Skip to content

Commit 37641cb

Browse files
committed
w
1 parent 00062ee commit 37641cb

File tree

1 file changed

+292
-0
lines changed

1 file changed

+292
-0
lines changed
Lines changed: 292 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,292 @@
1+
<!DOCTYPE html>
2+
<html lang="en" xmlns="http://www.w3.org/1999/xhtml" xml:lang="">
3+
<head>
4+
<meta charset="utf-8" />
5+
<meta name="generator" content="pandoc" />
6+
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
7+
<title>COMPLEX ANALYSIS GENERAL
8+
EXAM SPRING 2022 - UVA Mathematics</title>
9+
<style>
10+
/* Default styles provided by pandoc.
11+
** See https://pandoc.org/MANUAL.html#variables-for-html for config info.
12+
*/
13+
html {
14+
color: #1a1a1a;
15+
background-color: #fdfdfd;
16+
}
17+
body {
18+
margin: 0 auto;
19+
max-width: 36em;
20+
padding-left: 50px;
21+
padding-right: 50px;
22+
padding-top: 50px;
23+
padding-bottom: 50px;
24+
hyphens: auto;
25+
overflow-wrap: break-word;
26+
text-rendering: optimizeLegibility;
27+
font-kerning: normal;
28+
}
29+
@media (max-width: 600px) {
30+
body {
31+
font-size: 0.9em;
32+
padding: 12px;
33+
}
34+
h1 {
35+
font-size: 1.8em;
36+
}
37+
}
38+
@media print {
39+
html {
40+
background-color: white;
41+
}
42+
body {
43+
background-color: transparent;
44+
color: black;
45+
font-size: 12pt;
46+
}
47+
p, h2, h3 {
48+
orphans: 3;
49+
widows: 3;
50+
}
51+
h2, h3, h4 {
52+
page-break-after: avoid;
53+
}
54+
}
55+
p {
56+
margin: 1em 0;
57+
}
58+
a {
59+
color: #1a1a1a;
60+
}
61+
a:visited {
62+
color: #1a1a1a;
63+
}
64+
img {
65+
max-width: 100%;
66+
}
67+
svg {
68+
height: auto;
69+
max-width: 100%;
70+
}
71+
h1, h2, h3, h4, h5, h6 {
72+
margin-top: 1.4em;
73+
}
74+
h5, h6 {
75+
font-size: 1em;
76+
font-style: italic;
77+
}
78+
h6 {
79+
font-weight: normal;
80+
}
81+
ol, ul {
82+
padding-left: 1.7em;
83+
margin-top: 1em;
84+
}
85+
li > ol, li > ul {
86+
margin-top: 0;
87+
}
88+
blockquote {
89+
margin: 1em 0 1em 1.7em;
90+
padding-left: 1em;
91+
border-left: 2px solid #e6e6e6;
92+
color: #606060;
93+
}
94+
code {
95+
font-family: Menlo, Monaco, Consolas, 'Lucida Console', monospace;
96+
font-size: 85%;
97+
margin: 0;
98+
hyphens: manual;
99+
}
100+
pre {
101+
margin: 1em 0;
102+
overflow: auto;
103+
}
104+
pre code {
105+
padding: 0;
106+
overflow: visible;
107+
overflow-wrap: normal;
108+
}
109+
.sourceCode {
110+
background-color: transparent;
111+
overflow: visible;
112+
}
113+
hr {
114+
border: none;
115+
border-top: 1px solid #1a1a1a;
116+
height: 1px;
117+
margin: 1em 0;
118+
}
119+
table {
120+
margin: 1em 0;
121+
border-collapse: collapse;
122+
width: 100%;
123+
overflow-x: auto;
124+
display: block;
125+
font-variant-numeric: lining-nums tabular-nums;
126+
}
127+
table caption {
128+
margin-bottom: 0.75em;
129+
}
130+
tbody {
131+
margin-top: 0.5em;
132+
border-top: 1px solid #1a1a1a;
133+
border-bottom: 1px solid #1a1a1a;
134+
}
135+
th {
136+
border-top: 1px solid #1a1a1a;
137+
padding: 0.25em 0.5em 0.25em 0.5em;
138+
}
139+
td {
140+
padding: 0.125em 0.5em 0.25em 0.5em;
141+
}
142+
header {
143+
margin-bottom: 4em;
144+
text-align: center;
145+
}
146+
#TOC li {
147+
list-style: none;
148+
}
149+
#TOC ul {
150+
padding-left: 1.3em;
151+
}
152+
#TOC > ul {
153+
padding-left: 0;
154+
}
155+
#TOC a:not(:hover) {
156+
text-decoration: none;
157+
}
158+
code{white-space: pre-wrap;}
159+
span.smallcaps{font-variant: small-caps;}
160+
div.columns{display: flex; gap: min(4vw, 1.5em);}
161+
div.column{flex: auto; overflow-x: auto;}
162+
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
163+
/* The extra [class] is a hack that increases specificity enough to
164+
override a similar rule in reveal.js */
165+
ul.task-list[class]{list-style: none;}
