-
Notifications
You must be signed in to change notification settings - Fork 158
SGR Quick Start
maksimov maksim edited this page Oct 21, 2025
·
6 revisions
First, install UV (modern Python package manager):
# Install UV
curl -LsSf https://astral.sh/uv/install.sh | sh
# or on Windows:
# powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"- Create config.yaml from template:
cp config.yaml.example config.yaml- Configure API keys:
# SGR Research Agent - Configuration Template
# Production-ready configuration for Schema-Guided Reasoning
# Copy this file to config.yaml and fill in your API keys
# OpenAI API Configuration
openai:
api_key: "your-openai-api-key-here" # Required: Your OpenAI API key
base_url: "" # Optional: Alternative URL (e.g., for proxy LiteLLM/vLLM)
model: "gpt-4o-mini" # Model to use
max_tokens: 8000 # Maximum number of tokens
temperature: 0.4 # Generation temperature (0.0-1.0)
proxy: "" # Example: "socks5://127.0.0.1:1081" or "http://127.0.0.1:8080" or leave empty for no proxy
# Tavily Search Configuration
tavily:
api_key: "your-tavily-api-key-here" # Required: Your Tavily API key
api_base_url: "https://api.tavily.com" # Tavily API base URL
# Search Settings
search:
max_results: 10 # Maximum number of search results
# Scraping Settings
scraping:
enabled: false # Enable full text scraping of found pages
max_pages: 5 # Maximum pages to scrape per search
content_limit: 1500 # Character limit for full content per source
# Execution Settings
execution:
max_steps: 6 # Maximum number of execution steps
reports_dir: "reports" # Directory for saving reports
logs_dir: "logs" # Directory for saving reports
# Prompts Settings
prompts:
prompts_dir: "prompts" # Directory with prompts
tool_function_prompt_file: "tool_function_prompt.txt" # Tool function prompt file
system_prompt_file: "system_prompt.txt" # System prompt file# Custom host and port
python sgr_deep_research --host 127.0.0.1 --port 8080# 1. Setup configuration
cp config.yaml.example config.yaml
# Edit config.yaml with your API keys
# 2. Change to src directory and install dependencies
uv sync
# 3. Run the server
uv run python sgr_deep_research# 1. Setup configuration
cp config.yaml.example config.yaml
# Edit config.yaml with your API keys
# 2. Go to the services folder
cd services
# 3. Building docker images
docker-compose build
# 4. Deploy with Docker Compose
docker-compose up -d
# 3. Check health
curl http://localhost:8010/health2025 // vamplab