@@ -432,7 +432,7 @@ def prior(
432432 gp_dims : str | None = None ,
433433 * args ,
434434 ** kwargs ,
435- ): # type: ignore
435+ ):
436436 R"""
437437 Return the (approximate) GP prior distribution evaluated over the input locations `X`.
438438
@@ -496,7 +496,7 @@ def _build_conditional(self, Xnew):
496496 elif self ._parametrization == "centered" :
497497 return self .mean_func (Xnew ) + phi [:, i :] @ beta
498498
499- def conditional (self , name : str , Xnew : TensorLike , dims : str | None = None ): # type: ignore
499+ def conditional (self , name : str , Xnew : TensorLike , dims : str | None = None ): # type: ignore[override]
500500 R"""
501501 Return the (approximate) conditional distribution evaluated over new input locations `Xnew`.
502502
@@ -695,7 +695,7 @@ def prior_linearized(self, X: TensorLike):
695695 psd = self .scale * self .cov_func .power_spectral_density_approx (J )
696696 return (phi_cos , phi_sin ), psd
697697
698- def prior (self , name : str , X : TensorLike , dims : str | None = None ): # type: ignore
698+ def prior (self , name : str , X : TensorLike , dims : str | None = None ): # type: ignore[override]
699699 R"""
700700 Return the (approximate) GP prior distribution evaluated over the input locations `X`.
701701
@@ -718,8 +718,8 @@ def prior(self, name: str, X: TensorLike, dims: str | None = None): # type: ign
718718 # and so does not contribute to the approximation.
719719 f = (
720720 self .mean_func (X )
721- + phi_cos @ (psd * self ._beta [:m ]) # type: ignore
722- + phi_sin [..., 1 :] @ (psd [1 :] * self ._beta [m :]) # type: ignore
721+ + phi_cos @ (psd * self ._beta [:m ]) # type: ignore[index]
722+ + phi_sin [..., 1 :] @ (psd [1 :] * self ._beta [m :]) # type: ignore[index]
723723 )
724724
725725 self .f = pm .Deterministic (name , f , dims = dims )
@@ -747,7 +747,7 @@ def _build_conditional(self, Xnew):
747747 phi = phi_cos @ (psd * beta [:m ]) + phi_sin [..., 1 :] @ (psd [1 :] * beta [m :])
748748 return self .mean_func (Xnew ) + phi
749749
750- def conditional (self , name : str , Xnew : TensorLike , dims : str | None = None ): # type: ignore
750+ def conditional (self , name : str , Xnew : TensorLike , dims : str | None = None ): # type: ignore[override]
751751 R"""
752752 Return the (approximate) conditional distribution evaluated over new input locations `Xnew`.
753753
0 commit comments