Skip to content

Commit 84b6c7e

Browse files
committed
w
Signed-off-by: Leonid Petrov <[email protected]>
1 parent f49424e commit 84b6c7e

File tree

2 files changed

+54
-191
lines changed

2 files changed

+54
-191
lines changed

graduate/docs/analysis-general-exam-syllabus.html

Lines changed: 19 additions & 83 deletions
Original file line numberDiff line numberDiff line change
@@ -10,101 +10,41 @@
1010
max-width: 900px;
1111
margin: 0 auto;
1212
padding: 2rem 1rem;
13-
background-color: var(--card-bg);
14-
color: var(--text-color);
1513
line-height: 1.7;
1614
}
1715

1816
.syllabus-container h1 {
19-
color: var(--text-color);
2017
font-size: 2rem;
21-
margin-bottom: 0.5rem;
22-
border-bottom: 3px solid #e57200;
23-
padding-bottom: 0.5rem;
24-
}
25-
26-
.syllabus-container .revision-date {
27-
color: var(--text-color);
28-
opacity: 0.8;
29-
font-style: italic;
30-
margin-bottom: 2rem;
31-
font-size: 0.95rem;
18+
font-weight: 700;
19+
margin-bottom: 1.5rem;
20+
color: var(--text-color, #212529);
3221
}
3322

3423
.syllabus-container h2 {
35-
color: #e57200;
3624
font-size: 1.5rem;
37-
margin-top: 2.5rem;
25+
font-weight: 600;
26+
margin-top: 2rem;
3827
margin-bottom: 1rem;
39-
border-left: 4px solid #e57200;
40-
padding-left: 0.75rem;
28+
color: var(--text-color, #212529);
4129
}
4230

4331
.syllabus-container h3 {
44-
color: var(--text-color);
4532
font-size: 1.2rem;
46-
margin-top: 2rem;
47-
margin-bottom: 0.75rem;
4833
font-weight: 600;
49-
}
50-
51-
.syllabus-container ol,
52-
.syllabus-container ul {
53-
margin-left: 1.5rem;
54-
margin-bottom: 1rem;
55-
}
56-
57-
.syllabus-container li {
34+
margin-top: 1.5rem;
5835
margin-bottom: 0.75rem;
59-
color: var(--text-color);
60-
}
61-
62-
.syllabus-container .topic-list {
63-
counter-reset: topic-counter;
64-
list-style: none;
65-
margin-left: 0;
36+
color: var(--text-color, #212529);
6637
}
6738

68-
.syllabus-container .topic-list > li {
69-
counter-increment: topic-counter;
70-
position: relative;
71-
padding-left: 2rem;
39+
.syllabus-container p {
7240
margin-bottom: 1rem;
41+
color: var(--text-color, #212529);
7342
}
7443

75-
.syllabus-container .topic-list > li::before {
76-
content: counter(topic-counter) ".";
77-
position: absolute;
78-
left: 0;
79-
font-weight: bold;
80-
color: #e57200;
81-
}
82-
83-
.syllabus-container .references {
84-
background-color: var(--bg-color);
85-
border: 1px solid var(--text-color);
86-
border-radius: 8px;
87-
padding: 1.5rem;
88-
margin-top: 2rem;
89-
opacity: 0.9;
90-
}
91-
92-
.syllabus-container .references h3 {
93-
margin-top: 0;
94-
}
95-
96-
.syllabus-container .references ul {
97-
list-style: disc;
98-
margin-left: 1.5rem;
99-
}
100-
101-
.syllabus-container .references li {
102-
margin-bottom: 0.5rem;
103-
}
104-
105-
/* MathML styling for dark mode */
106-
.syllabus-container math {
107-
color: var(--text-color);
44+
.syllabus-container .revision-date {
45+
font-style: italic;
46+
margin-bottom: 2rem;
47+
color: var(--text-color, #212529);
10848
}
10949

11050
@media (max-width: 768px) {
@@ -117,11 +57,7 @@
11757
}
11858

11959
.syllabus-container h2 {
120-
font-size: 1.3rem;
121-
}
122-
123-
.syllabus-container h3 {
124-
font-size: 1.1rem;
60+
font-size: 1.25rem;
12561
}
12662
}
12763
</style>
@@ -132,7 +68,7 @@ <h1 id="syllabus-title">Analysis General Exam Syllabus</h1>
13268

13369
<section aria-labelledby="basics-section">
13470
<h2 id="basics-section">Basics (common for complex and real parts)</h2>
135-
<ol class="topic-list">
71+
<ol>
13672
<li>Elementary set operations, countable and uncountable sets.</li>
13773
<li>Open, closed, compact, and connected sets on the line and in Euclidean space.</li>
13874
<li>Completeness, infima and suprema, limit points, lim inf, lim sup.</li>
@@ -144,7 +80,7 @@ <h2 id="basics-section">Basics (common for complex and real parts)</h2>
14480

