Skip to content

Commit 6390007

Browse files
committed
w
1 parent 32204a7 commit 6390007

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

44 files changed

+14261
-6777
lines changed

graduate/exams/algebra/AlgGento02.html

Lines changed: 62 additions & 6777 deletions
Large diffs are not rendered by default.
Lines changed: 286 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,286 @@
1+
<!DOCTYPE html>
2+
<html lang="en" xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
3+
<head>
4+
<meta charset="utf-8" />
5+
<meta name="generator" content="pandoc" />
6+
<meta name="viewport" content="width=device-width, initial-scalable=yes" />
7+
<title>Algebra General Exam - UVA Mathematics</title>
8+
<style>
9+
/* Default styles for accessibility and readability */
10+
html {
11+
color: #1a1a1a;
12+
background-color: #fdfdfd;
13+
}
14+
body {
15+
margin: 0 auto;
16+
max-width: 50em;
17+
padding-left: 50px;
18+
padding-right: 50px;
19+
padding-top: 50px;
20+
padding-bottom: 50px;
21+
hyphens: auto;
22+
overflow-wrap: break-word;
23+
text-rendering: optimizeLegibility;
24+
font-kerning: normal;
25+
line-height: 1.5;
26+
}
27+
@media (max-width: 600px) {
28+
body {
29+
font-size: 0.9em;
30+
padding: 12px;
31+
}
32+
h1 {
33+
font-size: 1.8em;
34+
}
35+
}
36+
@media print {
37+
html {
38+
background-color: white;
39+
}
40+
body {
41+
background-color: transparent;
42+
color: black;
43+
font-size: 12pt;
44+
}
45+
p, h2, h3 {
46+
orphans: 3;
47+
widows: 3;
48+
}
49+
h2, h3, h4 {
50+
page-break-after: avoid;
51+
}
52+
}
53+
/* Skip navigation link */
54+
.skip-link {
55+
position: absolute;
56+
top: -40px;
57+
left: 0;
58+
background: #000;
59+
color: #fff;
60+
padding: 8px;
61+
text-decoration: none;
62+
z-index: 100;
63+
}
64+
.skip-link:focus {
65+
top: 0;
66+
}
67+
p {
68+
margin: 1em 0;
69+
}
70+
a {
71+
color: #0066cc;
72+
text-decoration: underline;
73+
}
74+
a:visited {
75+
color: #0066cc;
76+
}
77+
a:hover, a:focus {
78+
color: #0052a3;
79+
text-decoration: none;
80+
}
81+
img {
82+
max-width: 100%;
83+
}
84+
svg {
85+
height: auto;
86+
max-width: 100%;
87+
}
88+
h1, h2, h3, h4, h5, h6 {
89+
margin-top: 1.4em;
90+
line-height: 1.2;
91+
}
92+
h5, h6 {
93+
font-size: 1em;
94+
font-style: italic;
95+
}
96+
h6 {
97+
font-weight: normal;
98+
}
99+
ol, ul {
100+
padding-left: 1.7em;
101+
margin-top: 1em;
102+
}
103+
li > ol, li > ul {
104+
margin-top: 0;
105+
}
106+
blockquote {
107+
margin: 1em 0 1em 1.7em;
108+
padding-left: 1em;
109+
border-left: 2px solid #e6e6e6;
110+
color: #606060;
111+
}
112+
code {
113+
font-family: Menlo, Monaco, Consolas, 'Lucida Console', monospace;
114+
font-size: 85%;
115+
margin: 0;
116+
hyphens: manual;
117+
}
118+
pre {
119+
margin: 1em 0;
120+
overflow: auto;
121+
}
122+
pre code {
123+
padding: 0;
124+
overflow: visible;
125+
overflow-wrap: normal;
126+
}
127+
hr {
128+
border: none;
129+
border-top: 1px solid #1a1a1a;
130+
height: 1px;
131+
margin: 1em 0;
132+
}
133+
table {
134+
margin: 1em 0;
135+
border-collapse: collapse;
136+
width: 100%;
137+
overflow-x: auto;
138+
display: block;
139+
font-variant-numeric: lining-nums tabular-nums;
140+
}
141+
table caption {
142+
margin-bottom: 0.75em;
143+
}
144+
tbody {
145+
margin-top: 0.5em;
146+
border-top: 1px solid #1a1a1a;
147+
border-bottom: 1px solid #1a1a1a;
148+
}
149+
th {
150+
border-top: 1px solid #1a1a1a;
151+
padding: 0.25em 0.5em 0.25em 0.5em;
152+
}
153+
td {
154+
padding: 0.125em 0.5em 0.25em 0.5em;
155+
}
156+
/* Navigation styling */
157+
nav {
158+
margin-bottom: 1.5em;
159+
}
160+
.back-button {
161+
display: inline-block;
162+
padding: 0.5em 1em;
163+
background-color: #f0f0f0;
164+
border: 1px solid #ccc;
165+
border-radius: 4px;
166+
text-decoration: none;
167+
color: #333;
168+
}
169+
.back-button:hover, .back-button:focus {
170+
background-color: #e0e0e0;
171+
text-decoration: none;
172+
}
173+
</style>
174+
</head>
175+
<body>
176+
<a href="#main-content" class="skip-link">Skip to main content</a>
177+
178+
<nav aria-label="Breadcrumb" style="margin-bottom: 1em;">
179+
<ol style="list-style: none; padding: 0; display: flex; flex-wrap: wrap; gap: 0.5em; font-size: 0.9em;">
180+
<li><a href="/">Home</a></li>
181+
<li aria-hidden="true" style="color: #999;">/</li>
182+
<li><a href="/graduate/">Graduate</a></li>
183+
<li aria-hidden="true" style="color: #999;">/</li>
184+
<li><a href="/graduate/generals/">General Exams</a></li>
185+
