Skip to content

Commit d9e5197

Browse files
MAINT: Deselect failing tests for logistic regression (#2614)
* deselect tests for logistic regression * updates for sklearn1.6 * further deselections * another deselection due to tolerances
1 parent 7d88e6e commit d9e5197

File tree

1 file changed

+20
-3
lines changed

1 file changed

+20
-3
lines changed

deselected_tests.yaml

Lines changed: 20 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -383,9 +383,6 @@ deselected_tests:
383383
# to CI parameters, as parameter validation is globally handled in sklearn version 1.2 onward
384384
- cluster/tests/test_dbscan.py::test_dbscan_params_validation
385385

386-
# From sklearn 1.6, need to resolve logreg bug from joblib with_parallel_backend.
387-
# Removal of this deselection will result in test_logistic fails (this one will pass).
388-
- feature_selection/tests/test_rfe.py::test_rfe_with_joblib_threading_backend
389386
# Failing tests since sklearn 1.6
390387
- tests/test_common.py::test_estimators[CalibratedClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_sample_weight_equivalence_on_dense_data]
391388
- tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_sample_weight_equivalence_on_dense_data]
@@ -398,6 +395,26 @@ deselected_tests:
398395
- tests/test_common.py::test_estimators[NuSVC()-check_class_weight_classifiers]
399396
- tests/test_common.py::test_estimators[CalibratedClassifierCV(estimator=LogisticRegression(C=1))-check_sample_weights_invariance(kind=ones)]
400397

398+
# Logistic regression is not expected to give exact matches due to small differences in numerical tolerances
399+
- linear_model/tests/test_logistic.py::test_multinomial_binary_probabilities
400+
- linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[neg_log_loss-multiclass_agg_list3]
401+
- linear_model/tests/test_logistic.py::test_logistic_regression_class_weights
402+
- linear_model/tests/test_logistic.py::test_liblinear_decision_function_zero
403+
- linear_model/tests/test_logistic.py::test_warm_start
404+
- linear_model/tests/test_logistic.py::test_dtype_match
405+
- linear_model/tests/test_logistic.py::test_newton_cholesky_fallback_to_lbfgs
406+
- linear_model/tests/test_logistic.py::test_logistic_cv_sparse[csr_array]
407+
- linear_model/tests/test_logistic.py::test_logistic_cv_sparse[csr_matrix]
408+
- tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weight_equivalence_on_dense_data]
409+
410+
# Scikit-learn does not constraint multinomial logistic intercepts to sum to zero.
411+
# Softmax function is invariant to additions by a constant, so even though the numbers
412+
# might look very off here, the predictions they generate are identical.
413+
- linear_model/tests/test_logistic.py::test_logistic_regression_multinomial
414+
415+
# This particular case does not reach convergence, fails because of a warning
416+
- linear_model/tests/test_logistic.py::test_n_iter[newton-cg]
417+
401418
# --------------------------------------------------------
402419
# No need to test daal4py patching
403420
reduced_tests:

0 commit comments

Comments
 (0)