|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "3768ec43", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Intel® Extension for Scikit-learn ElasticNet for Airlines DepDelay dataset" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "code", |
| 13 | + "execution_count": 1, |
| 14 | + "id": "b1b922d1", |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "from timeit import default_timer as timer\n", |
| 19 | + "from sklearn import metrics\n", |
| 20 | + "from sklearn.model_selection import train_test_split\n", |
| 21 | + "import warnings\n", |
| 22 | + "from sklearn.datasets import fetch_openml\n", |
| 23 | + "from sklearn.preprocessing import LabelEncoder\n", |
| 24 | + "from IPython.display import HTML\n", |
| 25 | + "warnings.filterwarnings('ignore')" |
| 26 | + ] |
| 27 | + }, |
| 28 | + { |
| 29 | + "cell_type": "markdown", |
| 30 | + "id": "34e460a7", |
| 31 | + "metadata": {}, |
| 32 | + "source": [ |
| 33 | + "### Download the data" |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | + "cell_type": "code", |
| 38 | + "execution_count": 2, |
| 39 | + "id": "00c2277b", |
| 40 | + "metadata": {}, |
| 41 | + "outputs": [], |
| 42 | + "source": [ |
| 43 | + "x, y = fetch_openml(name='Airlines_DepDelay_10M', return_X_y=True)" |
| 44 | + ] |
| 45 | + }, |
| 46 | + { |
| 47 | + "cell_type": "markdown", |
| 48 | + "id": "06d309c0", |
| 49 | + "metadata": {}, |
| 50 | + "source": [ |
| 51 | + "### Preprocessing\n", |
| 52 | + "Let's encode categorical features with LabelEncoder" |
| 53 | + ] |
| 54 | + }, |
| 55 | + { |
| 56 | + "cell_type": "code", |
| 57 | + "execution_count": 3, |
| 58 | + "id": "2ff35bc2", |
| 59 | + "metadata": {}, |
| 60 | + "outputs": [], |
| 61 | + "source": [ |
| 62 | + "for col in ['UniqueCarrier', 'Origin', 'Dest']:\n", |
| 63 | + " le = LabelEncoder().fit(x[col])\n", |
| 64 | + " x[col] = le.transform(x[col])" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "markdown", |
| 69 | + "id": "38637349", |
| 70 | + "metadata": {}, |
| 71 | + "source": [ |
| 72 | + "Split the data into train and test sets" |
| 73 | + ] |
| 74 | + }, |
| 75 | + { |
| 76 | + "cell_type": "code", |
| 77 | + "execution_count": 4, |
| 78 | + "id": "0d332789", |
| 79 | + "metadata": {}, |
| 80 | + "outputs": [ |
| 81 | + { |
| 82 | + "data": { |
| 83 | + "text/plain": [ |
| 84 | + "((9000000, 9), (1000000, 9), (9000000,), (1000000,))" |
| 85 | + ] |
| 86 | + }, |
| 87 | + "execution_count": 4, |
| 88 | + "metadata": {}, |
| 89 | + "output_type": "execute_result" |
| 90 | + } |
| 91 | + ], |
| 92 | + "source": [ |
| 93 | + "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=0)\n", |
| 94 | + "x_train.shape, x_test.shape, y_train.shape, y_test.shape" |
| 95 | + ] |
| 96 | + }, |
| 97 | + { |
| 98 | + "cell_type": "markdown", |
| 99 | + "id": "246f819f", |
| 100 | + "metadata": {}, |
| 101 | + "source": [ |
| 102 | + "Normalize the data" |
| 103 | + ] |
| 104 | + }, |
| 105 | + { |
| 106 | + "cell_type": "code", |
| 107 | + "execution_count": 5, |
| 108 | + "id": "454a341c", |
| 109 | + "metadata": {}, |
| 110 | + "outputs": [], |
| 111 | + "source": [ |
| 112 | + "from sklearn.preprocessing import StandardScaler\n", |
| 113 | + "scaler_y = StandardScaler()" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "code", |