166+
ul.task-list li input[type="checkbox"] {
167+
font-size: inherit;
168+
width: 0.8em;
169+
margin: 0 0.8em 0.2em -1.6em;
170+
vertical-align: middle;
171+
}
172+
/* Exam problem styling */
173+
.problem-number {
174+
display: block;
175+
margin-top: 1.5em;
176+
margin-bottom: 0.5em;
177+
}
178+
</style>
179+
</head>
180+
<body>
181+
<nav aria-label="Breadcrumb" style="margin-bottom: 1em;">
182+
<ol style="list-style: none; padding: 0; display: flex; flex-wrap: wrap; gap: 0.5em; font-size: 0.9em;">
183+
<li><a href="/">Home</a></li>
184+
<li aria-hidden="true" style="color: #999;">/</li>
185+
<li><a href="/graduate/">Graduate</a></li>
186+
<li aria-hidden="true" style="color: #999;">/</li>
187+
<li><a href="/graduate/generals/">General Exams</a></li>
188+
<li aria-hidden="true" style="color: #999;">/</li>
189+
<li aria-current="page" style="color: #666;">COMPLEX ANALYSIS GENERAL
190+
EXAM SPRING 2022</li>
191+
</ol>
192+
</nav>
193+
194+
195+
196+
<nav aria-label="Page navigation" style="margin-bottom: 2em;">
197+
<a href="/graduate/generals/" style="display: inline-block; padding: 0.5em 1em; background-color: #f0f0f0; border: 1px solid #ccc; border-radius: 4px; text-decoration: none; color: #333;">&larr; Back to General Exams</a>
198+
</nav>
199+
200+
<main>
201+
<h1 class="unnumbered"
202+
id="complex-analysis-general-exam-spring-2022">COMPLEX ANALYSIS GENERAL
203+
EXAM SPRING 2022</h1>
204+
<p>Solve as many problems as you can. Full solutions on a smaller number
205+
of problems will be worth more than partial solutions on several
206+
problems. Throughout
207+
<math role="math" aria-label="\mathbb{D}=\{z \in \mathbb{C}:|z|&lt;1\}" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>𝔻</mi><mo>=</mo><mo stretchy="false" form="prefix">{</mo><mi>z</mi><mo>&isin;</mo><mi>&Copf;</mi><mo>:</mo><mo stretchy="false" form="prefix">|</mo><mi>z</mi><mo stretchy="false" form="prefix">|</mo><mo>&lt;</mo><mn>1</mn><mo stretchy="false" form="postfix">}</mo></mrow><annotation encoding="application/x-tex">\mathbb{D}=\{z \in \mathbb{C}:|z|&lt;1\}</annotation></semantics></math>.
208+
Don’t use any of the Picard theorems.</p>
209+
<h2 class="unnumbered" id="problem-1">Problem 1</h2>
210+
<p>Compute, for
211+
<math role="math" aria-label="0&lt;\alpha&lt;1" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>&lt;</mo><mi>&alpha;</mi><mo>&lt;</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">0&lt;\alpha&lt;1</annotation></semantics></math></p>
212+
<p><math role="math" aria-label="\int_{0}^{\infty} \frac{1}{x^{\alpha}(1+x)} d x" display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mo>&int;</mo><mn>0</mn><mi>&infin;</mi></msubsup><mfrac><mn>1</mn><mrow><msup><mi>x</mi><mi>&alpha;</mi></msup><mo stretchy="false" form="prefix">(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo stretchy="false" form="postfix">)</mo></mrow></mfrac><mi>d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">\int_{0}^{\infty} \frac{1}{x^{\alpha}(1+x)} d x</annotation></semantics></math></p>
213+
<p>Show all estimates.</p>
214+
<h2 class="unnumbered" id="problem-2">Problem 2</h2>
215+
<p>Suppose that
216+
<math role="math" aria-label="f" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>f</mi><annotation encoding="application/x-tex">f</annotation></semantics></math>
217+
is an entire function, and that there are constants
218+
<math role="math" aria-label="a, b&gt;0" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">a, b&gt;0</annotation></semantics></math>
219+
so that</p>
220+
