3737@control_n_jobs (decorated_methods = ["partial_fit" , "_onedal_finalize_fit" ]) 
3838class  IncrementalBasicStatistics (BaseEstimator ):
3939    """ 
40-     Incremental estimator for basic statistics. 
41-     Allows to compute basic statistics if data are splitted into batches. 
40+     Calculates basic statistics on the given data, allows for computation when the data are split into 
41+     batches. The user can use ``partial_fit`` method to provide a single batch of data or use the ``fit`` method to provide 
42+     the entire dataset. 
43+ 
4244    Parameters 
4345    ---------- 
4446    result_options: string or list, default='all' 
@@ -47,10 +49,9 @@ class IncrementalBasicStatistics(BaseEstimator):
4749    batch_size : int, default=None 
4850        The number of samples to use for each batch. Only used when calling 
4951        ``fit``. If ``batch_size`` is ``None``, then ``batch_size`` 
50-         is inferred from the data and set to ``5 * n_features``, to provide a 
51-         balance between approximation accuracy and memory consumption. 
52+         is inferred from the data and set to ``5 * n_features``. 
5253
53-     Attributes (are existing only if corresponding result option exists)  
54+     Attributes 
5455    ---------- 
5556        min : ndarray of shape (n_features,) 
5657            Minimum of each feature over all samples. 
@@ -81,6 +82,38 @@ class IncrementalBasicStatistics(BaseEstimator):
8182
8283        second_order_raw_moment : ndarray of shape (n_features,) 
8384            Second order moment of each feature over all samples. 
85+ 
86+         n_samples_seen_ : int 
87+             The number of samples processed by the estimator. Will be reset on 
88+             new calls to ``fit``, but increments across ``partial_fit`` calls. 
89+ 
90+         batch_size_ : int 
91+             Inferred batch size from ``batch_size``. 
92+ 
93+         n_features_in_ : int 
94+             Number of features seen during ``fit`` or  ``partial_fit``. 
95+ 
96+     Note 
97+     ---- 
98+     Attribute exists only if corresponding result option has been provided. 
99+ 
100+     Examples 
101+     -------- 
102+     >>> import numpy as np 
103+     >>> from sklearnex.basic_statistics import IncrementalBasicStatistics 
104+     >>> incbs = IncrementalBasicStatistics(batch_size=1) 
105+     >>> X = np.array([[1, 2], [3, 4]]) 
106+     >>> incbs.partial_fit(X[:1]) 
107+     >>> incbs.partial_fit(X[1:]) 
108+     >>> incbs.sum_ 
109+     np.array([4., 6.]) 
110+     >>> incbs.min_ 
111+     np.array([1., 2.]) 
112+     >>> incbs.fit(X) 
113+     >>> incbs.sum_ 
114+     np.array([4., 6.]) 
115+     >>> incbs.max_ 
116+     np.array([3., 4.]) 
84117    """ 
85118
86119    _onedal_incremental_basic_statistics  =  staticmethod (onedal_IncrementalBasicStatistics )
@@ -229,14 +262,14 @@ def partial_fit(self, X, sample_weight=None):
229262        Parameters 
230263        ---------- 
231264        X : array-like of shape (n_samples, n_features) 
232-             Data for compute, where `n_samples` is the number of samples and 
233-             `n_features` is the number of features. 
265+             Data for compute, where `` n_samples` ` is the number of samples and 
266+             `` n_features` ` is the number of features. 
234267
235268        y : Ignored 
236269            Not used, present for API consistency by convention. 
237270
238271        sample_weight : array-like of shape (n_samples,), default=None 
239-             Weights for compute weighted statistics, where `n_samples` is the number of samples. 
272+             Weights for compute weighted statistics, where `` n_samples` ` is the number of samples. 
240273
241274        Returns 
242275        ------- 
@@ -261,14 +294,14 @@ def fit(self, X, y=None, sample_weight=None):
261294        Parameters 
262295        ---------- 
263296        X : array-like of shape (n_samples, n_features) 
264-             Data for compute, where `n_samples` is the number of samples and 
265-             `n_features` is the number of features. 
297+             Data for compute, where `` n_samples` ` is the number of samples and 
298+             `` n_features` ` is the number of features. 
266299
267300        y : Ignored 
268301            Not used, present for API consistency by convention. 
269302
270303        sample_weight : array-like of shape (n_samples,), default=None 
271-             Weights for compute weighted statistics, where `n_samples` is the number of samples. 
304+             Weights for compute weighted statistics, where `` n_samples` ` is the number of samples. 
272305
273306        Returns 
274307        ------- 
0 commit comments