@@ -45,7 +45,18 @@ Binary Classification
4545 - search for optimal parameters using Optuna
4646 - training and prediction using scikit-learn-intelex
4747 - performance comparison to scikit-learn
48+ * - `Feature Importance in Random Forest for Binary Classification
49+ <https://www.kaggle.com/code/lordozvlad/fast-feature-importance-using-scikit-learn-intelex/notebook> `_
50+
51+ **Data: ** [TPS Nov 2021] Synthetic spam emails data
4852
53+ - Identify spam emails via features extraced from the email
54+ -
55+
56+ - reducing DataFrame memory usage
57+ - computing feature importance with ELI5 and the default scikit-learn permutation importance
58+ - training using scikit-learn-intelex
59+ - performance comparison to scikit-learn
4960 * - `Random Forest for Binary Classification
5061 <https://www.kaggle.com/andreyrus/tps-apr-rf-with-intel-extension-for-scikit-learn> `_
5162
@@ -80,7 +91,6 @@ Binary Classification
8091 - training and prediction using scikit-learn-intelex
8192 - performance comparison to scikit-learn
8293
83-
8494MultiClass Classification
8595+++++++++++++++++++++++++
8696
@@ -115,7 +125,7 @@ MultiClass Classification
115125 * - `Stacking Classifer with Logistic Regression, kNN, Random Forest, and Quantile Transformer
116126 <https://www.kaggle.com/owerbat/tps-jun-fast-stacking-with-scikit-learn-intelex> `_
117127
118- **Data: ** [TPS Jun 2021] synthetic eCommerce data
128+ **Data: ** [TPS Jun 2021] Synthetic eCommerce data
119129 - Predict the category of an eCommerce product
120130 -
121131
@@ -125,6 +135,36 @@ MultiClass Classification
125135 - searching for optimal parameters for the stacking classifier
126136 - training and prediction using scikit-learn-intelex
127137 - performance comparison to scikit-learn
138+ * - `Support Vector Classification (SVC) for MultiClass Classification
139+ <https://www.kaggle.com/code/alexeykolobyanin/tps-dec-svc-with-sklearnex-20x-speedup> `_
140+
141+ **Data: ** [TPS Dec 2021] Synthetic Forest Cover Type data
142+ - Predict the forest cover type
143+ -
144+ - data preprocessing
145+ - training and prediction using scikit-learn-intelex
146+ - performance comparison to scikit-learn
147+ * - `Feature Importance in Random Forest for MultiClass Classification
148+ <https://www.kaggle.com/code/lordozvlad/tps-dec-fast-feature-importance-with-sklearnex> `_
149+
150+ **Data: ** [TPS Dec 2021] Synthetic Forest Cover Type data
151+
152+ - Predict the forest cover type
153+ -
154+
155+ - reducing DataFrame memory usage
156+ - computing feature importance with ELI5
157+ - training and prediction using scikit-learn-intelex
158+ - performance comparison to scikit-learn
159+ * - `k-Nearest Neighbors (kNN) for MultiClass Classification
160+ <https://www.kaggle.com/code/alexeykolobyanin/tps-feb-knn-with-sklearnex-13x-speedup> `_
161+
162+ **Data: ** [TPS Feb 2022] Bacteria DNA
163+ - Predict bacteria species based on repeated lossy measurements of DNA snippets
164+ -
165+ - data preprocessing
166+ - training and prediction using scikit-learn-intelex
167+ - performance comparison to scikit-learn
128168
129169Classification Tasks in Computer Vision
130170+++++++++++++++++++++++++++++++++++++++
@@ -190,4 +230,15 @@ Classification Tasks in Natural Language Processing
190230 - feature extraction using TfidfVectorizer
191231 - training and prediction using scikit-learn-intelex
192232 - performance comparison to scikit-learn
193-
233+ * - `Support Vector Classification (SVC) for Binary Classification with Sparse Data (NLP task)
234+ <https://www.kaggle.com/code/alex97andreev/fast-svm-for-sparse-data-from-nlp-problem> `_
235+
236+ **Data: ** Stack Overflow questions
237+ - Predict the binary quality rating for Stack Overflow questions
238+ -
239+
240+ - data preprocessing
241+ - TF-IDF calculation
242+ - search for optimal paramters using Optuna
243+ - training and prediction using scikit-learn-intelex
244+ - performance comparison to scikit-learn
0 commit comments