14581
<section aria-labelledby="complex-analysis-section">
14682
<h2 id="complex-analysis-section">Complex Analysis</h2>
147-
<ol class="topic-list">
83+
<ol>
14884
<li>Series of functions, power series, and power series of elementary functions, uniform convergence, Weierstrass <math><mi>M</mi></math> test. Formula for the radius of convergence of a power series.</li>
14985
<li>Analytic and harmonic functions, Cauchy-Riemann equations.</li>
15086
<li>Power series and Laurent series.</li>
@@ -159,7 +95,7 @@ <h2 id="complex-analysis-section">Complex Analysis</h2>
15995

16096
<section aria-labelledby="real-analysis-section">
16197
<h2 id="real-analysis-section">Real Analysis</h2>
162-
<ol class="topic-list">
98+
<ol>
16399
<li><math><mi>σ</mi></math>-algebras of sets.</li>
164100
<li>Lebesgue measures and abstract measures, signed measures. Lebesgue-Stieltjes measures on the real line and their correspondence with increasing, right continuous functions.</li>
165101
<li>Measurable functions. Approximation by simple functions. Riemann and Lebesgue integrals.</li>
@@ -178,7 +114,7 @@ <h2 id="real-analysis-section">Real Analysis</h2>
178114
</ol>
179115
</section>
180116

181-
<section class="references" aria-labelledby="references-section">
117+
<section aria-labelledby="references-section">
182118
<h3 id="references-section">References</h3>
183119
<ul>
184120
<li>R. G. Bartle, <i>Elements of Real Analysis</i></li>

graduate/docs/topology-general-exam-syllabus.html

Lines changed: 35 additions & 108 deletions
Original file line numberDiff line numberDiff line change
@@ -10,114 +10,49 @@
1010
max-width: 900px;
1111
margin: 0 auto;
1212
padding: 2rem 1rem;
13-
background-color: var(--card-bg);
14-
color: var(--text-color);
1513
line-height: 1.7;
1614
}
1715

1816
.syllabus-container h1 {
19-
color: var(--text-color);
2017
font-size: 2rem;
21-
margin-bottom: 0.5rem;
22-
border-bottom: 3px solid #e57200;
23-
padding-bottom: 0.5rem;
24-
}
25-
26-
.syllabus-container .revision-date {
27-
color: var(--text-color);
28-
opacity: 0.8;
29-
font-style: italic;
30-
margin-bottom: 2rem;
31-
font-size: 0.95rem;
18+
font-weight: 700;
19+
margin-bottom: 1.5rem;
20+
color: var(--text-color, #212529);
3221
}
3322

3423
.syllabus-container h2 {
35-
color: #e57200;
3624
font-size: 1.5rem;
37-
margin-top: 2.5rem;
25+
font-weight: 600;
26+
margin-top: 2rem;
3827
margin-bottom: 1rem;
39-
border-left: 4px solid #e57200;
40-
padding-left: 0.75rem;
28+
color: var(--text-color, #212529);
4129
}
4230

4331
.syllabus-container h3 {
44-
color: var(--text-color);
4532
font-size: 1.2rem;
46-
margin-top: 2rem;
47-
margin-bottom: 0.75rem;
4833
font-weight: 600;
49-
}
50-
51-
.syllabus-container ol,
52-
.syllabus-container ul {
53-
margin-left: 1.5rem;
54-
margin-bottom: 1rem;
55-
}
56-
57-
.syllabus-container li {
58-
margin-bottom: 0.75rem;
59-
color: var(--text-color);
60-
}
61-
62-
.syllabus-container .topic-list {
63-
counter-reset: topic-counter;
64-
list-style: none;
65-
margin-left: 0;
66-
}
67-
68-
.syllabus-container .topic-list > li {
69-
counter-increment: topic-counter;
70-
position: relative;
71-
padding-left: 2.5rem;
72-
margin-bottom: 1rem;
73-
}
74-
75-
.syllabus-container .topic-list > li::before {
76-
content: "(" counter(topic-counter) ")";
77-
position: absolute;
78-
left: 0;
79-
font-weight: bold;
80-
color: #e57200;
81-
}
82-
83-
.syllabus-container .references {
84-
background-color: var(--bg-color);
85-
border: 1px solid var(--text-color);
86-
border-radius: 8px;
87-
padding: 1.5rem;
88-
margin-top: 2rem;
89-
opacity: 0.9;
90-
}
91-
92-
.syllabus-container .references h3 {
93-
margin-top: 0;
94-
color: #e57200;
95-
}
96-
97-
.syllabus-container .references ul {
98-
list-style: disc;
99-
margin-left: 1.5rem;
100-
}
101-
102-
.syllabus-container .references li {
103-
margin-bottom: 0.5rem;
104-
}
105-
106-
.syllabus-container .references-section {
10734
margin-top: 1.5rem;
35+
margin-bottom: 0.75rem;
36+
color: var(--text-color, #212529);
10837
}
10938

110-
.syllabus-container .references-section h4 {
111-
color: var(--text-color);
39+
.syllabus-container h4 {
11240
font-size: 1rem;
11341
font-weight: 600;
11442
margin-top: 1rem;
11543
margin-bottom: 0.5rem;
44+
color: var(--text-color, #212529);
45+
}
46+
47+
.syllabus-container p {
48+
margin-bottom: 1rem;
49+
color: var(--text-color, #212529);
11650
}
11751

