|
| 1 | +//! Based on the mtmd cli example from llama.cpp. |
| 2 | +
|
| 3 | +use std::ffi::CString; |
| 4 | +use std::io::{self, Write}; |
| 5 | +use std::num::NonZeroU32; |
| 6 | +use std::path::Path; |
| 7 | + |
| 8 | +use clap::Parser; |
| 9 | + |
| 10 | +use llama_cpp_2::context::params::LlamaContextParams; |
| 11 | +use llama_cpp_2::context::LlamaContext; |
| 12 | +use llama_cpp_2::llama_batch::LlamaBatch; |
| 13 | +use llama_cpp_2::model::params::LlamaModelParams; |
| 14 | +use llama_cpp_2::mtmd::{ |
| 15 | + MtmdBitmap, MtmdBitmapError, MtmdContext, MtmdContextParams, MtmdInputText, |
| 16 | +}; |
| 17 | + |
| 18 | +use llama_cpp_2::llama_backend::LlamaBackend; |
| 19 | +use llama_cpp_2::model::{LlamaChatMessage, LlamaChatTemplate, LlamaModel, Special}; |
| 20 | +use llama_cpp_2::sampling::LlamaSampler; |
| 21 | + |
| 22 | +/// Command line parameters for the MTMD CLI application |
| 23 | +#[derive(clap::Parser, Debug)] |
| 24 | +#[command(name = "mtmd-cli")] |
| 25 | +#[command(about = "Experimental CLI for multimodal llama.cpp")] |
| 26 | +pub struct MtmdCliParams { |
| 27 | + /// Path to the model file |
| 28 | + #[arg(short = 'm', long = "model", value_name = "PATH")] |
| 29 | + pub model_path: String, |
| 30 | + /// Path to the multimodal projection file |
| 31 | + #[arg(long = "mmproj", value_name = "PATH")] |
| 32 | + pub mmproj_path: String, |
| 33 | + /// Path to image file(s) |
| 34 | + #[arg(long = "image", value_name = "PATH")] |
| 35 | + pub images: Vec<String>, |
| 36 | + /// Path to audio file(s) |
| 37 | + #[arg(long = "audio", value_name = "PATH")] |
| 38 | + pub audio: Vec<String>, |
| 39 | + /// Text prompt to use as input to the model. May include media markers - else they will be added automatically. |
| 40 | + #[arg(short = 'p', long = "prompt", value_name = "TEXT")] |
| 41 | + pub prompt: String, |
| 42 | + /// Number of tokens to predict (-1 for unlimited) |
| 43 | + #[arg( |
| 44 | + short = 'n', |
| 45 | + long = "n-predict", |
| 46 | + value_name = "N", |
| 47 | + default_value = "-1" |
| 48 | + )] |
| 49 | + pub n_predict: i32, |
| 50 | + /// Number of threads |
| 51 | + #[arg(short = 't', long = "threads", value_name = "N", default_value = "4")] |
| 52 | + pub n_threads: i32, |
| 53 | + /// Maximum number of tokens in context |
| 54 | + #[arg(long = "n-tokens", value_name = "N", default_value = "4096")] |
| 55 | + pub n_tokens: NonZeroU32, |
| 56 | + /// Chat template to use, default template if not provided |
| 57 | + #[arg(long = "chat-template", value_name = "TEMPLATE")] |
| 58 | + pub chat_template: Option<String>, |
| 59 | + /// Disable GPU acceleration |
| 60 | + #[arg(long = "no-gpu")] |
| 61 | + pub no_gpu: bool, |
| 62 | + /// Disable GPU offload for multimodal projection |
| 63 | + #[arg(long = "no-mmproj-offload")] |
| 64 | + pub no_mmproj_offload: bool, |
| 65 | + /// Media marker. If not provided, the default marker will be used. |
| 66 | + #[arg(long = "marker", value_name = "TEXT")] |
| 67 | + pub media_marker: Option<String>, |
| 68 | +} |
| 69 | + |
| 70 | +/// State of the MTMD CLI application. |
| 71 | +#[allow(missing_debug_implementations)] |
| 72 | +pub struct MtmdCliContext { |
| 73 | + /// The MTMD context for multimodal processing. |
| 74 | + pub mtmd_ctx: MtmdContext, |
| 75 | + /// The batch used for processing tokens. |
| 76 | + pub batch: LlamaBatch, |
| 77 | + /// The list of loaded bitmaps (images/audio). |
| 78 | + pub bitmaps: Vec<MtmdBitmap>, |
| 79 | + /// The number of past tokens processed. |
| 80 | + pub n_past: i32, |
| 81 | + /// The chat template used for formatting messages. |
| 82 | + pub chat_template: LlamaChatTemplate, |
| 83 | + /// The current chat messages history. |
| 84 | + pub chat: Vec<LlamaChatMessage>, |
| 85 | +} |
| 86 | + |
| 87 | +impl MtmdCliContext { |
| 88 | + /// Creates a new MTMD CLI context |
| 89 | + /// |
| 90 | + /// # Errors |
| 91 | + pub fn new( |
| 92 | + params: &MtmdCliParams, |
