJJ4jjmb//tv80rr7zCa6+9RqlUAuBnfuZn+Ff/6l/xqU99ilqtxic+8QlkWeZLX/oSIPy13v72t7O2tsZ//9//95yenvKxj32Mn/7pn+ZXfuVX3siX9yfyli60f/Inf0rkZ+c51g/mhkXBU8uvTpcSWlUVs9hJkgi5cF7YPehEJ0lKuVRi4TjEcUylXGG+mLO+vo7neTSbIqcZyOe/JXzfXxZCJycn1GsNYUYmK0uzNlXV8DwXJIk0SZZz1ctudSyKUsuy8X2f1bVVXEe4kGuquozxiqKQVqtFfzCg1+2yuraGpqrs7u5y7959tra3GY/HzGcz1tZWcV2P8XjEdDJl99w5wjBEVRQMXciNhfmbiBnb2tri4OCAerOJ57tcunQZWZKIopjRaEiaZrTaLbIswzQMJtMZ/eFA3LcoollvMBgM0HSNSqWSnyxJaJpKGEXEuQu3YeiA6BjX6nU81yOKQhrNJnEc4zouqqpiGDq+72MYBo1Gk9FoSLfbpV5vMBqN0HVxUPDOd74LRZG5fuMGlXKFckWYnBmGwXw2R9d1DEMUvbZtA0JWeXx8Qr1eY3NzE1lR6J51qdaq+J5Hq9Wi2+2RJDFb29tsb21hWRb/8jOfoV6rQf6+V8oVHnroIc7OTrl+/Tr1RgPXdWk2msiKKIyTOMEwDPr9HkEQEMUxK+0VbNvGWSzY3t5GMw0cz2M8HhMEIc1mk+l0ymKxwLJMLMumVLI563YJXY9KuQSIA4o0TVldW8VZOMuIMsMw6ff7LBZzfvV/+JU37f+pQ/ELekHBt8Kb/Rf0Yh8XFHxz3uz7+L3vfS9PPvkk//P//D8D4vfc7e1tfvZnf5a/+Tf/5hu8ujcXkiS9rtDOsoyNjQ3+2l/7a/zX//V/DcB0OmV1dZVPfepT/MRP/ATXr1/nkUce4bnnnuPd7343AJ/97Gf5kR/5EY6OjtjY+NaSYv480e/36XQ6fPGLX+QDH/gA0+mUlZUVPv3pT/OX/tJfAuDGjRs8/PDDPPvsszz11FP87u/+Lj/6oz/KycnJMoryN37jN/iFX/gF+v0+uq6/kS/p3+HPHO/1ZkBVVR6cEkiShKqqWJaFaZp4npdLZ6WlfFwYpCX4fkC9XqdSrZGlGYEfEEUxaZoSxTGapok520hkWuu6jrNwWCyEI3SjXicMQ9ZW15YFt67prK+vs7a+ytbWJpqhkpIynoxEpNZsLmK+QmHelmZpXmgnmKb5YLqcMAywLYvO6iqB79MfDMjyuWE/CJjN54RBgKoKqXecJNy5c4cgDJjPZlQrlbwDPmI4HBB4AWur65yenECWoioqw8EQSZKZjCdIICKmJlPK5TKKqjAaT5jlTuyTyRjDMMXzhRGL+RxZVlBkCds02Vrf4LFHH+UH/6MfpL2ygiwr4pCiUsW2LSRJJsgjsMIwyItogzTLWCwWzGYzPvShD/H0U++ls7KyvK5crqBqIiZLVUW2ua4bpGnC7u4u8/kCRVG4fv01nnvuOebzOZubmwyHQyrlCo266CyrqkKafmMuvd5oEAQBKyvtpWx8OBhQr9eIwojBYMBzzz3H3t4e6+vrnJ6c8vzzL3Dr1m0uXbyELMsihz2DZrPBa6+9xsHhIXGS4Pk+G5ubGIZBGAR4rovvi4OEcrlCqVxGzz9brusKh/sg4M6dO1TrNbzAZzKdcHx8hOd5lEo2rusRxREnp6dYpsXqaodSqYRpGssYMduy0HWN2Wy2/Dw2mo1/b7Z8QUFBQUFBQcEDwjDkhRde4EMf+tDye7Is86EPfYhnn332DVzZW4P79+9zdnb2uvtXq9V473vfu7x/zz77LPV6fVlkA3zoQx9ClmW++tWvftfX/GZgOp0C0Gw2AXjhhReIouh19/Ghhx5iZ2fndffx8ccfXxbZAB/5yEeYzWa8+uqr38XVf2v8meK93ixkmZDWyrJwjiYTRmayLOMsFn+CGdQ38rV7vT7VShU7L77CMCRJElZWVuj3+kujMEVRGI1GhGHI2dkZ8/mcZqMhZNBxhGVapElKkoqf6yycPPIrIE1SwihEQnS2a7Ua49EYWREu5pqmMh6PhdRdFx1cVdU4OTmlvdKmWq1SrdaWEWCdzgr37t9fGr3pmo7rOMj5LLrIVx6Jme2zMzY2NpGRWCwWXL5ymdlshizLJGlKv9+j0WgSRSFxEjOZjCmXK6RJSqfTwXNdnnv+eVRFpdVqEYQBk+mEcrnMaDRk4Ti5mdsc0zS4ceMGkgS6oeP7AdPpIYZhYtvWsrvdbq9Qr9dYWekgSRLHx0eoispXvvJVHn30UQ4Pj3BcB0PXmc1njEejvAsuZrUrlbKQkUcxjz3+GMdHR8vOfLlc5vj4mKPDI2xb5KRPp1N2dnbQdZ1+v7905h6PJ5w7fw5JkhgM+vk6S+zs7HDp0kVefvllFEWh2+uJ2f004fbtKVEUI8sic3s+nzMajbhy5TJxHHPt2jV6gwGqqqFrKkkszOyqtRqOIxQDkiRzdnbK5uYmtm0T56Zrf/Tsl4nTFE3TaLdaYhZFkqhWq6TpDM91Obe7y2g0Ik1Tmo0mN2/eRNc1+v1+Hh9WFe/vg7g7xMFTQUFBQUFBQcGfxmAwIEmS1xUvAKurq9y4ceMNWtVbhwdGlH/S/Xvw2NnZ2b8jwVdVlWazubzme4k0Tfm5n/s53ve+9/HYY48B4h7puv66OEr4d+/jn3SfHzz2ZuOt/Zt4bmYm/htUTRVd6TDCMM280MiWXT7xVzJM0yTwA/bH+1y8eJHwQZc5SYQpgQRBECDLouHveSIeKwxDOp0OZ90uSZIsC59arUaSxIRRtIxqkmQh7d3c3MRZeMRRjGVaqCsqi8WcNMswAdsukaYppVJZyMuRcF2HwQAqlQq9bg9d1zBNgzCK8FwPyzKRJGG4pSgy87noPg8GA/FhkyRWVlaoVMqcHp+h6xpXLl/ha899jcuXLyNJEufOnee5r30N3dCpVqooiiq6/a5LkmXoqoqqKOzsbCNJYk0lu0S71WY4HAq38UqFNL//p6enPPzww7z00stUKmWyLMW2LdI0w7ZLDIcDJAl6fZG5raoarifuS7PZ5P/8Pz+LZdtMxhPq9RpZli1Nvnq9HmmasrW9JTK/NZWSbdNsNvEfdJF1Ic9+29se59VXX6NWqzEYDHjxxRd5+OFHKJVKXLv2EtValc5Kh5PjExqNBqZl0ag3sCyTa9deAqBUKnHp0kXu3r1HvV5ne3uL8WjMnTt3KZVsFEVB03SOj0+QZXGAsr6xQalSEXM4WSa6/4sFzsKhVCrR7w/EHHyW8sorL5MkKTs7OwSBT7VaRVMUZpMJll1idW2Nvft7HB0fsbuzi+MsePHFF2k0mgSuy2w6BUmYzV24cAHPc2k0mriuh6ZruZmbcCkvKCgoKCgoKCgoeDPxzDPP8Morr/BHf/RHb/RS/m/lLS0dT5JkWWinmTA3i+NYzEgrCtVqdVksgzg9ybKMOI5RVIVqpcJoNCLwfZI4IYwiMUcbRSRxsnQkNwyDOI7FPK8sL7OzH7hKe55HBpTLZaaz2TJH2jAMbMsmSzMgYzDo4zgOce5ubhgGW1tbNBoNJAkRraVpGIZJpVxhMRfdYs/zODg4JAgCWq0WlUqFd737Xdy6dRPP90kzkQkehKFwpnYc1tbWqFSqlEoituvatRfRVI179+7R7/e5f/8+6xvCGdG0TJrNJrYtIr9qlQqkGZXcST0IAoIgwDB0RuMRsixmrB3XzfOlF/hBwMnJKa1Wk16vz7lz50izDNu2aLVaWJbNxsYGKysrJEnKfDEnjmJ832M4HIi55MkE0zTIMmi3V5aS+SwTioHxaISWy8lv3brF2dkZvh9wfHTE7du3kGWFRx59hEajIQ4z0pQsg9PTEzzPZ2VlBVVROTg8wHEdUTCrKpPJmKOjY0qlEq1Wk1arydlZl1dffQVnseDG9Zv5rL2C7/t4nodh6OzuCld427aI84gt13XZ3d1lZ2eHRkMU8FEUoigKi8Wc2WzGdDoV+eaei2Va2LaNZZgoksxsOsGZL9jZ3UFVFBrNBv1+n3a7zXw+I4xCTk9P0TWdbq+HbVuEYch0OkWWJSbjCSBxdHT0ppwBKygoKCgoKHhz0W63hZLv/+Lu3O12WVtbe4NW9dbhwT360+7f2toavV7vdY/HccxoNPqeu8ef+MQn+MxnPsMf/MEfsLW1tfz+2toaYRgymUxed/3/9T7+Sff5wWNvNt7ShXbGN0zJ0jTFc10URaFcLqPn8UeSJKNpOmmakaYgy2K2Wbhsg6ZplMtlDNMQrtOWnZujyaRJsiyygeVMsed5KIqCbdvCjE2WCYIAz/OYzWa4jrM0ZdvZ2aZUsUlJiVPhuC1LMlEYEicJpmWiKAqTyQTXEc7fohvuU65UyAA/DAmikMlsznSxYDKbM58vAElkfBsGuq7jeR6O4zBfLDg9O2N/bw/HcTk6OkKSFSHHnoypNeqMxkPGkzGu5+K4Dmvrq7juYmka1m63kSUZ13EJwxBFVYmThDiKKJfLmKZJmiR4nsfx8TGe6+G4DuvrG2xubuD7PkEQIEkS8/mMaq2K47oEvo+mqTx09Sqlkr2U/1+6fJmVlRU6nQ6yLDOZTPKINJeVzgqGriNJEo4jivs4jrlw4SLr62vM5nNM00JRZE5PulQqVYbDEVmW8QMf/AE0TePmzZucP38e0zSwLQtVUfA8j/39feI4ZrGY5xFjKi+//ApnZ2dcunQZXTfY2t7i9PQM1xVxauVyhfFksvyHYH//gBs3brDW6aCpKt2zM2azaT7GIEz2oigSP88wqNcbyLLM0dEx/cGA9dU1StUKzZU2KeC4DtPJRIwrnJ5Sq9UZDAZkmVA5mJbNdDZFl1UWszmqJDMZDlnM5uh5NFi5XOHk5OSN2ZgFBQUFBQUFbxl0Xedd73oXn//855ffS9OUz3/+8zz99NNv4MreGpw/f561tbXX3b/ZbMZXv/rV5f17+umnmUwmvPDCC8trvvCFL5CmKe9973u/62t+I8iyjE984hP89m//Nl/4whc4f/786x5/17vehaZpr7uPN2/e5ODg4HX38eWXX37docXnPvc5qtUqjzzyyHfnhXwbvKWl467rYtv2cmZZ1TSR3Vwps1gsmEwmqKq6NNJ60CEN/AC7ZGMYhug0Og6BH5CRMZ6MUVVVdHB1HUPXX1do67pOlmaUq+I5KtUqSSxk44Zh0Gq1GI9FvnapVKJSqdJZWWEw6JOmCecvXOD05BQ/8PF9n5X2CsPBaNmdV2SZWrWax4GZyyzwUqmEZdu4nk+pZLN3/z6WZbG6ukqv18M0TcplIdmezmbYls3BwT6GZgqpfOCzWDhYlknDFC7enuchK3I+czyjUq2iqSrVao0g8HEWC9I0o9luocgKWZqhqCqLhSO6sLaQWadpRq/XZW9vD2fh0Gg0uHXrFrZtMRqNiOOE7e0tVtfWmIzH7O8fMJlM6PZ6DPp9EcN1ckocx5x1uzTqDUolGzPPI3cWCxaLBZomYsmefM97GA2HJEmMLCtYloXrOmxsbOA4CyzL4sknn+Tevbs89d73kiYJndVVGo06uqHTaDQ4PhJ51aenJ/R6PX74h3+Erz33Na5fv46iqkxnUzY3Nrhz5w737t+j2Why7twu1WqVW7dusdrpoGk6p6enpGmKbZeWGet7gz0xQ6+LQxpFkTFzlcPO9ja3bt2iXm/QaNRpNOr0ej3e/u53c3R8jCyLg6FWq5XnmktMpxOyLMPzPc6f28W2bW5cv07JtFkxOpw7d47Dw0MySeLk5ATLtlFVhclk/Abv0IKCgoKCgoK3Aj//8z/Pxz/+cd797nfznve8h7//9/8+juPwkz/5k2/00t4ULBYL7ty5s/zz/fv3efHFF2k2m+zs7PBzP/dz/Hf/3X/H5cuXl/FeGxsbS2fyhx9+mB/6oR/ip3/6p/mN3/gNoijiE5/4BD/xEz/xPeM4/swzz/DpT3+a3/md36FSqSxnqmu1GpZlUavV+Kmf+il+/ud/nmazSbVa5Wd/9md5+umneeqppwD48Ic/zCOPPMJf+St/hV/91V/l7OyMv/N3/g7PPPMMhmG8kS/vT+QtXWg/cBkX7uJgGAau61Iul7EtS3RUkUiTlDiJl91vVVMx8yJWkWXIwDBFUWSZJgvHWcZthWG07JiXy2Ua9QbD0ZAwn+Fe5O7crVZLZEL7wkCt3W6zurrKYNDH9USnvV6vc+vmTbJM5FdXqlVu376NqipUKhX8IKDX67G5tcUjjzzKjRs3qFQrGKaJ4zicnZ3RarXwc3lyvz8gTTMWjnBEv3z5MsfHJ5RLJWazKaudVY4Oj4GMt73j7SRpShInHB0dIklynr+sM5lM6KyscHgkzMkGgyErKysi91vTGY2GgIi0siyRBVirVTFNK++Am7iug9PtcuvWLVZW2mi6hm2XACFBr1SqkMHOjigUXddDU8c8/fT38eqrr1CtuuIaJC5duoiu65ycnDKd9kizDFmWkSRot1v4vs/B4SGB71Or1Vlptzk5OcHzPcIwZH9/j9PTUyDj937vc2xsrLO/f8C9u/fY3Nxgpd1GVRUMw1geiPyLf/E7nDt/Pr8nBrVaFdd1efjhh5hOZ+zs7vCVZ5/lwoWL+fyzzUsvXaNer/PII48wmUx46aWXkGWZcrmELCvM5zO2trbRNA3HWeC6IrosDCPW1te4dfMmkixTr9fpnZ2iKgpk4HkuadogD1xfOsz7ns90OqWzssLq2hqqrBDFMTdv36JareKHAfVGneFwSBxH+f0vKCgoKCgoKPjT+ct/+S/T7/f5xV/8Rc7Oznj729/OZz/72X/HeOp7leeff54f/MEfXP7553/+5wH4+Mc/zqc+9Sn+xt/4GziOw3/xX/wXTCYTvv/7v5/PfvazywxtgH/yT/4Jn/jEJ/iP/+P/GFmW+fEf/3H+wT/4B9/11/JG8eu//usAfPCDH3zd9/+3/+1/46/+1b8KwK/92q8t700QBHzkIx/hH/7Df7i8VlEUPvOZz/AzP/MzPP3005RKJT7+8Y/zy7/8y9+tl/Ft8ZbO0f74x38ylzCLAjpOYuIoolavoygKrusu/86DmeosTUnSVHTCExH3lSQJkiyTpimmYeK4jshf1g3mizm2ZREnCbVqDcd1cBxn+TPDMGR1dZVyuYzv+/T7fXzfxzRNtra2mM1mOI5DFEV4nke91qRWreLkxXySpPkKJfzAx3Eczp87z+bmBjdv3iQIQ1EgpymmJdy0Q99nOh5z9epVsixDliWuXXuJlc4KpiEk8GdnZ1iWTe+sS7PZ4m3veII0y7j24ovohsHW5haj0ZA4ErLpixcvMR6POTs9Yzwes7q6toxMQ4YoiiiVy6RJiuM61Gs16vW6MJezLO7dvSvi07JM5FVnGXGc4DgL2u0209kMRZbZ2dnFsi0ODw6QZYWNjXWqtRovv/QSURRRrzfYPbfLNFcjhGHAWbdLZ6UjJOyKSr/fY2Wlg12yicKIarXK3bt3mUzGbGxs5vnmHo888ijXrr3I5uYm3W6Xs7Mu587tUi5XkBWZ9bU1bt++w9nZ2TILPYojyqUS6+sbvPTyS1y5fIUojmi32jz33NewbTHHbRgGkiQzGPSZTCbM53Msy+LKlSs4jouiyAyHQy5evMj9+/fJsoyVlQ7zxRzP9dA0lTSXzZNl2KUSumGIv6up1Go1ptMZuq4xmUxYWekwm82YTSZsbW8hQZ5zLg6ZVE1jMh6jqSpZBvV6Hdd1+cVf+ltv2sxOKPJ3Cwq+Fd7s+bvFPi4o+Oa82fdxQUHBf3je0jPapmmSJAlploIEcRQto748zwPI5diK6F7n89QP8oXjJGY4HBHF8XL2ejQeLeeGF86CJE5Is0xEQQ0HRFGEpmrIkkyj0VgW2+PxmH6/nxe4Fmmacnp6SrvdplarIeeFPFmGsZyp9gnDAJBQVAVd01FkmZPTEyEFzsT6sywj8H0GgwGe5/HQQw+zubXF3t4e8/kM13VZ31gXs8eqhuM4rK2tE4YBmqazsrLCtWvX2NvbA6BRrzMej3AWC1RVSK+vXXsRVVW4fPkynU6HMAho1OvL+xXFMaZhcP78udzELGCxcBhPJrz26msiCzyPV1vM5+KeTMYoiiok6pJ4/ZPJmOlkQqPRJE0TgiBkPBrTaDTY2trGNA327u8xmUzyPHR/eQ9PTk6YTqeUyxW63TNu37rFZDKm2+2SZilXrlxhPhcRZlEUc/vObZI0ZT6fA3Dp0kV+6Ic/vJx93j84YDqbcuHCBXRdZ21tlSff/ST1ep3hcMDa6hrdXpd2q8XBwX7ulq6iaRoZ4LoOOzu7rKx0UBRRHAdhSJal7Ozssr29Ta/Xx/N8NE2n3W6haxqGYQhJTKVCq9kCJFY7HXzXY3t7i3a7zWQ6pVarYtk29XoDTVOxbYtLly/h+z7j8ZjjszMcz6dcq4Ek5xFhOq1WE9M0eOKJJ777m7KgoKCgoKCgoKCg4K1daGuqioSUZ2lLIGUgZaRpTJIkuVO0ChIkcUIcxyRpiud5RFGEqqqiUE/S3IFaA0CWZUzTXM5mW6boJJdKJZHDnSYoqrLMxIvjmDQRc+IrKysYugFZxurqKqenpxweHqKpIpJqOp8wmY0Jo5DpdEKaZbiew0q7hWGKAuzypctIkky73WK2WBCnKe3O6rIDPp1OSJOUi5cuoWkGZ90eiqKwvb1NFIvDhnKpxNrqGru7O4yGQyzTgiyjUi4jSzKT8RjLtjEtmzQD3TCZLxYEUYhhmSi6ylnvjDDyiaIY0zAZjkb88de/Tpal1Ot1gjDAtmxs20bKDx5W2m0qlQqu61EpV3jssceQFYVSyebRRx9FkmR6vR7dXpckTbl9+xbT2ZRarY6u68zmc6IoJE1T7t+/z8nJCe1Wm+Pjk6UxXbVaybOvbVZWViiXy1imxXQ6A6Df73H5ymXu3rmbO4QbXLx4iStXrvJ//B+/ncv4GwwHQ3RdR5Lg6tUrqKrGc889x+HhIZPJhCiKaLdaRFHM1asPYZdKVKtVJpMpgR+wtrbOcDggSRPa7RbvfOc7WV9bZ3Nzi/X1de7f36NardJZ7fCe97yHRrPJ+vo66+trnJycYNs2s9mUMAyJ/ADXc7lz7x4HB4dsrG/QbDaRJTl3nT8gSRJm8zl2qYSkKEIaLkuMRiM830PTddIsZXNrC0mSePHFF9+orVlQUFBQUFBQUFDwPc1bekY7DEM0XVvGdj3oGidJQpqyjOoqlUooqkIcxAR+gKZpaKqG53tIEgRhQKlUQgJMReQgh2GYS5dD0kxEXGmahud5bG1tMZ+LeKo0EYW7pmk4iwWmJeKWfN/HWTi4ritytnNZtWVahEFAkghjsd2dHe7cvUsQhKiKwnQ6xbl3l1qthud5SJKUx4wJl+xyucLR0RFRELC+sc5kPKZaqXB6coLv+8xnM+EG7nrs7u4yHIxQNQ1VVXEWC5I0ZTwe0+l0mMxmZAhZeKvVxPM8JpMJhmFQqZQZDYdoms5kOmBzc5PpdMZ8Nmdjc4Pd3V1u3LyBJElUqxUcR0jqgyBgZWUlz3I2mM1nRKEoWMfjMcPhgIceepjpdEoUhaiKytrqGtPplOl0SqVcWb6HmqZx8eIlTk5OmM2FG3qz2SQMQyRZIgxiDg8PabdXWFtbxfN8yuUSURRhmSaPPfYYx8fHVKtV5vM5zz//PKVSiSAIOHduF9u2GI+F7FtRVSbjCbZtYdk2nuehKgqj8ZiDw0POnTuHIsuUSiV6vS6lUomDg3103aBRr3PkOHz5y8/m5nAJg+FgGVPwyMOP8LnP/R4PP/wwR0fHJElCpVql1+uRJAmNRp1yqUypVGa2WJCSMZ1O6HbFIYdhGARBgGlaTKcTfF/8N4houTgShmtpmiLrOnfv3Hld9F1BQUFBQUFBQUFBwXeXt3RHW5IlsjRFURXSJP1Gpnaeb60oCrqu50ZaUm5qJiK7gjBgPp+LiC9VxbZtPN8njoSD+IM87izLWCwWkGVIgCRJ4rklCd3QOT07JQiCpSlarVolTmJq9Tr1Rl0UQnFMGISYholpmcRJIvK4yxXm8zmyJHN8fIxlWeiaTpplDEcjXNdFEs+6nPPWdQ1ZViiXKwz6fUzT5PyFC1SqVVRFQZJkwihCUWTG4zFJHCPLwgDuwQGD7/tMplOCIGA6nSJJsLG5ia7rzOczDg4P6PdFnBRk1Go1xuMxhqHT6XQo2TaSLLHaWWU+n7O/f7BUCLiuI6TisszJyQmj4Yg0TRkOR0ymU7Iso1wuMRj0CYKAjY11IKPbPaNSKX8jqs3zCKOIZrPB2VmXwPeJoohet8t4JH6mbVnousFoNCQIAiqVCoqicvnyFUbjMZZlUq1Wef7556nWRGdZVVXG4xHT6YzFwkGShILh7PSMbrdLo9Fgd3eXLE0BiY31DWrVKjvbO1y6dAnLEi7uw+EA07LQdY0sy2jl7ogPPmeyJOG6DqPRiK9//Y/Z3d1ldW0NWZZQFAWyjGq1SrPZwjAMZEVGVRU2NzdZX1ujWq0BEtVqlXK5RLvdQtXE51RRFRaLBXES5/FpcxzHxXFc7HKZheuhGybNZuO7vicLCgoKCgoKCgoKCt7ihXYYRoRRhKZpywLnQXGs5PJvXdexbRvf98myDMM0RfGaN/tkWca0rDyGSRGRUZJEo9GATBTrURSRZRmO65JlGbPZDN/z0TUdVVVptVpsbmzg+T5IEnEcE4URp6enYi2Kgm1beJ4nZrNdF9d1kRWZyWRKkgrpu+u6RFHEbDplOpnm+dZr+dpFhrJt20CGbVsYhkmns8ruzg66plGpVNA0FSOPMyuXSriei2VZ+J5PGEVsbW2yu3sO3/MIg5DJeEx/MGC108GybQbDIUmcYJoGsizhBwG+L9yuJxPRhZ5OpxwfHbG1vUW5XCaKI8IwRDd0XNfFMEw0TaNerzOZTpBkYdr12KOP8sgjj3D79m0qlSphGHJycsK58+fJMgijiCDwkRUZWZYwTZOvfvVr+Zp3UWQho97c2kKWZBHppqrL4ngw6DMaDbl37y6VcpkoEk7zpmly6+ZN3v2udy8PRGazaR4nYDMcjlAUhbW1VYIwZDadcvHiJZI0YTqdUK/XOTk54dVXX6VcrmBZNrWaMIKbTqc4jkujIeIdhHt9Qq/XYz6fU6/XSZKE+XzO7du3WSwcptOJiKErl5nNpiiKynw+Z3d3l0ajjuf5eVRcE8iIopjxeEz37IzJZIJtWUgSTPMc73PndqnVqqyudojiGC8I8HwfPwzeqK1ZUFBQUFBQUFBQ8D3NW7vQDoJlNnYcx3nxLKEoKpquC+MyTctlyhFRbpaWpgmz+QzTFAVhGIbEcUy9VqNSraLkEu44jpaFexTH1Ot1tjY3CYMAyJjOpiwWC0ajEUo+731ycpJnc4s4p431dQAGgwGanh8IyLKYDQbG4xFJLOTBWZZhGDobG5tUKhWSOOb4+JiVlfYyMkpWlKUZliRLzGZTbt26hed5eJ5HtVpjbX2dNEs5d+E8pbKQzVuWRa1SZT5fkCSJKBbrNc6dO8+53V263R69bo+rV6+i6xqD4VA8nySTpRmVcoXd3R1++Id/hEuXLuP7Aft7+8znc9GRlRXGo5HIqD4+ZjKZ4DgLFFkmjiI8z+XLX36W/f19Op1VVFWh2Wyhahpf+MIXsG0LZ+GQZTCfz3Fdl163y+7uDpIk0W63se0Sf/kv/2Xu3b2LqqlkmThw2NnZxvc9PM+n1WrT7XZ5+eWXl8XnD/7gD3Lp0iW+9rWv8vjjj6EoCqYpOr6SLFFviIivNMu4d/ce9+/vifx1TSNOEhaOw/7+HrPZjJdffpkoCmm1msvZfkVR2NjcIAh8dnd3UVWFK1euomk6i8Ucy7KFemAyoVar8sQTT+SZ3w7T6RTbFhF18/mcbrdHFIWcnp4ync5QVZXJZMx8PifJzc5OTk45d+48IKLA5vMFWQaNRgPP91E1kQN+fHj0Rm3NgoKCgoKCgoKCgu9p3tKFdoZw5Y6jiAxIM4jjhDTNhFt4koi5YT943Rx3mEdtCSMsEWH1oOObJimVqui2SpK0dCpXc7O0NMuQFYVavU673cbIO5PT6ZR6vU6tVlt2UdM0ZTyZMBwMKVcqTMZjYaaWz88ahokkyZw/f57Lly/T6/dxHAfPc2m3W2SIjrtwKPdI0oST42PkfFb4YP8Az3NzR2qR+d1qt4jimCiOOT09Xc4Le67HdDpnNp2xmC+QJRnDMFjprAASX/nKsxiGjiKLIrTdahHkBxmmYWDoOmenZ/ybf/Nv2N/fQ9c1giAgSWK2trZoNpsoiookyXQ6K2i6TrPZxLQsZFlInZvNBlEcs1gsuH37NpIkUa/VyNKMbreLYRhYlplL+Uusrq6xtrZGvV5nfX2der3G7/7uZ1EUlZ3tbUqlMp7nc/v2HSrVGpCxWDxwGL/EwcEBu7vnuHv3bt5hXnBwcMCFCxdoNlucnXW5f/8+5XKZWq3KO9/5TiqVCrPZlMViTqfTYW11jTRJ2d7e4e1vfzvnz59nPl9weHhEGIbU6w3SNOXaiy8yGAwI/IDpdMYLLzyfz6nrXLx4kVqtTr0uXOp1Xef+/b1lTFwURZycnOTFdIKUx3Y5joMkSdRqNWGitrYuYsk21rlx4waWJVQSD2Ls5vM5ZBmtZgsJiZWVlTdiWxYUFBQUFBQUFBR8z/OWLrQVWUaWJJDEJPODuWpd00ESBUwURmRZKjKe05QkTtA1nWq1upwF9lyPOImXjuIAqqqiqCqSJBHmWdbdXpe9+/eRJCHzjuMYVVWXsWK2ZVOtVjFNU8zhAr7vs7q2iiLLPPb44xwdHeUZzBJIYJoGBwcHvPTSy/ieT6VSYTLJnajDENu20TQdx3VRZHmZvTyZTBiPR9y6fZsgENetr6/jOg5ZPk+uqqLru7G+jiTJVMpl0jQj8IX5m6aqJHHCfD4jCEJM02R9fZ21tTV0wxDy77zb26g3RHTXYk6cJOzv7zOfz3Acl8l4LGaI8/uVZRmeK9y+5/M5fuDTaDRFwZzPKW9sbJBlKb7vU66IgjnLUsIwpNlqYVkmDz30EBsbmzSbTa5du4au65imiaqqzGZzNjc3SFJxsDIaDimXK2iaRrVa5fT0jPF4wmg0otVqY5pWHi82ZTQace/eXaazKfVanWqlSrlcplIuY9sWjz32GEmaoigqvV6PTmeFzc1NXNdlMOiTJELd8Oijj2AYOnEcs1g4y1nrtbVVZFnm3e9+FxcvXWA4GnDhwnmazSbNZpM0zfjwhz+MZVlsbGwwHA6Xn5c0EffkQfEcBAHtdpvZbE6/3yOOxFiCaRoYpsnq6iqGYRDFEVkmPvPdbldE1Y3Gb8S2LCgoKCgoKCgoKPie5y1daJumiWGaouNqCJMqQxfFjiRJJEmadwi/8TKTVORuG4axzMQO8zipKBTy8iAIiKOIwPeXz5MmCdPplCRNURVRwI7HYwzTxPN90iRBN3RqtRqKoohubb2OaZrieXSdd77znezs7KAqKqqicnJ8wtNPf5+YNQ9DTNPIM5fFzO65c+cp2SXOzk4JA2HeFuZF9YOoMcu06PW6ZIBlmciKIgzLSiXG4wm+L3Koq9UKdskWcuXZlOlsxsnpKUdHR1y4eJEnnniCDOj1uszmc1RFpVaroqoqW1tbXLlyhWq1SqvdJk1SLMtGVcUc9mAw5OzsjNXV1eVstWka6IZBpVxmZ3uHSqXCYDBAURS63R7veMc7WVtbp1arcXx0RKNR5+KlS8iKQrVS5dy5c4RhwNHREQcHB1SrNcIwytdymZ2dHZIkJfB9PvrRH+HipUu0Wk0uXbrEfD6n3+/nhxYTRqMhs9mURx99hFqtyunpKZVKBc/1KFfK3Lt3j/v37+O4Lltb24RRxNrqGjdv3WRra4ter89sNhXmeVlGpVJhOBxw//4eURTxtre9jXKlnBf8I2r1ei4FX6BrBhcvXMyLX5fxeMLR0SFaLn2/fPkKvu/z0EMP4TgOpVJJdKk9Fyk/LBqPx1SqFcplMaNvWiZXr15djgA8OFjJyGi322RZSqlcwrSMN2RfFhQUFBQUFBQUFHyv85aO95LznGwJ4ardbDWZjEX+cZzElMsl/CAg8ANkZDRVe10EmCRJaJqKqQqZtyRLRGEkiu44XnbBLdNaFkG2beMHwhzM0HXSVBTtumEwGAyIwpBqpYof+MwfFKzVGpVKhePjYyRJxvd9SqUypmnw9a//MSudNtPpjFq1hqbpjCdjSuWy6E72+2i6RrlURpZlkiQVhlimRZZl1Ot1VFXl6OiYvfv32dreJk0SJpMpmqYSxwm3bt1CVTWchUMUhezu7jKdTbEsi8lkwuKVOefPX8BzPfb39qhUqkhIeJ7L1uYms9mMKI4plUqEUQi1jCRJybKUbldkiWuaTpYJp+4HGdcl2+bSpcu8+uqrbG5tspjPOTo+xjB09vbuMx5PCEOxno2NDW7dvEWcxMxnc1Y6K1imxcHBPmEY0emsMBgOmYzHXL58RWRM50X9H/3Rl1hfX+PWrVusrq6xs7MLZBwcHNLv95hMJqysrDCfz4mimO973/cxnUzo9fuQZWi6yCd/7mvPUa/XKZdL3Lx5g0cfeYTXXruOpmm8/PIrnDu3i2WJzvjGxiamaXJ6eorneTz13vfy+c9/nnK5zObmBvV6ndPTU2q1KuPxBEWRKZcr7O7usre3x+///uc5OTlG13Uef/wJwryLbZcrtNttgjBEVhSCMMT1PGzLJk5i4lh0s4fDIdVKBZAIw0DI9vN7v7a2hgS48/kbu0ELCgoKCgoKCgoKvkd5S3e0HzhPy4pMlmW4rkuapUgS+J5HEIaioJaFI/kDebgsySiyeOlZBlEYihgsSfycBy7m1UqFUqmEZVtomva6+LBqtYplmUxGQ8jl5mINHrqhL2erAcIwZjyaMBlNmU3mGLpJHMWUymVUTcP1HCQ5w/c96o0ajXqd6WTKaDxClWVW2ytUSyXiKCKKQizLQsRu1VldXaPRaGIYOpqmMZ/P8Xyf7Z1tZFnGD3z6gyGWbeF4DvVmHd00WF1fQ1VULNsiCMLcbE1iY2OTJE0olWw0TePk9JS9g30Wzpz5QuRNn52d4fseSZKg6zr1ep04iQFotZpMJmO63R6O69Lv91ld7UDu+G4aBq1Wm0qlgmHo7O7usLa2xsJxSJKE97///QSBj6qqyLKMpumomsrDDz/MdDJF03XOndvl8PCQ7Z0dxuMxk8mYIBBy+GsvXQNAUVQuXrxAlpHL1MUcuG1bvPrKq5ycnoq8cc8Tc9hpQq1Wpdvtsre3T7lcpt/voygKGeJAo9lscv36dXq9Hicnx1y/cZ1KtUK3e8ZXvvIV1tc3aLfbDIZD/pMPf5g0Tbhz5w6yLHHu3DmGwwH37t0likIkCcrlMrZdwrJMbt25Q7lUxjB0SpUyiqqgaiq6YaDkIwCyLCHLCqPRiF6/v3RuD8MQ0zLJsozBYMDJyQnT6ZQiRrugoKCgoKCgoKDgjeEtXWiLDt83vh7Eej2IwwKWJmhxHC+NyKI4Ik4SMcf8oJhRVNI0FWZpYYimqliWhWVZmKaJZVkkSUIQBEiSJKK0VBXTFLnYvu+TpRmT6QTP8/A9j9XVVZDAcz0cx2Vvbw8g76TrOAuH2Wwm4sByg7az09Pln8N8brpSKaMoMooksbaygpzL4pGEm3m/30eSZEqlMq1Wi9XcxKtcqVCuVFjfWBfy4nzGe2/vPmenp0iShGEY1Ot1rl+/jqwo1Bt1mo0GSZLiuh6maVKtVhiNRsRxjOs4bG9vU63WiOMERVE5OTnB0HWm0ylBGLK/v8/q6iqB7zMcDsWcua4jIYmueBgIl/LJhDCMsG2bJx5/FNu2eOnaNdbX1zk8OGAwGHB2dkqWZty5c5fRaMQP/9APsbW1TZwkvPzSSzSbTYIgoNfroesGuq6jaeoyu3tzc4ONjQ2SJKHRaBCGIZZlYlsW9UYDTdPo9bq0V1YIggDLslA1lSQVs9JBEFCv1ZFlmeFwRKlURtd1jo6PSXPpumGYnJ11WSzm3L9/H9dxuPbii5w7dx5JlkmShFdffY3hcLgcY9jY2CSKYg4PDzg4PMQwdIIgQJYkapUKJcsmS1JIEmQyNE1djiW4roumauzt3Wc+n+Wxbhrj8Zg4jrHtEovFAl3X3piNWVBQUFBQUFBQUPA9zlu70P63CtIoigAwLQu7VEI3dIzc0OtBxraui++Zhomh60uzM0GWd8NFDraqCZl5lmXLa4Tlmuiki66yMBxLk5QoinjwoxaLBVEUIyERhhGyLB6Ic7fxLMsIwxDf95BliSAIiMIQRVUZDAZMp1MazQaWbdFoNBiPJziuS5ofDrRbbZJEFL2np6f4vshLDoKA0XDEbDZjOp2iKAq+59Pv9ZnP5yiKQuD7uJ5HEIT4gc9Kuy0OEmybwPeZjCeUy2VOz07RdXEP4jhBlmVarRaO4zJfLHCcBZZlcf78eVzX5fjkRBTmhsFDDz+MruvESUKjUQdgOBgQxxGGYTKdzXBdB8s0kXNlgeN4NJpN1tbXabXaPPLIIwC5Odsqx8dH/L+e+X9y7949Pve53yPwfVRVQ1YUzp8/j+f7uK6D4zjcvnOHhbPgoYeucnR0nBunbZIkCWtra0uzMcu02NzaYjQaMRqOeOqppzAMHVVRcRYLut0e29vbtFpNBoM+16+/xs7ODq12m85KB9d1mEzEwcqlSxdxXRddN3BclzCMuHP3Do1Gg+l0BmTIspK72CvcvXuH7e0tFEXl/d//fkzLEiZv0xmT0RgZcBcLFvM5iqzQ6/U4PDqiVLLzKLIUgFpdHAJ4rkelUiYIAlqtJuVyhcFw+H/TzisoKCgoKCgoKCgo+NN4axfaUUQUhoRRSOAHLBYLfM9fxmeFYYicd59rtdpS/i3JIssavtHxzgBN00iTFNMwiKOYIAyZjCc4C2cZr6WqKpIsEQZB7kwtpMUPOsZkiAJf19jb3yMKw28sOO+yZ5l4Xj2PBltfXxfxWLJMpVKh0Whw/tx5TNPkB37gB9g/2Mf3PEzdwJ07+Hk0WbvdZmd3B8iQFRlVVVFVlWq1yuHhIbu7uyJHOy/u4ihmvljQWemg5HL709NTBsMB1UoFK3cu7w8GvPMd78QwTGazGePxGMcRsnxZlhgNh/h+gCzLlMtldna2qdfqvOMdb2e+WNDv9ej3+5iGUAKMxxM2N7cIw5CjoyOyNOVHfuSjyyzpyWTKSy+9xCsvv8K1a9eYz2dcvHgRVVVI0pTBYMjFS5d45eXrjEZjfN9HlmVu3rxJtVIRUnZPdJ9bzdYyo3y+WBDHsThw8H103WBvbx/LsiiXRfd/PpuxurrK7u4Ov/M7v0OlUmE0GlKtVmk0GmxubnBweIhl2TQajaVkXpjXiTn5RqNOpVql0RQS/iiMUBSFSrlCrVrl3e9+F3Ec0263KZVs5vMZsqLw2GOPI0nwv//vn6ZcLovRA2fBeDRCyiCNEzzHpVVviCxu38dxXFqtNlEYsba2Rsku8dBDD1Gv1zBNMy/sp3iei+/53+0tWVBQUFBQUFBQUFDAW7zQjqKYMBKO3VEUkiYpruvgOq5wYc4y/EAU4NPpVHSO8w54mM9vK7mhmqqqZKmQmINERrY0VVs4C8IgpFEXsupSqUQUxYgWtpCBJ0mCpmkkSYKzcPLupvi+67lIMpiWQZLGZIi5cd0wCIIQz/VIkgddbh9N0/B9D01Vee36a9iWDUClUqG90haz6GlGmmaoikIUR4RBwO7uLqZlMhwOCcOAXrfH1uYmhmGQIdyy260WlmWJbj5Qq9XprKxwenpGGEbs7d2HLGNvf48kTahUq6yvr2HbFrOpcN5eW1uj1Wqiqiqj0Tg/MChx8+ZNRqMRjUaD1dXVZTdeVoQcv1arce7cLkma8uKLX2cwGNBsNel2z5hMJkLaHyfcvn2bu3fvUqlUAFAUmbOzMx555GGq1aqQ3TsO1WqVvb09Go0G1WqV0Uh08zsrK2iaRhzFWPns8srKCp4vur5hGNLpdGg0G9h2iXKlQhCEXL36ENeuXcs/GynT2ZSjoyNURaFareL5PlEUU6sKN/b5fEar1cZxHObzOdVKFU3TsG2LlZU2SFCtVgmCgHK5wmw+4/DwUIwoSDLXrl0jjhOazSb9fh/btlAUFV3TcV0HWRbRcrKq8La3vY23v/3tlMtl5vM5pmlgmsI74ODgcPlZn0wmWJaNaZpLhUVBQUFBQUFBQUFBwXeXt3ShHUZCMh5FEVEci84yIsLLLpXwfT/vPIrs5TRNSZMURZGJ4zh34Y6QkPKiOMayLeYL4dacpZnI2nY9JFlCUVWCMMzdyBNAIgV0Q8wGK4pCkiYMhyLGyrIs4iTGdRd4vksQ+oBwuTYMnXJJdJslFAzdQNN1SiXR2ZzPZyiKQq/bpdVqUqlUMW2bueMQxRGmJQqpwaBPmiQkacpoPCIMAuFebdssFgs8z0NTRTfb80T2tyxLrHZWkSSJ8XiMJMtEUUS/12M+X4jiTpaxTJOSbTOZTJBlmfFkIu6DojCejBkMBoShiB1bLOZMphOiMGQ0GlEulwiCgDAMIMu4dfvWUuauqSovv/wKruty584dut0enueRkVGr16jX69y4cZOTk1NkScbzfaqVKoZpMp1OMC1zGRcmyzIXLlxElmV2d3ep12vMZrN8vvuMO3fu4nkus/kcK/8c7O/vc+3aS0wnE9I0ZTweM1/MaTTqGIaZy64H4kAmisiAs7MzsjTLI7rGvOMdb0dRRQxbZ3UVZ+EwnU6QJAlZlul2ewz6fe7evYuiiIMcTdXwPI/pdEYcR0ynk+UctaGLuLnz58/RardQFJXOSodKucwgHwfo9/ssFgvCMMC2S3S7Z4RhgCRLzOdzyDJMU2SXr3ZWWV9ff4N2ZkFBQUFBQUFBQcH3Nm/pQjvLMrIH0u8sg0wUxg/mpnVdp2SXMAwDRVYolUqsrq6i6TpqbnZm6DpxHIuuY6WCJEniZygqqqaiyDKe74mfoShLQ7QojjFNE0VRSNOUOJ8RVxQFy7axTBPHcQjz2Ws9f84MsWYyGE8mxHGcZ34n6JpGvV4TzxEKZ+o0TfMZ8Qzf95lMxqRZhrNwCPPc7yzL8FyXxXxOGEZsbGwKGXwudRfrjcQsrydk1+fPn+PRRx+j3+9xeHiIaZqUy2WRQS7LyJLMYrHAcUTR3u32IANd07Ask/lsjue5hGFIo9FgNB4TBiFnZ2cA3L59h5OTYxaLhejAJwmmaRIEPnEiXNplWebihQuYpsnDDz/M9tY2g34fI49K03UdXRdy/6tXrxAGAUEQ4iwcNE2n3W6RZRmvvfYqSSIk4uVyBcMwkSTRDf4Lf+FHCcMQz3XZ3t6mXq/zwz/yI3zwBz9IEAgH90a9gaIofPWrX12ua6Xd5tKli6yvrXPx4kURD7aYoygqrVaL165f5z/9if8Uw9CxLYtGo04cJ5imRbfb4/T0FNM06XRW+eM/foGzs7NcGVBCUcSMf6lUxjAMwjCi0agzm83wPI9er0cQBPi+T7VWxfVcMjKq1SppKsYiLMtcdva9fDZc+ATIjMdjev0eSZq+EduyoKCgoKCgoKCg4Huet3ShLUli1lqWZSQgyTOtK5UKSSpkyLIiMx6N8XyPkl1iNBqyyGd30yzFsu1cyis6kfP5HFVVsUs2vu/juC5ZluVu1loeS2Xk0VOaKKQVhUajAbB0Px9PJkwmE0zTFOZV+VyvqiikWZZ3xEGRZSbTCb7vLzvLpZKNYRggSctIpzhOmM2mdDqr6JomnLw1NX/9CpVKhdXVNSrVCpPphMlkymAwYDQaUavVsEwTTdexLBHnNZlMqVTKyLKCkX//8uXLlOwS5VKJKI5otVqoqkKWZctZbNM0OTw8QpJgpdNG0xRKZeFyvVgsOH/hAgBhGBLHMdWqmI0vl8vEcYym6XRWOtRqNWq1OvsHB9TrNV588RpRFLG2JmbEq7UqsiwRRTGWafL7v/95PvOv/hUf+IEPEEUhQeBz4cIFVE3j5OSUSqXKYuGwWIjuuiQJh/PPfe73CYKQ6XTG4eERURRRLtk897Wvcu/ePdbX16jVqpiGwcrKCjs7wvys1Wpz+/Ydbt2+xaA/QJIkmo0G5XKJyWTC+toa/+Jf/A57e/tce+kl+v0+Fy5cIAwDarUaV69eIYoixuMRQRCQZSl7e/tIEliWzZUrV/PcccgycVi0tbUljNMyME2xnjRJWV9fZzqZIMsK9bowVxuPx2xubrC2to4kyYRhQLPZQtM0qrUqk8mE6WT6huzLgoKCgoKCgoKCgu913tKFtiLLyy9ZUURnOI4plUp4noeqqQBkZARBwMJZMF8skJBYzOcic9rzME2DtbU11LzzvLW1hSRJbG1u8eEPf5h2q42makwmE7I0FT9bUVlbXcsjr1xcz6OSd8TX19d59NFHMXSdS5cuia53lmGaogspSRKNZlMU3pomHNBzR/D9/X1AGL2FQYAkyTiuQxgGbG1t0ev3CKOI+XyO67pIkoSiKrRaLZAgjmIW8wVBIIywyuUypmliGCa6pqOoCkHg0+v3cm82MYve7XY5O+vmRm76MkIsy4RJnB+ITvhisUCSRRE7nU3ISLn+2nVc12V9fZ12q818PqdUsgGJXk/IwqNIzL6HYUAYhmKWutNBQsKyxKwxCOnz+vo6tmXTaDTxfI8sA1mW8nzxCa1WG9su8fzzLzDoD9ja2uTevbu0222QJDqdDqWSmBlvt9tMp1MkCYbDITs7O9y6dZuTkzOyLOWVV17l8PCIXq/P6empGBXwfP71F/81URSytrqK4yyoVCrousHJyamIAFM1Lly4wO65XUzDYDqdEkUhJ6ennJyckOQZ3dPpFDN3qDdNMS9er9fods+oVqusr68jSRL1uuhoZ1mKoiq4nsf+/j6qppElKZZl0et1KZVsNjbWOXfuPIuFg+s6RJE47BFqgZjdnR0ajQZa/vkvKCgoKCgoKCgoKPju8pYutB+4h0t5sS0BUp6jbZomZBBFEYaus7Ozg+/7xHHMWfeMjAfRXAkLx2HhOMiyjK7pDIfDfE56zuOPPUatViMIhalatVZjbW2NMBLxWJPJhCiO6Pf7RGEk5OG5lLvRaKLrOrZtoygKi8WCZrNNrVJnPlsQBAGu4+I4LrKskCQptm3juO6y8O/1eriuw+raKv1+j3KpxHAwIIpDHnnkYbY2t3j8scew7RKDvpgNr9WEcZeqajiOw/rGJq1Wk2pVuK9LkkwUhmiqBkiomka73abdbovXnmZIkrw0i4uiOC+8k1y6vRCzyCioisZ8LrqwumEwmYzFbHmvh+e5ZFnK4eERsixc0ZMkIU0TdF3j0qWLvO9930elWmV1bZVyucLJyQmnJyf4gTh08FwPRVFwHBfP9/mt3/r/kZHR6XRQVYVSyWZra4sLFy4SBAGXLl7k6OgISZbp93uMxyNK5RKz+ZzpbMrqaoftnS1K5RKmaXJ8fIRlmXQ6K6yurrK1tU2WZbzv+97H9vY2Dz/8CO32CovFnHe+8524rrs0rVvf2GB3dxfDMNANA9/3efqpp7h69QqTyZSF42BZFs1Gg06ng2GIgxfDMLBsG98PCIKAGzducO/+/WXOexzFSAgPAkmSCAOfk8NDpDSlZJdYLBwmkzGqqnB8fILjOCiKgmEYTMZjFosFm1tbmOXyG7tBvx2yN3oBBQUFBQUFBQUFBf/h+LYK7U9+8pM8+eSTVCoVOp0OP/ZjP8bNmzdfd80HP/jBZW71g6//8r/8L193zcHBAR/96EexbZtOp8Nf/+t/PXf7/jYXn+cSK4qCrCggSfi+z3w2F07buTRX1bSlMdTa6ho7OztkWUalXCFJU6rVKvv7++zv7bGysoKqik6g67nsHxxweHTIbDZD13Vefvll7t69SxRFXH/tOpqqkSYJVy5fYTqdcP78eWazGcPRiDAK2dvbEzPccczlS5eRJInZbMbJyQmu4+A4CwxDGLGZlkm9XieOYhzXZW9/H89zadTr3Ll9hyiKWSwW1Go1yiXhPr29vU0Yhty7fw/XczEtk8lkiq5pxHFEEIYcHR+hqirr6+soskJ7pU2tVuPLz36ZCxfOY9s2kiRhWSaXL1/m8PCQixcv8o53voO1tTXiOOLRRx/Ftm3e9ra3oWkahmFg2yXCfDa9VLJF5FmSMJ/PiaIIy7Kp1+tsbm4QxzGGoaMoKmmaYVkWd+/eFS7fQYhlWkynIgbMtm0unL9AvV5fdmuzLOPc7jmuXLlMq9nk5OSEzc1NGs0mWZZh2xZB4HPr9m3m8wW+5/Hoo49x5cpV3v2ud4tDhSzj+PiUV1+5zs72DufOneOpp57CtktUazUajQbPP/88URRy4+YNHnnkEZ5//jniOKZWq7G/v8d73vMennrqaSHznkxQVZVyuUKapty5c5fr16/T7w9oNptoqspsNsN1RWd7MBiICDo/wPM8zs7OcByXqw89xO7ODm9729s4Pj5ezvZbts1sPiMMQkzDwDItrl17kSeeeIJut5urCNZotlqMxmPOzs5495NPslgssG2brc3Nt8xebp7Uvu2/U1Dwvc6bbR8XFBQUFBQUfINvS1v6xS9+kWeeeYYnn3ySOI7523/7b/PhD3+Y1157jVKptLzup3/6p/nlX/7l5Z9t217+d5IkfPSjH2VtbY0vf/nLnJ6e8rGPfQxN0/iVX/mVb2vxD4rsB2RZRpIkbGxsMJ1MiZOELM1wFgvu379PuVxmZWWFXq8n/q6qoMs6pmFw7tw5fM9jsViwvrHO/fv3mU6n/PN//s+xLYut7W3K5TK9Xm+Z052URC51EATIikypXBad7ShiOByiqSpaPtstSxI3bt6gs7JGuVzJ55U1ut0epVKJXq+/jBlTFJn9vX1q1epy7lxRFFzPpdlo0O12GQz6PP30U7zwwgvCXMu0SNKE7tkZURzTWVmhUqlwdHTEI488RK/bJ44TSiWbg8NDzp87R6PeYDweU66UCYMQVVWJ4pj3vPe9vPbaa2xubnB0fIxhmPhBgKIoxEnC9s4Ow8GQOE5YX1+jXq9jmiZhKMy42u02aZbx/e97H1//+osMBgOiKMQwTO7fv4dpWkymEw4PD9na3ub27VtiJh3wA5+HH36Es7NT/MCnnHdlFUXmxo0blEoljo9P8mJfR1VUoijG9wPK5TKu65HEMSudDs7CIU0TFosF29vb9Pt9LMtEliU0TeX09BTHcTFNk+vXX8OybGq1Gq7ncvXKFQ4ODtje3mE8HnFyekq71eL27VvcuHF9eTgh3N0dIeFXZEajMfO5kIALublOp9PBcV2Oj47Y29tDkmQM01hGsSmKwt2791hZWcGybTbW14WBXH4YtFiIw5hKpUy5VuXk5ISt7W2GgwGd1VVURYE8m/3evXsA3LhxA9fz3jJ7OTSjb+v6goKCN98+LigoKCgoKPgG31ah/dnPfvZ1f/7Upz5Fp9PhhRde4AMf+MDy+7Zts7a29if+jN/7vd/jtdde4/d///dZXV3l7W9/O3/37/5dfuEXfoFf+qVfQtf1b3k9Uv4/EHPYwoU8yzugopsd5h1Ry7LwfZ8oDLEte+lU/iASTJZFc19kLYtZ65WVFYbDIY1Gg16vR5qkS7OzRqPByfExWZZhGAZnp2e4rkur3QJE5vXlS5d5/oXnydIUPXc+l5DyLOp1gsBnPB4jy4qYJ8/EK2k2W9i2xf7+gehwxwmVagXfF3PSlmWh6zrHx8ckSQJkxEksTNJKJcqlMtVqNY+/UvjqV75G8//f3r3Htlnfexx/+x5fYjt2YjtOkzRpy9I2bVZo6Xo440ijomMIbYz9w5jE0CS0UiYxpmlCGqBNmkCbtD82oe0/mLRpm3oYQyuFo57eoGellPQCTdv0kqRx0sR2fInv1+d3/nDqndACbchpkvJ9SY/U2E/d3/NVP0m+z+X383jIZLLEYlPodHpOnz5DqVRk7dq19WoOD4/Q0dFONpvDarWiFBj0Bjo6O2qTqs2sCR2PxckX8jRYLKTTtSvsRpOJbDiCpml8+ctfplKtcvbsIPl8Hqu1gWKxiE6n4ytf+QpvvLF7psYQm4rh9weIRMK1kwnZLBaLGaUUq3t6GBg4PTOxWhWrtYFNd27iWH8/09NJ1q1fz6WREcbHxzEYDUxFpzCZTSxb1s65wXOYzWZ6enpIpabJZLL0rO6hs3M5mWyWaCRKLFZbhkzTqnR0dJJKTdPbu5a3336HfD5Ptapx+fI4eoMBa4OVbLbWUHu93pl1vdcyMDBAU5ObRkdjrWk2GvD5fBSLJXw+P5FImJGRS3R3d9VPdGhK0RpoJRKJkE6n0Ov1FEtFdDpoC7bVlmzTtNra7E2m2sR8+QL5QgGr3VFfYszj8eCYmY+gUCyglBkdYLPbiUaiZNLpJZPljDdHS9yLJXf9f0eIz4tc5tq5WGw59lx2YUvZPn1HIeaoaCuhdIqCvYQ70rjQw7khH5djIcSt6zPNljQ9XZvV2OPxzHr9T3/6E3/84x8JBAI88MADPPvss/Uz6IcPH2bdunX4/f76/tu2bWP79u0MDAywYcOGq/6dYrH2LOsVqVTqmuPR6XQYjbVJ0TRVe+hTq2o4HA5WrFjB+fPnabBaiccTaJpGKpXCoDfQ2tpav/qbjkSAWuMdiUTQzfzZYrGgKY1cNke5UsbhcGC1WklnMpiMRgqFPHqDnlgshl6vx+l0UigWMJvNNMw0xuHJMCtX3kY4HK41iuvWEQqF8Hg9VCoVrFYrmqZRKOSpVit8ccMXSaVSjAwPs3HjJo4dO4ZBb0A/M9N6c3MLSimy2SyT4TCNDgflUolqQ4WRSyMU8gXa29sJBALs27eXvr4vYjQaSadTNDobWdfbS39/P2Nj4xQKBYrF2iRlTqcTr9eDxdLAfffdx9DQEDpqM4BPTIS5PDGB3++nsbF2ZT4UGsNkMmEwGHA6nYyMjGA0Ggm2BZmcnKBSqR3L+XPnsDvsPPbYdzl69Ch6fa3hz2TSxOMJfH4fGzZs4OLFiyilZpZTq01u53K5WLt2LV5PbU1xk8lEqVhk/fr17N+/n3g8QTAYxKDXE4mEWbasjYYGKy6Xi6pW5ezZs4yPj+NsdPLm7t3cfvvt+Hw+IpEwGzduIhyeJJVOE41Ga7d9m0w4HHo+PHWKaqVKX18fPT1f4I03dhOJRrGYzUxOTqLT1c6PKKVhtdYmnevq7uLC+QtMTU3V7nzQqmQyWYJttfHlcnlWrVpFtVohnUljNpsol0tMTNRmT+/u7ubYseM0NjqIxWOs7unBbDIzPjFBJpcHdJTLJZLTSbLZLLlcDpPRyOrVa3A4HPQf68dmtc4sC7c0shw830K1HTLu3HWPWYjPi7zh+nKx0Dl2RRspOivknB9/N40Qn4Vm1FA60Awamabckprf43pzLIS4dcy50dY0jaeeeoq77rqL3t7e+uvf/va36ezsJBgM8sEHH/CTn/yEwcFB/va3vwEwOTk56wc6UP/6yhrMH/XCCy/ws5/97LrHptPpQKnakl2G2kRpZ8+eJRQKkUgk8Pt8tLffztnBQWw2GyMjIxSLxZn1sw0cPnwYr8dLX18fw0PD9SuZiUQCt9tNOp0mFArR3t4+s1RYlUKxQEtLC16Ph7GxcaaT00wnpzEZjVgsFiwWCx6vh9FLo3i9XhLJBK+++iotPh9nzpxhRXc3lycmarOEW2pLgsVjMe7YuJFsNsvYWAin00kikaC5uZmGBgtnzpwmncmgtNoSUFeOIZVO07d+/cys6gXSmTTtHR0MDQ1hn1me6oknnuDAgQOYzWa6V3Tz/vv9dHZ0AIquruXo9XqGhoY5evQokUiY1atXMzY2TqVS4Y7b7+DkyRMYDQbcbjdf+9rX2Lt3HwaDgUCgFb1eh1LUJkgzW9i2bRt/f/112oJt5LJZBgcHOXXqFNVqlfb2dmw2OytWrGD9+vUcOHCQhx76Jm/s3s2ZM2dra4KbTZw+fYaLF52YzWba2to4fvwYvb29RKNRHI2N2Ox2mr3NlCtlVq5cxfj4GHq9jsnwBFpVo62tDaPRhF6v41vf+hYjI5doa2sjHK5dSS+VSvhaWjhy5Ah+v59Ll0aZnk5SLpXoXbcOg8HAu+8ewWg04vP7GB8bIxDwYzDoKZcrtZMeM2ukNzU1sWnTRo4dO4bF4iAWizF4bpBly5aRzGSx2az853/upKOjE6fTSWp6msZGJ01Nbt577yir16ymu7uLiclJblu1imCwjf6jRzFaarebnzo1gNdbm2jParWSy9XWOj93bhCD0UhnRydnz57FoL++KRgWQ5YtOQu2cdvM/SVCiP8rm81+6j6LIccATWEn7vDSutIoxM1wPTkWQtxa5txo79ixg1OnTnHo0KFZrz/++OP1P69bt47W1lbuueceLl68yIoVK+b0bz3zzDM8/fTT9a9TqRTt7e3X3nmmyS6Vy2iahsVsoapp5HN53C43uVyO6NQUiWRyZk3pIkopAoEAer1+ZukuAyazmSa3m8b16zj0P/+Dr8VHOpOmoaGBfD5Ps9eLxVL77OaWZsKTYcZCY0xNTc08b6yw2mxMTkxS1WqziVssFibGJ7n99tsJBAJMRaOkU2n0eh2xeJy2YBsTExNYG6xEp6JUKhXe3L0bh6MRs9WEyWScaexKWK1WGqxWDAYjsViMTDqDy+0il82ilOLMmTMEg21kshkmJi6zvKuL5Z3LGR8fQ3O5iEQiDA0N0dnZSUdHB/FYHH8gQDaT5eTJk9x22xdIp2tXt/V6HZVKhfaOdsbHxjl3bpCWlhYsFgv5fJ6hoSF8Ph+JRIKRkRFWrlxJuVLm7NmzlMolXn31b9jtdkqlEpqmodPVbjdv8nhIxBMkp6exWCy8884hKpUyJ09+QDQSpWd1D8NDQxgMRsxmE2azBb3BwJ4336S7ewUXLw4RCo2i0+kIh8Po0HHbF24jlUoxPZ0iEomw5d82s2/vQXp6voDBYKC//xjowOvxMjUVY/369fT3v0+pVGLt2l7sdgdTsSlKxRIrV64im6udZAmFRmlq8uByuXC73DPLirUznUqRTCbR6WoneJLJaUKhMVwuJ06nE5fLTSQaxWwyMXH5Ms3NzeRyefz+ALlcjkqlPPMoghub3Y7dUZtVfvXq1SQSCUZHR7l06RImgxF/sBWrw4FjZrNZrbS2Brl44SI2mxW9vnbrfalUormlmY72ZdeVr8WSZZ3616MgQoh/0atPP2kmORZicbueHAshbi1zSv2TTz7Jrl272L9/P8uWffIv85s3bwbgwoULAAQCAcLh8Kx9rnz9cc+QWSwWnE7nrO3j6GbWf87PLMNUKpdqaxc3uTGbTegNtUOuNTkVpqamsNvtmM1mpqJRDHo9sVicicuXOXHyJLF4nEq5TIO1gVKxWLvV2+PB4/WSmk5ht9tJxBNoSsPSYEGnqzWlOr2+9tkOO0aDgfLM7Nw2m41YLM6FCxfw+f0sW7aMQCCAs7GRO+/cBNRuVbfbbASDQWw2G+VyiUg0isPRiLe5GZvdzt3/cTf5XJ6pqSjLl3fWmiuvF5fLRSqVZnhkhJGREXK5HIVCkdMDA4RCodpz5F4v77zzDjabHXQ6xsfHa8tUmS3k8znMZjMjI8M0N7dgNBqwWBowmUy156kDfkBHKpXGbDbj8XhnrhYb8Pt96PW12/ej0SjVagWjwUBTk5umJjeORgdutwu3243NZmc6mWRqaopGRyMGg4F4PMbq1WsIhULY7LWTFB6Ph2KxiNlsIZlMEo1E8fn9uN0uGhoa6Ov7Ym25LKuN6ekkkXCYL31pE52dnSQSCf7rrf+mudlLsVQiHo/T0dFO58zz2JPhSaLRKH6/n+XLuxgbH6Ovbz3r163D7/fhbfZiNBiYnJgkEomyatVKVq5cSVOTm47ODqJTURosFkwmM0ajiXQ6QyqVwmIxk8lkiMVi5HJZctkcK1asxOv1ks3laGx0oNfrKBYLZDJZWltbyWSzXDh/nmBrK47GRgYGBujo6KQ1GMTpdFEqlwlHIjOT+tkpFovY7XZ6e9fS1NTEldvJ7XY7druNarXK5GT4Y1LyL4s5y0KI6yM5FkIIIRafG7qirZTiBz/4Aa+99hoHDhygq6vrU//OiRMnAOrLa23ZsoVf/OIXRCIRfD4fAHv27MHpdLJmzZrrHgfUJjqrvzYzGVq1WruNO5urNYzFYpFioUA+n6dSqdDU1ES1UgVVu43Haq3dpp1IxAmNhVi5ciVVrUqwNUi+kKdYLOLz+ygVa7NmVyoVEokEhUIBq9WK3qAnkUjUn4dNp9PodDr8fl/9GTiX211/rlpR+yVF06qYLWYS8Xit2b18mZbBwVpd/D6sDTa23rOVnTt3omkayWSCZW1tlEolnI1OBs8O4vO10BpsxevxMDHTDGYyaVKpaZqbm0kmE/VG1WgyMjk5Qblcrt/inUgkCI2OEmhtJZvNMjw8hFKKf//3uzl//jwmk5FYPMaqVbdR1aoMDw0TDLZSKpfw+/xkszli8RiappFOZ/D5fPT2rmVg4AyaVq2dZNAMnDt3HrPZTGdnJ0lNkctn6ezoIBaLUyjUZjMfHx8nXygQi0WJx+PYbFZ0+trEY4OD59DrdWSzGRKJOO3L2lFK49SpD1nW3o7NZsNsNlIqFfF4PezatZuRkRGq1erMJHC1q/2VSoVYLMaXvrSFqlZl4vJlktNJ9DodjkYH2UyGYrHEhQsXiMXjmM1mhoeHMZsteDxu4okEZ8+cwePxMHLpEvFYnLGxEAqF2WRmzdq1dHd3c+LEcex2O1arleHhYdrb20kk4lQqFYqlIuPjY2Rzeewza2n39NxWn1G9XClTKpaxWq2MjAwTCo3idjfhdDjRqlWK5TJ2h4NsNsuHH3yI1Woj0Brg5IkTBINBtKrG+Ng4VquVWGxqVl4Wc5ZzOXl2TYiPcyUfH82y5FiIpePjciyEuIWpG7B9+3blcrnUgQMH1MTERH3L5XJKKaUuXLigfv7zn6v3339fDQ8Pq9dff111d3eru+++u/4