| 118 | + "execution_count": 6, |
| 119 | + "id": "df400504", |
| 120 | + "metadata": {}, |
| 121 | + "outputs": [], |
| 122 | + "source": [ |
| 123 | + "y_train = y_train.to_numpy().reshape(-1, 1)\n", |
| 124 | + "y_test = y_test.to_numpy().reshape(-1, 1)\n", |
| 125 | + "\n", |
| 126 | + "scaler_y.fit(y_train)\n", |
| 127 | + "y_train = scaler_y.transform(y_train).ravel()\n", |
| 128 | + "y_test = scaler_y.transform(y_test).ravel()" |
| 129 | + ] |
| 130 | + }, |
| 131 | + { |
| 132 | + "cell_type": "markdown", |
| 133 | + "id": "fe1d4fac", |
| 134 | + "metadata": {}, |
| 135 | + "source": [ |
| 136 | + "### Patch original Scikit-learn with Intel® Extension for Scikit-learn\n", |
| 137 | + "Intel® Extension for Scikit-learn (previously known as daal4py) contains drop-in replacement functionality for the stock Scikit-learn package. You can take advantage of the performance optimizations of Intel® Extension for Scikit-learn by adding just two lines of code before the usual Scikit-learn imports:" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "cell_type": "code", |
| 142 | + "execution_count": 7, |
| 143 | + "id": "ef6938df", |
| 144 | + "metadata": {}, |
| 145 | + "outputs": [ |
| 146 | + { |
| 147 | + "name": "stderr", |
| 148 | + "output_type": "stream", |
| 149 | + "text": [ |
| 150 | + "Intel(R) Extension for Scikit-learn* enabled (https://github.com/intel/scikit-learn-intelex)\n" |
| 151 | + ] |
| 152 | + } |
| 153 | + ], |
| 154 | + "source": [ |
| 155 | + "from sklearnex import patch_sklearn\n", |
| 156 | + "patch_sklearn()" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "markdown", |
| 161 | + "id": "20c5ab48", |
| 162 | + "metadata": {}, |
| 163 | + "source": [ |
| 164 | + "Intel® Extension for Scikit-learn patching affects performance of specific Scikit-learn functionality. Refer to the [list of supported algorithms and parameters](https://intel.github.io/scikit-learn-intelex/algorithms.html) for details. In cases when unsupported parameters are used, the package fallbacks into original Scikit-learn. If the patching does not cover your scenarios, [submit an issue on GitHub](https://github.com/intel/scikit-learn-intelex/issues)." |
| 165 | + ] |
| 166 | + }, |
| 167 | + { |
| 168 | + "cell_type": "markdown", |
| 169 | + "id": "f80273e7", |
| 170 | + "metadata": {}, |
| 171 | + "source": [ |
| 172 | + "Training of the ElasticNet algorithm with Intel® Extension for Scikit-learn for Airlines DepDelay dataset" |
| 173 | + ] |
| 174 | + }, |
| 175 | + { |
| 176 | + "cell_type": "code", |
| 177 | + "execution_count": 8, |
| 178 | + "id": "a4dd1c7e", |
| 179 | + "metadata": {}, |
| 180 | + "outputs": [ |
| 181 | + { |
| 182 | + "data": { |
| 183 | + "text/plain": [ |
| 184 | + "'Intel® extension for Scikit-learn time: 0.28 s'" |
| 185 | + ] |
| 186 | + }, |
| 187 | + "execution_count": 8, |
| 188 | + "metadata": {}, |
| 189 | + "output_type": "execute_result" |
| 190 | + } |
| 191 | + ], |
| 192 | + "source": [ |
| 193 | + "from sklearn.linear_model import ElasticNet\n", |
| 194 | + "\n", |
| 195 | + "params = {\n", |
| 196 | + " \"alpha\": 0.3, \n", |
| 197 | + " \"fit_intercept\": False,\n", |
| 198 | + " \"l1_ratio\": 0.7,\n", |
| 199 | + " \"random_state\": 0,\n", |
| 200 | + " \"copy_X\": False,\n", |
