You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
raiseRuleApplicationError(f'The eigenvariable {eigen} of the unsubstituted premise conclusion {application_premise.main.formula} cannot be free in it')
247
299
300
+
ifeigeninget_formula_free_variables(conclusion):
301
+
raiseRuleApplicationError(f'The attached formula eigenvariable {eigen} cannot be free in the conclusion {conclusion} of the rule {rule.name}')
If, for some \hyperref[def:fol_formula]{first-order formula} \(\varphi\) and some \hyperref[def:fol_structure]{first-order structure} \(\mscrX\), the \hyperref[alg:fol_formula_denotation]{denotation} \(\Bracks{ \varphi }_\mscrX^v \) equals \(\semtop\) for any variable assignment \( v \) in \(\mscrX\), we say that \(\varphi\) is \term[ru=общезначимая (формула) (\cite[def. 2.4.1]{Герасимов2014Вычислимость})]{universally valid} in \(\mscrX\).
1005
+
If, in some \hyperref[def:fol_structure]{first-order structure} \(\mscrX\), every \hyperref[def:fol_variable_assignment]{variable assignment} \(v\)\hyperref[def:fol_semantics/satisfaction]{satisfies} the formula \(\varphi\), we say that \(\varphi\) is \term[ru=общезначимая (формула) (\cite[def. 2.4.1]{Герасимов2014Вычислимость})]{universally valid} in \(\mscrX\).
1006
1006
\end{definition}
1007
1007
\begin{comments}
1008
1008
\item\hyperref[def:closed_fol_formula]{Closed formulas} are universally valid, but the notion is more general --- see \cref{rem:implicit_quantification_and_deduction}.
Let \(\Gamma\) to be a set of closed \hyperref[def:positive_formula]{positive formulas} \hi{without existential quantifiers}. Let \(\mscrX = (X, I) \) be a model of \(\Gamma\) and let \( A \) be a nonempty \hyperref[def:set]{plain set}, possibly unrelated to \(\mscrX\). Consider the set \( Y \coloneqq\fun(A, \mscrX) \) of \hyperref[def:function]{all set functions} from \( A \) to \( X \).
254
254
255
-
Define \(\iota: X \mapsto Y \) by sending each \( x \in X \) to the corresponding constant function in \( Y \).
255
+
Define \(\iota: X \to Y \) by sending each \( x \in X \) to the corresponding constant function in \( Y \).
0 commit comments