<p><math role="math" aria-label="|f(z)| \leq a+b|z| \text { for all } z \in \mathbb{C}" display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">|</mo><mi>f</mi><mo stretchy="false" form="prefix">(</mo><mi>z</mi><mo stretchy="false" form="postfix">)</mo><mo stretchy="false" form="prefix">|</mo><mo>&le;</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo stretchy="false" form="prefix">|</mo><mi>z</mi><mo stretchy="false" form="prefix">|</mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> for all </mtext><mspace width="0.333em"></mspace></mrow><mi>z</mi><mo>&isin;</mo><mi>&Copf;</mi></mrow><annotation encoding="application/x-tex">|f(z)| \leq a+b|z| \text { for all } z \in \mathbb{C}</annotation></semantics></math></p>
221+
<p>Show that
222+
<math role="math" aria-label="f" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>f</mi><annotation encoding="application/x-tex">f</annotation></semantics></math>
223+
is a polynomial of degree at most one.</p>
224+
<h2 class="unnumbered" id="problem-3">Problem 3</h2>
225+
<p>Give an explicit example of an unbounded harmonic function
226+
<math role="math" aria-label="u: \mathbb{D} \rightarrow(0,+\infty)" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>:</mo><mi>𝔻</mi><mo>&rarr;</mo><mo stretchy="false" form="prefix">(</mo><mn>0</mn><mo>,</mo><mi>+</mi><mi>&infin;</mi><mo stretchy="false" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">u: \mathbb{D} \rightarrow(0,+\infty)</annotation></semantics></math>
227+
with the property that</p>
228+
<p><math role="math" aria-label="\lim _{z \rightarrow \zeta} u(z)=0" display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><munder><mi mathvariant="normal">lim</mi><mrow><mi>z</mi><mo>&rarr;</mo><mi>&zeta;</mi></mrow></munder><mi>u</mi><mo stretchy="false" form="prefix">(</mo><mi>z</mi><mo stretchy="false" form="postfix">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\lim _{z \rightarrow \zeta} u(z)=0</annotation></semantics></math></p>
229+
<p>for all
230+
<math role="math" aria-label="\zeta \in \partial \mathbb{D}" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>&zeta;</mi><mo>&isin;</mo><mi>&part;</mi><mi>𝔻</mi></mrow><annotation encoding="application/x-tex">\zeta \in \partial \mathbb{D}</annotation></semantics></math>
231+
with
232+
<math role="math" aria-label="\zeta \neq 1" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>&zeta;</mi><mo>&ne;</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\zeta \neq 1</annotation></semantics></math>.
233+
It is acceptable to leave your answer as the real (or imaginary) part of
234+
an explicit holomorphic function.</p>
235+
<h2 class="unnumbered" id="problem-4">Problem 4</h2>
236+
<p>Let
237+
<math role="math" aria-label="S=\{z \in \mathbb{C}: 0&lt;\operatorname{Re}(z)&lt;1\}" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi><mo>=</mo><mo stretchy="false" form="prefix">{</mo><mi>z</mi><mo>&isin;</mo><mi>&Copf;</mi><mo>:</mo><mn>0</mn><mo>&lt;</mo><mrow><mi mathvariant="normal">Re</mi><mo>&#8289;</mo></mrow><mo stretchy="false" form="prefix">(</mo><mi>z</mi><mo stretchy="false" form="postfix">)</mo><mo>&lt;</mo><mn>1</mn><mo stretchy="false" form="postfix">}</mo></mrow><annotation encoding="application/x-tex">S=\{z \in \mathbb{C}: 0&lt;\operatorname{Re}(z)&lt;1\}</annotation></semantics></math>.
238+
Suppose that
239+
<math role="math" aria-label="f: \bar{S} \rightarrow \mathbb{C}" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo>:</mo><mover><mi>S</mi><mo accent="true"></mo></mover><mo>&rarr;</mo><mi>&Copf;</mi></mrow><annotation encoding="application/x-tex">f: \bar{S} \rightarrow \mathbb{C}</annotation></semantics></math>
240+
is bounded, continuous, and that
241+
<math role="math" aria-label="\left.f\right|_{S}" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub><mrow><mi>f</mi><mo stretchy="true" form="postfix">|</mo></mrow><mi>S</mi></msub><annotation encoding="application/x-tex">\left.f\right|_{S}</annotation></semantics></math>