| 93 | + model: &LlamaModel, |
| 94 | + ) -> Result<Self, Box<dyn std::error::Error>> { |
| 95 | + // Initialize MTMD context |
| 96 | + let mtmd_params = MtmdContextParams { |
| 97 | + use_gpu: !params.no_gpu && !params.no_mmproj_offload, |
| 98 | + print_timings: true, |
| 99 | + n_threads: params.n_threads, |
| 100 | + media_marker: CString::new( |
| 101 | + params |
| 102 | + .media_marker |
| 103 | + .as_ref() |
| 104 | + .unwrap_or(&llama_cpp_2::mtmd::mtmd_default_marker().to_string()) |
| 105 | + .clone(), |
| 106 | + )?, |
| 107 | + }; |
| 108 | + |
| 109 | + let mtmd_ctx = MtmdContext::init_from_file(¶ms.mmproj_path, model, &mtmd_params)?; |
| 110 | + |
| 111 | + let chat_template = model |
| 112 | + .chat_template(params.chat_template.as_deref()) |
| 113 | + .map_err(|e| format!("Failed to get chat template: {e}"))?; |
| 114 | + |
| 115 | + let batch = LlamaBatch::new(params.n_tokens.get() as usize, 1); |
| 116 | + |
| 117 | + Ok(Self { |
| 118 | + mtmd_ctx, |
| 119 | + batch, |
| 120 | + chat: Vec::new(), |
| 121 | + bitmaps: Vec::new(), |
| 122 | + n_past: 0, |
| 123 | + chat_template, |
| 124 | + }) |
| 125 | + } |
| 126 | + |
| 127 | + /// Loads media (image or audio) from the specified file path |
| 128 | + /// # Errors |
| 129 | + pub fn load_media(&mut self, path: &str) -> Result<(), MtmdBitmapError> { |
| 130 | + let bitmap = MtmdBitmap::from_file(&self.mtmd_ctx, path)?; |
| 131 | + self.bitmaps.push(bitmap); |
| 132 | + Ok(()) |
| 133 | + } |
| 134 | + |
| 135 | + /// Evaluates a chat message, tokenizing and processing it through the model |
| 136 | + /// # Errors |
| 137 | + pub fn eval_message( |
| 138 | + &mut self, |
| 139 | + model: &LlamaModel, |
| 140 | + context: &mut LlamaContext, |
| 141 | + msg: LlamaChatMessage, |
| 142 | + add_bos: bool, |
| 143 | + ) -> Result<(), Box<dyn std::error::Error>> { |
| 144 | + self.chat.push(msg); |
| 145 | + |
| 146 | + // Format the message using chat template (simplified) |
| 147 | + let formatted_prompt = model.apply_chat_template(&self.chat_template, &self.chat, true)?; |
| 148 | + |
| 149 | + let input_text = MtmdInputText { |
| 150 | + text: formatted_prompt, |
| 151 | + add_special: add_bos, |
| 152 | + parse_special: true, |
| 153 | + }; |
| 154 | + |
| 155 | + let bitmap_refs: Vec<&MtmdBitmap> = self.bitmaps.iter().collect(); |
| 156 | + |
| 157 | + if bitmap_refs.is_empty() { |
| 158 | + println!("No bitmaps provided, only tokenizing text"); |
| 159 | + } else { |
| 160 | + println!("Tokenizing with {} bitmaps", bitmap_refs.len()); |
| 161 | + } |
| 162 | + |
| 163 | + // Tokenize the input |
| 164 | + let chunks = self.mtmd_ctx.tokenize(input_text, &bitmap_refs)?; |
| 165 | + |
| 166 | + println!("Tokenization complete, {} chunks created", chunks.len()); |
| 167 | + |
| 168 | + // Clear bitmaps after tokenization |
| 169 | + self.bitmaps.clear(); |
| 170 | + |
| 171 | + self.n_past = chunks.eval_chunks(&self.mtmd_ctx, context, 0, 0, 1, true)?; |
| 172 | + Ok(()) |
| 173 | + } |
| 174 | + |
| 175 | + /// Generates a response by sampling tokens from the model |
| 176 | + /// # Errors |
| 177 | + pub fn generate_response( |
| 178 | + &mut self, |
| 179 | + model: &LlamaModel, |
| 180 | + context: &mut LlamaContext, |
| 181 | + sampler: &mut LlamaSampler, |
| 182 | + n_predict: i32, |
| 183 | + ) -> Result<(), Box<dyn std::error::Error>> { |
| 184 | + let mut generated_tokens = Vec::new(); |
| 185 | + let max_predict = if n_predict < 0 { i32::MAX } else { n_predict }; |
| 186 | + |
| 187 | + for _i in 0..max_predict { |
| 188 | + // Sample next token |
| 189 | + let token = sampler.sample(context, 0); |
| 190 | + generated_tokens.push(token); |
| 191 | + sampler.accept(token); |
| 192 | + |
| 193 | + // Check for end of generation |
| 194 | + if model.is_eog_token(token) { |
| 195 | + println!(); |
| 196 | + break; |
| 197 | + } |
| 198 | + |
| 199 | + // Print token |