ZlUpF9fb2qnvvvVedOHFCvfXWW6qlpUU988wz1z2OixcvzjwBLJtssn3aFgqFJMuyyXYLbB/N8mLJcSgUWvDayCbbUtmu9TNZCHFr0il1/afWPm4W45dffpnvfve7hEIhvvOd73Dq1Cmy2Szt7e08+OCD/PSnP511a9mlS5fYvn07Bw4cwG638+ijj/Liiy9iNF7fBfZkMklTUxOjo6O4XK7rHb7gX8/ShUIhud3vBi212imlSKfTBIPB+vJ1V0iWl76l9v9xMVlqtfu4LC+WHGuaxuDgIGvWrFkyNV1Mltr/x8VkKdXuk34mCyFuTTfUaC8WqVQKl8vF9PT0ov/GuthI7eZOarM9Y+UAAAcxSURBVDf/pKZzJ7WbO6nd/JOazp3Ubu6kdkKIxUxOqQkhhBBCCCGEEPNIGm0hhBBCCCGEEGIeLclG22Kx8Pzzz8+sVy1uhNRu7qR2809qOndSu7mT2s0/qencSe3mTmonhFjMluQz2kIIIYQQQgghxGK1JK9oCyGEEEIIIYQQi5U02kIIIYQQQgghxDySRlsIIYQQQgghhJhH0mgLIYQQQgghhBDzaEk22i+99BLLly+noaGBzZs389577y30kBbc22+/zQMPPEAwGESn0/H3v/991vtKKZ577jlaW1uxWq1s3bqV8+fPz9onHo/zyCOP4HQ6cbvdfO973yOTydzEo7j5XnjhBTZt2kRjYyM+n49vfOMbDA4OztqnUCiwY8cOvF4vDoeDhx56iHA4PGuf0dFR7r//fmw2Gz6fjx//+MdUKpWbeShLkmR5Nsnx3EmWF47k+GqS5bmTLAshbhVLrtH+61//ytNPP83zzz/PsWPH6OvrY9u2bUQikYUe2oLKZrP09fXx0ksvXfP9X/7yl/zmN7/h97//PUeOHMFut7Nt2zYKhUJ9n0ceeYSBgQH27NnDrl27ePvtt3n88cdv1iEsiIMHD7Jjxw7effdd9uzZQ7lc5t577yWbzdb3+eEPf8g//vEPdu7cycGDB7l8+TLf/OY36+9Xq1Xuv/9+SqUS//znP/nDH/7AK6+8wnPPPbcQh7RkSJavJjmeO8nywpAcX5tkee4ky0KIW4ZaYu688061Y8eO+tfValUFg0H1wgsvLOCoFhdAvfbaa/WvNU1TgUBA/epXv6q/lkwmlcViUX/+85+VUkqdPn1aAero0aP1fd58802l0+nU+Pj4TRv7QotEIgpQBw8eVErV6mQymdTOnTvr+5w5c0YB6vDhw0oppXbv3q30er2anJys7/O73/1OOZ1OVSwWb+4BLCGS5U8mOf5sJMs3h+T400mWPxvJshBiqVpSV7RLpRL9/f1s3bq1/pper2fr1q0cPnx4AUe2uA0PDzM5OTmrbi6Xi82bN9frdvjwYdxuNxs3bqzvs3XrVvR6PUeOHLnpY14o09PTAHg8HgD6+/spl8uzatfT00NHR8es2q1btw6/31/fZ9u2baRSKQYGBm7i6JcOyfKNkxzfGMny/z/J8dxIlm+MZFkIsVQtqUZ7amqKarU66xsngN/vZ3JycoFGtfhdqc0n1W1ychKfzzfrfaPRiMfj+dzUVtM0nnrqKe666y56e3uBWl3MZjNut3vWvh+t3bVqe+U9cTXJ8o2THF8/yfLNITmeG8ny9ZMsCyGWMuNCD0CIxWLHjh2cOnWKQ4cOLfRQhBCfgWRZiFuDZFkIsZQtqSvazc3NGAyGq2aWDIfDBAKBBRrV4nelNp9Ut0AgcNXkNZVKhXg8/rmo7ZNPPsmuXbvYv38/y5Ytq78eCAQolUokk8lZ+3+0dteq7ZX3xNUkyzdOcnx9JMs3j+R4biTL10eyLIRY6pZUo202m7njjjvYu3dv/TVN09i7dy9btmxZwJEtbl1dXQQCgVl1S6VSHDlypF63LVu2kEwm6e/vr++zb98+NE1j8+bNN33MN4tSiieffJLXXnuNffv20dXVNev9O+64A5PJNKt2g4ODjI6Ozqrdhx9+OOuXoj179uB0OlmzZs3NOZAlRrJ84yTHn0yyfPNJjudGsvzJJMtCiFvGAk/GdsP+8pe/KIvFol555RV1+vRp9fjjjyu32z1rZsnPo3Q6rY4fP66OHz+uAPXrX/9aHT9+XF26dEkppdSLL76o3G63ev3119UHH3ygvv71r6uuri6Vz+frn/HVr35VbdiwQR05ckQdOnRIrVq1Sj388MMLdUg3xfbt25XL5VIHDhxQExMT9S2Xy9X3+f73v686OjrUvn371Pvvv6+2bNmitmzZUn+/Uqmo3t5ede+996oTJ06ot956S7W0tKhnnnlmIQ5pyZAsX01yPHeS5YUhOb42yfLcSZaFELeKJddoK6XUb3/7W9XR0aHMZrO688471bvvvrvQQ1pw+/fvV8BV26OPPqqUqi0n8uyzzyq/368sFou655571ODg4KzPiMVi6uGHH1YOh0M5nU712GOPqXQ6vQBHc/Ncq2aAevnll+v75PN59cQTT6impiZls9nUgw8+qCYmJmZ9zsjIiLrvvvuU1WpVzc3N6kc/+pEql8s3+WiWHsnybJLjuZMsLxzJ8dUky3MnWRZC3Cp0Sin1/3vNXAghhBBCCCGE+PxYUs9oCyGEEEIIIYQQi5002kIIIYQQQgghxDySRlsIIYQQQgghhJhH0mgLIYQQQgghhBDzSBptIYQQQgghhBBiHkmjLYQQQgghhBBCzCNptIUQQgghhBBCiHkkjbYQQgghhBBCCDGPpNEWQgghhBBCCCHmkTTaQgghhBBCCCHEPJJGWwghhBBCCCGEmEfSaAshhBBCCCGEEPPofwEBidjgpoT2gwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "graph_loss_history(train_loss_hist)\n", + "\n", + "graph_performance_history(\n", + " performance_hist = val_performance_hist,\n", + " split = 'Val',\n", + " metrics = [\"Accuracy\"]\n", + ")\n", + "\n", + "show_sample_results(\n", + " model = model,\n", + " dataset = train_dataset,\n", + " device = device,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "4c0PfA5Vuvey", + "collapsed": true + }, + "outputs": [], + "source": [ + "test_model_on_benchmarks(\n", + " lookback = {'count': 0, 'stride': 0},\n", + " model = model,\n", + " device = device,\n", + " all_benchmarks = True,\n", + " report_results = True\n", + ")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Training Loop Functions (Don't have to use these)" + ], + "metadata": { + "id": "j3wGdlej4hQO" + } + }, + { + "cell_type": "code", + "source": [ + "dataset_path = \"/content/YOLO_soft_labeled_data\"\n", + "images = [os.path.join(dataset_path, img) for img in os.listdir(dataset_path) if img.endswith(('.png'))]\n", + "labels = [os.path.join(dataset_path, lbl) for lbl in os.listdir(dataset_path) if lbl.endswith(('.npy'))]\n", + "print(sorted(images))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ROI-uaDP-rW_", + "outputId": "926d6cf7-57b9-4985-da9b-6f8453bac50d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "['/content/YOLO_soft_labeled_data/img_0.png', '/content/YOLO_soft_labeled_data/img_1.png', '/content/YOLO_soft_labeled_data/img_10.png', '/content/YOLO_soft_labeled_data/img_11.png', '/content/YOLO_soft_labeled_data/img_12.png', '/content/YOLO_soft_labeled_data/img_13.png', '/content/YOLO_soft_labeled_data/img_14.png', '/content/YOLO_soft_labeled_data/img_15.png', '/content/YOLO_soft_labeled_data/img_16.png', '/content/YOLO_soft_labeled_data/img_17.png', '/content/YOLO_soft_labeled_data/img_18.png', '/content/YOLO_soft_labeled_data/img_19.png', '/content/YOLO_soft_labeled_data/img_2.png', '/content/YOLO_soft_labeled_data/img_20.png', '/content/YOLO_soft_labeled_data/img_21.png', '/content/YOLO_soft_labeled_data/img_22.png', '/content/YOLO_soft_labeled_data/img_23.png', '/content/YOLO_soft_labeled_data/img_24.png', '/content/YOLO_soft_labeled_data/img_25.png', '/content/YOLO_soft_labeled_data/img_26.png', '/content/YOLO_soft_labeled_data/img_27.png', '/content/YOLO_soft_labeled_data/img_28.png', '/content/YOLO_soft_labeled_data/img_29.png', '/content/YOLO_soft_labeled_data/img_3.png', '/content/YOLO_soft_labeled_data/img_30.png', '/content/YOLO_soft_labeled_data/img_31.png', '/content/YOLO_soft_labeled_data/img_32.png', '/content/YOLO_soft_labeled_data/img_33.png', '/content/YOLO_soft_labeled_data/img_34.png', '/content/YOLO_soft_labeled_data/img_35.png', '/content/YOLO_soft_labeled_data/img_36.png', '/content/YOLO_soft_labeled_data/img_37.png', '/content/YOLO_soft_labeled_data/img_38.png', '/content/YOLO_soft_labeled_data/img_39.png', '/content/YOLO_soft_labeled_data/img_4.png', '/content/YOLO_soft_labeled_data/img_40.png', '/content/YOLO_soft_labeled_data/img_41.png', '/content/YOLO_soft_labeled_data/img_42.png', '/content/YOLO_soft_labeled_data/img_43.png', '/content/YOLO_soft_labeled_data/img_44.png', '/content/YOLO_soft_labeled_data/img_45.png', '/content/YOLO_soft_labeled_data/img_46.png', '/content/YOLO_soft_labeled_data/img_47.png', '/content/YOLO_soft_labeled_data/img_48.png', '/content/YOLO_soft_labeled_data/img_49.png', '/content/YOLO_soft_labeled_data/img_5.png', '/content/YOLO_soft_labeled_data/img_50.png', '/content/YOLO_soft_labeled_data/img_51.png', '/content/YOLO_soft_labeled_data/img_52.png', '/content/YOLO_soft_labeled_data/img_53.png', '/content/YOLO_soft_labeled_data/img_54.png', '/content/YOLO_soft_labeled_data/img_55.png', '/content/YOLO_soft_labeled_data/img_56.png', '/content/YOLO_soft_labeled_data/img_57.png', '/content/YOLO_soft_labeled_data/img_58.png', '/content/YOLO_soft_labeled_data/img_59.png', '/content/YOLO_soft_labeled_data/img_6.png', '/content/YOLO_soft_labeled_data/img_60.png', '/content/YOLO_soft_labeled_data/img_61.png', '/content/YOLO_soft_labeled_data/img_62.png', '/content/YOLO_soft_labeled_data/img_63.png', '/content/YOLO_soft_labeled_data/img_64.png', '/content/YOLO_soft_labeled_data/img_65.png', '/content/YOLO_soft_labeled_data/img_66.png', '/content/YOLO_soft_labeled_data/img_67.png', '/content/YOLO_soft_labeled_data/img_68.png', '/content/YOLO_soft_labeled_data/img_69.png', '/content/YOLO_soft_labeled_data/img_7.png', '/content/YOLO_soft_labeled_data/img_70.png', '/content/YOLO_soft_labeled_data/img_71.png', '/content/YOLO_soft_labeled_data/img_72.png', '/content/YOLO_soft_labeled_data/img_73.png', '/content/YOLO_soft_labeled_data/img_74.png', '/content/YOLO_soft_labeled_data/img_75.png', '/content/YOLO_soft_labeled_data/img_76.png', '/content/YOLO_soft_labeled_data/img_77.png', '/content/YOLO_soft_labeled_data/img_78.png', '/content/YOLO_soft_labeled_data/img_79.png', '/content/YOLO_soft_labeled_data/img_8.png', '/content/YOLO_soft_labeled_data/img_80.png', '/content/YOLO_soft_labeled_data/img_81.png', '/content/YOLO_soft_labeled_data/img_82.png', '/content/YOLO_soft_labeled_data/img_83.png', '/content/YOLO_soft_labeled_data/img_84.png', '/content/YOLO_soft_labeled_data/img_85.png', '/content/YOLO_soft_labeled_data/img_86.png', '/content/YOLO_soft_labeled_data/img_87.png', '/content/YOLO_soft_labeled_data/img_88.png', '/content/YOLO_soft_labeled_data/img_89.png', '/content/YOLO_soft_labeled_data/img_9.png', '/content/YOLO_soft_labeled_data/img_90.png', '/content/YOLO_soft_labeled_data/img_91.png', '/content/YOLO_soft_labeled_data/img_92.png', '/content/YOLO_soft_labeled_data/img_93.png', '/content/YOLO_soft_labeled_data/img_94.png', '/content/YOLO_soft_labeled_data/img_95.png', '/content/YOLO_soft_labeled_data/img_96.png', '/content/YOLO_soft_labeled_data/img_97.png', '/content/YOLO_soft_labeled_data/img_98.png', '/content/YOLO_soft_labeled_data/img_99.png']\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "## Training loop functions\n", + "def get_acc(model, loader):\n", + " device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", + " correct = 0\n", + " total = 0\n", + " with torch.no_grad():\n", + " for inputs, labels in loader:\n", + " inputs, labels = inputs.to(device), labels.to(device)\n", + " outputs = model(inputs)\n", + " _, predicted = torch.max(outputs.data, 1)\n", + " total += labels.size(0)\n", + " correct += (predicted == labels).sum().item()\n", + " return correct / total\n", + "\n", + "def train(train_loader, val_loader, criterion=torch.nn.CrossEntropyLoss()):\n", + " device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", + " model = lane_model(lookback={'count': 3}).to(device)\n", + " model.train()\n", + " optimizer = torch.optim.Adam(model.parameters(), lr = 0.001)\n", + " # epochs = 10\n", + " for epoch in range(num_epochs):\n", + " running_loss = 0.0\n", + " for inputs, labels in train_loader:\n", + " inputs, labels = inputs.to(device), labels.to(device)\n", + " optimizer.zero_grad()\n", + " outputs = model(inputs)\n", + " loss = criterion(outputs, labels)\n", + " loss.backward()\n", + " optimizer.step()\n", + " running_loss += loss.item()\n", + " if epoch % 10 == 0:\n", + " print(f'Epoch {epoch} loss: {running_loss}')\n", + " print(\"Train Acc: \", get_acc(model, train_loader))\n", + " print(\"Val Acc: \", get_acc(model, val_loader))\n", + " print(\"\\n\")\n", + " return model" + ], + "metadata": { + "id": "T_dYQtO44gpg" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VrQ0WCEMLLEE" + }, + "source": [ + "Push Changes (when ready)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "SVVG89wVuvez" + }, + "outputs": [], + "source": [ + "# Fill in user info\n", + "git_username = \"\"\n", + "git_email = \"\"\n", + "\n", + "while not git_username:\n", + " commit_message = input(\"Username left empty.