| 
 | 1 | +#!/usr/bin/env python3  | 
 | 2 | + | 
 | 3 | +import argparse  | 
 | 4 | +import json  | 
 | 5 | +import subprocess  | 
 | 6 | +from time import sleep, time  | 
 | 7 | +from typing import Optional  | 
 | 8 | + | 
 | 9 | +import datasets  | 
 | 10 | +import logging  | 
 | 11 | +import matplotlib.pyplot as plt  | 
 | 12 | +import numpy as np  | 
 | 13 | +import requests  | 
 | 14 | +from tqdm.contrib.concurrent import thread_map  | 
 | 15 | + | 
 | 16 | + | 
 | 17 | +logging.basicConfig(level=logging.INFO, format='%(message)s')  | 
 | 18 | +logger = logging.getLogger("server-bench")  | 
 | 19 | + | 
 | 20 | + | 
 | 21 | +def get_prompts(n_prompts: int) -> list[str]:  | 
 | 22 | +    logger.info("Loading MMLU dataset...")  | 
 | 23 | +    ret = datasets.load_dataset("cais/mmlu", "all")["test"]["question"]  # type: ignore  | 
 | 24 | +    if n_prompts >= 0:  | 
 | 25 | +        ret = ret[:n_prompts]  | 
 | 26 | +    return ret  | 
 | 27 | + | 
 | 28 | + | 
 | 29 | +def get_server(path_server: str, path_model: str, path_log: Optional[str], port: int, n_gpu_layers: int, parallel: int, ctx_size: int) -> dict:  | 
 | 30 | +    logger.info("Starting the llama.cpp server...")  | 
 | 31 | +    address = f"http://localhost:{port}"  | 
 | 32 | + | 
 | 33 | +    popen_args: list[str] = [  | 
 | 34 | +        path_server,  | 
 | 35 | +        "--flash-attn",  | 
 | 36 | +        "--n-gpu-layers", str(n_gpu_layers),  | 
 | 37 | +        "--parallel", str(parallel),  | 
 | 38 | +        "--ctx-size", str(parallel * ctx_size),  | 
 | 39 | +        "--model", path_model,  | 
 | 40 | +        "--port", str(port),  | 
 | 41 | +        "--swa-full",  # FIXME performance bad otherwise  | 
 | 42 | +        # "--attn-streams",  | 
 | 43 | +    ]  | 
 | 44 | +    fout = open("bench.log", "w") if path_log is not None else subprocess.DEVNULL  | 
 | 45 | +    process = subprocess.Popen(popen_args, stdout=fout, stderr=subprocess.STDOUT)  | 
 | 46 | + | 
 | 47 | +    n_failures: int = 0  | 
 | 48 | +    while True:  | 
 | 49 | +        try:  | 
 | 50 | +            sleep(1.0)  | 
 | 51 | +            exit_code = process.poll()  | 
 | 52 | +            if exit_code is not None:  | 
 | 53 | +                raise RuntimeError(f"llama.cpp server for {path_model} exited unexpectedly with exit code {exit_code}")  | 
 | 54 | +            response = requests.get(f"{address}/health")  | 
 | 55 | +            if response.status_code == 200:  | 
 | 56 | +                break  | 
 | 57 | +        except requests.ConnectionError:  | 
 | 58 | +            n_failures += 1  | 
 | 59 | +            if n_failures >= 10:  | 
 | 60 | +                raise RuntimeError(f"llama.cpp server for {path_model} is not healthy after 10 seconds")  | 
 | 61 | + | 
 | 62 | +    return {"process": process, "address": address, "fout": fout}  | 
 | 63 | + | 
 | 64 | + | 
 | 65 | +def get_prompt_length(data: dict) -> int:  | 
 | 66 | +    session = data["session"]  | 
 | 67 | +    server_address: str = data["server_address"]  | 
 | 68 | + | 
 | 69 | +    response = session.post(  | 
 | 70 | +        f"{server_address}/apply-template",  | 
 | 71 | +        json={"messages": [{"role": "user", "content": data["prompt"], "stream": True}]}  | 
 | 72 | +    )  | 
 | 73 | +    if response.status_code != 200:  | 
 | 74 | +        raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")  | 
 | 75 | +    prompt: str = json.loads(response.text)["prompt"]  | 
 | 76 | +    response = session.post(  | 
 | 77 | +        f"{server_address}/tokenize",  | 
 | 78 | +        json={"content": prompt, "add_special": True}  | 
 | 79 | +    )  | 
 | 80 | +    if response.status_code != 200:  | 
 | 81 | +        raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")  | 
 | 82 | +    tokens: list[str] = json.loads(response.text)["tokens"]  | 
 | 83 | +    return len(tokens)  | 