<li aria-hidden="true" style="color: #999;">/</li>
186+
<li><a href="/graduate/exams/algebra/AlgGento02.html">Algebra Exams 1981-2002</a></li>
187+
<li aria-hidden="true" style="color: #999;">/</li>
188+
<li aria-current="page" style="color: #666;">Algebra General Exam</li>
189+
</ol>
190+
</nav>
191+
192+
<nav aria-label="Page navigation" style="margin-bottom: 2em;">
193+
<a href="/graduate/exams/algebra/AlgGento02.html" class="back-button">&larr; Back to Table of Contents</a>
194+
</nav>
195+
196+
<main id="main-content">
197+
<h2 class="unnumbered" id="algebra-general-exam">Algebra General
198+
Exam</h2>
199+
<ol>
200+
<li><p>Show (by Sylow theory) that a group of order 72 cannot be simple.
201+
List all abelian groups of order 72.</p></li>
202+
<li><p>Let
203+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>G</mi><annotation encoding="application/x-tex">G</annotation></semantics></math>
204+
be an infinite group containing an element
205+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo></mo><mn>1</mn></mrow><annotation encoding="application/x-tex">x \neq 1</annotation></semantics></math>
206+
having only finitely many conjugates. Prove that
207+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>G</mi><annotation encoding="application/x-tex">G</annotation></semantics></math>
208+
is not simple.</p></li>
209+
<li><p>Let
210+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false" form="prefix">(</mo><mi>x</mi><mo stretchy="false" form="postfix">)</mo><mo>=</mo><msup><mi>x</mi><mn>4</mn></msup><mo></mo><msup><mi>x</mi><mn>2</mn></msup><mo></mo><mn>2</mn><mo></mo><mi>q</mi><mo stretchy="false" form="prefix">[</mo><mi>x</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">f(x)=x^{4}-x^{2}-2 \in q[x]</annotation></semantics></math>.
211+
Find the splitting field
212+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>F</mi><annotation encoding="application/x-tex">F</annotation></semantics></math>
213+
of
214+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false" form="prefix">(</mo><mi>x</mi><mo stretchy="false" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">f(x)</annotation></semantics></math>
215+
over
216+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>Q</mi><annotation encoding="application/x-tex">Q</annotation></semantics></math>,
217+
determine its Galois group, and find all subfields of
218+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>F</mi><annotation encoding="application/x-tex">F</annotation></semantics></math>.</p></li>
219+
<li><p>Let
220+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi><mo></mo><mi>K</mi><mo></mo><mi>L</mi></mrow><annotation encoding="application/x-tex">k \subseteq K \subseteq L</annotation></semantics></math>
221+
and let
222+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo></mo><mi>L</mi></mrow><annotation encoding="application/x-tex">\alpha \in L</annotation></semantics></math>.
223+
Assume that
224+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi><mi>/</mi><mi>K</mi></mrow><annotation encoding="application/x-tex">K / K</annotation></semantics></math>
225+
is finite algebraic.<br />
226+
(a) Show that
227+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi><mi>/</mi><mi>K</mi></mrow><annotation encoding="application/x-tex">K / K</annotation></semantics></math>
228+
separable
229+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>=</mo><mi>K</mi><mo stretchy="false" form="prefix">(</mo><mi>α</mi><mo stretchy="false" form="postfix">)</mo><mi>/</mi><mi>K</mi><mo stretchy="false" form="prefix">(</mo><mi>α</mi><mo stretchy="false" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">=K(\alpha) / K(\alpha)</annotation></semantics></math>
230+
separable.<br />
231+
(b) Show that
232+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi><mi>/</mi><mi>K</mi></mrow><annotation encoding="application/x-tex">K / K</annotation></semantics></math>
233+
normal
234+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo></mo><mi>K</mi><mo stretchy="false" form="prefix">(</mo><mi>α</mi><mo stretchy="false" form="postfix">)</mo><mi>/</mi><mi>K</mi><mo stretchy="false" form="prefix">(</mo><mi>α</mi><mo stretchy="false" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">\Rightarrow K(\alpha) / K(\alpha)</annotation></semantics></math>
235+
normal.<br />
236+
(c) Show that if
237+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi><mi>/</mi><mi>K</mi></mrow><annotation encoding="application/x-tex">K / K</annotation></semantics></math>
