@@ -383,9 +383,6 @@ deselected_tests:
383383 # to CI parameters, as parameter validation is globally handled in sklearn version 1.2 onward
384384 - cluster/tests/test_dbscan.py::test_dbscan_params_validation
385385
386- # From sklearn 1.6, need to resolve logreg bug from joblib with_parallel_backend.
387- # Removal of this deselection will result in test_logistic fails (this one will pass).
388- - feature_selection/tests/test_rfe.py::test_rfe_with_joblib_threading_backend
389386 # Failing tests since sklearn 1.6
390387 - tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weight_equivalence_on_dense_data]
391388 - tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_sample_weight_equivalence_on_dense_data]
@@ -398,6 +395,26 @@ deselected_tests:
398395 - tests/test_common.py::test_estimators[NuSVC()-check_class_weight_classifiers]
399396 - tests/test_common.py::test_estimators[CalibratedClassifierCV(estimator=LogisticRegression(C=1))-check_sample_weights_invariance(kind=ones)]
400397
398+ # Logistic regression is not expected to give exact matches due to small differences in numerical tolerances
399+ - linear_model/tests/test_logistic.py::test_multinomial_binary_probabilities
400+ - linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[neg_log_loss-multiclass_agg_list3]
401+ - linear_model/tests/test_logistic.py::test_logistic_regression_class_weights
402+ - linear_model/tests/test_logistic.py::test_liblinear_decision_function_zero
403+ - linear_model/tests/test_logistic.py::test_warm_start
404+ - linear_model/tests/test_logistic.py::test_dtype_match
405+ - linear_model/tests/test_logistic.py::test_newton_cholesky_fallback_to_lbfgs
406+ - linear_model/tests/test_logistic.py::test_logistic_cv_sparse[csr_array]
407+ - linear_model/tests/test_logistic.py::test_logistic_cv_sparse[csr_matrix]
408+ - tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weight_equivalence_on_dense_data]
409+
410+ # Scikit-learn does not constraint multinomial logistic intercepts to sum to zero.
411+ # Softmax function is invariant to additions by a constant, so even though the numbers
412+ # might look very off here, the predictions they generate are identical.
413+ - linear_model/tests/test_logistic.py::test_logistic_regression_multinomial
414+
415+ # This particular case does not reach convergence, fails because of a warning
416+ - linear_model/tests/test_logistic.py::test_n_iter[newton-cg]
417+
401418 # --------------------------------------------------------
402419 # No need to test daal4py patching
403420reduced_tests :
0 commit comments