242+
is analytic. If</p>
243+
<p><math role="math" aria-label="\sup _{t \in \mathbb{R}} \max (|f(i t)|,|f(1+i t)|) \leq 1," display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><munder><mi mathvariant="normal">sup</mi><mrow><mi>t</mi><mo>&isin;</mo><mi>&Ropf;</mi></mrow></munder><mrow><mi mathvariant="normal">max</mi><mo>&#8289;</mo></mrow><mo stretchy="false" form="prefix">(</mo><mo stretchy="false" form="prefix">|</mo><mi>f</mi><mo stretchy="false" form="prefix">(</mo><mi>i</mi><mi>t</mi><mo stretchy="false" form="postfix">)</mo><mo stretchy="false" form="prefix">|</mo><mo>,</mo><mo stretchy="false" form="prefix">|</mo><mi>f</mi><mo stretchy="false" form="prefix">(</mo><mn>1</mn><mo>+</mo><mi>i</mi><mi>t</mi><mo stretchy="false" form="postfix">)</mo><mo stretchy="false" form="prefix">|</mo><mo stretchy="false" form="postfix">)</mo><mo>&le;</mo><mn>1</mn><mo>,</mo></mrow><annotation encoding="application/x-tex">\sup _{t \in \mathbb{R}} \max (|f(i t)|,|f(1+i t)|) \leq 1,</annotation></semantics></math></p>
244+
<p>show that
245+
<math role="math" aria-label="|f(z)| \leq 1" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">|</mo><mi>f</mi><mo stretchy="false" form="prefix">(</mo><mi>z</mi><mo stretchy="false" form="postfix">)</mo><mo stretchy="false" form="prefix">|</mo><mo>&le;</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">|f(z)| \leq 1</annotation></semantics></math>
246+
for all
247+
<math role="math" aria-label="z \in S" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi><mo>&isin;</mo><mi>S</mi></mrow><annotation encoding="application/x-tex">z \in S</annotation></semantics></math>.<br />
248+
Suggestion: consider, for
249+
<math role="math" aria-label="\varepsilon&gt;0" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>&epsilon;</mi><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\varepsilon&gt;0</annotation></semantics></math>,
250+
the function
251+
<math role="math" aria-label="f_{\varepsilon}(z)=\frac{f(z)}{1+\varepsilon z}" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>f</mi><mi>&epsilon;</mi></msub><mo stretchy="false" form="prefix">(</mo><mi>z</mi><mo stretchy="false" form="postfix">)</mo><mo>=</mo><mfrac><mrow><mi>f</mi><mo stretchy="false" form="prefix">(</mo><mi>z</mi><mo stretchy="false" form="postfix">)</mo></mrow><mrow><mn>1</mn><mo>+</mo><mi>&epsilon;</mi><mi>z</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">f_{\varepsilon}(z)=\frac{f(z)}{1+\varepsilon z}</annotation></semantics></math>.
252+
Show that
253+
<math role="math" aria-label="\left|f_{\varepsilon}\right| \leq 1" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mo stretchy="true" form="prefix">|</mo><msub><mi>f</mi><mi>&epsilon;</mi></msub><mo stretchy="true" form="postfix">|</mo></mrow><mo>&le;</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\left|f_{\varepsilon}\right| \leq 1</annotation></semantics></math>
254+
for all
255+
<math role="math" aria-label="\varepsilon&gt;0" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>&epsilon;</mi><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\varepsilon&gt;0</annotation></semantics></math>,
256+
and use this to conclude that
257+
<math role="math" aria-label="|f| \leq 1" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">|</mo><mi>f</mi><mo stretchy="false" form="prefix">|</mo><mo>&le;</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">|f| \leq 1</annotation></semantics></math>.</p>
258+
<h2 class="unnumbered" id="problem-5">Problem 5</h2>
259+
<p>Let
260+
