|
32 | 32 | from onedal.linear_model import IncrementalRidge as onedal_IncrementalRidge |
33 | 33 |
|
34 | 34 | from .._device_offload import dispatch, wrap_output_data |
35 | | -from .._utils import PatchingConditionsChain |
| 35 | +from .._utils import IntelEstimator, PatchingConditionsChain |
36 | 36 |
|
37 | 37 | if sklearn_check_version("1.6"): |
38 | 38 | from sklearn.utils.validation import validate_data |
|
43 | 43 | @control_n_jobs( |
44 | 44 | decorated_methods=["fit", "partial_fit", "predict", "score", "_onedal_finalize_fit"] |
45 | 45 | ) |
46 | | -class IncrementalRidge(MultiOutputMixin, RegressorMixin, BaseEstimator): |
| 46 | +class IncrementalRidge(IntelEstimator, MultiOutputMixin, RegressorMixin, BaseEstimator): |
47 | 47 | """ |
48 | 48 | Incremental estimator for Ridge Regression. |
49 | 49 | Allows to train Ridge Regression if data is splitted into batches. |
50 | 50 |
|
51 | 51 | Parameters |
52 | 52 | ---------- |
53 | 53 | fit_intercept : bool, default=True |
54 | | - Whether to calculate the intercept for this model. If set |
55 | | - to False, no intercept will be used in calculations |
56 | | - (i.e. data is expected to be centered). |
| 54 | + Whether to calculate the intercept for this model. If set |
| 55 | + to False, no intercept will be used in calculations |
| 56 | + (i.e. data is expected to be centered). |
57 | 57 |
|
58 | 58 | alpha : float, default=1.0 |
59 | | - Regularization strength; must be a positive float. Regularization |
60 | | - improves the conditioning of the problem and reduces the variance of |
61 | | - the estimates. Larger values specify stronger regularization. |
| 59 | + Regularization strength; must be a positive float. Regularization |
| 60 | + improves the conditioning of the problem and reduces the variance of |
| 61 | + the estimates. Larger values specify stronger regularization. |
62 | 62 |
|
63 | 63 | copy_X : bool, default=True |
64 | 64 | If True, X will be copied; else, it may be overwritten. |
|
0 commit comments