\\nGitHub username: \")\n", + "while not git_email:\n", + " commit_message = input(\"Email left empty.\\nGitHub email: \")\n", + "\n", + "!git config --global user.name $git_username\n", + "!git config --global user.email $git_email\n", + "\n", + "git_access_token = getpass(\"Enter your GitHub access token: \")\n", + "\n", + "git_push_url = f\"https://{git_username}:{git_access_token}@{git_repo_url.replace('https://','')}\"\n", + "\n", + "commit_message = input(\"Commit message: \")\n", + "while not commit_message:\n", + " commit_message = input(\"Commit message cannot be empty\\nCommit message: \")\n", + "\n", + "!git add .\n", + "!git commit -m \"{commit_message}\"\n", + "!git push $git_push_url $git_branch" + ] + } + ], + "metadata": { "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "EXXt5L25_kb6", - "outputId": "f35ff01b-795d-4866-c9d1-67061edcfa63" - }, - "outputs": [], - "source": [ - "# Fill in branch\n", - "git_branch = \"\"\n", - "\n", - "while not git_branch:\n", - " git_branch = input(\"Enter your branch: \")\n", - "\n", - "git_repo_url = \"https://github.com/AwrodHaghiTabrizi/UMARV-CV-ScenePerception.git\"\n", - "!git clone -b $git_branch $git_repo_url\n", - "%cd \"{os.getenv('REPO_DIR')}\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Import Repository Resources" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sys.path.insert(0, f\"{os.getenv('REPO_DIR')}/src\")\n", - "from helpers import *\n", - "\n", - "sys.path.insert(0, f\"{os.getenv('MODEL_DIR')}/src\")\n", - "from methods import *\n", - "from architecture import *\n", - "from dataset import *" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Download Datasets" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dbx_access_token = getpass(\"Enter your DropBox access token: \")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# download_datasets_from_dropbox(\n", - "# dbx_access_token = dbx_access_token,\n", - "# include_all_datasets = False,\n", - "# use_thread = True\n", - "# )\n", - "\n", - "# upload_datasets_to_google_drive()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# get_datasets_from_google_drive()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "xh4-Gg6vL2R3" - }, - "source": [ - "Code" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "id": "0t0BM_lS_6yq" - }, - "outputs": [], - "source": [ - "num_epochs = 15\n", - "batch_size = 32\n", - "val_size = 50" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "device = set_device()\n", - "model = initialize_model(device=device, dbx_access_token=dbx_access_token)\n", - "\n", - "train_dataset, val_dataset, benchmark_dataset = create_datasets(\n", - " device = device,\n", - " include_all_datasets = True\n", - ")\n", - "\n", - "train_dataloader, val_dataloader, benchmark_dataloader = create_dataloaders(\n", - " train_dataset = train_dataset,\n", - " val_dataset = val_dataset,\n", - " benchmark_dataset = benchmark_dataset,\n", - " batch_size = batch_size,\n", - " val_size = val_size\n", - ")\n", - "\n", - "optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)\n", - "criterion = nn.CrossEntropyLoss()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model, train_loss_hist, val_performance_hist, best_val_performance = training_loop(\n", - " model = model,\n", - " criterion = criterion,\n", - " optimizer = optimizer,\n", - " train_dataloader = train_dataloader,\n", - " val_dataloader = val_dataloader,\n", - " dbx_access_token = dbx_access_token,\n", - " num_epochs = num_epochs,\n", - " critiqueing_metric = \"Mean Pixel Accuracy\",\n", - " auto_stop = False\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "graph_loss_history(train_loss_hist)\n", - "\n", - "graph_performance_history(\n", - " performance_hist = val_performance_hist,\n", - " split = 'Val',\n", - " metrics = [\"Mean Pixel Accuracy\", \"Precision\"]\n", - ")\n", - "\n", - "show_sample_results(\n", - " model = model,\n", - " dataset = train_dataset,\n", - " device = device,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "test_model_on_benchmarks(\n", - " model = model,\n", - " device = device,\n", - " all_benchmarks = True,\n", - " report_results = True\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "VrQ0WCEMLLEE" - }, - "source": [ - "Push Changes (when ready)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Fill in user info\n", - "git_username = \"\"\n", - "git_email = \"\"\n", - "\n", - "while not git_username:\n", - " commit_message = input(\"Username left empty.\\nGitHub username: \")\n", - "while not git_email:\n", - " commit_message = input(\"Email left empty.\\nGitHub email: \")\n", - "\n", - "!git config --global user.name $git_username\n", - "!git config --global user.email $git_email\n", - "\n", - "git_access_token = getpass(\"Enter your GitHub access token: \")\n", - "\n", - "git_push_url = f\"https://{git_username}:{git_access_token}@{git_repo_url.replace('https://','')}\"\n", - "\n", - "commit_message = input(\"Commit message: \")\n", - "while not commit_message:\n", - " commit_message = input(\"Commit message cannot be empty\\nCommit message: \")\n", - "\n", - "!git add .\n", - "!git commit -m \"{commit_message}\"\n", - "!git push $git_push_url $git_branch" - ] - } - ], - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" + "provenance": [], + "gpuType": "T4" + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "4a9bbc41a3d242b2bc3449e75b8a75d2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c00a246584bc4a168c12b2d377a1da6a", + "IPY_MODEL_dbfb286a7b574f5e8df2ed1d6c46906a", + "IPY_MODEL_305f9855c2f94ec2b5e57bad32c5888c" + ], + "layout": "IPY_MODEL_1dfec75c1d1c4b7697f903d0f0aa2be5" + } + }, + "c00a246584bc4a168c12b2d377a1da6a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5abe78542d8145818bf2a015ea3640c6", + "placeholder": "​", + "style": "IPY_MODEL_321a408d2444490baec8e44360e350c1", + "value": "Downloading /UMARV/ComputerVision/ScenePerception/datasets/YOLO_soft_labeled_data :: 100%" + } + }, + "dbfb286a7b574f5e8df2ed1d6c46906a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9ae60db0827a4d5b8a21b9cddb658380", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e0204cc162484e5ca8692f06c6d46989", + "value": 2 + } + }, + "305f9855c2f94ec2b5e57bad32c5888c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ea0232825343456ab6d3c893d051eb92", + "placeholder": "​", + "style": "IPY_MODEL_0e1f108295c14df59a826cdda7cfd718", + "value": " 2/2 [08:31<00:00, 511.36s/ image]" + } + }, + "1dfec75c1d1c4b7697f903d0f0aa2be5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5abe78542d8145818bf2a015ea3640c6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "321a408d2444490baec8e44360e350c1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9ae60db0827a4d5b8a21b9cddb658380": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e0204cc162484e5ca8692f06c6d46989": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ea0232825343456ab6d3c893d051eb92": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0e1f108295c14df59a826cdda7cfd718": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "01639fe8ebf645ccb5592a4398a57513": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fca40378b2ad4b8f8db43dd8253579d4", + "IPY_MODEL_a440eacac2314b1795480a3f5a582bc4", + "IPY_MODEL_888b7adc921b4d7fb9472f242b24b0c0" + ], + "layout": "IPY_MODEL_b59b25de69cd4795960654e88888418a" + } + }, + "fca40378b2ad4b8f8db43dd8253579d4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_58b1a126732848439de8d6c0a220e8c3", + "placeholder": "​", + "style": "IPY_MODEL_8de823d4171a49b3bace60b0849045db", + "value": "Downloading /UMARV/ComputerVision/ScenePerception/datasets/YOLO_soft_labeled_data/label :: 100%" + } + }, + "a440eacac2314b1795480a3f5a582bc4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_54bb9a34c8664366bed359cd854125c2", + "max": 4, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ab0383256aaf47f5a4b9b10da10ac4c6", + "value": 4 + } + }, + "888b7adc921b4d7fb9472f242b24b0c0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4cc6e77faab04000aae4a2e391c0f40b", + "placeholder": "​", + "style": "IPY_MODEL_2a66d575c08946ef89735073c37e56aa", + "value": " 4/4 [08:01<00:00, 178.41s/ image]" + } + }, + "b59b25de69cd4795960654e88888418a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "58b1a126732848439de8d6c0a220e8c3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8de823d4171a49b3bace60b0849045db": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "54bb9a34c8664366bed359cd854125c2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ab0383256aaf47f5a4b9b10da10ac4c6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4cc6e77faab04000aae4a2e391c0f40b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2a66d575c08946ef89735073c37e56aa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "80b8f02c65c8447284de688e3592470d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fea915cf5e524bf6ba5df2ef98c1be22", + "IPY_MODEL_dfce39112a5e4300acb652d493f636b6", + "IPY_MODEL_0d9b4e60c67f4ed6b6ca5071391534a6" + ], + "layout": "IPY_MODEL_ca89bafee2d64b51ad3a25c7e1696dbe" + } + }, + "fea915cf5e524bf6ba5df2ef98c1be22": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9438f03d012b4424bcc2452f84b6e42a", + "placeholder": "​", + "style": "IPY_MODEL_ab0a3d152d6544999ad0e0c0597a7114", + "value": "Downloading /UMARV/ComputerVision/ScenePerception/datasets/YOLO_soft_labeled_data/label/background :: " + } + }, + "dfce39112a5e4300acb652d493f636b6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_69d10daf38b6410a840427c2b79849da", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e5447b1b159d441bafa64e7a839cdcc0", + "value": 0 + } + }, + "0d9b4e60c67f4ed6b6ca5071391534a6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_73ab0c6dcf6f4b8fb6d2202654b5b501", + "placeholder": "​", + "style": "IPY_MODEL_a510c6443a924be28121594b8ec60085", + "value": " 0/0 [00:00<?, ? image/s]" + } + }, + "ca89bafee2d64b51ad3a25c7e1696dbe": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9438f03d012b4424bcc2452f84b6e42a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ab0a3d152d6544999ad0e0c0597a7114": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "69d10daf38b6410a840427c2b79849da": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "e5447b1b159d441bafa64e7a839cdcc0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "73ab0c6dcf6f4b8fb6d2202654b5b501": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a510c6443a924be28121594b8ec60085": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2aa49bf2f39f4da5aa9d0a9c5883ea38": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_07cd64bda61d464aaee964a6a3b76579", + "IPY_MODEL_18888f06c871404aa65dd22d873c1145", + "IPY_MODEL_87e2871f05534fbf88b0676131b14632" + ], + "layout": "IPY_MODEL_fb90fc68c3d848da8f2d0d120842f29c" + } + }, + "07cd64bda61d464aaee964a6a3b76579": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d21acf1336244ce9a232879226f501ed", + "placeholder": "​", + "style": "IPY_MODEL_14025b3e2803455d9af495f475df45da", + "value": "Downloading /UMARV/ComputerVision/ScenePerception/datasets/YOLO_soft_labeled_data/label/cones :: " + } + }, + "18888f06c871404aa65dd22d873c1145": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5c4412ecd9f6420389d7935e9e9b7d44", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_dcc61bd19d4b4a81bf744377bb933437", + "value": 0 + } + }, + "87e2871f05534fbf88b0676131b14632": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8811737a5be44e2fa776316ffb43a649", + "placeholder": "​", + "style": "IPY_MODEL_83a174c5b425485695a7ee6a980be4a3", + "value": " 0/0 [00:00<?, ? image/s]" + } + }, + "fb90fc68c3d848da8f2d0d120842f29c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d21acf1336244ce9a232879226f501ed": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "14025b3e2803455d9af495f475df45da": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5c4412ecd9f6420389d7935e9e9b7d44": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "dcc61bd19d4b4a81bf744377bb933437": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8811737a5be44e2fa776316ffb43a649": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "83a174c5b425485695a7ee6a980be4a3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2238e9f621f347679bf771cbee23d8f7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4769a9b6e82b4ab99b5b64279f53fa71", + "IPY_MODEL_4e2bac366ce842cebbf2269fd7c0a175", + "IPY_MODEL_81e88cb51c1a471ab6c800718502262f" + ], + "layout": "IPY_MODEL_ff4a462cb3744ea2b766ac6ae879cfc7" + } + }, + "4769a9b6e82b4ab99b5b64279f53fa71": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_afdffa0249314e5c89ef644af870294f", + "placeholder": "​", + "style": "IPY_MODEL_aae6dab6943e4469a1e341e9ceb5ac5d", + "value": "Downloading /UMARV/ComputerVision/ScenePerception/datasets/YOLO_soft_labeled_data/label/lane_lines :: " + } + }, + "4e2bac366ce842cebbf2269fd7c0a175": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e1181befe6de4519945b43ab9a9ca652", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b4455eb1f3bb402fb60ad4b8c9051d0d", + "value": 0 + } + }, + "81e88cb51c1a471ab6c800718502262f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_033118afa29c4e199fdb11c30906f4a8", + "placeholder": "​", + "style": "IPY_MODEL_fb02cabda27b4d60a287a0b4b34a4d6c", + "value": " 0/0 [00:00<?, ? image/s]" + } + }, + "ff4a462cb3744ea2b766ac6ae879cfc7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "afdffa0249314e5c89ef644af870294f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "aae6dab6943e4469a1e341e9ceb5ac5d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e1181befe6de4519945b43ab9a9ca652": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "b4455eb1f3bb402fb60ad4b8c9051d0d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "033118afa29c4e199fdb11c30906f4a8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fb02cabda27b4d60a287a0b4b34a4d6c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bda6c7a71b7a47e299235ef97d57605a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a5777459779c49219d353900280b721e", + "IPY_MODEL_a4c336018f79456a98571dc8782099c0", + "IPY_MODEL_24e7b8528fe742cc883b69bf615e222e" + ], + "layout": "IPY_MODEL_8a98bed10ba44720acc0e115ff77861f" + } + }, + "a5777459779c49219d353900280b721e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0f18911716f343b4bac8dfaa9dbe11e4", + "placeholder": "​", + "style": "IPY_MODEL_873c1aa0f2e143b297fa2709d9c56184", + "value": "Downloading /UMARV/ComputerVision/ScenePerception/datasets/YOLO_soft_labeled_data/data :: 100%" + } + }, + "a4c336018f79456a98571dc8782099c0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_557f15887f3a436193261597567b5f0d", + "max": 2495, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_664b2c542b0f4953a1387b804738ba96", + "value": 2495 + } + }, + "24e7b8528fe742cc883b69bf615e222e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7cea37a70b1d44df84e4155b0781c505", + "placeholder": "​", + "style": "IPY_MODEL_af76fffc1b2d497086f7f2b5d4ba3ae3", + "value": " 2495/2495 [08:28<00:00,  6.35 image/s]" + } + }, + "8a98bed10ba44720acc0e115ff77861f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0f18911716f343b4bac8dfaa9dbe11e4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "873c1aa0f2e143b297fa2709d9c56184": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "557f15887f3a436193261597567b5f0d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "664b2c542b0f4953a1387b804738ba96": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7cea37a70b1d44df84e4155b0781c505": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "af76fffc1b2d497086f7f2b5d4ba3ae3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "65a6b2db867048ffa791eba82f15228f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4c8363fc1f8546c783cb60da8209a24e", + "IPY_MODEL_8c339467d5a945429b4c72032a7ac4d6", + "IPY_MODEL_f657a5fbd4cb45228c0c908e25044275" + ], + "layout": "IPY_MODEL_50621f8ddd204614a7771a25069e96f5" + } + }, + "4c8363fc1f8546c783cb60da8209a24e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a6c458994bc241efb427e9bdb070a6e6", + "placeholder": "​", + "style": "IPY_MODEL_5adcdbc1829b498b87db47133fcd82ee", + "value": "Downloading /UMARV/ComputerVision/ScenePerception/datasets/YOLO_soft_labeled_data/label/drivable_area :: 100%" + } + }, + "8c339467d5a945429b4c72032a7ac4d6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e9688082c2ea4f02aae17c2021924ba3", + "max": 2495, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_12ba0c7a03724d4bb651e7f1c6c74525", + "value": 2495 + } + }, + "f657a5fbd4cb45228c0c908e25044275": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8f621137d3e74768a67e0d694e838d47", + "placeholder": "​", + "style": "IPY_MODEL_1268e9d91c164e7e8c726b4d880097d4", + "value": " 2495/2495 [07:57<00:00, 13.20 image/s]" + } + }, + "50621f8ddd204614a7771a25069e96f5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a6c458994bc241efb427e9bdb070a6e6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5adcdbc1829b498b87db47133fcd82ee": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e9688082c2ea4f02aae17c2021924ba3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "12ba0c7a03724d4bb651e7f1c6c74525": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8f621137d3e74768a67e0d694e838d47": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1268e9d91c164e7e8c726b4d880097d4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + }, + "accelerator": "GPU" }, - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/models/model_32offjns/src/occ1.py b/models/model_32offjns/src/occ1.py new file mode 100644 index 0000000..4211cf1 --- /dev/null +++ b/models/model_32offjns/src/occ1.py @@ -0,0 +1,55 @@ +import cv2 +from ultralytics import YOLO +import numpy as np +import sys +import time +import math + +def predict(video_path, lane_model): + lane_model = YOLO(lane_model) + cap = cv2.VideoCapture(video_path) + + image_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) + image_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) + + while cap.isOpened() and cv2.waitKey(1) & 0xFF != ord("q"): + success, frame = cap.read() + + if success: + r_lane = lane_model.predict(frame, conf=0.7)[0] + occupancy_grid = np.zeros((image_height, image_width), dtype=np.uint8) + + if r_lane.masks is not None and len(r_lane.masks.xy) != 0: + segment = r_lane.masks.xy[0] + segment_array = np.array([segment], dtype=np.int32) + cv2.fillPoly(occupancy_grid, [segment_array], color=(255, 255, 255)) + else: + occupancy_grid.fill(255) + + cv2.imwrite("occupancy_grid.png", occupancy_grid) + + frame_resized = cv2.resize(frame, (image_width // 2, image_height // 2)) + occupancy_resized = cv2.resize(occupancy_grid, (image_width // 2, image_height // 2)) + + cv2.imshow("Frame", frame_resized) + cv2.imshow("Occupancy Grid", occupancy_resized) + + else: + break + + cap.release() + cv2.destroyAllWindows() + +if __name__ == "__main__": + if len(sys.argv) < 3: + print("\nNot enough parameters!! Please enter:\n") + print("python3 yolov8.py ") + sys.exit(1) + + video_path = sys.argv[1] + model_name = sys.argv[2] + + if video_path == "0": + video_path = int(video_path) + + predict(video_path, model_name) diff --git a/models/model_32offjns/test_image.jpg b/models/model_32offjns/test_image.jpg new file mode 100644 index 0000000..4bad66d Binary files /dev/null and b/models/model_32offjns/test_image.jpg differ diff --git a/models/model_32offjns/yolo_pytorch_sandbox.ipynb b/models/model_32offjns/yolo_pytorch_sandbox.ipynb new file mode 100644 index 0000000..6c4b831 --- /dev/null +++ b/models/model_32offjns/yolo_pytorch_sandbox.ipynb @@ -0,0 +1,167 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from ultralytics import YOLO\n", + "from matplotlib import pyplot as plt\n", + "import torch" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "model = YOLO(\"src/best_01_26.pt\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "image 1/1 c:\\Users\\prana\\OneDrive\\Desktop\\Work\\ARV\\UMARV-CV-ScenePerception\\models\\model_32offjns\\test_image.jpg: 384x640 3 Laness, 1662.8ms\n", + "Speed: 156.5ms preprocess, 1662.8ms inference, 70.1ms postprocess per image at shape (1, 3, 384, 640)\n" + ] + } + ], + "source": [ + "results = model('./test_image.jpg')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Masks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " ...\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAFTCAYAAACkvQ89AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuvklEQVR4nO3dCZiUxZ3H8Rru+74VIUACCUSJsoZFFsyiIAEUIhIIESWiaFDUqHgGUBbXFY23iXigIYKueIUIIigIAeVQQRYV5MYolxwS7qP2+dWzPdvn0AMzU91d38/z/BKmp52pefvtfv9vvVX15llrrQEAAMEq5bsBAADAL4oBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBFLvLL7/cVKlSJa3n5uXlmdGjRxsfzj33XJdsoHa2adPmpH7Gz3/+c3PllVeakPbDpk2bet/f9Pv0e7PRn/70J3PaaaeZgwcP+m4KihjFQA5as2aNGTp0qGnWrJmpUKGCqVatmjnnnHPMI488Yvbv3++7eVlPBxR9mJ933nlJv//000+77ytLliwxmWj+/PnmnXfeMbfeemv+Y3PmzMlv90cffXRSRR2KxtSpU03nzp1NvXr1TKVKldx7ul+/fubtt9/20h7tA4cOHTJPPfWUl9+P4lOmGH82PHjrrbfMJZdcYsqXL28GDRrkzh715v373/9ubrnlFrNixQozfvx4k6lUrJQpk/m7pYqs2bNnm82bN5sGDRrEfO/FF1903z9w4IDJVOPGjTNdunQxLVq0SHn2qgNRrsvk/e2BBx5w71kVA7fffrsrBlavXm1mzZplXnrpJXPBBReUeJu0X1922WXmD3/4g7nuuuuytocDiTLzXYATsm7dOtO/f3/TpEkT895775mGDRvmf2/YsGHug0TFQibTh002UE/L4sWLzcsvv2yuv/76/Me/+uorM2/ePNOnTx/z6quvmky0detWtx+oyzeZtm3bmr/97W/m448/NmeeeWaxtWPfvn3uAOdTpu5vR44cMWPGjDHnn3++68FJ9hr6op6J+++/3xXD//7v/+6tHShaXCbIIXqD/vOf/zTPPvtsTCEQobPA6ANX5AOnefPmridB3d933HFHwvVAPd6zZ0/XjdyuXTtTsWJF8+Mf/9h9La+99pr7Wh+sZ511lvnkk0+Stm/t2rWmW7dupnLlyqZRo0bmnnvuMfE3zYy/hhu5vqpCRl2UNWrUMNWrVzeDBw92B5N4f/nLX1wb1MZatWq54mjTpk0Jz1PviP5uPe/ss892B/DC0N/6i1/8wkyaNCnm8cmTJ5uaNWu6vzPep59+6v6GyOUb9Sj85je/Md9++23M8/bs2WNuuOEGt931uqiLWAcFHZwLooOGDq4DBgxwr20qKgT0/VSXOXTGp78h3WvpTz75pGndurVrq15XFZ67du1KOsZBlx86derk2ql9bf369e711VnwE0884baNvte1a1f3umn/0D566qmnutfqoosuMjt27Ij52W+++abp0aOH+91qg15X/TdHjx49btuj97dIW1Il2sKFC92ZufZFtVdn77r0Ek89cv/yL//iXm+1K93u9e3bt5vvvvvOFZ3JaJ+IeP7551371P5okcs+kfdp9OugfVFtVtv1uTBlyhT3/ffff9/89Kc/ddu6ZcuWrhcint5fem9puyN3UAzkEHXr6sO0Q4cOaT1/yJAhZuTIke7s76GHHnIfDv/5n//pDqDxdDD+1a9+ZXr16uWes3PnTvdvdYnfeOON5te//rW5++673XgFnTkcO3Ys5r/XB7M+POvXr++KFn2gjBo1yiUd+pk6SOp369/6ANTvizZ27Fh3aeT73/++68bUAfXdd991B5/og5OKJY2p0MFYbdEH7oUXXpi0aCiItseiRYvc3xyh4qBv376mbNmyCc+fOXOmK4hUyDz22GNuO6u7VwP5oouiq6++2vzxj380F198sTvQ3nzzze7D+fPPP0/ZFp3J62/QJSIVRAV1fS9YsMDUrl3b9SAlozEmek21Px2vANGBVAd/HYgffPBB12Yd8HQwP3z4cMxzVfR0797d9Tw8/PDD5mc/+1n+97Qf6W9VIXLTTTe5g5Je57vuustdH9fYhquuusq1SdsjmvYFjWX43e9+58bFaN/Sfn3bbbeZwqhbt66ZOHFiTJ577jl3wNf3ItTrpn1KB2vtv/fee6/bv3SWrP0hYvny5W476Cxe20mvu57/+uuvH7ctOtjrNdffG1/8nCy9d1Xc66Cv/V8FlPZF9XLp/7U/3nfffWbv3r1uX9b7Lp4+M5IVP8hiFjlh9+7dOprYiy66KK3nL1261D1/yJAhMY/ffPPN7vH33nsv/7EmTZq4xxYsWJD/2IwZM9xjFStWtBs2bMh//KmnnnKPz549O/+xyy67zD123XXX5T927Ngx26NHD1uuXDm7bdu2/Mf1vFGjRuV/rX/rsd/85jcx7ezTp4+tXbt2/tfr16+3pUuXtmPHjo153vLly22ZMmXyHz906JCtV6+ebdu2rT148GD+88aPH+9+T+fOnY+77bQ91PYjR47YBg0a2DFjxrjHP/vsM/cz3n//fTthwgT378WLF+f/d/v27Uv4WZMnT3bPmzt3bv5j1atXt8OGDSuwDWpn69at3b9fffVVW7ZsWXvllVfao0ePHrf9HTt2tGeddVbC43rN1JZXXnnF7tq1y9asWdNeeOGFMa9j5cqV87/eunWre/26du0a83sff/xx93Oee+65mPbqsT/96U8xv3PdunXu8bp167rfGXH77be7x8844wx7+PDh/McHDBjgfueBAwcK3K5Dhw61lSpVinme2q/XLlr8/hbvt7/9rduvIu8H7bff//73bbdu3dy/o9vwve99z55//vn5j/Xu3dtWqFAh5v2hfUQ/L52P3pEjR7rnaZt3797d7cMfffRRwvMi+5q2ZbLXM/q9GHkdJk2alP/YF1984R4rVaqU/fDDDxPe4/r58a666ir33kfuoGcgR+gsRapWrZrW86dNm+b+X2dT0XRWJvFjC370ox+Zf/3Xf83/WmcVorMhTTWKf1xnwPGuvfba/H+r+1Jfa3Bjsq7IeDpbjvZv//Zv7kwz8nfrUoV6I3Q2qS7WSHT2r54CXd8Uje7XmZp+Xrly5fJ/nrrvdQZYGKVLl3a/T5cGIme3jRs3dm1LRmd6ERpcqPa1b9/efR19Bq5LIeqG/vrrr4/bBv3uX/7yl66nQ2fkpUod/y2t7abLAAXRtlDPyl//+teUl330uun10/Oif6+mK6p3IX4f0hmozo6TUY9G9PaP7EfqcYru5dDj+p3/+Mc/km5XncVqu+o10GWkL774wpyoP//5z663QmfPkV6MpUuXmi+//NL1Cmk7RvYznUVrQObcuXPdfqiesBkzZpjevXvHvD9++MMfJr2ElIx6vtTT9JOf/MT9rDvvvNP1euisvKBeouNRL0p0758uB2ifU9si2/1472XtPxp8mexSHbITxUCO0IevJOvSS2bDhg3uAzx+NLkOnvpg0PejRX+gSeSDWwe/ZI+rKzKafpcuYUT7wQ9+4P4//lpnMvG/P3Iwi/wefUDrRE8HfnXpRkcfnJEBV5G/S8+Lpm79+PalQweFzz77zCxbtsx9cOtDNtUIa3X3asyGLpXoAKa2fe9733Pf2717d/7zdPD5n//5H7dtNZ5BXczJPpA1YFQHS3XN67JDYUZ2x4/VSEZt1b6QauxAZFvqYBJNRZa2Zfw+dMopp8QUYEW1f2mGjAZs6nt6H2i7arvEb9fC0EFfBaPGX0QXzNrPRCPq4/ezZ555xo230e/ctm2bO1jG72fJtldB9Ps1nkV/r8aEaH9TcaZLdCc6W0XjL+L3FW27dN/L0fsPswlyB7MJcoQ+BHXdVgeRwkj3zayz4MI8ns7BpjCO93t0Nqa/Zfr06UmfW1zz43X2pIFhOjvWwVkf1qmoF0HX6zVdTNfN1Sa1W2MposdY6Hk6s9W1ZR0ANA3wv/7rv1zvh665R2iQqKJeHvV4aHBnOjReINkHfKreARUDqXoHCiP6DL6o9i9dq9dYF+3/GpCq10KD9dTTonEG8WNX0qFtowJLxaoO8NEiP0+viV7DZPS6FvWiPPr7NIhUUeH6wgsvuN4j/e2p3sOpBlAWxXtZ20iDDwt6TZFdKAZyiAYFaZT8Bx98ENOln4wGj+mDTWc66h6M2LJli/uATTW47ETpd+nsNtIbIKtWrXL/H78q3InQQUAfWjrTjv4d8SJ/l/7u6GlRGuymg/kZZ5xR6N+ts7f/+I//cNsx1QFCH54azKiuXw1uiz/TjKeD/G9/+1sX9Wqoa1gDJKOLAR30NHBQf4cKCg2606j+42nVqlXa0x5VDGiwn9qtXoJk23LlypUxvSrqxte2TDVboShppLy661UoaVBfhH7/ie6nAwcOdO8BXQaJn/qo/SxycC7o71NPgQ6UyV5fba+ToaJPxcA333wT00sWP4MjvmemKGn7Rn9uIPtxmSCHjBgxwk3b0ywBHdTjadS7RluLRgyLPuijaRS+aKpWUXv88cfz/60Dt77WWY6utZ4sTfPTmY0OWvFnMvo6Mn1PH6T6oNYcex20okekx3+YpkvbW6PENZo+lchZV3zb4re/zubiu7Y1sly9PsnONnX2ruvJkemH0TMbUlGhqOIk2aWHZD9fBYGmkanrPJoOhur2f/TRR2P+Ls3W0N9QHPtQOttVr6uu9Z8I7T/anhqLEbmEE03X7FUQaCqkpvHG0+WBSLs0NuCNN94wGzduzP++Llnp5x+PrsWrqE9GvV/RlxsiBYrGK0TvR8W5uJh6XtKdtYTsQM9ADtGHgq5ba0CZqvboFQjVPf3KK6+4gXKiM2Bd99QHRqSrVdOidMahQU/R076Kgs5iNUVMv1Nd6/pA0wAzzTWPnrZ1Mn+7zs61UpvGIOhv0GBKncGou13T0jQlTcWHnqcBdzqj1rbScyZMmHBCYwYiZ8jHm5OvM0mduWo8gHohdP1clwDiz2A15kPXdDWlS6+Rupx1hqoFjlIVG3Xq1HHTFjt27OgO0Jrbrp+fig7SGpSnn6vtks7YAU091bgIFZsRet20vXUAVc+EpjbqrFcHYs2tj1y3L046IOnMWPvV8OHDXZe5pgSeyGUqTQXU+gR6ndQboyma0fT3aOyLLh2oh0a9MBoQqW2tAY0apKrXObJyo7aL9nld8lEPj9Z20NgO/Xea53+8YkB/mwaYatvqer7epyouNIZA+7cGFop+np6n10LjUrQGgKasFrTWxMnQWhH6PVrzATnE93QGFL1Vq1a5aWZNmzZ107CqVq1qzznnHPvYY4/FTLXSlK27777bTYnS1LTGjRu7KV3Rz4meShdPu0/8FLjIVLFx48YlTElbs2aNm4amKV/169d3U7rip8KlmloYPf2woOlUmmanqXP6fUqrVq1cG1euXBnzvCeffNL93eXLl7ft2rVzU/s07aowUwsLkmxq4VdffeWmRNaoUcNNH7zkkkvs119/HfM3a7rjLbfc4qbU6XXT36B/q72pphZGrF692jZs2ND+8Ic/TNhe8TRlsEuXLimnFsaLvA7RUwujpxJqO2sf0ut6zTXX2J07dx63van2l4Lakmy7zp8/37Zv395NdWvUqJEdMWJE/rS4+CmuBU0tjPzOVIn2ySef2F/84hdueqv2If3cfv362XfffTfmeZpmqmmceh82a9bMTa2MbMuC6L359NNPu+mJ+tn6HXrf/OQnP3HbKnparOi9dd5557nn6TW444477MyZM5NOLUz2OhTmPX7rrbfa0047LWZqJbJfnv7Hd0ECoGTp7FKr0WnqXbIR70AyulSlMT5a0Cl6NVNkP8YMAAFS17VWx9NlCyBdupymS23x634g+9EzAABA4OgZAAAgcBQDAAAEjmIAAIDAUQwAABC4tBcd4oYUAABkn3TmCdAzAABA4CgGAAAIHMUAAACB40ZFAIKjm0AVdKvrE7Fw4cKYOxQC2YRiAEBwdPdO3Zq5KOmuhi+++GKR/kygpHCZAACAwNEzAOS4xo0bm1NOOcV3MzJKgwYNivxntmjRwrRv3z7l9w8dOmQ+/vjjIv+9QIneqIh1BoDsdN9995lbb73VdzOCt3nzZtOwYUPfzUCALOsMAACA4+EyATKyWzu6J2rv3r3m22+/9dqmbLZr166ko9wrVapk6tSp46VN2earr74yx44dy/+6QoUKpl69eoX6GaVLl3bbe/v27cXQQmS6cuXKnfDlKb2Hv/vuO1OcuEyAjFK+fHmzZ88eU7Zs2fzHXn75ZdO/f3+v7cpF7dq1M7/73e8K9d9UqVLF9OrVy/jwz3/+00ydOjWt5zZq1Mh07tw57Z89b948d8BPZciQIWbfvn35X7dp08bccccdCc/TttE2SmXx4sXm0ksvNStXrky7bchOvXv3NhUrVsz/unnz5mbMmDEn9LOmTJliXnvttZjHDhw4YF5//fW0/vt0DvMUA8goFAOZrVq1auZXv/pVsf38cePGxRxMV69ebR588EH37927d5vJkyen9XNOO+008/Of/zzt3zt9+nSzYcMGc7IGDhxoqlatavr06WO6du2a9DkLFixw+/OmTZtO+vfBvzZt2phhw4YlPD5o0CDX+1ZcDh48aCZMmBDz2OzZs81///d/JzyXYgBZh2IgbC1btnTd6RE6G1+/fr3JNrqEoC7hOXPmuOImen+WtWvXmiVLlpjBgwe7D/WjR496aytO3JtvvukWr1LxGf85Fr0fl5QdO3a4ovbIkSNu3xsxYoR7nGIAWYdiALmkVKlS5uKLLzbDhw9314zPPvvsmO+rCFAvQrqXP5B5r29ekmPj6NGjzbnnnuulTSNHjjRz5851BUBknEtah3mbJj2VkOJO+fLl7aFDh2L2vZdeesl7uwg52VSpUsWOGTPGLly4MGb/njhxor322mu9t4+YnE1ax3iKAZJJoRgguZ6WLVvaVatWxezj+/fvt2+//bbt2bOn9/YRk3NJB+sMIKNoURYuSSGXaSaBVipctWqVu8YbmarYrVs3N/irS5cuvpuIAFEMIKOmumk0bJkyLH+B3KYiQIMldXOjiRMnukGEoqlo06ZNM927d/fdRASGYgAZQ9OymjZt6rsZQInRlEZNQbv55pvzH9NAQ00Ze/bZZ03r1q29tg8BYcwAyYScf/75dseOHUn3PcYMkFxPmTJl3CDCPXv22KNHj+bv+5s2bbINGjTw3j5isjqMGUBW0JmQrqHWrFnTfa2phZojG8mKFSt8NxEoVpoX/vjjj7tFnf7yl7/kP37qqae6VQtbtWrltX0IAD0DxHdGjhwZs69p6pXvNhHiK2XLlrXPPvtszHti6dKldtSoUbZWrVre20dM1iWtYzzFAPEZfcAdPHgwfz/Tv9u3b++9XYT4TPXq1e0zzzxjjx07FvM5PGvWLFuqVCnv7SMmq0IxQDI6Q4cOtYcPH47Zzzp27Oi9XYRkQsqVK2erVatmP/3004SCgB4CYgqRdDBmAF7UqlXLdOrUKWYa4aJFi7h5C/B/Dh065G5bq7vfRdM6BJppcKK3wwWSomeAlHTUzfnqq6/G7F9LliyxrVq18t42QjJxGeNBgwbZuXPnxrxnpk+f7lbs9N0+YjI+aR3jKQZISaZChQr29ddfj7kWunbtWlu/fn3vbSMkk1O3bl27fPnymM/ld99911asWNF724jJ6FAMkIwaIa21BLRmQLRly5bZ2rVre28fIdmQypUr28WLF8e8h6ZOncpaBMQWFIoBkjG56667ku5Xffv29d42QrIpTZs2tbNnz455H73xxhu2Ro0a3ttGTEaGYoBkRH7/+9/bAwcOxOxPumtbp06dbJ06dby3j5BsS5MmTexHH30U856aOXMm0w6JTRaKAeJ9atSdd95pjxw5ErMvaTphzZo1vbePkGxOpUqVEsYQzJgxg8tuxMaHYoB4i+7LrgWFknnttdfcGALfbSQk26OxAvGzDDRTZ8iQIbZ06dLe20dMRoRigHhL/DVN+eSTT+yAAQO4NEBIEaZFixZ2/vz5Cb1vmrnju23EZEQoBkiJL6F6wQUX2PXr18eMEdCd2LTEcL169by3kZBcjArsFStWJIwh0KUE320jxnsoBkiJRoMC423cuNGee+653ttGSK6natWqCdMO//rXvzLtkFiKAVJi0RTBHTt2xOwzW7Zssd26dfPeNkJCSfPmze2cOXNi3oda5EuFgu+2EeMtFAOk2NO4cWN3vVIH/gitLnjo0CHuPkiIh9x7770Jn9+aZcC0w3CTDooBclKLn2zbti1hX7nnnnsYvESIp5QpU8a++OKLCbc/njZtGoN3A006KAbICeWss86yn332Wcw+cvDgQfvkk0/a7t27e28fISFHvQAPP/xwwrTDKVOmuHsc+G4fMSUaigFSLNHdBeMXO5FrrrnGe9sIIf+f6667LuF9qh4C1iAIK+mgGCCFSqNGjezmzZtj9g1NI1QhoO5J3+0jhMTe2GjSpEn26NGjMe/Zt99+233Pd/uIKZFQDJAizemnn243bNgQs1/s3bvXXn/99d7bRghJHRUE8caNG+e9XcSUSCgGSJGlbdu2dunSpTH7xPjx4+0VV1zhvW2EkIKjxYeef/75mPev1iRo3bq197YRU+yhGCBFklNOOcWuWbMmf1/QKOWnn37aVqtWzXvbCCHpRbc4njhxYswsgy+//JIBhQEkHRQDpMA0a9YsZg0BzSB47rnnGIBESBZG79uXXnoppiDQKqGaJuy7bcQUWygGyAmnfv36dvjw4TGzBt577z2WNiUkR9YhiPbxxx/bNm3aeG8bMcUSigFywh8WuslJtHnz5rleAt9tI4ScfGrWrGlfeOGFhLuKakVR320jpshDMUAKHa1hHn/74WXLlrk7EvpuGyGk6KKphfGXDLSiqNYhqFKlivf2EVNkoRggaad8+fK2T58+durUqTGv+wcffMBAQUJyOC+//HLC5/3YsWO9t4uYIgvFAEk7DzzwQMJrrjECDCwiJLejXoD4aYeLFi1yyxlXrFjRe/uIOelQDJDjpn///u5a4eHDh/Nf6z179th27dq51QZ9t48QUjLTDrUwkVYTjTZ9+nRWFjXZH4oBUmB0wI/vEdAKgyxEQkiY0w41Zij+viNvvvkmdzs02R2KAZI0nTp1siNGjIjpDZBVq1bZjh07em8fIcRfdGlQs4eiaVyBbnrku23EnFAoBkjS3gCtOhZv586d7nu+20cI8Z8WLVq4tQei6eRhzJgx3ttGTKFDMUBi0rJlS7tr166E1/bbb791tyX23T5CSGaNI4j/vFCPgS4l+G4bMYVKOkoZ5LxmzZqZfv36mXnz5pnq1avHfG/16tWmR48e5osvvvDWPgCZZ9euXeadd96Jeaxjx47mmWeeMZdccokpU6aMt7ahGNAzkNvR8sFz5sxJ+ppu2rSJMQKEkJTRGiN//vOfEz47tFDRPffc4719xKSVtI7xFAO5mwoVKiTcdjhy7W/gwIHuuqDvNhJCMn/pYt23QAOMo2ka4t13381Ny0zmh2Ig0Gjp4A4dOrj7lcfbsWOHHTRokPc2EkKyr5cgftqheghGjRrF4GOT2aEYCDDlypWz48ePT/oa7t+/315++eXe20gIyc40b97czp8/P+GzZd++fbZv377e20dM0lAMBJj4ZUUj7r//ftulSxfv7SOEZHd0eVE3L4v31ltveW8bMUlDMRBIdNvRa6+91k0RPHr0aMzrtnLlSlurVi3XY+C7nYSQ3LkUuXr16pjPmkOHDrnPoF69etm8vDzvbSQmPxQDAeRnP/uZ3bt3b9LXbNasWa5HwHcbCSG5F927ZOHChQmfOzohueiii7y3j5j8UAzkeLp37+6mB8b7/PPP7VVXXWUbNmzovY2EkNyNFivTZ8327dtjPoPUQ6CboPluHzEuFAM5nHPOOcdu3bo14XXatm0btx0mhJRozjrrLDdAOX7m0oUXXsglA+M/FAM5Gi0UFH+Tocj4gNNOO817+wgh4UXTmTdu3Jgw9bBHjx7e2xZ60kExkEX50Y9+ZO+66y67ZcuWhJsM6QYiZ555pvc2EkLCTdeuXRMuXe7Zs4dph8ZvKAZyKPXq1bOffvppwuuiyrtbt27e20cIIUr79u3d6oTRdElz5syZrHpq/IRiIIfuL7Bhw4aE10Q9AhdccAHX5AghGRWtSBg/qDAysLBJkybe2xda0kExkAWXBpLdV1w3D6HrjRCSqTnvvPPs+vXrE44la9ascQMOfbcvpKSDYiBDU6ZMGbes8KJFi2JeBxUBl156Kb0BhJCsWAflhhtuSDie6B4Hbdu29d6+UJIOioEMLAJGjx5tv/zyy4SxAVOmTHErf/luIyGEFGa8k+5dEO8f//iHnTt3rru7qu82mhwPxUCWRUsGjxw5Mun2f/XVV723jxBCTnQ69Lvvvmu/++67hM+29957z55yyine22hyOBQDWRbdCjSe7hCmxytVquS9fYQQcjK55pprEu6fIlOnTrV169b13j6To6EYyJL06dPHzp492x48eDBmm69YscLdMtR3+wghpCiisU5Dhw51lz3jaXzUo48+yngoU/ShGMiCaHWu+Dm5ojED1apV894+QggpypQqVcr1EGjF1CNHjsR87unrRx55hJ5QU7ShGMjwebi6wYdu+xlNU3GefvpplhUmhOR8NGMqmYceesj269fPe/tMjoRiIENzxhlnuKk18Xbt2mU7d+7svX2EEFISUQ/AE088kfSYo2WMr7zySu9tNDkQioEMTOPGje0333yTsH337t3rus18t48QQkoylStXdr2hOhlKVhAMGjTIXVrw3U6TxaEYyLC0adPGbt68OWHbaqlhTb3x3T5CCPEVrTfwwQcfJD3+DB482F1a9d1Gk6WhGMiQaMqM7iqY7NKAegl0py/fbSSEkEzoOX3nnXeSHoPWrVvnVjT03UaThaEYyJAVBefNm5d0m2rw4E9/+lPvbSSEkEzJqaeemrKHQL2o3NfAFDoUA56vg+kmQ1puM9l1MK0hoFt9+m4nIYRk4iWDDz/80C1ZHE9LG+uSq+82miwKxYCnlC1b1k2NSUZrCgwbNsx7GwkhJNOjE6Yvvvgi6eXVq6++2rZo0cJ7G00WhGLAUx577LGU21Grb/luHyGEZEt0KTXZDCxZsGCBW6vAdxtNhodioASjqS+1a9d2hcDhw4cTVtV66qmn3OCY0qVLe28rIYRkUxo2bGj79u2b9O6HO3bssHXq1LEVK1b03k6ToaEYKKGcffbZ9oorrki57ahcCSHk5DNw4ED77bffJv2cnTBhgu3evTtrEpjEUAyUQDTVRVNektEUmVtuucWNIfDdTkIIyYUMGDAg4aZuEboj4k033eS9jSbDQjFQzNEUl40bNyZsK10W0NQY7tFNCCFFHy1ApMGF06ZNS7qa68033+ymdftup8mQUAwUU3SQ16CW/fv3J2ynTZs2uRGu5cqV895OQgjJ5ajXdebMmUlPyPT5rJ7bJk2aeG+n8RyKgWKIDvSpFhH6/PPPWTuAEEJK+GZHjz76qP3oo4+Sfi4vW7bM3RzOdzuNx1AMFHE0W0ALYSSjew6wdjYhhPiJFiLSzd6SWbp0qW3atKn3NhpPoRgogui6U7169eykSZOS3mRI16cuvvhi9xzfbSWEkJCjKYbnnnuu/e677xI+q7dt22ZnzJjhPqtDu4ybDoqBAqIpKhqZmsr27dvdVBff7SSEEPL/6dGjR9KljCPGjh0bVEGQDoqBAqIRqZqqksz9999v+/Xr572NhBBCEtOzZ087atSolMe0e++913sbTQmFYuAkRqiqENAlgHjHjh1zO5FupOG7nYQQQgq+zKuxXLrMG09rFSxevDiIk7p0UAzERdebtJMk6xHQLYfvu+8+VrgihJAsyo033mg//vhjdzKXbBpi37597Q9+8APv7SyuUAwUMlrKcvfu3Sm3gQoB320khBByYr0EEydOTPn5vmbNGtuhQwfv7SyOUAwUshBINeDkjTfesL179w5qwAkhhORaatas6T7LFy1alPSzfuXKlbZt27be21nUoRg4yakokfsLVKlSxXs7CSGEFE2qV6/uFolLZufOnW4Boxo1anhvZ1GFYuAkFqmQ6dOnc8thQggJbBE5mT17ds4sZZyOYIuB1q1bF7h85bXXXmvr1q3rvZ2EEEKKb3l5fdZ/8803SY8Fs2bNctPIfbfzZEMxkGIQie50pcEiyXz99ddBL1tJCCGhpW3btklvPCeaWTZ+/Pis7iWmGIiLlqF86623Uv6NX375pW3QoIH3dhJCCCn5W9J/+OGHdteuXQnHBk1J/OMf/2irVq3qvZ0nEoqB/0teXp4dPny4nTJlSsq/T3NQTz/9dO9tJYQQ4i9XXnmlPXDgQNLjhAqCwYMHe29jYUMxYIy7d8DUqVPdwhKprF271o0h8N1WQggh/nPZZZelPF7s2bPHHVM0C813O9NN0MWAegN0N8FkSwqLrg9t2rTJrlu3ztavX997ewkhhGRGSpUq5aadP/bYYynXn9F09Gy5bX3QxYCWl0y29KRoueERI0Z4byMhhJDMTsWKFd29DZYvX560l6B///62VatW3ttZUIItBi699NKkg0AidBMi320khBCSPWnXrp1dtWpV0mPKBx984HoRdJM73+1MluCKAVVwl1xyiVtBKp56CbQutcYGZOoLRgghJHPTrFkzu337dnfTumRWrFhhf//732fcNMSgigGtJqjegFSXBiZPnuzGEfhuJyGEkOweT9C7d2+7devWpMcaHYPuuuuujLqXTRDFwKmnnmpvu+22lN03c+fOtWPHjs2oF4YQQkh255e//GWBl6Pvvfde26dPH+/tDKIYqFChgl2wYEHKNn/yySe2efPm3ttJCCEk99KzZ88Cj5tbtmzJiIIgZ4uBypUruyWDlyxZkrStuqajkZ/VqlXz3lZCCCG5mby8PHdb5FGjRqVcqGjfvn32ggsusA0bNvTWzpwsBjRlUKM2U9E9Bzp16uS9nYQQQsLJ6NGjC1zcTsemM88800vbcq4YGDZsWMqbSci2bdts586dvbeTEEJIeL0EI0eOLPA4+umnn9ozzjijxNuWM8WARm9effXVboGHZDTNQ6tB+djIhBBCiDHGli9f3rZs2dK+8cYbKWe2aeVbDXzXc0uqXTlRDOhOUioEUm1YjebUjSVUMPjeEQghhJC8vDx3/4JUdFvkWbNm2UaNGpVIe7K+GOjatav9+uuvU7ZJPQJDhgzx/sITQgghJipVqlSxL7/8coHHVRUMdevWLfa2ZG0xoKqqY8eOduPGjSnb8/DDD2fVXaMIIYSElbp169ouXbrYlStXpuzdnj17drGvWJh1xUD16tXdugCrV69OebfBw4cP2yeeeIJFhAghhGRFKleubDt06OCmvSczZ84cd+zTkvom9GJAczV174Dj0bRC3y8sIYQQYgoZrTdQUI/3Aw88YC+++OJwiwEN/nvllVeO24ZHHnmkREdgEkIIIaYIo8sGN910U8rjnGbGXXHFFWEVA2XKlHE3dNBlgVTXU2T+/PmuC6VSpUreX0hCCCHEnOSx75prrrG7d+92MwuSFQSXXnqprVq1au4XA9oYt99++3F/77x587jlMCGEkJxLXl6enTBhQsrjn9bW0fT6nC4G7rzzzgJ/32effebuC92gQQPvLxghhBBiiiE62R0/fnzKY+HatWtPeuZcRhYDGh+gSwOpbuqgywW6y1Pr1q29v0iEEEJIScyk01L6CxcuTHpcXLdunbuvgXoScqIY0CJC6vbQ9MBkdu7caS+66KIT/oMJIYSQbE3FihXt0qVLU979UPc2qF+/fnYXA7169SqwN+C5556z/fv39/5iEEIIIcZT6tSp49YdSOX999+3LVq0yL5iQN39Wj9g8+bNKX+27gVd3CswEUIIIdmQZs2auYN+QQPrVTRkRTGgaYCNGzdOeW8B9Qbs2LHD3QOatQMIIYQQk5/atWvbZcuWpTwm6+6HOtGuUKFC5hYDuhPTjBkzjnuDBt8bmxBCCDEZGp1UT5s2za3Fk8qzzz5ra9SokXnFQK1atQq8daNGS952221u9KTvDU0IIYSYDI9u3Kcphqk8//zzbu2ejCgGdM3/oYceskuWLEn5M9asWeNWEvS9YQkhhJBsyumnn+5m46W67L5gwQJ74403Jh1/VyLFgKYB/vrXv3bTHpItqyhbtmxx1z50MyLfG5QQQgjJxrRq1couX77c7tq1K+mx9siRI+5YHL9YX7EXA506dbLXX399gfcV0CCH7t27e9+IhBBCSC7k8ssvd/cvSEWX4rt165b//HTk/d+B/rjy8vJMz549zcCBA/Mfa9eunWnRokXK/2b//v2mR48eZvbs2en8CgAAkIYBAwaYSZMmpfz+V199Zf7+97+7f/fv3//4P7AwPQMF3XYxmhYX2rZtm23fvr33CooQQgjJtZQqVcoOGDDAHWtTrepbGKVMEdu3b5+57bbbTN26dc2HH35Y1D8eAIDgHTt2zEyePNkdax955BH39cko8mJAhcDDDz9c1D8WAAAkccstt5gHH3zQeC8GdBXhyJEjZvjw4ebJJ58sih8JAADSPAaPHj3ajBs3zv37RJQxJ0ldExMnTjRDhw41hw8fPumuCgAAUPhL9LfffrspXbq06dq1q2nTpk3J9gy88MILZvDgwebgwYMUAgAAeHL06FFz0003mQ4dOphp06aVXDEwfvx4c8MNN5xwtwQAAChae/bsMc8880zxXSZQN8TWrVvdv2fMmGFuvPFG9xgAAMhehVp0CAAAZL4+ffqY1157Le3nUwwAAJBjtDpwr1693L//8Ic/HPf5FAMAAOSwdA7zRb7oEAAAyC4UAwAABI5iAACAwFEMAAAQOIoBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBAAACRzEAAEDgKAYAAAgcxQAAAIGjGAAAIHAUAwAABI5iAACAwFEMAAAQOIoBAAACVybdJ1pri7clAADAC3oGAAAIHMUAAACBoxgAACBwFAMAAASOYgAAgMBRDAAAEDiKAQAAAkcxAABA4CgGAAAwYftf0ipCMp4kBtMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Extract the detected masks as NumPy arrays\n", + "masks = results[0].masks.data # Access mask tensors\n", + "\n", + "# Sum the masks and normalize by dividing by the number of masks\n", + "combined_mask = torch.sum(masks, dim=0) > 0\n", + "\n", + "# Convert to numpy for visualization\n", + "combined_mask_np = combined_mask.cpu().numpy().astype(int)\n", + "\n", + "# Visualize the result\n", + "plt.imshow(combined_mask_np, cmap='gray')\n", + "plt.title(\"Combined Mask (Normalized Sum)\")\n", + "plt.axis(\"off\")\n", + "plt.show()\n", + "# # Iterate over the masks and visualize them\n", + "# for i, mask_tensor in enumerate(masks):\n", + "# # Convert the tensor to a NumPy array\n", + "# mask = mask_tensor.cpu().numpy()\n", + "# plt.imshow(mask, cmap='gray')\n", + "# plt.title(f\"Mask for Object {i + 1}\")\n", + "# plt.axis(\"off\")\n", + "# plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "ultralytics.engine.results.Boxes object with attributes:\n", + "\n", + "cls: tensor([0., 0., 0.])\n", + "conf: tensor([0.9557, 0.8908, 0.6455])\n", + "data: tensor([[4.0200e+00, 4.0008e+00, 6.0794e+02, 5.3546e+02, 9.5570e-01, 0.0000e+00],\n", + " [1.1929e+03, 0.0000e+00, 1.9200e+03, 5.2604e+02, 8.9076e-01, 0.0000e+00],\n", + " [8.8686e+02, 0.0000e+00, 1.9183e+03, 5.2030e+02, 6.4552e-01, 0.0000e+00]])\n", + "id: None\n", + "is_track: False\n", + "orig_shape: (1080, 1920)\n", + "shape: torch.Size([3, 6])\n", + "xywh: tensor([[ 305.9799, 269.7306, 603.9197, 531.4597],\n", + " [1556.4452, 263.0210, 727.1096, 526.0419],\n", + " [1402.5732, 260.1520, 1031.4221, 520.3041]])\n", + "xywhn: tensor([[0.1594, 0.2498, 0.3145, 0.4921],\n", + " [0.8106, 0.2435, 0.3787, 0.4871],\n", + " [0.7305, 0.2409, 0.5372, 0.4818]])\n", + "xyxy: tensor([[ 4.0200, 4.0008, 607.9398, 535.4604],\n", + " [1192.8904, 0.0000, 1920.0000, 526.0419],\n", + " [ 886.8622, 0.0000, 1918.2843, 520.3041]])\n", + "xyxyn: tensor([[0.0021, 0.0037, 0.3166, 0.4958],\n", + " [0.6213, 0.0000, 1.0000, 0.4871],\n", + " [0.4619, 0.0000, 0.9991, 0.4818]])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "results[0].boxes" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "sslenv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}