238+
is Galois, then so is
239+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi><mo stretchy="false" form="prefix">(</mo><mi>α</mi><mo stretchy="false" form="postfix">)</mo><mi>/</mi><mi>K</mi><mo stretchy="false" form="prefix">(</mo><mi>α</mi><mo stretchy="false" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">K(\alpha) / K(\alpha)</annotation></semantics></math>
240+
and compare the Galois groups
241+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi><mo stretchy="false" form="prefix">(</mo><mi>K</mi><mi>/</mi><mi>k</mi><mo stretchy="false" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">G(K / k)</annotation></semantics></math>
242+
and
243+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>G</mi><mo stretchy="false" form="prefix">(</mo><mi>K</mi><mo stretchy="false" form="prefix">(</mo><mi>α</mi><mo stretchy="false" form="postfix">)</mo><mi>/</mi><mi>K</mi><mo stretchy="false" form="prefix">(</mo><mi>α</mi><mo stretchy="false" form="postfix">)</mo><mo stretchy="false" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">G(K(\alpha) / K(\alpha))</annotation></semantics></math>.</p></li>
244+
<li><p>What are necessary and sufficient conditions on the commutative
245+
integral domain
246+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>R</mi><annotation encoding="application/x-tex">R</annotation></semantics></math>
247+
in order that the polynomial ring in one indeterminate,
248+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><mo stretchy="false" form="prefix">[</mo><mi>x</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">R[x]</annotation></semantics></math>,
249+
be<br />
250+
(a) a P.I.D.?<br />
251+
(b) a UFD?<br />
252+
(c) a Noetherian ring?</p></li>
253+
<li><p>Let
254+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>R</mi><annotation encoding="application/x-tex">R</annotation></semantics></math>
255+
be a commutative ring with unit and
256+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>I</mi><annotation encoding="application/x-tex">I</annotation></semantics></math>
257+
an ideal of
258+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>R</mi><annotation encoding="application/x-tex">R</annotation></semantics></math>.
259+
Consider the
260+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>R</mi><annotation encoding="application/x-tex">R</annotation></semantics></math>-module
261+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><mi>/</mi><mi>I</mi></mrow><annotation encoding="application/x-tex">R / I</annotation></semantics></math>.<br />
262+
(a) Show that if
263+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>I</mi><annotation encoding="application/x-tex">I</annotation></semantics></math>
264+
is a prime ideal, then
265+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><mi>/</mi><mi>I</mi></mrow><annotation encoding="application/x-tex">R / I</annotation></semantics></math>
266+
is indecomposable.<br />
267+
(b) Show that
268+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><mi>/</mi><mi>I</mi></mrow><annotation encoding="application/x-tex">R / I</annotation></semantics></math>
269+
is a simple module if and ouly if
270+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>I</mi><annotation encoding="application/x-tex">I</annotation></semantics></math>
271+
is maximal.</p></li>
272+
<li><p>Let
273+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>T</mi><annotation encoding="application/x-tex">T</annotation></semantics></math>
274+
be a linear transformation of
275+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi></mi><mn>5</mn></msup><annotation encoding="application/x-tex">\mathbb{R}^{5}</annotation></semantics></math>
276+
having characteristic polynomial
277+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>T</mi><mn>5</mn></msup><mo></mo><mi>T</mi></mrow><annotation encoding="application/x-tex">T^{5}-T</annotation></semantics></math>.
278+
Find its possible rational canonical forms over
279+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi></mi><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math>
280+
and its possible Jordan canonical forms over
281+
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi></mi><annotation encoding="application/x-tex">\mathbb{C}</annotation></semantics></math>.</p></li>
282+
</ol>
283+
284+
</main>
285+
</body>
286+
</html>

0 commit comments

Comments
 (0)