 | 84 | + | 
 | 85 | + | 
 | 86 | +def send_prompt(data: dict) -> tuple[float, list[float]]:  | 
 | 87 | +    session = data["session"]  | 
 | 88 | +    server_address: str = data["server_address"]  | 
 | 89 | + | 
 | 90 | +    response = session.post(  | 
 | 91 | +        f"{server_address}/apply-template",  | 
 | 92 | +        json={"messages": [{"role": "user", "content": data["prompt"], "stream": True}]}  | 
 | 93 | +    )  | 
 | 94 | +    if response.status_code != 200:  | 
 | 95 | +        raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")  | 
 | 96 | +    prompt: str = json.loads(response.text)["prompt"]  | 
 | 97 | + | 
 | 98 | +    json_data: dict = {"prompt": prompt, "seed": data["seed"], "n_predict": data["n_predict"], "stream": True}  | 
 | 99 | +    response = session.post(f"{server_address}/completion", json=json_data, stream=True)  | 
 | 100 | + | 
 | 101 | +    last_valid_line: str = ""  | 
 | 102 | +    token_arrival_times: list[float] = []  | 
 | 103 | +    for line in response.iter_lines(decode_unicode=True):  | 
 | 104 | +        if not line.startswith("data: "):  | 
 | 105 | +            continue  | 
 | 106 | +        last_valid_line = line  | 
 | 107 | +        token_arrival_times.append(time())  | 
 | 108 | +    token_arrival_times = token_arrival_times[:-1]  | 
 | 109 | + | 
 | 110 | +    if response.status_code != 200:  | 
 | 111 | +        raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")  | 
 | 112 | +    timings: dict = json.loads(last_valid_line[6:])["timings"]  | 
 | 113 | + | 
 | 114 | +    return (timings["prompt_ms"], token_arrival_times)  | 
 | 115 | + | 
 | 116 | + | 
 | 117 | +def benchmark(path_server: str, path_model: str, path_log: Optional[str], port: int, n_gpu_layers: int, parallel: int, ctx_size: int, n_prompts: int, n_predict: int):  | 
 | 118 | +    num_workers: int = parallel + 1  | 
 | 119 | +    prompts: list[str] = get_prompts(n_prompts)  | 
 | 120 | + | 
 | 121 | +    server: Optional[dict] = None  | 
 | 122 | +    session = None  | 
 | 123 | +    try:  | 
 | 124 | +        server = get_server(path_server, path_model, path_log, port, n_gpu_layers, parallel, ctx_size)  | 
 | 125 | +        server_address: str = server["address"]  | 
 | 126 | + | 
 | 127 | +        adapter = requests.adapters.HTTPAdapter(pool_connections=num_workers, pool_maxsize=num_workers)  # type: ignore  | 
 | 128 | +        session = requests.Session()  | 
 | 129 | +        session.mount("http://", adapter)  | 
 | 130 | +        session.mount("https://", adapter)  | 
 | 131 | + | 
 | 132 | +        data: list[dict] = []  | 
 | 133 | +        for i, p in enumerate(prompts):  | 
 | 134 | +            data.append({"session": session, "server_address": server_address, "prompt": p, "n_predict": n_predict, "seed": i})  | 
 | 135 | + | 
 | 136 | +        logger.info("Getting the prompt lengths...")  | 
 | 137 | +        prompt_n = [get_prompt_length(d) for d in data]  | 
 | 138 | + | 
 | 139 | +        logger.info("Starting the benchmark...\n")  | 
 | 140 | +        t0 = time()  | 
 | 141 | +        results: list[tuple[int, list[float]]] = thread_map(send_prompt, data, max_workers=num_workers, chunksize=1)  | 
 | 142 | +    finally:  | 
 | 143 | +        if server is not None:  | 
 | 144 | +            server["process"].terminate()  | 
 | 145 | +            server["process"].wait()  | 
 | 146 | +        if session is not None:  | 
 | 147 | +            session.close()  | 
 | 148 | + | 
 | 149 | +    prompt_ms = []  | 
 | 150 | +    token_t = []  | 
 | 151 | +    depth_sum: int = 0  | 
 | 152 | +    for pn, (pms, tat) in zip(prompt_n, results):  | 
 | 153 | +        prompt_ms.append(pms)  | 
 | 154 | +        token_t += tat  | 
 | 155 | +        n_tokens: int = len(tat)  | 
 | 156 | +        depth_sum += n_tokens * pn  | 
 | 157 | +        depth_sum += n_tokens * (n_tokens + 1) // 2  | 