<math role="math" aria-label="\left(M_{n}\right)_{n=0}^{\infty}" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msubsup><mrow><mo stretchy="true" form="prefix">(</mo><msub><mi>M</mi><mi>n</mi></msub><mo stretchy="true" form="postfix">)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mi>&infin;</mi></msubsup><annotation encoding="application/x-tex">\left(M_{n}\right)_{n=0}^{\infty}</annotation></semantics></math>
261+
be a sequence of positive real numbers. Assume that the series
262+
<math role="math" aria-label="\sum_{n=0}^{\infty} M_{n} z^{n}" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mo>&sum;</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mi>&infin;</mi></msubsup><msub><mi>M</mi><mi>n</mi></msub><msup><mi>z</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\sum_{n=0}^{\infty} M_{n} z^{n}</annotation></semantics></math>
263+
has radius of convergence at least 1 . Let
264+
<math role="math" aria-label="\mathcal{F}" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi></mi><annotation encoding="application/x-tex">\mathcal{F}</annotation></semantics></math>
265+
be the set of holomorphic functions on
266+
<math role="math" aria-label="\mathbb{D}" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>𝔻</mi><annotation encoding="application/x-tex">\mathbb{D}</annotation></semantics></math>
267+
which satisfy</p>
268+
<p><math role="math" aria-label="\left|\frac{f^{(n)}(0)}{n!}\right| \leq M_{n} \text { for all } n \in \mathbb{N} \cup\{0\} ." display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mo stretchy="true" form="prefix">|</mo><mfrac><mrow><msup><mi>f</mi><mrow><mo stretchy="false" form="prefix">(</mo><mi>n</mi><mo stretchy="false" form="postfix">)</mo></mrow></msup><mo stretchy="false" form="prefix">(</mo><mn>0</mn><mo stretchy="false" form="postfix">)</mo></mrow><mrow><mi>n</mi><mi>!</mi></mrow></mfrac><mo stretchy="true" form="postfix">|</mo></mrow><mo>&le;</mo><msub><mi>M</mi><mi>n</mi></msub><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> for all </mtext><mspace width="0.333em"></mspace></mrow><mi>n</mi><mo>&isin;</mo><mi>&Nopf;</mi><mo>&cup;</mo><mo stretchy="false" form="prefix">{</mo><mn>0</mn><mo stretchy="false" form="postfix">}</mo><mi>.</mi></mrow><annotation encoding="application/x-tex">\left|\frac{f^{(n)}(0)}{n!}\right| \leq M_{n} \text { for all } n \in \mathbb{N} \cup\{0\} .</annotation></semantics></math></p>
269+
<p>Show that
270+
<math role="math" aria-label="\mathcal{F}" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi></mi><annotation encoding="application/x-tex">\mathcal{F}</annotation></semantics></math>
271+
is normal (i.e. the closure of
272+
<math role="math" aria-label="\mathcal{F}" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi></mi><annotation encoding="application/x-tex">\mathcal{F}</annotation></semantics></math>
273+
is compact for the topology of uniform convergence on compact subsets of
274+
<math role="math" aria-label="\mathbb{D}" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>𝔻</mi><annotation encoding="application/x-tex">\mathbb{D}</annotation></semantics></math>
275+
).</p>
276+
<p>? =0 <a href="#fn1" class="footnote-ref" id="fnref1"
277+
role="doc-noteref"><sup>1</sup></a></p>
278+
<p>??=0 <a href="#fn2" class="footnote-ref" id="fnref2"
279+
role="doc-noteref"><sup>2</sup></a></p>
280+
<section id="footnotes" class="footnotes footnotes-end-of-document"
281+
role="doc-endnotes">
282+
<hr />
283+
<ol>
284+
<li id="fn1"><p>Date: January 12, 2022.<a href="#fnref1"
285+
class="footnote-back" role="doc-backlink">↩︎</a></p></li>
286+
<li id="fn2"><p>Date: January 12, 2022.<a href="#fnref2"
287+
class="footnote-back" role="doc-backlink">↩︎</a></p></li>
288+
</ol>
289+
</section>
290+
</main>
291+
</body>
292+
</html>

0 commit comments

Comments
 (0)