118-
/* MathML styling for dark mode */
119-
.syllabus-container math {
120-
color: var(--text-color);
52+
.syllabus-container .revision-date {
53+
font-style: italic;
54+
margin-bottom: 2rem;
55+
color: var(--text-color, #212529);
12156
}
12257

12358
@media (max-width: 768px) {
@@ -130,11 +65,7 @@
13065
}
13166

13267
.syllabus-container h2 {
133-
font-size: 1.3rem;
134-
}
135-
136-
.syllabus-container h3 {
137-
font-size: 1.1rem;
68+
font-size: 1.25rem;
13869
}
13970
}
14071
</style>
@@ -145,7 +76,7 @@ <h1 id="syllabus-title">Topology General Exam Syllabus</h1>
14576

14677
<section aria-labelledby="differential-topology-section">
14778
<h2 id="differential-topology-section">I. Differential Topology</h2>
148-
<ol class="topic-list">
79+
<ol>
14980
<li>Multivariable calculus basics: definition of a smooth map <math><mrow><mi>f</mi><mo>:</mo><msup><mi></mi><mi>n</mi></msup><mo></mo><msup><mi></mi><mi>m</mi></msup></mrow></math>, the inverse and implicit function theorems.</li>
15081
<li>Manifolds and smooth maps; submanifolds. Examples: 2-dimensional surfaces; the sphere <math><msup><mi>S</mi><mi>n</mi></msup></math>; the real projective space <math><msup><mi>ℝP</mi><mi>n</mi></msup></math>; examples of Lie groups: classical matrix groups.</li>
15182
<li>The differential of a smooth map, tangent vectors, and tangent spaces. The tangent bundle.</li>
@@ -164,7 +95,7 @@ <h2 id="differential-topology-section">I. Differential Topology</h2>
16495

16596
<section aria-labelledby="algebraic-topology-section">
16697
<h2 id="algebraic-topology-section">II. Algebraic Topology</h2>
167-
<ol class="topic-list">
98+
<ol>
16899
<li>Basic properties of singular homology: functoriality, homotopy invariance, long exact sequence of a pair, excision, and the Meyer–Vietoris sequence.</li>
169100
<li>Homological algebra: chain complexes, maps, homotopies. The long exact homology sequence associated to a s.e.s. of chain complexes. The snake lemma. The 5–lemma.</li>
170101
<li>The homology groups of spheres, and the degree of a map between spheres. Classic applications, such as Brouwer fixed point theorem, but proved with homology.</li>
@@ -181,7 +112,7 @@ <h2 id="algebraic-topology-section">II. Algebraic Topology</h2>
181112
</ol>
182113
</section>
183114

184-
<section class="references" aria-labelledby="references-section">
115+
<section aria-labelledby="references-section">
185116
<h3 id="references-section">References</h3>
186117
<ul>
187118
<li><i>An Introduction to Manifolds</i> by L. Tu.</li>
@@ -192,21 +123,17 @@ <h3 id="references-section">References</h3>
192123
<li><i>Homology Theory</i> by J. W. Vick (2nd edition).</li>
193124
</ul>
194125

195-
<div class="references-section">
196-
<h4>References for general topology background material:</h4>
197-
<ul>
198-
<li><i>Topology</i> by J. R. Munkres.</li>
199-
<li>An outline summary of basic point set topology, by J.P. May, at<br>
200-
<a href="http://www.math.uchicago.edu/~may/MISC/Topology.pdf" target="_blank" rel="noopener noreferrer">http://www.math.uchicago.edu/~may/MISC/Topology.pdf</a></li>
201-
</ul>
202-
</div>
203-
204-
<div class="references-section">
205-
<h4>References for the Jordan-Alexander Complement Theorem:</h4>
206-
<ul>
207-
<li>A Dold, A simple proof of the Jordan-Alexander Complement Theorem, <i>Amer. Math. Monthly</i> <strong>100</strong> (1993), 856–857.</li>
208-
<li>Both Hatcher and Vick prove special cases including the Jordan Curve Theorem.</li>
209-
</ul>
210-
</div>
126+
<h4>References for general topology background material:</h4>
127+
<ul>
128+
<li><i>Topology</i> by J. R. Munkres.</li>
129+
<li>An outline summary of basic point set topology, by J.P. May, at<br>
130+
<a href="http://www.math.uchicago.edu/~may/MISC/Topology.pdf" target="_blank" rel="noopener noreferrer">http://www.math.uchicago.edu/~may/MISC/Topology.pdf</a></li>
131+
</ul>
132+
133+
<h4>References for the Jordan-Alexander Complement Theorem:</h4>
134+
<ul>
135+
<li>A Dold, A simple proof of the Jordan-Alexander Complement Theorem, <i>Amer. Math. Monthly</i> <strong>100</strong> (1993), 856–857.</li>
136+
<li>Both Hatcher and Vick prove special cases including the Jordan Curve Theorem.</li>
137+
</ul>
211138
</section>
212139
</article>

0 commit comments

Comments
 (0)