 | 158 | +    prompt_n = np.array(prompt_n, dtype=np.int64)  | 
 | 159 | +    prompt_ms = np.array(prompt_ms, dtype=np.float64)  | 
 | 160 | +    token_t = np.array(token_t, dtype=np.float64)  | 
 | 161 | + | 
 | 162 | +    token_t -= t0  | 
 | 163 | +    token_t_last = np.max(token_t)  | 
 | 164 | + | 
 | 165 | +    logger.info("")  | 
 | 166 | +    logger.info(f"Benchmark duration:                {token_t_last:.2f} s")  | 
 | 167 | +    logger.info(f"Request throughput:                {n_prompts / token_t_last:.2f} requests/s = {n_prompts / (token_t_last/60):.2f} requests/min")  | 
 | 168 | +    logger.info(f"Total prompt length:               {np.sum(prompt_n)} tokens")  | 
 | 169 | +    logger.info(f"Average prompt length:             {np.mean(prompt_n):.2f} tokens")  | 
 | 170 | +    logger.info(f"Average prompt latency:            {np.mean(prompt_ms):.2f} ms")  | 
 | 171 | +    logger.info(f"Average prompt speed:              {np.sum(prompt_n) / (1e-3 * np.sum(prompt_ms)):.2f} tokens/s")  | 
 | 172 | +    logger.info(f"Total generated tokens:            {token_t.shape[0]}")  | 
 | 173 | +    logger.info(f"Average generation depth:          {depth_sum / token_t.shape[0]:.2f} tokens")  | 
 | 174 | +    logger.info(f"Average total generation speed:    {token_t.shape[0] / token_t_last:.2f} tokens/s")  | 
 | 175 | +    logger.info(f"Average generation speed per slot: {token_t.shape[0] / (parallel * token_t_last):.2f} tokens/s / slot")  | 
 | 176 | + | 
 | 177 | +    plt.figure()  | 
 | 178 | +    plt.scatter(prompt_n, prompt_ms, s=10.0, marker=".", alpha=0.25)  | 
 | 179 | +    plt.xlim(0, 1.05 * np.max(prompt_n))  | 
 | 180 | +    plt.ylim(0, 1.05 * np.max(prompt_ms))  | 
 | 181 | +    plt.title(path_model)  | 
 | 182 | +    plt.xlabel("Prompt length [tokens]")  | 
 | 183 | +    plt.ylabel("Time to first token [ms]")  | 
 | 184 | +    plt.savefig("prompt_time.png", dpi=240)  | 
 | 185 | + | 
 | 186 | +    bin_max = np.ceil(token_t_last) + 1  | 
 | 187 | +    plt.figure()  | 
 | 188 | +    plt.hist(token_t, np.arange(0, bin_max))  | 
 | 189 | +    plt.xlim(0, bin_max + 1)  | 
 | 190 | +    plt.title(path_model)  | 
 | 191 | +    plt.xlabel("Time [s]")  | 
 | 192 | +    plt.ylabel("Num. tokens generated per second")  | 
 | 193 | +    plt.savefig("gen_rate.png", dpi=240)  | 
 | 194 | + | 
 | 195 | + | 
 | 196 | +if __name__ == "__main__":  | 
 | 197 | +    parser = argparse.ArgumentParser(  | 
 | 198 | +        description="Tool for benchmarking the throughput of the llama.cpp HTTP server. "  | 
 | 199 | +        "Results are printed to console and visualized as plots (saved to current working directory).")  | 
 | 200 | +    parser.add_argument("--path_server", type=str, default="llama-server", help="Path to the llama.cpp server binary")  | 
 | 201 | +    parser.add_argument("--path_model", type=str, required=True, help="Path to the model to use for the benchmark")  | 
 | 202 | +    parser.add_argument("--path_log", type=str, default=None, help="Path to the model to use for the benchmark")  | 
 | 203 | +    parser.add_argument("--port", type=int, default=18725, help="Port to use for the server during the benchmark")  | 
 | 204 | +    parser.add_argument("--n_gpu_layers", type=int, default=999, help="Number of GPU layers for the server")  | 
 | 205 | +    parser.add_argument("--parallel", type=int, default=16, help="Number of slots for the server")  | 
 | 206 | +    parser.add_argument("--ctx_size", type=int, default=4096, help="Server context size per slot")  | 
 | 207 | +    parser.add_argument("--n_prompts", type=int, default=1000, help="Number of prompts to evaluate")  | 
 | 208 | +    parser.add_argument("--n_predict", type=int, default=2048, help="Max. number of tokens to predict per prompt")  | 
 | 209 | +    args = parser.parse_args()  | 
 | 210 | +    benchmark(**vars(args))  | 
0 commit comments