|
14 | 14 | # limitations under the License. |
15 | 15 | # ============================================================================== |
16 | 16 |
|
17 | | -import dpctl.tensor as dpt |
| 17 | +import dpnp |
18 | 18 | import numpy as np |
19 | 19 | from dpctl import SyclQueue |
20 | 20 | from mpi4py import MPI |
@@ -51,14 +51,14 @@ def generate_data(par, size, seed=777): |
51 | 51 | data, weights = generate_data(params_spmd, size, seed=rank) |
52 | 52 | weighted_data = np.diag(weights) @ data |
53 | 53 |
|
54 | | -dpt_data = dpt.asarray(data, usm_type="device", sycl_queue=q) |
55 | | -dpt_weights = dpt.asarray(weights, usm_type="device", sycl_queue=q) |
| 54 | +dpnp_data = dpnp.asarray(data, usm_type="device", sycl_queue=q) |
| 55 | +dpnp_weights = dpnp.asarray(weights, usm_type="device", sycl_queue=q) |
56 | 56 |
|
57 | 57 | gtr_mean = np.mean(weighted_data, axis=0) |
58 | 58 | gtr_std = np.std(weighted_data, axis=0) |
59 | 59 |
|
60 | 60 | bss = BasicStatisticsSpmd(["mean", "standard_deviation"]) |
61 | | -bss.fit(dpt_data, dpt_weights) |
| 61 | +bss.fit(dpnp_data, dpnp_weights) |
62 | 62 |
|
63 | 63 | print(f"Computed mean on rank {rank}:\n", bss.mean_) |
64 | 64 | print(f"Computed std on rank {rank}:\n", bss.standard_deviation_) |
0 commit comments