| 201 | + "}\n", |
| 202 | + "start = timer()\n", |
| 203 | + "model = ElasticNet(**params).fit(x_train, y_train)\n", |
| 204 | + "train_patched = timer() - start\n", |
| 205 | + "f\"Intel® extension for Scikit-learn time: {train_patched:.2f} s\"" |
| 206 | + ] |
| 207 | + }, |
| 208 | + { |
| 209 | + "cell_type": "markdown", |
| 210 | + "id": "f10b51fc", |
| 211 | + "metadata": {}, |
| 212 | + "source": [ |
| 213 | + "Predict and get a result of the ElasticNet algorithm with Intel® Extension for Scikit-learn" |
| 214 | + ] |
| 215 | + }, |
| 216 | + { |
| 217 | + "cell_type": "code", |
| 218 | + "execution_count": 9, |
| 219 | + "id": "d4295a26", |
| 220 | + "metadata": {}, |
| 221 | + "outputs": [ |
| 222 | + { |
| 223 | + "data": { |
| 224 | + "text/plain": [ |
| 225 | + "'Patched Scikit-learn MSE: 1.0109113399224974'" |
| 226 | + ] |
| 227 | + }, |
| 228 | + "execution_count": 9, |
| 229 | + "metadata": {}, |
| 230 | + "output_type": "execute_result" |
| 231 | + } |
| 232 | + ], |
| 233 | + "source": [ |
| 234 | + "y_predict = model.predict(x_test)\n", |
| 235 | + "mse_metric_opt = metrics.mean_squared_error(y_test, y_predict)\n", |
| 236 | + "f'Patched Scikit-learn MSE: {mse_metric_opt}'" |
| 237 | + ] |
| 238 | + }, |
| 239 | + { |
| 240 | + "cell_type": "markdown", |
| 241 | + "id": "cbe6db0d", |
| 242 | + "metadata": {}, |
| 243 | + "source": [ |
| 244 | + "### Train the same algorithm with original Scikit-learn\n", |
| 245 | + "In order to cancel optimizations, we use *unpatch_sklearn* and reimport the class ElasticNet" |
| 246 | + ] |
| 247 | + }, |
| 248 | + { |
| 249 | + "cell_type": "code", |
| 250 | + "execution_count": 10, |
| 251 | + "id": "6f64ba97", |
| 252 | + "metadata": {}, |
| 253 | + "outputs": [], |
| 254 | + "source": [ |
| 255 | + "from sklearnex import unpatch_sklearn\n", |
| 256 | + "unpatch_sklearn()" |
| 257 | + ] |
| 258 | + }, |
| 259 | + { |
| 260 | + "cell_type": "markdown", |
| 261 | + "id": "f242c6da", |
| 262 | + "metadata": {}, |
| 263 | + "source": [ |
| 264 | + "Training of the ElasticNet algorithm with original Scikit-learn library for Airlines DepDelay dataset" |
| 265 | + ] |
| 266 | + }, |
| 267 | + { |
| 268 | + "cell_type": "code", |
| 269 | + "execution_count": 11, |
| 270 | + "id": "67243849", |
| 271 | + "metadata": {}, |
| 272 | + "outputs": [ |
| 273 | + { |
| 274 | + "data": { |
| 275 | + "text/plain": [ |
| 276 | + "'Original Scikit-learn time: 3.96 s'" |
| 277 | + ] |
| 278 | + }, |
| 279 | + "execution_count": 11, |
| 280 | + "metadata": {}, |
| 281 | + "output_type": "execute_result" |
| 282 | + } |
| 283 | + ], |
| 284 | + "source": [ |
| 285 | + "from sklearn.linear_model import ElasticNet\n", |
| 286 | + "\n", |
| 287 | + "start = timer()\n", |
| 288 | + "model = ElasticNet(**params).fit(x_train, y_train)\n", |
| 289 | + "train_unpatched = timer() - start\n", |
| 290 | + "f\"Original Scikit-learn time: {train_unpatched:.2f} s\"" |
| 291 | + ] |
| 292 | + }, |
| 293 | + { |
| 294 | + "cell_type": "markdown", |
| 295 | + "id": "c85a125c", |
| 296 | + "metadata": {}, |
| 297 | + "source": [ |
| 298 | + "Predict and get a result of the ElasticNet algorithm with original Scikit-learn" |
| 299 | + ] |
| 300 | + }, |
| 301 | + { |
| 302 | + "cell_type": "code", |
| 303 | + "execution_count": 12, |