| 200 | + let piece = model.token_to_str(token, Special::Tokenize)?; |
| 201 | + print!("{piece}"); |
| 202 | + io::stdout().flush()?; |
| 203 | + |
| 204 | + // Prepare next batch |
| 205 | + self.batch.clear(); |
| 206 | + self.batch.add(token, self.n_past, &[0], true)?; |
| 207 | + self.n_past += 1; |
| 208 | + |
| 209 | + // Decode |
| 210 | + context.decode(&mut self.batch)?; |
| 211 | + } |
| 212 | + |
| 213 | + Ok(()) |
| 214 | + } |
| 215 | +} |
| 216 | + |
| 217 | +fn run_single_turn( |
| 218 | + ctx: &mut MtmdCliContext, |
| 219 | + model: &LlamaModel, |
| 220 | + context: &mut LlamaContext, |
| 221 | + sampler: &mut LlamaSampler, |
| 222 | + params: &MtmdCliParams, |
| 223 | +) -> Result<(), Box<dyn std::error::Error>> { |
| 224 | + // Add media marker if not present |
| 225 | + let mut prompt = params.prompt.clone(); |
| 226 | + let default_marker = llama_cpp_2::mtmd::mtmd_default_marker().to_string(); |
| 227 | + let media_marker = params.media_marker.as_ref().unwrap_or(&default_marker); |
| 228 | + if !prompt.contains(media_marker) { |
| 229 | + prompt.push_str(media_marker); |
| 230 | + } |
| 231 | + |
| 232 | + // Load media files |
| 233 | + for image_path in ¶ms.images { |
| 234 | + println!("Loading image: {image_path}"); |
| 235 | + ctx.load_media(image_path)?; |
| 236 | + } |
| 237 | + for audio_path in ¶ms.audio { |
| 238 | + ctx.load_media(audio_path)?; |
| 239 | + } |
| 240 | + |
| 241 | + // Create user message |
| 242 | + let msg = LlamaChatMessage::new("user".to_string(), prompt)?; |
| 243 | + |
| 244 | + println!("Evaluating message: {msg:?}"); |
| 245 | + |
| 246 | + // Evaluate the message (prefill) |
| 247 | + ctx.eval_message(model, context, msg, true)?; |
| 248 | + |
| 249 | + // Generate response (decode) |
| 250 | + ctx.generate_response(model, context, sampler, params.n_predict)?; |
| 251 | + |
| 252 | + Ok(()) |
| 253 | +} |
| 254 | + |
| 255 | +fn main() -> Result<(), Box<dyn std::error::Error>> { |
| 256 | + let params = MtmdCliParams::parse(); |
| 257 | + |
| 258 | + // Validate required parameters |
| 259 | + if !Path::new(¶ms.model_path).exists() { |
| 260 | + eprintln!("Error: Model file not found: {}", params.model_path); |
| 261 | + return Err("Model file not found".into()); |
| 262 | + } |
| 263 | + |
| 264 | + if !Path::new(¶ms.mmproj_path).exists() { |
| 265 | + eprintln!( |
| 266 | + "Error: Multimodal projection file not found: {}", |
| 267 | + params.mmproj_path |
| 268 | + ); |
| 269 | + return Err("Multimodal projection file not found".into()); |
| 270 | + } |
| 271 | + |
| 272 | + println!("Loading model: {}", params.model_path); |
| 273 | + |
| 274 | + // Initialize backend |
| 275 | + let backend = LlamaBackend::init()?; |
| 276 | + |
| 277 | + // Setup model parameters |
| 278 | + let mut model_params = LlamaModelParams::default(); |
| 279 | + if !params.no_gpu { |
| 280 | + model_params = model_params.with_n_gpu_layers(1_000_000); // Use all layers on GPU |
| 281 | + } |
| 282 | + |
| 283 | + // Load model |
| 284 | + let model = LlamaModel::load_from_file(&backend, ¶ms.model_path, &model_params)?; |
| 285 | + |
| 286 | + // Create context |
| 287 | + let context_params = LlamaContextParams::default() |
| 288 | + .with_n_threads(params.n_threads) |
| 289 | + .with_n_batch(1) |
| 290 | + .with_n_ctx(Some(params.n_tokens)); |
| 291 | + let mut context = model.new_context(&backend, context_params)?; |
| 292 | + |
| 293 | + // Create sampler |
| 294 | + let mut sampler = LlamaSampler::chain_simple([LlamaSampler::greedy()]); |
| 295 | + |
| 296 | + println!("Model loaded successfully"); |
| 297 | + println!("Loading mtmd projection: {}", params.mmproj_path); |
| 298 | + |
| 299 | + // Create the MTMD context |
| 300 | + let mut ctx = MtmdCliContext::new(¶ms, &model)?; |
| 301 | + |
| 302 | + run_single_turn(&mut ctx, &model, &mut context, &mut sampler, ¶ms)?; |
| 303 | + |
| 304 | + println!("\n"); |
| 305 | + |
| 306 | + Ok(()) |
| 307 | +} |
0 commit comments