| 304 | + "id": "cd9e726c", |
| 305 | + "metadata": {}, |
| 306 | + "outputs": [ |
| 307 | + { |
| 308 | + "data": { |
| 309 | + "text/plain": [ |
| 310 | + "'Original Scikit-learn MSE: 1.0109113399545733'" |
| 311 | + ] |
| 312 | + }, |
| 313 | + "execution_count": 12, |
| 314 | + "metadata": {}, |
| 315 | + "output_type": "execute_result" |
| 316 | + } |
| 317 | + ], |
| 318 | + "source": [ |
| 319 | + "y_predict = model.predict(x_test)\n", |
| 320 | + "mse_metric_original = metrics.mean_squared_error(y_test, y_predict)\n", |
| 321 | + "f'Original Scikit-learn MSE: {mse_metric_original}'" |
| 322 | + ] |
| 323 | + }, |
| 324 | + { |
| 325 | + "cell_type": "code", |
| 326 | + "execution_count": 13, |
| 327 | + "id": "a2edbb65", |
| 328 | + "metadata": {}, |
| 329 | + "outputs": [ |
| 330 | + { |
| 331 | + "data": { |
| 332 | + "text/html": [ |
| 333 | + "<h3>Compare MSE metric of patched Scikit-learn and original</h3>MSE metric of patched Scikit-learn: 1.0109113399224974 <br>MSE metric of unpatched Scikit-learn: 1.0109113399545733 <br>Metrics ratio: 0.9999999999682703 <br><h3>With Scikit-learn-intelex patching you can:</h3><ul><li>Use your Scikit-learn code for training and prediction with minimal changes (a couple of lines of code);</li><li>Fast execution training and prediction of Scikit-learn models;</li><li>Get the similar quality</li><li>Get speedup in <strong>14.2</strong> times.</li></ul>" |
| 334 | + ], |
| 335 | + "text/plain": [ |
| 336 | + "<IPython.core.display.HTML object>" |
| 337 | + ] |
| 338 | + }, |
| 339 | + "execution_count": 13, |
| 340 | + "metadata": {}, |
| 341 | + "output_type": "execute_result" |
| 342 | + } |
| 343 | + ], |
| 344 | + "source": [ |
| 345 | + "HTML(f\"<h3>Compare MSE metric of patched Scikit-learn and original</h3>\"\n", |
| 346 | + " f\"MSE metric of patched Scikit-learn: {mse_metric_opt} <br>\"\n", |
| 347 | + " f\"MSE metric of unpatched Scikit-learn: {mse_metric_original} <br>\"\n", |
| 348 | + " f\"Metrics ratio: {mse_metric_opt/mse_metric_original} <br>\"\n", |
| 349 | + " f\"<h3>With Scikit-learn-intelex patching you can:</h3>\"\n", |
| 350 | + " f\"<ul>\"\n", |
| 351 | + " f\"<li>Use your Scikit-learn code for training and prediction with minimal changes (a couple of lines of code);</li>\"\n", |
| 352 | + " f\"<li>Fast execution training and prediction of Scikit-learn models;</li>\"\n", |
| 353 | + " f\"<li>Get the similar quality</li>\"\n", |
| 354 | + " f\"<li>Get speedup in <strong>{(train_unpatched/train_patched):.1f}</strong> times.</li>\"\n", |
| 355 | + " f\"</ul>\")" |
| 356 | + ] |
| 357 | + } |
| 358 | + ], |
| 359 | + "metadata": { |
| 360 | + "kernelspec": { |
| 361 | + "display_name": "Python 3 (ipykernel)", |
| 362 | + "language": "python", |
| 363 | + "name": "python3" |
| 364 | + }, |
| 365 | + "language_info": { |
| 366 | + "codemirror_mode": { |
| 367 | + "name": "ipython", |
| 368 | + "version": 3 |
| 369 | + }, |
| 370 | + "file_extension": ".py", |
| 371 | + "mimetype": "text/x-python", |
| 372 | + "name": "python", |
| 373 | + "nbconvert_exporter": "python", |
| 374 | + "pygments_lexer": "ipython3", |
| 375 | + "version": "3.8.12" |
| 376 | + } |
| 377 | + }, |
| 378 | + "nbformat": 4, |
| 379 | + "nbformat_minor": 5 |
| 380 | +} |
0 commit comments